1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 26 #include "llvm/CodeGen/LowLevelType.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/StackProtector.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfo.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GetElementPtrTypeIterator.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/InitializePasses.h" 60 #include "llvm/MC/MCContext.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CodeGen.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/LowLevelTypeImpl.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetIntrinsicInfo.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 #define DEBUG_TYPE "irtranslator" 80 81 using namespace llvm; 82 83 static cl::opt<bool> 84 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 85 cl::desc("Should enable CSE in irtranslator"), 86 cl::Optional, cl::init(false)); 87 char IRTranslator::ID = 0; 88 89 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 90 false, false) 91 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 92 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 93 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 94 false, false) 95 96 static void reportTranslationError(MachineFunction &MF, 97 const TargetPassConfig &TPC, 98 OptimizationRemarkEmitter &ORE, 99 OptimizationRemarkMissed &R) { 100 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 101 102 // Print the function name explicitly if we don't have a debug location (which 103 // makes the diagnostic less useful) or if we're going to emit a raw error. 104 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 105 R << (" (in function: " + MF.getName() + ")").str(); 106 107 if (TPC.isGlobalISelAbortEnabled()) 108 report_fatal_error(R.getMsg()); 109 else 110 ORE.emit(R); 111 } 112 113 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { } 114 115 #ifndef NDEBUG 116 namespace { 117 /// Verify that every instruction created has the same DILocation as the 118 /// instruction being translated. 119 class DILocationVerifier : public GISelChangeObserver { 120 const Instruction *CurrInst = nullptr; 121 122 public: 123 DILocationVerifier() = default; 124 ~DILocationVerifier() = default; 125 126 const Instruction *getCurrentInst() const { return CurrInst; } 127 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 128 129 void erasingInstr(MachineInstr &MI) override {} 130 void changingInstr(MachineInstr &MI) override {} 131 void changedInstr(MachineInstr &MI) override {} 132 133 void createdInstr(MachineInstr &MI) override { 134 assert(getCurrentInst() && "Inserted instruction without a current MI"); 135 136 // Only print the check message if we're actually checking it. 137 #ifndef NDEBUG 138 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 139 << " was copied to " << MI); 140 #endif 141 // We allow insts in the entry block to have a debug loc line of 0 because 142 // they could have originated from constants, and we don't want a jumpy 143 // debug experience. 144 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 145 MI.getDebugLoc().getLine() == 0) && 146 "Line info was not transferred to all instructions"); 147 } 148 }; 149 } // namespace 150 #endif // ifndef NDEBUG 151 152 153 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 154 AU.addRequired<StackProtector>(); 155 AU.addRequired<TargetPassConfig>(); 156 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 157 getSelectionDAGFallbackAnalysisUsage(AU); 158 MachineFunctionPass::getAnalysisUsage(AU); 159 } 160 161 IRTranslator::ValueToVRegInfo::VRegListT & 162 IRTranslator::allocateVRegs(const Value &Val) { 163 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 164 auto *Regs = VMap.getVRegs(Val); 165 auto *Offsets = VMap.getOffsets(Val); 166 SmallVector<LLT, 4> SplitTys; 167 computeValueLLTs(*DL, *Val.getType(), SplitTys, 168 Offsets->empty() ? Offsets : nullptr); 169 for (unsigned i = 0; i < SplitTys.size(); ++i) 170 Regs->push_back(0); 171 return *Regs; 172 } 173 174 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 175 auto VRegsIt = VMap.findVRegs(Val); 176 if (VRegsIt != VMap.vregs_end()) 177 return *VRegsIt->second; 178 179 if (Val.getType()->isVoidTy()) 180 return *VMap.getVRegs(Val); 181 182 // Create entry for this type. 183 auto *VRegs = VMap.getVRegs(Val); 184 auto *Offsets = VMap.getOffsets(Val); 185 186 assert(Val.getType()->isSized() && 187 "Don't know how to create an empty vreg"); 188 189 SmallVector<LLT, 4> SplitTys; 190 computeValueLLTs(*DL, *Val.getType(), SplitTys, 191 Offsets->empty() ? Offsets : nullptr); 192 193 if (!isa<Constant>(Val)) { 194 for (auto Ty : SplitTys) 195 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 196 return *VRegs; 197 } 198 199 if (Val.getType()->isAggregateType()) { 200 // UndefValue, ConstantAggregateZero 201 auto &C = cast<Constant>(Val); 202 unsigned Idx = 0; 203 while (auto Elt = C.getAggregateElement(Idx++)) { 204 auto EltRegs = getOrCreateVRegs(*Elt); 205 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 206 } 207 } else { 208 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 209 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 210 bool Success = translate(cast<Constant>(Val), VRegs->front()); 211 if (!Success) { 212 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 213 MF->getFunction().getSubprogram(), 214 &MF->getFunction().getEntryBlock()); 215 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 216 reportTranslationError(*MF, *TPC, *ORE, R); 217 return *VRegs; 218 } 219 } 220 221 return *VRegs; 222 } 223 224 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 225 if (FrameIndices.find(&AI) != FrameIndices.end()) 226 return FrameIndices[&AI]; 227 228 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 229 uint64_t Size = 230 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 231 232 // Always allocate at least one byte. 233 Size = std::max<uint64_t>(Size, 1u); 234 235 unsigned Alignment = AI.getAlignment(); 236 if (!Alignment) 237 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 238 239 int &FI = FrameIndices[&AI]; 240 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 241 return FI; 242 } 243 244 Align IRTranslator::getMemOpAlign(const Instruction &I) { 245 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) 246 return SI->getAlign(); 247 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 248 return LI->getAlign(); 249 } 250 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 251 // TODO(PR27168): This instruction has no alignment attribute, but unlike 252 // the default alignment for load/store, the default here is to assume 253 // it has NATURAL alignment, not DataLayout-specified alignment. 254 const DataLayout &DL = AI->getModule()->getDataLayout(); 255 return Align(DL.getTypeStoreSize(AI->getCompareOperand()->getType())); 256 } 257 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 258 // TODO(PR27168): This instruction has no alignment attribute, but unlike 259 // the default alignment for load/store, the default here is to assume 260 // it has NATURAL alignment, not DataLayout-specified alignment. 261 const DataLayout &DL = AI->getModule()->getDataLayout(); 262 return Align(DL.getTypeStoreSize(AI->getValOperand()->getType())); 263 } 264 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 265 R << "unable to translate memop: " << ore::NV("Opcode", &I); 266 reportTranslationError(*MF, *TPC, *ORE, R); 267 return Align(1); 268 } 269 270 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 271 MachineBasicBlock *&MBB = BBToMBB[&BB]; 272 assert(MBB && "BasicBlock was not encountered before"); 273 return *MBB; 274 } 275 276 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 277 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 278 MachinePreds[Edge].push_back(NewPred); 279 } 280 281 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 282 MachineIRBuilder &MIRBuilder) { 283 // Get or create a virtual register for each value. 284 // Unless the value is a Constant => loadimm cst? 285 // or inline constant each time? 286 // Creation of a virtual register needs to have a size. 287 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 288 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 289 Register Res = getOrCreateVReg(U); 290 uint16_t Flags = 0; 291 if (isa<Instruction>(U)) { 292 const Instruction &I = cast<Instruction>(U); 293 Flags = MachineInstr::copyFlagsFromInstruction(I); 294 } 295 296 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 297 return true; 298 } 299 300 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 301 // -0.0 - X --> G_FNEG 302 if (isa<Constant>(U.getOperand(0)) && 303 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 304 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 305 Register Res = getOrCreateVReg(U); 306 uint16_t Flags = 0; 307 if (isa<Instruction>(U)) { 308 const Instruction &I = cast<Instruction>(U); 309 Flags = MachineInstr::copyFlagsFromInstruction(I); 310 } 311 // Negate the last operand of the FSUB 312 MIRBuilder.buildFNeg(Res, Op1, Flags); 313 return true; 314 } 315 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 316 } 317 318 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 319 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 320 Register Res = getOrCreateVReg(U); 321 uint16_t Flags = 0; 322 if (isa<Instruction>(U)) { 323 const Instruction &I = cast<Instruction>(U); 324 Flags = MachineInstr::copyFlagsFromInstruction(I); 325 } 326 MIRBuilder.buildFNeg(Res, Op0, Flags); 327 return true; 328 } 329 330 bool IRTranslator::translateCompare(const User &U, 331 MachineIRBuilder &MIRBuilder) { 332 auto *CI = dyn_cast<CmpInst>(&U); 333 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 334 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 335 Register Res = getOrCreateVReg(U); 336 CmpInst::Predicate Pred = 337 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 338 cast<ConstantExpr>(U).getPredicate()); 339 if (CmpInst::isIntPredicate(Pred)) 340 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 341 else if (Pred == CmpInst::FCMP_FALSE) 342 MIRBuilder.buildCopy( 343 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 344 else if (Pred == CmpInst::FCMP_TRUE) 345 MIRBuilder.buildCopy( 346 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 347 else { 348 assert(CI && "Instruction should be CmpInst"); 349 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, 350 MachineInstr::copyFlagsFromInstruction(*CI)); 351 } 352 353 return true; 354 } 355 356 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 357 const ReturnInst &RI = cast<ReturnInst>(U); 358 const Value *Ret = RI.getReturnValue(); 359 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 360 Ret = nullptr; 361 362 ArrayRef<Register> VRegs; 363 if (Ret) 364 VRegs = getOrCreateVRegs(*Ret); 365 366 Register SwiftErrorVReg = 0; 367 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 368 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 369 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 370 } 371 372 // The target may mess up with the insertion point, but 373 // this is not important as a return is the last instruction 374 // of the block anyway. 375 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); 376 } 377 378 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 379 const BranchInst &BrInst = cast<BranchInst>(U); 380 unsigned Succ = 0; 381 if (!BrInst.isUnconditional()) { 382 // We want a G_BRCOND to the true BB followed by an unconditional branch. 383 Register Tst = getOrCreateVReg(*BrInst.getCondition()); 384 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 385 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 386 MIRBuilder.buildBrCond(Tst, TrueBB); 387 } 388 389 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 390 MachineBasicBlock &TgtBB = getMBB(BrTgt); 391 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 392 393 // If the unconditional target is the layout successor, fallthrough. 394 if (!CurBB.isLayoutSuccessor(&TgtBB)) 395 MIRBuilder.buildBr(TgtBB); 396 397 // Link successors. 398 for (const BasicBlock *Succ : successors(&BrInst)) 399 CurBB.addSuccessor(&getMBB(*Succ)); 400 return true; 401 } 402 403 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 404 MachineBasicBlock *Dst, 405 BranchProbability Prob) { 406 if (!FuncInfo.BPI) { 407 Src->addSuccessorWithoutProb(Dst); 408 return; 409 } 410 if (Prob.isUnknown()) 411 Prob = getEdgeProbability(Src, Dst); 412 Src->addSuccessor(Dst, Prob); 413 } 414 415 BranchProbability 416 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 417 const MachineBasicBlock *Dst) const { 418 const BasicBlock *SrcBB = Src->getBasicBlock(); 419 const BasicBlock *DstBB = Dst->getBasicBlock(); 420 if (!FuncInfo.BPI) { 421 // If BPI is not available, set the default probability as 1 / N, where N is 422 // the number of successors. 423 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 424 return BranchProbability(1, SuccSize); 425 } 426 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 427 } 428 429 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 430 using namespace SwitchCG; 431 // Extract cases from the switch. 432 const SwitchInst &SI = cast<SwitchInst>(U); 433 BranchProbabilityInfo *BPI = FuncInfo.BPI; 434 CaseClusterVector Clusters; 435 Clusters.reserve(SI.getNumCases()); 436 for (auto &I : SI.cases()) { 437 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 438 assert(Succ && "Could not find successor mbb in mapping"); 439 const ConstantInt *CaseVal = I.getCaseValue(); 440 BranchProbability Prob = 441 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 442 : BranchProbability(1, SI.getNumCases() + 1); 443 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 444 } 445 446 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 447 448 // Cluster adjacent cases with the same destination. We do this at all 449 // optimization levels because it's cheap to do and will make codegen faster 450 // if there are many clusters. 451 sortAndRangeify(Clusters); 452 453 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 454 455 // If there is only the default destination, jump there directly. 456 if (Clusters.empty()) { 457 SwitchMBB->addSuccessor(DefaultMBB); 458 if (DefaultMBB != SwitchMBB->getNextNode()) 459 MIB.buildBr(*DefaultMBB); 460 return true; 461 } 462 463 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 464 465 LLVM_DEBUG({ 466 dbgs() << "Case clusters: "; 467 for (const CaseCluster &C : Clusters) { 468 if (C.Kind == CC_JumpTable) 469 dbgs() << "JT:"; 470 if (C.Kind == CC_BitTests) 471 dbgs() << "BT:"; 472 473 C.Low->getValue().print(dbgs(), true); 474 if (C.Low != C.High) { 475 dbgs() << '-'; 476 C.High->getValue().print(dbgs(), true); 477 } 478 dbgs() << ' '; 479 } 480 dbgs() << '\n'; 481 }); 482 483 assert(!Clusters.empty()); 484 SwitchWorkList WorkList; 485 CaseClusterIt First = Clusters.begin(); 486 CaseClusterIt Last = Clusters.end() - 1; 487 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 488 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 489 490 // FIXME: At the moment we don't do any splitting optimizations here like 491 // SelectionDAG does, so this worklist only has one entry. 492 while (!WorkList.empty()) { 493 SwitchWorkListItem W = WorkList.back(); 494 WorkList.pop_back(); 495 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 496 return false; 497 } 498 return true; 499 } 500 501 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 502 MachineBasicBlock *MBB) { 503 // Emit the code for the jump table 504 assert(JT.Reg != -1U && "Should lower JT Header first!"); 505 MachineIRBuilder MIB(*MBB->getParent()); 506 MIB.setMBB(*MBB); 507 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 508 509 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 510 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 511 512 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 513 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 514 } 515 516 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 517 SwitchCG::JumpTableHeader &JTH, 518 MachineBasicBlock *HeaderBB) { 519 MachineIRBuilder MIB(*HeaderBB->getParent()); 520 MIB.setMBB(*HeaderBB); 521 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 522 523 const Value &SValue = *JTH.SValue; 524 // Subtract the lowest switch case value from the value being switched on. 525 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 526 Register SwitchOpReg = getOrCreateVReg(SValue); 527 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 528 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 529 530 // This value may be smaller or larger than the target's pointer type, and 531 // therefore require extension or truncating. 532 Type *PtrIRTy = SValue.getType()->getPointerTo(); 533 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 534 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 535 536 JT.Reg = Sub.getReg(0); 537 538 if (JTH.OmitRangeCheck) { 539 if (JT.MBB != HeaderBB->getNextNode()) 540 MIB.buildBr(*JT.MBB); 541 return true; 542 } 543 544 // Emit the range check for the jump table, and branch to the default block 545 // for the switch statement if the value being switched on exceeds the 546 // largest case in the switch. 547 auto Cst = getOrCreateVReg( 548 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 549 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 550 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 551 552 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 553 554 // Avoid emitting unnecessary branches to the next block. 555 if (JT.MBB != HeaderBB->getNextNode()) 556 BrCond = MIB.buildBr(*JT.MBB); 557 return true; 558 } 559 560 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 561 MachineBasicBlock *SwitchBB, 562 MachineIRBuilder &MIB) { 563 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 564 Register Cond; 565 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 566 MIB.setDebugLoc(CB.DbgLoc); 567 MIB.setMBB(*CB.ThisBB); 568 569 if (CB.PredInfo.NoCmp) { 570 // Branch or fall through to TrueBB. 571 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 572 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 573 CB.ThisBB); 574 CB.ThisBB->normalizeSuccProbs(); 575 if (CB.TrueBB != CB.ThisBB->getNextNode()) 576 MIB.buildBr(*CB.TrueBB); 577 MIB.setDebugLoc(OldDbgLoc); 578 return; 579 } 580 581 const LLT i1Ty = LLT::scalar(1); 582 // Build the compare. 583 if (!CB.CmpMHS) { 584 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 585 Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 586 } else { 587 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 588 "Can only handle SLE ranges"); 589 590 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 591 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 592 593 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 594 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 595 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 596 Cond = 597 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 598 } else { 599 const LLT CmpTy = MRI->getType(CmpOpReg); 600 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 601 auto Diff = MIB.buildConstant(CmpTy, High - Low); 602 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 603 } 604 } 605 606 // Update successor info 607 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 608 609 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 610 CB.ThisBB); 611 612 // TrueBB and FalseBB are always different unless the incoming IR is 613 // degenerate. This only happens when running llc on weird IR. 614 if (CB.TrueBB != CB.FalseBB) 615 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 616 CB.ThisBB->normalizeSuccProbs(); 617 618 // if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock()) 619 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 620 CB.ThisBB); 621 622 // If the lhs block is the next block, invert the condition so that we can 623 // fall through to the lhs instead of the rhs block. 624 if (CB.TrueBB == CB.ThisBB->getNextNode()) { 625 std::swap(CB.TrueBB, CB.FalseBB); 626 auto True = MIB.buildConstant(i1Ty, 1); 627 Cond = MIB.buildXor(i1Ty, Cond, True).getReg(0); 628 } 629 630 MIB.buildBrCond(Cond, *CB.TrueBB); 631 MIB.buildBr(*CB.FalseBB); 632 MIB.setDebugLoc(OldDbgLoc); 633 } 634 635 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 636 MachineBasicBlock *SwitchMBB, 637 MachineBasicBlock *CurMBB, 638 MachineBasicBlock *DefaultMBB, 639 MachineIRBuilder &MIB, 640 MachineFunction::iterator BBI, 641 BranchProbability UnhandledProbs, 642 SwitchCG::CaseClusterIt I, 643 MachineBasicBlock *Fallthrough, 644 bool FallthroughUnreachable) { 645 using namespace SwitchCG; 646 MachineFunction *CurMF = SwitchMBB->getParent(); 647 // FIXME: Optimize away range check based on pivot comparisons. 648 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 649 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 650 BranchProbability DefaultProb = W.DefaultProb; 651 652 // The jump block hasn't been inserted yet; insert it here. 653 MachineBasicBlock *JumpMBB = JT->MBB; 654 CurMF->insert(BBI, JumpMBB); 655 656 // Since the jump table block is separate from the switch block, we need 657 // to keep track of it as a machine predecessor to the default block, 658 // otherwise we lose the phi edges. 659 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 660 CurMBB); 661 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 662 JumpMBB); 663 664 auto JumpProb = I->Prob; 665 auto FallthroughProb = UnhandledProbs; 666 667 // If the default statement is a target of the jump table, we evenly 668 // distribute the default probability to successors of CurMBB. Also 669 // update the probability on the edge from JumpMBB to Fallthrough. 670 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 671 SE = JumpMBB->succ_end(); 672 SI != SE; ++SI) { 673 if (*SI == DefaultMBB) { 674 JumpProb += DefaultProb / 2; 675 FallthroughProb -= DefaultProb / 2; 676 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 677 JumpMBB->normalizeSuccProbs(); 678 } else { 679 // Also record edges from the jump table block to it's successors. 680 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 681 JumpMBB); 682 } 683 } 684 685 // Skip the range check if the fallthrough block is unreachable. 686 if (FallthroughUnreachable) 687 JTH->OmitRangeCheck = true; 688 689 if (!JTH->OmitRangeCheck) 690 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 691 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 692 CurMBB->normalizeSuccProbs(); 693 694 // The jump table header will be inserted in our current block, do the 695 // range check, and fall through to our fallthrough block. 696 JTH->HeaderBB = CurMBB; 697 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 698 699 // If we're in the right place, emit the jump table header right now. 700 if (CurMBB == SwitchMBB) { 701 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 702 return false; 703 JTH->Emitted = true; 704 } 705 return true; 706 } 707 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 708 Value *Cond, 709 MachineBasicBlock *Fallthrough, 710 bool FallthroughUnreachable, 711 BranchProbability UnhandledProbs, 712 MachineBasicBlock *CurMBB, 713 MachineIRBuilder &MIB, 714 MachineBasicBlock *SwitchMBB) { 715 using namespace SwitchCG; 716 const Value *RHS, *LHS, *MHS; 717 CmpInst::Predicate Pred; 718 if (I->Low == I->High) { 719 // Check Cond == I->Low. 720 Pred = CmpInst::ICMP_EQ; 721 LHS = Cond; 722 RHS = I->Low; 723 MHS = nullptr; 724 } else { 725 // Check I->Low <= Cond <= I->High. 726 Pred = CmpInst::ICMP_SLE; 727 LHS = I->Low; 728 MHS = Cond; 729 RHS = I->High; 730 } 731 732 // If Fallthrough is unreachable, fold away the comparison. 733 // The false probability is the sum of all unhandled cases. 734 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 735 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 736 737 emitSwitchCase(CB, SwitchMBB, MIB); 738 return true; 739 } 740 741 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 742 Value *Cond, 743 MachineBasicBlock *SwitchMBB, 744 MachineBasicBlock *DefaultMBB, 745 MachineIRBuilder &MIB) { 746 using namespace SwitchCG; 747 MachineFunction *CurMF = FuncInfo.MF; 748 MachineBasicBlock *NextMBB = nullptr; 749 MachineFunction::iterator BBI(W.MBB); 750 if (++BBI != FuncInfo.MF->end()) 751 NextMBB = &*BBI; 752 753 if (EnableOpts) { 754 // Here, we order cases by probability so the most likely case will be 755 // checked first. However, two clusters can have the same probability in 756 // which case their relative ordering is non-deterministic. So we use Low 757 // as a tie-breaker as clusters are guaranteed to never overlap. 758 llvm::sort(W.FirstCluster, W.LastCluster + 1, 759 [](const CaseCluster &a, const CaseCluster &b) { 760 return a.Prob != b.Prob 761 ? a.Prob > b.Prob 762 : a.Low->getValue().slt(b.Low->getValue()); 763 }); 764 765 // Rearrange the case blocks so that the last one falls through if possible 766 // without changing the order of probabilities. 767 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 768 --I; 769 if (I->Prob > W.LastCluster->Prob) 770 break; 771 if (I->Kind == CC_Range && I->MBB == NextMBB) { 772 std::swap(*I, *W.LastCluster); 773 break; 774 } 775 } 776 } 777 778 // Compute total probability. 779 BranchProbability DefaultProb = W.DefaultProb; 780 BranchProbability UnhandledProbs = DefaultProb; 781 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 782 UnhandledProbs += I->Prob; 783 784 MachineBasicBlock *CurMBB = W.MBB; 785 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 786 bool FallthroughUnreachable = false; 787 MachineBasicBlock *Fallthrough; 788 if (I == W.LastCluster) { 789 // For the last cluster, fall through to the default destination. 790 Fallthrough = DefaultMBB; 791 FallthroughUnreachable = isa<UnreachableInst>( 792 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 793 } else { 794 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 795 CurMF->insert(BBI, Fallthrough); 796 } 797 UnhandledProbs -= I->Prob; 798 799 switch (I->Kind) { 800 case CC_BitTests: { 801 LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented"); 802 return false; // Bit tests currently unimplemented. 803 } 804 case CC_JumpTable: { 805 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 806 UnhandledProbs, I, Fallthrough, 807 FallthroughUnreachable)) { 808 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 809 return false; 810 } 811 break; 812 } 813 case CC_Range: { 814 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 815 FallthroughUnreachable, UnhandledProbs, 816 CurMBB, MIB, SwitchMBB)) { 817 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 818 return false; 819 } 820 break; 821 } 822 } 823 CurMBB = Fallthrough; 824 } 825 826 return true; 827 } 828 829 bool IRTranslator::translateIndirectBr(const User &U, 830 MachineIRBuilder &MIRBuilder) { 831 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 832 833 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 834 MIRBuilder.buildBrIndirect(Tgt); 835 836 // Link successors. 837 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 838 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 839 for (const BasicBlock *Succ : successors(&BrInst)) { 840 // It's legal for indirectbr instructions to have duplicate blocks in the 841 // destination list. We don't allow this in MIR. Skip anything that's 842 // already a successor. 843 if (!AddedSuccessors.insert(Succ).second) 844 continue; 845 CurBB.addSuccessor(&getMBB(*Succ)); 846 } 847 848 return true; 849 } 850 851 static bool isSwiftError(const Value *V) { 852 if (auto Arg = dyn_cast<Argument>(V)) 853 return Arg->hasSwiftErrorAttr(); 854 if (auto AI = dyn_cast<AllocaInst>(V)) 855 return AI->isSwiftError(); 856 return false; 857 } 858 859 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 860 const LoadInst &LI = cast<LoadInst>(U); 861 if (DL->getTypeStoreSize(LI.getType()) == 0) 862 return true; 863 864 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 865 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 866 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 867 868 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 869 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 870 871 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 872 assert(Regs.size() == 1 && "swifterror should be single pointer"); 873 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 874 LI.getPointerOperand()); 875 MIRBuilder.buildCopy(Regs[0], VReg); 876 return true; 877 } 878 879 auto &TLI = *MF->getSubtarget().getTargetLowering(); 880 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL); 881 882 const MDNode *Ranges = 883 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 884 for (unsigned i = 0; i < Regs.size(); ++i) { 885 Register Addr; 886 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 887 888 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 889 Align BaseAlign = getMemOpAlign(LI); 890 AAMDNodes AAMetadata; 891 LI.getAAMetadata(AAMetadata); 892 auto MMO = MF->getMachineMemOperand( 893 Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(), 894 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges, 895 LI.getSyncScopeID(), LI.getOrdering()); 896 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 897 } 898 899 return true; 900 } 901 902 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 903 const StoreInst &SI = cast<StoreInst>(U); 904 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 905 return true; 906 907 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 908 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 909 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 910 911 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 912 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 913 914 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 915 assert(Vals.size() == 1 && "swifterror should be single pointer"); 916 917 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 918 SI.getPointerOperand()); 919 MIRBuilder.buildCopy(VReg, Vals[0]); 920 return true; 921 } 922 923 auto &TLI = *MF->getSubtarget().getTargetLowering(); 924 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 925 926 for (unsigned i = 0; i < Vals.size(); ++i) { 927 Register Addr; 928 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 929 930 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 931 Align BaseAlign = getMemOpAlign(SI); 932 AAMDNodes AAMetadata; 933 SI.getAAMetadata(AAMetadata); 934 auto MMO = MF->getMachineMemOperand( 935 Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(), 936 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr, 937 SI.getSyncScopeID(), SI.getOrdering()); 938 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 939 } 940 return true; 941 } 942 943 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 944 const Value *Src = U.getOperand(0); 945 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 946 947 // getIndexedOffsetInType is designed for GEPs, so the first index is the 948 // usual array element rather than looking into the actual aggregate. 949 SmallVector<Value *, 1> Indices; 950 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 951 952 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 953 for (auto Idx : EVI->indices()) 954 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 955 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 956 for (auto Idx : IVI->indices()) 957 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 958 } else { 959 for (unsigned i = 1; i < U.getNumOperands(); ++i) 960 Indices.push_back(U.getOperand(i)); 961 } 962 963 return 8 * static_cast<uint64_t>( 964 DL.getIndexedOffsetInType(Src->getType(), Indices)); 965 } 966 967 bool IRTranslator::translateExtractValue(const User &U, 968 MachineIRBuilder &MIRBuilder) { 969 const Value *Src = U.getOperand(0); 970 uint64_t Offset = getOffsetFromIndices(U, *DL); 971 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 972 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 973 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 974 auto &DstRegs = allocateVRegs(U); 975 976 for (unsigned i = 0; i < DstRegs.size(); ++i) 977 DstRegs[i] = SrcRegs[Idx++]; 978 979 return true; 980 } 981 982 bool IRTranslator::translateInsertValue(const User &U, 983 MachineIRBuilder &MIRBuilder) { 984 const Value *Src = U.getOperand(0); 985 uint64_t Offset = getOffsetFromIndices(U, *DL); 986 auto &DstRegs = allocateVRegs(U); 987 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 988 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 989 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 990 auto InsertedIt = InsertedRegs.begin(); 991 992 for (unsigned i = 0; i < DstRegs.size(); ++i) { 993 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 994 DstRegs[i] = *InsertedIt++; 995 else 996 DstRegs[i] = SrcRegs[i]; 997 } 998 999 return true; 1000 } 1001 1002 bool IRTranslator::translateSelect(const User &U, 1003 MachineIRBuilder &MIRBuilder) { 1004 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1005 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1006 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1007 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1008 1009 uint16_t Flags = 0; 1010 if (const SelectInst *SI = dyn_cast<SelectInst>(&U)) 1011 Flags = MachineInstr::copyFlagsFromInstruction(*SI); 1012 1013 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1014 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1015 } 1016 1017 return true; 1018 } 1019 1020 bool IRTranslator::translateCopy(const User &U, const Value &V, 1021 MachineIRBuilder &MIRBuilder) { 1022 Register Src = getOrCreateVReg(V); 1023 auto &Regs = *VMap.getVRegs(U); 1024 if (Regs.empty()) { 1025 Regs.push_back(Src); 1026 VMap.getOffsets(U)->push_back(0); 1027 } else { 1028 // If we already assigned a vreg for this instruction, we can't change that. 1029 // Emit a copy to satisfy the users we already emitted. 1030 MIRBuilder.buildCopy(Regs[0], Src); 1031 } 1032 return true; 1033 } 1034 1035 bool IRTranslator::translateBitCast(const User &U, 1036 MachineIRBuilder &MIRBuilder) { 1037 // If we're bitcasting to the source type, we can reuse the source vreg. 1038 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1039 getLLTForType(*U.getType(), *DL)) 1040 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1041 1042 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1043 } 1044 1045 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1046 MachineIRBuilder &MIRBuilder) { 1047 Register Op = getOrCreateVReg(*U.getOperand(0)); 1048 Register Res = getOrCreateVReg(U); 1049 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1050 return true; 1051 } 1052 1053 bool IRTranslator::translateGetElementPtr(const User &U, 1054 MachineIRBuilder &MIRBuilder) { 1055 Value &Op0 = *U.getOperand(0); 1056 Register BaseReg = getOrCreateVReg(Op0); 1057 Type *PtrIRTy = Op0.getType(); 1058 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1059 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1060 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1061 1062 // Normalize Vector GEP - all scalar operands should be converted to the 1063 // splat vector. 1064 unsigned VectorWidth = 0; 1065 if (auto *VT = dyn_cast<VectorType>(U.getType())) 1066 VectorWidth = VT->getNumElements(); 1067 1068 // We might need to splat the base pointer into a vector if the offsets 1069 // are vectors. 1070 if (VectorWidth && !PtrTy.isVector()) { 1071 BaseReg = 1072 MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg) 1073 .getReg(0); 1074 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth); 1075 PtrTy = getLLTForType(*PtrIRTy, *DL); 1076 OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1077 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1078 } 1079 1080 int64_t Offset = 0; 1081 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1082 GTI != E; ++GTI) { 1083 const Value *Idx = GTI.getOperand(); 1084 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1085 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1086 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1087 continue; 1088 } else { 1089 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1090 1091 // If this is a scalar constant or a splat vector of constants, 1092 // handle it quickly. 1093 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1094 Offset += ElementSize * CI->getSExtValue(); 1095 continue; 1096 } 1097 1098 if (Offset != 0) { 1099 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1100 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1101 .getReg(0); 1102 Offset = 0; 1103 } 1104 1105 Register IdxReg = getOrCreateVReg(*Idx); 1106 LLT IdxTy = MRI->getType(IdxReg); 1107 if (IdxTy != OffsetTy) { 1108 if (!IdxTy.isVector() && VectorWidth) { 1109 IdxReg = MIRBuilder.buildSplatVector( 1110 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1111 } 1112 1113 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1114 } 1115 1116 // N = N + Idx * ElementSize; 1117 // Avoid doing it for ElementSize of 1. 1118 Register GepOffsetReg; 1119 if (ElementSize != 1) { 1120 auto ElementSizeMIB = MIRBuilder.buildConstant( 1121 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1122 GepOffsetReg = 1123 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1124 } else 1125 GepOffsetReg = IdxReg; 1126 1127 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1128 } 1129 } 1130 1131 if (Offset != 0) { 1132 auto OffsetMIB = 1133 MIRBuilder.buildConstant(OffsetTy, Offset); 1134 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1135 return true; 1136 } 1137 1138 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1139 return true; 1140 } 1141 1142 bool IRTranslator::translateMemFunc(const CallInst &CI, 1143 MachineIRBuilder &MIRBuilder, 1144 Intrinsic::ID ID) { 1145 1146 // If the source is undef, then just emit a nop. 1147 if (isa<UndefValue>(CI.getArgOperand(1))) 1148 return true; 1149 1150 ArrayRef<Register> Res; 1151 auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true); 1152 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) 1153 ICall.addUse(getOrCreateVReg(**AI)); 1154 1155 Align DstAlign; 1156 Align SrcAlign; 1157 unsigned IsVol = 1158 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) 1159 ->getZExtValue(); 1160 1161 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1162 DstAlign = MCI->getDestAlign().valueOrOne(); 1163 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1164 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1165 DstAlign = MMI->getDestAlign().valueOrOne(); 1166 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1167 } else { 1168 auto *MSI = cast<MemSetInst>(&CI); 1169 DstAlign = MSI->getDestAlign().valueOrOne(); 1170 } 1171 1172 // We need to propagate the tail call flag from the IR inst as an argument. 1173 // Otherwise, we have to pessimize and assume later that we cannot tail call 1174 // any memory intrinsics. 1175 ICall.addImm(CI.isTailCall() ? 1 : 0); 1176 1177 // Create mem operands to store the alignment and volatile info. 1178 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1179 ICall.addMemOperand(MF->getMachineMemOperand( 1180 MachinePointerInfo(CI.getArgOperand(0)), 1181 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1182 if (ID != Intrinsic::memset) 1183 ICall.addMemOperand(MF->getMachineMemOperand( 1184 MachinePointerInfo(CI.getArgOperand(1)), 1185 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1186 1187 return true; 1188 } 1189 1190 void IRTranslator::getStackGuard(Register DstReg, 1191 MachineIRBuilder &MIRBuilder) { 1192 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1193 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1194 auto MIB = 1195 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1196 1197 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1198 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1199 if (!Global) 1200 return; 1201 1202 MachinePointerInfo MPInfo(Global); 1203 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1204 MachineMemOperand::MODereferenceable; 1205 MachineMemOperand *MemRef = 1206 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 1207 DL->getPointerABIAlignment(0)); 1208 MIB.setMemRefs({MemRef}); 1209 } 1210 1211 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1212 MachineIRBuilder &MIRBuilder) { 1213 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1214 MIRBuilder.buildInstr( 1215 Op, {ResRegs[0], ResRegs[1]}, 1216 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1217 1218 return true; 1219 } 1220 1221 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1222 switch (ID) { 1223 default: 1224 break; 1225 case Intrinsic::bswap: 1226 return TargetOpcode::G_BSWAP; 1227 case Intrinsic::bitreverse: 1228 return TargetOpcode::G_BITREVERSE; 1229 case Intrinsic::fshl: 1230 return TargetOpcode::G_FSHL; 1231 case Intrinsic::fshr: 1232 return TargetOpcode::G_FSHR; 1233 case Intrinsic::ceil: 1234 return TargetOpcode::G_FCEIL; 1235 case Intrinsic::cos: 1236 return TargetOpcode::G_FCOS; 1237 case Intrinsic::ctpop: 1238 return TargetOpcode::G_CTPOP; 1239 case Intrinsic::exp: 1240 return TargetOpcode::G_FEXP; 1241 case Intrinsic::exp2: 1242 return TargetOpcode::G_FEXP2; 1243 case Intrinsic::fabs: 1244 return TargetOpcode::G_FABS; 1245 case Intrinsic::copysign: 1246 return TargetOpcode::G_FCOPYSIGN; 1247 case Intrinsic::minnum: 1248 return TargetOpcode::G_FMINNUM; 1249 case Intrinsic::maxnum: 1250 return TargetOpcode::G_FMAXNUM; 1251 case Intrinsic::minimum: 1252 return TargetOpcode::G_FMINIMUM; 1253 case Intrinsic::maximum: 1254 return TargetOpcode::G_FMAXIMUM; 1255 case Intrinsic::canonicalize: 1256 return TargetOpcode::G_FCANONICALIZE; 1257 case Intrinsic::floor: 1258 return TargetOpcode::G_FFLOOR; 1259 case Intrinsic::fma: 1260 return TargetOpcode::G_FMA; 1261 case Intrinsic::log: 1262 return TargetOpcode::G_FLOG; 1263 case Intrinsic::log2: 1264 return TargetOpcode::G_FLOG2; 1265 case Intrinsic::log10: 1266 return TargetOpcode::G_FLOG10; 1267 case Intrinsic::nearbyint: 1268 return TargetOpcode::G_FNEARBYINT; 1269 case Intrinsic::pow: 1270 return TargetOpcode::G_FPOW; 1271 case Intrinsic::rint: 1272 return TargetOpcode::G_FRINT; 1273 case Intrinsic::round: 1274 return TargetOpcode::G_INTRINSIC_ROUND; 1275 case Intrinsic::sin: 1276 return TargetOpcode::G_FSIN; 1277 case Intrinsic::sqrt: 1278 return TargetOpcode::G_FSQRT; 1279 case Intrinsic::trunc: 1280 return TargetOpcode::G_INTRINSIC_TRUNC; 1281 case Intrinsic::readcyclecounter: 1282 return TargetOpcode::G_READCYCLECOUNTER; 1283 case Intrinsic::ptrmask: 1284 return TargetOpcode::G_PTRMASK; 1285 } 1286 return Intrinsic::not_intrinsic; 1287 } 1288 1289 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1290 Intrinsic::ID ID, 1291 MachineIRBuilder &MIRBuilder) { 1292 1293 unsigned Op = getSimpleIntrinsicOpcode(ID); 1294 1295 // Is this a simple intrinsic? 1296 if (Op == Intrinsic::not_intrinsic) 1297 return false; 1298 1299 // Yes. Let's translate it. 1300 SmallVector<llvm::SrcOp, 4> VRegs; 1301 for (auto &Arg : CI.arg_operands()) 1302 VRegs.push_back(getOrCreateVReg(*Arg)); 1303 1304 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1305 MachineInstr::copyFlagsFromInstruction(CI)); 1306 return true; 1307 } 1308 1309 // TODO: Include ConstainedOps.def when all strict instructions are defined. 1310 static unsigned getConstrainedOpcode(Intrinsic::ID ID) { 1311 switch (ID) { 1312 case Intrinsic::experimental_constrained_fadd: 1313 return TargetOpcode::G_STRICT_FADD; 1314 case Intrinsic::experimental_constrained_fsub: 1315 return TargetOpcode::G_STRICT_FSUB; 1316 case Intrinsic::experimental_constrained_fmul: 1317 return TargetOpcode::G_STRICT_FMUL; 1318 case Intrinsic::experimental_constrained_fdiv: 1319 return TargetOpcode::G_STRICT_FDIV; 1320 case Intrinsic::experimental_constrained_frem: 1321 return TargetOpcode::G_STRICT_FREM; 1322 case Intrinsic::experimental_constrained_fma: 1323 return TargetOpcode::G_STRICT_FMA; 1324 case Intrinsic::experimental_constrained_sqrt: 1325 return TargetOpcode::G_STRICT_FSQRT; 1326 default: 1327 return 0; 1328 } 1329 } 1330 1331 bool IRTranslator::translateConstrainedFPIntrinsic( 1332 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) { 1333 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 1334 1335 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID()); 1336 if (!Opcode) 1337 return false; 1338 1339 unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI); 1340 if (EB == fp::ExceptionBehavior::ebIgnore) 1341 Flags |= MachineInstr::NoFPExcept; 1342 1343 SmallVector<llvm::SrcOp, 4> VRegs; 1344 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0))); 1345 if (!FPI.isUnaryOp()) 1346 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1))); 1347 if (FPI.isTernaryOp()) 1348 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2))); 1349 1350 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags); 1351 return true; 1352 } 1353 1354 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1355 MachineIRBuilder &MIRBuilder) { 1356 1357 // If this is a simple intrinsic (that is, we just need to add a def of 1358 // a vreg, and uses for each arg operand, then translate it. 1359 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1360 return true; 1361 1362 switch (ID) { 1363 default: 1364 break; 1365 case Intrinsic::lifetime_start: 1366 case Intrinsic::lifetime_end: { 1367 // No stack colouring in O0, discard region information. 1368 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1369 return true; 1370 1371 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1372 : TargetOpcode::LIFETIME_END; 1373 1374 // Get the underlying objects for the location passed on the lifetime 1375 // marker. 1376 SmallVector<const Value *, 4> Allocas; 1377 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 1378 1379 // Iterate over each underlying object, creating lifetime markers for each 1380 // static alloca. Quit if we find a non-static alloca. 1381 for (const Value *V : Allocas) { 1382 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1383 if (!AI) 1384 continue; 1385 1386 if (!AI->isStaticAlloca()) 1387 return true; 1388 1389 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1390 } 1391 return true; 1392 } 1393 case Intrinsic::dbg_declare: { 1394 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1395 assert(DI.getVariable() && "Missing variable"); 1396 1397 const Value *Address = DI.getAddress(); 1398 if (!Address || isa<UndefValue>(Address)) { 1399 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1400 return true; 1401 } 1402 1403 assert(DI.getVariable()->isValidLocationForIntrinsic( 1404 MIRBuilder.getDebugLoc()) && 1405 "Expected inlined-at fields to agree"); 1406 auto AI = dyn_cast<AllocaInst>(Address); 1407 if (AI && AI->isStaticAlloca()) { 1408 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1409 // instructions (in fact, they get ignored if they *do* exist). 1410 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1411 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1412 } else { 1413 // A dbg.declare describes the address of a source variable, so lower it 1414 // into an indirect DBG_VALUE. 1415 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1416 DI.getVariable(), DI.getExpression()); 1417 } 1418 return true; 1419 } 1420 case Intrinsic::dbg_label: { 1421 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1422 assert(DI.getLabel() && "Missing label"); 1423 1424 assert(DI.getLabel()->isValidLocationForIntrinsic( 1425 MIRBuilder.getDebugLoc()) && 1426 "Expected inlined-at fields to agree"); 1427 1428 MIRBuilder.buildDbgLabel(DI.getLabel()); 1429 return true; 1430 } 1431 case Intrinsic::vaend: 1432 // No target I know of cares about va_end. Certainly no in-tree target 1433 // does. Simplest intrinsic ever! 1434 return true; 1435 case Intrinsic::vastart: { 1436 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1437 Value *Ptr = CI.getArgOperand(0); 1438 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1439 1440 // FIXME: Get alignment 1441 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 1442 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 1443 MachineMemOperand::MOStore, 1444 ListSize, Align(1))); 1445 return true; 1446 } 1447 case Intrinsic::dbg_value: { 1448 // This form of DBG_VALUE is target-independent. 1449 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1450 const Value *V = DI.getValue(); 1451 assert(DI.getVariable()->isValidLocationForIntrinsic( 1452 MIRBuilder.getDebugLoc()) && 1453 "Expected inlined-at fields to agree"); 1454 if (!V) { 1455 // Currently the optimizer can produce this; insert an undef to 1456 // help debugging. Probably the optimizer should not do this. 1457 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1458 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1459 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1460 } else { 1461 for (Register Reg : getOrCreateVRegs(*V)) { 1462 // FIXME: This does not handle register-indirect values at offset 0. The 1463 // direct/indirect thing shouldn't really be handled by something as 1464 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1465 // pretty baked in right now. 1466 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1467 } 1468 } 1469 return true; 1470 } 1471 case Intrinsic::uadd_with_overflow: 1472 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1473 case Intrinsic::sadd_with_overflow: 1474 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1475 case Intrinsic::usub_with_overflow: 1476 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1477 case Intrinsic::ssub_with_overflow: 1478 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1479 case Intrinsic::umul_with_overflow: 1480 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1481 case Intrinsic::smul_with_overflow: 1482 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1483 case Intrinsic::uadd_sat: 1484 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 1485 case Intrinsic::sadd_sat: 1486 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 1487 case Intrinsic::usub_sat: 1488 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 1489 case Intrinsic::ssub_sat: 1490 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 1491 case Intrinsic::fmuladd: { 1492 const TargetMachine &TM = MF->getTarget(); 1493 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1494 Register Dst = getOrCreateVReg(CI); 1495 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 1496 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 1497 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 1498 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 1499 TLI.isFMAFasterThanFMulAndFAdd(*MF, 1500 TLI.getValueType(*DL, CI.getType()))) { 1501 // TODO: Revisit this to see if we should move this part of the 1502 // lowering to the combiner. 1503 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 1504 MachineInstr::copyFlagsFromInstruction(CI)); 1505 } else { 1506 LLT Ty = getLLTForType(*CI.getType(), *DL); 1507 auto FMul = MIRBuilder.buildFMul( 1508 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 1509 MIRBuilder.buildFAdd(Dst, FMul, Op2, 1510 MachineInstr::copyFlagsFromInstruction(CI)); 1511 } 1512 return true; 1513 } 1514 case Intrinsic::memcpy: 1515 case Intrinsic::memmove: 1516 case Intrinsic::memset: 1517 return translateMemFunc(CI, MIRBuilder, ID); 1518 case Intrinsic::eh_typeid_for: { 1519 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1520 Register Reg = getOrCreateVReg(CI); 1521 unsigned TypeID = MF->getTypeIDFor(GV); 1522 MIRBuilder.buildConstant(Reg, TypeID); 1523 return true; 1524 } 1525 case Intrinsic::objectsize: 1526 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1527 1528 case Intrinsic::is_constant: 1529 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1530 1531 case Intrinsic::stackguard: 1532 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1533 return true; 1534 case Intrinsic::stackprotector: { 1535 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1536 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1537 getStackGuard(GuardVal, MIRBuilder); 1538 1539 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1540 int FI = getOrCreateFrameIndex(*Slot); 1541 MF->getFrameInfo().setStackProtectorIndex(FI); 1542 1543 MIRBuilder.buildStore( 1544 GuardVal, getOrCreateVReg(*Slot), 1545 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1546 MachineMemOperand::MOStore | 1547 MachineMemOperand::MOVolatile, 1548 PtrTy.getSizeInBits() / 8, Align(8))); 1549 return true; 1550 } 1551 case Intrinsic::stacksave: { 1552 // Save the stack pointer to the location provided by the intrinsic. 1553 Register Reg = getOrCreateVReg(CI); 1554 Register StackPtr = MF->getSubtarget() 1555 .getTargetLowering() 1556 ->getStackPointerRegisterToSaveRestore(); 1557 1558 // If the target doesn't specify a stack pointer, then fall back. 1559 if (!StackPtr) 1560 return false; 1561 1562 MIRBuilder.buildCopy(Reg, StackPtr); 1563 return true; 1564 } 1565 case Intrinsic::stackrestore: { 1566 // Restore the stack pointer from the location provided by the intrinsic. 1567 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1568 Register StackPtr = MF->getSubtarget() 1569 .getTargetLowering() 1570 ->getStackPointerRegisterToSaveRestore(); 1571 1572 // If the target doesn't specify a stack pointer, then fall back. 1573 if (!StackPtr) 1574 return false; 1575 1576 MIRBuilder.buildCopy(StackPtr, Reg); 1577 return true; 1578 } 1579 case Intrinsic::cttz: 1580 case Intrinsic::ctlz: { 1581 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1582 bool isTrailing = ID == Intrinsic::cttz; 1583 unsigned Opcode = isTrailing 1584 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1585 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1586 : Cst->isZero() ? TargetOpcode::G_CTLZ 1587 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1588 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 1589 {getOrCreateVReg(*CI.getArgOperand(0))}); 1590 return true; 1591 } 1592 case Intrinsic::invariant_start: { 1593 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1594 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 1595 MIRBuilder.buildUndef(Undef); 1596 return true; 1597 } 1598 case Intrinsic::invariant_end: 1599 return true; 1600 case Intrinsic::assume: 1601 case Intrinsic::var_annotation: 1602 case Intrinsic::sideeffect: 1603 // Discard annotate attributes, assumptions, and artificial side-effects. 1604 return true; 1605 case Intrinsic::read_register: { 1606 Value *Arg = CI.getArgOperand(0); 1607 MIRBuilder 1608 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 1609 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 1610 return true; 1611 } 1612 case Intrinsic::write_register: { 1613 Value *Arg = CI.getArgOperand(0); 1614 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 1615 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 1616 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 1617 return true; 1618 } 1619 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 1620 case Intrinsic::INTRINSIC: 1621 #include "llvm/IR/ConstrainedOps.def" 1622 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI), 1623 MIRBuilder); 1624 1625 } 1626 return false; 1627 } 1628 1629 bool IRTranslator::translateInlineAsm(const CallBase &CB, 1630 MachineIRBuilder &MIRBuilder) { 1631 1632 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 1633 1634 if (!ALI) { 1635 LLVM_DEBUG( 1636 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 1637 return false; 1638 } 1639 1640 return ALI->lowerInlineAsm( 1641 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 1642 } 1643 1644 bool IRTranslator::translateCallBase(const CallBase &CB, 1645 MachineIRBuilder &MIRBuilder) { 1646 ArrayRef<Register> Res = getOrCreateVRegs(CB); 1647 1648 SmallVector<ArrayRef<Register>, 8> Args; 1649 Register SwiftInVReg = 0; 1650 Register SwiftErrorVReg = 0; 1651 for (auto &Arg : CB.args()) { 1652 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1653 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 1654 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1655 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 1656 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 1657 &CB, &MIRBuilder.getMBB(), Arg)); 1658 Args.emplace_back(makeArrayRef(SwiftInVReg)); 1659 SwiftErrorVReg = 1660 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 1661 continue; 1662 } 1663 Args.push_back(getOrCreateVRegs(*Arg)); 1664 } 1665 1666 // We don't set HasCalls on MFI here yet because call lowering may decide to 1667 // optimize into tail calls. Instead, we defer that to selection where a final 1668 // scan is done to check if any instructions are calls. 1669 bool Success = 1670 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg, 1671 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 1672 1673 // Check if we just inserted a tail call. 1674 if (Success) { 1675 assert(!HasTailCall && "Can't tail call return twice from block?"); 1676 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1677 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 1678 } 1679 1680 return Success; 1681 } 1682 1683 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1684 const CallInst &CI = cast<CallInst>(U); 1685 auto TII = MF->getTarget().getIntrinsicInfo(); 1686 const Function *F = CI.getCalledFunction(); 1687 1688 // FIXME: support Windows dllimport function calls. 1689 if (F && (F->hasDLLImportStorageClass() || 1690 (MF->getTarget().getTargetTriple().isOSWindows() && 1691 F->hasExternalWeakLinkage()))) 1692 return false; 1693 1694 // FIXME: support control flow guard targets. 1695 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1696 return false; 1697 1698 if (CI.isInlineAsm()) 1699 return translateInlineAsm(CI, MIRBuilder); 1700 1701 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1702 if (F && F->isIntrinsic()) { 1703 ID = F->getIntrinsicID(); 1704 if (TII && ID == Intrinsic::not_intrinsic) 1705 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1706 } 1707 1708 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 1709 return translateCallBase(CI, MIRBuilder); 1710 1711 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1712 1713 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1714 return true; 1715 1716 ArrayRef<Register> ResultRegs; 1717 if (!CI.getType()->isVoidTy()) 1718 ResultRegs = getOrCreateVRegs(CI); 1719 1720 // Ignore the callsite attributes. Backend code is most likely not expecting 1721 // an intrinsic to sometimes have side effects and sometimes not. 1722 MachineInstrBuilder MIB = 1723 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 1724 if (isa<FPMathOperator>(CI)) 1725 MIB->copyIRFlags(CI); 1726 1727 for (auto &Arg : enumerate(CI.arg_operands())) { 1728 // Some intrinsics take metadata parameters. Reject them. 1729 if (isa<MetadataAsValue>(Arg.value())) 1730 return false; 1731 1732 // If this is required to be an immediate, don't materialize it in a 1733 // register. 1734 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 1735 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 1736 // imm arguments are more convenient than cimm (and realistically 1737 // probably sufficient), so use them. 1738 assert(CI->getBitWidth() <= 64 && 1739 "large intrinsic immediates not handled"); 1740 MIB.addImm(CI->getSExtValue()); 1741 } else { 1742 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 1743 } 1744 } else { 1745 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 1746 if (VRegs.size() > 1) 1747 return false; 1748 MIB.addUse(VRegs[0]); 1749 } 1750 } 1751 1752 // Add a MachineMemOperand if it is a target mem intrinsic. 1753 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1754 TargetLowering::IntrinsicInfo Info; 1755 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1756 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1757 Align Alignment = Info.align.getValueOr( 1758 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 1759 1760 uint64_t Size = Info.memVT.getStoreSize(); 1761 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1762 Info.flags, Size, Alignment)); 1763 } 1764 1765 return true; 1766 } 1767 1768 bool IRTranslator::translateInvoke(const User &U, 1769 MachineIRBuilder &MIRBuilder) { 1770 const InvokeInst &I = cast<InvokeInst>(U); 1771 MCContext &Context = MF->getContext(); 1772 1773 const BasicBlock *ReturnBB = I.getSuccessor(0); 1774 const BasicBlock *EHPadBB = I.getSuccessor(1); 1775 1776 const Function *Fn = I.getCalledFunction(); 1777 if (I.isInlineAsm()) 1778 return false; 1779 1780 // FIXME: support invoking patchpoint and statepoint intrinsics. 1781 if (Fn && Fn->isIntrinsic()) 1782 return false; 1783 1784 // FIXME: support whatever these are. 1785 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1786 return false; 1787 1788 // FIXME: support control flow guard targets. 1789 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1790 return false; 1791 1792 // FIXME: support Windows exception handling. 1793 if (!isa<LandingPadInst>(EHPadBB->front())) 1794 return false; 1795 1796 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1797 // the region covered by the try. 1798 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1799 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1800 1801 if (!translateCallBase(I, MIRBuilder)) 1802 return false; 1803 1804 MCSymbol *EndSymbol = Context.createTempSymbol(); 1805 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1806 1807 // FIXME: track probabilities. 1808 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1809 &ReturnMBB = getMBB(*ReturnBB); 1810 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1811 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1812 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1813 MIRBuilder.buildBr(ReturnMBB); 1814 1815 return true; 1816 } 1817 1818 bool IRTranslator::translateCallBr(const User &U, 1819 MachineIRBuilder &MIRBuilder) { 1820 // FIXME: Implement this. 1821 return false; 1822 } 1823 1824 bool IRTranslator::translateLandingPad(const User &U, 1825 MachineIRBuilder &MIRBuilder) { 1826 const LandingPadInst &LP = cast<LandingPadInst>(U); 1827 1828 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1829 1830 MBB.setIsEHPad(); 1831 1832 // If there aren't registers to copy the values into (e.g., during SjLj 1833 // exceptions), then don't bother. 1834 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1835 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1836 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1837 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1838 return true; 1839 1840 // If landingpad's return type is token type, we don't create DAG nodes 1841 // for its exception pointer and selector value. The extraction of exception 1842 // pointer or selector value from token type landingpads is not currently 1843 // supported. 1844 if (LP.getType()->isTokenTy()) 1845 return true; 1846 1847 // Add a label to mark the beginning of the landing pad. Deletion of the 1848 // landing pad can thus be detected via the MachineModuleInfo. 1849 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1850 .addSym(MF->addLandingPad(&MBB)); 1851 1852 LLT Ty = getLLTForType(*LP.getType(), *DL); 1853 Register Undef = MRI->createGenericVirtualRegister(Ty); 1854 MIRBuilder.buildUndef(Undef); 1855 1856 SmallVector<LLT, 2> Tys; 1857 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1858 Tys.push_back(getLLTForType(*Ty, *DL)); 1859 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1860 1861 // Mark exception register as live in. 1862 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1863 if (!ExceptionReg) 1864 return false; 1865 1866 MBB.addLiveIn(ExceptionReg); 1867 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 1868 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1869 1870 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1871 if (!SelectorReg) 1872 return false; 1873 1874 MBB.addLiveIn(SelectorReg); 1875 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1876 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1877 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1878 1879 return true; 1880 } 1881 1882 bool IRTranslator::translateAlloca(const User &U, 1883 MachineIRBuilder &MIRBuilder) { 1884 auto &AI = cast<AllocaInst>(U); 1885 1886 if (AI.isSwiftError()) 1887 return true; 1888 1889 if (AI.isStaticAlloca()) { 1890 Register Res = getOrCreateVReg(AI); 1891 int FI = getOrCreateFrameIndex(AI); 1892 MIRBuilder.buildFrameIndex(Res, FI); 1893 return true; 1894 } 1895 1896 // FIXME: support stack probing for Windows. 1897 if (MF->getTarget().getTargetTriple().isOSWindows()) 1898 return false; 1899 1900 // Now we're in the harder dynamic case. 1901 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 1902 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1903 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1904 if (MRI->getType(NumElts) != IntPtrTy) { 1905 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1906 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1907 NumElts = ExtElts; 1908 } 1909 1910 Type *Ty = AI.getAllocatedType(); 1911 1912 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1913 Register TySize = 1914 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 1915 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1916 1917 // Round the size of the allocation up to the stack alignment size 1918 // by add SA-1 to the size. This doesn't overflow because we're computing 1919 // an address inside an alloca. 1920 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 1921 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 1922 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 1923 MachineInstr::NoUWrap); 1924 auto AlignCst = 1925 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 1926 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 1927 1928 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 1929 if (Alignment <= StackAlign) 1930 Alignment = Align(1); 1931 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 1932 1933 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 1934 assert(MF->getFrameInfo().hasVarSizedObjects()); 1935 return true; 1936 } 1937 1938 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1939 // FIXME: We may need more info about the type. Because of how LLT works, 1940 // we're completely discarding the i64/double distinction here (amongst 1941 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1942 // anyway but that's not guaranteed. 1943 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 1944 {getOrCreateVReg(*U.getOperand(0)), 1945 uint64_t(DL->getABITypeAlignment(U.getType()))}); 1946 return true; 1947 } 1948 1949 bool IRTranslator::translateInsertElement(const User &U, 1950 MachineIRBuilder &MIRBuilder) { 1951 // If it is a <1 x Ty> vector, use the scalar as it is 1952 // not a legal vector type in LLT. 1953 if (cast<VectorType>(U.getType())->getNumElements() == 1) 1954 return translateCopy(U, *U.getOperand(1), MIRBuilder); 1955 1956 Register Res = getOrCreateVReg(U); 1957 Register Val = getOrCreateVReg(*U.getOperand(0)); 1958 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1959 Register Idx = getOrCreateVReg(*U.getOperand(2)); 1960 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1961 return true; 1962 } 1963 1964 bool IRTranslator::translateExtractElement(const User &U, 1965 MachineIRBuilder &MIRBuilder) { 1966 // If it is a <1 x Ty> vector, use the scalar as it is 1967 // not a legal vector type in LLT. 1968 if (cast<VectorType>(U.getOperand(0)->getType())->getNumElements() == 1) 1969 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1970 1971 Register Res = getOrCreateVReg(U); 1972 Register Val = getOrCreateVReg(*U.getOperand(0)); 1973 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1974 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1975 Register Idx; 1976 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1977 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1978 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1979 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1980 Idx = getOrCreateVReg(*NewIdxCI); 1981 } 1982 } 1983 if (!Idx) 1984 Idx = getOrCreateVReg(*U.getOperand(1)); 1985 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1986 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1987 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0); 1988 } 1989 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1990 return true; 1991 } 1992 1993 bool IRTranslator::translateShuffleVector(const User &U, 1994 MachineIRBuilder &MIRBuilder) { 1995 ArrayRef<int> Mask; 1996 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 1997 Mask = SVI->getShuffleMask(); 1998 else 1999 Mask = cast<ConstantExpr>(U).getShuffleMask(); 2000 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 2001 MIRBuilder 2002 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 2003 {getOrCreateVReg(*U.getOperand(0)), 2004 getOrCreateVReg(*U.getOperand(1))}) 2005 .addShuffleMask(MaskAlloc); 2006 return true; 2007 } 2008 2009 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 2010 const PHINode &PI = cast<PHINode>(U); 2011 2012 SmallVector<MachineInstr *, 4> Insts; 2013 for (auto Reg : getOrCreateVRegs(PI)) { 2014 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 2015 Insts.push_back(MIB.getInstr()); 2016 } 2017 2018 PendingPHIs.emplace_back(&PI, std::move(Insts)); 2019 return true; 2020 } 2021 2022 bool IRTranslator::translateAtomicCmpXchg(const User &U, 2023 MachineIRBuilder &MIRBuilder) { 2024 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 2025 2026 if (I.isWeak()) 2027 return false; 2028 2029 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2030 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2031 2032 Type *ResType = I.getType(); 2033 Type *ValType = ResType->Type::getStructElementType(0); 2034 2035 auto Res = getOrCreateVRegs(I); 2036 Register OldValRes = Res[0]; 2037 Register SuccessRes = Res[1]; 2038 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2039 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 2040 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 2041 2042 AAMDNodes AAMetadata; 2043 I.getAAMetadata(AAMetadata); 2044 2045 MIRBuilder.buildAtomicCmpXchgWithSuccess( 2046 OldValRes, SuccessRes, Addr, Cmp, NewVal, 2047 *MF->getMachineMemOperand( 2048 MachinePointerInfo(I.getPointerOperand()), Flags, 2049 DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr, 2050 I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering())); 2051 return true; 2052 } 2053 2054 bool IRTranslator::translateAtomicRMW(const User &U, 2055 MachineIRBuilder &MIRBuilder) { 2056 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 2057 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2058 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2059 2060 Type *ResType = I.getType(); 2061 2062 Register Res = getOrCreateVReg(I); 2063 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2064 Register Val = getOrCreateVReg(*I.getValOperand()); 2065 2066 unsigned Opcode = 0; 2067 switch (I.getOperation()) { 2068 default: 2069 return false; 2070 case AtomicRMWInst::Xchg: 2071 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2072 break; 2073 case AtomicRMWInst::Add: 2074 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2075 break; 2076 case AtomicRMWInst::Sub: 2077 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2078 break; 2079 case AtomicRMWInst::And: 2080 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2081 break; 2082 case AtomicRMWInst::Nand: 2083 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2084 break; 2085 case AtomicRMWInst::Or: 2086 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2087 break; 2088 case AtomicRMWInst::Xor: 2089 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2090 break; 2091 case AtomicRMWInst::Max: 2092 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2093 break; 2094 case AtomicRMWInst::Min: 2095 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2096 break; 2097 case AtomicRMWInst::UMax: 2098 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2099 break; 2100 case AtomicRMWInst::UMin: 2101 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2102 break; 2103 case AtomicRMWInst::FAdd: 2104 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2105 break; 2106 case AtomicRMWInst::FSub: 2107 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2108 break; 2109 } 2110 2111 AAMDNodes AAMetadata; 2112 I.getAAMetadata(AAMetadata); 2113 2114 MIRBuilder.buildAtomicRMW( 2115 Opcode, Res, Addr, Val, 2116 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2117 Flags, DL->getTypeStoreSize(ResType), 2118 getMemOpAlign(I), AAMetadata, nullptr, 2119 I.getSyncScopeID(), I.getOrdering())); 2120 return true; 2121 } 2122 2123 bool IRTranslator::translateFence(const User &U, 2124 MachineIRBuilder &MIRBuilder) { 2125 const FenceInst &Fence = cast<FenceInst>(U); 2126 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2127 Fence.getSyncScopeID()); 2128 return true; 2129 } 2130 2131 bool IRTranslator::translateFreeze(const User &U, 2132 MachineIRBuilder &MIRBuilder) { 2133 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 2134 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 2135 2136 assert(DstRegs.size() == SrcRegs.size() && 2137 "Freeze with different source and destination type?"); 2138 2139 for (unsigned I = 0; I < DstRegs.size(); ++I) { 2140 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 2141 } 2142 2143 return true; 2144 } 2145 2146 void IRTranslator::finishPendingPhis() { 2147 #ifndef NDEBUG 2148 DILocationVerifier Verifier; 2149 GISelObserverWrapper WrapperObserver(&Verifier); 2150 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2151 #endif // ifndef NDEBUG 2152 for (auto &Phi : PendingPHIs) { 2153 const PHINode *PI = Phi.first; 2154 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2155 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2156 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2157 #ifndef NDEBUG 2158 Verifier.setCurrentInst(PI); 2159 #endif // ifndef NDEBUG 2160 2161 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2162 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2163 auto IRPred = PI->getIncomingBlock(i); 2164 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2165 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2166 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2167 continue; 2168 SeenPreds.insert(Pred); 2169 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2170 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2171 MIB.addUse(ValRegs[j]); 2172 MIB.addMBB(Pred); 2173 } 2174 } 2175 } 2176 } 2177 } 2178 2179 bool IRTranslator::valueIsSplit(const Value &V, 2180 SmallVectorImpl<uint64_t> *Offsets) { 2181 SmallVector<LLT, 4> SplitTys; 2182 if (Offsets && !Offsets->empty()) 2183 Offsets->clear(); 2184 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2185 return SplitTys.size() > 1; 2186 } 2187 2188 bool IRTranslator::translate(const Instruction &Inst) { 2189 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2190 // We only emit constants into the entry block from here. To prevent jumpy 2191 // debug behaviour set the line to 0. 2192 if (const DebugLoc &DL = Inst.getDebugLoc()) 2193 EntryBuilder->setDebugLoc( 2194 DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 2195 else 2196 EntryBuilder->setDebugLoc(DebugLoc()); 2197 2198 switch (Inst.getOpcode()) { 2199 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2200 case Instruction::OPCODE: \ 2201 return translate##OPCODE(Inst, *CurBuilder.get()); 2202 #include "llvm/IR/Instruction.def" 2203 default: 2204 return false; 2205 } 2206 } 2207 2208 bool IRTranslator::translate(const Constant &C, Register Reg) { 2209 if (auto CI = dyn_cast<ConstantInt>(&C)) 2210 EntryBuilder->buildConstant(Reg, *CI); 2211 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2212 EntryBuilder->buildFConstant(Reg, *CF); 2213 else if (isa<UndefValue>(C)) 2214 EntryBuilder->buildUndef(Reg); 2215 else if (isa<ConstantPointerNull>(C)) 2216 EntryBuilder->buildConstant(Reg, 0); 2217 else if (auto GV = dyn_cast<GlobalValue>(&C)) 2218 EntryBuilder->buildGlobalValue(Reg, GV); 2219 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2220 if (!CAZ->getType()->isVectorTy()) 2221 return false; 2222 // Return the scalar if it is a <1 x Ty> vector. 2223 if (CAZ->getNumElements() == 1) 2224 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get()); 2225 SmallVector<Register, 4> Ops; 2226 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 2227 Constant &Elt = *CAZ->getElementValue(i); 2228 Ops.push_back(getOrCreateVReg(Elt)); 2229 } 2230 EntryBuilder->buildBuildVector(Reg, Ops); 2231 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2232 // Return the scalar if it is a <1 x Ty> vector. 2233 if (CV->getNumElements() == 1) 2234 return translateCopy(C, *CV->getElementAsConstant(0), 2235 *EntryBuilder.get()); 2236 SmallVector<Register, 4> Ops; 2237 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 2238 Constant &Elt = *CV->getElementAsConstant(i); 2239 Ops.push_back(getOrCreateVReg(Elt)); 2240 } 2241 EntryBuilder->buildBuildVector(Reg, Ops); 2242 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 2243 switch(CE->getOpcode()) { 2244 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2245 case Instruction::OPCODE: \ 2246 return translate##OPCODE(*CE, *EntryBuilder.get()); 2247 #include "llvm/IR/Instruction.def" 2248 default: 2249 return false; 2250 } 2251 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 2252 if (CV->getNumOperands() == 1) 2253 return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get()); 2254 SmallVector<Register, 4> Ops; 2255 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 2256 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 2257 } 2258 EntryBuilder->buildBuildVector(Reg, Ops); 2259 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 2260 EntryBuilder->buildBlockAddress(Reg, BA); 2261 } else 2262 return false; 2263 2264 return true; 2265 } 2266 2267 void IRTranslator::finalizeBasicBlock() { 2268 for (auto &JTCase : SL->JTCases) { 2269 // Emit header first, if it wasn't already emitted. 2270 if (!JTCase.first.Emitted) 2271 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 2272 2273 emitJumpTable(JTCase.second, JTCase.second.MBB); 2274 } 2275 SL->JTCases.clear(); 2276 } 2277 2278 void IRTranslator::finalizeFunction() { 2279 // Release the memory used by the different maps we 2280 // needed during the translation. 2281 PendingPHIs.clear(); 2282 VMap.reset(); 2283 FrameIndices.clear(); 2284 MachinePreds.clear(); 2285 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 2286 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 2287 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 2288 EntryBuilder.reset(); 2289 CurBuilder.reset(); 2290 FuncInfo.clear(); 2291 } 2292 2293 /// Returns true if a BasicBlock \p BB within a variadic function contains a 2294 /// variadic musttail call. 2295 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 2296 if (!IsVarArg) 2297 return false; 2298 2299 // Walk the block backwards, because tail calls usually only appear at the end 2300 // of a block. 2301 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { 2302 const auto *CI = dyn_cast<CallInst>(&I); 2303 return CI && CI->isMustTailCall(); 2304 }); 2305 } 2306 2307 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 2308 MF = &CurMF; 2309 const Function &F = MF->getFunction(); 2310 if (F.empty()) 2311 return false; 2312 GISelCSEAnalysisWrapper &Wrapper = 2313 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 2314 // Set the CSEConfig and run the analysis. 2315 GISelCSEInfo *CSEInfo = nullptr; 2316 TPC = &getAnalysis<TargetPassConfig>(); 2317 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 2318 ? EnableCSEInIRTranslator 2319 : TPC->isGISelCSEEnabled(); 2320 2321 if (EnableCSE) { 2322 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2323 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 2324 EntryBuilder->setCSEInfo(CSEInfo); 2325 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2326 CurBuilder->setCSEInfo(CSEInfo); 2327 } else { 2328 EntryBuilder = std::make_unique<MachineIRBuilder>(); 2329 CurBuilder = std::make_unique<MachineIRBuilder>(); 2330 } 2331 CLI = MF->getSubtarget().getCallLowering(); 2332 CurBuilder->setMF(*MF); 2333 EntryBuilder->setMF(*MF); 2334 MRI = &MF->getRegInfo(); 2335 DL = &F.getParent()->getDataLayout(); 2336 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2337 FuncInfo.MF = MF; 2338 FuncInfo.BPI = nullptr; 2339 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2340 const TargetMachine &TM = MF->getTarget(); 2341 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 2342 SL->init(TLI, TM, *DL); 2343 2344 EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F); 2345 2346 assert(PendingPHIs.empty() && "stale PHIs"); 2347 2348 if (!DL->isLittleEndian()) { 2349 // Currently we don't properly handle big endian code. 2350 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2351 F.getSubprogram(), &F.getEntryBlock()); 2352 R << "unable to translate in big endian mode"; 2353 reportTranslationError(*MF, *TPC, *ORE, R); 2354 } 2355 2356 // Release the per-function state when we return, whether we succeeded or not. 2357 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 2358 2359 // Setup a separate basic-block for the arguments and constants 2360 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 2361 MF->push_back(EntryBB); 2362 EntryBuilder->setMBB(*EntryBB); 2363 2364 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 2365 SwiftError.setFunction(CurMF); 2366 SwiftError.createEntriesInEntryBlock(DbgLoc); 2367 2368 bool IsVarArg = F.isVarArg(); 2369 bool HasMustTailInVarArgFn = false; 2370 2371 // Create all blocks, in IR order, to preserve the layout. 2372 for (const BasicBlock &BB: F) { 2373 auto *&MBB = BBToMBB[&BB]; 2374 2375 MBB = MF->CreateMachineBasicBlock(&BB); 2376 MF->push_back(MBB); 2377 2378 if (BB.hasAddressTaken()) 2379 MBB->setHasAddressTaken(); 2380 2381 if (!HasMustTailInVarArgFn) 2382 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 2383 } 2384 2385 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 2386 2387 // Make our arguments/constants entry block fallthrough to the IR entry block. 2388 EntryBB->addSuccessor(&getMBB(F.front())); 2389 2390 // Lower the actual args into this basic block. 2391 SmallVector<ArrayRef<Register>, 8> VRegArgs; 2392 for (const Argument &Arg: F.args()) { 2393 if (DL->getTypeStoreSize(Arg.getType()) == 0) 2394 continue; // Don't handle zero sized types. 2395 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 2396 VRegArgs.push_back(VRegs); 2397 2398 if (Arg.hasSwiftErrorAttr()) { 2399 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 2400 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 2401 } 2402 } 2403 2404 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 2405 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2406 F.getSubprogram(), &F.getEntryBlock()); 2407 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 2408 reportTranslationError(*MF, *TPC, *ORE, R); 2409 return false; 2410 } 2411 2412 // Need to visit defs before uses when translating instructions. 2413 GISelObserverWrapper WrapperObserver; 2414 if (EnableCSE && CSEInfo) 2415 WrapperObserver.addObserver(CSEInfo); 2416 { 2417 ReversePostOrderTraversal<const Function *> RPOT(&F); 2418 #ifndef NDEBUG 2419 DILocationVerifier Verifier; 2420 WrapperObserver.addObserver(&Verifier); 2421 #endif // ifndef NDEBUG 2422 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2423 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 2424 for (const BasicBlock *BB : RPOT) { 2425 MachineBasicBlock &MBB = getMBB(*BB); 2426 // Set the insertion point of all the following translations to 2427 // the end of this basic block. 2428 CurBuilder->setMBB(MBB); 2429 HasTailCall = false; 2430 for (const Instruction &Inst : *BB) { 2431 // If we translated a tail call in the last step, then we know 2432 // everything after the call is either a return, or something that is 2433 // handled by the call itself. (E.g. a lifetime marker or assume 2434 // intrinsic.) In this case, we should stop translating the block and 2435 // move on. 2436 if (HasTailCall) 2437 break; 2438 #ifndef NDEBUG 2439 Verifier.setCurrentInst(&Inst); 2440 #endif // ifndef NDEBUG 2441 if (translate(Inst)) 2442 continue; 2443 2444 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2445 Inst.getDebugLoc(), BB); 2446 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 2447 2448 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 2449 std::string InstStrStorage; 2450 raw_string_ostream InstStr(InstStrStorage); 2451 InstStr << Inst; 2452 2453 R << ": '" << InstStr.str() << "'"; 2454 } 2455 2456 reportTranslationError(*MF, *TPC, *ORE, R); 2457 return false; 2458 } 2459 2460 finalizeBasicBlock(); 2461 } 2462 #ifndef NDEBUG 2463 WrapperObserver.removeObserver(&Verifier); 2464 #endif 2465 } 2466 2467 finishPendingPhis(); 2468 2469 SwiftError.propagateVRegs(); 2470 2471 // Merge the argument lowering and constants block with its single 2472 // successor, the LLVM-IR entry block. We want the basic block to 2473 // be maximal. 2474 assert(EntryBB->succ_size() == 1 && 2475 "Custom BB used for lowering should have only one successor"); 2476 // Get the successor of the current entry block. 2477 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 2478 assert(NewEntryBB.pred_size() == 1 && 2479 "LLVM-IR entry block has a predecessor!?"); 2480 // Move all the instruction from the current entry block to the 2481 // new entry block. 2482 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 2483 EntryBB->end()); 2484 2485 // Update the live-in information for the new entry block. 2486 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 2487 NewEntryBB.addLiveIn(LiveIn); 2488 NewEntryBB.sortUniqueLiveIns(); 2489 2490 // Get rid of the now empty basic block. 2491 EntryBB->removeSuccessor(&NewEntryBB); 2492 MF->remove(EntryBB); 2493 MF->DeleteMachineBasicBlock(EntryBB); 2494 2495 assert(&MF->front() == &NewEntryBB && 2496 "New entry wasn't next in the list of basic block!"); 2497 2498 // Initialize stack protector information. 2499 StackProtector &SP = getAnalysis<StackProtector>(); 2500 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 2501 2502 return false; 2503 } 2504