1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/FunctionLoweringInfo.h" 24 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 25 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 26 #include "llvm/CodeGen/LowLevelType.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/StackProtector.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfo.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GetElementPtrTypeIterator.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/MC/MCContext.h" 62 #include "llvm/Pass.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CodeGen.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/LowLevelTypeImpl.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetIntrinsicInfo.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <iterator> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 #define DEBUG_TYPE "irtranslator" 81 82 using namespace llvm; 83 84 static cl::opt<bool> 85 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 86 cl::desc("Should enable CSE in irtranslator"), 87 cl::Optional, cl::init(false)); 88 char IRTranslator::ID = 0; 89 90 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 91 false, false) 92 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 93 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 94 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 95 false, false) 96 97 static void reportTranslationError(MachineFunction &MF, 98 const TargetPassConfig &TPC, 99 OptimizationRemarkEmitter &ORE, 100 OptimizationRemarkMissed &R) { 101 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 102 103 // Print the function name explicitly if we don't have a debug location (which 104 // makes the diagnostic less useful) or if we're going to emit a raw error. 105 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 106 R << (" (in function: " + MF.getName() + ")").str(); 107 108 if (TPC.isGlobalISelAbortEnabled()) 109 report_fatal_error(R.getMsg()); 110 else 111 ORE.emit(R); 112 } 113 114 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { } 115 116 #ifndef NDEBUG 117 namespace { 118 /// Verify that every instruction created has the same DILocation as the 119 /// instruction being translated. 120 class DILocationVerifier : public GISelChangeObserver { 121 const Instruction *CurrInst = nullptr; 122 123 public: 124 DILocationVerifier() = default; 125 ~DILocationVerifier() = default; 126 127 const Instruction *getCurrentInst() const { return CurrInst; } 128 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 129 130 void erasingInstr(MachineInstr &MI) override {} 131 void changingInstr(MachineInstr &MI) override {} 132 void changedInstr(MachineInstr &MI) override {} 133 134 void createdInstr(MachineInstr &MI) override { 135 assert(getCurrentInst() && "Inserted instruction without a current MI"); 136 137 // Only print the check message if we're actually checking it. 138 #ifndef NDEBUG 139 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 140 << " was copied to " << MI); 141 #endif 142 // We allow insts in the entry block to have a debug loc line of 0 because 143 // they could have originated from constants, and we don't want a jumpy 144 // debug experience. 145 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 146 MI.getDebugLoc().getLine() == 0) && 147 "Line info was not transferred to all instructions"); 148 } 149 }; 150 } // namespace 151 #endif // ifndef NDEBUG 152 153 154 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 155 AU.addRequired<StackProtector>(); 156 AU.addRequired<TargetPassConfig>(); 157 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 158 getSelectionDAGFallbackAnalysisUsage(AU); 159 MachineFunctionPass::getAnalysisUsage(AU); 160 } 161 162 IRTranslator::ValueToVRegInfo::VRegListT & 163 IRTranslator::allocateVRegs(const Value &Val) { 164 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 165 auto *Regs = VMap.getVRegs(Val); 166 auto *Offsets = VMap.getOffsets(Val); 167 SmallVector<LLT, 4> SplitTys; 168 computeValueLLTs(*DL, *Val.getType(), SplitTys, 169 Offsets->empty() ? Offsets : nullptr); 170 for (unsigned i = 0; i < SplitTys.size(); ++i) 171 Regs->push_back(0); 172 return *Regs; 173 } 174 175 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 176 auto VRegsIt = VMap.findVRegs(Val); 177 if (VRegsIt != VMap.vregs_end()) 178 return *VRegsIt->second; 179 180 if (Val.getType()->isVoidTy()) 181 return *VMap.getVRegs(Val); 182 183 // Create entry for this type. 184 auto *VRegs = VMap.getVRegs(Val); 185 auto *Offsets = VMap.getOffsets(Val); 186 187 assert(Val.getType()->isSized() && 188 "Don't know how to create an empty vreg"); 189 190 SmallVector<LLT, 4> SplitTys; 191 computeValueLLTs(*DL, *Val.getType(), SplitTys, 192 Offsets->empty() ? Offsets : nullptr); 193 194 if (!isa<Constant>(Val)) { 195 for (auto Ty : SplitTys) 196 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 197 return *VRegs; 198 } 199 200 if (Val.getType()->isAggregateType()) { 201 // UndefValue, ConstantAggregateZero 202 auto &C = cast<Constant>(Val); 203 unsigned Idx = 0; 204 while (auto Elt = C.getAggregateElement(Idx++)) { 205 auto EltRegs = getOrCreateVRegs(*Elt); 206 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 207 } 208 } else { 209 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 210 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 211 bool Success = translate(cast<Constant>(Val), VRegs->front()); 212 if (!Success) { 213 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 214 MF->getFunction().getSubprogram(), 215 &MF->getFunction().getEntryBlock()); 216 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 217 reportTranslationError(*MF, *TPC, *ORE, R); 218 return *VRegs; 219 } 220 } 221 222 return *VRegs; 223 } 224 225 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 226 if (FrameIndices.find(&AI) != FrameIndices.end()) 227 return FrameIndices[&AI]; 228 229 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 230 uint64_t Size = 231 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 232 233 // Always allocate at least one byte. 234 Size = std::max<uint64_t>(Size, 1u); 235 236 unsigned Alignment = AI.getAlignment(); 237 if (!Alignment) 238 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 239 240 int &FI = FrameIndices[&AI]; 241 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 242 return FI; 243 } 244 245 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 246 unsigned Alignment = 0; 247 Type *ValTy = nullptr; 248 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 249 Alignment = SI->getAlignment(); 250 ValTy = SI->getValueOperand()->getType(); 251 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 252 Alignment = LI->getAlignment(); 253 ValTy = LI->getType(); 254 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 255 // TODO(PR27168): This instruction has no alignment attribute, but unlike 256 // the default alignment for load/store, the default here is to assume 257 // it has NATURAL alignment, not DataLayout-specified alignment. 258 const DataLayout &DL = AI->getModule()->getDataLayout(); 259 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 260 ValTy = AI->getCompareOperand()->getType(); 261 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 262 // TODO(PR27168): This instruction has no alignment attribute, but unlike 263 // the default alignment for load/store, the default here is to assume 264 // it has NATURAL alignment, not DataLayout-specified alignment. 265 const DataLayout &DL = AI->getModule()->getDataLayout(); 266 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 267 ValTy = AI->getType(); 268 } else { 269 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 270 R << "unable to translate memop: " << ore::NV("Opcode", &I); 271 reportTranslationError(*MF, *TPC, *ORE, R); 272 return 1; 273 } 274 275 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 276 } 277 278 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 279 MachineBasicBlock *&MBB = BBToMBB[&BB]; 280 assert(MBB && "BasicBlock was not encountered before"); 281 return *MBB; 282 } 283 284 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 285 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 286 MachinePreds[Edge].push_back(NewPred); 287 } 288 289 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 290 MachineIRBuilder &MIRBuilder) { 291 // Get or create a virtual register for each value. 292 // Unless the value is a Constant => loadimm cst? 293 // or inline constant each time? 294 // Creation of a virtual register needs to have a size. 295 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 296 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 297 Register Res = getOrCreateVReg(U); 298 uint16_t Flags = 0; 299 if (isa<Instruction>(U)) { 300 const Instruction &I = cast<Instruction>(U); 301 Flags = MachineInstr::copyFlagsFromInstruction(I); 302 } 303 304 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 305 return true; 306 } 307 308 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 309 // -0.0 - X --> G_FNEG 310 if (isa<Constant>(U.getOperand(0)) && 311 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 312 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 313 Register Res = getOrCreateVReg(U); 314 uint16_t Flags = 0; 315 if (isa<Instruction>(U)) { 316 const Instruction &I = cast<Instruction>(U); 317 Flags = MachineInstr::copyFlagsFromInstruction(I); 318 } 319 // Negate the last operand of the FSUB 320 MIRBuilder.buildFNeg(Res, Op1, Flags); 321 return true; 322 } 323 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 324 } 325 326 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 327 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 328 Register Res = getOrCreateVReg(U); 329 uint16_t Flags = 0; 330 if (isa<Instruction>(U)) { 331 const Instruction &I = cast<Instruction>(U); 332 Flags = MachineInstr::copyFlagsFromInstruction(I); 333 } 334 MIRBuilder.buildFNeg(Res, Op0, Flags); 335 return true; 336 } 337 338 bool IRTranslator::translateCompare(const User &U, 339 MachineIRBuilder &MIRBuilder) { 340 auto *CI = dyn_cast<CmpInst>(&U); 341 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 342 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 343 Register Res = getOrCreateVReg(U); 344 CmpInst::Predicate Pred = 345 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 346 cast<ConstantExpr>(U).getPredicate()); 347 if (CmpInst::isIntPredicate(Pred)) 348 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 349 else if (Pred == CmpInst::FCMP_FALSE) 350 MIRBuilder.buildCopy( 351 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 352 else if (Pred == CmpInst::FCMP_TRUE) 353 MIRBuilder.buildCopy( 354 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 355 else { 356 assert(CI && "Instruction should be CmpInst"); 357 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, 358 MachineInstr::copyFlagsFromInstruction(*CI)); 359 } 360 361 return true; 362 } 363 364 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 365 const ReturnInst &RI = cast<ReturnInst>(U); 366 const Value *Ret = RI.getReturnValue(); 367 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 368 Ret = nullptr; 369 370 ArrayRef<Register> VRegs; 371 if (Ret) 372 VRegs = getOrCreateVRegs(*Ret); 373 374 Register SwiftErrorVReg = 0; 375 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 376 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 377 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 378 } 379 380 // The target may mess up with the insertion point, but 381 // this is not important as a return is the last instruction 382 // of the block anyway. 383 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); 384 } 385 386 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 387 const BranchInst &BrInst = cast<BranchInst>(U); 388 unsigned Succ = 0; 389 if (!BrInst.isUnconditional()) { 390 // We want a G_BRCOND to the true BB followed by an unconditional branch. 391 Register Tst = getOrCreateVReg(*BrInst.getCondition()); 392 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 393 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 394 MIRBuilder.buildBrCond(Tst, TrueBB); 395 } 396 397 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 398 MachineBasicBlock &TgtBB = getMBB(BrTgt); 399 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 400 401 // If the unconditional target is the layout successor, fallthrough. 402 if (!CurBB.isLayoutSuccessor(&TgtBB)) 403 MIRBuilder.buildBr(TgtBB); 404 405 // Link successors. 406 for (const BasicBlock *Succ : successors(&BrInst)) 407 CurBB.addSuccessor(&getMBB(*Succ)); 408 return true; 409 } 410 411 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 412 MachineBasicBlock *Dst, 413 BranchProbability Prob) { 414 if (!FuncInfo.BPI) { 415 Src->addSuccessorWithoutProb(Dst); 416 return; 417 } 418 if (Prob.isUnknown()) 419 Prob = getEdgeProbability(Src, Dst); 420 Src->addSuccessor(Dst, Prob); 421 } 422 423 BranchProbability 424 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 425 const MachineBasicBlock *Dst) const { 426 const BasicBlock *SrcBB = Src->getBasicBlock(); 427 const BasicBlock *DstBB = Dst->getBasicBlock(); 428 if (!FuncInfo.BPI) { 429 // If BPI is not available, set the default probability as 1 / N, where N is 430 // the number of successors. 431 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 432 return BranchProbability(1, SuccSize); 433 } 434 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 435 } 436 437 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 438 using namespace SwitchCG; 439 // Extract cases from the switch. 440 const SwitchInst &SI = cast<SwitchInst>(U); 441 BranchProbabilityInfo *BPI = FuncInfo.BPI; 442 CaseClusterVector Clusters; 443 Clusters.reserve(SI.getNumCases()); 444 for (auto &I : SI.cases()) { 445 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 446 assert(Succ && "Could not find successor mbb in mapping"); 447 const ConstantInt *CaseVal = I.getCaseValue(); 448 BranchProbability Prob = 449 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 450 : BranchProbability(1, SI.getNumCases() + 1); 451 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 452 } 453 454 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 455 456 // Cluster adjacent cases with the same destination. We do this at all 457 // optimization levels because it's cheap to do and will make codegen faster 458 // if there are many clusters. 459 sortAndRangeify(Clusters); 460 461 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 462 463 // If there is only the default destination, jump there directly. 464 if (Clusters.empty()) { 465 SwitchMBB->addSuccessor(DefaultMBB); 466 if (DefaultMBB != SwitchMBB->getNextNode()) 467 MIB.buildBr(*DefaultMBB); 468 return true; 469 } 470 471 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 472 473 LLVM_DEBUG({ 474 dbgs() << "Case clusters: "; 475 for (const CaseCluster &C : Clusters) { 476 if (C.Kind == CC_JumpTable) 477 dbgs() << "JT:"; 478 if (C.Kind == CC_BitTests) 479 dbgs() << "BT:"; 480 481 C.Low->getValue().print(dbgs(), true); 482 if (C.Low != C.High) { 483 dbgs() << '-'; 484 C.High->getValue().print(dbgs(), true); 485 } 486 dbgs() << ' '; 487 } 488 dbgs() << '\n'; 489 }); 490 491 assert(!Clusters.empty()); 492 SwitchWorkList WorkList; 493 CaseClusterIt First = Clusters.begin(); 494 CaseClusterIt Last = Clusters.end() - 1; 495 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 496 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 497 498 // FIXME: At the moment we don't do any splitting optimizations here like 499 // SelectionDAG does, so this worklist only has one entry. 500 while (!WorkList.empty()) { 501 SwitchWorkListItem W = WorkList.back(); 502 WorkList.pop_back(); 503 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 504 return false; 505 } 506 return true; 507 } 508 509 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 510 MachineBasicBlock *MBB) { 511 // Emit the code for the jump table 512 assert(JT.Reg != -1U && "Should lower JT Header first!"); 513 MachineIRBuilder MIB(*MBB->getParent()); 514 MIB.setMBB(*MBB); 515 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 516 517 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 518 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 519 520 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 521 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 522 } 523 524 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 525 SwitchCG::JumpTableHeader &JTH, 526 MachineBasicBlock *HeaderBB) { 527 MachineIRBuilder MIB(*HeaderBB->getParent()); 528 MIB.setMBB(*HeaderBB); 529 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 530 531 const Value &SValue = *JTH.SValue; 532 // Subtract the lowest switch case value from the value being switched on. 533 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 534 Register SwitchOpReg = getOrCreateVReg(SValue); 535 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 536 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 537 538 // This value may be smaller or larger than the target's pointer type, and 539 // therefore require extension or truncating. 540 Type *PtrIRTy = SValue.getType()->getPointerTo(); 541 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 542 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 543 544 JT.Reg = Sub.getReg(0); 545 546 if (JTH.OmitRangeCheck) { 547 if (JT.MBB != HeaderBB->getNextNode()) 548 MIB.buildBr(*JT.MBB); 549 return true; 550 } 551 552 // Emit the range check for the jump table, and branch to the default block 553 // for the switch statement if the value being switched on exceeds the 554 // largest case in the switch. 555 auto Cst = getOrCreateVReg( 556 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 557 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 558 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 559 560 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 561 562 // Avoid emitting unnecessary branches to the next block. 563 if (JT.MBB != HeaderBB->getNextNode()) 564 BrCond = MIB.buildBr(*JT.MBB); 565 return true; 566 } 567 568 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 569 MachineBasicBlock *SwitchBB, 570 MachineIRBuilder &MIB) { 571 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 572 Register Cond; 573 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 574 MIB.setDebugLoc(CB.DbgLoc); 575 MIB.setMBB(*CB.ThisBB); 576 577 if (CB.PredInfo.NoCmp) { 578 // Branch or fall through to TrueBB. 579 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 580 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 581 CB.ThisBB); 582 CB.ThisBB->normalizeSuccProbs(); 583 if (CB.TrueBB != CB.ThisBB->getNextNode()) 584 MIB.buildBr(*CB.TrueBB); 585 MIB.setDebugLoc(OldDbgLoc); 586 return; 587 } 588 589 const LLT i1Ty = LLT::scalar(1); 590 // Build the compare. 591 if (!CB.CmpMHS) { 592 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 593 Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 594 } else { 595 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 596 "Can only handle SLE ranges"); 597 598 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 599 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 600 601 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 602 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 603 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 604 Cond = 605 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 606 } else { 607 const LLT &CmpTy = MRI->getType(CmpOpReg); 608 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 609 auto Diff = MIB.buildConstant(CmpTy, High - Low); 610 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 611 } 612 } 613 614 // Update successor info 615 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 616 617 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 618 CB.ThisBB); 619 620 // TrueBB and FalseBB are always different unless the incoming IR is 621 // degenerate. This only happens when running llc on weird IR. 622 if (CB.TrueBB != CB.FalseBB) 623 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 624 CB.ThisBB->normalizeSuccProbs(); 625 626 // if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock()) 627 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 628 CB.ThisBB); 629 630 // If the lhs block is the next block, invert the condition so that we can 631 // fall through to the lhs instead of the rhs block. 632 if (CB.TrueBB == CB.ThisBB->getNextNode()) { 633 std::swap(CB.TrueBB, CB.FalseBB); 634 auto True = MIB.buildConstant(i1Ty, 1); 635 Cond = MIB.buildXor(i1Ty, Cond, True).getReg(0); 636 } 637 638 MIB.buildBrCond(Cond, *CB.TrueBB); 639 MIB.buildBr(*CB.FalseBB); 640 MIB.setDebugLoc(OldDbgLoc); 641 } 642 643 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 644 MachineBasicBlock *SwitchMBB, 645 MachineBasicBlock *CurMBB, 646 MachineBasicBlock *DefaultMBB, 647 MachineIRBuilder &MIB, 648 MachineFunction::iterator BBI, 649 BranchProbability UnhandledProbs, 650 SwitchCG::CaseClusterIt I, 651 MachineBasicBlock *Fallthrough, 652 bool FallthroughUnreachable) { 653 using namespace SwitchCG; 654 MachineFunction *CurMF = SwitchMBB->getParent(); 655 // FIXME: Optimize away range check based on pivot comparisons. 656 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 657 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 658 BranchProbability DefaultProb = W.DefaultProb; 659 660 // The jump block hasn't been inserted yet; insert it here. 661 MachineBasicBlock *JumpMBB = JT->MBB; 662 CurMF->insert(BBI, JumpMBB); 663 664 // Since the jump table block is separate from the switch block, we need 665 // to keep track of it as a machine predecessor to the default block, 666 // otherwise we lose the phi edges. 667 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 668 CurMBB); 669 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 670 JumpMBB); 671 672 auto JumpProb = I->Prob; 673 auto FallthroughProb = UnhandledProbs; 674 675 // If the default statement is a target of the jump table, we evenly 676 // distribute the default probability to successors of CurMBB. Also 677 // update the probability on the edge from JumpMBB to Fallthrough. 678 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 679 SE = JumpMBB->succ_end(); 680 SI != SE; ++SI) { 681 if (*SI == DefaultMBB) { 682 JumpProb += DefaultProb / 2; 683 FallthroughProb -= DefaultProb / 2; 684 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 685 JumpMBB->normalizeSuccProbs(); 686 } else { 687 // Also record edges from the jump table block to it's successors. 688 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 689 JumpMBB); 690 } 691 } 692 693 // Skip the range check if the fallthrough block is unreachable. 694 if (FallthroughUnreachable) 695 JTH->OmitRangeCheck = true; 696 697 if (!JTH->OmitRangeCheck) 698 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 699 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 700 CurMBB->normalizeSuccProbs(); 701 702 // The jump table header will be inserted in our current block, do the 703 // range check, and fall through to our fallthrough block. 704 JTH->HeaderBB = CurMBB; 705 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 706 707 // If we're in the right place, emit the jump table header right now. 708 if (CurMBB == SwitchMBB) { 709 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 710 return false; 711 JTH->Emitted = true; 712 } 713 return true; 714 } 715 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 716 Value *Cond, 717 MachineBasicBlock *Fallthrough, 718 bool FallthroughUnreachable, 719 BranchProbability UnhandledProbs, 720 MachineBasicBlock *CurMBB, 721 MachineIRBuilder &MIB, 722 MachineBasicBlock *SwitchMBB) { 723 using namespace SwitchCG; 724 const Value *RHS, *LHS, *MHS; 725 CmpInst::Predicate Pred; 726 if (I->Low == I->High) { 727 // Check Cond == I->Low. 728 Pred = CmpInst::ICMP_EQ; 729 LHS = Cond; 730 RHS = I->Low; 731 MHS = nullptr; 732 } else { 733 // Check I->Low <= Cond <= I->High. 734 Pred = CmpInst::ICMP_SLE; 735 LHS = I->Low; 736 MHS = Cond; 737 RHS = I->High; 738 } 739 740 // If Fallthrough is unreachable, fold away the comparison. 741 // The false probability is the sum of all unhandled cases. 742 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 743 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 744 745 emitSwitchCase(CB, SwitchMBB, MIB); 746 return true; 747 } 748 749 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 750 Value *Cond, 751 MachineBasicBlock *SwitchMBB, 752 MachineBasicBlock *DefaultMBB, 753 MachineIRBuilder &MIB) { 754 using namespace SwitchCG; 755 MachineFunction *CurMF = FuncInfo.MF; 756 MachineBasicBlock *NextMBB = nullptr; 757 MachineFunction::iterator BBI(W.MBB); 758 if (++BBI != FuncInfo.MF->end()) 759 NextMBB = &*BBI; 760 761 if (EnableOpts) { 762 // Here, we order cases by probability so the most likely case will be 763 // checked first. However, two clusters can have the same probability in 764 // which case their relative ordering is non-deterministic. So we use Low 765 // as a tie-breaker as clusters are guaranteed to never overlap. 766 llvm::sort(W.FirstCluster, W.LastCluster + 1, 767 [](const CaseCluster &a, const CaseCluster &b) { 768 return a.Prob != b.Prob 769 ? a.Prob > b.Prob 770 : a.Low->getValue().slt(b.Low->getValue()); 771 }); 772 773 // Rearrange the case blocks so that the last one falls through if possible 774 // without changing the order of probabilities. 775 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 776 --I; 777 if (I->Prob > W.LastCluster->Prob) 778 break; 779 if (I->Kind == CC_Range && I->MBB == NextMBB) { 780 std::swap(*I, *W.LastCluster); 781 break; 782 } 783 } 784 } 785 786 // Compute total probability. 787 BranchProbability DefaultProb = W.DefaultProb; 788 BranchProbability UnhandledProbs = DefaultProb; 789 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 790 UnhandledProbs += I->Prob; 791 792 MachineBasicBlock *CurMBB = W.MBB; 793 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 794 bool FallthroughUnreachable = false; 795 MachineBasicBlock *Fallthrough; 796 if (I == W.LastCluster) { 797 // For the last cluster, fall through to the default destination. 798 Fallthrough = DefaultMBB; 799 FallthroughUnreachable = isa<UnreachableInst>( 800 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 801 } else { 802 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 803 CurMF->insert(BBI, Fallthrough); 804 } 805 UnhandledProbs -= I->Prob; 806 807 switch (I->Kind) { 808 case CC_BitTests: { 809 LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented"); 810 return false; // Bit tests currently unimplemented. 811 } 812 case CC_JumpTable: { 813 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 814 UnhandledProbs, I, Fallthrough, 815 FallthroughUnreachable)) { 816 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 817 return false; 818 } 819 break; 820 } 821 case CC_Range: { 822 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 823 FallthroughUnreachable, UnhandledProbs, 824 CurMBB, MIB, SwitchMBB)) { 825 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 826 return false; 827 } 828 break; 829 } 830 } 831 CurMBB = Fallthrough; 832 } 833 834 return true; 835 } 836 837 bool IRTranslator::translateIndirectBr(const User &U, 838 MachineIRBuilder &MIRBuilder) { 839 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 840 841 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 842 MIRBuilder.buildBrIndirect(Tgt); 843 844 // Link successors. 845 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 846 for (const BasicBlock *Succ : successors(&BrInst)) 847 CurBB.addSuccessor(&getMBB(*Succ)); 848 849 return true; 850 } 851 852 static bool isSwiftError(const Value *V) { 853 if (auto Arg = dyn_cast<Argument>(V)) 854 return Arg->hasSwiftErrorAttr(); 855 if (auto AI = dyn_cast<AllocaInst>(V)) 856 return AI->isSwiftError(); 857 return false; 858 } 859 860 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 861 const LoadInst &LI = cast<LoadInst>(U); 862 if (DL->getTypeStoreSize(LI.getType()) == 0) 863 return true; 864 865 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 866 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 867 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 868 869 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 870 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 871 872 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 873 assert(Regs.size() == 1 && "swifterror should be single pointer"); 874 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 875 LI.getPointerOperand()); 876 MIRBuilder.buildCopy(Regs[0], VReg); 877 return true; 878 } 879 880 auto &TLI = *MF->getSubtarget().getTargetLowering(); 881 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL); 882 883 const MDNode *Ranges = 884 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 885 for (unsigned i = 0; i < Regs.size(); ++i) { 886 Register Addr; 887 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 888 889 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 890 unsigned BaseAlign = getMemOpAlignment(LI); 891 AAMDNodes AAMetadata; 892 LI.getAAMetadata(AAMetadata); 893 auto MMO = MF->getMachineMemOperand( 894 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 895 MinAlign(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges, 896 LI.getSyncScopeID(), LI.getOrdering()); 897 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 898 } 899 900 return true; 901 } 902 903 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 904 const StoreInst &SI = cast<StoreInst>(U); 905 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 906 return true; 907 908 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 909 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 910 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 911 912 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 913 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 914 915 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 916 assert(Vals.size() == 1 && "swifterror should be single pointer"); 917 918 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 919 SI.getPointerOperand()); 920 MIRBuilder.buildCopy(VReg, Vals[0]); 921 return true; 922 } 923 924 auto &TLI = *MF->getSubtarget().getTargetLowering(); 925 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 926 927 for (unsigned i = 0; i < Vals.size(); ++i) { 928 Register Addr; 929 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 930 931 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 932 unsigned BaseAlign = getMemOpAlignment(SI); 933 AAMDNodes AAMetadata; 934 SI.getAAMetadata(AAMetadata); 935 auto MMO = MF->getMachineMemOperand( 936 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 937 MinAlign(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr, 938 SI.getSyncScopeID(), SI.getOrdering()); 939 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 940 } 941 return true; 942 } 943 944 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 945 const Value *Src = U.getOperand(0); 946 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 947 948 // getIndexedOffsetInType is designed for GEPs, so the first index is the 949 // usual array element rather than looking into the actual aggregate. 950 SmallVector<Value *, 1> Indices; 951 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 952 953 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 954 for (auto Idx : EVI->indices()) 955 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 956 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 957 for (auto Idx : IVI->indices()) 958 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 959 } else { 960 for (unsigned i = 1; i < U.getNumOperands(); ++i) 961 Indices.push_back(U.getOperand(i)); 962 } 963 964 return 8 * static_cast<uint64_t>( 965 DL.getIndexedOffsetInType(Src->getType(), Indices)); 966 } 967 968 bool IRTranslator::translateExtractValue(const User &U, 969 MachineIRBuilder &MIRBuilder) { 970 const Value *Src = U.getOperand(0); 971 uint64_t Offset = getOffsetFromIndices(U, *DL); 972 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 973 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 974 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 975 auto &DstRegs = allocateVRegs(U); 976 977 for (unsigned i = 0; i < DstRegs.size(); ++i) 978 DstRegs[i] = SrcRegs[Idx++]; 979 980 return true; 981 } 982 983 bool IRTranslator::translateInsertValue(const User &U, 984 MachineIRBuilder &MIRBuilder) { 985 const Value *Src = U.getOperand(0); 986 uint64_t Offset = getOffsetFromIndices(U, *DL); 987 auto &DstRegs = allocateVRegs(U); 988 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 989 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 990 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 991 auto InsertedIt = InsertedRegs.begin(); 992 993 for (unsigned i = 0; i < DstRegs.size(); ++i) { 994 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 995 DstRegs[i] = *InsertedIt++; 996 else 997 DstRegs[i] = SrcRegs[i]; 998 } 999 1000 return true; 1001 } 1002 1003 bool IRTranslator::translateSelect(const User &U, 1004 MachineIRBuilder &MIRBuilder) { 1005 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1006 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1007 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1008 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1009 1010 const SelectInst &SI = cast<SelectInst>(U); 1011 uint16_t Flags = 0; 1012 if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) 1013 Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); 1014 1015 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1016 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1017 } 1018 1019 return true; 1020 } 1021 1022 bool IRTranslator::translateBitCast(const User &U, 1023 MachineIRBuilder &MIRBuilder) { 1024 // If we're bitcasting to the source type, we can reuse the source vreg. 1025 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1026 getLLTForType(*U.getType(), *DL)) { 1027 Register SrcReg = getOrCreateVReg(*U.getOperand(0)); 1028 auto &Regs = *VMap.getVRegs(U); 1029 // If we already assigned a vreg for this bitcast, we can't change that. 1030 // Emit a copy to satisfy the users we already emitted. 1031 if (!Regs.empty()) 1032 MIRBuilder.buildCopy(Regs[0], SrcReg); 1033 else { 1034 Regs.push_back(SrcReg); 1035 VMap.getOffsets(U)->push_back(0); 1036 } 1037 return true; 1038 } 1039 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1040 } 1041 1042 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1043 MachineIRBuilder &MIRBuilder) { 1044 Register Op = getOrCreateVReg(*U.getOperand(0)); 1045 Register Res = getOrCreateVReg(U); 1046 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1047 return true; 1048 } 1049 1050 bool IRTranslator::translateGetElementPtr(const User &U, 1051 MachineIRBuilder &MIRBuilder) { 1052 // FIXME: support vector GEPs. 1053 if (U.getType()->isVectorTy()) 1054 return false; 1055 1056 Value &Op0 = *U.getOperand(0); 1057 Register BaseReg = getOrCreateVReg(Op0); 1058 Type *PtrIRTy = Op0.getType(); 1059 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1060 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1061 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1062 1063 int64_t Offset = 0; 1064 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1065 GTI != E; ++GTI) { 1066 const Value *Idx = GTI.getOperand(); 1067 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1068 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1069 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1070 continue; 1071 } else { 1072 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1073 1074 // If this is a scalar constant or a splat vector of constants, 1075 // handle it quickly. 1076 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1077 Offset += ElementSize * CI->getSExtValue(); 1078 continue; 1079 } 1080 1081 if (Offset != 0) { 1082 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1083 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1084 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1085 .getReg(0); 1086 Offset = 0; 1087 } 1088 1089 Register IdxReg = getOrCreateVReg(*Idx); 1090 if (MRI->getType(IdxReg) != OffsetTy) 1091 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1092 1093 // N = N + Idx * ElementSize; 1094 // Avoid doing it for ElementSize of 1. 1095 Register GepOffsetReg; 1096 if (ElementSize != 1) { 1097 auto ElementSizeMIB = MIRBuilder.buildConstant( 1098 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1099 GepOffsetReg = 1100 MIRBuilder.buildMul(OffsetTy, ElementSizeMIB, IdxReg).getReg(0); 1101 } else 1102 GepOffsetReg = IdxReg; 1103 1104 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1105 } 1106 } 1107 1108 if (Offset != 0) { 1109 auto OffsetMIB = 1110 MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset); 1111 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1112 return true; 1113 } 1114 1115 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1116 return true; 1117 } 1118 1119 bool IRTranslator::translateMemFunc(const CallInst &CI, 1120 MachineIRBuilder &MIRBuilder, 1121 Intrinsic::ID ID) { 1122 1123 // If the source is undef, then just emit a nop. 1124 if (isa<UndefValue>(CI.getArgOperand(1))) 1125 return true; 1126 1127 ArrayRef<Register> Res; 1128 auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true); 1129 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) 1130 ICall.addUse(getOrCreateVReg(**AI)); 1131 1132 unsigned DstAlign = 0, SrcAlign = 0; 1133 unsigned IsVol = 1134 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) 1135 ->getZExtValue(); 1136 1137 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1138 DstAlign = std::max<unsigned>(MCI->getDestAlignment(), 1); 1139 SrcAlign = std::max<unsigned>(MCI->getSourceAlignment(), 1); 1140 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1141 DstAlign = std::max<unsigned>(MMI->getDestAlignment(), 1); 1142 SrcAlign = std::max<unsigned>(MMI->getSourceAlignment(), 1); 1143 } else { 1144 auto *MSI = cast<MemSetInst>(&CI); 1145 DstAlign = std::max<unsigned>(MSI->getDestAlignment(), 1); 1146 } 1147 1148 // We need to propagate the tail call flag from the IR inst as an argument. 1149 // Otherwise, we have to pessimize and assume later that we cannot tail call 1150 // any memory intrinsics. 1151 ICall.addImm(CI.isTailCall() ? 1 : 0); 1152 1153 // Create mem operands to store the alignment and volatile info. 1154 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1155 ICall.addMemOperand(MF->getMachineMemOperand( 1156 MachinePointerInfo(CI.getArgOperand(0)), 1157 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1158 if (ID != Intrinsic::memset) 1159 ICall.addMemOperand(MF->getMachineMemOperand( 1160 MachinePointerInfo(CI.getArgOperand(1)), 1161 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1162 1163 return true; 1164 } 1165 1166 void IRTranslator::getStackGuard(Register DstReg, 1167 MachineIRBuilder &MIRBuilder) { 1168 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1169 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1170 auto MIB = 1171 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1172 1173 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1174 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1175 if (!Global) 1176 return; 1177 1178 MachinePointerInfo MPInfo(Global); 1179 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1180 MachineMemOperand::MODereferenceable; 1181 MachineMemOperand *MemRef = 1182 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 1183 DL->getPointerABIAlignment(0).value()); 1184 MIB.setMemRefs({MemRef}); 1185 } 1186 1187 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1188 MachineIRBuilder &MIRBuilder) { 1189 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1190 MIRBuilder.buildInstr( 1191 Op, {ResRegs[0], ResRegs[1]}, 1192 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1193 1194 return true; 1195 } 1196 1197 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1198 switch (ID) { 1199 default: 1200 break; 1201 case Intrinsic::bswap: 1202 return TargetOpcode::G_BSWAP; 1203 case Intrinsic::bitreverse: 1204 return TargetOpcode::G_BITREVERSE; 1205 case Intrinsic::ceil: 1206 return TargetOpcode::G_FCEIL; 1207 case Intrinsic::cos: 1208 return TargetOpcode::G_FCOS; 1209 case Intrinsic::ctpop: 1210 return TargetOpcode::G_CTPOP; 1211 case Intrinsic::exp: 1212 return TargetOpcode::G_FEXP; 1213 case Intrinsic::exp2: 1214 return TargetOpcode::G_FEXP2; 1215 case Intrinsic::fabs: 1216 return TargetOpcode::G_FABS; 1217 case Intrinsic::copysign: 1218 return TargetOpcode::G_FCOPYSIGN; 1219 case Intrinsic::minnum: 1220 return TargetOpcode::G_FMINNUM; 1221 case Intrinsic::maxnum: 1222 return TargetOpcode::G_FMAXNUM; 1223 case Intrinsic::minimum: 1224 return TargetOpcode::G_FMINIMUM; 1225 case Intrinsic::maximum: 1226 return TargetOpcode::G_FMAXIMUM; 1227 case Intrinsic::canonicalize: 1228 return TargetOpcode::G_FCANONICALIZE; 1229 case Intrinsic::floor: 1230 return TargetOpcode::G_FFLOOR; 1231 case Intrinsic::fma: 1232 return TargetOpcode::G_FMA; 1233 case Intrinsic::log: 1234 return TargetOpcode::G_FLOG; 1235 case Intrinsic::log2: 1236 return TargetOpcode::G_FLOG2; 1237 case Intrinsic::log10: 1238 return TargetOpcode::G_FLOG10; 1239 case Intrinsic::nearbyint: 1240 return TargetOpcode::G_FNEARBYINT; 1241 case Intrinsic::pow: 1242 return TargetOpcode::G_FPOW; 1243 case Intrinsic::rint: 1244 return TargetOpcode::G_FRINT; 1245 case Intrinsic::round: 1246 return TargetOpcode::G_INTRINSIC_ROUND; 1247 case Intrinsic::sin: 1248 return TargetOpcode::G_FSIN; 1249 case Intrinsic::sqrt: 1250 return TargetOpcode::G_FSQRT; 1251 case Intrinsic::trunc: 1252 return TargetOpcode::G_INTRINSIC_TRUNC; 1253 case Intrinsic::readcyclecounter: 1254 return TargetOpcode::G_READCYCLECOUNTER; 1255 } 1256 return Intrinsic::not_intrinsic; 1257 } 1258 1259 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1260 Intrinsic::ID ID, 1261 MachineIRBuilder &MIRBuilder) { 1262 1263 unsigned Op = getSimpleIntrinsicOpcode(ID); 1264 1265 // Is this a simple intrinsic? 1266 if (Op == Intrinsic::not_intrinsic) 1267 return false; 1268 1269 // Yes. Let's translate it. 1270 SmallVector<llvm::SrcOp, 4> VRegs; 1271 for (auto &Arg : CI.arg_operands()) 1272 VRegs.push_back(getOrCreateVReg(*Arg)); 1273 1274 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1275 MachineInstr::copyFlagsFromInstruction(CI)); 1276 return true; 1277 } 1278 1279 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1280 MachineIRBuilder &MIRBuilder) { 1281 1282 // If this is a simple intrinsic (that is, we just need to add a def of 1283 // a vreg, and uses for each arg operand, then translate it. 1284 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1285 return true; 1286 1287 switch (ID) { 1288 default: 1289 break; 1290 case Intrinsic::lifetime_start: 1291 case Intrinsic::lifetime_end: { 1292 // No stack colouring in O0, discard region information. 1293 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1294 return true; 1295 1296 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1297 : TargetOpcode::LIFETIME_END; 1298 1299 // Get the underlying objects for the location passed on the lifetime 1300 // marker. 1301 SmallVector<const Value *, 4> Allocas; 1302 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 1303 1304 // Iterate over each underlying object, creating lifetime markers for each 1305 // static alloca. Quit if we find a non-static alloca. 1306 for (const Value *V : Allocas) { 1307 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1308 if (!AI) 1309 continue; 1310 1311 if (!AI->isStaticAlloca()) 1312 return true; 1313 1314 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1315 } 1316 return true; 1317 } 1318 case Intrinsic::dbg_declare: { 1319 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1320 assert(DI.getVariable() && "Missing variable"); 1321 1322 const Value *Address = DI.getAddress(); 1323 if (!Address || isa<UndefValue>(Address)) { 1324 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1325 return true; 1326 } 1327 1328 assert(DI.getVariable()->isValidLocationForIntrinsic( 1329 MIRBuilder.getDebugLoc()) && 1330 "Expected inlined-at fields to agree"); 1331 auto AI = dyn_cast<AllocaInst>(Address); 1332 if (AI && AI->isStaticAlloca()) { 1333 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1334 // instructions (in fact, they get ignored if they *do* exist). 1335 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1336 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1337 } else { 1338 // A dbg.declare describes the address of a source variable, so lower it 1339 // into an indirect DBG_VALUE. 1340 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1341 DI.getVariable(), DI.getExpression()); 1342 } 1343 return true; 1344 } 1345 case Intrinsic::dbg_label: { 1346 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1347 assert(DI.getLabel() && "Missing label"); 1348 1349 assert(DI.getLabel()->isValidLocationForIntrinsic( 1350 MIRBuilder.getDebugLoc()) && 1351 "Expected inlined-at fields to agree"); 1352 1353 MIRBuilder.buildDbgLabel(DI.getLabel()); 1354 return true; 1355 } 1356 case Intrinsic::vaend: 1357 // No target I know of cares about va_end. Certainly no in-tree target 1358 // does. Simplest intrinsic ever! 1359 return true; 1360 case Intrinsic::vastart: { 1361 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1362 Value *Ptr = CI.getArgOperand(0); 1363 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1364 1365 // FIXME: Get alignment 1366 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 1367 .addMemOperand(MF->getMachineMemOperand( 1368 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1)); 1369 return true; 1370 } 1371 case Intrinsic::dbg_value: { 1372 // This form of DBG_VALUE is target-independent. 1373 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1374 const Value *V = DI.getValue(); 1375 assert(DI.getVariable()->isValidLocationForIntrinsic( 1376 MIRBuilder.getDebugLoc()) && 1377 "Expected inlined-at fields to agree"); 1378 if (!V) { 1379 // Currently the optimizer can produce this; insert an undef to 1380 // help debugging. Probably the optimizer should not do this. 1381 MIRBuilder.buildDirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1382 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1383 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1384 } else { 1385 for (Register Reg : getOrCreateVRegs(*V)) { 1386 // FIXME: This does not handle register-indirect values at offset 0. The 1387 // direct/indirect thing shouldn't really be handled by something as 1388 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1389 // pretty baked in right now. 1390 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1391 } 1392 } 1393 return true; 1394 } 1395 case Intrinsic::uadd_with_overflow: 1396 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1397 case Intrinsic::sadd_with_overflow: 1398 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1399 case Intrinsic::usub_with_overflow: 1400 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1401 case Intrinsic::ssub_with_overflow: 1402 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1403 case Intrinsic::umul_with_overflow: 1404 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1405 case Intrinsic::smul_with_overflow: 1406 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1407 case Intrinsic::fmuladd: { 1408 const TargetMachine &TM = MF->getTarget(); 1409 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1410 Register Dst = getOrCreateVReg(CI); 1411 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 1412 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 1413 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 1414 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 1415 TLI.isFMAFasterThanFMulAndFAdd(*MF, 1416 TLI.getValueType(*DL, CI.getType()))) { 1417 // TODO: Revisit this to see if we should move this part of the 1418 // lowering to the combiner. 1419 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 1420 MachineInstr::copyFlagsFromInstruction(CI)); 1421 } else { 1422 LLT Ty = getLLTForType(*CI.getType(), *DL); 1423 auto FMul = MIRBuilder.buildFMul( 1424 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 1425 MIRBuilder.buildFAdd(Dst, FMul, Op2, 1426 MachineInstr::copyFlagsFromInstruction(CI)); 1427 } 1428 return true; 1429 } 1430 case Intrinsic::memcpy: 1431 case Intrinsic::memmove: 1432 case Intrinsic::memset: 1433 return translateMemFunc(CI, MIRBuilder, ID); 1434 case Intrinsic::eh_typeid_for: { 1435 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1436 Register Reg = getOrCreateVReg(CI); 1437 unsigned TypeID = MF->getTypeIDFor(GV); 1438 MIRBuilder.buildConstant(Reg, TypeID); 1439 return true; 1440 } 1441 case Intrinsic::objectsize: 1442 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1443 1444 case Intrinsic::is_constant: 1445 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1446 1447 case Intrinsic::stackguard: 1448 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1449 return true; 1450 case Intrinsic::stackprotector: { 1451 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1452 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1453 getStackGuard(GuardVal, MIRBuilder); 1454 1455 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1456 int FI = getOrCreateFrameIndex(*Slot); 1457 MF->getFrameInfo().setStackProtectorIndex(FI); 1458 1459 MIRBuilder.buildStore( 1460 GuardVal, getOrCreateVReg(*Slot), 1461 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1462 MachineMemOperand::MOStore | 1463 MachineMemOperand::MOVolatile, 1464 PtrTy.getSizeInBits() / 8, 8)); 1465 return true; 1466 } 1467 case Intrinsic::stacksave: { 1468 // Save the stack pointer to the location provided by the intrinsic. 1469 Register Reg = getOrCreateVReg(CI); 1470 Register StackPtr = MF->getSubtarget() 1471 .getTargetLowering() 1472 ->getStackPointerRegisterToSaveRestore(); 1473 1474 // If the target doesn't specify a stack pointer, then fall back. 1475 if (!StackPtr) 1476 return false; 1477 1478 MIRBuilder.buildCopy(Reg, StackPtr); 1479 return true; 1480 } 1481 case Intrinsic::stackrestore: { 1482 // Restore the stack pointer from the location provided by the intrinsic. 1483 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1484 Register StackPtr = MF->getSubtarget() 1485 .getTargetLowering() 1486 ->getStackPointerRegisterToSaveRestore(); 1487 1488 // If the target doesn't specify a stack pointer, then fall back. 1489 if (!StackPtr) 1490 return false; 1491 1492 MIRBuilder.buildCopy(StackPtr, Reg); 1493 return true; 1494 } 1495 case Intrinsic::cttz: 1496 case Intrinsic::ctlz: { 1497 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1498 bool isTrailing = ID == Intrinsic::cttz; 1499 unsigned Opcode = isTrailing 1500 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1501 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1502 : Cst->isZero() ? TargetOpcode::G_CTLZ 1503 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1504 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 1505 {getOrCreateVReg(*CI.getArgOperand(0))}); 1506 return true; 1507 } 1508 case Intrinsic::invariant_start: { 1509 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1510 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 1511 MIRBuilder.buildUndef(Undef); 1512 return true; 1513 } 1514 case Intrinsic::invariant_end: 1515 return true; 1516 case Intrinsic::assume: 1517 case Intrinsic::var_annotation: 1518 case Intrinsic::sideeffect: 1519 // Discard annotate attributes, assumptions, and artificial side-effects. 1520 return true; 1521 case Intrinsic::read_register: { 1522 Value *Arg = CI.getArgOperand(0); 1523 MIRBuilder 1524 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 1525 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 1526 return true; 1527 } 1528 } 1529 return false; 1530 } 1531 1532 bool IRTranslator::translateInlineAsm(const CallInst &CI, 1533 MachineIRBuilder &MIRBuilder) { 1534 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 1535 if (!IA.getConstraintString().empty()) 1536 return false; 1537 1538 unsigned ExtraInfo = 0; 1539 if (IA.hasSideEffects()) 1540 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1541 if (IA.getDialect() == InlineAsm::AD_Intel) 1542 ExtraInfo |= InlineAsm::Extra_AsmDialect; 1543 1544 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 1545 .addExternalSymbol(IA.getAsmString().c_str()) 1546 .addImm(ExtraInfo); 1547 1548 return true; 1549 } 1550 1551 bool IRTranslator::translateCallSite(const ImmutableCallSite &CS, 1552 MachineIRBuilder &MIRBuilder) { 1553 const Instruction &I = *CS.getInstruction(); 1554 ArrayRef<Register> Res = getOrCreateVRegs(I); 1555 1556 SmallVector<ArrayRef<Register>, 8> Args; 1557 Register SwiftInVReg = 0; 1558 Register SwiftErrorVReg = 0; 1559 for (auto &Arg : CS.args()) { 1560 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1561 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 1562 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1563 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 1564 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 1565 &I, &MIRBuilder.getMBB(), Arg)); 1566 Args.emplace_back(makeArrayRef(SwiftInVReg)); 1567 SwiftErrorVReg = 1568 SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg); 1569 continue; 1570 } 1571 Args.push_back(getOrCreateVRegs(*Arg)); 1572 } 1573 1574 // We don't set HasCalls on MFI here yet because call lowering may decide to 1575 // optimize into tail calls. Instead, we defer that to selection where a final 1576 // scan is done to check if any instructions are calls. 1577 bool Success = 1578 CLI->lowerCall(MIRBuilder, CS, Res, Args, SwiftErrorVReg, 1579 [&]() { return getOrCreateVReg(*CS.getCalledValue()); }); 1580 1581 // Check if we just inserted a tail call. 1582 if (Success) { 1583 assert(!HasTailCall && "Can't tail call return twice from block?"); 1584 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1585 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 1586 } 1587 1588 return Success; 1589 } 1590 1591 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1592 const CallInst &CI = cast<CallInst>(U); 1593 auto TII = MF->getTarget().getIntrinsicInfo(); 1594 const Function *F = CI.getCalledFunction(); 1595 1596 // FIXME: support Windows dllimport function calls. 1597 if (F && (F->hasDLLImportStorageClass() || 1598 (MF->getTarget().getTargetTriple().isOSWindows() && 1599 F->hasExternalWeakLinkage()))) 1600 return false; 1601 1602 // FIXME: support control flow guard targets. 1603 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1604 return false; 1605 1606 if (CI.isInlineAsm()) 1607 return translateInlineAsm(CI, MIRBuilder); 1608 1609 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1610 if (F && F->isIntrinsic()) { 1611 ID = F->getIntrinsicID(); 1612 if (TII && ID == Intrinsic::not_intrinsic) 1613 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1614 } 1615 1616 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 1617 return translateCallSite(&CI, MIRBuilder); 1618 1619 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1620 1621 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1622 return true; 1623 1624 ArrayRef<Register> ResultRegs; 1625 if (!CI.getType()->isVoidTy()) 1626 ResultRegs = getOrCreateVRegs(CI); 1627 1628 // Ignore the callsite attributes. Backend code is most likely not expecting 1629 // an intrinsic to sometimes have side effects and sometimes not. 1630 MachineInstrBuilder MIB = 1631 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 1632 if (isa<FPMathOperator>(CI)) 1633 MIB->copyIRFlags(CI); 1634 1635 for (auto &Arg : enumerate(CI.arg_operands())) { 1636 // Some intrinsics take metadata parameters. Reject them. 1637 if (isa<MetadataAsValue>(Arg.value())) 1638 return false; 1639 1640 // If this is required to be an immediate, don't materialize it in a 1641 // register. 1642 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 1643 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 1644 // imm arguments are more convenient than cimm (and realistically 1645 // probably sufficient), so use them. 1646 assert(CI->getBitWidth() <= 64 && 1647 "large intrinsic immediates not handled"); 1648 MIB.addImm(CI->getSExtValue()); 1649 } else { 1650 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 1651 } 1652 } else { 1653 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 1654 if (VRegs.size() > 1) 1655 return false; 1656 MIB.addUse(VRegs[0]); 1657 } 1658 } 1659 1660 // Add a MachineMemOperand if it is a target mem intrinsic. 1661 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1662 TargetLowering::IntrinsicInfo Info; 1663 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1664 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1665 MaybeAlign Align = Info.align; 1666 if (!Align) 1667 Align = MaybeAlign( 1668 DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext()))); 1669 1670 uint64_t Size = Info.memVT.getStoreSize(); 1671 MIB.addMemOperand(MF->getMachineMemOperand( 1672 MachinePointerInfo(Info.ptrVal), Info.flags, Size, Align->value())); 1673 } 1674 1675 return true; 1676 } 1677 1678 bool IRTranslator::translateInvoke(const User &U, 1679 MachineIRBuilder &MIRBuilder) { 1680 const InvokeInst &I = cast<InvokeInst>(U); 1681 MCContext &Context = MF->getContext(); 1682 1683 const BasicBlock *ReturnBB = I.getSuccessor(0); 1684 const BasicBlock *EHPadBB = I.getSuccessor(1); 1685 1686 const Value *Callee = I.getCalledValue(); 1687 const Function *Fn = dyn_cast<Function>(Callee); 1688 if (isa<InlineAsm>(Callee)) 1689 return false; 1690 1691 // FIXME: support invoking patchpoint and statepoint intrinsics. 1692 if (Fn && Fn->isIntrinsic()) 1693 return false; 1694 1695 // FIXME: support whatever these are. 1696 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1697 return false; 1698 1699 // FIXME: support control flow guard targets. 1700 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1701 return false; 1702 1703 // FIXME: support Windows exception handling. 1704 if (!isa<LandingPadInst>(EHPadBB->front())) 1705 return false; 1706 1707 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1708 // the region covered by the try. 1709 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1710 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1711 1712 if (!translateCallSite(&I, MIRBuilder)) 1713 return false; 1714 1715 MCSymbol *EndSymbol = Context.createTempSymbol(); 1716 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1717 1718 // FIXME: track probabilities. 1719 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1720 &ReturnMBB = getMBB(*ReturnBB); 1721 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1722 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1723 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1724 MIRBuilder.buildBr(ReturnMBB); 1725 1726 return true; 1727 } 1728 1729 bool IRTranslator::translateCallBr(const User &U, 1730 MachineIRBuilder &MIRBuilder) { 1731 // FIXME: Implement this. 1732 return false; 1733 } 1734 1735 bool IRTranslator::translateLandingPad(const User &U, 1736 MachineIRBuilder &MIRBuilder) { 1737 const LandingPadInst &LP = cast<LandingPadInst>(U); 1738 1739 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1740 1741 MBB.setIsEHPad(); 1742 1743 // If there aren't registers to copy the values into (e.g., during SjLj 1744 // exceptions), then don't bother. 1745 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1746 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1747 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1748 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1749 return true; 1750 1751 // If landingpad's return type is token type, we don't create DAG nodes 1752 // for its exception pointer and selector value. The extraction of exception 1753 // pointer or selector value from token type landingpads is not currently 1754 // supported. 1755 if (LP.getType()->isTokenTy()) 1756 return true; 1757 1758 // Add a label to mark the beginning of the landing pad. Deletion of the 1759 // landing pad can thus be detected via the MachineModuleInfo. 1760 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1761 .addSym(MF->addLandingPad(&MBB)); 1762 1763 LLT Ty = getLLTForType(*LP.getType(), *DL); 1764 Register Undef = MRI->createGenericVirtualRegister(Ty); 1765 MIRBuilder.buildUndef(Undef); 1766 1767 SmallVector<LLT, 2> Tys; 1768 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1769 Tys.push_back(getLLTForType(*Ty, *DL)); 1770 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1771 1772 // Mark exception register as live in. 1773 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1774 if (!ExceptionReg) 1775 return false; 1776 1777 MBB.addLiveIn(ExceptionReg); 1778 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 1779 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1780 1781 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1782 if (!SelectorReg) 1783 return false; 1784 1785 MBB.addLiveIn(SelectorReg); 1786 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1787 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1788 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1789 1790 return true; 1791 } 1792 1793 bool IRTranslator::translateAlloca(const User &U, 1794 MachineIRBuilder &MIRBuilder) { 1795 auto &AI = cast<AllocaInst>(U); 1796 1797 if (AI.isSwiftError()) 1798 return true; 1799 1800 if (AI.isStaticAlloca()) { 1801 Register Res = getOrCreateVReg(AI); 1802 int FI = getOrCreateFrameIndex(AI); 1803 MIRBuilder.buildFrameIndex(Res, FI); 1804 return true; 1805 } 1806 1807 // FIXME: support stack probing for Windows. 1808 if (MF->getTarget().getTargetTriple().isOSWindows()) 1809 return false; 1810 1811 // Now we're in the harder dynamic case. 1812 Type *Ty = AI.getAllocatedType(); 1813 unsigned Align = 1814 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1815 1816 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 1817 1818 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1819 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1820 if (MRI->getType(NumElts) != IntPtrTy) { 1821 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1822 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1823 NumElts = ExtElts; 1824 } 1825 1826 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1827 Register TySize = 1828 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 1829 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1830 1831 unsigned StackAlign = 1832 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1833 if (Align <= StackAlign) 1834 Align = 0; 1835 1836 // Round the size of the allocation up to the stack alignment size 1837 // by add SA-1 to the size. This doesn't overflow because we're computing 1838 // an address inside an alloca. 1839 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign - 1); 1840 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 1841 MachineInstr::NoUWrap); 1842 auto AlignCst = 1843 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign - 1)); 1844 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 1845 1846 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Align); 1847 1848 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1849 assert(MF->getFrameInfo().hasVarSizedObjects()); 1850 return true; 1851 } 1852 1853 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1854 // FIXME: We may need more info about the type. Because of how LLT works, 1855 // we're completely discarding the i64/double distinction here (amongst 1856 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1857 // anyway but that's not guaranteed. 1858 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 1859 {getOrCreateVReg(*U.getOperand(0)), 1860 uint64_t(DL->getABITypeAlignment(U.getType()))}); 1861 return true; 1862 } 1863 1864 bool IRTranslator::translateInsertElement(const User &U, 1865 MachineIRBuilder &MIRBuilder) { 1866 // If it is a <1 x Ty> vector, use the scalar as it is 1867 // not a legal vector type in LLT. 1868 if (U.getType()->getVectorNumElements() == 1) { 1869 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1870 auto &Regs = *VMap.getVRegs(U); 1871 if (Regs.empty()) { 1872 Regs.push_back(Elt); 1873 VMap.getOffsets(U)->push_back(0); 1874 } else { 1875 MIRBuilder.buildCopy(Regs[0], Elt); 1876 } 1877 return true; 1878 } 1879 1880 Register Res = getOrCreateVReg(U); 1881 Register Val = getOrCreateVReg(*U.getOperand(0)); 1882 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1883 Register Idx = getOrCreateVReg(*U.getOperand(2)); 1884 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1885 return true; 1886 } 1887 1888 bool IRTranslator::translateExtractElement(const User &U, 1889 MachineIRBuilder &MIRBuilder) { 1890 // If it is a <1 x Ty> vector, use the scalar as it is 1891 // not a legal vector type in LLT. 1892 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1893 Register Elt = getOrCreateVReg(*U.getOperand(0)); 1894 auto &Regs = *VMap.getVRegs(U); 1895 if (Regs.empty()) { 1896 Regs.push_back(Elt); 1897 VMap.getOffsets(U)->push_back(0); 1898 } else { 1899 MIRBuilder.buildCopy(Regs[0], Elt); 1900 } 1901 return true; 1902 } 1903 Register Res = getOrCreateVReg(U); 1904 Register Val = getOrCreateVReg(*U.getOperand(0)); 1905 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1906 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1907 Register Idx; 1908 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1909 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1910 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1911 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1912 Idx = getOrCreateVReg(*NewIdxCI); 1913 } 1914 } 1915 if (!Idx) 1916 Idx = getOrCreateVReg(*U.getOperand(1)); 1917 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1918 const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1919 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg(); 1920 } 1921 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1922 return true; 1923 } 1924 1925 bool IRTranslator::translateShuffleVector(const User &U, 1926 MachineIRBuilder &MIRBuilder) { 1927 SmallVector<int, 8> Mask; 1928 ShuffleVectorInst::getShuffleMask(cast<Constant>(U.getOperand(2)), Mask); 1929 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 1930 MIRBuilder 1931 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 1932 {getOrCreateVReg(*U.getOperand(0)), 1933 getOrCreateVReg(*U.getOperand(1))}) 1934 .addShuffleMask(MaskAlloc); 1935 return true; 1936 } 1937 1938 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1939 const PHINode &PI = cast<PHINode>(U); 1940 1941 SmallVector<MachineInstr *, 4> Insts; 1942 for (auto Reg : getOrCreateVRegs(PI)) { 1943 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 1944 Insts.push_back(MIB.getInstr()); 1945 } 1946 1947 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1948 return true; 1949 } 1950 1951 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1952 MachineIRBuilder &MIRBuilder) { 1953 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1954 1955 if (I.isWeak()) 1956 return false; 1957 1958 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1959 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 1960 1961 Type *ResType = I.getType(); 1962 Type *ValType = ResType->Type::getStructElementType(0); 1963 1964 auto Res = getOrCreateVRegs(I); 1965 Register OldValRes = Res[0]; 1966 Register SuccessRes = Res[1]; 1967 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 1968 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 1969 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 1970 1971 AAMDNodes AAMetadata; 1972 I.getAAMetadata(AAMetadata); 1973 1974 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1975 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1976 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1977 Flags, DL->getTypeStoreSize(ValType), 1978 getMemOpAlignment(I), AAMetadata, nullptr, 1979 I.getSyncScopeID(), I.getSuccessOrdering(), 1980 I.getFailureOrdering())); 1981 return true; 1982 } 1983 1984 bool IRTranslator::translateAtomicRMW(const User &U, 1985 MachineIRBuilder &MIRBuilder) { 1986 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 1987 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1988 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 1989 1990 Type *ResType = I.getType(); 1991 1992 Register Res = getOrCreateVReg(I); 1993 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 1994 Register Val = getOrCreateVReg(*I.getValOperand()); 1995 1996 unsigned Opcode = 0; 1997 switch (I.getOperation()) { 1998 default: 1999 return false; 2000 case AtomicRMWInst::Xchg: 2001 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2002 break; 2003 case AtomicRMWInst::Add: 2004 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2005 break; 2006 case AtomicRMWInst::Sub: 2007 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2008 break; 2009 case AtomicRMWInst::And: 2010 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2011 break; 2012 case AtomicRMWInst::Nand: 2013 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2014 break; 2015 case AtomicRMWInst::Or: 2016 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2017 break; 2018 case AtomicRMWInst::Xor: 2019 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2020 break; 2021 case AtomicRMWInst::Max: 2022 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2023 break; 2024 case AtomicRMWInst::Min: 2025 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2026 break; 2027 case AtomicRMWInst::UMax: 2028 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2029 break; 2030 case AtomicRMWInst::UMin: 2031 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2032 break; 2033 case AtomicRMWInst::FAdd: 2034 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2035 break; 2036 case AtomicRMWInst::FSub: 2037 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2038 break; 2039 } 2040 2041 AAMDNodes AAMetadata; 2042 I.getAAMetadata(AAMetadata); 2043 2044 MIRBuilder.buildAtomicRMW( 2045 Opcode, Res, Addr, Val, 2046 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2047 Flags, DL->getTypeStoreSize(ResType), 2048 getMemOpAlignment(I), AAMetadata, 2049 nullptr, I.getSyncScopeID(), I.getOrdering())); 2050 return true; 2051 } 2052 2053 bool IRTranslator::translateFence(const User &U, 2054 MachineIRBuilder &MIRBuilder) { 2055 const FenceInst &Fence = cast<FenceInst>(U); 2056 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2057 Fence.getSyncScopeID()); 2058 return true; 2059 } 2060 2061 void IRTranslator::finishPendingPhis() { 2062 #ifndef NDEBUG 2063 DILocationVerifier Verifier; 2064 GISelObserverWrapper WrapperObserver(&Verifier); 2065 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2066 #endif // ifndef NDEBUG 2067 for (auto &Phi : PendingPHIs) { 2068 const PHINode *PI = Phi.first; 2069 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2070 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2071 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2072 #ifndef NDEBUG 2073 Verifier.setCurrentInst(PI); 2074 #endif // ifndef NDEBUG 2075 2076 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2077 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2078 auto IRPred = PI->getIncomingBlock(i); 2079 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2080 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2081 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2082 continue; 2083 SeenPreds.insert(Pred); 2084 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2085 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2086 MIB.addUse(ValRegs[j]); 2087 MIB.addMBB(Pred); 2088 } 2089 } 2090 } 2091 } 2092 } 2093 2094 bool IRTranslator::valueIsSplit(const Value &V, 2095 SmallVectorImpl<uint64_t> *Offsets) { 2096 SmallVector<LLT, 4> SplitTys; 2097 if (Offsets && !Offsets->empty()) 2098 Offsets->clear(); 2099 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2100 return SplitTys.size() > 1; 2101 } 2102 2103 bool IRTranslator::translate(const Instruction &Inst) { 2104 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2105 // We only emit constants into the entry block from here. To prevent jumpy 2106 // debug behaviour set the line to 0. 2107 if (const DebugLoc &DL = Inst.getDebugLoc()) 2108 EntryBuilder->setDebugLoc( 2109 DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 2110 else 2111 EntryBuilder->setDebugLoc(DebugLoc()); 2112 2113 switch (Inst.getOpcode()) { 2114 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2115 case Instruction::OPCODE: \ 2116 return translate##OPCODE(Inst, *CurBuilder.get()); 2117 #include "llvm/IR/Instruction.def" 2118 default: 2119 return false; 2120 } 2121 } 2122 2123 bool IRTranslator::translate(const Constant &C, Register Reg) { 2124 if (auto CI = dyn_cast<ConstantInt>(&C)) 2125 EntryBuilder->buildConstant(Reg, *CI); 2126 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2127 EntryBuilder->buildFConstant(Reg, *CF); 2128 else if (isa<UndefValue>(C)) 2129 EntryBuilder->buildUndef(Reg); 2130 else if (isa<ConstantPointerNull>(C)) { 2131 // As we are trying to build a constant val of 0 into a pointer, 2132 // insert a cast to make them correct with respect to types. 2133 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 2134 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 2135 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 2136 Register ZeroReg = getOrCreateVReg(*ZeroVal); 2137 EntryBuilder->buildCast(Reg, ZeroReg); 2138 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 2139 EntryBuilder->buildGlobalValue(Reg, GV); 2140 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2141 if (!CAZ->getType()->isVectorTy()) 2142 return false; 2143 // Return the scalar if it is a <1 x Ty> vector. 2144 if (CAZ->getNumElements() == 1) 2145 return translate(*CAZ->getElementValue(0u), Reg); 2146 SmallVector<Register, 4> Ops; 2147 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 2148 Constant &Elt = *CAZ->getElementValue(i); 2149 Ops.push_back(getOrCreateVReg(Elt)); 2150 } 2151 EntryBuilder->buildBuildVector(Reg, Ops); 2152 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2153 // Return the scalar if it is a <1 x Ty> vector. 2154 if (CV->getNumElements() == 1) 2155 return translate(*CV->getElementAsConstant(0), Reg); 2156 SmallVector<Register, 4> Ops; 2157 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 2158 Constant &Elt = *CV->getElementAsConstant(i); 2159 Ops.push_back(getOrCreateVReg(Elt)); 2160 } 2161 EntryBuilder->buildBuildVector(Reg, Ops); 2162 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 2163 switch(CE->getOpcode()) { 2164 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2165 case Instruction::OPCODE: \ 2166 return translate##OPCODE(*CE, *EntryBuilder.get()); 2167 #include "llvm/IR/Instruction.def" 2168 default: 2169 return false; 2170 } 2171 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 2172 if (CV->getNumOperands() == 1) 2173 return translate(*CV->getOperand(0), Reg); 2174 SmallVector<Register, 4> Ops; 2175 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 2176 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 2177 } 2178 EntryBuilder->buildBuildVector(Reg, Ops); 2179 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 2180 EntryBuilder->buildBlockAddress(Reg, BA); 2181 } else 2182 return false; 2183 2184 return true; 2185 } 2186 2187 void IRTranslator::finalizeBasicBlock() { 2188 for (auto &JTCase : SL->JTCases) { 2189 // Emit header first, if it wasn't already emitted. 2190 if (!JTCase.first.Emitted) 2191 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 2192 2193 emitJumpTable(JTCase.second, JTCase.second.MBB); 2194 } 2195 SL->JTCases.clear(); 2196 } 2197 2198 void IRTranslator::finalizeFunction() { 2199 // Release the memory used by the different maps we 2200 // needed during the translation. 2201 PendingPHIs.clear(); 2202 VMap.reset(); 2203 FrameIndices.clear(); 2204 MachinePreds.clear(); 2205 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 2206 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 2207 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 2208 EntryBuilder.reset(); 2209 CurBuilder.reset(); 2210 FuncInfo.clear(); 2211 } 2212 2213 /// Returns true if a BasicBlock \p BB within a variadic function contains a 2214 /// variadic musttail call. 2215 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 2216 if (!IsVarArg) 2217 return false; 2218 2219 // Walk the block backwards, because tail calls usually only appear at the end 2220 // of a block. 2221 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { 2222 const auto *CI = dyn_cast<CallInst>(&I); 2223 return CI && CI->isMustTailCall(); 2224 }); 2225 } 2226 2227 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 2228 MF = &CurMF; 2229 const Function &F = MF->getFunction(); 2230 if (F.empty()) 2231 return false; 2232 GISelCSEAnalysisWrapper &Wrapper = 2233 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 2234 // Set the CSEConfig and run the analysis. 2235 GISelCSEInfo *CSEInfo = nullptr; 2236 TPC = &getAnalysis<TargetPassConfig>(); 2237 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 2238 ? EnableCSEInIRTranslator 2239 : TPC->isGISelCSEEnabled(); 2240 2241 if (EnableCSE) { 2242 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2243 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 2244 EntryBuilder->setCSEInfo(CSEInfo); 2245 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2246 CurBuilder->setCSEInfo(CSEInfo); 2247 } else { 2248 EntryBuilder = std::make_unique<MachineIRBuilder>(); 2249 CurBuilder = std::make_unique<MachineIRBuilder>(); 2250 } 2251 CLI = MF->getSubtarget().getCallLowering(); 2252 CurBuilder->setMF(*MF); 2253 EntryBuilder->setMF(*MF); 2254 MRI = &MF->getRegInfo(); 2255 DL = &F.getParent()->getDataLayout(); 2256 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2257 FuncInfo.MF = MF; 2258 FuncInfo.BPI = nullptr; 2259 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2260 const TargetMachine &TM = MF->getTarget(); 2261 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 2262 SL->init(TLI, TM, *DL); 2263 2264 EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F); 2265 2266 assert(PendingPHIs.empty() && "stale PHIs"); 2267 2268 if (!DL->isLittleEndian()) { 2269 // Currently we don't properly handle big endian code. 2270 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2271 F.getSubprogram(), &F.getEntryBlock()); 2272 R << "unable to translate in big endian mode"; 2273 reportTranslationError(*MF, *TPC, *ORE, R); 2274 } 2275 2276 // Release the per-function state when we return, whether we succeeded or not. 2277 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 2278 2279 // Setup a separate basic-block for the arguments and constants 2280 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 2281 MF->push_back(EntryBB); 2282 EntryBuilder->setMBB(*EntryBB); 2283 2284 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 2285 SwiftError.setFunction(CurMF); 2286 SwiftError.createEntriesInEntryBlock(DbgLoc); 2287 2288 bool IsVarArg = F.isVarArg(); 2289 bool HasMustTailInVarArgFn = false; 2290 2291 // Create all blocks, in IR order, to preserve the layout. 2292 for (const BasicBlock &BB: F) { 2293 auto *&MBB = BBToMBB[&BB]; 2294 2295 MBB = MF->CreateMachineBasicBlock(&BB); 2296 MF->push_back(MBB); 2297 2298 if (BB.hasAddressTaken()) 2299 MBB->setHasAddressTaken(); 2300 2301 if (!HasMustTailInVarArgFn) 2302 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 2303 } 2304 2305 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 2306 2307 // Make our arguments/constants entry block fallthrough to the IR entry block. 2308 EntryBB->addSuccessor(&getMBB(F.front())); 2309 2310 // Lower the actual args into this basic block. 2311 SmallVector<ArrayRef<Register>, 8> VRegArgs; 2312 for (const Argument &Arg: F.args()) { 2313 if (DL->getTypeStoreSize(Arg.getType()) == 0) 2314 continue; // Don't handle zero sized types. 2315 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 2316 VRegArgs.push_back(VRegs); 2317 2318 if (Arg.hasSwiftErrorAttr()) { 2319 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 2320 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 2321 } 2322 } 2323 2324 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 2325 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2326 F.getSubprogram(), &F.getEntryBlock()); 2327 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 2328 reportTranslationError(*MF, *TPC, *ORE, R); 2329 return false; 2330 } 2331 2332 // Need to visit defs before uses when translating instructions. 2333 GISelObserverWrapper WrapperObserver; 2334 if (EnableCSE && CSEInfo) 2335 WrapperObserver.addObserver(CSEInfo); 2336 { 2337 ReversePostOrderTraversal<const Function *> RPOT(&F); 2338 #ifndef NDEBUG 2339 DILocationVerifier Verifier; 2340 WrapperObserver.addObserver(&Verifier); 2341 #endif // ifndef NDEBUG 2342 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2343 for (const BasicBlock *BB : RPOT) { 2344 MachineBasicBlock &MBB = getMBB(*BB); 2345 // Set the insertion point of all the following translations to 2346 // the end of this basic block. 2347 CurBuilder->setMBB(MBB); 2348 HasTailCall = false; 2349 for (const Instruction &Inst : *BB) { 2350 // If we translated a tail call in the last step, then we know 2351 // everything after the call is either a return, or something that is 2352 // handled by the call itself. (E.g. a lifetime marker or assume 2353 // intrinsic.) In this case, we should stop translating the block and 2354 // move on. 2355 if (HasTailCall) 2356 break; 2357 #ifndef NDEBUG 2358 Verifier.setCurrentInst(&Inst); 2359 #endif // ifndef NDEBUG 2360 if (translate(Inst)) 2361 continue; 2362 2363 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2364 Inst.getDebugLoc(), BB); 2365 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 2366 2367 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 2368 std::string InstStrStorage; 2369 raw_string_ostream InstStr(InstStrStorage); 2370 InstStr << Inst; 2371 2372 R << ": '" << InstStr.str() << "'"; 2373 } 2374 2375 reportTranslationError(*MF, *TPC, *ORE, R); 2376 return false; 2377 } 2378 2379 finalizeBasicBlock(); 2380 } 2381 #ifndef NDEBUG 2382 WrapperObserver.removeObserver(&Verifier); 2383 #endif 2384 } 2385 2386 finishPendingPhis(); 2387 2388 SwiftError.propagateVRegs(); 2389 2390 // Merge the argument lowering and constants block with its single 2391 // successor, the LLVM-IR entry block. We want the basic block to 2392 // be maximal. 2393 assert(EntryBB->succ_size() == 1 && 2394 "Custom BB used for lowering should have only one successor"); 2395 // Get the successor of the current entry block. 2396 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 2397 assert(NewEntryBB.pred_size() == 1 && 2398 "LLVM-IR entry block has a predecessor!?"); 2399 // Move all the instruction from the current entry block to the 2400 // new entry block. 2401 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 2402 EntryBB->end()); 2403 2404 // Update the live-in information for the new entry block. 2405 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 2406 NewEntryBB.addLiveIn(LiveIn); 2407 NewEntryBB.sortUniqueLiveIns(); 2408 2409 // Get rid of the now empty basic block. 2410 EntryBB->removeSuccessor(&NewEntryBB); 2411 MF->remove(EntryBB); 2412 MF->DeleteMachineBasicBlock(EntryBB); 2413 2414 assert(&MF->front() == &NewEntryBB && 2415 "New entry wasn't next in the list of basic block!"); 2416 2417 // Initialize stack protector information. 2418 StackProtector &SP = getAnalysis<StackProtector>(); 2419 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 2420 2421 return false; 2422 } 2423