1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BranchProbabilityInfo.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
26 #include "llvm/CodeGen/LowLevelType.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/StackProtector.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetPassConfig.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfo.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GetElementPtrTypeIterator.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/User.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/InitializePasses.h"
60 #include "llvm/MC/MCContext.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CodeGen.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/LowLevelTypeImpl.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetIntrinsicInfo.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <string>
76 #include <utility>
77 #include <vector>
78 
79 #define DEBUG_TYPE "irtranslator"
80 
81 using namespace llvm;
82 
83 static cl::opt<bool>
84     EnableCSEInIRTranslator("enable-cse-in-irtranslator",
85                             cl::desc("Should enable CSE in irtranslator"),
86                             cl::Optional, cl::init(false));
87 char IRTranslator::ID = 0;
88 
89 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
90                 false, false)
91 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
92 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
93 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
94                 false, false)
95 
96 static void reportTranslationError(MachineFunction &MF,
97                                    const TargetPassConfig &TPC,
98                                    OptimizationRemarkEmitter &ORE,
99                                    OptimizationRemarkMissed &R) {
100   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
101 
102   // Print the function name explicitly if we don't have a debug location (which
103   // makes the diagnostic less useful) or if we're going to emit a raw error.
104   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
105     R << (" (in function: " + MF.getName() + ")").str();
106 
107   if (TPC.isGlobalISelAbortEnabled())
108     report_fatal_error(R.getMsg());
109   else
110     ORE.emit(R);
111 }
112 
113 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { }
114 
115 #ifndef NDEBUG
116 namespace {
117 /// Verify that every instruction created has the same DILocation as the
118 /// instruction being translated.
119 class DILocationVerifier : public GISelChangeObserver {
120   const Instruction *CurrInst = nullptr;
121 
122 public:
123   DILocationVerifier() = default;
124   ~DILocationVerifier() = default;
125 
126   const Instruction *getCurrentInst() const { return CurrInst; }
127   void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
128 
129   void erasingInstr(MachineInstr &MI) override {}
130   void changingInstr(MachineInstr &MI) override {}
131   void changedInstr(MachineInstr &MI) override {}
132 
133   void createdInstr(MachineInstr &MI) override {
134     assert(getCurrentInst() && "Inserted instruction without a current MI");
135 
136     // Only print the check message if we're actually checking it.
137 #ifndef NDEBUG
138     LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
139                       << " was copied to " << MI);
140 #endif
141     // We allow insts in the entry block to have a debug loc line of 0 because
142     // they could have originated from constants, and we don't want a jumpy
143     // debug experience.
144     assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
145             MI.getDebugLoc().getLine() == 0) &&
146            "Line info was not transferred to all instructions");
147   }
148 };
149 } // namespace
150 #endif // ifndef NDEBUG
151 
152 
153 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
154   AU.addRequired<StackProtector>();
155   AU.addRequired<TargetPassConfig>();
156   AU.addRequired<GISelCSEAnalysisWrapperPass>();
157   getSelectionDAGFallbackAnalysisUsage(AU);
158   MachineFunctionPass::getAnalysisUsage(AU);
159 }
160 
161 IRTranslator::ValueToVRegInfo::VRegListT &
162 IRTranslator::allocateVRegs(const Value &Val) {
163   assert(!VMap.contains(Val) && "Value already allocated in VMap");
164   auto *Regs = VMap.getVRegs(Val);
165   auto *Offsets = VMap.getOffsets(Val);
166   SmallVector<LLT, 4> SplitTys;
167   computeValueLLTs(*DL, *Val.getType(), SplitTys,
168                    Offsets->empty() ? Offsets : nullptr);
169   for (unsigned i = 0; i < SplitTys.size(); ++i)
170     Regs->push_back(0);
171   return *Regs;
172 }
173 
174 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
175   auto VRegsIt = VMap.findVRegs(Val);
176   if (VRegsIt != VMap.vregs_end())
177     return *VRegsIt->second;
178 
179   if (Val.getType()->isVoidTy())
180     return *VMap.getVRegs(Val);
181 
182   // Create entry for this type.
183   auto *VRegs = VMap.getVRegs(Val);
184   auto *Offsets = VMap.getOffsets(Val);
185 
186   assert(Val.getType()->isSized() &&
187          "Don't know how to create an empty vreg");
188 
189   SmallVector<LLT, 4> SplitTys;
190   computeValueLLTs(*DL, *Val.getType(), SplitTys,
191                    Offsets->empty() ? Offsets : nullptr);
192 
193   if (!isa<Constant>(Val)) {
194     for (auto Ty : SplitTys)
195       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
196     return *VRegs;
197   }
198 
199   if (Val.getType()->isAggregateType()) {
200     // UndefValue, ConstantAggregateZero
201     auto &C = cast<Constant>(Val);
202     unsigned Idx = 0;
203     while (auto Elt = C.getAggregateElement(Idx++)) {
204       auto EltRegs = getOrCreateVRegs(*Elt);
205       llvm::copy(EltRegs, std::back_inserter(*VRegs));
206     }
207   } else {
208     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
209     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
210     bool Success = translate(cast<Constant>(Val), VRegs->front());
211     if (!Success) {
212       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
213                                  MF->getFunction().getSubprogram(),
214                                  &MF->getFunction().getEntryBlock());
215       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
216       reportTranslationError(*MF, *TPC, *ORE, R);
217       return *VRegs;
218     }
219   }
220 
221   return *VRegs;
222 }
223 
224 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
225   if (FrameIndices.find(&AI) != FrameIndices.end())
226     return FrameIndices[&AI];
227 
228   uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
229   uint64_t Size =
230       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
231 
232   // Always allocate at least one byte.
233   Size = std::max<uint64_t>(Size, 1u);
234 
235   unsigned Alignment = AI.getAlignment();
236   if (!Alignment)
237     Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
238 
239   int &FI = FrameIndices[&AI];
240   FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
241   return FI;
242 }
243 
244 Align IRTranslator::getMemOpAlign(const Instruction &I) {
245   if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
246     return SI->getAlign();
247   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
248     return LI->getAlign();
249   }
250   if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
251     // TODO(PR27168): This instruction has no alignment attribute, but unlike
252     // the default alignment for load/store, the default here is to assume
253     // it has NATURAL alignment, not DataLayout-specified alignment.
254     const DataLayout &DL = AI->getModule()->getDataLayout();
255     return Align(DL.getTypeStoreSize(AI->getCompareOperand()->getType()));
256   }
257   if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
258     // TODO(PR27168): This instruction has no alignment attribute, but unlike
259     // the default alignment for load/store, the default here is to assume
260     // it has NATURAL alignment, not DataLayout-specified alignment.
261     const DataLayout &DL = AI->getModule()->getDataLayout();
262     return Align(DL.getTypeStoreSize(AI->getValOperand()->getType()));
263   }
264   OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
265   R << "unable to translate memop: " << ore::NV("Opcode", &I);
266   reportTranslationError(*MF, *TPC, *ORE, R);
267   return Align(1);
268 }
269 
270 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
271   MachineBasicBlock *&MBB = BBToMBB[&BB];
272   assert(MBB && "BasicBlock was not encountered before");
273   return *MBB;
274 }
275 
276 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
277   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
278   MachinePreds[Edge].push_back(NewPred);
279 }
280 
281 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
282                                      MachineIRBuilder &MIRBuilder) {
283   // Get or create a virtual register for each value.
284   // Unless the value is a Constant => loadimm cst?
285   // or inline constant each time?
286   // Creation of a virtual register needs to have a size.
287   Register Op0 = getOrCreateVReg(*U.getOperand(0));
288   Register Op1 = getOrCreateVReg(*U.getOperand(1));
289   Register Res = getOrCreateVReg(U);
290   uint16_t Flags = 0;
291   if (isa<Instruction>(U)) {
292     const Instruction &I = cast<Instruction>(U);
293     Flags = MachineInstr::copyFlagsFromInstruction(I);
294   }
295 
296   MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
297   return true;
298 }
299 
300 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
301   // -0.0 - X --> G_FNEG
302   if (isa<Constant>(U.getOperand(0)) &&
303       U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
304     Register Op1 = getOrCreateVReg(*U.getOperand(1));
305     Register Res = getOrCreateVReg(U);
306     uint16_t Flags = 0;
307     if (isa<Instruction>(U)) {
308       const Instruction &I = cast<Instruction>(U);
309       Flags = MachineInstr::copyFlagsFromInstruction(I);
310     }
311     // Negate the last operand of the FSUB
312     MIRBuilder.buildFNeg(Res, Op1, Flags);
313     return true;
314   }
315   return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
316 }
317 
318 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
319   Register Op0 = getOrCreateVReg(*U.getOperand(0));
320   Register Res = getOrCreateVReg(U);
321   uint16_t Flags = 0;
322   if (isa<Instruction>(U)) {
323     const Instruction &I = cast<Instruction>(U);
324     Flags = MachineInstr::copyFlagsFromInstruction(I);
325   }
326   MIRBuilder.buildFNeg(Res, Op0, Flags);
327   return true;
328 }
329 
330 bool IRTranslator::translateCompare(const User &U,
331                                     MachineIRBuilder &MIRBuilder) {
332   auto *CI = dyn_cast<CmpInst>(&U);
333   Register Op0 = getOrCreateVReg(*U.getOperand(0));
334   Register Op1 = getOrCreateVReg(*U.getOperand(1));
335   Register Res = getOrCreateVReg(U);
336   CmpInst::Predicate Pred =
337       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
338                                     cast<ConstantExpr>(U).getPredicate());
339   if (CmpInst::isIntPredicate(Pred))
340     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
341   else if (Pred == CmpInst::FCMP_FALSE)
342     MIRBuilder.buildCopy(
343         Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
344   else if (Pred == CmpInst::FCMP_TRUE)
345     MIRBuilder.buildCopy(
346         Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
347   else {
348     assert(CI && "Instruction should be CmpInst");
349     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1,
350                          MachineInstr::copyFlagsFromInstruction(*CI));
351   }
352 
353   return true;
354 }
355 
356 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
357   const ReturnInst &RI = cast<ReturnInst>(U);
358   const Value *Ret = RI.getReturnValue();
359   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
360     Ret = nullptr;
361 
362   ArrayRef<Register> VRegs;
363   if (Ret)
364     VRegs = getOrCreateVRegs(*Ret);
365 
366   Register SwiftErrorVReg = 0;
367   if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
368     SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
369         &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
370   }
371 
372   // The target may mess up with the insertion point, but
373   // this is not important as a return is the last instruction
374   // of the block anyway.
375   return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg);
376 }
377 
378 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
379   const BranchInst &BrInst = cast<BranchInst>(U);
380   unsigned Succ = 0;
381   if (!BrInst.isUnconditional()) {
382     // We want a G_BRCOND to the true BB followed by an unconditional branch.
383     Register Tst = getOrCreateVReg(*BrInst.getCondition());
384     const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
385     MachineBasicBlock &TrueBB = getMBB(TrueTgt);
386     MIRBuilder.buildBrCond(Tst, TrueBB);
387   }
388 
389   const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
390   MachineBasicBlock &TgtBB = getMBB(BrTgt);
391   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
392 
393   // If the unconditional target is the layout successor, fallthrough.
394   if (!CurBB.isLayoutSuccessor(&TgtBB))
395     MIRBuilder.buildBr(TgtBB);
396 
397   // Link successors.
398   for (const BasicBlock *Succ : successors(&BrInst))
399     CurBB.addSuccessor(&getMBB(*Succ));
400   return true;
401 }
402 
403 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
404                                         MachineBasicBlock *Dst,
405                                         BranchProbability Prob) {
406   if (!FuncInfo.BPI) {
407     Src->addSuccessorWithoutProb(Dst);
408     return;
409   }
410   if (Prob.isUnknown())
411     Prob = getEdgeProbability(Src, Dst);
412   Src->addSuccessor(Dst, Prob);
413 }
414 
415 BranchProbability
416 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
417                                  const MachineBasicBlock *Dst) const {
418   const BasicBlock *SrcBB = Src->getBasicBlock();
419   const BasicBlock *DstBB = Dst->getBasicBlock();
420   if (!FuncInfo.BPI) {
421     // If BPI is not available, set the default probability as 1 / N, where N is
422     // the number of successors.
423     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
424     return BranchProbability(1, SuccSize);
425   }
426   return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
427 }
428 
429 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
430   using namespace SwitchCG;
431   // Extract cases from the switch.
432   const SwitchInst &SI = cast<SwitchInst>(U);
433   BranchProbabilityInfo *BPI = FuncInfo.BPI;
434   CaseClusterVector Clusters;
435   Clusters.reserve(SI.getNumCases());
436   for (auto &I : SI.cases()) {
437     MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
438     assert(Succ && "Could not find successor mbb in mapping");
439     const ConstantInt *CaseVal = I.getCaseValue();
440     BranchProbability Prob =
441         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
442             : BranchProbability(1, SI.getNumCases() + 1);
443     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
444   }
445 
446   MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
447 
448   // Cluster adjacent cases with the same destination. We do this at all
449   // optimization levels because it's cheap to do and will make codegen faster
450   // if there are many clusters.
451   sortAndRangeify(Clusters);
452 
453   MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
454 
455   // If there is only the default destination, jump there directly.
456   if (Clusters.empty()) {
457     SwitchMBB->addSuccessor(DefaultMBB);
458     if (DefaultMBB != SwitchMBB->getNextNode())
459       MIB.buildBr(*DefaultMBB);
460     return true;
461   }
462 
463   SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
464 
465   LLVM_DEBUG({
466     dbgs() << "Case clusters: ";
467     for (const CaseCluster &C : Clusters) {
468       if (C.Kind == CC_JumpTable)
469         dbgs() << "JT:";
470       if (C.Kind == CC_BitTests)
471         dbgs() << "BT:";
472 
473       C.Low->getValue().print(dbgs(), true);
474       if (C.Low != C.High) {
475         dbgs() << '-';
476         C.High->getValue().print(dbgs(), true);
477       }
478       dbgs() << ' ';
479     }
480     dbgs() << '\n';
481   });
482 
483   assert(!Clusters.empty());
484   SwitchWorkList WorkList;
485   CaseClusterIt First = Clusters.begin();
486   CaseClusterIt Last = Clusters.end() - 1;
487   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
488   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
489 
490   // FIXME: At the moment we don't do any splitting optimizations here like
491   // SelectionDAG does, so this worklist only has one entry.
492   while (!WorkList.empty()) {
493     SwitchWorkListItem W = WorkList.back();
494     WorkList.pop_back();
495     if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
496       return false;
497   }
498   return true;
499 }
500 
501 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
502                                  MachineBasicBlock *MBB) {
503   // Emit the code for the jump table
504   assert(JT.Reg != -1U && "Should lower JT Header first!");
505   MachineIRBuilder MIB(*MBB->getParent());
506   MIB.setMBB(*MBB);
507   MIB.setDebugLoc(CurBuilder->getDebugLoc());
508 
509   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
510   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
511 
512   auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
513   MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
514 }
515 
516 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
517                                        SwitchCG::JumpTableHeader &JTH,
518                                        MachineBasicBlock *HeaderBB) {
519   MachineIRBuilder MIB(*HeaderBB->getParent());
520   MIB.setMBB(*HeaderBB);
521   MIB.setDebugLoc(CurBuilder->getDebugLoc());
522 
523   const Value &SValue = *JTH.SValue;
524   // Subtract the lowest switch case value from the value being switched on.
525   const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
526   Register SwitchOpReg = getOrCreateVReg(SValue);
527   auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
528   auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
529 
530   // This value may be smaller or larger than the target's pointer type, and
531   // therefore require extension or truncating.
532   Type *PtrIRTy = SValue.getType()->getPointerTo();
533   const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
534   Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
535 
536   JT.Reg = Sub.getReg(0);
537 
538   if (JTH.OmitRangeCheck) {
539     if (JT.MBB != HeaderBB->getNextNode())
540       MIB.buildBr(*JT.MBB);
541     return true;
542   }
543 
544   // Emit the range check for the jump table, and branch to the default block
545   // for the switch statement if the value being switched on exceeds the
546   // largest case in the switch.
547   auto Cst = getOrCreateVReg(
548       *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
549   Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
550   auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
551 
552   auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
553 
554   // Avoid emitting unnecessary branches to the next block.
555   if (JT.MBB != HeaderBB->getNextNode())
556     BrCond = MIB.buildBr(*JT.MBB);
557   return true;
558 }
559 
560 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
561                                   MachineBasicBlock *SwitchBB,
562                                   MachineIRBuilder &MIB) {
563   Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
564   Register Cond;
565   DebugLoc OldDbgLoc = MIB.getDebugLoc();
566   MIB.setDebugLoc(CB.DbgLoc);
567   MIB.setMBB(*CB.ThisBB);
568 
569   if (CB.PredInfo.NoCmp) {
570     // Branch or fall through to TrueBB.
571     addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
572     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
573                       CB.ThisBB);
574     CB.ThisBB->normalizeSuccProbs();
575     if (CB.TrueBB != CB.ThisBB->getNextNode())
576       MIB.buildBr(*CB.TrueBB);
577     MIB.setDebugLoc(OldDbgLoc);
578     return;
579   }
580 
581   const LLT i1Ty = LLT::scalar(1);
582   // Build the compare.
583   if (!CB.CmpMHS) {
584     Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
585     Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
586   } else {
587     assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
588            "Can only handle SLE ranges");
589 
590     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
591     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
592 
593     Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
594     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
595       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
596       Cond =
597           MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
598     } else {
599       const LLT CmpTy = MRI->getType(CmpOpReg);
600       auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
601       auto Diff = MIB.buildConstant(CmpTy, High - Low);
602       Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
603     }
604   }
605 
606   // Update successor info
607   addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
608 
609   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
610                     CB.ThisBB);
611 
612   // TrueBB and FalseBB are always different unless the incoming IR is
613   // degenerate. This only happens when running llc on weird IR.
614   if (CB.TrueBB != CB.FalseBB)
615     addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
616   CB.ThisBB->normalizeSuccProbs();
617 
618   //  if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock())
619     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
620                       CB.ThisBB);
621 
622   // If the lhs block is the next block, invert the condition so that we can
623   // fall through to the lhs instead of the rhs block.
624   if (CB.TrueBB == CB.ThisBB->getNextNode()) {
625     std::swap(CB.TrueBB, CB.FalseBB);
626     auto True = MIB.buildConstant(i1Ty, 1);
627     Cond = MIB.buildXor(i1Ty, Cond, True).getReg(0);
628   }
629 
630   MIB.buildBrCond(Cond, *CB.TrueBB);
631   MIB.buildBr(*CB.FalseBB);
632   MIB.setDebugLoc(OldDbgLoc);
633 }
634 
635 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
636                                           MachineBasicBlock *SwitchMBB,
637                                           MachineBasicBlock *CurMBB,
638                                           MachineBasicBlock *DefaultMBB,
639                                           MachineIRBuilder &MIB,
640                                           MachineFunction::iterator BBI,
641                                           BranchProbability UnhandledProbs,
642                                           SwitchCG::CaseClusterIt I,
643                                           MachineBasicBlock *Fallthrough,
644                                           bool FallthroughUnreachable) {
645   using namespace SwitchCG;
646   MachineFunction *CurMF = SwitchMBB->getParent();
647   // FIXME: Optimize away range check based on pivot comparisons.
648   JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
649   SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
650   BranchProbability DefaultProb = W.DefaultProb;
651 
652   // The jump block hasn't been inserted yet; insert it here.
653   MachineBasicBlock *JumpMBB = JT->MBB;
654   CurMF->insert(BBI, JumpMBB);
655 
656   // Since the jump table block is separate from the switch block, we need
657   // to keep track of it as a machine predecessor to the default block,
658   // otherwise we lose the phi edges.
659   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
660                     CurMBB);
661   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
662                     JumpMBB);
663 
664   auto JumpProb = I->Prob;
665   auto FallthroughProb = UnhandledProbs;
666 
667   // If the default statement is a target of the jump table, we evenly
668   // distribute the default probability to successors of CurMBB. Also
669   // update the probability on the edge from JumpMBB to Fallthrough.
670   for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
671                                         SE = JumpMBB->succ_end();
672        SI != SE; ++SI) {
673     if (*SI == DefaultMBB) {
674       JumpProb += DefaultProb / 2;
675       FallthroughProb -= DefaultProb / 2;
676       JumpMBB->setSuccProbability(SI, DefaultProb / 2);
677       JumpMBB->normalizeSuccProbs();
678     } else {
679       // Also record edges from the jump table block to it's successors.
680       addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
681                         JumpMBB);
682     }
683   }
684 
685   // Skip the range check if the fallthrough block is unreachable.
686   if (FallthroughUnreachable)
687     JTH->OmitRangeCheck = true;
688 
689   if (!JTH->OmitRangeCheck)
690     addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
691   addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
692   CurMBB->normalizeSuccProbs();
693 
694   // The jump table header will be inserted in our current block, do the
695   // range check, and fall through to our fallthrough block.
696   JTH->HeaderBB = CurMBB;
697   JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
698 
699   // If we're in the right place, emit the jump table header right now.
700   if (CurMBB == SwitchMBB) {
701     if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
702       return false;
703     JTH->Emitted = true;
704   }
705   return true;
706 }
707 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
708                                             Value *Cond,
709                                             MachineBasicBlock *Fallthrough,
710                                             bool FallthroughUnreachable,
711                                             BranchProbability UnhandledProbs,
712                                             MachineBasicBlock *CurMBB,
713                                             MachineIRBuilder &MIB,
714                                             MachineBasicBlock *SwitchMBB) {
715   using namespace SwitchCG;
716   const Value *RHS, *LHS, *MHS;
717   CmpInst::Predicate Pred;
718   if (I->Low == I->High) {
719     // Check Cond == I->Low.
720     Pred = CmpInst::ICMP_EQ;
721     LHS = Cond;
722     RHS = I->Low;
723     MHS = nullptr;
724   } else {
725     // Check I->Low <= Cond <= I->High.
726     Pred = CmpInst::ICMP_SLE;
727     LHS = I->Low;
728     MHS = Cond;
729     RHS = I->High;
730   }
731 
732   // If Fallthrough is unreachable, fold away the comparison.
733   // The false probability is the sum of all unhandled cases.
734   CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
735                CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
736 
737   emitSwitchCase(CB, SwitchMBB, MIB);
738   return true;
739 }
740 
741 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
742                                        Value *Cond,
743                                        MachineBasicBlock *SwitchMBB,
744                                        MachineBasicBlock *DefaultMBB,
745                                        MachineIRBuilder &MIB) {
746   using namespace SwitchCG;
747   MachineFunction *CurMF = FuncInfo.MF;
748   MachineBasicBlock *NextMBB = nullptr;
749   MachineFunction::iterator BBI(W.MBB);
750   if (++BBI != FuncInfo.MF->end())
751     NextMBB = &*BBI;
752 
753   if (EnableOpts) {
754     // Here, we order cases by probability so the most likely case will be
755     // checked first. However, two clusters can have the same probability in
756     // which case their relative ordering is non-deterministic. So we use Low
757     // as a tie-breaker as clusters are guaranteed to never overlap.
758     llvm::sort(W.FirstCluster, W.LastCluster + 1,
759                [](const CaseCluster &a, const CaseCluster &b) {
760                  return a.Prob != b.Prob
761                             ? a.Prob > b.Prob
762                             : a.Low->getValue().slt(b.Low->getValue());
763                });
764 
765     // Rearrange the case blocks so that the last one falls through if possible
766     // without changing the order of probabilities.
767     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
768       --I;
769       if (I->Prob > W.LastCluster->Prob)
770         break;
771       if (I->Kind == CC_Range && I->MBB == NextMBB) {
772         std::swap(*I, *W.LastCluster);
773         break;
774       }
775     }
776   }
777 
778   // Compute total probability.
779   BranchProbability DefaultProb = W.DefaultProb;
780   BranchProbability UnhandledProbs = DefaultProb;
781   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
782     UnhandledProbs += I->Prob;
783 
784   MachineBasicBlock *CurMBB = W.MBB;
785   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
786     bool FallthroughUnreachable = false;
787     MachineBasicBlock *Fallthrough;
788     if (I == W.LastCluster) {
789       // For the last cluster, fall through to the default destination.
790       Fallthrough = DefaultMBB;
791       FallthroughUnreachable = isa<UnreachableInst>(
792           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
793     } else {
794       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
795       CurMF->insert(BBI, Fallthrough);
796     }
797     UnhandledProbs -= I->Prob;
798 
799     switch (I->Kind) {
800     case CC_BitTests: {
801       LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented");
802       return false; // Bit tests currently unimplemented.
803     }
804     case CC_JumpTable: {
805       if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
806                                   UnhandledProbs, I, Fallthrough,
807                                   FallthroughUnreachable)) {
808         LLVM_DEBUG(dbgs() << "Failed to lower jump table");
809         return false;
810       }
811       break;
812     }
813     case CC_Range: {
814       if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
815                                     FallthroughUnreachable, UnhandledProbs,
816                                     CurMBB, MIB, SwitchMBB)) {
817         LLVM_DEBUG(dbgs() << "Failed to lower switch range");
818         return false;
819       }
820       break;
821     }
822     }
823     CurMBB = Fallthrough;
824   }
825 
826   return true;
827 }
828 
829 bool IRTranslator::translateIndirectBr(const User &U,
830                                        MachineIRBuilder &MIRBuilder) {
831   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
832 
833   const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
834   MIRBuilder.buildBrIndirect(Tgt);
835 
836   // Link successors.
837   SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
838   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
839   for (const BasicBlock *Succ : successors(&BrInst)) {
840     // It's legal for indirectbr instructions to have duplicate blocks in the
841     // destination list. We don't allow this in MIR. Skip anything that's
842     // already a successor.
843     if (!AddedSuccessors.insert(Succ).second)
844       continue;
845     CurBB.addSuccessor(&getMBB(*Succ));
846   }
847 
848   return true;
849 }
850 
851 static bool isSwiftError(const Value *V) {
852   if (auto Arg = dyn_cast<Argument>(V))
853     return Arg->hasSwiftErrorAttr();
854   if (auto AI = dyn_cast<AllocaInst>(V))
855     return AI->isSwiftError();
856   return false;
857 }
858 
859 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
860   const LoadInst &LI = cast<LoadInst>(U);
861   if (DL->getTypeStoreSize(LI.getType()) == 0)
862     return true;
863 
864   ArrayRef<Register> Regs = getOrCreateVRegs(LI);
865   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
866   Register Base = getOrCreateVReg(*LI.getPointerOperand());
867 
868   Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
869   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
870 
871   if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
872     assert(Regs.size() == 1 && "swifterror should be single pointer");
873     Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
874                                                     LI.getPointerOperand());
875     MIRBuilder.buildCopy(Regs[0], VReg);
876     return true;
877   }
878 
879   auto &TLI = *MF->getSubtarget().getTargetLowering();
880   MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL);
881 
882   const MDNode *Ranges =
883       Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
884   for (unsigned i = 0; i < Regs.size(); ++i) {
885     Register Addr;
886     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
887 
888     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
889     Align BaseAlign = getMemOpAlign(LI);
890     AAMDNodes AAMetadata;
891     LI.getAAMetadata(AAMetadata);
892     auto MMO = MF->getMachineMemOperand(
893         Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(),
894         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges,
895         LI.getSyncScopeID(), LI.getOrdering());
896     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
897   }
898 
899   return true;
900 }
901 
902 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
903   const StoreInst &SI = cast<StoreInst>(U);
904   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
905     return true;
906 
907   ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
908   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
909   Register Base = getOrCreateVReg(*SI.getPointerOperand());
910 
911   Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
912   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
913 
914   if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
915     assert(Vals.size() == 1 && "swifterror should be single pointer");
916 
917     Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
918                                                     SI.getPointerOperand());
919     MIRBuilder.buildCopy(VReg, Vals[0]);
920     return true;
921   }
922 
923   auto &TLI = *MF->getSubtarget().getTargetLowering();
924   MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
925 
926   for (unsigned i = 0; i < Vals.size(); ++i) {
927     Register Addr;
928     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
929 
930     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
931     Align BaseAlign = getMemOpAlign(SI);
932     AAMDNodes AAMetadata;
933     SI.getAAMetadata(AAMetadata);
934     auto MMO = MF->getMachineMemOperand(
935         Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(),
936         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr,
937         SI.getSyncScopeID(), SI.getOrdering());
938     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
939   }
940   return true;
941 }
942 
943 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
944   const Value *Src = U.getOperand(0);
945   Type *Int32Ty = Type::getInt32Ty(U.getContext());
946 
947   // getIndexedOffsetInType is designed for GEPs, so the first index is the
948   // usual array element rather than looking into the actual aggregate.
949   SmallVector<Value *, 1> Indices;
950   Indices.push_back(ConstantInt::get(Int32Ty, 0));
951 
952   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
953     for (auto Idx : EVI->indices())
954       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
955   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
956     for (auto Idx : IVI->indices())
957       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
958   } else {
959     for (unsigned i = 1; i < U.getNumOperands(); ++i)
960       Indices.push_back(U.getOperand(i));
961   }
962 
963   return 8 * static_cast<uint64_t>(
964                  DL.getIndexedOffsetInType(Src->getType(), Indices));
965 }
966 
967 bool IRTranslator::translateExtractValue(const User &U,
968                                          MachineIRBuilder &MIRBuilder) {
969   const Value *Src = U.getOperand(0);
970   uint64_t Offset = getOffsetFromIndices(U, *DL);
971   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
972   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
973   unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
974   auto &DstRegs = allocateVRegs(U);
975 
976   for (unsigned i = 0; i < DstRegs.size(); ++i)
977     DstRegs[i] = SrcRegs[Idx++];
978 
979   return true;
980 }
981 
982 bool IRTranslator::translateInsertValue(const User &U,
983                                         MachineIRBuilder &MIRBuilder) {
984   const Value *Src = U.getOperand(0);
985   uint64_t Offset = getOffsetFromIndices(U, *DL);
986   auto &DstRegs = allocateVRegs(U);
987   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
988   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
989   ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
990   auto InsertedIt = InsertedRegs.begin();
991 
992   for (unsigned i = 0; i < DstRegs.size(); ++i) {
993     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
994       DstRegs[i] = *InsertedIt++;
995     else
996       DstRegs[i] = SrcRegs[i];
997   }
998 
999   return true;
1000 }
1001 
1002 bool IRTranslator::translateSelect(const User &U,
1003                                    MachineIRBuilder &MIRBuilder) {
1004   Register Tst = getOrCreateVReg(*U.getOperand(0));
1005   ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1006   ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1007   ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1008 
1009   uint16_t Flags = 0;
1010   if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
1011     Flags = MachineInstr::copyFlagsFromInstruction(*SI);
1012 
1013   for (unsigned i = 0; i < ResRegs.size(); ++i) {
1014     MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1015   }
1016 
1017   return true;
1018 }
1019 
1020 bool IRTranslator::translateCopy(const User &U, const Value &V,
1021                                  MachineIRBuilder &MIRBuilder) {
1022   Register Src = getOrCreateVReg(V);
1023   auto &Regs = *VMap.getVRegs(U);
1024   if (Regs.empty()) {
1025     Regs.push_back(Src);
1026     VMap.getOffsets(U)->push_back(0);
1027   } else {
1028     // If we already assigned a vreg for this instruction, we can't change that.
1029     // Emit a copy to satisfy the users we already emitted.
1030     MIRBuilder.buildCopy(Regs[0], Src);
1031   }
1032   return true;
1033 }
1034 
1035 bool IRTranslator::translateBitCast(const User &U,
1036                                     MachineIRBuilder &MIRBuilder) {
1037   // If we're bitcasting to the source type, we can reuse the source vreg.
1038   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1039       getLLTForType(*U.getType(), *DL))
1040     return translateCopy(U, *U.getOperand(0), MIRBuilder);
1041 
1042   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1043 }
1044 
1045 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1046                                  MachineIRBuilder &MIRBuilder) {
1047   Register Op = getOrCreateVReg(*U.getOperand(0));
1048   Register Res = getOrCreateVReg(U);
1049   MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1050   return true;
1051 }
1052 
1053 bool IRTranslator::translateGetElementPtr(const User &U,
1054                                           MachineIRBuilder &MIRBuilder) {
1055   Value &Op0 = *U.getOperand(0);
1056   Register BaseReg = getOrCreateVReg(Op0);
1057   Type *PtrIRTy = Op0.getType();
1058   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1059   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1060   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1061 
1062   // Normalize Vector GEP - all scalar operands should be converted to the
1063   // splat vector.
1064   unsigned VectorWidth = 0;
1065   if (auto *VT = dyn_cast<VectorType>(U.getType()))
1066     VectorWidth = VT->getNumElements();
1067 
1068   // We might need to splat the base pointer into a vector if the offsets
1069   // are vectors.
1070   if (VectorWidth && !PtrTy.isVector()) {
1071     BaseReg =
1072         MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg)
1073             .getReg(0);
1074     PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1075     PtrTy = getLLTForType(*PtrIRTy, *DL);
1076     OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1077     OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1078   }
1079 
1080   int64_t Offset = 0;
1081   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1082        GTI != E; ++GTI) {
1083     const Value *Idx = GTI.getOperand();
1084     if (StructType *StTy = GTI.getStructTypeOrNull()) {
1085       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1086       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1087       continue;
1088     } else {
1089       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1090 
1091       // If this is a scalar constant or a splat vector of constants,
1092       // handle it quickly.
1093       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1094         Offset += ElementSize * CI->getSExtValue();
1095         continue;
1096       }
1097 
1098       if (Offset != 0) {
1099         auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1100         BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1101                       .getReg(0);
1102         Offset = 0;
1103       }
1104 
1105       Register IdxReg = getOrCreateVReg(*Idx);
1106       LLT IdxTy = MRI->getType(IdxReg);
1107       if (IdxTy != OffsetTy) {
1108         if (!IdxTy.isVector() && VectorWidth) {
1109           IdxReg = MIRBuilder.buildSplatVector(
1110             OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1111         }
1112 
1113         IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1114       }
1115 
1116       // N = N + Idx * ElementSize;
1117       // Avoid doing it for ElementSize of 1.
1118       Register GepOffsetReg;
1119       if (ElementSize != 1) {
1120         auto ElementSizeMIB = MIRBuilder.buildConstant(
1121             getLLTForType(*OffsetIRTy, *DL), ElementSize);
1122         GepOffsetReg =
1123             MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1124       } else
1125         GepOffsetReg = IdxReg;
1126 
1127       BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1128     }
1129   }
1130 
1131   if (Offset != 0) {
1132     auto OffsetMIB =
1133         MIRBuilder.buildConstant(OffsetTy, Offset);
1134     MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1135     return true;
1136   }
1137 
1138   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1139   return true;
1140 }
1141 
1142 bool IRTranslator::translateMemFunc(const CallInst &CI,
1143                                     MachineIRBuilder &MIRBuilder,
1144                                     Intrinsic::ID ID) {
1145 
1146   // If the source is undef, then just emit a nop.
1147   if (isa<UndefValue>(CI.getArgOperand(1)))
1148     return true;
1149 
1150   ArrayRef<Register> Res;
1151   auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true);
1152   for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI)
1153     ICall.addUse(getOrCreateVReg(**AI));
1154 
1155   Align DstAlign;
1156   Align SrcAlign;
1157   unsigned IsVol =
1158       cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
1159           ->getZExtValue();
1160 
1161   if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1162     DstAlign = MCI->getDestAlign().valueOrOne();
1163     SrcAlign = MCI->getSourceAlign().valueOrOne();
1164   } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1165     DstAlign = MMI->getDestAlign().valueOrOne();
1166     SrcAlign = MMI->getSourceAlign().valueOrOne();
1167   } else {
1168     auto *MSI = cast<MemSetInst>(&CI);
1169     DstAlign = MSI->getDestAlign().valueOrOne();
1170   }
1171 
1172   // We need to propagate the tail call flag from the IR inst as an argument.
1173   // Otherwise, we have to pessimize and assume later that we cannot tail call
1174   // any memory intrinsics.
1175   ICall.addImm(CI.isTailCall() ? 1 : 0);
1176 
1177   // Create mem operands to store the alignment and volatile info.
1178   auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
1179   ICall.addMemOperand(MF->getMachineMemOperand(
1180       MachinePointerInfo(CI.getArgOperand(0)),
1181       MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
1182   if (ID != Intrinsic::memset)
1183     ICall.addMemOperand(MF->getMachineMemOperand(
1184         MachinePointerInfo(CI.getArgOperand(1)),
1185         MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
1186 
1187   return true;
1188 }
1189 
1190 void IRTranslator::getStackGuard(Register DstReg,
1191                                  MachineIRBuilder &MIRBuilder) {
1192   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1193   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1194   auto MIB =
1195       MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1196 
1197   auto &TLI = *MF->getSubtarget().getTargetLowering();
1198   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1199   if (!Global)
1200     return;
1201 
1202   MachinePointerInfo MPInfo(Global);
1203   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1204                MachineMemOperand::MODereferenceable;
1205   MachineMemOperand *MemRef =
1206       MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
1207                                DL->getPointerABIAlignment(0));
1208   MIB.setMemRefs({MemRef});
1209 }
1210 
1211 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1212                                               MachineIRBuilder &MIRBuilder) {
1213   ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1214   MIRBuilder.buildInstr(
1215       Op, {ResRegs[0], ResRegs[1]},
1216       {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1217 
1218   return true;
1219 }
1220 
1221 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1222   switch (ID) {
1223     default:
1224       break;
1225     case Intrinsic::bswap:
1226       return TargetOpcode::G_BSWAP;
1227     case Intrinsic::bitreverse:
1228       return TargetOpcode::G_BITREVERSE;
1229     case Intrinsic::fshl:
1230       return TargetOpcode::G_FSHL;
1231     case Intrinsic::fshr:
1232       return TargetOpcode::G_FSHR;
1233     case Intrinsic::ceil:
1234       return TargetOpcode::G_FCEIL;
1235     case Intrinsic::cos:
1236       return TargetOpcode::G_FCOS;
1237     case Intrinsic::ctpop:
1238       return TargetOpcode::G_CTPOP;
1239     case Intrinsic::exp:
1240       return TargetOpcode::G_FEXP;
1241     case Intrinsic::exp2:
1242       return TargetOpcode::G_FEXP2;
1243     case Intrinsic::fabs:
1244       return TargetOpcode::G_FABS;
1245     case Intrinsic::copysign:
1246       return TargetOpcode::G_FCOPYSIGN;
1247     case Intrinsic::minnum:
1248       return TargetOpcode::G_FMINNUM;
1249     case Intrinsic::maxnum:
1250       return TargetOpcode::G_FMAXNUM;
1251     case Intrinsic::minimum:
1252       return TargetOpcode::G_FMINIMUM;
1253     case Intrinsic::maximum:
1254       return TargetOpcode::G_FMAXIMUM;
1255     case Intrinsic::canonicalize:
1256       return TargetOpcode::G_FCANONICALIZE;
1257     case Intrinsic::floor:
1258       return TargetOpcode::G_FFLOOR;
1259     case Intrinsic::fma:
1260       return TargetOpcode::G_FMA;
1261     case Intrinsic::log:
1262       return TargetOpcode::G_FLOG;
1263     case Intrinsic::log2:
1264       return TargetOpcode::G_FLOG2;
1265     case Intrinsic::log10:
1266       return TargetOpcode::G_FLOG10;
1267     case Intrinsic::nearbyint:
1268       return TargetOpcode::G_FNEARBYINT;
1269     case Intrinsic::pow:
1270       return TargetOpcode::G_FPOW;
1271     case Intrinsic::rint:
1272       return TargetOpcode::G_FRINT;
1273     case Intrinsic::round:
1274       return TargetOpcode::G_INTRINSIC_ROUND;
1275     case Intrinsic::sin:
1276       return TargetOpcode::G_FSIN;
1277     case Intrinsic::sqrt:
1278       return TargetOpcode::G_FSQRT;
1279     case Intrinsic::trunc:
1280       return TargetOpcode::G_INTRINSIC_TRUNC;
1281     case Intrinsic::readcyclecounter:
1282       return TargetOpcode::G_READCYCLECOUNTER;
1283     case Intrinsic::ptrmask:
1284       return TargetOpcode::G_PTRMASK;
1285   }
1286   return Intrinsic::not_intrinsic;
1287 }
1288 
1289 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1290                                             Intrinsic::ID ID,
1291                                             MachineIRBuilder &MIRBuilder) {
1292 
1293   unsigned Op = getSimpleIntrinsicOpcode(ID);
1294 
1295   // Is this a simple intrinsic?
1296   if (Op == Intrinsic::not_intrinsic)
1297     return false;
1298 
1299   // Yes. Let's translate it.
1300   SmallVector<llvm::SrcOp, 4> VRegs;
1301   for (auto &Arg : CI.arg_operands())
1302     VRegs.push_back(getOrCreateVReg(*Arg));
1303 
1304   MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1305                         MachineInstr::copyFlagsFromInstruction(CI));
1306   return true;
1307 }
1308 
1309 // TODO: Include ConstainedOps.def when all strict instructions are defined.
1310 static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
1311   switch (ID) {
1312   case Intrinsic::experimental_constrained_fadd:
1313     return TargetOpcode::G_STRICT_FADD;
1314   case Intrinsic::experimental_constrained_fsub:
1315     return TargetOpcode::G_STRICT_FSUB;
1316   case Intrinsic::experimental_constrained_fmul:
1317     return TargetOpcode::G_STRICT_FMUL;
1318   case Intrinsic::experimental_constrained_fdiv:
1319     return TargetOpcode::G_STRICT_FDIV;
1320   case Intrinsic::experimental_constrained_frem:
1321     return TargetOpcode::G_STRICT_FREM;
1322   case Intrinsic::experimental_constrained_fma:
1323     return TargetOpcode::G_STRICT_FMA;
1324   case Intrinsic::experimental_constrained_sqrt:
1325     return TargetOpcode::G_STRICT_FSQRT;
1326   default:
1327     return 0;
1328   }
1329 }
1330 
1331 bool IRTranslator::translateConstrainedFPIntrinsic(
1332   const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
1333   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
1334 
1335   unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
1336   if (!Opcode)
1337     return false;
1338 
1339   unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI);
1340   if (EB == fp::ExceptionBehavior::ebIgnore)
1341     Flags |= MachineInstr::NoFPExcept;
1342 
1343   SmallVector<llvm::SrcOp, 4> VRegs;
1344   VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
1345   if (!FPI.isUnaryOp())
1346     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
1347   if (FPI.isTernaryOp())
1348     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
1349 
1350   MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
1351   return true;
1352 }
1353 
1354 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1355                                            MachineIRBuilder &MIRBuilder) {
1356 
1357   // If this is a simple intrinsic (that is, we just need to add a def of
1358   // a vreg, and uses for each arg operand, then translate it.
1359   if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1360     return true;
1361 
1362   switch (ID) {
1363   default:
1364     break;
1365   case Intrinsic::lifetime_start:
1366   case Intrinsic::lifetime_end: {
1367     // No stack colouring in O0, discard region information.
1368     if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1369       return true;
1370 
1371     unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1372                                                   : TargetOpcode::LIFETIME_END;
1373 
1374     // Get the underlying objects for the location passed on the lifetime
1375     // marker.
1376     SmallVector<const Value *, 4> Allocas;
1377     GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL);
1378 
1379     // Iterate over each underlying object, creating lifetime markers for each
1380     // static alloca. Quit if we find a non-static alloca.
1381     for (const Value *V : Allocas) {
1382       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1383       if (!AI)
1384         continue;
1385 
1386       if (!AI->isStaticAlloca())
1387         return true;
1388 
1389       MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1390     }
1391     return true;
1392   }
1393   case Intrinsic::dbg_declare: {
1394     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1395     assert(DI.getVariable() && "Missing variable");
1396 
1397     const Value *Address = DI.getAddress();
1398     if (!Address || isa<UndefValue>(Address)) {
1399       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1400       return true;
1401     }
1402 
1403     assert(DI.getVariable()->isValidLocationForIntrinsic(
1404                MIRBuilder.getDebugLoc()) &&
1405            "Expected inlined-at fields to agree");
1406     auto AI = dyn_cast<AllocaInst>(Address);
1407     if (AI && AI->isStaticAlloca()) {
1408       // Static allocas are tracked at the MF level, no need for DBG_VALUE
1409       // instructions (in fact, they get ignored if they *do* exist).
1410       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
1411                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
1412     } else {
1413       // A dbg.declare describes the address of a source variable, so lower it
1414       // into an indirect DBG_VALUE.
1415       MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
1416                                        DI.getVariable(), DI.getExpression());
1417     }
1418     return true;
1419   }
1420   case Intrinsic::dbg_label: {
1421     const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
1422     assert(DI.getLabel() && "Missing label");
1423 
1424     assert(DI.getLabel()->isValidLocationForIntrinsic(
1425                MIRBuilder.getDebugLoc()) &&
1426            "Expected inlined-at fields to agree");
1427 
1428     MIRBuilder.buildDbgLabel(DI.getLabel());
1429     return true;
1430   }
1431   case Intrinsic::vaend:
1432     // No target I know of cares about va_end. Certainly no in-tree target
1433     // does. Simplest intrinsic ever!
1434     return true;
1435   case Intrinsic::vastart: {
1436     auto &TLI = *MF->getSubtarget().getTargetLowering();
1437     Value *Ptr = CI.getArgOperand(0);
1438     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
1439 
1440     // FIXME: Get alignment
1441     MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
1442         .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
1443                                                 MachineMemOperand::MOStore,
1444                                                 ListSize, Align(1)));
1445     return true;
1446   }
1447   case Intrinsic::dbg_value: {
1448     // This form of DBG_VALUE is target-independent.
1449     const DbgValueInst &DI = cast<DbgValueInst>(CI);
1450     const Value *V = DI.getValue();
1451     assert(DI.getVariable()->isValidLocationForIntrinsic(
1452                MIRBuilder.getDebugLoc()) &&
1453            "Expected inlined-at fields to agree");
1454     if (!V) {
1455       // Currently the optimizer can produce this; insert an undef to
1456       // help debugging.  Probably the optimizer should not do this.
1457       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
1458     } else if (const auto *CI = dyn_cast<Constant>(V)) {
1459       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
1460     } else {
1461       for (Register Reg : getOrCreateVRegs(*V)) {
1462         // FIXME: This does not handle register-indirect values at offset 0. The
1463         // direct/indirect thing shouldn't really be handled by something as
1464         // implicit as reg+noreg vs reg+imm in the first place, but it seems
1465         // pretty baked in right now.
1466         MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
1467       }
1468     }
1469     return true;
1470   }
1471   case Intrinsic::uadd_with_overflow:
1472     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
1473   case Intrinsic::sadd_with_overflow:
1474     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
1475   case Intrinsic::usub_with_overflow:
1476     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
1477   case Intrinsic::ssub_with_overflow:
1478     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
1479   case Intrinsic::umul_with_overflow:
1480     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
1481   case Intrinsic::smul_with_overflow:
1482     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
1483   case Intrinsic::uadd_sat:
1484     return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
1485   case Intrinsic::sadd_sat:
1486     return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
1487   case Intrinsic::usub_sat:
1488     return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
1489   case Intrinsic::ssub_sat:
1490     return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
1491   case Intrinsic::fmuladd: {
1492     const TargetMachine &TM = MF->getTarget();
1493     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1494     Register Dst = getOrCreateVReg(CI);
1495     Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
1496     Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
1497     Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
1498     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
1499         TLI.isFMAFasterThanFMulAndFAdd(*MF,
1500                                        TLI.getValueType(*DL, CI.getType()))) {
1501       // TODO: Revisit this to see if we should move this part of the
1502       // lowering to the combiner.
1503       MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
1504                           MachineInstr::copyFlagsFromInstruction(CI));
1505     } else {
1506       LLT Ty = getLLTForType(*CI.getType(), *DL);
1507       auto FMul = MIRBuilder.buildFMul(
1508           Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
1509       MIRBuilder.buildFAdd(Dst, FMul, Op2,
1510                            MachineInstr::copyFlagsFromInstruction(CI));
1511     }
1512     return true;
1513   }
1514   case Intrinsic::memcpy:
1515   case Intrinsic::memmove:
1516   case Intrinsic::memset:
1517     return translateMemFunc(CI, MIRBuilder, ID);
1518   case Intrinsic::eh_typeid_for: {
1519     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
1520     Register Reg = getOrCreateVReg(CI);
1521     unsigned TypeID = MF->getTypeIDFor(GV);
1522     MIRBuilder.buildConstant(Reg, TypeID);
1523     return true;
1524   }
1525   case Intrinsic::objectsize:
1526     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1527 
1528   case Intrinsic::is_constant:
1529     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1530 
1531   case Intrinsic::stackguard:
1532     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
1533     return true;
1534   case Intrinsic::stackprotector: {
1535     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
1536     Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
1537     getStackGuard(GuardVal, MIRBuilder);
1538 
1539     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
1540     int FI = getOrCreateFrameIndex(*Slot);
1541     MF->getFrameInfo().setStackProtectorIndex(FI);
1542 
1543     MIRBuilder.buildStore(
1544         GuardVal, getOrCreateVReg(*Slot),
1545         *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
1546                                   MachineMemOperand::MOStore |
1547                                       MachineMemOperand::MOVolatile,
1548                                   PtrTy.getSizeInBits() / 8, Align(8)));
1549     return true;
1550   }
1551   case Intrinsic::stacksave: {
1552     // Save the stack pointer to the location provided by the intrinsic.
1553     Register Reg = getOrCreateVReg(CI);
1554     Register StackPtr = MF->getSubtarget()
1555                             .getTargetLowering()
1556                             ->getStackPointerRegisterToSaveRestore();
1557 
1558     // If the target doesn't specify a stack pointer, then fall back.
1559     if (!StackPtr)
1560       return false;
1561 
1562     MIRBuilder.buildCopy(Reg, StackPtr);
1563     return true;
1564   }
1565   case Intrinsic::stackrestore: {
1566     // Restore the stack pointer from the location provided by the intrinsic.
1567     Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
1568     Register StackPtr = MF->getSubtarget()
1569                             .getTargetLowering()
1570                             ->getStackPointerRegisterToSaveRestore();
1571 
1572     // If the target doesn't specify a stack pointer, then fall back.
1573     if (!StackPtr)
1574       return false;
1575 
1576     MIRBuilder.buildCopy(StackPtr, Reg);
1577     return true;
1578   }
1579   case Intrinsic::cttz:
1580   case Intrinsic::ctlz: {
1581     ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
1582     bool isTrailing = ID == Intrinsic::cttz;
1583     unsigned Opcode = isTrailing
1584                           ? Cst->isZero() ? TargetOpcode::G_CTTZ
1585                                           : TargetOpcode::G_CTTZ_ZERO_UNDEF
1586                           : Cst->isZero() ? TargetOpcode::G_CTLZ
1587                                           : TargetOpcode::G_CTLZ_ZERO_UNDEF;
1588     MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
1589                           {getOrCreateVReg(*CI.getArgOperand(0))});
1590     return true;
1591   }
1592   case Intrinsic::invariant_start: {
1593     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
1594     Register Undef = MRI->createGenericVirtualRegister(PtrTy);
1595     MIRBuilder.buildUndef(Undef);
1596     return true;
1597   }
1598   case Intrinsic::invariant_end:
1599     return true;
1600   case Intrinsic::assume:
1601   case Intrinsic::var_annotation:
1602   case Intrinsic::sideeffect:
1603     // Discard annotate attributes, assumptions, and artificial side-effects.
1604     return true;
1605   case Intrinsic::read_register: {
1606     Value *Arg = CI.getArgOperand(0);
1607     MIRBuilder
1608         .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
1609         .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
1610     return true;
1611   }
1612   case Intrinsic::write_register: {
1613     Value *Arg = CI.getArgOperand(0);
1614     MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
1615       .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
1616       .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
1617     return true;
1618   }
1619 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)  \
1620   case Intrinsic::INTRINSIC:
1621 #include "llvm/IR/ConstrainedOps.def"
1622     return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
1623                                            MIRBuilder);
1624 
1625   }
1626   return false;
1627 }
1628 
1629 bool IRTranslator::translateInlineAsm(const CallBase &CB,
1630                                       MachineIRBuilder &MIRBuilder) {
1631 
1632   const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
1633 
1634   if (!ALI) {
1635     LLVM_DEBUG(
1636         dbgs() << "Inline asm lowering is not supported for this target yet\n");
1637     return false;
1638   }
1639 
1640   return ALI->lowerInlineAsm(
1641       MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
1642 }
1643 
1644 bool IRTranslator::translateCallBase(const CallBase &CB,
1645                                      MachineIRBuilder &MIRBuilder) {
1646   ArrayRef<Register> Res = getOrCreateVRegs(CB);
1647 
1648   SmallVector<ArrayRef<Register>, 8> Args;
1649   Register SwiftInVReg = 0;
1650   Register SwiftErrorVReg = 0;
1651   for (auto &Arg : CB.args()) {
1652     if (CLI->supportSwiftError() && isSwiftError(Arg)) {
1653       assert(SwiftInVReg == 0 && "Expected only one swift error argument");
1654       LLT Ty = getLLTForType(*Arg->getType(), *DL);
1655       SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
1656       MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
1657                                             &CB, &MIRBuilder.getMBB(), Arg));
1658       Args.emplace_back(makeArrayRef(SwiftInVReg));
1659       SwiftErrorVReg =
1660           SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
1661       continue;
1662     }
1663     Args.push_back(getOrCreateVRegs(*Arg));
1664   }
1665 
1666   // We don't set HasCalls on MFI here yet because call lowering may decide to
1667   // optimize into tail calls. Instead, we defer that to selection where a final
1668   // scan is done to check if any instructions are calls.
1669   bool Success =
1670       CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
1671                      [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
1672 
1673   // Check if we just inserted a tail call.
1674   if (Success) {
1675     assert(!HasTailCall && "Can't tail call return twice from block?");
1676     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1677     HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
1678   }
1679 
1680   return Success;
1681 }
1682 
1683 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
1684   const CallInst &CI = cast<CallInst>(U);
1685   auto TII = MF->getTarget().getIntrinsicInfo();
1686   const Function *F = CI.getCalledFunction();
1687 
1688   // FIXME: support Windows dllimport function calls.
1689   if (F && (F->hasDLLImportStorageClass() ||
1690             (MF->getTarget().getTargetTriple().isOSWindows() &&
1691              F->hasExternalWeakLinkage())))
1692     return false;
1693 
1694   // FIXME: support control flow guard targets.
1695   if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
1696     return false;
1697 
1698   if (CI.isInlineAsm())
1699     return translateInlineAsm(CI, MIRBuilder);
1700 
1701   Intrinsic::ID ID = Intrinsic::not_intrinsic;
1702   if (F && F->isIntrinsic()) {
1703     ID = F->getIntrinsicID();
1704     if (TII && ID == Intrinsic::not_intrinsic)
1705       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
1706   }
1707 
1708   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
1709     return translateCallBase(CI, MIRBuilder);
1710 
1711   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
1712 
1713   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
1714     return true;
1715 
1716   ArrayRef<Register> ResultRegs;
1717   if (!CI.getType()->isVoidTy())
1718     ResultRegs = getOrCreateVRegs(CI);
1719 
1720   // Ignore the callsite attributes. Backend code is most likely not expecting
1721   // an intrinsic to sometimes have side effects and sometimes not.
1722   MachineInstrBuilder MIB =
1723       MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
1724   if (isa<FPMathOperator>(CI))
1725     MIB->copyIRFlags(CI);
1726 
1727   for (auto &Arg : enumerate(CI.arg_operands())) {
1728     // Some intrinsics take metadata parameters. Reject them.
1729     if (isa<MetadataAsValue>(Arg.value()))
1730       return false;
1731 
1732     // If this is required to be an immediate, don't materialize it in a
1733     // register.
1734     if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
1735       if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
1736         // imm arguments are more convenient than cimm (and realistically
1737         // probably sufficient), so use them.
1738         assert(CI->getBitWidth() <= 64 &&
1739                "large intrinsic immediates not handled");
1740         MIB.addImm(CI->getSExtValue());
1741       } else {
1742         MIB.addFPImm(cast<ConstantFP>(Arg.value()));
1743       }
1744     } else {
1745       ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
1746       if (VRegs.size() > 1)
1747         return false;
1748       MIB.addUse(VRegs[0]);
1749     }
1750   }
1751 
1752   // Add a MachineMemOperand if it is a target mem intrinsic.
1753   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1754   TargetLowering::IntrinsicInfo Info;
1755   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
1756   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
1757     Align Alignment = Info.align.getValueOr(
1758         DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
1759 
1760     uint64_t Size = Info.memVT.getStoreSize();
1761     MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
1762                                                Info.flags, Size, Alignment));
1763   }
1764 
1765   return true;
1766 }
1767 
1768 bool IRTranslator::translateInvoke(const User &U,
1769                                    MachineIRBuilder &MIRBuilder) {
1770   const InvokeInst &I = cast<InvokeInst>(U);
1771   MCContext &Context = MF->getContext();
1772 
1773   const BasicBlock *ReturnBB = I.getSuccessor(0);
1774   const BasicBlock *EHPadBB = I.getSuccessor(1);
1775 
1776   const Function *Fn = I.getCalledFunction();
1777   if (I.isInlineAsm())
1778     return false;
1779 
1780   // FIXME: support invoking patchpoint and statepoint intrinsics.
1781   if (Fn && Fn->isIntrinsic())
1782     return false;
1783 
1784   // FIXME: support whatever these are.
1785   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
1786     return false;
1787 
1788   // FIXME: support control flow guard targets.
1789   if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
1790     return false;
1791 
1792   // FIXME: support Windows exception handling.
1793   if (!isa<LandingPadInst>(EHPadBB->front()))
1794     return false;
1795 
1796   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
1797   // the region covered by the try.
1798   MCSymbol *BeginSymbol = Context.createTempSymbol();
1799   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
1800 
1801   if (!translateCallBase(I, MIRBuilder))
1802     return false;
1803 
1804   MCSymbol *EndSymbol = Context.createTempSymbol();
1805   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
1806 
1807   // FIXME: track probabilities.
1808   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
1809                     &ReturnMBB = getMBB(*ReturnBB);
1810   MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
1811   MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
1812   MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
1813   MIRBuilder.buildBr(ReturnMBB);
1814 
1815   return true;
1816 }
1817 
1818 bool IRTranslator::translateCallBr(const User &U,
1819                                    MachineIRBuilder &MIRBuilder) {
1820   // FIXME: Implement this.
1821   return false;
1822 }
1823 
1824 bool IRTranslator::translateLandingPad(const User &U,
1825                                        MachineIRBuilder &MIRBuilder) {
1826   const LandingPadInst &LP = cast<LandingPadInst>(U);
1827 
1828   MachineBasicBlock &MBB = MIRBuilder.getMBB();
1829 
1830   MBB.setIsEHPad();
1831 
1832   // If there aren't registers to copy the values into (e.g., during SjLj
1833   // exceptions), then don't bother.
1834   auto &TLI = *MF->getSubtarget().getTargetLowering();
1835   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
1836   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
1837       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
1838     return true;
1839 
1840   // If landingpad's return type is token type, we don't create DAG nodes
1841   // for its exception pointer and selector value. The extraction of exception
1842   // pointer or selector value from token type landingpads is not currently
1843   // supported.
1844   if (LP.getType()->isTokenTy())
1845     return true;
1846 
1847   // Add a label to mark the beginning of the landing pad.  Deletion of the
1848   // landing pad can thus be detected via the MachineModuleInfo.
1849   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
1850     .addSym(MF->addLandingPad(&MBB));
1851 
1852   LLT Ty = getLLTForType(*LP.getType(), *DL);
1853   Register Undef = MRI->createGenericVirtualRegister(Ty);
1854   MIRBuilder.buildUndef(Undef);
1855 
1856   SmallVector<LLT, 2> Tys;
1857   for (Type *Ty : cast<StructType>(LP.getType())->elements())
1858     Tys.push_back(getLLTForType(*Ty, *DL));
1859   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
1860 
1861   // Mark exception register as live in.
1862   Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
1863   if (!ExceptionReg)
1864     return false;
1865 
1866   MBB.addLiveIn(ExceptionReg);
1867   ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
1868   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
1869 
1870   Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
1871   if (!SelectorReg)
1872     return false;
1873 
1874   MBB.addLiveIn(SelectorReg);
1875   Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
1876   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
1877   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
1878 
1879   return true;
1880 }
1881 
1882 bool IRTranslator::translateAlloca(const User &U,
1883                                    MachineIRBuilder &MIRBuilder) {
1884   auto &AI = cast<AllocaInst>(U);
1885 
1886   if (AI.isSwiftError())
1887     return true;
1888 
1889   if (AI.isStaticAlloca()) {
1890     Register Res = getOrCreateVReg(AI);
1891     int FI = getOrCreateFrameIndex(AI);
1892     MIRBuilder.buildFrameIndex(Res, FI);
1893     return true;
1894   }
1895 
1896   // FIXME: support stack probing for Windows.
1897   if (MF->getTarget().getTargetTriple().isOSWindows())
1898     return false;
1899 
1900   // Now we're in the harder dynamic case.
1901   Register NumElts = getOrCreateVReg(*AI.getArraySize());
1902   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
1903   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
1904   if (MRI->getType(NumElts) != IntPtrTy) {
1905     Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
1906     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
1907     NumElts = ExtElts;
1908   }
1909 
1910   Type *Ty = AI.getAllocatedType();
1911 
1912   Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
1913   Register TySize =
1914       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
1915   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
1916 
1917   // Round the size of the allocation up to the stack alignment size
1918   // by add SA-1 to the size. This doesn't overflow because we're computing
1919   // an address inside an alloca.
1920   Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
1921   auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
1922   auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
1923                                       MachineInstr::NoUWrap);
1924   auto AlignCst =
1925       MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
1926   auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
1927 
1928   Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
1929   if (Alignment <= StackAlign)
1930     Alignment = Align(1);
1931   MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
1932 
1933   MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
1934   assert(MF->getFrameInfo().hasVarSizedObjects());
1935   return true;
1936 }
1937 
1938 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
1939   // FIXME: We may need more info about the type. Because of how LLT works,
1940   // we're completely discarding the i64/double distinction here (amongst
1941   // others). Fortunately the ABIs I know of where that matters don't use va_arg
1942   // anyway but that's not guaranteed.
1943   MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
1944                         {getOrCreateVReg(*U.getOperand(0)),
1945                          uint64_t(DL->getABITypeAlignment(U.getType()))});
1946   return true;
1947 }
1948 
1949 bool IRTranslator::translateInsertElement(const User &U,
1950                                           MachineIRBuilder &MIRBuilder) {
1951   // If it is a <1 x Ty> vector, use the scalar as it is
1952   // not a legal vector type in LLT.
1953   if (cast<VectorType>(U.getType())->getNumElements() == 1)
1954     return translateCopy(U, *U.getOperand(1), MIRBuilder);
1955 
1956   Register Res = getOrCreateVReg(U);
1957   Register Val = getOrCreateVReg(*U.getOperand(0));
1958   Register Elt = getOrCreateVReg(*U.getOperand(1));
1959   Register Idx = getOrCreateVReg(*U.getOperand(2));
1960   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
1961   return true;
1962 }
1963 
1964 bool IRTranslator::translateExtractElement(const User &U,
1965                                            MachineIRBuilder &MIRBuilder) {
1966   // If it is a <1 x Ty> vector, use the scalar as it is
1967   // not a legal vector type in LLT.
1968   if (cast<VectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
1969     return translateCopy(U, *U.getOperand(0), MIRBuilder);
1970 
1971   Register Res = getOrCreateVReg(U);
1972   Register Val = getOrCreateVReg(*U.getOperand(0));
1973   const auto &TLI = *MF->getSubtarget().getTargetLowering();
1974   unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
1975   Register Idx;
1976   if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
1977     if (CI->getBitWidth() != PreferredVecIdxWidth) {
1978       APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
1979       auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
1980       Idx = getOrCreateVReg(*NewIdxCI);
1981     }
1982   }
1983   if (!Idx)
1984     Idx = getOrCreateVReg(*U.getOperand(1));
1985   if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
1986     const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
1987     Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0);
1988   }
1989   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
1990   return true;
1991 }
1992 
1993 bool IRTranslator::translateShuffleVector(const User &U,
1994                                           MachineIRBuilder &MIRBuilder) {
1995   ArrayRef<int> Mask;
1996   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
1997     Mask = SVI->getShuffleMask();
1998   else
1999     Mask = cast<ConstantExpr>(U).getShuffleMask();
2000   ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
2001   MIRBuilder
2002       .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
2003                   {getOrCreateVReg(*U.getOperand(0)),
2004                    getOrCreateVReg(*U.getOperand(1))})
2005       .addShuffleMask(MaskAlloc);
2006   return true;
2007 }
2008 
2009 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
2010   const PHINode &PI = cast<PHINode>(U);
2011 
2012   SmallVector<MachineInstr *, 4> Insts;
2013   for (auto Reg : getOrCreateVRegs(PI)) {
2014     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
2015     Insts.push_back(MIB.getInstr());
2016   }
2017 
2018   PendingPHIs.emplace_back(&PI, std::move(Insts));
2019   return true;
2020 }
2021 
2022 bool IRTranslator::translateAtomicCmpXchg(const User &U,
2023                                           MachineIRBuilder &MIRBuilder) {
2024   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
2025 
2026   if (I.isWeak())
2027     return false;
2028 
2029   auto &TLI = *MF->getSubtarget().getTargetLowering();
2030   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2031 
2032   Type *ResType = I.getType();
2033   Type *ValType = ResType->Type::getStructElementType(0);
2034 
2035   auto Res = getOrCreateVRegs(I);
2036   Register OldValRes = Res[0];
2037   Register SuccessRes = Res[1];
2038   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2039   Register Cmp = getOrCreateVReg(*I.getCompareOperand());
2040   Register NewVal = getOrCreateVReg(*I.getNewValOperand());
2041 
2042   AAMDNodes AAMetadata;
2043   I.getAAMetadata(AAMetadata);
2044 
2045   MIRBuilder.buildAtomicCmpXchgWithSuccess(
2046       OldValRes, SuccessRes, Addr, Cmp, NewVal,
2047       *MF->getMachineMemOperand(
2048           MachinePointerInfo(I.getPointerOperand()), Flags,
2049           DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr,
2050           I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering()));
2051   return true;
2052 }
2053 
2054 bool IRTranslator::translateAtomicRMW(const User &U,
2055                                       MachineIRBuilder &MIRBuilder) {
2056   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
2057   auto &TLI = *MF->getSubtarget().getTargetLowering();
2058   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2059 
2060   Type *ResType = I.getType();
2061 
2062   Register Res = getOrCreateVReg(I);
2063   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2064   Register Val = getOrCreateVReg(*I.getValOperand());
2065 
2066   unsigned Opcode = 0;
2067   switch (I.getOperation()) {
2068   default:
2069     return false;
2070   case AtomicRMWInst::Xchg:
2071     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
2072     break;
2073   case AtomicRMWInst::Add:
2074     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
2075     break;
2076   case AtomicRMWInst::Sub:
2077     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
2078     break;
2079   case AtomicRMWInst::And:
2080     Opcode = TargetOpcode::G_ATOMICRMW_AND;
2081     break;
2082   case AtomicRMWInst::Nand:
2083     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
2084     break;
2085   case AtomicRMWInst::Or:
2086     Opcode = TargetOpcode::G_ATOMICRMW_OR;
2087     break;
2088   case AtomicRMWInst::Xor:
2089     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
2090     break;
2091   case AtomicRMWInst::Max:
2092     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
2093     break;
2094   case AtomicRMWInst::Min:
2095     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
2096     break;
2097   case AtomicRMWInst::UMax:
2098     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
2099     break;
2100   case AtomicRMWInst::UMin:
2101     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
2102     break;
2103   case AtomicRMWInst::FAdd:
2104     Opcode = TargetOpcode::G_ATOMICRMW_FADD;
2105     break;
2106   case AtomicRMWInst::FSub:
2107     Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
2108     break;
2109   }
2110 
2111   AAMDNodes AAMetadata;
2112   I.getAAMetadata(AAMetadata);
2113 
2114   MIRBuilder.buildAtomicRMW(
2115       Opcode, Res, Addr, Val,
2116       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
2117                                 Flags, DL->getTypeStoreSize(ResType),
2118                                 getMemOpAlign(I), AAMetadata, nullptr,
2119                                 I.getSyncScopeID(), I.getOrdering()));
2120   return true;
2121 }
2122 
2123 bool IRTranslator::translateFence(const User &U,
2124                                   MachineIRBuilder &MIRBuilder) {
2125   const FenceInst &Fence = cast<FenceInst>(U);
2126   MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
2127                         Fence.getSyncScopeID());
2128   return true;
2129 }
2130 
2131 bool IRTranslator::translateFreeze(const User &U,
2132                                    MachineIRBuilder &MIRBuilder) {
2133   const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
2134   const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
2135 
2136   assert(DstRegs.size() == SrcRegs.size() &&
2137          "Freeze with different source and destination type?");
2138 
2139   for (unsigned I = 0; I < DstRegs.size(); ++I) {
2140     MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
2141   }
2142 
2143   return true;
2144 }
2145 
2146 void IRTranslator::finishPendingPhis() {
2147 #ifndef NDEBUG
2148   DILocationVerifier Verifier;
2149   GISelObserverWrapper WrapperObserver(&Verifier);
2150   RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2151 #endif // ifndef NDEBUG
2152   for (auto &Phi : PendingPHIs) {
2153     const PHINode *PI = Phi.first;
2154     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
2155     MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
2156     EntryBuilder->setDebugLoc(PI->getDebugLoc());
2157 #ifndef NDEBUG
2158     Verifier.setCurrentInst(PI);
2159 #endif // ifndef NDEBUG
2160 
2161     SmallSet<const MachineBasicBlock *, 16> SeenPreds;
2162     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
2163       auto IRPred = PI->getIncomingBlock(i);
2164       ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
2165       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
2166         if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
2167           continue;
2168         SeenPreds.insert(Pred);
2169         for (unsigned j = 0; j < ValRegs.size(); ++j) {
2170           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
2171           MIB.addUse(ValRegs[j]);
2172           MIB.addMBB(Pred);
2173         }
2174       }
2175     }
2176   }
2177 }
2178 
2179 bool IRTranslator::valueIsSplit(const Value &V,
2180                                 SmallVectorImpl<uint64_t> *Offsets) {
2181   SmallVector<LLT, 4> SplitTys;
2182   if (Offsets && !Offsets->empty())
2183     Offsets->clear();
2184   computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
2185   return SplitTys.size() > 1;
2186 }
2187 
2188 bool IRTranslator::translate(const Instruction &Inst) {
2189   CurBuilder->setDebugLoc(Inst.getDebugLoc());
2190   // We only emit constants into the entry block from here. To prevent jumpy
2191   // debug behaviour set the line to 0.
2192   if (const DebugLoc &DL = Inst.getDebugLoc())
2193     EntryBuilder->setDebugLoc(
2194         DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
2195   else
2196     EntryBuilder->setDebugLoc(DebugLoc());
2197 
2198   switch (Inst.getOpcode()) {
2199 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2200   case Instruction::OPCODE:                                                    \
2201     return translate##OPCODE(Inst, *CurBuilder.get());
2202 #include "llvm/IR/Instruction.def"
2203   default:
2204     return false;
2205   }
2206 }
2207 
2208 bool IRTranslator::translate(const Constant &C, Register Reg) {
2209   if (auto CI = dyn_cast<ConstantInt>(&C))
2210     EntryBuilder->buildConstant(Reg, *CI);
2211   else if (auto CF = dyn_cast<ConstantFP>(&C))
2212     EntryBuilder->buildFConstant(Reg, *CF);
2213   else if (isa<UndefValue>(C))
2214     EntryBuilder->buildUndef(Reg);
2215   else if (isa<ConstantPointerNull>(C))
2216     EntryBuilder->buildConstant(Reg, 0);
2217   else if (auto GV = dyn_cast<GlobalValue>(&C))
2218     EntryBuilder->buildGlobalValue(Reg, GV);
2219   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
2220     if (!CAZ->getType()->isVectorTy())
2221       return false;
2222     // Return the scalar if it is a <1 x Ty> vector.
2223     if (CAZ->getNumElements() == 1)
2224       return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get());
2225     SmallVector<Register, 4> Ops;
2226     for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
2227       Constant &Elt = *CAZ->getElementValue(i);
2228       Ops.push_back(getOrCreateVReg(Elt));
2229     }
2230     EntryBuilder->buildBuildVector(Reg, Ops);
2231   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
2232     // Return the scalar if it is a <1 x Ty> vector.
2233     if (CV->getNumElements() == 1)
2234       return translateCopy(C, *CV->getElementAsConstant(0),
2235                            *EntryBuilder.get());
2236     SmallVector<Register, 4> Ops;
2237     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
2238       Constant &Elt = *CV->getElementAsConstant(i);
2239       Ops.push_back(getOrCreateVReg(Elt));
2240     }
2241     EntryBuilder->buildBuildVector(Reg, Ops);
2242   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
2243     switch(CE->getOpcode()) {
2244 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2245   case Instruction::OPCODE:                                                    \
2246     return translate##OPCODE(*CE, *EntryBuilder.get());
2247 #include "llvm/IR/Instruction.def"
2248     default:
2249       return false;
2250     }
2251   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
2252     if (CV->getNumOperands() == 1)
2253       return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get());
2254     SmallVector<Register, 4> Ops;
2255     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
2256       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
2257     }
2258     EntryBuilder->buildBuildVector(Reg, Ops);
2259   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
2260     EntryBuilder->buildBlockAddress(Reg, BA);
2261   } else
2262     return false;
2263 
2264   return true;
2265 }
2266 
2267 void IRTranslator::finalizeBasicBlock() {
2268   for (auto &JTCase : SL->JTCases) {
2269     // Emit header first, if it wasn't already emitted.
2270     if (!JTCase.first.Emitted)
2271       emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
2272 
2273     emitJumpTable(JTCase.second, JTCase.second.MBB);
2274   }
2275   SL->JTCases.clear();
2276 }
2277 
2278 void IRTranslator::finalizeFunction() {
2279   // Release the memory used by the different maps we
2280   // needed during the translation.
2281   PendingPHIs.clear();
2282   VMap.reset();
2283   FrameIndices.clear();
2284   MachinePreds.clear();
2285   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
2286   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
2287   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
2288   EntryBuilder.reset();
2289   CurBuilder.reset();
2290   FuncInfo.clear();
2291 }
2292 
2293 /// Returns true if a BasicBlock \p BB within a variadic function contains a
2294 /// variadic musttail call.
2295 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
2296   if (!IsVarArg)
2297     return false;
2298 
2299   // Walk the block backwards, because tail calls usually only appear at the end
2300   // of a block.
2301   return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
2302     const auto *CI = dyn_cast<CallInst>(&I);
2303     return CI && CI->isMustTailCall();
2304   });
2305 }
2306 
2307 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
2308   MF = &CurMF;
2309   const Function &F = MF->getFunction();
2310   if (F.empty())
2311     return false;
2312   GISelCSEAnalysisWrapper &Wrapper =
2313       getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
2314   // Set the CSEConfig and run the analysis.
2315   GISelCSEInfo *CSEInfo = nullptr;
2316   TPC = &getAnalysis<TargetPassConfig>();
2317   bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
2318                        ? EnableCSEInIRTranslator
2319                        : TPC->isGISelCSEEnabled();
2320 
2321   if (EnableCSE) {
2322     EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
2323     CSEInfo = &Wrapper.get(TPC->getCSEConfig());
2324     EntryBuilder->setCSEInfo(CSEInfo);
2325     CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
2326     CurBuilder->setCSEInfo(CSEInfo);
2327   } else {
2328     EntryBuilder = std::make_unique<MachineIRBuilder>();
2329     CurBuilder = std::make_unique<MachineIRBuilder>();
2330   }
2331   CLI = MF->getSubtarget().getCallLowering();
2332   CurBuilder->setMF(*MF);
2333   EntryBuilder->setMF(*MF);
2334   MRI = &MF->getRegInfo();
2335   DL = &F.getParent()->getDataLayout();
2336   ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
2337   FuncInfo.MF = MF;
2338   FuncInfo.BPI = nullptr;
2339   const auto &TLI = *MF->getSubtarget().getTargetLowering();
2340   const TargetMachine &TM = MF->getTarget();
2341   SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
2342   SL->init(TLI, TM, *DL);
2343 
2344   EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F);
2345 
2346   assert(PendingPHIs.empty() && "stale PHIs");
2347 
2348   if (!DL->isLittleEndian()) {
2349     // Currently we don't properly handle big endian code.
2350     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2351                                F.getSubprogram(), &F.getEntryBlock());
2352     R << "unable to translate in big endian mode";
2353     reportTranslationError(*MF, *TPC, *ORE, R);
2354   }
2355 
2356   // Release the per-function state when we return, whether we succeeded or not.
2357   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
2358 
2359   // Setup a separate basic-block for the arguments and constants
2360   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
2361   MF->push_back(EntryBB);
2362   EntryBuilder->setMBB(*EntryBB);
2363 
2364   DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
2365   SwiftError.setFunction(CurMF);
2366   SwiftError.createEntriesInEntryBlock(DbgLoc);
2367 
2368   bool IsVarArg = F.isVarArg();
2369   bool HasMustTailInVarArgFn = false;
2370 
2371   // Create all blocks, in IR order, to preserve the layout.
2372   for (const BasicBlock &BB: F) {
2373     auto *&MBB = BBToMBB[&BB];
2374 
2375     MBB = MF->CreateMachineBasicBlock(&BB);
2376     MF->push_back(MBB);
2377 
2378     if (BB.hasAddressTaken())
2379       MBB->setHasAddressTaken();
2380 
2381     if (!HasMustTailInVarArgFn)
2382       HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
2383   }
2384 
2385   MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
2386 
2387   // Make our arguments/constants entry block fallthrough to the IR entry block.
2388   EntryBB->addSuccessor(&getMBB(F.front()));
2389 
2390   // Lower the actual args into this basic block.
2391   SmallVector<ArrayRef<Register>, 8> VRegArgs;
2392   for (const Argument &Arg: F.args()) {
2393     if (DL->getTypeStoreSize(Arg.getType()) == 0)
2394       continue; // Don't handle zero sized types.
2395     ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
2396     VRegArgs.push_back(VRegs);
2397 
2398     if (Arg.hasSwiftErrorAttr()) {
2399       assert(VRegs.size() == 1 && "Too many vregs for Swift error");
2400       SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
2401     }
2402   }
2403 
2404   if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) {
2405     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2406                                F.getSubprogram(), &F.getEntryBlock());
2407     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
2408     reportTranslationError(*MF, *TPC, *ORE, R);
2409     return false;
2410   }
2411 
2412   // Need to visit defs before uses when translating instructions.
2413   GISelObserverWrapper WrapperObserver;
2414   if (EnableCSE && CSEInfo)
2415     WrapperObserver.addObserver(CSEInfo);
2416   {
2417     ReversePostOrderTraversal<const Function *> RPOT(&F);
2418 #ifndef NDEBUG
2419     DILocationVerifier Verifier;
2420     WrapperObserver.addObserver(&Verifier);
2421 #endif // ifndef NDEBUG
2422     RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2423     RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
2424     for (const BasicBlock *BB : RPOT) {
2425       MachineBasicBlock &MBB = getMBB(*BB);
2426       // Set the insertion point of all the following translations to
2427       // the end of this basic block.
2428       CurBuilder->setMBB(MBB);
2429       HasTailCall = false;
2430       for (const Instruction &Inst : *BB) {
2431         // If we translated a tail call in the last step, then we know
2432         // everything after the call is either a return, or something that is
2433         // handled by the call itself. (E.g. a lifetime marker or assume
2434         // intrinsic.) In this case, we should stop translating the block and
2435         // move on.
2436         if (HasTailCall)
2437           break;
2438 #ifndef NDEBUG
2439         Verifier.setCurrentInst(&Inst);
2440 #endif // ifndef NDEBUG
2441         if (translate(Inst))
2442           continue;
2443 
2444         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2445                                    Inst.getDebugLoc(), BB);
2446         R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
2447 
2448         if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
2449           std::string InstStrStorage;
2450           raw_string_ostream InstStr(InstStrStorage);
2451           InstStr << Inst;
2452 
2453           R << ": '" << InstStr.str() << "'";
2454         }
2455 
2456         reportTranslationError(*MF, *TPC, *ORE, R);
2457         return false;
2458       }
2459 
2460       finalizeBasicBlock();
2461     }
2462 #ifndef NDEBUG
2463     WrapperObserver.removeObserver(&Verifier);
2464 #endif
2465   }
2466 
2467   finishPendingPhis();
2468 
2469   SwiftError.propagateVRegs();
2470 
2471   // Merge the argument lowering and constants block with its single
2472   // successor, the LLVM-IR entry block.  We want the basic block to
2473   // be maximal.
2474   assert(EntryBB->succ_size() == 1 &&
2475          "Custom BB used for lowering should have only one successor");
2476   // Get the successor of the current entry block.
2477   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
2478   assert(NewEntryBB.pred_size() == 1 &&
2479          "LLVM-IR entry block has a predecessor!?");
2480   // Move all the instruction from the current entry block to the
2481   // new entry block.
2482   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
2483                     EntryBB->end());
2484 
2485   // Update the live-in information for the new entry block.
2486   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
2487     NewEntryBB.addLiveIn(LiveIn);
2488   NewEntryBB.sortUniqueLiveIns();
2489 
2490   // Get rid of the now empty basic block.
2491   EntryBB->removeSuccessor(&NewEntryBB);
2492   MF->remove(EntryBB);
2493   MF->DeleteMachineBasicBlock(EntryBB);
2494 
2495   assert(&MF->front() == &NewEntryBB &&
2496          "New entry wasn't next in the list of basic block!");
2497 
2498   // Initialize stack protector information.
2499   StackProtector &SP = getAnalysis<StackProtector>();
2500   SP.copyToMachineFrameInfo(MF->getFrameInfo());
2501 
2502   return false;
2503 }
2504