1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 22 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 23 #include "llvm/CodeGen/LowLevelType.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/StackProtector.h" 32 #include "llvm/CodeGen/TargetFrameLowering.h" 33 #include "llvm/CodeGen/TargetLowering.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/LowLevelTypeImpl.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Target/TargetIntrinsicInfo.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <iterator> 71 #include <string> 72 #include <utility> 73 #include <vector> 74 75 #define DEBUG_TYPE "irtranslator" 76 77 using namespace llvm; 78 79 static cl::opt<bool> 80 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 81 cl::desc("Should enable CSE in irtranslator"), 82 cl::Optional, cl::init(false)); 83 char IRTranslator::ID = 0; 84 85 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 86 false, false) 87 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 88 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 89 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 90 false, false) 91 92 static void reportTranslationError(MachineFunction &MF, 93 const TargetPassConfig &TPC, 94 OptimizationRemarkEmitter &ORE, 95 OptimizationRemarkMissed &R) { 96 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 97 98 // Print the function name explicitly if we don't have a debug location (which 99 // makes the diagnostic less useful) or if we're going to emit a raw error. 100 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 101 R << (" (in function: " + MF.getName() + ")").str(); 102 103 if (TPC.isGlobalISelAbortEnabled()) 104 report_fatal_error(R.getMsg()); 105 else 106 ORE.emit(R); 107 } 108 109 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { 110 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 111 } 112 113 #ifndef NDEBUG 114 namespace { 115 /// Verify that every instruction created has the same DILocation as the 116 /// instruction being translated. 117 class DILocationVerifier : public GISelChangeObserver { 118 const Instruction *CurrInst = nullptr; 119 120 public: 121 DILocationVerifier() = default; 122 ~DILocationVerifier() = default; 123 124 const Instruction *getCurrentInst() const { return CurrInst; } 125 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 126 127 void erasingInstr(MachineInstr &MI) override {} 128 void changingInstr(MachineInstr &MI) override {} 129 void changedInstr(MachineInstr &MI) override {} 130 131 void createdInstr(MachineInstr &MI) override { 132 assert(getCurrentInst() && "Inserted instruction without a current MI"); 133 134 // Only print the check message if we're actually checking it. 135 #ifndef NDEBUG 136 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 137 << " was copied to " << MI); 138 #endif 139 assert(CurrInst->getDebugLoc() == MI.getDebugLoc() && 140 "Line info was not transferred to all instructions"); 141 } 142 }; 143 } // namespace 144 #endif // ifndef NDEBUG 145 146 147 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 148 AU.addRequired<StackProtector>(); 149 AU.addRequired<TargetPassConfig>(); 150 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 151 getSelectionDAGFallbackAnalysisUsage(AU); 152 MachineFunctionPass::getAnalysisUsage(AU); 153 } 154 155 IRTranslator::ValueToVRegInfo::VRegListT & 156 IRTranslator::allocateVRegs(const Value &Val) { 157 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 158 auto *Regs = VMap.getVRegs(Val); 159 auto *Offsets = VMap.getOffsets(Val); 160 SmallVector<LLT, 4> SplitTys; 161 computeValueLLTs(*DL, *Val.getType(), SplitTys, 162 Offsets->empty() ? Offsets : nullptr); 163 for (unsigned i = 0; i < SplitTys.size(); ++i) 164 Regs->push_back(0); 165 return *Regs; 166 } 167 168 ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) { 169 auto VRegsIt = VMap.findVRegs(Val); 170 if (VRegsIt != VMap.vregs_end()) 171 return *VRegsIt->second; 172 173 if (Val.getType()->isVoidTy()) 174 return *VMap.getVRegs(Val); 175 176 // Create entry for this type. 177 auto *VRegs = VMap.getVRegs(Val); 178 auto *Offsets = VMap.getOffsets(Val); 179 180 assert(Val.getType()->isSized() && 181 "Don't know how to create an empty vreg"); 182 183 SmallVector<LLT, 4> SplitTys; 184 computeValueLLTs(*DL, *Val.getType(), SplitTys, 185 Offsets->empty() ? Offsets : nullptr); 186 187 if (!isa<Constant>(Val)) { 188 for (auto Ty : SplitTys) 189 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 190 return *VRegs; 191 } 192 193 if (Val.getType()->isAggregateType()) { 194 // UndefValue, ConstantAggregateZero 195 auto &C = cast<Constant>(Val); 196 unsigned Idx = 0; 197 while (auto Elt = C.getAggregateElement(Idx++)) { 198 auto EltRegs = getOrCreateVRegs(*Elt); 199 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 200 } 201 } else { 202 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 203 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 204 bool Success = translate(cast<Constant>(Val), VRegs->front()); 205 if (!Success) { 206 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 207 MF->getFunction().getSubprogram(), 208 &MF->getFunction().getEntryBlock()); 209 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 210 reportTranslationError(*MF, *TPC, *ORE, R); 211 return *VRegs; 212 } 213 } 214 215 return *VRegs; 216 } 217 218 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 219 if (FrameIndices.find(&AI) != FrameIndices.end()) 220 return FrameIndices[&AI]; 221 222 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 223 unsigned Size = 224 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 225 226 // Always allocate at least one byte. 227 Size = std::max(Size, 1u); 228 229 unsigned Alignment = AI.getAlignment(); 230 if (!Alignment) 231 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 232 233 int &FI = FrameIndices[&AI]; 234 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 235 return FI; 236 } 237 238 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 239 unsigned Alignment = 0; 240 Type *ValTy = nullptr; 241 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 242 Alignment = SI->getAlignment(); 243 ValTy = SI->getValueOperand()->getType(); 244 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 245 Alignment = LI->getAlignment(); 246 ValTy = LI->getType(); 247 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 248 // TODO(PR27168): This instruction has no alignment attribute, but unlike 249 // the default alignment for load/store, the default here is to assume 250 // it has NATURAL alignment, not DataLayout-specified alignment. 251 const DataLayout &DL = AI->getModule()->getDataLayout(); 252 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 253 ValTy = AI->getCompareOperand()->getType(); 254 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 255 // TODO(PR27168): This instruction has no alignment attribute, but unlike 256 // the default alignment for load/store, the default here is to assume 257 // it has NATURAL alignment, not DataLayout-specified alignment. 258 const DataLayout &DL = AI->getModule()->getDataLayout(); 259 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 260 ValTy = AI->getType(); 261 } else { 262 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 263 R << "unable to translate memop: " << ore::NV("Opcode", &I); 264 reportTranslationError(*MF, *TPC, *ORE, R); 265 return 1; 266 } 267 268 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 269 } 270 271 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 272 MachineBasicBlock *&MBB = BBToMBB[&BB]; 273 assert(MBB && "BasicBlock was not encountered before"); 274 return *MBB; 275 } 276 277 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 278 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 279 MachinePreds[Edge].push_back(NewPred); 280 } 281 282 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 283 MachineIRBuilder &MIRBuilder) { 284 // FIXME: handle signed/unsigned wrapping flags. 285 286 // Get or create a virtual register for each value. 287 // Unless the value is a Constant => loadimm cst? 288 // or inline constant each time? 289 // Creation of a virtual register needs to have a size. 290 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 291 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 292 unsigned Res = getOrCreateVReg(U); 293 uint16_t Flags = 0; 294 if (isa<Instruction>(U)) { 295 const Instruction &I = cast<Instruction>(U); 296 Flags = MachineInstr::copyFlagsFromInstruction(I); 297 } 298 299 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 300 return true; 301 } 302 303 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 304 // -0.0 - X --> G_FNEG 305 if (isa<Constant>(U.getOperand(0)) && 306 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 307 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 308 .addDef(getOrCreateVReg(U)) 309 .addUse(getOrCreateVReg(*U.getOperand(1))); 310 return true; 311 } 312 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 313 } 314 315 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 316 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 317 .addDef(getOrCreateVReg(U)) 318 .addUse(getOrCreateVReg(*U.getOperand(0))); 319 return true; 320 } 321 322 bool IRTranslator::translateCompare(const User &U, 323 MachineIRBuilder &MIRBuilder) { 324 const CmpInst *CI = dyn_cast<CmpInst>(&U); 325 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 326 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 327 unsigned Res = getOrCreateVReg(U); 328 CmpInst::Predicate Pred = 329 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 330 cast<ConstantExpr>(U).getPredicate()); 331 if (CmpInst::isIntPredicate(Pred)) 332 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 333 else if (Pred == CmpInst::FCMP_FALSE) 334 MIRBuilder.buildCopy( 335 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 336 else if (Pred == CmpInst::FCMP_TRUE) 337 MIRBuilder.buildCopy( 338 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 339 else { 340 MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1}, 341 MachineInstr::copyFlagsFromInstruction(*CI)); 342 } 343 344 return true; 345 } 346 347 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 348 const ReturnInst &RI = cast<ReturnInst>(U); 349 const Value *Ret = RI.getReturnValue(); 350 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 351 Ret = nullptr; 352 353 ArrayRef<unsigned> VRegs; 354 if (Ret) 355 VRegs = getOrCreateVRegs(*Ret); 356 357 // The target may mess up with the insertion point, but 358 // this is not important as a return is the last instruction 359 // of the block anyway. 360 361 return CLI->lowerReturn(MIRBuilder, Ret, VRegs); 362 } 363 364 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 365 const BranchInst &BrInst = cast<BranchInst>(U); 366 unsigned Succ = 0; 367 if (!BrInst.isUnconditional()) { 368 // We want a G_BRCOND to the true BB followed by an unconditional branch. 369 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 370 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 371 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 372 MIRBuilder.buildBrCond(Tst, TrueBB); 373 } 374 375 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 376 MachineBasicBlock &TgtBB = getMBB(BrTgt); 377 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 378 379 // If the unconditional target is the layout successor, fallthrough. 380 if (!CurBB.isLayoutSuccessor(&TgtBB)) 381 MIRBuilder.buildBr(TgtBB); 382 383 // Link successors. 384 for (const BasicBlock *Succ : successors(&BrInst)) 385 CurBB.addSuccessor(&getMBB(*Succ)); 386 return true; 387 } 388 389 bool IRTranslator::translateSwitch(const User &U, 390 MachineIRBuilder &MIRBuilder) { 391 // For now, just translate as a chain of conditional branches. 392 // FIXME: could we share most of the logic/code in 393 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 394 // At first sight, it seems most of the logic in there is independent of 395 // SelectionDAG-specifics and a lot of work went in to optimize switch 396 // lowering in there. 397 398 const SwitchInst &SwInst = cast<SwitchInst>(U); 399 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 400 const BasicBlock *OrigBB = SwInst.getParent(); 401 402 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); 403 for (auto &CaseIt : SwInst.cases()) { 404 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 405 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 406 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 407 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 408 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 409 MachineBasicBlock &TrueMBB = getMBB(*TrueBB); 410 411 MIRBuilder.buildBrCond(Tst, TrueMBB); 412 CurMBB.addSuccessor(&TrueMBB); 413 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 414 415 MachineBasicBlock *FalseMBB = 416 MF->CreateMachineBasicBlock(SwInst.getParent()); 417 // Insert the comparison blocks one after the other. 418 MF->insert(std::next(CurMBB.getIterator()), FalseMBB); 419 MIRBuilder.buildBr(*FalseMBB); 420 CurMBB.addSuccessor(FalseMBB); 421 422 MIRBuilder.setMBB(*FalseMBB); 423 } 424 // handle default case 425 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 426 MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB); 427 MIRBuilder.buildBr(DefaultMBB); 428 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 429 CurMBB.addSuccessor(&DefaultMBB); 430 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 431 432 return true; 433 } 434 435 bool IRTranslator::translateIndirectBr(const User &U, 436 MachineIRBuilder &MIRBuilder) { 437 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 438 439 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 440 MIRBuilder.buildBrIndirect(Tgt); 441 442 // Link successors. 443 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 444 for (const BasicBlock *Succ : successors(&BrInst)) 445 CurBB.addSuccessor(&getMBB(*Succ)); 446 447 return true; 448 } 449 450 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 451 const LoadInst &LI = cast<LoadInst>(U); 452 453 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 454 : MachineMemOperand::MONone; 455 Flags |= MachineMemOperand::MOLoad; 456 457 if (DL->getTypeStoreSize(LI.getType()) == 0) 458 return true; 459 460 ArrayRef<unsigned> Regs = getOrCreateVRegs(LI); 461 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 462 unsigned Base = getOrCreateVReg(*LI.getPointerOperand()); 463 464 for (unsigned i = 0; i < Regs.size(); ++i) { 465 unsigned Addr = 0; 466 MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8); 467 468 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 469 unsigned BaseAlign = getMemOpAlignment(LI); 470 auto MMO = MF->getMachineMemOperand( 471 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 472 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 473 LI.getSyncScopeID(), LI.getOrdering()); 474 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 475 } 476 477 return true; 478 } 479 480 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 481 const StoreInst &SI = cast<StoreInst>(U); 482 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 483 : MachineMemOperand::MONone; 484 Flags |= MachineMemOperand::MOStore; 485 486 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 487 return true; 488 489 ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand()); 490 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 491 unsigned Base = getOrCreateVReg(*SI.getPointerOperand()); 492 493 for (unsigned i = 0; i < Vals.size(); ++i) { 494 unsigned Addr = 0; 495 MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8); 496 497 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 498 unsigned BaseAlign = getMemOpAlignment(SI); 499 auto MMO = MF->getMachineMemOperand( 500 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 501 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 502 SI.getSyncScopeID(), SI.getOrdering()); 503 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 504 } 505 return true; 506 } 507 508 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 509 const Value *Src = U.getOperand(0); 510 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 511 512 // getIndexedOffsetInType is designed for GEPs, so the first index is the 513 // usual array element rather than looking into the actual aggregate. 514 SmallVector<Value *, 1> Indices; 515 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 516 517 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 518 for (auto Idx : EVI->indices()) 519 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 520 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 521 for (auto Idx : IVI->indices()) 522 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 523 } else { 524 for (unsigned i = 1; i < U.getNumOperands(); ++i) 525 Indices.push_back(U.getOperand(i)); 526 } 527 528 return 8 * static_cast<uint64_t>( 529 DL.getIndexedOffsetInType(Src->getType(), Indices)); 530 } 531 532 bool IRTranslator::translateExtractValue(const User &U, 533 MachineIRBuilder &MIRBuilder) { 534 const Value *Src = U.getOperand(0); 535 uint64_t Offset = getOffsetFromIndices(U, *DL); 536 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 537 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 538 unsigned Idx = std::lower_bound(Offsets.begin(), Offsets.end(), Offset) - 539 Offsets.begin(); 540 auto &DstRegs = allocateVRegs(U); 541 542 for (unsigned i = 0; i < DstRegs.size(); ++i) 543 DstRegs[i] = SrcRegs[Idx++]; 544 545 return true; 546 } 547 548 bool IRTranslator::translateInsertValue(const User &U, 549 MachineIRBuilder &MIRBuilder) { 550 const Value *Src = U.getOperand(0); 551 uint64_t Offset = getOffsetFromIndices(U, *DL); 552 auto &DstRegs = allocateVRegs(U); 553 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 554 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 555 ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 556 auto InsertedIt = InsertedRegs.begin(); 557 558 for (unsigned i = 0; i < DstRegs.size(); ++i) { 559 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 560 DstRegs[i] = *InsertedIt++; 561 else 562 DstRegs[i] = SrcRegs[i]; 563 } 564 565 return true; 566 } 567 568 bool IRTranslator::translateSelect(const User &U, 569 MachineIRBuilder &MIRBuilder) { 570 unsigned Tst = getOrCreateVReg(*U.getOperand(0)); 571 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U); 572 ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 573 ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 574 575 const SelectInst &SI = cast<SelectInst>(U); 576 uint16_t Flags = 0; 577 if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) 578 Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); 579 580 for (unsigned i = 0; i < ResRegs.size(); ++i) { 581 MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]}, 582 {Tst, Op0Regs[i], Op1Regs[i]}, Flags); 583 } 584 585 return true; 586 } 587 588 bool IRTranslator::translateBitCast(const User &U, 589 MachineIRBuilder &MIRBuilder) { 590 // If we're bitcasting to the source type, we can reuse the source vreg. 591 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 592 getLLTForType(*U.getType(), *DL)) { 593 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); 594 auto &Regs = *VMap.getVRegs(U); 595 // If we already assigned a vreg for this bitcast, we can't change that. 596 // Emit a copy to satisfy the users we already emitted. 597 if (!Regs.empty()) 598 MIRBuilder.buildCopy(Regs[0], SrcReg); 599 else { 600 Regs.push_back(SrcReg); 601 VMap.getOffsets(U)->push_back(0); 602 } 603 return true; 604 } 605 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 606 } 607 608 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 609 MachineIRBuilder &MIRBuilder) { 610 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 611 unsigned Res = getOrCreateVReg(U); 612 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); 613 return true; 614 } 615 616 bool IRTranslator::translateGetElementPtr(const User &U, 617 MachineIRBuilder &MIRBuilder) { 618 // FIXME: support vector GEPs. 619 if (U.getType()->isVectorTy()) 620 return false; 621 622 Value &Op0 = *U.getOperand(0); 623 unsigned BaseReg = getOrCreateVReg(Op0); 624 Type *PtrIRTy = Op0.getType(); 625 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 626 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 627 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 628 629 int64_t Offset = 0; 630 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 631 GTI != E; ++GTI) { 632 const Value *Idx = GTI.getOperand(); 633 if (StructType *StTy = GTI.getStructTypeOrNull()) { 634 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 635 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 636 continue; 637 } else { 638 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 639 640 // If this is a scalar constant or a splat vector of constants, 641 // handle it quickly. 642 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 643 Offset += ElementSize * CI->getSExtValue(); 644 continue; 645 } 646 647 if (Offset != 0) { 648 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 649 unsigned OffsetReg = 650 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 651 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 652 653 BaseReg = NewBaseReg; 654 Offset = 0; 655 } 656 657 unsigned IdxReg = getOrCreateVReg(*Idx); 658 if (MRI->getType(IdxReg) != OffsetTy) { 659 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 660 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 661 IdxReg = NewIdxReg; 662 } 663 664 // N = N + Idx * ElementSize; 665 // Avoid doing it for ElementSize of 1. 666 unsigned GepOffsetReg; 667 if (ElementSize != 1) { 668 unsigned ElementSizeReg = 669 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize)); 670 671 GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 672 MIRBuilder.buildMul(GepOffsetReg, ElementSizeReg, IdxReg); 673 } else 674 GepOffsetReg = IdxReg; 675 676 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 677 MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg); 678 BaseReg = NewBaseReg; 679 } 680 } 681 682 if (Offset != 0) { 683 unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 684 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); 685 return true; 686 } 687 688 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 689 return true; 690 } 691 692 bool IRTranslator::translateMemfunc(const CallInst &CI, 693 MachineIRBuilder &MIRBuilder, 694 unsigned ID) { 695 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); 696 Type *DstTy = CI.getArgOperand(0)->getType(); 697 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 698 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 699 return false; 700 701 SmallVector<CallLowering::ArgInfo, 8> Args; 702 for (int i = 0; i < 3; ++i) { 703 const auto &Arg = CI.getArgOperand(i); 704 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 705 } 706 707 const char *Callee; 708 switch (ID) { 709 case Intrinsic::memmove: 710 case Intrinsic::memcpy: { 711 Type *SrcTy = CI.getArgOperand(1)->getType(); 712 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 713 return false; 714 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 715 break; 716 } 717 case Intrinsic::memset: 718 Callee = "memset"; 719 break; 720 default: 721 return false; 722 } 723 724 return CLI->lowerCall(MIRBuilder, CI.getCallingConv(), 725 MachineOperand::CreateES(Callee), 726 CallLowering::ArgInfo(0, CI.getType()), Args); 727 } 728 729 void IRTranslator::getStackGuard(unsigned DstReg, 730 MachineIRBuilder &MIRBuilder) { 731 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 732 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 733 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 734 MIB.addDef(DstReg); 735 736 auto &TLI = *MF->getSubtarget().getTargetLowering(); 737 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 738 if (!Global) 739 return; 740 741 MachinePointerInfo MPInfo(Global); 742 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 743 MachineMemOperand::MODereferenceable; 744 MachineMemOperand *MemRef = 745 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 746 DL->getPointerABIAlignment(0)); 747 MIB.setMemRefs({MemRef}); 748 } 749 750 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 751 MachineIRBuilder &MIRBuilder) { 752 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI); 753 MIRBuilder.buildInstr(Op) 754 .addDef(ResRegs[0]) 755 .addDef(ResRegs[1]) 756 .addUse(getOrCreateVReg(*CI.getOperand(0))) 757 .addUse(getOrCreateVReg(*CI.getOperand(1))); 758 759 return true; 760 } 761 762 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 763 switch (ID) { 764 default: 765 break; 766 case Intrinsic::bswap: 767 return TargetOpcode::G_BSWAP; 768 case Intrinsic::ceil: 769 return TargetOpcode::G_FCEIL; 770 case Intrinsic::cos: 771 return TargetOpcode::G_FCOS; 772 case Intrinsic::ctpop: 773 return TargetOpcode::G_CTPOP; 774 case Intrinsic::exp: 775 return TargetOpcode::G_FEXP; 776 case Intrinsic::exp2: 777 return TargetOpcode::G_FEXP2; 778 case Intrinsic::fabs: 779 return TargetOpcode::G_FABS; 780 case Intrinsic::canonicalize: 781 return TargetOpcode::G_FCANONICALIZE; 782 case Intrinsic::floor: 783 return TargetOpcode::G_FFLOOR; 784 case Intrinsic::fma: 785 return TargetOpcode::G_FMA; 786 case Intrinsic::log: 787 return TargetOpcode::G_FLOG; 788 case Intrinsic::log2: 789 return TargetOpcode::G_FLOG2; 790 case Intrinsic::log10: 791 return TargetOpcode::G_FLOG10; 792 case Intrinsic::pow: 793 return TargetOpcode::G_FPOW; 794 case Intrinsic::round: 795 return TargetOpcode::G_INTRINSIC_ROUND; 796 case Intrinsic::sin: 797 return TargetOpcode::G_FSIN; 798 case Intrinsic::sqrt: 799 return TargetOpcode::G_FSQRT; 800 case Intrinsic::trunc: 801 return TargetOpcode::G_INTRINSIC_TRUNC; 802 } 803 return Intrinsic::not_intrinsic; 804 } 805 806 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 807 Intrinsic::ID ID, 808 MachineIRBuilder &MIRBuilder) { 809 810 unsigned Op = getSimpleIntrinsicOpcode(ID); 811 812 // Is this a simple intrinsic? 813 if (Op == Intrinsic::not_intrinsic) 814 return false; 815 816 // Yes. Let's translate it. 817 SmallVector<llvm::SrcOp, 4> VRegs; 818 for (auto &Arg : CI.arg_operands()) 819 VRegs.push_back(getOrCreateVReg(*Arg)); 820 821 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 822 MachineInstr::copyFlagsFromInstruction(CI)); 823 return true; 824 } 825 826 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 827 MachineIRBuilder &MIRBuilder) { 828 829 // If this is a simple intrinsic (that is, we just need to add a def of 830 // a vreg, and uses for each arg operand, then translate it. 831 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 832 return true; 833 834 switch (ID) { 835 default: 836 break; 837 case Intrinsic::lifetime_start: 838 case Intrinsic::lifetime_end: { 839 // No stack colouring in O0, discard region information. 840 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 841 return true; 842 843 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 844 : TargetOpcode::LIFETIME_END; 845 846 // Get the underlying objects for the location passed on the lifetime 847 // marker. 848 SmallVector<Value *, 4> Allocas; 849 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 850 851 // Iterate over each underlying object, creating lifetime markers for each 852 // static alloca. Quit if we find a non-static alloca. 853 for (Value *V : Allocas) { 854 AllocaInst *AI = dyn_cast<AllocaInst>(V); 855 if (!AI) 856 continue; 857 858 if (!AI->isStaticAlloca()) 859 return true; 860 861 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 862 } 863 return true; 864 } 865 case Intrinsic::dbg_declare: { 866 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 867 assert(DI.getVariable() && "Missing variable"); 868 869 const Value *Address = DI.getAddress(); 870 if (!Address || isa<UndefValue>(Address)) { 871 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 872 return true; 873 } 874 875 assert(DI.getVariable()->isValidLocationForIntrinsic( 876 MIRBuilder.getDebugLoc()) && 877 "Expected inlined-at fields to agree"); 878 auto AI = dyn_cast<AllocaInst>(Address); 879 if (AI && AI->isStaticAlloca()) { 880 // Static allocas are tracked at the MF level, no need for DBG_VALUE 881 // instructions (in fact, they get ignored if they *do* exist). 882 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 883 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 884 } else { 885 // A dbg.declare describes the address of a source variable, so lower it 886 // into an indirect DBG_VALUE. 887 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 888 DI.getVariable(), DI.getExpression()); 889 } 890 return true; 891 } 892 case Intrinsic::dbg_label: { 893 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 894 assert(DI.getLabel() && "Missing label"); 895 896 assert(DI.getLabel()->isValidLocationForIntrinsic( 897 MIRBuilder.getDebugLoc()) && 898 "Expected inlined-at fields to agree"); 899 900 MIRBuilder.buildDbgLabel(DI.getLabel()); 901 return true; 902 } 903 case Intrinsic::vaend: 904 // No target I know of cares about va_end. Certainly no in-tree target 905 // does. Simplest intrinsic ever! 906 return true; 907 case Intrinsic::vastart: { 908 auto &TLI = *MF->getSubtarget().getTargetLowering(); 909 Value *Ptr = CI.getArgOperand(0); 910 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 911 912 // FIXME: Get alignment 913 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 914 .addUse(getOrCreateVReg(*Ptr)) 915 .addMemOperand(MF->getMachineMemOperand( 916 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1)); 917 return true; 918 } 919 case Intrinsic::dbg_value: { 920 // This form of DBG_VALUE is target-independent. 921 const DbgValueInst &DI = cast<DbgValueInst>(CI); 922 const Value *V = DI.getValue(); 923 assert(DI.getVariable()->isValidLocationForIntrinsic( 924 MIRBuilder.getDebugLoc()) && 925 "Expected inlined-at fields to agree"); 926 if (!V) { 927 // Currently the optimizer can produce this; insert an undef to 928 // help debugging. Probably the optimizer should not do this. 929 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 930 } else if (const auto *CI = dyn_cast<Constant>(V)) { 931 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 932 } else { 933 unsigned Reg = getOrCreateVReg(*V); 934 // FIXME: This does not handle register-indirect values at offset 0. The 935 // direct/indirect thing shouldn't really be handled by something as 936 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 937 // pretty baked in right now. 938 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 939 } 940 return true; 941 } 942 case Intrinsic::uadd_with_overflow: 943 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 944 case Intrinsic::sadd_with_overflow: 945 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 946 case Intrinsic::usub_with_overflow: 947 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 948 case Intrinsic::ssub_with_overflow: 949 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 950 case Intrinsic::umul_with_overflow: 951 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 952 case Intrinsic::smul_with_overflow: 953 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 954 case Intrinsic::fmuladd: { 955 const TargetMachine &TM = MF->getTarget(); 956 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 957 unsigned Dst = getOrCreateVReg(CI); 958 unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 959 unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 960 unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 961 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 962 TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { 963 // TODO: Revisit this to see if we should move this part of the 964 // lowering to the combiner. 965 MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2}, 966 MachineInstr::copyFlagsFromInstruction(CI)); 967 } else { 968 LLT Ty = getLLTForType(*CI.getType(), *DL); 969 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1}, 970 MachineInstr::copyFlagsFromInstruction(CI)); 971 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2}, 972 MachineInstr::copyFlagsFromInstruction(CI)); 973 } 974 return true; 975 } 976 case Intrinsic::memcpy: 977 case Intrinsic::memmove: 978 case Intrinsic::memset: 979 return translateMemfunc(CI, MIRBuilder, ID); 980 case Intrinsic::eh_typeid_for: { 981 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 982 unsigned Reg = getOrCreateVReg(CI); 983 unsigned TypeID = MF->getTypeIDFor(GV); 984 MIRBuilder.buildConstant(Reg, TypeID); 985 return true; 986 } 987 case Intrinsic::objectsize: { 988 // If we don't know by now, we're never going to know. 989 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 990 991 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 992 return true; 993 } 994 case Intrinsic::is_constant: 995 // If this wasn't constant-folded away by now, then it's not a 996 // constant. 997 MIRBuilder.buildConstant(getOrCreateVReg(CI), 0); 998 return true; 999 case Intrinsic::stackguard: 1000 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1001 return true; 1002 case Intrinsic::stackprotector: { 1003 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1004 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1005 getStackGuard(GuardVal, MIRBuilder); 1006 1007 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1008 int FI = getOrCreateFrameIndex(*Slot); 1009 MF->getFrameInfo().setStackProtectorIndex(FI); 1010 1011 MIRBuilder.buildStore( 1012 GuardVal, getOrCreateVReg(*Slot), 1013 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1014 MachineMemOperand::MOStore | 1015 MachineMemOperand::MOVolatile, 1016 PtrTy.getSizeInBits() / 8, 8)); 1017 return true; 1018 } 1019 case Intrinsic::stacksave: { 1020 // Save the stack pointer to the location provided by the intrinsic. 1021 unsigned Reg = getOrCreateVReg(CI); 1022 unsigned StackPtr = MF->getSubtarget() 1023 .getTargetLowering() 1024 ->getStackPointerRegisterToSaveRestore(); 1025 1026 // If the target doesn't specify a stack pointer, then fall back. 1027 if (!StackPtr) 1028 return false; 1029 1030 MIRBuilder.buildCopy(Reg, StackPtr); 1031 return true; 1032 } 1033 case Intrinsic::stackrestore: { 1034 // Restore the stack pointer from the location provided by the intrinsic. 1035 unsigned Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1036 unsigned StackPtr = MF->getSubtarget() 1037 .getTargetLowering() 1038 ->getStackPointerRegisterToSaveRestore(); 1039 1040 // If the target doesn't specify a stack pointer, then fall back. 1041 if (!StackPtr) 1042 return false; 1043 1044 MIRBuilder.buildCopy(StackPtr, Reg); 1045 return true; 1046 } 1047 case Intrinsic::cttz: 1048 case Intrinsic::ctlz: { 1049 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1050 bool isTrailing = ID == Intrinsic::cttz; 1051 unsigned Opcode = isTrailing 1052 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1053 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1054 : Cst->isZero() ? TargetOpcode::G_CTLZ 1055 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1056 MIRBuilder.buildInstr(Opcode) 1057 .addDef(getOrCreateVReg(CI)) 1058 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 1059 return true; 1060 } 1061 case Intrinsic::invariant_start: { 1062 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1063 unsigned Undef = MRI->createGenericVirtualRegister(PtrTy); 1064 MIRBuilder.buildUndef(Undef); 1065 return true; 1066 } 1067 case Intrinsic::invariant_end: 1068 return true; 1069 } 1070 return false; 1071 } 1072 1073 bool IRTranslator::translateInlineAsm(const CallInst &CI, 1074 MachineIRBuilder &MIRBuilder) { 1075 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 1076 if (!IA.getConstraintString().empty()) 1077 return false; 1078 1079 unsigned ExtraInfo = 0; 1080 if (IA.hasSideEffects()) 1081 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1082 if (IA.getDialect() == InlineAsm::AD_Intel) 1083 ExtraInfo |= InlineAsm::Extra_AsmDialect; 1084 1085 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 1086 .addExternalSymbol(IA.getAsmString().c_str()) 1087 .addImm(ExtraInfo); 1088 1089 return true; 1090 } 1091 1092 unsigned IRTranslator::packRegs(const Value &V, 1093 MachineIRBuilder &MIRBuilder) { 1094 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 1095 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 1096 LLT BigTy = getLLTForType(*V.getType(), *DL); 1097 1098 if (Regs.size() == 1) 1099 return Regs[0]; 1100 1101 unsigned Dst = MRI->createGenericVirtualRegister(BigTy); 1102 MIRBuilder.buildUndef(Dst); 1103 for (unsigned i = 0; i < Regs.size(); ++i) { 1104 unsigned NewDst = MRI->createGenericVirtualRegister(BigTy); 1105 MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]); 1106 Dst = NewDst; 1107 } 1108 return Dst; 1109 } 1110 1111 void IRTranslator::unpackRegs(const Value &V, unsigned Src, 1112 MachineIRBuilder &MIRBuilder) { 1113 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 1114 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 1115 1116 for (unsigned i = 0; i < Regs.size(); ++i) 1117 MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]); 1118 } 1119 1120 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1121 const CallInst &CI = cast<CallInst>(U); 1122 auto TII = MF->getTarget().getIntrinsicInfo(); 1123 const Function *F = CI.getCalledFunction(); 1124 1125 // FIXME: support Windows dllimport function calls. 1126 if (F && F->hasDLLImportStorageClass()) 1127 return false; 1128 1129 if (CI.isInlineAsm()) 1130 return translateInlineAsm(CI, MIRBuilder); 1131 1132 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1133 if (F && F->isIntrinsic()) { 1134 ID = F->getIntrinsicID(); 1135 if (TII && ID == Intrinsic::not_intrinsic) 1136 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1137 } 1138 1139 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) { 1140 bool IsSplitType = valueIsSplit(CI); 1141 unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister( 1142 getLLTForType(*CI.getType(), *DL)) 1143 : getOrCreateVReg(CI); 1144 1145 SmallVector<unsigned, 8> Args; 1146 for (auto &Arg: CI.arg_operands()) 1147 Args.push_back(packRegs(*Arg, MIRBuilder)); 1148 1149 MF->getFrameInfo().setHasCalls(true); 1150 bool Success = CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() { 1151 return getOrCreateVReg(*CI.getCalledValue()); 1152 }); 1153 1154 if (IsSplitType) 1155 unpackRegs(CI, Res, MIRBuilder); 1156 return Success; 1157 } 1158 1159 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1160 1161 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1162 return true; 1163 1164 ArrayRef<unsigned> ResultRegs; 1165 if (!CI.getType()->isVoidTy()) 1166 ResultRegs = getOrCreateVRegs(CI); 1167 1168 MachineInstrBuilder MIB = 1169 MIRBuilder.buildIntrinsic(ID, ResultRegs, !CI.doesNotAccessMemory()); 1170 1171 for (auto &Arg : CI.arg_operands()) { 1172 // Some intrinsics take metadata parameters. Reject them. 1173 if (isa<MetadataAsValue>(Arg)) 1174 return false; 1175 MIB.addUse(packRegs(*Arg, MIRBuilder)); 1176 } 1177 1178 // Add a MachineMemOperand if it is a target mem intrinsic. 1179 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1180 TargetLowering::IntrinsicInfo Info; 1181 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1182 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1183 unsigned Align = Info.align; 1184 if (Align == 0) 1185 Align = DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext())); 1186 1187 uint64_t Size = Info.memVT.getStoreSize(); 1188 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1189 Info.flags, Size, Align)); 1190 } 1191 1192 return true; 1193 } 1194 1195 bool IRTranslator::translateInvoke(const User &U, 1196 MachineIRBuilder &MIRBuilder) { 1197 const InvokeInst &I = cast<InvokeInst>(U); 1198 MCContext &Context = MF->getContext(); 1199 1200 const BasicBlock *ReturnBB = I.getSuccessor(0); 1201 const BasicBlock *EHPadBB = I.getSuccessor(1); 1202 1203 const Value *Callee = I.getCalledValue(); 1204 const Function *Fn = dyn_cast<Function>(Callee); 1205 if (isa<InlineAsm>(Callee)) 1206 return false; 1207 1208 // FIXME: support invoking patchpoint and statepoint intrinsics. 1209 if (Fn && Fn->isIntrinsic()) 1210 return false; 1211 1212 // FIXME: support whatever these are. 1213 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1214 return false; 1215 1216 // FIXME: support Windows exception handling. 1217 if (!isa<LandingPadInst>(EHPadBB->front())) 1218 return false; 1219 1220 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1221 // the region covered by the try. 1222 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1223 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1224 1225 unsigned Res = 0; 1226 if (!I.getType()->isVoidTy()) 1227 Res = MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL)); 1228 SmallVector<unsigned, 8> Args; 1229 for (auto &Arg: I.arg_operands()) 1230 Args.push_back(packRegs(*Arg, MIRBuilder)); 1231 1232 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, 1233 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 1234 return false; 1235 1236 unpackRegs(I, Res, MIRBuilder); 1237 1238 MCSymbol *EndSymbol = Context.createTempSymbol(); 1239 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1240 1241 // FIXME: track probabilities. 1242 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1243 &ReturnMBB = getMBB(*ReturnBB); 1244 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1245 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1246 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1247 MIRBuilder.buildBr(ReturnMBB); 1248 1249 return true; 1250 } 1251 1252 bool IRTranslator::translateCallBr(const User &U, 1253 MachineIRBuilder &MIRBuilder) { 1254 // FIXME: Implement this. 1255 return false; 1256 } 1257 1258 bool IRTranslator::translateLandingPad(const User &U, 1259 MachineIRBuilder &MIRBuilder) { 1260 const LandingPadInst &LP = cast<LandingPadInst>(U); 1261 1262 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1263 1264 MBB.setIsEHPad(); 1265 1266 // If there aren't registers to copy the values into (e.g., during SjLj 1267 // exceptions), then don't bother. 1268 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1269 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1270 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1271 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1272 return true; 1273 1274 // If landingpad's return type is token type, we don't create DAG nodes 1275 // for its exception pointer and selector value. The extraction of exception 1276 // pointer or selector value from token type landingpads is not currently 1277 // supported. 1278 if (LP.getType()->isTokenTy()) 1279 return true; 1280 1281 // Add a label to mark the beginning of the landing pad. Deletion of the 1282 // landing pad can thus be detected via the MachineModuleInfo. 1283 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1284 .addSym(MF->addLandingPad(&MBB)); 1285 1286 LLT Ty = getLLTForType(*LP.getType(), *DL); 1287 unsigned Undef = MRI->createGenericVirtualRegister(Ty); 1288 MIRBuilder.buildUndef(Undef); 1289 1290 SmallVector<LLT, 2> Tys; 1291 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1292 Tys.push_back(getLLTForType(*Ty, *DL)); 1293 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1294 1295 // Mark exception register as live in. 1296 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1297 if (!ExceptionReg) 1298 return false; 1299 1300 MBB.addLiveIn(ExceptionReg); 1301 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP); 1302 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1303 1304 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1305 if (!SelectorReg) 1306 return false; 1307 1308 MBB.addLiveIn(SelectorReg); 1309 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1310 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1311 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1312 1313 return true; 1314 } 1315 1316 bool IRTranslator::translateAlloca(const User &U, 1317 MachineIRBuilder &MIRBuilder) { 1318 auto &AI = cast<AllocaInst>(U); 1319 1320 if (AI.isSwiftError()) 1321 return false; 1322 1323 if (AI.isStaticAlloca()) { 1324 unsigned Res = getOrCreateVReg(AI); 1325 int FI = getOrCreateFrameIndex(AI); 1326 MIRBuilder.buildFrameIndex(Res, FI); 1327 return true; 1328 } 1329 1330 // FIXME: support stack probing for Windows. 1331 if (MF->getTarget().getTargetTriple().isOSWindows()) 1332 return false; 1333 1334 // Now we're in the harder dynamic case. 1335 Type *Ty = AI.getAllocatedType(); 1336 unsigned Align = 1337 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1338 1339 unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); 1340 1341 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1342 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1343 if (MRI->getType(NumElts) != IntPtrTy) { 1344 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1345 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1346 NumElts = ExtElts; 1347 } 1348 1349 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1350 unsigned TySize = 1351 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); 1352 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1353 1354 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 1355 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1356 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1357 1358 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); 1359 MIRBuilder.buildCopy(SPTmp, SPReg); 1360 1361 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 1362 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 1363 1364 // Handle alignment. We have to realign if the allocation granule was smaller 1365 // than stack alignment, or the specific alloca requires more than stack 1366 // alignment. 1367 unsigned StackAlign = 1368 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1369 Align = std::max(Align, StackAlign); 1370 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 1371 // Round the size of the allocation up to the stack alignment size 1372 // by add SA-1 to the size. This doesn't overflow because we're computing 1373 // an address inside an alloca. 1374 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 1375 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 1376 AllocTmp = AlignedAlloc; 1377 } 1378 1379 MIRBuilder.buildCopy(SPReg, AllocTmp); 1380 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 1381 1382 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1383 assert(MF->getFrameInfo().hasVarSizedObjects()); 1384 return true; 1385 } 1386 1387 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1388 // FIXME: We may need more info about the type. Because of how LLT works, 1389 // we're completely discarding the i64/double distinction here (amongst 1390 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1391 // anyway but that's not guaranteed. 1392 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1393 .addDef(getOrCreateVReg(U)) 1394 .addUse(getOrCreateVReg(*U.getOperand(0))) 1395 .addImm(DL->getABITypeAlignment(U.getType())); 1396 return true; 1397 } 1398 1399 bool IRTranslator::translateInsertElement(const User &U, 1400 MachineIRBuilder &MIRBuilder) { 1401 // If it is a <1 x Ty> vector, use the scalar as it is 1402 // not a legal vector type in LLT. 1403 if (U.getType()->getVectorNumElements() == 1) { 1404 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1405 auto &Regs = *VMap.getVRegs(U); 1406 if (Regs.empty()) { 1407 Regs.push_back(Elt); 1408 VMap.getOffsets(U)->push_back(0); 1409 } else { 1410 MIRBuilder.buildCopy(Regs[0], Elt); 1411 } 1412 return true; 1413 } 1414 1415 unsigned Res = getOrCreateVReg(U); 1416 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1417 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1418 unsigned Idx = getOrCreateVReg(*U.getOperand(2)); 1419 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1420 return true; 1421 } 1422 1423 bool IRTranslator::translateExtractElement(const User &U, 1424 MachineIRBuilder &MIRBuilder) { 1425 // If it is a <1 x Ty> vector, use the scalar as it is 1426 // not a legal vector type in LLT. 1427 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1428 unsigned Elt = getOrCreateVReg(*U.getOperand(0)); 1429 auto &Regs = *VMap.getVRegs(U); 1430 if (Regs.empty()) { 1431 Regs.push_back(Elt); 1432 VMap.getOffsets(U)->push_back(0); 1433 } else { 1434 MIRBuilder.buildCopy(Regs[0], Elt); 1435 } 1436 return true; 1437 } 1438 unsigned Res = getOrCreateVReg(U); 1439 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1440 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1441 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1442 unsigned Idx = 0; 1443 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1444 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1445 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1446 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1447 Idx = getOrCreateVReg(*NewIdxCI); 1448 } 1449 } 1450 if (!Idx) 1451 Idx = getOrCreateVReg(*U.getOperand(1)); 1452 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1453 const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1454 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg(); 1455 } 1456 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1457 return true; 1458 } 1459 1460 bool IRTranslator::translateShuffleVector(const User &U, 1461 MachineIRBuilder &MIRBuilder) { 1462 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1463 .addDef(getOrCreateVReg(U)) 1464 .addUse(getOrCreateVReg(*U.getOperand(0))) 1465 .addUse(getOrCreateVReg(*U.getOperand(1))) 1466 .addUse(getOrCreateVReg(*U.getOperand(2))); 1467 return true; 1468 } 1469 1470 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1471 const PHINode &PI = cast<PHINode>(U); 1472 1473 SmallVector<MachineInstr *, 4> Insts; 1474 for (auto Reg : getOrCreateVRegs(PI)) { 1475 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 1476 Insts.push_back(MIB.getInstr()); 1477 } 1478 1479 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1480 return true; 1481 } 1482 1483 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1484 MachineIRBuilder &MIRBuilder) { 1485 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1486 1487 if (I.isWeak()) 1488 return false; 1489 1490 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1491 : MachineMemOperand::MONone; 1492 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1493 1494 Type *ResType = I.getType(); 1495 Type *ValType = ResType->Type::getStructElementType(0); 1496 1497 auto Res = getOrCreateVRegs(I); 1498 unsigned OldValRes = Res[0]; 1499 unsigned SuccessRes = Res[1]; 1500 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1501 unsigned Cmp = getOrCreateVReg(*I.getCompareOperand()); 1502 unsigned NewVal = getOrCreateVReg(*I.getNewValOperand()); 1503 1504 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1505 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1506 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1507 Flags, DL->getTypeStoreSize(ValType), 1508 getMemOpAlignment(I), AAMDNodes(), nullptr, 1509 I.getSyncScopeID(), I.getSuccessOrdering(), 1510 I.getFailureOrdering())); 1511 return true; 1512 } 1513 1514 bool IRTranslator::translateAtomicRMW(const User &U, 1515 MachineIRBuilder &MIRBuilder) { 1516 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 1517 1518 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1519 : MachineMemOperand::MONone; 1520 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1521 1522 Type *ResType = I.getType(); 1523 1524 unsigned Res = getOrCreateVReg(I); 1525 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1526 unsigned Val = getOrCreateVReg(*I.getValOperand()); 1527 1528 unsigned Opcode = 0; 1529 switch (I.getOperation()) { 1530 default: 1531 llvm_unreachable("Unknown atomicrmw op"); 1532 return false; 1533 case AtomicRMWInst::Xchg: 1534 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 1535 break; 1536 case AtomicRMWInst::Add: 1537 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 1538 break; 1539 case AtomicRMWInst::Sub: 1540 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 1541 break; 1542 case AtomicRMWInst::And: 1543 Opcode = TargetOpcode::G_ATOMICRMW_AND; 1544 break; 1545 case AtomicRMWInst::Nand: 1546 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 1547 break; 1548 case AtomicRMWInst::Or: 1549 Opcode = TargetOpcode::G_ATOMICRMW_OR; 1550 break; 1551 case AtomicRMWInst::Xor: 1552 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 1553 break; 1554 case AtomicRMWInst::Max: 1555 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 1556 break; 1557 case AtomicRMWInst::Min: 1558 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 1559 break; 1560 case AtomicRMWInst::UMax: 1561 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 1562 break; 1563 case AtomicRMWInst::UMin: 1564 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 1565 break; 1566 } 1567 1568 MIRBuilder.buildAtomicRMW( 1569 Opcode, Res, Addr, Val, 1570 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1571 Flags, DL->getTypeStoreSize(ResType), 1572 getMemOpAlignment(I), AAMDNodes(), nullptr, 1573 I.getSyncScopeID(), I.getOrdering())); 1574 return true; 1575 } 1576 1577 void IRTranslator::finishPendingPhis() { 1578 #ifndef NDEBUG 1579 DILocationVerifier Verifier; 1580 GISelObserverWrapper WrapperObserver(&Verifier); 1581 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 1582 #endif // ifndef NDEBUG 1583 for (auto &Phi : PendingPHIs) { 1584 const PHINode *PI = Phi.first; 1585 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 1586 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 1587 #ifndef NDEBUG 1588 Verifier.setCurrentInst(PI); 1589 #endif // ifndef NDEBUG 1590 1591 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 1592 // won't create extra control flow here, otherwise we need to find the 1593 // dominating predecessor here (or perhaps force the weirder IRTranslators 1594 // to provide a simple boundary). 1595 SmallSet<const BasicBlock *, 4> HandledPreds; 1596 1597 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 1598 auto IRPred = PI->getIncomingBlock(i); 1599 if (HandledPreds.count(IRPred)) 1600 continue; 1601 1602 HandledPreds.insert(IRPred); 1603 ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 1604 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 1605 assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) && 1606 "incorrect CFG at MachineBasicBlock level"); 1607 for (unsigned j = 0; j < ValRegs.size(); ++j) { 1608 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 1609 MIB.addUse(ValRegs[j]); 1610 MIB.addMBB(Pred); 1611 } 1612 } 1613 } 1614 } 1615 } 1616 1617 bool IRTranslator::valueIsSplit(const Value &V, 1618 SmallVectorImpl<uint64_t> *Offsets) { 1619 SmallVector<LLT, 4> SplitTys; 1620 if (Offsets && !Offsets->empty()) 1621 Offsets->clear(); 1622 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 1623 return SplitTys.size() > 1; 1624 } 1625 1626 bool IRTranslator::translate(const Instruction &Inst) { 1627 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 1628 EntryBuilder->setDebugLoc(Inst.getDebugLoc()); 1629 switch(Inst.getOpcode()) { 1630 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1631 case Instruction::OPCODE: \ 1632 return translate##OPCODE(Inst, *CurBuilder.get()); 1633 #include "llvm/IR/Instruction.def" 1634 default: 1635 return false; 1636 } 1637 } 1638 1639 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 1640 if (auto CI = dyn_cast<ConstantInt>(&C)) 1641 EntryBuilder->buildConstant(Reg, *CI); 1642 else if (auto CF = dyn_cast<ConstantFP>(&C)) 1643 EntryBuilder->buildFConstant(Reg, *CF); 1644 else if (isa<UndefValue>(C)) 1645 EntryBuilder->buildUndef(Reg); 1646 else if (isa<ConstantPointerNull>(C)) { 1647 // As we are trying to build a constant val of 0 into a pointer, 1648 // insert a cast to make them correct with respect to types. 1649 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 1650 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 1651 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 1652 unsigned ZeroReg = getOrCreateVReg(*ZeroVal); 1653 EntryBuilder->buildCast(Reg, ZeroReg); 1654 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 1655 EntryBuilder->buildGlobalValue(Reg, GV); 1656 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 1657 if (!CAZ->getType()->isVectorTy()) 1658 return false; 1659 // Return the scalar if it is a <1 x Ty> vector. 1660 if (CAZ->getNumElements() == 1) 1661 return translate(*CAZ->getElementValue(0u), Reg); 1662 SmallVector<unsigned, 4> Ops; 1663 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 1664 Constant &Elt = *CAZ->getElementValue(i); 1665 Ops.push_back(getOrCreateVReg(Elt)); 1666 } 1667 EntryBuilder->buildBuildVector(Reg, Ops); 1668 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 1669 // Return the scalar if it is a <1 x Ty> vector. 1670 if (CV->getNumElements() == 1) 1671 return translate(*CV->getElementAsConstant(0), Reg); 1672 SmallVector<unsigned, 4> Ops; 1673 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 1674 Constant &Elt = *CV->getElementAsConstant(i); 1675 Ops.push_back(getOrCreateVReg(Elt)); 1676 } 1677 EntryBuilder->buildBuildVector(Reg, Ops); 1678 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 1679 switch(CE->getOpcode()) { 1680 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1681 case Instruction::OPCODE: \ 1682 return translate##OPCODE(*CE, *EntryBuilder.get()); 1683 #include "llvm/IR/Instruction.def" 1684 default: 1685 return false; 1686 } 1687 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 1688 if (CV->getNumOperands() == 1) 1689 return translate(*CV->getOperand(0), Reg); 1690 SmallVector<unsigned, 4> Ops; 1691 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 1692 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 1693 } 1694 EntryBuilder->buildBuildVector(Reg, Ops); 1695 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 1696 EntryBuilder->buildBlockAddress(Reg, BA); 1697 } else 1698 return false; 1699 1700 return true; 1701 } 1702 1703 void IRTranslator::finalizeFunction() { 1704 // Release the memory used by the different maps we 1705 // needed during the translation. 1706 PendingPHIs.clear(); 1707 VMap.reset(); 1708 FrameIndices.clear(); 1709 MachinePreds.clear(); 1710 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 1711 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 1712 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 1713 EntryBuilder.reset(); 1714 CurBuilder.reset(); 1715 } 1716 1717 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 1718 MF = &CurMF; 1719 const Function &F = MF->getFunction(); 1720 if (F.empty()) 1721 return false; 1722 GISelCSEAnalysisWrapper &Wrapper = 1723 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 1724 // Set the CSEConfig and run the analysis. 1725 GISelCSEInfo *CSEInfo = nullptr; 1726 TPC = &getAnalysis<TargetPassConfig>(); 1727 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 1728 ? EnableCSEInIRTranslator 1729 : TPC->isGISelCSEEnabled(); 1730 1731 if (EnableCSE) { 1732 EntryBuilder = make_unique<CSEMIRBuilder>(CurMF); 1733 std::unique_ptr<CSEConfig> Config = make_unique<CSEConfig>(); 1734 CSEInfo = &Wrapper.get(std::move(Config)); 1735 EntryBuilder->setCSEInfo(CSEInfo); 1736 CurBuilder = make_unique<CSEMIRBuilder>(CurMF); 1737 CurBuilder->setCSEInfo(CSEInfo); 1738 } else { 1739 EntryBuilder = make_unique<MachineIRBuilder>(); 1740 CurBuilder = make_unique<MachineIRBuilder>(); 1741 } 1742 CLI = MF->getSubtarget().getCallLowering(); 1743 CurBuilder->setMF(*MF); 1744 EntryBuilder->setMF(*MF); 1745 MRI = &MF->getRegInfo(); 1746 DL = &F.getParent()->getDataLayout(); 1747 ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F); 1748 1749 assert(PendingPHIs.empty() && "stale PHIs"); 1750 1751 if (!DL->isLittleEndian()) { 1752 // Currently we don't properly handle big endian code. 1753 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1754 F.getSubprogram(), &F.getEntryBlock()); 1755 R << "unable to translate in big endian mode"; 1756 reportTranslationError(*MF, *TPC, *ORE, R); 1757 } 1758 1759 // Release the per-function state when we return, whether we succeeded or not. 1760 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 1761 1762 // Setup a separate basic-block for the arguments and constants 1763 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 1764 MF->push_back(EntryBB); 1765 EntryBuilder->setMBB(*EntryBB); 1766 1767 // Create all blocks, in IR order, to preserve the layout. 1768 for (const BasicBlock &BB: F) { 1769 auto *&MBB = BBToMBB[&BB]; 1770 1771 MBB = MF->CreateMachineBasicBlock(&BB); 1772 MF->push_back(MBB); 1773 1774 if (BB.hasAddressTaken()) 1775 MBB->setHasAddressTaken(); 1776 } 1777 1778 // Make our arguments/constants entry block fallthrough to the IR entry block. 1779 EntryBB->addSuccessor(&getMBB(F.front())); 1780 1781 // Lower the actual args into this basic block. 1782 SmallVector<unsigned, 8> VRegArgs; 1783 for (const Argument &Arg: F.args()) { 1784 if (DL->getTypeStoreSize(Arg.getType()) == 0) 1785 continue; // Don't handle zero sized types. 1786 VRegArgs.push_back( 1787 MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL))); 1788 } 1789 1790 // We don't currently support translating swifterror or swiftself functions. 1791 for (auto &Arg : F.args()) { 1792 if (Arg.hasSwiftErrorAttr() || Arg.hasSwiftSelfAttr()) { 1793 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1794 F.getSubprogram(), &F.getEntryBlock()); 1795 R << "unable to lower arguments due to swifterror/swiftself: " 1796 << ore::NV("Prototype", F.getType()); 1797 reportTranslationError(*MF, *TPC, *ORE, R); 1798 return false; 1799 } 1800 } 1801 1802 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 1803 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1804 F.getSubprogram(), &F.getEntryBlock()); 1805 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 1806 reportTranslationError(*MF, *TPC, *ORE, R); 1807 return false; 1808 } 1809 1810 auto ArgIt = F.arg_begin(); 1811 for (auto &VArg : VRegArgs) { 1812 // If the argument is an unsplit scalar then don't use unpackRegs to avoid 1813 // creating redundant copies. 1814 if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) { 1815 auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt)); 1816 assert(VRegs.empty() && "VRegs already populated?"); 1817 VRegs.push_back(VArg); 1818 } else { 1819 unpackRegs(*ArgIt, VArg, *EntryBuilder.get()); 1820 } 1821 ArgIt++; 1822 } 1823 1824 // Need to visit defs before uses when translating instructions. 1825 GISelObserverWrapper WrapperObserver; 1826 if (EnableCSE && CSEInfo) 1827 WrapperObserver.addObserver(CSEInfo); 1828 { 1829 ReversePostOrderTraversal<const Function *> RPOT(&F); 1830 #ifndef NDEBUG 1831 DILocationVerifier Verifier; 1832 WrapperObserver.addObserver(&Verifier); 1833 #endif // ifndef NDEBUG 1834 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 1835 for (const BasicBlock *BB : RPOT) { 1836 MachineBasicBlock &MBB = getMBB(*BB); 1837 // Set the insertion point of all the following translations to 1838 // the end of this basic block. 1839 CurBuilder->setMBB(MBB); 1840 1841 for (const Instruction &Inst : *BB) { 1842 #ifndef NDEBUG 1843 Verifier.setCurrentInst(&Inst); 1844 #endif // ifndef NDEBUG 1845 if (translate(Inst)) 1846 continue; 1847 1848 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1849 Inst.getDebugLoc(), BB); 1850 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 1851 1852 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 1853 std::string InstStrStorage; 1854 raw_string_ostream InstStr(InstStrStorage); 1855 InstStr << Inst; 1856 1857 R << ": '" << InstStr.str() << "'"; 1858 } 1859 1860 reportTranslationError(*MF, *TPC, *ORE, R); 1861 return false; 1862 } 1863 } 1864 #ifndef NDEBUG 1865 WrapperObserver.removeObserver(&Verifier); 1866 #endif 1867 } 1868 1869 finishPendingPhis(); 1870 1871 // Merge the argument lowering and constants block with its single 1872 // successor, the LLVM-IR entry block. We want the basic block to 1873 // be maximal. 1874 assert(EntryBB->succ_size() == 1 && 1875 "Custom BB used for lowering should have only one successor"); 1876 // Get the successor of the current entry block. 1877 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 1878 assert(NewEntryBB.pred_size() == 1 && 1879 "LLVM-IR entry block has a predecessor!?"); 1880 // Move all the instruction from the current entry block to the 1881 // new entry block. 1882 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 1883 EntryBB->end()); 1884 1885 // Update the live-in information for the new entry block. 1886 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 1887 NewEntryBB.addLiveIn(LiveIn); 1888 NewEntryBB.sortUniqueLiveIns(); 1889 1890 // Get rid of the now empty basic block. 1891 EntryBB->removeSuccessor(&NewEntryBB); 1892 MF->remove(EntryBB); 1893 MF->DeleteMachineBasicBlock(EntryBB); 1894 1895 assert(&MF->front() == &NewEntryBB && 1896 "New entry wasn't next in the list of basic block!"); 1897 1898 // Initialize stack protector information. 1899 StackProtector &SP = getAnalysis<StackProtector>(); 1900 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1901 1902 return false; 1903 } 1904