1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 26 #include "llvm/CodeGen/LowLevelType.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/StackProtector.h" 36 #include "llvm/CodeGen/SwitchLoweringUtils.h" 37 #include "llvm/CodeGen/TargetFrameLowering.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/CFG.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfo.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GetElementPtrTypeIterator.h" 52 #include "llvm/IR/InlineAsm.h" 53 #include "llvm/IR/InstrTypes.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/Intrinsics.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/MCContext.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CodeGen.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetIntrinsicInfo.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include "llvm/Transforms/Utils/MemoryOpRemark.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <iterator> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 #define DEBUG_TYPE "irtranslator" 86 87 using namespace llvm; 88 89 static cl::opt<bool> 90 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 91 cl::desc("Should enable CSE in irtranslator"), 92 cl::Optional, cl::init(false)); 93 char IRTranslator::ID = 0; 94 95 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 96 false, false) 97 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 98 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 99 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 100 INITIALIZE_PASS_DEPENDENCY(StackProtector) 101 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 102 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 103 false, false) 104 105 static void reportTranslationError(MachineFunction &MF, 106 const TargetPassConfig &TPC, 107 OptimizationRemarkEmitter &ORE, 108 OptimizationRemarkMissed &R) { 109 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 110 111 // Print the function name explicitly if we don't have a debug location (which 112 // makes the diagnostic less useful) or if we're going to emit a raw error. 113 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 114 R << (" (in function: " + MF.getName() + ")").str(); 115 116 if (TPC.isGlobalISelAbortEnabled()) 117 report_fatal_error(R.getMsg()); 118 else 119 ORE.emit(R); 120 } 121 122 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel) 123 : MachineFunctionPass(ID), OptLevel(optlevel) {} 124 125 #ifndef NDEBUG 126 namespace { 127 /// Verify that every instruction created has the same DILocation as the 128 /// instruction being translated. 129 class DILocationVerifier : public GISelChangeObserver { 130 const Instruction *CurrInst = nullptr; 131 132 public: 133 DILocationVerifier() = default; 134 ~DILocationVerifier() = default; 135 136 const Instruction *getCurrentInst() const { return CurrInst; } 137 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 138 139 void erasingInstr(MachineInstr &MI) override {} 140 void changingInstr(MachineInstr &MI) override {} 141 void changedInstr(MachineInstr &MI) override {} 142 143 void createdInstr(MachineInstr &MI) override { 144 assert(getCurrentInst() && "Inserted instruction without a current MI"); 145 146 // Only print the check message if we're actually checking it. 147 #ifndef NDEBUG 148 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 149 << " was copied to " << MI); 150 #endif 151 // We allow insts in the entry block to have a debug loc line of 0 because 152 // they could have originated from constants, and we don't want a jumpy 153 // debug experience. 154 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 155 MI.getDebugLoc().getLine() == 0) && 156 "Line info was not transferred to all instructions"); 157 } 158 }; 159 } // namespace 160 #endif // ifndef NDEBUG 161 162 163 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 164 AU.addRequired<StackProtector>(); 165 AU.addRequired<TargetPassConfig>(); 166 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 167 if (OptLevel != CodeGenOpt::None) 168 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 169 AU.addRequired<TargetLibraryInfoWrapperPass>(); 170 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 171 getSelectionDAGFallbackAnalysisUsage(AU); 172 MachineFunctionPass::getAnalysisUsage(AU); 173 } 174 175 IRTranslator::ValueToVRegInfo::VRegListT & 176 IRTranslator::allocateVRegs(const Value &Val) { 177 auto VRegsIt = VMap.findVRegs(Val); 178 if (VRegsIt != VMap.vregs_end()) 179 return *VRegsIt->second; 180 auto *Regs = VMap.getVRegs(Val); 181 auto *Offsets = VMap.getOffsets(Val); 182 SmallVector<LLT, 4> SplitTys; 183 computeValueLLTs(*DL, *Val.getType(), SplitTys, 184 Offsets->empty() ? Offsets : nullptr); 185 for (unsigned i = 0; i < SplitTys.size(); ++i) 186 Regs->push_back(0); 187 return *Regs; 188 } 189 190 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 191 auto VRegsIt = VMap.findVRegs(Val); 192 if (VRegsIt != VMap.vregs_end()) 193 return *VRegsIt->second; 194 195 if (Val.getType()->isVoidTy()) 196 return *VMap.getVRegs(Val); 197 198 // Create entry for this type. 199 auto *VRegs = VMap.getVRegs(Val); 200 auto *Offsets = VMap.getOffsets(Val); 201 202 assert(Val.getType()->isSized() && 203 "Don't know how to create an empty vreg"); 204 205 SmallVector<LLT, 4> SplitTys; 206 computeValueLLTs(*DL, *Val.getType(), SplitTys, 207 Offsets->empty() ? Offsets : nullptr); 208 209 if (!isa<Constant>(Val)) { 210 for (auto Ty : SplitTys) 211 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 212 return *VRegs; 213 } 214 215 if (Val.getType()->isAggregateType()) { 216 // UndefValue, ConstantAggregateZero 217 auto &C = cast<Constant>(Val); 218 unsigned Idx = 0; 219 while (auto Elt = C.getAggregateElement(Idx++)) { 220 auto EltRegs = getOrCreateVRegs(*Elt); 221 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 222 } 223 } else { 224 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 225 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 226 bool Success = translate(cast<Constant>(Val), VRegs->front()); 227 if (!Success) { 228 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 229 MF->getFunction().getSubprogram(), 230 &MF->getFunction().getEntryBlock()); 231 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 232 reportTranslationError(*MF, *TPC, *ORE, R); 233 return *VRegs; 234 } 235 } 236 237 return *VRegs; 238 } 239 240 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 241 auto MapEntry = FrameIndices.find(&AI); 242 if (MapEntry != FrameIndices.end()) 243 return MapEntry->second; 244 245 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 246 uint64_t Size = 247 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 248 249 // Always allocate at least one byte. 250 Size = std::max<uint64_t>(Size, 1u); 251 252 int &FI = FrameIndices[&AI]; 253 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI); 254 return FI; 255 } 256 257 Align IRTranslator::getMemOpAlign(const Instruction &I) { 258 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) 259 return SI->getAlign(); 260 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) 261 return LI->getAlign(); 262 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 263 return AI->getAlign(); 264 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) 265 return AI->getAlign(); 266 267 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 268 R << "unable to translate memop: " << ore::NV("Opcode", &I); 269 reportTranslationError(*MF, *TPC, *ORE, R); 270 return Align(1); 271 } 272 273 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 274 MachineBasicBlock *&MBB = BBToMBB[&BB]; 275 assert(MBB && "BasicBlock was not encountered before"); 276 return *MBB; 277 } 278 279 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 280 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 281 MachinePreds[Edge].push_back(NewPred); 282 } 283 284 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 285 MachineIRBuilder &MIRBuilder) { 286 // Get or create a virtual register for each value. 287 // Unless the value is a Constant => loadimm cst? 288 // or inline constant each time? 289 // Creation of a virtual register needs to have a size. 290 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 291 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 292 Register Res = getOrCreateVReg(U); 293 uint16_t Flags = 0; 294 if (isa<Instruction>(U)) { 295 const Instruction &I = cast<Instruction>(U); 296 Flags = MachineInstr::copyFlagsFromInstruction(I); 297 } 298 299 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 300 return true; 301 } 302 303 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U, 304 MachineIRBuilder &MIRBuilder) { 305 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 306 Register Res = getOrCreateVReg(U); 307 uint16_t Flags = 0; 308 if (isa<Instruction>(U)) { 309 const Instruction &I = cast<Instruction>(U); 310 Flags = MachineInstr::copyFlagsFromInstruction(I); 311 } 312 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags); 313 return true; 314 } 315 316 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 317 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder); 318 } 319 320 bool IRTranslator::translateCompare(const User &U, 321 MachineIRBuilder &MIRBuilder) { 322 auto *CI = dyn_cast<CmpInst>(&U); 323 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 324 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 325 Register Res = getOrCreateVReg(U); 326 CmpInst::Predicate Pred = 327 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 328 cast<ConstantExpr>(U).getPredicate()); 329 if (CmpInst::isIntPredicate(Pred)) 330 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 331 else if (Pred == CmpInst::FCMP_FALSE) 332 MIRBuilder.buildCopy( 333 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 334 else if (Pred == CmpInst::FCMP_TRUE) 335 MIRBuilder.buildCopy( 336 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 337 else { 338 assert(CI && "Instruction should be CmpInst"); 339 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, 340 MachineInstr::copyFlagsFromInstruction(*CI)); 341 } 342 343 return true; 344 } 345 346 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 347 const ReturnInst &RI = cast<ReturnInst>(U); 348 const Value *Ret = RI.getReturnValue(); 349 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 350 Ret = nullptr; 351 352 ArrayRef<Register> VRegs; 353 if (Ret) 354 VRegs = getOrCreateVRegs(*Ret); 355 356 Register SwiftErrorVReg = 0; 357 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 358 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 359 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 360 } 361 362 // The target may mess up with the insertion point, but 363 // this is not important as a return is the last instruction 364 // of the block anyway. 365 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg); 366 } 367 368 void IRTranslator::emitBranchForMergedCondition( 369 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 370 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 371 BranchProbability TProb, BranchProbability FProb, bool InvertCond) { 372 // If the leaf of the tree is a comparison, merge the condition into 373 // the caseblock. 374 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 375 CmpInst::Predicate Condition; 376 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 377 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 378 } else { 379 const FCmpInst *FC = cast<FCmpInst>(Cond); 380 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 381 } 382 383 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0), 384 BOp->getOperand(1), nullptr, TBB, FBB, CurBB, 385 CurBuilder->getDebugLoc(), TProb, FProb); 386 SL->SwitchCases.push_back(CB); 387 return; 388 } 389 390 // Create a CaseBlock record representing this branch. 391 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 392 SwitchCG::CaseBlock CB( 393 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()), 394 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb); 395 SL->SwitchCases.push_back(CB); 396 } 397 398 static bool isValInBlock(const Value *V, const BasicBlock *BB) { 399 if (const Instruction *I = dyn_cast<Instruction>(V)) 400 return I->getParent() == BB; 401 return true; 402 } 403 404 void IRTranslator::findMergedConditions( 405 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 406 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 407 Instruction::BinaryOps Opc, BranchProbability TProb, 408 BranchProbability FProb, bool InvertCond) { 409 using namespace PatternMatch; 410 assert((Opc == Instruction::And || Opc == Instruction::Or) && 411 "Expected Opc to be AND/OR"); 412 // Skip over not part of the tree and remember to invert op and operands at 413 // next level. 414 Value *NotCond; 415 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 416 isValInBlock(NotCond, CurBB->getBasicBlock())) { 417 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 418 !InvertCond); 419 return; 420 } 421 422 const Instruction *BOp = dyn_cast<Instruction>(Cond); 423 const Value *BOpOp0, *BOpOp1; 424 // Compute the effective opcode for Cond, taking into account whether it needs 425 // to be inverted, e.g. 426 // and (not (or A, B)), C 427 // gets lowered as 428 // and (and (not A, not B), C) 429 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 430 if (BOp) { 431 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 432 ? Instruction::And 433 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 434 ? Instruction::Or 435 : (Instruction::BinaryOps)0); 436 if (InvertCond) { 437 if (BOpc == Instruction::And) 438 BOpc = Instruction::Or; 439 else if (BOpc == Instruction::Or) 440 BOpc = Instruction::And; 441 } 442 } 443 444 // If this node is not part of the or/and tree, emit it as a branch. 445 // Note that all nodes in the tree should have same opcode. 446 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 447 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 448 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) || 449 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) { 450 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb, 451 InvertCond); 452 return; 453 } 454 455 // Create TmpBB after CurBB. 456 MachineFunction::iterator BBI(CurBB); 457 MachineBasicBlock *TmpBB = 458 MF->CreateMachineBasicBlock(CurBB->getBasicBlock()); 459 CurBB->getParent()->insert(++BBI, TmpBB); 460 461 if (Opc == Instruction::Or) { 462 // Codegen X | Y as: 463 // BB1: 464 // jmp_if_X TBB 465 // jmp TmpBB 466 // TmpBB: 467 // jmp_if_Y TBB 468 // jmp FBB 469 // 470 471 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 472 // The requirement is that 473 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 474 // = TrueProb for original BB. 475 // Assuming the original probabilities are A and B, one choice is to set 476 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 477 // A/(1+B) and 2B/(1+B). This choice assumes that 478 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 479 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 480 // TmpBB, but the math is more complicated. 481 482 auto NewTrueProb = TProb / 2; 483 auto NewFalseProb = TProb / 2 + FProb; 484 // Emit the LHS condition. 485 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 486 NewFalseProb, InvertCond); 487 488 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 489 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 490 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 491 // Emit the RHS condition into TmpBB. 492 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 493 Probs[1], InvertCond); 494 } else { 495 assert(Opc == Instruction::And && "Unknown merge op!"); 496 // Codegen X & Y as: 497 // BB1: 498 // jmp_if_X TmpBB 499 // jmp FBB 500 // TmpBB: 501 // jmp_if_Y TBB 502 // jmp FBB 503 // 504 // This requires creation of TmpBB after CurBB. 505 506 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 507 // The requirement is that 508 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 509 // = FalseProb for original BB. 510 // Assuming the original probabilities are A and B, one choice is to set 511 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 512 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 513 // TrueProb for BB1 * FalseProb for TmpBB. 514 515 auto NewTrueProb = TProb + FProb / 2; 516 auto NewFalseProb = FProb / 2; 517 // Emit the LHS condition. 518 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 519 NewFalseProb, InvertCond); 520 521 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 522 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 523 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 524 // Emit the RHS condition into TmpBB. 525 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 526 Probs[1], InvertCond); 527 } 528 } 529 530 bool IRTranslator::shouldEmitAsBranches( 531 const std::vector<SwitchCG::CaseBlock> &Cases) { 532 // For multiple cases, it's better to emit as branches. 533 if (Cases.size() != 2) 534 return true; 535 536 // If this is two comparisons of the same values or'd or and'd together, they 537 // will get folded into a single comparison, so don't emit two blocks. 538 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 539 Cases[0].CmpRHS == Cases[1].CmpRHS) || 540 (Cases[0].CmpRHS == Cases[1].CmpLHS && 541 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 542 return false; 543 } 544 545 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 546 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 547 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 548 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred && 549 isa<Constant>(Cases[0].CmpRHS) && 550 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 551 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ && 552 Cases[0].TrueBB == Cases[1].ThisBB) 553 return false; 554 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE && 555 Cases[0].FalseBB == Cases[1].ThisBB) 556 return false; 557 } 558 559 return true; 560 } 561 562 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 563 const BranchInst &BrInst = cast<BranchInst>(U); 564 auto &CurMBB = MIRBuilder.getMBB(); 565 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0)); 566 567 if (BrInst.isUnconditional()) { 568 // If the unconditional target is the layout successor, fallthrough. 569 if (!CurMBB.isLayoutSuccessor(Succ0MBB)) 570 MIRBuilder.buildBr(*Succ0MBB); 571 572 // Link successors. 573 for (const BasicBlock *Succ : successors(&BrInst)) 574 CurMBB.addSuccessor(&getMBB(*Succ)); 575 return true; 576 } 577 578 // If this condition is one of the special cases we handle, do special stuff 579 // now. 580 const Value *CondVal = BrInst.getCondition(); 581 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1)); 582 583 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 584 585 // If this is a series of conditions that are or'd or and'd together, emit 586 // this as a sequence of branches instead of setcc's with and/or operations. 587 // As long as jumps are not expensive (exceptions for multi-use logic ops, 588 // unpredictable branches, and vector extracts because those jumps are likely 589 // expensive for any target), this should improve performance. 590 // For example, instead of something like: 591 // cmp A, B 592 // C = seteq 593 // cmp D, E 594 // F = setle 595 // or C, F 596 // jnz foo 597 // Emit: 598 // cmp A, B 599 // je foo 600 // cmp D, E 601 // jle foo 602 using namespace PatternMatch; 603 const Instruction *CondI = dyn_cast<Instruction>(CondVal); 604 if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() && 605 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) { 606 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 607 Value *Vec; 608 const Value *BOp0, *BOp1; 609 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 610 Opcode = Instruction::And; 611 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 612 Opcode = Instruction::Or; 613 614 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 615 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 616 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode, 617 getEdgeProbability(&CurMBB, Succ0MBB), 618 getEdgeProbability(&CurMBB, Succ1MBB), 619 /*InvertCond=*/false); 620 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!"); 621 622 // Allow some cases to be rejected. 623 if (shouldEmitAsBranches(SL->SwitchCases)) { 624 // Emit the branch for this block. 625 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder); 626 SL->SwitchCases.erase(SL->SwitchCases.begin()); 627 return true; 628 } 629 630 // Okay, we decided not to do this, remove any inserted MBB's and clear 631 // SwitchCases. 632 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I) 633 MF->erase(SL->SwitchCases[I].ThisBB); 634 635 SL->SwitchCases.clear(); 636 } 637 } 638 639 // Create a CaseBlock record representing this branch. 640 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal, 641 ConstantInt::getTrue(MF->getFunction().getContext()), 642 nullptr, Succ0MBB, Succ1MBB, &CurMBB, 643 CurBuilder->getDebugLoc()); 644 645 // Use emitSwitchCase to actually insert the fast branch sequence for this 646 // cond branch. 647 emitSwitchCase(CB, &CurMBB, *CurBuilder); 648 return true; 649 } 650 651 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 652 MachineBasicBlock *Dst, 653 BranchProbability Prob) { 654 if (!FuncInfo.BPI) { 655 Src->addSuccessorWithoutProb(Dst); 656 return; 657 } 658 if (Prob.isUnknown()) 659 Prob = getEdgeProbability(Src, Dst); 660 Src->addSuccessor(Dst, Prob); 661 } 662 663 BranchProbability 664 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 665 const MachineBasicBlock *Dst) const { 666 const BasicBlock *SrcBB = Src->getBasicBlock(); 667 const BasicBlock *DstBB = Dst->getBasicBlock(); 668 if (!FuncInfo.BPI) { 669 // If BPI is not available, set the default probability as 1 / N, where N is 670 // the number of successors. 671 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 672 return BranchProbability(1, SuccSize); 673 } 674 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 675 } 676 677 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 678 using namespace SwitchCG; 679 // Extract cases from the switch. 680 const SwitchInst &SI = cast<SwitchInst>(U); 681 BranchProbabilityInfo *BPI = FuncInfo.BPI; 682 CaseClusterVector Clusters; 683 Clusters.reserve(SI.getNumCases()); 684 for (auto &I : SI.cases()) { 685 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 686 assert(Succ && "Could not find successor mbb in mapping"); 687 const ConstantInt *CaseVal = I.getCaseValue(); 688 BranchProbability Prob = 689 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 690 : BranchProbability(1, SI.getNumCases() + 1); 691 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 692 } 693 694 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 695 696 // Cluster adjacent cases with the same destination. We do this at all 697 // optimization levels because it's cheap to do and will make codegen faster 698 // if there are many clusters. 699 sortAndRangeify(Clusters); 700 701 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 702 703 // If there is only the default destination, jump there directly. 704 if (Clusters.empty()) { 705 SwitchMBB->addSuccessor(DefaultMBB); 706 if (DefaultMBB != SwitchMBB->getNextNode()) 707 MIB.buildBr(*DefaultMBB); 708 return true; 709 } 710 711 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 712 SL->findBitTestClusters(Clusters, &SI); 713 714 LLVM_DEBUG({ 715 dbgs() << "Case clusters: "; 716 for (const CaseCluster &C : Clusters) { 717 if (C.Kind == CC_JumpTable) 718 dbgs() << "JT:"; 719 if (C.Kind == CC_BitTests) 720 dbgs() << "BT:"; 721 722 C.Low->getValue().print(dbgs(), true); 723 if (C.Low != C.High) { 724 dbgs() << '-'; 725 C.High->getValue().print(dbgs(), true); 726 } 727 dbgs() << ' '; 728 } 729 dbgs() << '\n'; 730 }); 731 732 assert(!Clusters.empty()); 733 SwitchWorkList WorkList; 734 CaseClusterIt First = Clusters.begin(); 735 CaseClusterIt Last = Clusters.end() - 1; 736 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 737 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 738 739 // FIXME: At the moment we don't do any splitting optimizations here like 740 // SelectionDAG does, so this worklist only has one entry. 741 while (!WorkList.empty()) { 742 SwitchWorkListItem W = WorkList.back(); 743 WorkList.pop_back(); 744 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 745 return false; 746 } 747 return true; 748 } 749 750 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 751 MachineBasicBlock *MBB) { 752 // Emit the code for the jump table 753 assert(JT.Reg != -1U && "Should lower JT Header first!"); 754 MachineIRBuilder MIB(*MBB->getParent()); 755 MIB.setMBB(*MBB); 756 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 757 758 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 759 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 760 761 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 762 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 763 } 764 765 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 766 SwitchCG::JumpTableHeader &JTH, 767 MachineBasicBlock *HeaderBB) { 768 MachineIRBuilder MIB(*HeaderBB->getParent()); 769 MIB.setMBB(*HeaderBB); 770 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 771 772 const Value &SValue = *JTH.SValue; 773 // Subtract the lowest switch case value from the value being switched on. 774 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 775 Register SwitchOpReg = getOrCreateVReg(SValue); 776 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 777 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 778 779 // This value may be smaller or larger than the target's pointer type, and 780 // therefore require extension or truncating. 781 Type *PtrIRTy = SValue.getType()->getPointerTo(); 782 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 783 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 784 785 JT.Reg = Sub.getReg(0); 786 787 if (JTH.OmitRangeCheck) { 788 if (JT.MBB != HeaderBB->getNextNode()) 789 MIB.buildBr(*JT.MBB); 790 return true; 791 } 792 793 // Emit the range check for the jump table, and branch to the default block 794 // for the switch statement if the value being switched on exceeds the 795 // largest case in the switch. 796 auto Cst = getOrCreateVReg( 797 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 798 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 799 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 800 801 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 802 803 // Avoid emitting unnecessary branches to the next block. 804 if (JT.MBB != HeaderBB->getNextNode()) 805 BrCond = MIB.buildBr(*JT.MBB); 806 return true; 807 } 808 809 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 810 MachineBasicBlock *SwitchBB, 811 MachineIRBuilder &MIB) { 812 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 813 Register Cond; 814 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 815 MIB.setDebugLoc(CB.DbgLoc); 816 MIB.setMBB(*CB.ThisBB); 817 818 if (CB.PredInfo.NoCmp) { 819 // Branch or fall through to TrueBB. 820 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 821 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 822 CB.ThisBB); 823 CB.ThisBB->normalizeSuccProbs(); 824 if (CB.TrueBB != CB.ThisBB->getNextNode()) 825 MIB.buildBr(*CB.TrueBB); 826 MIB.setDebugLoc(OldDbgLoc); 827 return; 828 } 829 830 const LLT i1Ty = LLT::scalar(1); 831 // Build the compare. 832 if (!CB.CmpMHS) { 833 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS); 834 // For conditional branch lowering, we might try to do something silly like 835 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so, 836 // just re-use the existing condition vreg. 837 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && 838 CI->getZExtValue() == 1 && CB.PredInfo.Pred == CmpInst::ICMP_EQ) { 839 Cond = CondLHS; 840 } else { 841 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 842 if (CmpInst::isFPPredicate(CB.PredInfo.Pred)) 843 Cond = 844 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 845 else 846 Cond = 847 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 848 } 849 } else { 850 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 851 "Can only handle SLE ranges"); 852 853 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 854 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 855 856 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 857 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 858 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 859 Cond = 860 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 861 } else { 862 const LLT CmpTy = MRI->getType(CmpOpReg); 863 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 864 auto Diff = MIB.buildConstant(CmpTy, High - Low); 865 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 866 } 867 } 868 869 // Update successor info 870 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 871 872 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 873 CB.ThisBB); 874 875 // TrueBB and FalseBB are always different unless the incoming IR is 876 // degenerate. This only happens when running llc on weird IR. 877 if (CB.TrueBB != CB.FalseBB) 878 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 879 CB.ThisBB->normalizeSuccProbs(); 880 881 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 882 CB.ThisBB); 883 884 MIB.buildBrCond(Cond, *CB.TrueBB); 885 MIB.buildBr(*CB.FalseBB); 886 MIB.setDebugLoc(OldDbgLoc); 887 } 888 889 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 890 MachineBasicBlock *SwitchMBB, 891 MachineBasicBlock *CurMBB, 892 MachineBasicBlock *DefaultMBB, 893 MachineIRBuilder &MIB, 894 MachineFunction::iterator BBI, 895 BranchProbability UnhandledProbs, 896 SwitchCG::CaseClusterIt I, 897 MachineBasicBlock *Fallthrough, 898 bool FallthroughUnreachable) { 899 using namespace SwitchCG; 900 MachineFunction *CurMF = SwitchMBB->getParent(); 901 // FIXME: Optimize away range check based on pivot comparisons. 902 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 903 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 904 BranchProbability DefaultProb = W.DefaultProb; 905 906 // The jump block hasn't been inserted yet; insert it here. 907 MachineBasicBlock *JumpMBB = JT->MBB; 908 CurMF->insert(BBI, JumpMBB); 909 910 // Since the jump table block is separate from the switch block, we need 911 // to keep track of it as a machine predecessor to the default block, 912 // otherwise we lose the phi edges. 913 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 914 CurMBB); 915 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 916 JumpMBB); 917 918 auto JumpProb = I->Prob; 919 auto FallthroughProb = UnhandledProbs; 920 921 // If the default statement is a target of the jump table, we evenly 922 // distribute the default probability to successors of CurMBB. Also 923 // update the probability on the edge from JumpMBB to Fallthrough. 924 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 925 SE = JumpMBB->succ_end(); 926 SI != SE; ++SI) { 927 if (*SI == DefaultMBB) { 928 JumpProb += DefaultProb / 2; 929 FallthroughProb -= DefaultProb / 2; 930 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 931 JumpMBB->normalizeSuccProbs(); 932 } else { 933 // Also record edges from the jump table block to it's successors. 934 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 935 JumpMBB); 936 } 937 } 938 939 // Skip the range check if the fallthrough block is unreachable. 940 if (FallthroughUnreachable) 941 JTH->OmitRangeCheck = true; 942 943 if (!JTH->OmitRangeCheck) 944 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 945 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 946 CurMBB->normalizeSuccProbs(); 947 948 // The jump table header will be inserted in our current block, do the 949 // range check, and fall through to our fallthrough block. 950 JTH->HeaderBB = CurMBB; 951 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 952 953 // If we're in the right place, emit the jump table header right now. 954 if (CurMBB == SwitchMBB) { 955 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 956 return false; 957 JTH->Emitted = true; 958 } 959 return true; 960 } 961 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 962 Value *Cond, 963 MachineBasicBlock *Fallthrough, 964 bool FallthroughUnreachable, 965 BranchProbability UnhandledProbs, 966 MachineBasicBlock *CurMBB, 967 MachineIRBuilder &MIB, 968 MachineBasicBlock *SwitchMBB) { 969 using namespace SwitchCG; 970 const Value *RHS, *LHS, *MHS; 971 CmpInst::Predicate Pred; 972 if (I->Low == I->High) { 973 // Check Cond == I->Low. 974 Pred = CmpInst::ICMP_EQ; 975 LHS = Cond; 976 RHS = I->Low; 977 MHS = nullptr; 978 } else { 979 // Check I->Low <= Cond <= I->High. 980 Pred = CmpInst::ICMP_SLE; 981 LHS = I->Low; 982 MHS = Cond; 983 RHS = I->High; 984 } 985 986 // If Fallthrough is unreachable, fold away the comparison. 987 // The false probability is the sum of all unhandled cases. 988 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 989 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 990 991 emitSwitchCase(CB, SwitchMBB, MIB); 992 return true; 993 } 994 995 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B, 996 MachineBasicBlock *SwitchBB) { 997 MachineIRBuilder &MIB = *CurBuilder; 998 MIB.setMBB(*SwitchBB); 999 1000 // Subtract the minimum value. 1001 Register SwitchOpReg = getOrCreateVReg(*B.SValue); 1002 1003 LLT SwitchOpTy = MRI->getType(SwitchOpReg); 1004 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0); 1005 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg); 1006 1007 // Ensure that the type will fit the mask value. 1008 LLT MaskTy = SwitchOpTy; 1009 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) { 1010 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) { 1011 // Switch table case range are encoded into series of masks. 1012 // Just use pointer type, it's guaranteed to fit. 1013 MaskTy = LLT::scalar(64); 1014 break; 1015 } 1016 } 1017 Register SubReg = RangeSub.getReg(0); 1018 if (SwitchOpTy != MaskTy) 1019 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0); 1020 1021 B.RegVT = getMVTForLLT(MaskTy); 1022 B.Reg = SubReg; 1023 1024 MachineBasicBlock *MBB = B.Cases[0].ThisBB; 1025 1026 if (!B.OmitRangeCheck) 1027 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 1028 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 1029 1030 SwitchBB->normalizeSuccProbs(); 1031 1032 if (!B.OmitRangeCheck) { 1033 // Conditional branch to the default block. 1034 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range); 1035 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1), 1036 RangeSub, RangeCst); 1037 MIB.buildBrCond(RangeCmp, *B.Default); 1038 } 1039 1040 // Avoid emitting unnecessary branches to the next block. 1041 if (MBB != SwitchBB->getNextNode()) 1042 MIB.buildBr(*MBB); 1043 } 1044 1045 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB, 1046 MachineBasicBlock *NextMBB, 1047 BranchProbability BranchProbToNext, 1048 Register Reg, SwitchCG::BitTestCase &B, 1049 MachineBasicBlock *SwitchBB) { 1050 MachineIRBuilder &MIB = *CurBuilder; 1051 MIB.setMBB(*SwitchBB); 1052 1053 LLT SwitchTy = getLLTForMVT(BB.RegVT); 1054 Register Cmp; 1055 unsigned PopCount = countPopulation(B.Mask); 1056 if (PopCount == 1) { 1057 // Testing for a single bit; just compare the shift count with what it 1058 // would need to be to shift a 1 bit in that position. 1059 auto MaskTrailingZeros = 1060 MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask)); 1061 Cmp = 1062 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros) 1063 .getReg(0); 1064 } else if (PopCount == BB.Range) { 1065 // There is only one zero bit in the range, test for it directly. 1066 auto MaskTrailingOnes = 1067 MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask)); 1068 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes) 1069 .getReg(0); 1070 } else { 1071 // Make desired shift. 1072 auto CstOne = MIB.buildConstant(SwitchTy, 1); 1073 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg); 1074 1075 // Emit bit tests and jumps. 1076 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask); 1077 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask); 1078 auto CstZero = MIB.buildConstant(SwitchTy, 0); 1079 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero) 1080 .getReg(0); 1081 } 1082 1083 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 1084 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 1085 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 1086 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 1087 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 1088 // one as they are relative probabilities (and thus work more like weights), 1089 // and hence we need to normalize them to let the sum of them become one. 1090 SwitchBB->normalizeSuccProbs(); 1091 1092 // Record the fact that the IR edge from the header to the bit test target 1093 // will go through our new block. Neeeded for PHIs to have nodes added. 1094 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()}, 1095 SwitchBB); 1096 1097 MIB.buildBrCond(Cmp, *B.TargetBB); 1098 1099 // Avoid emitting unnecessary branches to the next block. 1100 if (NextMBB != SwitchBB->getNextNode()) 1101 MIB.buildBr(*NextMBB); 1102 } 1103 1104 bool IRTranslator::lowerBitTestWorkItem( 1105 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB, 1106 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB, 1107 MachineIRBuilder &MIB, MachineFunction::iterator BBI, 1108 BranchProbability DefaultProb, BranchProbability UnhandledProbs, 1109 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough, 1110 bool FallthroughUnreachable) { 1111 using namespace SwitchCG; 1112 MachineFunction *CurMF = SwitchMBB->getParent(); 1113 // FIXME: Optimize away range check based on pivot comparisons. 1114 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 1115 // The bit test blocks haven't been inserted yet; insert them here. 1116 for (BitTestCase &BTC : BTB->Cases) 1117 CurMF->insert(BBI, BTC.ThisBB); 1118 1119 // Fill in fields of the BitTestBlock. 1120 BTB->Parent = CurMBB; 1121 BTB->Default = Fallthrough; 1122 1123 BTB->DefaultProb = UnhandledProbs; 1124 // If the cases in bit test don't form a contiguous range, we evenly 1125 // distribute the probability on the edge to Fallthrough to two 1126 // successors of CurMBB. 1127 if (!BTB->ContiguousRange) { 1128 BTB->Prob += DefaultProb / 2; 1129 BTB->DefaultProb -= DefaultProb / 2; 1130 } 1131 1132 if (FallthroughUnreachable) { 1133 // Skip the range check if the fallthrough block is unreachable. 1134 BTB->OmitRangeCheck = true; 1135 } 1136 1137 // If we're in the right place, emit the bit test header right now. 1138 if (CurMBB == SwitchMBB) { 1139 emitBitTestHeader(*BTB, SwitchMBB); 1140 BTB->Emitted = true; 1141 } 1142 return true; 1143 } 1144 1145 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 1146 Value *Cond, 1147 MachineBasicBlock *SwitchMBB, 1148 MachineBasicBlock *DefaultMBB, 1149 MachineIRBuilder &MIB) { 1150 using namespace SwitchCG; 1151 MachineFunction *CurMF = FuncInfo.MF; 1152 MachineBasicBlock *NextMBB = nullptr; 1153 MachineFunction::iterator BBI(W.MBB); 1154 if (++BBI != FuncInfo.MF->end()) 1155 NextMBB = &*BBI; 1156 1157 if (EnableOpts) { 1158 // Here, we order cases by probability so the most likely case will be 1159 // checked first. However, two clusters can have the same probability in 1160 // which case their relative ordering is non-deterministic. So we use Low 1161 // as a tie-breaker as clusters are guaranteed to never overlap. 1162 llvm::sort(W.FirstCluster, W.LastCluster + 1, 1163 [](const CaseCluster &a, const CaseCluster &b) { 1164 return a.Prob != b.Prob 1165 ? a.Prob > b.Prob 1166 : a.Low->getValue().slt(b.Low->getValue()); 1167 }); 1168 1169 // Rearrange the case blocks so that the last one falls through if possible 1170 // without changing the order of probabilities. 1171 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 1172 --I; 1173 if (I->Prob > W.LastCluster->Prob) 1174 break; 1175 if (I->Kind == CC_Range && I->MBB == NextMBB) { 1176 std::swap(*I, *W.LastCluster); 1177 break; 1178 } 1179 } 1180 } 1181 1182 // Compute total probability. 1183 BranchProbability DefaultProb = W.DefaultProb; 1184 BranchProbability UnhandledProbs = DefaultProb; 1185 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 1186 UnhandledProbs += I->Prob; 1187 1188 MachineBasicBlock *CurMBB = W.MBB; 1189 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 1190 bool FallthroughUnreachable = false; 1191 MachineBasicBlock *Fallthrough; 1192 if (I == W.LastCluster) { 1193 // For the last cluster, fall through to the default destination. 1194 Fallthrough = DefaultMBB; 1195 FallthroughUnreachable = isa<UnreachableInst>( 1196 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 1197 } else { 1198 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 1199 CurMF->insert(BBI, Fallthrough); 1200 } 1201 UnhandledProbs -= I->Prob; 1202 1203 switch (I->Kind) { 1204 case CC_BitTests: { 1205 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1206 DefaultProb, UnhandledProbs, I, Fallthrough, 1207 FallthroughUnreachable)) { 1208 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch"); 1209 return false; 1210 } 1211 break; 1212 } 1213 1214 case CC_JumpTable: { 1215 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1216 UnhandledProbs, I, Fallthrough, 1217 FallthroughUnreachable)) { 1218 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 1219 return false; 1220 } 1221 break; 1222 } 1223 case CC_Range: { 1224 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 1225 FallthroughUnreachable, UnhandledProbs, 1226 CurMBB, MIB, SwitchMBB)) { 1227 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 1228 return false; 1229 } 1230 break; 1231 } 1232 } 1233 CurMBB = Fallthrough; 1234 } 1235 1236 return true; 1237 } 1238 1239 bool IRTranslator::translateIndirectBr(const User &U, 1240 MachineIRBuilder &MIRBuilder) { 1241 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 1242 1243 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 1244 MIRBuilder.buildBrIndirect(Tgt); 1245 1246 // Link successors. 1247 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 1248 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 1249 for (const BasicBlock *Succ : successors(&BrInst)) { 1250 // It's legal for indirectbr instructions to have duplicate blocks in the 1251 // destination list. We don't allow this in MIR. Skip anything that's 1252 // already a successor. 1253 if (!AddedSuccessors.insert(Succ).second) 1254 continue; 1255 CurBB.addSuccessor(&getMBB(*Succ)); 1256 } 1257 1258 return true; 1259 } 1260 1261 static bool isSwiftError(const Value *V) { 1262 if (auto Arg = dyn_cast<Argument>(V)) 1263 return Arg->hasSwiftErrorAttr(); 1264 if (auto AI = dyn_cast<AllocaInst>(V)) 1265 return AI->isSwiftError(); 1266 return false; 1267 } 1268 1269 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 1270 const LoadInst &LI = cast<LoadInst>(U); 1271 if (DL->getTypeStoreSize(LI.getType()) == 0) 1272 return true; 1273 1274 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 1275 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 1276 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 1277 1278 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 1279 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1280 1281 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 1282 assert(Regs.size() == 1 && "swifterror should be single pointer"); 1283 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 1284 LI.getPointerOperand()); 1285 MIRBuilder.buildCopy(Regs[0], VReg); 1286 return true; 1287 } 1288 1289 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1290 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL); 1291 1292 const MDNode *Ranges = 1293 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 1294 for (unsigned i = 0; i < Regs.size(); ++i) { 1295 Register Addr; 1296 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1297 1298 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 1299 Align BaseAlign = getMemOpAlign(LI); 1300 AAMDNodes AAMetadata; 1301 LI.getAAMetadata(AAMetadata); 1302 auto MMO = MF->getMachineMemOperand( 1303 Ptr, Flags, MRI->getType(Regs[i]), 1304 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges, 1305 LI.getSyncScopeID(), LI.getOrdering()); 1306 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 1307 } 1308 1309 return true; 1310 } 1311 1312 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 1313 const StoreInst &SI = cast<StoreInst>(U); 1314 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 1315 return true; 1316 1317 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 1318 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 1319 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 1320 1321 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 1322 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1323 1324 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 1325 assert(Vals.size() == 1 && "swifterror should be single pointer"); 1326 1327 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 1328 SI.getPointerOperand()); 1329 MIRBuilder.buildCopy(VReg, Vals[0]); 1330 return true; 1331 } 1332 1333 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1334 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 1335 1336 for (unsigned i = 0; i < Vals.size(); ++i) { 1337 Register Addr; 1338 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1339 1340 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 1341 Align BaseAlign = getMemOpAlign(SI); 1342 AAMDNodes AAMetadata; 1343 SI.getAAMetadata(AAMetadata); 1344 auto MMO = MF->getMachineMemOperand( 1345 Ptr, Flags, MRI->getType(Vals[i]), 1346 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr, 1347 SI.getSyncScopeID(), SI.getOrdering()); 1348 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 1349 } 1350 return true; 1351 } 1352 1353 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 1354 const Value *Src = U.getOperand(0); 1355 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 1356 1357 // getIndexedOffsetInType is designed for GEPs, so the first index is the 1358 // usual array element rather than looking into the actual aggregate. 1359 SmallVector<Value *, 1> Indices; 1360 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 1361 1362 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 1363 for (auto Idx : EVI->indices()) 1364 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1365 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 1366 for (auto Idx : IVI->indices()) 1367 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1368 } else { 1369 for (unsigned i = 1; i < U.getNumOperands(); ++i) 1370 Indices.push_back(U.getOperand(i)); 1371 } 1372 1373 return 8 * static_cast<uint64_t>( 1374 DL.getIndexedOffsetInType(Src->getType(), Indices)); 1375 } 1376 1377 bool IRTranslator::translateExtractValue(const User &U, 1378 MachineIRBuilder &MIRBuilder) { 1379 const Value *Src = U.getOperand(0); 1380 uint64_t Offset = getOffsetFromIndices(U, *DL); 1381 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1382 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 1383 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 1384 auto &DstRegs = allocateVRegs(U); 1385 1386 for (unsigned i = 0; i < DstRegs.size(); ++i) 1387 DstRegs[i] = SrcRegs[Idx++]; 1388 1389 return true; 1390 } 1391 1392 bool IRTranslator::translateInsertValue(const User &U, 1393 MachineIRBuilder &MIRBuilder) { 1394 const Value *Src = U.getOperand(0); 1395 uint64_t Offset = getOffsetFromIndices(U, *DL); 1396 auto &DstRegs = allocateVRegs(U); 1397 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 1398 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1399 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 1400 auto InsertedIt = InsertedRegs.begin(); 1401 1402 for (unsigned i = 0; i < DstRegs.size(); ++i) { 1403 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 1404 DstRegs[i] = *InsertedIt++; 1405 else 1406 DstRegs[i] = SrcRegs[i]; 1407 } 1408 1409 return true; 1410 } 1411 1412 bool IRTranslator::translateSelect(const User &U, 1413 MachineIRBuilder &MIRBuilder) { 1414 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1415 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1416 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1417 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1418 1419 uint16_t Flags = 0; 1420 if (const SelectInst *SI = dyn_cast<SelectInst>(&U)) 1421 Flags = MachineInstr::copyFlagsFromInstruction(*SI); 1422 1423 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1424 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1425 } 1426 1427 return true; 1428 } 1429 1430 bool IRTranslator::translateCopy(const User &U, const Value &V, 1431 MachineIRBuilder &MIRBuilder) { 1432 Register Src = getOrCreateVReg(V); 1433 auto &Regs = *VMap.getVRegs(U); 1434 if (Regs.empty()) { 1435 Regs.push_back(Src); 1436 VMap.getOffsets(U)->push_back(0); 1437 } else { 1438 // If we already assigned a vreg for this instruction, we can't change that. 1439 // Emit a copy to satisfy the users we already emitted. 1440 MIRBuilder.buildCopy(Regs[0], Src); 1441 } 1442 return true; 1443 } 1444 1445 bool IRTranslator::translateBitCast(const User &U, 1446 MachineIRBuilder &MIRBuilder) { 1447 // If we're bitcasting to the source type, we can reuse the source vreg. 1448 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1449 getLLTForType(*U.getType(), *DL)) 1450 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1451 1452 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1453 } 1454 1455 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1456 MachineIRBuilder &MIRBuilder) { 1457 Register Op = getOrCreateVReg(*U.getOperand(0)); 1458 Register Res = getOrCreateVReg(U); 1459 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1460 return true; 1461 } 1462 1463 bool IRTranslator::translateGetElementPtr(const User &U, 1464 MachineIRBuilder &MIRBuilder) { 1465 Value &Op0 = *U.getOperand(0); 1466 Register BaseReg = getOrCreateVReg(Op0); 1467 Type *PtrIRTy = Op0.getType(); 1468 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1469 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1470 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1471 1472 // Normalize Vector GEP - all scalar operands should be converted to the 1473 // splat vector. 1474 unsigned VectorWidth = 0; 1475 if (auto *VT = dyn_cast<VectorType>(U.getType())) 1476 VectorWidth = cast<FixedVectorType>(VT)->getNumElements(); 1477 1478 // We might need to splat the base pointer into a vector if the offsets 1479 // are vectors. 1480 if (VectorWidth && !PtrTy.isVector()) { 1481 BaseReg = 1482 MIRBuilder 1483 .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg) 1484 .getReg(0); 1485 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth); 1486 PtrTy = getLLTForType(*PtrIRTy, *DL); 1487 OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1488 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1489 } 1490 1491 int64_t Offset = 0; 1492 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1493 GTI != E; ++GTI) { 1494 const Value *Idx = GTI.getOperand(); 1495 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1496 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1497 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1498 continue; 1499 } else { 1500 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1501 1502 // If this is a scalar constant or a splat vector of constants, 1503 // handle it quickly. 1504 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1505 Offset += ElementSize * CI->getSExtValue(); 1506 continue; 1507 } 1508 1509 if (Offset != 0) { 1510 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1511 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1512 .getReg(0); 1513 Offset = 0; 1514 } 1515 1516 Register IdxReg = getOrCreateVReg(*Idx); 1517 LLT IdxTy = MRI->getType(IdxReg); 1518 if (IdxTy != OffsetTy) { 1519 if (!IdxTy.isVector() && VectorWidth) { 1520 IdxReg = MIRBuilder.buildSplatVector( 1521 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1522 } 1523 1524 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1525 } 1526 1527 // N = N + Idx * ElementSize; 1528 // Avoid doing it for ElementSize of 1. 1529 Register GepOffsetReg; 1530 if (ElementSize != 1) { 1531 auto ElementSizeMIB = MIRBuilder.buildConstant( 1532 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1533 GepOffsetReg = 1534 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1535 } else 1536 GepOffsetReg = IdxReg; 1537 1538 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1539 } 1540 } 1541 1542 if (Offset != 0) { 1543 auto OffsetMIB = 1544 MIRBuilder.buildConstant(OffsetTy, Offset); 1545 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1546 return true; 1547 } 1548 1549 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1550 return true; 1551 } 1552 1553 bool IRTranslator::translateMemFunc(const CallInst &CI, 1554 MachineIRBuilder &MIRBuilder, 1555 unsigned Opcode) { 1556 1557 // If the source is undef, then just emit a nop. 1558 if (isa<UndefValue>(CI.getArgOperand(1))) 1559 return true; 1560 1561 SmallVector<Register, 3> SrcRegs; 1562 1563 unsigned MinPtrSize = UINT_MAX; 1564 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) { 1565 Register SrcReg = getOrCreateVReg(**AI); 1566 LLT SrcTy = MRI->getType(SrcReg); 1567 if (SrcTy.isPointer()) 1568 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize); 1569 SrcRegs.push_back(SrcReg); 1570 } 1571 1572 LLT SizeTy = LLT::scalar(MinPtrSize); 1573 1574 // The size operand should be the minimum of the pointer sizes. 1575 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1]; 1576 if (MRI->getType(SizeOpReg) != SizeTy) 1577 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0); 1578 1579 auto ICall = MIRBuilder.buildInstr(Opcode); 1580 for (Register SrcReg : SrcRegs) 1581 ICall.addUse(SrcReg); 1582 1583 Align DstAlign; 1584 Align SrcAlign; 1585 unsigned IsVol = 1586 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) 1587 ->getZExtValue(); 1588 1589 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1590 DstAlign = MCI->getDestAlign().valueOrOne(); 1591 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1592 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1593 DstAlign = MMI->getDestAlign().valueOrOne(); 1594 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1595 } else { 1596 auto *MSI = cast<MemSetInst>(&CI); 1597 DstAlign = MSI->getDestAlign().valueOrOne(); 1598 } 1599 1600 // We need to propagate the tail call flag from the IR inst as an argument. 1601 // Otherwise, we have to pessimize and assume later that we cannot tail call 1602 // any memory intrinsics. 1603 ICall.addImm(CI.isTailCall() ? 1 : 0); 1604 1605 // Create mem operands to store the alignment and volatile info. 1606 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1607 ICall.addMemOperand(MF->getMachineMemOperand( 1608 MachinePointerInfo(CI.getArgOperand(0)), 1609 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1610 if (Opcode != TargetOpcode::G_MEMSET) 1611 ICall.addMemOperand(MF->getMachineMemOperand( 1612 MachinePointerInfo(CI.getArgOperand(1)), 1613 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1614 1615 return true; 1616 } 1617 1618 void IRTranslator::getStackGuard(Register DstReg, 1619 MachineIRBuilder &MIRBuilder) { 1620 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1621 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1622 auto MIB = 1623 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1624 1625 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1626 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1627 if (!Global) 1628 return; 1629 1630 unsigned AddrSpace = Global->getType()->getPointerAddressSpace(); 1631 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace)); 1632 1633 MachinePointerInfo MPInfo(Global); 1634 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1635 MachineMemOperand::MODereferenceable; 1636 MachineMemOperand *MemRef = MF->getMachineMemOperand( 1637 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace)); 1638 MIB.setMemRefs({MemRef}); 1639 } 1640 1641 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1642 MachineIRBuilder &MIRBuilder) { 1643 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1644 MIRBuilder.buildInstr( 1645 Op, {ResRegs[0], ResRegs[1]}, 1646 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1647 1648 return true; 1649 } 1650 1651 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI, 1652 MachineIRBuilder &MIRBuilder) { 1653 Register Dst = getOrCreateVReg(CI); 1654 Register Src0 = getOrCreateVReg(*CI.getOperand(0)); 1655 Register Src1 = getOrCreateVReg(*CI.getOperand(1)); 1656 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 1657 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale }); 1658 return true; 1659 } 1660 1661 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1662 switch (ID) { 1663 default: 1664 break; 1665 case Intrinsic::bswap: 1666 return TargetOpcode::G_BSWAP; 1667 case Intrinsic::bitreverse: 1668 return TargetOpcode::G_BITREVERSE; 1669 case Intrinsic::fshl: 1670 return TargetOpcode::G_FSHL; 1671 case Intrinsic::fshr: 1672 return TargetOpcode::G_FSHR; 1673 case Intrinsic::ceil: 1674 return TargetOpcode::G_FCEIL; 1675 case Intrinsic::cos: 1676 return TargetOpcode::G_FCOS; 1677 case Intrinsic::ctpop: 1678 return TargetOpcode::G_CTPOP; 1679 case Intrinsic::exp: 1680 return TargetOpcode::G_FEXP; 1681 case Intrinsic::exp2: 1682 return TargetOpcode::G_FEXP2; 1683 case Intrinsic::fabs: 1684 return TargetOpcode::G_FABS; 1685 case Intrinsic::copysign: 1686 return TargetOpcode::G_FCOPYSIGN; 1687 case Intrinsic::minnum: 1688 return TargetOpcode::G_FMINNUM; 1689 case Intrinsic::maxnum: 1690 return TargetOpcode::G_FMAXNUM; 1691 case Intrinsic::minimum: 1692 return TargetOpcode::G_FMINIMUM; 1693 case Intrinsic::maximum: 1694 return TargetOpcode::G_FMAXIMUM; 1695 case Intrinsic::canonicalize: 1696 return TargetOpcode::G_FCANONICALIZE; 1697 case Intrinsic::floor: 1698 return TargetOpcode::G_FFLOOR; 1699 case Intrinsic::fma: 1700 return TargetOpcode::G_FMA; 1701 case Intrinsic::log: 1702 return TargetOpcode::G_FLOG; 1703 case Intrinsic::log2: 1704 return TargetOpcode::G_FLOG2; 1705 case Intrinsic::log10: 1706 return TargetOpcode::G_FLOG10; 1707 case Intrinsic::nearbyint: 1708 return TargetOpcode::G_FNEARBYINT; 1709 case Intrinsic::pow: 1710 return TargetOpcode::G_FPOW; 1711 case Intrinsic::powi: 1712 return TargetOpcode::G_FPOWI; 1713 case Intrinsic::rint: 1714 return TargetOpcode::G_FRINT; 1715 case Intrinsic::round: 1716 return TargetOpcode::G_INTRINSIC_ROUND; 1717 case Intrinsic::roundeven: 1718 return TargetOpcode::G_INTRINSIC_ROUNDEVEN; 1719 case Intrinsic::sin: 1720 return TargetOpcode::G_FSIN; 1721 case Intrinsic::sqrt: 1722 return TargetOpcode::G_FSQRT; 1723 case Intrinsic::trunc: 1724 return TargetOpcode::G_INTRINSIC_TRUNC; 1725 case Intrinsic::readcyclecounter: 1726 return TargetOpcode::G_READCYCLECOUNTER; 1727 case Intrinsic::ptrmask: 1728 return TargetOpcode::G_PTRMASK; 1729 case Intrinsic::lrint: 1730 return TargetOpcode::G_INTRINSIC_LRINT; 1731 // FADD/FMUL require checking the FMF, so are handled elsewhere. 1732 case Intrinsic::vector_reduce_fmin: 1733 return TargetOpcode::G_VECREDUCE_FMIN; 1734 case Intrinsic::vector_reduce_fmax: 1735 return TargetOpcode::G_VECREDUCE_FMAX; 1736 case Intrinsic::vector_reduce_add: 1737 return TargetOpcode::G_VECREDUCE_ADD; 1738 case Intrinsic::vector_reduce_mul: 1739 return TargetOpcode::G_VECREDUCE_MUL; 1740 case Intrinsic::vector_reduce_and: 1741 return TargetOpcode::G_VECREDUCE_AND; 1742 case Intrinsic::vector_reduce_or: 1743 return TargetOpcode::G_VECREDUCE_OR; 1744 case Intrinsic::vector_reduce_xor: 1745 return TargetOpcode::G_VECREDUCE_XOR; 1746 case Intrinsic::vector_reduce_smax: 1747 return TargetOpcode::G_VECREDUCE_SMAX; 1748 case Intrinsic::vector_reduce_smin: 1749 return TargetOpcode::G_VECREDUCE_SMIN; 1750 case Intrinsic::vector_reduce_umax: 1751 return TargetOpcode::G_VECREDUCE_UMAX; 1752 case Intrinsic::vector_reduce_umin: 1753 return TargetOpcode::G_VECREDUCE_UMIN; 1754 } 1755 return Intrinsic::not_intrinsic; 1756 } 1757 1758 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1759 Intrinsic::ID ID, 1760 MachineIRBuilder &MIRBuilder) { 1761 1762 unsigned Op = getSimpleIntrinsicOpcode(ID); 1763 1764 // Is this a simple intrinsic? 1765 if (Op == Intrinsic::not_intrinsic) 1766 return false; 1767 1768 // Yes. Let's translate it. 1769 SmallVector<llvm::SrcOp, 4> VRegs; 1770 for (auto &Arg : CI.arg_operands()) 1771 VRegs.push_back(getOrCreateVReg(*Arg)); 1772 1773 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1774 MachineInstr::copyFlagsFromInstruction(CI)); 1775 return true; 1776 } 1777 1778 // TODO: Include ConstainedOps.def when all strict instructions are defined. 1779 static unsigned getConstrainedOpcode(Intrinsic::ID ID) { 1780 switch (ID) { 1781 case Intrinsic::experimental_constrained_fadd: 1782 return TargetOpcode::G_STRICT_FADD; 1783 case Intrinsic::experimental_constrained_fsub: 1784 return TargetOpcode::G_STRICT_FSUB; 1785 case Intrinsic::experimental_constrained_fmul: 1786 return TargetOpcode::G_STRICT_FMUL; 1787 case Intrinsic::experimental_constrained_fdiv: 1788 return TargetOpcode::G_STRICT_FDIV; 1789 case Intrinsic::experimental_constrained_frem: 1790 return TargetOpcode::G_STRICT_FREM; 1791 case Intrinsic::experimental_constrained_fma: 1792 return TargetOpcode::G_STRICT_FMA; 1793 case Intrinsic::experimental_constrained_sqrt: 1794 return TargetOpcode::G_STRICT_FSQRT; 1795 default: 1796 return 0; 1797 } 1798 } 1799 1800 bool IRTranslator::translateConstrainedFPIntrinsic( 1801 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) { 1802 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 1803 1804 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID()); 1805 if (!Opcode) 1806 return false; 1807 1808 unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI); 1809 if (EB == fp::ExceptionBehavior::ebIgnore) 1810 Flags |= MachineInstr::NoFPExcept; 1811 1812 SmallVector<llvm::SrcOp, 4> VRegs; 1813 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0))); 1814 if (!FPI.isUnaryOp()) 1815 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1))); 1816 if (FPI.isTernaryOp()) 1817 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2))); 1818 1819 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags); 1820 return true; 1821 } 1822 1823 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1824 MachineIRBuilder &MIRBuilder) { 1825 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) { 1826 if (ORE->enabled()) { 1827 const Function &F = *MI->getParent()->getParent(); 1828 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1829 if (MemoryOpRemark::canHandle(MI, TLI)) { 1830 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI); 1831 R.visit(MI); 1832 } 1833 } 1834 } 1835 1836 // If this is a simple intrinsic (that is, we just need to add a def of 1837 // a vreg, and uses for each arg operand, then translate it. 1838 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1839 return true; 1840 1841 switch (ID) { 1842 default: 1843 break; 1844 case Intrinsic::lifetime_start: 1845 case Intrinsic::lifetime_end: { 1846 // No stack colouring in O0, discard region information. 1847 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1848 return true; 1849 1850 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1851 : TargetOpcode::LIFETIME_END; 1852 1853 // Get the underlying objects for the location passed on the lifetime 1854 // marker. 1855 SmallVector<const Value *, 4> Allocas; 1856 getUnderlyingObjects(CI.getArgOperand(1), Allocas); 1857 1858 // Iterate over each underlying object, creating lifetime markers for each 1859 // static alloca. Quit if we find a non-static alloca. 1860 for (const Value *V : Allocas) { 1861 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1862 if (!AI) 1863 continue; 1864 1865 if (!AI->isStaticAlloca()) 1866 return true; 1867 1868 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1869 } 1870 return true; 1871 } 1872 case Intrinsic::dbg_declare: { 1873 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1874 assert(DI.getVariable() && "Missing variable"); 1875 1876 const Value *Address = DI.getAddress(); 1877 if (!Address || isa<UndefValue>(Address)) { 1878 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1879 return true; 1880 } 1881 1882 assert(DI.getVariable()->isValidLocationForIntrinsic( 1883 MIRBuilder.getDebugLoc()) && 1884 "Expected inlined-at fields to agree"); 1885 auto AI = dyn_cast<AllocaInst>(Address); 1886 if (AI && AI->isStaticAlloca()) { 1887 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1888 // instructions (in fact, they get ignored if they *do* exist). 1889 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1890 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1891 } else { 1892 // A dbg.declare describes the address of a source variable, so lower it 1893 // into an indirect DBG_VALUE. 1894 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1895 DI.getVariable(), DI.getExpression()); 1896 } 1897 return true; 1898 } 1899 case Intrinsic::dbg_label: { 1900 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1901 assert(DI.getLabel() && "Missing label"); 1902 1903 assert(DI.getLabel()->isValidLocationForIntrinsic( 1904 MIRBuilder.getDebugLoc()) && 1905 "Expected inlined-at fields to agree"); 1906 1907 MIRBuilder.buildDbgLabel(DI.getLabel()); 1908 return true; 1909 } 1910 case Intrinsic::vaend: 1911 // No target I know of cares about va_end. Certainly no in-tree target 1912 // does. Simplest intrinsic ever! 1913 return true; 1914 case Intrinsic::vastart: { 1915 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1916 Value *Ptr = CI.getArgOperand(0); 1917 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1918 1919 // FIXME: Get alignment 1920 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 1921 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 1922 MachineMemOperand::MOStore, 1923 ListSize, Align(1))); 1924 return true; 1925 } 1926 case Intrinsic::dbg_value: { 1927 // This form of DBG_VALUE is target-independent. 1928 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1929 const Value *V = DI.getValue(); 1930 assert(DI.getVariable()->isValidLocationForIntrinsic( 1931 MIRBuilder.getDebugLoc()) && 1932 "Expected inlined-at fields to agree"); 1933 if (!V || DI.hasArgList()) { 1934 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to 1935 // terminate any prior location. 1936 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1937 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1938 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1939 } else { 1940 for (Register Reg : getOrCreateVRegs(*V)) { 1941 // FIXME: This does not handle register-indirect values at offset 0. The 1942 // direct/indirect thing shouldn't really be handled by something as 1943 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1944 // pretty baked in right now. 1945 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1946 } 1947 } 1948 return true; 1949 } 1950 case Intrinsic::uadd_with_overflow: 1951 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1952 case Intrinsic::sadd_with_overflow: 1953 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1954 case Intrinsic::usub_with_overflow: 1955 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1956 case Intrinsic::ssub_with_overflow: 1957 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1958 case Intrinsic::umul_with_overflow: 1959 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1960 case Intrinsic::smul_with_overflow: 1961 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1962 case Intrinsic::uadd_sat: 1963 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 1964 case Intrinsic::sadd_sat: 1965 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 1966 case Intrinsic::usub_sat: 1967 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 1968 case Intrinsic::ssub_sat: 1969 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 1970 case Intrinsic::ushl_sat: 1971 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder); 1972 case Intrinsic::sshl_sat: 1973 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder); 1974 case Intrinsic::umin: 1975 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder); 1976 case Intrinsic::umax: 1977 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder); 1978 case Intrinsic::smin: 1979 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder); 1980 case Intrinsic::smax: 1981 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder); 1982 case Intrinsic::abs: 1983 // TODO: Preserve "int min is poison" arg in GMIR? 1984 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder); 1985 case Intrinsic::smul_fix: 1986 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder); 1987 case Intrinsic::umul_fix: 1988 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder); 1989 case Intrinsic::smul_fix_sat: 1990 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder); 1991 case Intrinsic::umul_fix_sat: 1992 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder); 1993 case Intrinsic::sdiv_fix: 1994 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder); 1995 case Intrinsic::udiv_fix: 1996 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder); 1997 case Intrinsic::sdiv_fix_sat: 1998 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder); 1999 case Intrinsic::udiv_fix_sat: 2000 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder); 2001 case Intrinsic::fmuladd: { 2002 const TargetMachine &TM = MF->getTarget(); 2003 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2004 Register Dst = getOrCreateVReg(CI); 2005 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 2006 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 2007 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 2008 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 2009 TLI.isFMAFasterThanFMulAndFAdd(*MF, 2010 TLI.getValueType(*DL, CI.getType()))) { 2011 // TODO: Revisit this to see if we should move this part of the 2012 // lowering to the combiner. 2013 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 2014 MachineInstr::copyFlagsFromInstruction(CI)); 2015 } else { 2016 LLT Ty = getLLTForType(*CI.getType(), *DL); 2017 auto FMul = MIRBuilder.buildFMul( 2018 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 2019 MIRBuilder.buildFAdd(Dst, FMul, Op2, 2020 MachineInstr::copyFlagsFromInstruction(CI)); 2021 } 2022 return true; 2023 } 2024 case Intrinsic::convert_from_fp16: 2025 // FIXME: This intrinsic should probably be removed from the IR. 2026 MIRBuilder.buildFPExt(getOrCreateVReg(CI), 2027 getOrCreateVReg(*CI.getArgOperand(0)), 2028 MachineInstr::copyFlagsFromInstruction(CI)); 2029 return true; 2030 case Intrinsic::convert_to_fp16: 2031 // FIXME: This intrinsic should probably be removed from the IR. 2032 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI), 2033 getOrCreateVReg(*CI.getArgOperand(0)), 2034 MachineInstr::copyFlagsFromInstruction(CI)); 2035 return true; 2036 case Intrinsic::memcpy: 2037 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY); 2038 case Intrinsic::memmove: 2039 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE); 2040 case Intrinsic::memset: 2041 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET); 2042 case Intrinsic::eh_typeid_for: { 2043 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 2044 Register Reg = getOrCreateVReg(CI); 2045 unsigned TypeID = MF->getTypeIDFor(GV); 2046 MIRBuilder.buildConstant(Reg, TypeID); 2047 return true; 2048 } 2049 case Intrinsic::objectsize: 2050 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2051 2052 case Intrinsic::is_constant: 2053 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2054 2055 case Intrinsic::stackguard: 2056 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 2057 return true; 2058 case Intrinsic::stackprotector: { 2059 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2060 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 2061 getStackGuard(GuardVal, MIRBuilder); 2062 2063 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 2064 int FI = getOrCreateFrameIndex(*Slot); 2065 MF->getFrameInfo().setStackProtectorIndex(FI); 2066 2067 MIRBuilder.buildStore( 2068 GuardVal, getOrCreateVReg(*Slot), 2069 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 2070 MachineMemOperand::MOStore | 2071 MachineMemOperand::MOVolatile, 2072 PtrTy, Align(8))); 2073 return true; 2074 } 2075 case Intrinsic::stacksave: { 2076 // Save the stack pointer to the location provided by the intrinsic. 2077 Register Reg = getOrCreateVReg(CI); 2078 Register StackPtr = MF->getSubtarget() 2079 .getTargetLowering() 2080 ->getStackPointerRegisterToSaveRestore(); 2081 2082 // If the target doesn't specify a stack pointer, then fall back. 2083 if (!StackPtr) 2084 return false; 2085 2086 MIRBuilder.buildCopy(Reg, StackPtr); 2087 return true; 2088 } 2089 case Intrinsic::stackrestore: { 2090 // Restore the stack pointer from the location provided by the intrinsic. 2091 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 2092 Register StackPtr = MF->getSubtarget() 2093 .getTargetLowering() 2094 ->getStackPointerRegisterToSaveRestore(); 2095 2096 // If the target doesn't specify a stack pointer, then fall back. 2097 if (!StackPtr) 2098 return false; 2099 2100 MIRBuilder.buildCopy(StackPtr, Reg); 2101 return true; 2102 } 2103 case Intrinsic::cttz: 2104 case Intrinsic::ctlz: { 2105 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 2106 bool isTrailing = ID == Intrinsic::cttz; 2107 unsigned Opcode = isTrailing 2108 ? Cst->isZero() ? TargetOpcode::G_CTTZ 2109 : TargetOpcode::G_CTTZ_ZERO_UNDEF 2110 : Cst->isZero() ? TargetOpcode::G_CTLZ 2111 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 2112 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 2113 {getOrCreateVReg(*CI.getArgOperand(0))}); 2114 return true; 2115 } 2116 case Intrinsic::invariant_start: { 2117 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2118 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 2119 MIRBuilder.buildUndef(Undef); 2120 return true; 2121 } 2122 case Intrinsic::invariant_end: 2123 return true; 2124 case Intrinsic::expect: 2125 case Intrinsic::annotation: 2126 case Intrinsic::ptr_annotation: 2127 case Intrinsic::launder_invariant_group: 2128 case Intrinsic::strip_invariant_group: { 2129 // Drop the intrinsic, but forward the value. 2130 MIRBuilder.buildCopy(getOrCreateVReg(CI), 2131 getOrCreateVReg(*CI.getArgOperand(0))); 2132 return true; 2133 } 2134 case Intrinsic::assume: 2135 case Intrinsic::experimental_noalias_scope_decl: 2136 case Intrinsic::var_annotation: 2137 case Intrinsic::sideeffect: 2138 // Discard annotate attributes, assumptions, and artificial side-effects. 2139 return true; 2140 case Intrinsic::read_volatile_register: 2141 case Intrinsic::read_register: { 2142 Value *Arg = CI.getArgOperand(0); 2143 MIRBuilder 2144 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 2145 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 2146 return true; 2147 } 2148 case Intrinsic::write_register: { 2149 Value *Arg = CI.getArgOperand(0); 2150 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 2151 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 2152 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 2153 return true; 2154 } 2155 case Intrinsic::localescape: { 2156 MachineBasicBlock &EntryMBB = MF->front(); 2157 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName()); 2158 2159 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 2160 // is the same on all targets. 2161 for (unsigned Idx = 0, E = CI.getNumArgOperands(); Idx < E; ++Idx) { 2162 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts(); 2163 if (isa<ConstantPointerNull>(Arg)) 2164 continue; // Skip null pointers. They represent a hole in index space. 2165 2166 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg)); 2167 MCSymbol *FrameAllocSym = 2168 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName, 2169 Idx); 2170 2171 // This should be inserted at the start of the entry block. 2172 auto LocalEscape = 2173 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE) 2174 .addSym(FrameAllocSym) 2175 .addFrameIndex(FI); 2176 2177 EntryMBB.insert(EntryMBB.begin(), LocalEscape); 2178 } 2179 2180 return true; 2181 } 2182 case Intrinsic::vector_reduce_fadd: 2183 case Intrinsic::vector_reduce_fmul: { 2184 // Need to check for the reassoc flag to decide whether we want a 2185 // sequential reduction opcode or not. 2186 Register Dst = getOrCreateVReg(CI); 2187 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0)); 2188 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1)); 2189 unsigned Opc = 0; 2190 if (!CI.hasAllowReassoc()) { 2191 // The sequential ordering case. 2192 Opc = ID == Intrinsic::vector_reduce_fadd 2193 ? TargetOpcode::G_VECREDUCE_SEQ_FADD 2194 : TargetOpcode::G_VECREDUCE_SEQ_FMUL; 2195 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc}, 2196 MachineInstr::copyFlagsFromInstruction(CI)); 2197 return true; 2198 } 2199 // We split the operation into a separate G_FADD/G_FMUL + the reduce, 2200 // since the associativity doesn't matter. 2201 unsigned ScalarOpc; 2202 if (ID == Intrinsic::vector_reduce_fadd) { 2203 Opc = TargetOpcode::G_VECREDUCE_FADD; 2204 ScalarOpc = TargetOpcode::G_FADD; 2205 } else { 2206 Opc = TargetOpcode::G_VECREDUCE_FMUL; 2207 ScalarOpc = TargetOpcode::G_FMUL; 2208 } 2209 LLT DstTy = MRI->getType(Dst); 2210 auto Rdx = MIRBuilder.buildInstr( 2211 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI)); 2212 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx}, 2213 MachineInstr::copyFlagsFromInstruction(CI)); 2214 2215 return true; 2216 } 2217 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 2218 case Intrinsic::INTRINSIC: 2219 #include "llvm/IR/ConstrainedOps.def" 2220 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI), 2221 MIRBuilder); 2222 2223 } 2224 return false; 2225 } 2226 2227 bool IRTranslator::translateInlineAsm(const CallBase &CB, 2228 MachineIRBuilder &MIRBuilder) { 2229 2230 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 2231 2232 if (!ALI) { 2233 LLVM_DEBUG( 2234 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 2235 return false; 2236 } 2237 2238 return ALI->lowerInlineAsm( 2239 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 2240 } 2241 2242 bool IRTranslator::translateCallBase(const CallBase &CB, 2243 MachineIRBuilder &MIRBuilder) { 2244 ArrayRef<Register> Res = getOrCreateVRegs(CB); 2245 2246 SmallVector<ArrayRef<Register>, 8> Args; 2247 Register SwiftInVReg = 0; 2248 Register SwiftErrorVReg = 0; 2249 for (auto &Arg : CB.args()) { 2250 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 2251 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 2252 LLT Ty = getLLTForType(*Arg->getType(), *DL); 2253 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 2254 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 2255 &CB, &MIRBuilder.getMBB(), Arg)); 2256 Args.emplace_back(makeArrayRef(SwiftInVReg)); 2257 SwiftErrorVReg = 2258 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 2259 continue; 2260 } 2261 Args.push_back(getOrCreateVRegs(*Arg)); 2262 } 2263 2264 if (auto *CI = dyn_cast<CallInst>(&CB)) { 2265 if (ORE->enabled()) { 2266 const Function &F = *CI->getParent()->getParent(); 2267 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2268 if (MemoryOpRemark::canHandle(CI, TLI)) { 2269 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI); 2270 R.visit(CI); 2271 } 2272 } 2273 } 2274 2275 // We don't set HasCalls on MFI here yet because call lowering may decide to 2276 // optimize into tail calls. Instead, we defer that to selection where a final 2277 // scan is done to check if any instructions are calls. 2278 bool Success = 2279 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg, 2280 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 2281 2282 // Check if we just inserted a tail call. 2283 if (Success) { 2284 assert(!HasTailCall && "Can't tail call return twice from block?"); 2285 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 2286 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 2287 } 2288 2289 return Success; 2290 } 2291 2292 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 2293 const CallInst &CI = cast<CallInst>(U); 2294 auto TII = MF->getTarget().getIntrinsicInfo(); 2295 const Function *F = CI.getCalledFunction(); 2296 2297 // FIXME: support Windows dllimport function calls. 2298 if (F && (F->hasDLLImportStorageClass() || 2299 (MF->getTarget().getTargetTriple().isOSWindows() && 2300 F->hasExternalWeakLinkage()))) 2301 return false; 2302 2303 // FIXME: support control flow guard targets. 2304 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2305 return false; 2306 2307 if (CI.isInlineAsm()) 2308 return translateInlineAsm(CI, MIRBuilder); 2309 2310 Intrinsic::ID ID = Intrinsic::not_intrinsic; 2311 if (F && F->isIntrinsic()) { 2312 ID = F->getIntrinsicID(); 2313 if (TII && ID == Intrinsic::not_intrinsic) 2314 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 2315 } 2316 2317 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 2318 return translateCallBase(CI, MIRBuilder); 2319 2320 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 2321 2322 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 2323 return true; 2324 2325 ArrayRef<Register> ResultRegs; 2326 if (!CI.getType()->isVoidTy()) 2327 ResultRegs = getOrCreateVRegs(CI); 2328 2329 // Ignore the callsite attributes. Backend code is most likely not expecting 2330 // an intrinsic to sometimes have side effects and sometimes not. 2331 MachineInstrBuilder MIB = 2332 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 2333 if (isa<FPMathOperator>(CI)) 2334 MIB->copyIRFlags(CI); 2335 2336 for (auto &Arg : enumerate(CI.arg_operands())) { 2337 // If this is required to be an immediate, don't materialize it in a 2338 // register. 2339 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 2340 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 2341 // imm arguments are more convenient than cimm (and realistically 2342 // probably sufficient), so use them. 2343 assert(CI->getBitWidth() <= 64 && 2344 "large intrinsic immediates not handled"); 2345 MIB.addImm(CI->getSExtValue()); 2346 } else { 2347 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 2348 } 2349 } else if (auto MD = dyn_cast<MetadataAsValue>(Arg.value())) { 2350 auto *MDN = dyn_cast<MDNode>(MD->getMetadata()); 2351 if (!MDN) // This was probably an MDString. 2352 return false; 2353 MIB.addMetadata(MDN); 2354 } else { 2355 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 2356 if (VRegs.size() > 1) 2357 return false; 2358 MIB.addUse(VRegs[0]); 2359 } 2360 } 2361 2362 // Add a MachineMemOperand if it is a target mem intrinsic. 2363 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2364 TargetLowering::IntrinsicInfo Info; 2365 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 2366 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 2367 Align Alignment = Info.align.getValueOr( 2368 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 2369 LLT MemTy = Info.memVT.isSimple() 2370 ? getLLTForMVT(Info.memVT.getSimpleVT()) 2371 : LLT::scalar(Info.memVT.getStoreSizeInBits()); 2372 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 2373 Info.flags, MemTy, Alignment)); 2374 } 2375 2376 return true; 2377 } 2378 2379 bool IRTranslator::findUnwindDestinations( 2380 const BasicBlock *EHPadBB, 2381 BranchProbability Prob, 2382 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2383 &UnwindDests) { 2384 EHPersonality Personality = classifyEHPersonality( 2385 EHPadBB->getParent()->getFunction().getPersonalityFn()); 2386 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2387 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2388 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2389 bool IsSEH = isAsynchronousEHPersonality(Personality); 2390 2391 if (IsWasmCXX) { 2392 // Ignore this for now. 2393 return false; 2394 } 2395 2396 while (EHPadBB) { 2397 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2398 BasicBlock *NewEHPadBB = nullptr; 2399 if (isa<LandingPadInst>(Pad)) { 2400 // Stop on landingpads. They are not funclets. 2401 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2402 break; 2403 } 2404 if (isa<CleanupPadInst>(Pad)) { 2405 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2406 // personalities. 2407 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2408 UnwindDests.back().first->setIsEHScopeEntry(); 2409 UnwindDests.back().first->setIsEHFuncletEntry(); 2410 break; 2411 } 2412 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2413 // Add the catchpad handlers to the possible destinations. 2414 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2415 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob); 2416 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2417 if (IsMSVCCXX || IsCoreCLR) 2418 UnwindDests.back().first->setIsEHFuncletEntry(); 2419 if (!IsSEH) 2420 UnwindDests.back().first->setIsEHScopeEntry(); 2421 } 2422 NewEHPadBB = CatchSwitch->getUnwindDest(); 2423 } else { 2424 continue; 2425 } 2426 2427 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2428 if (BPI && NewEHPadBB) 2429 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2430 EHPadBB = NewEHPadBB; 2431 } 2432 return true; 2433 } 2434 2435 bool IRTranslator::translateInvoke(const User &U, 2436 MachineIRBuilder &MIRBuilder) { 2437 const InvokeInst &I = cast<InvokeInst>(U); 2438 MCContext &Context = MF->getContext(); 2439 2440 const BasicBlock *ReturnBB = I.getSuccessor(0); 2441 const BasicBlock *EHPadBB = I.getSuccessor(1); 2442 2443 const Function *Fn = I.getCalledFunction(); 2444 2445 // FIXME: support invoking patchpoint and statepoint intrinsics. 2446 if (Fn && Fn->isIntrinsic()) 2447 return false; 2448 2449 // FIXME: support whatever these are. 2450 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 2451 return false; 2452 2453 // FIXME: support control flow guard targets. 2454 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2455 return false; 2456 2457 // FIXME: support Windows exception handling. 2458 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI())) 2459 return false; 2460 2461 bool LowerInlineAsm = false; 2462 if (I.isInlineAsm()) { 2463 const InlineAsm *IA = cast<InlineAsm>(I.getCalledOperand()); 2464 if (!IA->canThrow()) { 2465 // Fast path without emitting EH_LABELs. 2466 2467 if (!translateInlineAsm(I, MIRBuilder)) 2468 return false; 2469 2470 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(), 2471 *ReturnMBB = &getMBB(*ReturnBB); 2472 2473 // Update successor info. 2474 addSuccessorWithProb(InvokeMBB, ReturnMBB, BranchProbability::getOne()); 2475 2476 MIRBuilder.buildBr(*ReturnMBB); 2477 return true; 2478 } else { 2479 LowerInlineAsm = true; 2480 } 2481 } 2482 2483 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 2484 // the region covered by the try. 2485 MCSymbol *BeginSymbol = Context.createTempSymbol(); 2486 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 2487 2488 if (LowerInlineAsm) { 2489 if (!translateInlineAsm(I, MIRBuilder)) 2490 return false; 2491 } else if (!translateCallBase(I, MIRBuilder)) 2492 return false; 2493 2494 MCSymbol *EndSymbol = Context.createTempSymbol(); 2495 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 2496 2497 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2498 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2499 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(); 2500 BranchProbability EHPadBBProb = 2501 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2502 : BranchProbability::getZero(); 2503 2504 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests)) 2505 return false; 2506 2507 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 2508 &ReturnMBB = getMBB(*ReturnBB); 2509 // Update successor info. 2510 addSuccessorWithProb(InvokeMBB, &ReturnMBB); 2511 for (auto &UnwindDest : UnwindDests) { 2512 UnwindDest.first->setIsEHPad(); 2513 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2514 } 2515 InvokeMBB->normalizeSuccProbs(); 2516 2517 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 2518 MIRBuilder.buildBr(ReturnMBB); 2519 return true; 2520 } 2521 2522 bool IRTranslator::translateCallBr(const User &U, 2523 MachineIRBuilder &MIRBuilder) { 2524 // FIXME: Implement this. 2525 return false; 2526 } 2527 2528 bool IRTranslator::translateLandingPad(const User &U, 2529 MachineIRBuilder &MIRBuilder) { 2530 const LandingPadInst &LP = cast<LandingPadInst>(U); 2531 2532 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 2533 2534 MBB.setIsEHPad(); 2535 2536 // If there aren't registers to copy the values into (e.g., during SjLj 2537 // exceptions), then don't bother. 2538 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2539 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 2540 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2541 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2542 return true; 2543 2544 // If landingpad's return type is token type, we don't create DAG nodes 2545 // for its exception pointer and selector value. The extraction of exception 2546 // pointer or selector value from token type landingpads is not currently 2547 // supported. 2548 if (LP.getType()->isTokenTy()) 2549 return true; 2550 2551 // Add a label to mark the beginning of the landing pad. Deletion of the 2552 // landing pad can thus be detected via the MachineModuleInfo. 2553 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 2554 .addSym(MF->addLandingPad(&MBB)); 2555 2556 // If the unwinder does not preserve all registers, ensure that the 2557 // function marks the clobbered registers as used. 2558 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 2559 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 2560 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 2561 2562 LLT Ty = getLLTForType(*LP.getType(), *DL); 2563 Register Undef = MRI->createGenericVirtualRegister(Ty); 2564 MIRBuilder.buildUndef(Undef); 2565 2566 SmallVector<LLT, 2> Tys; 2567 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 2568 Tys.push_back(getLLTForType(*Ty, *DL)); 2569 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 2570 2571 // Mark exception register as live in. 2572 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 2573 if (!ExceptionReg) 2574 return false; 2575 2576 MBB.addLiveIn(ExceptionReg); 2577 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 2578 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 2579 2580 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 2581 if (!SelectorReg) 2582 return false; 2583 2584 MBB.addLiveIn(SelectorReg); 2585 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 2586 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 2587 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 2588 2589 return true; 2590 } 2591 2592 bool IRTranslator::translateAlloca(const User &U, 2593 MachineIRBuilder &MIRBuilder) { 2594 auto &AI = cast<AllocaInst>(U); 2595 2596 if (AI.isSwiftError()) 2597 return true; 2598 2599 if (AI.isStaticAlloca()) { 2600 Register Res = getOrCreateVReg(AI); 2601 int FI = getOrCreateFrameIndex(AI); 2602 MIRBuilder.buildFrameIndex(Res, FI); 2603 return true; 2604 } 2605 2606 // FIXME: support stack probing for Windows. 2607 if (MF->getTarget().getTargetTriple().isOSWindows()) 2608 return false; 2609 2610 // Now we're in the harder dynamic case. 2611 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 2612 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 2613 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 2614 if (MRI->getType(NumElts) != IntPtrTy) { 2615 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 2616 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 2617 NumElts = ExtElts; 2618 } 2619 2620 Type *Ty = AI.getAllocatedType(); 2621 2622 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 2623 Register TySize = 2624 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 2625 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 2626 2627 // Round the size of the allocation up to the stack alignment size 2628 // by add SA-1 to the size. This doesn't overflow because we're computing 2629 // an address inside an alloca. 2630 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 2631 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 2632 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 2633 MachineInstr::NoUWrap); 2634 auto AlignCst = 2635 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 2636 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 2637 2638 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 2639 if (Alignment <= StackAlign) 2640 Alignment = Align(1); 2641 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 2642 2643 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 2644 assert(MF->getFrameInfo().hasVarSizedObjects()); 2645 return true; 2646 } 2647 2648 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 2649 // FIXME: We may need more info about the type. Because of how LLT works, 2650 // we're completely discarding the i64/double distinction here (amongst 2651 // others). Fortunately the ABIs I know of where that matters don't use va_arg 2652 // anyway but that's not guaranteed. 2653 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 2654 {getOrCreateVReg(*U.getOperand(0)), 2655 DL->getABITypeAlign(U.getType()).value()}); 2656 return true; 2657 } 2658 2659 bool IRTranslator::translateInsertElement(const User &U, 2660 MachineIRBuilder &MIRBuilder) { 2661 // If it is a <1 x Ty> vector, use the scalar as it is 2662 // not a legal vector type in LLT. 2663 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1) 2664 return translateCopy(U, *U.getOperand(1), MIRBuilder); 2665 2666 Register Res = getOrCreateVReg(U); 2667 Register Val = getOrCreateVReg(*U.getOperand(0)); 2668 Register Elt = getOrCreateVReg(*U.getOperand(1)); 2669 Register Idx = getOrCreateVReg(*U.getOperand(2)); 2670 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 2671 return true; 2672 } 2673 2674 bool IRTranslator::translateExtractElement(const User &U, 2675 MachineIRBuilder &MIRBuilder) { 2676 // If it is a <1 x Ty> vector, use the scalar as it is 2677 // not a legal vector type in LLT. 2678 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1) 2679 return translateCopy(U, *U.getOperand(0), MIRBuilder); 2680 2681 Register Res = getOrCreateVReg(U); 2682 Register Val = getOrCreateVReg(*U.getOperand(0)); 2683 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2684 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 2685 Register Idx; 2686 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 2687 if (CI->getBitWidth() != PreferredVecIdxWidth) { 2688 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 2689 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 2690 Idx = getOrCreateVReg(*NewIdxCI); 2691 } 2692 } 2693 if (!Idx) 2694 Idx = getOrCreateVReg(*U.getOperand(1)); 2695 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 2696 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 2697 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0); 2698 } 2699 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 2700 return true; 2701 } 2702 2703 bool IRTranslator::translateShuffleVector(const User &U, 2704 MachineIRBuilder &MIRBuilder) { 2705 ArrayRef<int> Mask; 2706 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 2707 Mask = SVI->getShuffleMask(); 2708 else 2709 Mask = cast<ConstantExpr>(U).getShuffleMask(); 2710 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 2711 MIRBuilder 2712 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 2713 {getOrCreateVReg(*U.getOperand(0)), 2714 getOrCreateVReg(*U.getOperand(1))}) 2715 .addShuffleMask(MaskAlloc); 2716 return true; 2717 } 2718 2719 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 2720 const PHINode &PI = cast<PHINode>(U); 2721 2722 SmallVector<MachineInstr *, 4> Insts; 2723 for (auto Reg : getOrCreateVRegs(PI)) { 2724 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 2725 Insts.push_back(MIB.getInstr()); 2726 } 2727 2728 PendingPHIs.emplace_back(&PI, std::move(Insts)); 2729 return true; 2730 } 2731 2732 bool IRTranslator::translateAtomicCmpXchg(const User &U, 2733 MachineIRBuilder &MIRBuilder) { 2734 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 2735 2736 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2737 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2738 2739 auto Res = getOrCreateVRegs(I); 2740 Register OldValRes = Res[0]; 2741 Register SuccessRes = Res[1]; 2742 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2743 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 2744 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 2745 2746 AAMDNodes AAMetadata; 2747 I.getAAMetadata(AAMetadata); 2748 2749 MIRBuilder.buildAtomicCmpXchgWithSuccess( 2750 OldValRes, SuccessRes, Addr, Cmp, NewVal, 2751 *MF->getMachineMemOperand( 2752 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp), 2753 getMemOpAlign(I), AAMetadata, nullptr, I.getSyncScopeID(), 2754 I.getSuccessOrdering(), I.getFailureOrdering())); 2755 return true; 2756 } 2757 2758 bool IRTranslator::translateAtomicRMW(const User &U, 2759 MachineIRBuilder &MIRBuilder) { 2760 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 2761 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2762 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2763 2764 Register Res = getOrCreateVReg(I); 2765 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2766 Register Val = getOrCreateVReg(*I.getValOperand()); 2767 2768 unsigned Opcode = 0; 2769 switch (I.getOperation()) { 2770 default: 2771 return false; 2772 case AtomicRMWInst::Xchg: 2773 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2774 break; 2775 case AtomicRMWInst::Add: 2776 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2777 break; 2778 case AtomicRMWInst::Sub: 2779 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2780 break; 2781 case AtomicRMWInst::And: 2782 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2783 break; 2784 case AtomicRMWInst::Nand: 2785 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2786 break; 2787 case AtomicRMWInst::Or: 2788 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2789 break; 2790 case AtomicRMWInst::Xor: 2791 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2792 break; 2793 case AtomicRMWInst::Max: 2794 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2795 break; 2796 case AtomicRMWInst::Min: 2797 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2798 break; 2799 case AtomicRMWInst::UMax: 2800 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2801 break; 2802 case AtomicRMWInst::UMin: 2803 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2804 break; 2805 case AtomicRMWInst::FAdd: 2806 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2807 break; 2808 case AtomicRMWInst::FSub: 2809 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2810 break; 2811 } 2812 2813 AAMDNodes AAMetadata; 2814 I.getAAMetadata(AAMetadata); 2815 2816 MIRBuilder.buildAtomicRMW( 2817 Opcode, Res, Addr, Val, 2818 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2819 Flags, MRI->getType(Val), getMemOpAlign(I), 2820 AAMetadata, nullptr, I.getSyncScopeID(), 2821 I.getOrdering())); 2822 return true; 2823 } 2824 2825 bool IRTranslator::translateFence(const User &U, 2826 MachineIRBuilder &MIRBuilder) { 2827 const FenceInst &Fence = cast<FenceInst>(U); 2828 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2829 Fence.getSyncScopeID()); 2830 return true; 2831 } 2832 2833 bool IRTranslator::translateFreeze(const User &U, 2834 MachineIRBuilder &MIRBuilder) { 2835 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 2836 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 2837 2838 assert(DstRegs.size() == SrcRegs.size() && 2839 "Freeze with different source and destination type?"); 2840 2841 for (unsigned I = 0; I < DstRegs.size(); ++I) { 2842 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 2843 } 2844 2845 return true; 2846 } 2847 2848 void IRTranslator::finishPendingPhis() { 2849 #ifndef NDEBUG 2850 DILocationVerifier Verifier; 2851 GISelObserverWrapper WrapperObserver(&Verifier); 2852 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2853 #endif // ifndef NDEBUG 2854 for (auto &Phi : PendingPHIs) { 2855 const PHINode *PI = Phi.first; 2856 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2857 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2858 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2859 #ifndef NDEBUG 2860 Verifier.setCurrentInst(PI); 2861 #endif // ifndef NDEBUG 2862 2863 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2864 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2865 auto IRPred = PI->getIncomingBlock(i); 2866 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2867 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2868 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2869 continue; 2870 SeenPreds.insert(Pred); 2871 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2872 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2873 MIB.addUse(ValRegs[j]); 2874 MIB.addMBB(Pred); 2875 } 2876 } 2877 } 2878 } 2879 } 2880 2881 bool IRTranslator::valueIsSplit(const Value &V, 2882 SmallVectorImpl<uint64_t> *Offsets) { 2883 SmallVector<LLT, 4> SplitTys; 2884 if (Offsets && !Offsets->empty()) 2885 Offsets->clear(); 2886 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2887 return SplitTys.size() > 1; 2888 } 2889 2890 bool IRTranslator::translate(const Instruction &Inst) { 2891 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2892 2893 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2894 if (TLI.fallBackToDAGISel(Inst)) 2895 return false; 2896 2897 switch (Inst.getOpcode()) { 2898 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2899 case Instruction::OPCODE: \ 2900 return translate##OPCODE(Inst, *CurBuilder.get()); 2901 #include "llvm/IR/Instruction.def" 2902 default: 2903 return false; 2904 } 2905 } 2906 2907 bool IRTranslator::translate(const Constant &C, Register Reg) { 2908 // We only emit constants into the entry block from here. To prevent jumpy 2909 // debug behaviour set the line to 0. 2910 if (auto CurrInstDL = CurBuilder->getDL()) 2911 EntryBuilder->setDebugLoc(DILocation::get(C.getContext(), 0, 0, 2912 CurrInstDL.getScope(), 2913 CurrInstDL.getInlinedAt())); 2914 2915 if (auto CI = dyn_cast<ConstantInt>(&C)) 2916 EntryBuilder->buildConstant(Reg, *CI); 2917 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2918 EntryBuilder->buildFConstant(Reg, *CF); 2919 else if (isa<UndefValue>(C)) 2920 EntryBuilder->buildUndef(Reg); 2921 else if (isa<ConstantPointerNull>(C)) 2922 EntryBuilder->buildConstant(Reg, 0); 2923 else if (auto GV = dyn_cast<GlobalValue>(&C)) 2924 EntryBuilder->buildGlobalValue(Reg, GV); 2925 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2926 if (!isa<FixedVectorType>(CAZ->getType())) 2927 return false; 2928 // Return the scalar if it is a <1 x Ty> vector. 2929 unsigned NumElts = CAZ->getElementCount().getFixedValue(); 2930 if (NumElts == 1) 2931 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get()); 2932 SmallVector<Register, 4> Ops; 2933 for (unsigned I = 0; I < NumElts; ++I) { 2934 Constant &Elt = *CAZ->getElementValue(I); 2935 Ops.push_back(getOrCreateVReg(Elt)); 2936 } 2937 EntryBuilder->buildBuildVector(Reg, Ops); 2938 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2939 // Return the scalar if it is a <1 x Ty> vector. 2940 if (CV->getNumElements() == 1) 2941 return translateCopy(C, *CV->getElementAsConstant(0), 2942 *EntryBuilder.get()); 2943 SmallVector<Register, 4> Ops; 2944 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 2945 Constant &Elt = *CV->getElementAsConstant(i); 2946 Ops.push_back(getOrCreateVReg(Elt)); 2947 } 2948 EntryBuilder->buildBuildVector(Reg, Ops); 2949 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 2950 switch(CE->getOpcode()) { 2951 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2952 case Instruction::OPCODE: \ 2953 return translate##OPCODE(*CE, *EntryBuilder.get()); 2954 #include "llvm/IR/Instruction.def" 2955 default: 2956 return false; 2957 } 2958 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 2959 if (CV->getNumOperands() == 1) 2960 return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get()); 2961 SmallVector<Register, 4> Ops; 2962 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 2963 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 2964 } 2965 EntryBuilder->buildBuildVector(Reg, Ops); 2966 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 2967 EntryBuilder->buildBlockAddress(Reg, BA); 2968 } else 2969 return false; 2970 2971 return true; 2972 } 2973 2974 void IRTranslator::finalizeBasicBlock() { 2975 for (auto &BTB : SL->BitTestCases) { 2976 // Emit header first, if it wasn't already emitted. 2977 if (!BTB.Emitted) 2978 emitBitTestHeader(BTB, BTB.Parent); 2979 2980 BranchProbability UnhandledProb = BTB.Prob; 2981 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 2982 UnhandledProb -= BTB.Cases[j].ExtraProb; 2983 // Set the current basic block to the mbb we wish to insert the code into 2984 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB; 2985 // If all cases cover a contiguous range, it is not necessary to jump to 2986 // the default block after the last bit test fails. This is because the 2987 // range check during bit test header creation has guaranteed that every 2988 // case here doesn't go outside the range. In this case, there is no need 2989 // to perform the last bit test, as it will always be true. Instead, make 2990 // the second-to-last bit-test fall through to the target of the last bit 2991 // test, and delete the last bit test. 2992 2993 MachineBasicBlock *NextMBB; 2994 if (BTB.ContiguousRange && j + 2 == ej) { 2995 // Second-to-last bit-test with contiguous range: fall through to the 2996 // target of the final bit test. 2997 NextMBB = BTB.Cases[j + 1].TargetBB; 2998 } else if (j + 1 == ej) { 2999 // For the last bit test, fall through to Default. 3000 NextMBB = BTB.Default; 3001 } else { 3002 // Otherwise, fall through to the next bit test. 3003 NextMBB = BTB.Cases[j + 1].ThisBB; 3004 } 3005 3006 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB); 3007 3008 if (BTB.ContiguousRange && j + 2 == ej) { 3009 // We need to record the replacement phi edge here that normally 3010 // happens in emitBitTestCase before we delete the case, otherwise the 3011 // phi edge will be lost. 3012 addMachineCFGPred({BTB.Parent->getBasicBlock(), 3013 BTB.Cases[ej - 1].TargetBB->getBasicBlock()}, 3014 MBB); 3015 // Since we're not going to use the final bit test, remove it. 3016 BTB.Cases.pop_back(); 3017 break; 3018 } 3019 } 3020 // This is "default" BB. We have two jumps to it. From "header" BB and from 3021 // last "case" BB, unless the latter was skipped. 3022 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(), 3023 BTB.Default->getBasicBlock()}; 3024 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent); 3025 if (!BTB.ContiguousRange) { 3026 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB); 3027 } 3028 } 3029 SL->BitTestCases.clear(); 3030 3031 for (auto &JTCase : SL->JTCases) { 3032 // Emit header first, if it wasn't already emitted. 3033 if (!JTCase.first.Emitted) 3034 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 3035 3036 emitJumpTable(JTCase.second, JTCase.second.MBB); 3037 } 3038 SL->JTCases.clear(); 3039 3040 for (auto &SwCase : SL->SwitchCases) 3041 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder); 3042 SL->SwitchCases.clear(); 3043 } 3044 3045 void IRTranslator::finalizeFunction() { 3046 // Release the memory used by the different maps we 3047 // needed during the translation. 3048 PendingPHIs.clear(); 3049 VMap.reset(); 3050 FrameIndices.clear(); 3051 MachinePreds.clear(); 3052 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 3053 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 3054 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 3055 EntryBuilder.reset(); 3056 CurBuilder.reset(); 3057 FuncInfo.clear(); 3058 } 3059 3060 /// Returns true if a BasicBlock \p BB within a variadic function contains a 3061 /// variadic musttail call. 3062 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 3063 if (!IsVarArg) 3064 return false; 3065 3066 // Walk the block backwards, because tail calls usually only appear at the end 3067 // of a block. 3068 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { 3069 const auto *CI = dyn_cast<CallInst>(&I); 3070 return CI && CI->isMustTailCall(); 3071 }); 3072 } 3073 3074 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 3075 MF = &CurMF; 3076 const Function &F = MF->getFunction(); 3077 if (F.empty()) 3078 return false; 3079 GISelCSEAnalysisWrapper &Wrapper = 3080 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 3081 // Set the CSEConfig and run the analysis. 3082 GISelCSEInfo *CSEInfo = nullptr; 3083 TPC = &getAnalysis<TargetPassConfig>(); 3084 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 3085 ? EnableCSEInIRTranslator 3086 : TPC->isGISelCSEEnabled(); 3087 3088 if (EnableCSE) { 3089 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3090 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 3091 EntryBuilder->setCSEInfo(CSEInfo); 3092 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3093 CurBuilder->setCSEInfo(CSEInfo); 3094 } else { 3095 EntryBuilder = std::make_unique<MachineIRBuilder>(); 3096 CurBuilder = std::make_unique<MachineIRBuilder>(); 3097 } 3098 CLI = MF->getSubtarget().getCallLowering(); 3099 CurBuilder->setMF(*MF); 3100 EntryBuilder->setMF(*MF); 3101 MRI = &MF->getRegInfo(); 3102 DL = &F.getParent()->getDataLayout(); 3103 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 3104 const TargetMachine &TM = MF->getTarget(); 3105 TM.resetTargetOptions(F); 3106 EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F); 3107 FuncInfo.MF = MF; 3108 if (EnableOpts) 3109 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 3110 else 3111 FuncInfo.BPI = nullptr; 3112 3113 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF); 3114 3115 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 3116 3117 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 3118 SL->init(TLI, TM, *DL); 3119 3120 3121 3122 assert(PendingPHIs.empty() && "stale PHIs"); 3123 3124 // Targets which want to use big endian can enable it using 3125 // enableBigEndian() 3126 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) { 3127 // Currently we don't properly handle big endian code. 3128 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3129 F.getSubprogram(), &F.getEntryBlock()); 3130 R << "unable to translate in big endian mode"; 3131 reportTranslationError(*MF, *TPC, *ORE, R); 3132 } 3133 3134 // Release the per-function state when we return, whether we succeeded or not. 3135 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 3136 3137 // Setup a separate basic-block for the arguments and constants 3138 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 3139 MF->push_back(EntryBB); 3140 EntryBuilder->setMBB(*EntryBB); 3141 3142 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 3143 SwiftError.setFunction(CurMF); 3144 SwiftError.createEntriesInEntryBlock(DbgLoc); 3145 3146 bool IsVarArg = F.isVarArg(); 3147 bool HasMustTailInVarArgFn = false; 3148 3149 // Create all blocks, in IR order, to preserve the layout. 3150 for (const BasicBlock &BB: F) { 3151 auto *&MBB = BBToMBB[&BB]; 3152 3153 MBB = MF->CreateMachineBasicBlock(&BB); 3154 MF->push_back(MBB); 3155 3156 if (BB.hasAddressTaken()) 3157 MBB->setHasAddressTaken(); 3158 3159 if (!HasMustTailInVarArgFn) 3160 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 3161 } 3162 3163 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 3164 3165 // Make our arguments/constants entry block fallthrough to the IR entry block. 3166 EntryBB->addSuccessor(&getMBB(F.front())); 3167 3168 if (CLI->fallBackToDAGISel(*MF)) { 3169 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3170 F.getSubprogram(), &F.getEntryBlock()); 3171 R << "unable to lower function: " << ore::NV("Prototype", F.getType()); 3172 reportTranslationError(*MF, *TPC, *ORE, R); 3173 return false; 3174 } 3175 3176 // Lower the actual args into this basic block. 3177 SmallVector<ArrayRef<Register>, 8> VRegArgs; 3178 for (const Argument &Arg: F.args()) { 3179 if (DL->getTypeStoreSize(Arg.getType()).isZero()) 3180 continue; // Don't handle zero sized types. 3181 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 3182 VRegArgs.push_back(VRegs); 3183 3184 if (Arg.hasSwiftErrorAttr()) { 3185 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 3186 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 3187 } 3188 } 3189 3190 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs, FuncInfo)) { 3191 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3192 F.getSubprogram(), &F.getEntryBlock()); 3193 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 3194 reportTranslationError(*MF, *TPC, *ORE, R); 3195 return false; 3196 } 3197 3198 // Need to visit defs before uses when translating instructions. 3199 GISelObserverWrapper WrapperObserver; 3200 if (EnableCSE && CSEInfo) 3201 WrapperObserver.addObserver(CSEInfo); 3202 { 3203 ReversePostOrderTraversal<const Function *> RPOT(&F); 3204 #ifndef NDEBUG 3205 DILocationVerifier Verifier; 3206 WrapperObserver.addObserver(&Verifier); 3207 #endif // ifndef NDEBUG 3208 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 3209 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 3210 for (const BasicBlock *BB : RPOT) { 3211 MachineBasicBlock &MBB = getMBB(*BB); 3212 // Set the insertion point of all the following translations to 3213 // the end of this basic block. 3214 CurBuilder->setMBB(MBB); 3215 HasTailCall = false; 3216 for (const Instruction &Inst : *BB) { 3217 // If we translated a tail call in the last step, then we know 3218 // everything after the call is either a return, or something that is 3219 // handled by the call itself. (E.g. a lifetime marker or assume 3220 // intrinsic.) In this case, we should stop translating the block and 3221 // move on. 3222 if (HasTailCall) 3223 break; 3224 #ifndef NDEBUG 3225 Verifier.setCurrentInst(&Inst); 3226 #endif // ifndef NDEBUG 3227 if (translate(Inst)) 3228 continue; 3229 3230 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3231 Inst.getDebugLoc(), BB); 3232 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 3233 3234 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 3235 std::string InstStrStorage; 3236 raw_string_ostream InstStr(InstStrStorage); 3237 InstStr << Inst; 3238 3239 R << ": '" << InstStr.str() << "'"; 3240 } 3241 3242 reportTranslationError(*MF, *TPC, *ORE, R); 3243 return false; 3244 } 3245 3246 finalizeBasicBlock(); 3247 } 3248 #ifndef NDEBUG 3249 WrapperObserver.removeObserver(&Verifier); 3250 #endif 3251 } 3252 3253 finishPendingPhis(); 3254 3255 SwiftError.propagateVRegs(); 3256 3257 // Merge the argument lowering and constants block with its single 3258 // successor, the LLVM-IR entry block. We want the basic block to 3259 // be maximal. 3260 assert(EntryBB->succ_size() == 1 && 3261 "Custom BB used for lowering should have only one successor"); 3262 // Get the successor of the current entry block. 3263 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 3264 assert(NewEntryBB.pred_size() == 1 && 3265 "LLVM-IR entry block has a predecessor!?"); 3266 // Move all the instruction from the current entry block to the 3267 // new entry block. 3268 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 3269 EntryBB->end()); 3270 3271 // Update the live-in information for the new entry block. 3272 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 3273 NewEntryBB.addLiveIn(LiveIn); 3274 NewEntryBB.sortUniqueLiveIns(); 3275 3276 // Get rid of the now empty basic block. 3277 EntryBB->removeSuccessor(&NewEntryBB); 3278 MF->remove(EntryBB); 3279 MF->DeleteMachineBasicBlock(EntryBB); 3280 3281 assert(&MF->front() == &NewEntryBB && 3282 "New entry wasn't next in the list of basic block!"); 3283 3284 // Initialize stack protector information. 3285 StackProtector &SP = getAnalysis<StackProtector>(); 3286 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 3287 3288 return false; 3289 } 3290