1 //===-- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator --*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the IRTranslator class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 14 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 19 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/DebugInfo.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Target/TargetFrameLowering.h" 34 #include "llvm/Target/TargetIntrinsicInfo.h" 35 #include "llvm/Target/TargetLowering.h" 36 37 #define DEBUG_TYPE "irtranslator" 38 39 using namespace llvm; 40 41 char IRTranslator::ID = 0; 42 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 43 false, false) 44 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 45 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 46 false, false) 47 48 static void reportTranslationError(MachineFunction &MF, 49 const TargetPassConfig &TPC, 50 OptimizationRemarkEmitter &ORE, 51 OptimizationRemarkMissed &R) { 52 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 53 54 // Print the function name explicitly if we don't have a debug location (which 55 // makes the diagnostic less useful) or if we're going to emit a raw error. 56 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 57 R << (" (in function: " + MF.getName() + ")").str(); 58 59 if (TPC.isGlobalISelAbortEnabled()) 60 report_fatal_error(R.getMsg()); 61 else 62 ORE.emit(R); 63 } 64 65 IRTranslator::IRTranslator() : MachineFunctionPass(ID), MRI(nullptr) { 66 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 67 } 68 69 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 70 AU.addRequired<TargetPassConfig>(); 71 MachineFunctionPass::getAnalysisUsage(AU); 72 } 73 74 75 unsigned IRTranslator::getOrCreateVReg(const Value &Val) { 76 unsigned &ValReg = ValToVReg[&Val]; 77 78 if (ValReg) 79 return ValReg; 80 81 // Fill ValRegsSequence with the sequence of registers 82 // we need to concat together to produce the value. 83 assert(Val.getType()->isSized() && 84 "Don't know how to create an empty vreg"); 85 unsigned VReg = 86 MRI->createGenericVirtualRegister(getLLTForType(*Val.getType(), *DL)); 87 ValReg = VReg; 88 89 if (auto CV = dyn_cast<Constant>(&Val)) { 90 bool Success = translate(*CV, VReg); 91 if (!Success) { 92 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 93 MF->getFunction()->getSubprogram(), 94 &MF->getFunction()->getEntryBlock()); 95 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 96 reportTranslationError(*MF, *TPC, *ORE, R); 97 return VReg; 98 } 99 } 100 101 return VReg; 102 } 103 104 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 105 if (FrameIndices.find(&AI) != FrameIndices.end()) 106 return FrameIndices[&AI]; 107 108 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 109 unsigned Size = 110 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 111 112 // Always allocate at least one byte. 113 Size = std::max(Size, 1u); 114 115 unsigned Alignment = AI.getAlignment(); 116 if (!Alignment) 117 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 118 119 int &FI = FrameIndices[&AI]; 120 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 121 return FI; 122 } 123 124 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 125 unsigned Alignment = 0; 126 Type *ValTy = nullptr; 127 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 128 Alignment = SI->getAlignment(); 129 ValTy = SI->getValueOperand()->getType(); 130 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 131 Alignment = LI->getAlignment(); 132 ValTy = LI->getType(); 133 } else { 134 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 135 R << "unable to translate memop: " << ore::NV("Opcode", &I); 136 reportTranslationError(*MF, *TPC, *ORE, R); 137 return 1; 138 } 139 140 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 141 } 142 143 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 144 MachineBasicBlock *&MBB = BBToMBB[&BB]; 145 assert(MBB && "BasicBlock was not encountered before"); 146 return *MBB; 147 } 148 149 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 150 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 151 MachinePreds[Edge].push_back(NewPred); 152 } 153 154 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 155 MachineIRBuilder &MIRBuilder) { 156 // FIXME: handle signed/unsigned wrapping flags. 157 158 // Get or create a virtual register for each value. 159 // Unless the value is a Constant => loadimm cst? 160 // or inline constant each time? 161 // Creation of a virtual register needs to have a size. 162 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 163 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 164 unsigned Res = getOrCreateVReg(U); 165 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1); 166 return true; 167 } 168 169 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 170 // -0.0 - X --> G_FNEG 171 if (isa<Constant>(U.getOperand(0)) && 172 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 173 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 174 .addDef(getOrCreateVReg(U)) 175 .addUse(getOrCreateVReg(*U.getOperand(1))); 176 return true; 177 } 178 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 179 } 180 181 bool IRTranslator::translateCompare(const User &U, 182 MachineIRBuilder &MIRBuilder) { 183 const CmpInst *CI = dyn_cast<CmpInst>(&U); 184 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 185 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 186 unsigned Res = getOrCreateVReg(U); 187 CmpInst::Predicate Pred = 188 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 189 cast<ConstantExpr>(U).getPredicate()); 190 if (CmpInst::isIntPredicate(Pred)) 191 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 192 else if (Pred == CmpInst::FCMP_FALSE) 193 MIRBuilder.buildCopy( 194 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 195 else if (Pred == CmpInst::FCMP_TRUE) 196 MIRBuilder.buildCopy( 197 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 198 else 199 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1); 200 201 return true; 202 } 203 204 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 205 const ReturnInst &RI = cast<ReturnInst>(U); 206 const Value *Ret = RI.getReturnValue(); 207 // The target may mess up with the insertion point, but 208 // this is not important as a return is the last instruction 209 // of the block anyway. 210 return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret)); 211 } 212 213 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 214 const BranchInst &BrInst = cast<BranchInst>(U); 215 unsigned Succ = 0; 216 if (!BrInst.isUnconditional()) { 217 // We want a G_BRCOND to the true BB followed by an unconditional branch. 218 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 219 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 220 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 221 MIRBuilder.buildBrCond(Tst, TrueBB); 222 } 223 224 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 225 MachineBasicBlock &TgtBB = getMBB(BrTgt); 226 MIRBuilder.buildBr(TgtBB); 227 228 // Link successors. 229 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 230 for (const BasicBlock *Succ : BrInst.successors()) 231 CurBB.addSuccessor(&getMBB(*Succ)); 232 return true; 233 } 234 235 bool IRTranslator::translateSwitch(const User &U, 236 MachineIRBuilder &MIRBuilder) { 237 // For now, just translate as a chain of conditional branches. 238 // FIXME: could we share most of the logic/code in 239 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 240 // At first sight, it seems most of the logic in there is independent of 241 // SelectionDAG-specifics and a lot of work went in to optimize switch 242 // lowering in there. 243 244 const SwitchInst &SwInst = cast<SwitchInst>(U); 245 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 246 const BasicBlock *OrigBB = SwInst.getParent(); 247 248 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); 249 for (auto &CaseIt : SwInst.cases()) { 250 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 251 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 252 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 253 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 254 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 255 MachineBasicBlock &TrueMBB = getMBB(*TrueBB); 256 257 MIRBuilder.buildBrCond(Tst, TrueMBB); 258 CurMBB.addSuccessor(&TrueMBB); 259 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 260 261 MachineBasicBlock *FalseMBB = 262 MF->CreateMachineBasicBlock(SwInst.getParent()); 263 // Insert the comparison blocks one after the other. 264 MF->insert(std::next(CurMBB.getIterator()), FalseMBB); 265 MIRBuilder.buildBr(*FalseMBB); 266 CurMBB.addSuccessor(FalseMBB); 267 268 MIRBuilder.setMBB(*FalseMBB); 269 } 270 // handle default case 271 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 272 MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB); 273 MIRBuilder.buildBr(DefaultMBB); 274 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 275 CurMBB.addSuccessor(&DefaultMBB); 276 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 277 278 return true; 279 } 280 281 bool IRTranslator::translateIndirectBr(const User &U, 282 MachineIRBuilder &MIRBuilder) { 283 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 284 285 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 286 MIRBuilder.buildBrIndirect(Tgt); 287 288 // Link successors. 289 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 290 for (const BasicBlock *Succ : BrInst.successors()) 291 CurBB.addSuccessor(&getMBB(*Succ)); 292 293 return true; 294 } 295 296 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 297 const LoadInst &LI = cast<LoadInst>(U); 298 299 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 300 : MachineMemOperand::MONone; 301 Flags |= MachineMemOperand::MOLoad; 302 303 unsigned Res = getOrCreateVReg(LI); 304 unsigned Addr = getOrCreateVReg(*LI.getPointerOperand()); 305 306 MIRBuilder.buildLoad( 307 Res, Addr, 308 *MF->getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()), 309 Flags, DL->getTypeStoreSize(LI.getType()), 310 getMemOpAlignment(LI), AAMDNodes(), nullptr, 311 LI.getSynchScope(), LI.getOrdering())); 312 return true; 313 } 314 315 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 316 const StoreInst &SI = cast<StoreInst>(U); 317 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 318 : MachineMemOperand::MONone; 319 Flags |= MachineMemOperand::MOStore; 320 321 unsigned Val = getOrCreateVReg(*SI.getValueOperand()); 322 unsigned Addr = getOrCreateVReg(*SI.getPointerOperand()); 323 324 MIRBuilder.buildStore( 325 Val, Addr, 326 *MF->getMachineMemOperand( 327 MachinePointerInfo(SI.getPointerOperand()), Flags, 328 DL->getTypeStoreSize(SI.getValueOperand()->getType()), 329 getMemOpAlignment(SI), AAMDNodes(), nullptr, SI.getSynchScope(), 330 SI.getOrdering())); 331 return true; 332 } 333 334 bool IRTranslator::translateExtractValue(const User &U, 335 MachineIRBuilder &MIRBuilder) { 336 const Value *Src = U.getOperand(0); 337 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 338 SmallVector<Value *, 1> Indices; 339 340 // getIndexedOffsetInType is designed for GEPs, so the first index is the 341 // usual array element rather than looking into the actual aggregate. 342 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 343 344 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 345 for (auto Idx : EVI->indices()) 346 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 347 } else { 348 for (unsigned i = 1; i < U.getNumOperands(); ++i) 349 Indices.push_back(U.getOperand(i)); 350 } 351 352 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 353 354 unsigned Res = getOrCreateVReg(U); 355 MIRBuilder.buildExtract(Res, getOrCreateVReg(*Src), Offset); 356 357 return true; 358 } 359 360 bool IRTranslator::translateInsertValue(const User &U, 361 MachineIRBuilder &MIRBuilder) { 362 const Value *Src = U.getOperand(0); 363 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 364 SmallVector<Value *, 1> Indices; 365 366 // getIndexedOffsetInType is designed for GEPs, so the first index is the 367 // usual array element rather than looking into the actual aggregate. 368 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 369 370 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 371 for (auto Idx : IVI->indices()) 372 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 373 } else { 374 for (unsigned i = 2; i < U.getNumOperands(); ++i) 375 Indices.push_back(U.getOperand(i)); 376 } 377 378 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 379 380 unsigned Res = getOrCreateVReg(U); 381 const Value &Inserted = *U.getOperand(1); 382 MIRBuilder.buildInsert(Res, getOrCreateVReg(*Src), getOrCreateVReg(Inserted), 383 Offset); 384 385 return true; 386 } 387 388 bool IRTranslator::translateSelect(const User &U, 389 MachineIRBuilder &MIRBuilder) { 390 MIRBuilder.buildSelect(getOrCreateVReg(U), getOrCreateVReg(*U.getOperand(0)), 391 getOrCreateVReg(*U.getOperand(1)), 392 getOrCreateVReg(*U.getOperand(2))); 393 return true; 394 } 395 396 bool IRTranslator::translateBitCast(const User &U, 397 MachineIRBuilder &MIRBuilder) { 398 // If we're bitcasting to the source type, we can reuse the source vreg. 399 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 400 getLLTForType(*U.getType(), *DL)) { 401 // Get the source vreg now, to avoid invalidating ValToVReg. 402 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); 403 unsigned &Reg = ValToVReg[&U]; 404 // If we already assigned a vreg for this bitcast, we can't change that. 405 // Emit a copy to satisfy the users we already emitted. 406 if (Reg) 407 MIRBuilder.buildCopy(Reg, SrcReg); 408 else 409 Reg = SrcReg; 410 return true; 411 } 412 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 413 } 414 415 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 416 MachineIRBuilder &MIRBuilder) { 417 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 418 unsigned Res = getOrCreateVReg(U); 419 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); 420 return true; 421 } 422 423 bool IRTranslator::translateGetElementPtr(const User &U, 424 MachineIRBuilder &MIRBuilder) { 425 // FIXME: support vector GEPs. 426 if (U.getType()->isVectorTy()) 427 return false; 428 429 Value &Op0 = *U.getOperand(0); 430 unsigned BaseReg = getOrCreateVReg(Op0); 431 Type *PtrIRTy = Op0.getType(); 432 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 433 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 434 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 435 436 int64_t Offset = 0; 437 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 438 GTI != E; ++GTI) { 439 const Value *Idx = GTI.getOperand(); 440 if (StructType *StTy = GTI.getStructTypeOrNull()) { 441 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 442 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 443 continue; 444 } else { 445 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 446 447 // If this is a scalar constant or a splat vector of constants, 448 // handle it quickly. 449 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 450 Offset += ElementSize * CI->getSExtValue(); 451 continue; 452 } 453 454 if (Offset != 0) { 455 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 456 unsigned OffsetReg = 457 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 458 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 459 460 BaseReg = NewBaseReg; 461 Offset = 0; 462 } 463 464 // N = N + Idx * ElementSize; 465 unsigned ElementSizeReg = 466 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize)); 467 468 unsigned IdxReg = getOrCreateVReg(*Idx); 469 if (MRI->getType(IdxReg) != OffsetTy) { 470 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 471 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 472 IdxReg = NewIdxReg; 473 } 474 475 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 476 MIRBuilder.buildMul(OffsetReg, ElementSizeReg, IdxReg); 477 478 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 479 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 480 BaseReg = NewBaseReg; 481 } 482 } 483 484 if (Offset != 0) { 485 unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 486 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); 487 return true; 488 } 489 490 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 491 return true; 492 } 493 494 bool IRTranslator::translateMemfunc(const CallInst &CI, 495 MachineIRBuilder &MIRBuilder, 496 unsigned ID) { 497 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); 498 Type *DstTy = CI.getArgOperand(0)->getType(); 499 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 500 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 501 return false; 502 503 SmallVector<CallLowering::ArgInfo, 8> Args; 504 for (int i = 0; i < 3; ++i) { 505 const auto &Arg = CI.getArgOperand(i); 506 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 507 } 508 509 const char *Callee; 510 switch (ID) { 511 case Intrinsic::memmove: 512 case Intrinsic::memcpy: { 513 Type *SrcTy = CI.getArgOperand(1)->getType(); 514 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 515 return false; 516 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 517 break; 518 } 519 case Intrinsic::memset: 520 Callee = "memset"; 521 break; 522 default: 523 return false; 524 } 525 526 return CLI->lowerCall(MIRBuilder, CI.getCallingConv(), 527 MachineOperand::CreateES(Callee), 528 CallLowering::ArgInfo(0, CI.getType()), Args); 529 } 530 531 void IRTranslator::getStackGuard(unsigned DstReg, 532 MachineIRBuilder &MIRBuilder) { 533 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 534 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 535 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 536 MIB.addDef(DstReg); 537 538 auto &TLI = *MF->getSubtarget().getTargetLowering(); 539 Value *Global = TLI.getSDagStackGuard(*MF->getFunction()->getParent()); 540 if (!Global) 541 return; 542 543 MachinePointerInfo MPInfo(Global); 544 MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1); 545 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 546 MachineMemOperand::MODereferenceable; 547 *MemRefs = 548 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 549 DL->getPointerABIAlignment()); 550 MIB.setMemRefs(MemRefs, MemRefs + 1); 551 } 552 553 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 554 MachineIRBuilder &MIRBuilder) { 555 LLT Ty = getLLTForType(*CI.getOperand(0)->getType(), *DL); 556 LLT s1 = LLT::scalar(1); 557 unsigned Width = Ty.getSizeInBits(); 558 unsigned Res = MRI->createGenericVirtualRegister(Ty); 559 unsigned Overflow = MRI->createGenericVirtualRegister(s1); 560 auto MIB = MIRBuilder.buildInstr(Op) 561 .addDef(Res) 562 .addDef(Overflow) 563 .addUse(getOrCreateVReg(*CI.getOperand(0))) 564 .addUse(getOrCreateVReg(*CI.getOperand(1))); 565 566 if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) { 567 unsigned Zero = getOrCreateVReg( 568 *Constant::getNullValue(Type::getInt1Ty(CI.getContext()))); 569 MIB.addUse(Zero); 570 } 571 572 MIRBuilder.buildSequence(getOrCreateVReg(CI), Res, 0, Overflow, Width); 573 return true; 574 } 575 576 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 577 MachineIRBuilder &MIRBuilder) { 578 switch (ID) { 579 default: 580 break; 581 case Intrinsic::lifetime_start: 582 case Intrinsic::lifetime_end: 583 // Stack coloring is not enabled in O0 (which we care about now) so we can 584 // drop these. Make sure someone notices when we start compiling at higher 585 // opts though. 586 if (MF->getTarget().getOptLevel() != CodeGenOpt::None) 587 return false; 588 return true; 589 case Intrinsic::dbg_declare: { 590 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 591 assert(DI.getVariable() && "Missing variable"); 592 593 const Value *Address = DI.getAddress(); 594 if (!Address || isa<UndefValue>(Address)) { 595 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 596 return true; 597 } 598 599 assert(DI.getVariable()->isValidLocationForIntrinsic( 600 MIRBuilder.getDebugLoc()) && 601 "Expected inlined-at fields to agree"); 602 auto AI = dyn_cast<AllocaInst>(Address); 603 if (AI && AI->isStaticAlloca()) { 604 // Static allocas are tracked at the MF level, no need for DBG_VALUE 605 // instructions (in fact, they get ignored if they *do* exist). 606 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 607 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 608 } else 609 MIRBuilder.buildDirectDbgValue(getOrCreateVReg(*Address), 610 DI.getVariable(), DI.getExpression()); 611 return true; 612 } 613 case Intrinsic::vaend: 614 // No target I know of cares about va_end. Certainly no in-tree target 615 // does. Simplest intrinsic ever! 616 return true; 617 case Intrinsic::vastart: { 618 auto &TLI = *MF->getSubtarget().getTargetLowering(); 619 Value *Ptr = CI.getArgOperand(0); 620 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 621 622 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 623 .addUse(getOrCreateVReg(*Ptr)) 624 .addMemOperand(MF->getMachineMemOperand( 625 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0)); 626 return true; 627 } 628 case Intrinsic::dbg_value: { 629 // This form of DBG_VALUE is target-independent. 630 const DbgValueInst &DI = cast<DbgValueInst>(CI); 631 const Value *V = DI.getValue(); 632 assert(DI.getVariable()->isValidLocationForIntrinsic( 633 MIRBuilder.getDebugLoc()) && 634 "Expected inlined-at fields to agree"); 635 if (!V) { 636 // Currently the optimizer can produce this; insert an undef to 637 // help debugging. Probably the optimizer should not do this. 638 MIRBuilder.buildIndirectDbgValue(0, DI.getOffset(), DI.getVariable(), 639 DI.getExpression()); 640 } else if (const auto *CI = dyn_cast<Constant>(V)) { 641 MIRBuilder.buildConstDbgValue(*CI, DI.getOffset(), DI.getVariable(), 642 DI.getExpression()); 643 } else { 644 unsigned Reg = getOrCreateVReg(*V); 645 // FIXME: This does not handle register-indirect values at offset 0. The 646 // direct/indirect thing shouldn't really be handled by something as 647 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 648 // pretty baked in right now. 649 if (DI.getOffset() != 0) 650 MIRBuilder.buildIndirectDbgValue(Reg, DI.getOffset(), DI.getVariable(), 651 DI.getExpression()); 652 else 653 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), 654 DI.getExpression()); 655 } 656 return true; 657 } 658 case Intrinsic::uadd_with_overflow: 659 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder); 660 case Intrinsic::sadd_with_overflow: 661 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 662 case Intrinsic::usub_with_overflow: 663 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder); 664 case Intrinsic::ssub_with_overflow: 665 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 666 case Intrinsic::umul_with_overflow: 667 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 668 case Intrinsic::smul_with_overflow: 669 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 670 case Intrinsic::pow: 671 MIRBuilder.buildInstr(TargetOpcode::G_FPOW) 672 .addDef(getOrCreateVReg(CI)) 673 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 674 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 675 return true; 676 case Intrinsic::memcpy: 677 case Intrinsic::memmove: 678 case Intrinsic::memset: 679 return translateMemfunc(CI, MIRBuilder, ID); 680 case Intrinsic::eh_typeid_for: { 681 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 682 unsigned Reg = getOrCreateVReg(CI); 683 unsigned TypeID = MF->getTypeIDFor(GV); 684 MIRBuilder.buildConstant(Reg, TypeID); 685 return true; 686 } 687 case Intrinsic::objectsize: { 688 // If we don't know by now, we're never going to know. 689 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 690 691 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 692 return true; 693 } 694 case Intrinsic::stackguard: 695 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 696 return true; 697 case Intrinsic::stackprotector: { 698 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 699 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 700 getStackGuard(GuardVal, MIRBuilder); 701 702 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 703 MIRBuilder.buildStore( 704 GuardVal, getOrCreateVReg(*Slot), 705 *MF->getMachineMemOperand( 706 MachinePointerInfo::getFixedStack(*MF, 707 getOrCreateFrameIndex(*Slot)), 708 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 709 PtrTy.getSizeInBits() / 8, 8)); 710 return true; 711 } 712 } 713 return false; 714 } 715 716 bool IRTranslator::translateInlineAsm(const CallInst &CI, 717 MachineIRBuilder &MIRBuilder) { 718 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 719 if (!IA.getConstraintString().empty()) 720 return false; 721 722 unsigned ExtraInfo = 0; 723 if (IA.hasSideEffects()) 724 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 725 if (IA.getDialect() == InlineAsm::AD_Intel) 726 ExtraInfo |= InlineAsm::Extra_AsmDialect; 727 728 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 729 .addExternalSymbol(IA.getAsmString().c_str()) 730 .addImm(ExtraInfo); 731 732 return true; 733 } 734 735 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 736 const CallInst &CI = cast<CallInst>(U); 737 auto TII = MF->getTarget().getIntrinsicInfo(); 738 const Function *F = CI.getCalledFunction(); 739 740 if (CI.isInlineAsm()) 741 return translateInlineAsm(CI, MIRBuilder); 742 743 if (!F || !F->isIntrinsic()) { 744 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 745 SmallVector<unsigned, 8> Args; 746 for (auto &Arg: CI.arg_operands()) 747 Args.push_back(getOrCreateVReg(*Arg)); 748 749 MF->getFrameInfo().setHasCalls(true); 750 return CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() { 751 return getOrCreateVReg(*CI.getCalledValue()); 752 }); 753 } 754 755 Intrinsic::ID ID = F->getIntrinsicID(); 756 if (TII && ID == Intrinsic::not_intrinsic) 757 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 758 759 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 760 761 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 762 return true; 763 764 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 765 MachineInstrBuilder MIB = 766 MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); 767 768 for (auto &Arg : CI.arg_operands()) { 769 // Some intrinsics take metadata parameters. Reject them. 770 if (isa<MetadataAsValue>(Arg)) 771 return false; 772 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) 773 MIB.addImm(CI->getSExtValue()); 774 else 775 MIB.addUse(getOrCreateVReg(*Arg)); 776 } 777 return true; 778 } 779 780 bool IRTranslator::translateInvoke(const User &U, 781 MachineIRBuilder &MIRBuilder) { 782 const InvokeInst &I = cast<InvokeInst>(U); 783 MCContext &Context = MF->getContext(); 784 785 const BasicBlock *ReturnBB = I.getSuccessor(0); 786 const BasicBlock *EHPadBB = I.getSuccessor(1); 787 788 const Value *Callee = I.getCalledValue(); 789 const Function *Fn = dyn_cast<Function>(Callee); 790 if (isa<InlineAsm>(Callee)) 791 return false; 792 793 // FIXME: support invoking patchpoint and statepoint intrinsics. 794 if (Fn && Fn->isIntrinsic()) 795 return false; 796 797 // FIXME: support whatever these are. 798 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 799 return false; 800 801 // FIXME: support Windows exception handling. 802 if (!isa<LandingPadInst>(EHPadBB->front())) 803 return false; 804 805 806 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 807 // the region covered by the try. 808 MCSymbol *BeginSymbol = Context.createTempSymbol(); 809 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 810 811 unsigned Res = I.getType()->isVoidTy() ? 0 : getOrCreateVReg(I); 812 SmallVector<unsigned, 8> Args; 813 for (auto &Arg: I.arg_operands()) 814 Args.push_back(getOrCreateVReg(*Arg)); 815 816 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, 817 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 818 return false; 819 820 MCSymbol *EndSymbol = Context.createTempSymbol(); 821 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 822 823 // FIXME: track probabilities. 824 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 825 &ReturnMBB = getMBB(*ReturnBB); 826 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 827 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 828 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 829 MIRBuilder.buildBr(ReturnMBB); 830 831 return true; 832 } 833 834 bool IRTranslator::translateLandingPad(const User &U, 835 MachineIRBuilder &MIRBuilder) { 836 const LandingPadInst &LP = cast<LandingPadInst>(U); 837 838 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 839 addLandingPadInfo(LP, MBB); 840 841 MBB.setIsEHPad(); 842 843 // If there aren't registers to copy the values into (e.g., during SjLj 844 // exceptions), then don't bother. 845 auto &TLI = *MF->getSubtarget().getTargetLowering(); 846 const Constant *PersonalityFn = MF->getFunction()->getPersonalityFn(); 847 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 848 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 849 return true; 850 851 // If landingpad's return type is token type, we don't create DAG nodes 852 // for its exception pointer and selector value. The extraction of exception 853 // pointer or selector value from token type landingpads is not currently 854 // supported. 855 if (LP.getType()->isTokenTy()) 856 return true; 857 858 // Add a label to mark the beginning of the landing pad. Deletion of the 859 // landing pad can thus be detected via the MachineModuleInfo. 860 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 861 .addSym(MF->addLandingPad(&MBB)); 862 863 LLT Ty = getLLTForType(*LP.getType(), *DL); 864 unsigned Undef = MRI->createGenericVirtualRegister(Ty); 865 MIRBuilder.buildUndef(Undef); 866 867 SmallVector<LLT, 2> Tys; 868 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 869 Tys.push_back(getLLTForType(*Ty, *DL)); 870 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 871 872 // Mark exception register as live in. 873 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 874 if (!ExceptionReg) 875 return false; 876 877 MBB.addLiveIn(ExceptionReg); 878 unsigned VReg = MRI->createGenericVirtualRegister(Tys[0]), 879 Tmp = MRI->createGenericVirtualRegister(Ty); 880 MIRBuilder.buildCopy(VReg, ExceptionReg); 881 MIRBuilder.buildInsert(Tmp, Undef, VReg, 0); 882 883 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 884 if (!SelectorReg) 885 return false; 886 887 MBB.addLiveIn(SelectorReg); 888 889 // N.b. the exception selector register always has pointer type and may not 890 // match the actual IR-level type in the landingpad so an extra cast is 891 // needed. 892 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 893 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 894 895 VReg = MRI->createGenericVirtualRegister(Tys[1]); 896 MIRBuilder.buildInstr(TargetOpcode::G_PTRTOINT).addDef(VReg).addUse(PtrVReg); 897 MIRBuilder.buildInsert(getOrCreateVReg(LP), Tmp, VReg, 898 Tys[0].getSizeInBits()); 899 return true; 900 } 901 902 bool IRTranslator::translateAlloca(const User &U, 903 MachineIRBuilder &MIRBuilder) { 904 auto &AI = cast<AllocaInst>(U); 905 906 if (AI.isStaticAlloca()) { 907 unsigned Res = getOrCreateVReg(AI); 908 int FI = getOrCreateFrameIndex(AI); 909 MIRBuilder.buildFrameIndex(Res, FI); 910 return true; 911 } 912 913 // Now we're in the harder dynamic case. 914 Type *Ty = AI.getAllocatedType(); 915 unsigned Align = 916 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 917 918 unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); 919 920 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 921 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 922 if (MRI->getType(NumElts) != IntPtrTy) { 923 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 924 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 925 NumElts = ExtElts; 926 } 927 928 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 929 unsigned TySize = 930 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); 931 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 932 933 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 934 auto &TLI = *MF->getSubtarget().getTargetLowering(); 935 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 936 937 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); 938 MIRBuilder.buildCopy(SPTmp, SPReg); 939 940 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 941 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 942 943 // Handle alignment. We have to realign if the allocation granule was smaller 944 // than stack alignment, or the specific alloca requires more than stack 945 // alignment. 946 unsigned StackAlign = 947 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 948 Align = std::max(Align, StackAlign); 949 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 950 // Round the size of the allocation up to the stack alignment size 951 // by add SA-1 to the size. This doesn't overflow because we're computing 952 // an address inside an alloca. 953 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 954 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 955 AllocTmp = AlignedAlloc; 956 } 957 958 MIRBuilder.buildCopy(SPReg, AllocTmp); 959 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 960 961 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 962 assert(MF->getFrameInfo().hasVarSizedObjects()); 963 return true; 964 } 965 966 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 967 // FIXME: We may need more info about the type. Because of how LLT works, 968 // we're completely discarding the i64/double distinction here (amongst 969 // others). Fortunately the ABIs I know of where that matters don't use va_arg 970 // anyway but that's not guaranteed. 971 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 972 .addDef(getOrCreateVReg(U)) 973 .addUse(getOrCreateVReg(*U.getOperand(0))) 974 .addImm(DL->getABITypeAlignment(U.getType())); 975 return true; 976 } 977 978 bool IRTranslator::translateInsertElement(const User &U, 979 MachineIRBuilder &MIRBuilder) { 980 // If it is a <1 x Ty> vector, use the scalar as it is 981 // not a legal vector type in LLT. 982 if (U.getType()->getVectorNumElements() == 1) { 983 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 984 ValToVReg[&U] = Elt; 985 return true; 986 } 987 MIRBuilder.buildInsertVectorElement( 988 getOrCreateVReg(U), getOrCreateVReg(*U.getOperand(0)), 989 getOrCreateVReg(*U.getOperand(1)), getOrCreateVReg(*U.getOperand(2))); 990 return true; 991 } 992 993 bool IRTranslator::translateExtractElement(const User &U, 994 MachineIRBuilder &MIRBuilder) { 995 // If it is a <1 x Ty> vector, use the scalar as it is 996 // not a legal vector type in LLT. 997 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 998 unsigned Elt = getOrCreateVReg(*U.getOperand(0)); 999 ValToVReg[&U] = Elt; 1000 return true; 1001 } 1002 MIRBuilder.buildExtractVectorElement(getOrCreateVReg(U), 1003 getOrCreateVReg(*U.getOperand(0)), 1004 getOrCreateVReg(*U.getOperand(1))); 1005 return true; 1006 } 1007 1008 bool IRTranslator::translateShuffleVector(const User &U, 1009 MachineIRBuilder &MIRBuilder) { 1010 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1011 .addDef(getOrCreateVReg(U)) 1012 .addUse(getOrCreateVReg(*U.getOperand(0))) 1013 .addUse(getOrCreateVReg(*U.getOperand(1))) 1014 .addUse(getOrCreateVReg(*U.getOperand(2))); 1015 return true; 1016 } 1017 1018 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1019 const PHINode &PI = cast<PHINode>(U); 1020 auto MIB = MIRBuilder.buildInstr(TargetOpcode::PHI); 1021 MIB.addDef(getOrCreateVReg(PI)); 1022 1023 PendingPHIs.emplace_back(&PI, MIB.getInstr()); 1024 return true; 1025 } 1026 1027 void IRTranslator::finishPendingPhis() { 1028 for (std::pair<const PHINode *, MachineInstr *> &Phi : PendingPHIs) { 1029 const PHINode *PI = Phi.first; 1030 MachineInstrBuilder MIB(*MF, Phi.second); 1031 1032 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 1033 // won't create extra control flow here, otherwise we need to find the 1034 // dominating predecessor here (or perhaps force the weirder IRTranslators 1035 // to provide a simple boundary). 1036 SmallSet<const BasicBlock *, 4> HandledPreds; 1037 1038 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 1039 auto IRPred = PI->getIncomingBlock(i); 1040 if (HandledPreds.count(IRPred)) 1041 continue; 1042 1043 HandledPreds.insert(IRPred); 1044 unsigned ValReg = getOrCreateVReg(*PI->getIncomingValue(i)); 1045 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 1046 assert(Pred->isSuccessor(MIB->getParent()) && 1047 "incorrect CFG at MachineBasicBlock level"); 1048 MIB.addUse(ValReg); 1049 MIB.addMBB(Pred); 1050 } 1051 } 1052 } 1053 } 1054 1055 bool IRTranslator::translate(const Instruction &Inst) { 1056 CurBuilder.setDebugLoc(Inst.getDebugLoc()); 1057 switch(Inst.getOpcode()) { 1058 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1059 case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder); 1060 #include "llvm/IR/Instruction.def" 1061 default: 1062 return false; 1063 } 1064 } 1065 1066 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 1067 if (auto CI = dyn_cast<ConstantInt>(&C)) 1068 EntryBuilder.buildConstant(Reg, *CI); 1069 else if (auto CF = dyn_cast<ConstantFP>(&C)) 1070 EntryBuilder.buildFConstant(Reg, *CF); 1071 else if (isa<UndefValue>(C)) 1072 EntryBuilder.buildUndef(Reg); 1073 else if (isa<ConstantPointerNull>(C)) 1074 EntryBuilder.buildConstant(Reg, 0); 1075 else if (auto GV = dyn_cast<GlobalValue>(&C)) 1076 EntryBuilder.buildGlobalValue(Reg, GV); 1077 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 1078 if (!CAZ->getType()->isVectorTy()) 1079 return false; 1080 // Return the scalar if it is a <1 x Ty> vector. 1081 if (CAZ->getNumElements() == 1) 1082 return translate(*CAZ->getElementValue(0u), Reg); 1083 std::vector<unsigned> Ops; 1084 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 1085 Constant &Elt = *CAZ->getElementValue(i); 1086 Ops.push_back(getOrCreateVReg(Elt)); 1087 } 1088 EntryBuilder.buildMerge(Reg, Ops); 1089 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 1090 // Return the scalar if it is a <1 x Ty> vector. 1091 if (CV->getNumElements() == 1) 1092 return translate(*CV->getElementAsConstant(0), Reg); 1093 std::vector<unsigned> Ops; 1094 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 1095 Constant &Elt = *CV->getElementAsConstant(i); 1096 Ops.push_back(getOrCreateVReg(Elt)); 1097 } 1098 EntryBuilder.buildMerge(Reg, Ops); 1099 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 1100 switch(CE->getOpcode()) { 1101 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1102 case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder); 1103 #include "llvm/IR/Instruction.def" 1104 default: 1105 return false; 1106 } 1107 } else 1108 return false; 1109 1110 return true; 1111 } 1112 1113 void IRTranslator::finalizeFunction() { 1114 // Release the memory used by the different maps we 1115 // needed during the translation. 1116 PendingPHIs.clear(); 1117 ValToVReg.clear(); 1118 FrameIndices.clear(); 1119 MachinePreds.clear(); 1120 } 1121 1122 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 1123 MF = &CurMF; 1124 const Function &F = *MF->getFunction(); 1125 if (F.empty()) 1126 return false; 1127 CLI = MF->getSubtarget().getCallLowering(); 1128 CurBuilder.setMF(*MF); 1129 EntryBuilder.setMF(*MF); 1130 MRI = &MF->getRegInfo(); 1131 DL = &F.getParent()->getDataLayout(); 1132 TPC = &getAnalysis<TargetPassConfig>(); 1133 ORE = make_unique<OptimizationRemarkEmitter>(&F); 1134 1135 assert(PendingPHIs.empty() && "stale PHIs"); 1136 1137 // Release the per-function state when we return, whether we succeeded or not. 1138 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 1139 1140 // Setup a separate basic-block for the arguments and constants 1141 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 1142 MF->push_back(EntryBB); 1143 EntryBuilder.setMBB(*EntryBB); 1144 1145 // Create all blocks, in IR order, to preserve the layout. 1146 for (const BasicBlock &BB: F) { 1147 auto *&MBB = BBToMBB[&BB]; 1148 1149 MBB = MF->CreateMachineBasicBlock(&BB); 1150 MF->push_back(MBB); 1151 1152 if (BB.hasAddressTaken()) 1153 MBB->setHasAddressTaken(); 1154 } 1155 1156 // Make our arguments/constants entry block fallthrough to the IR entry block. 1157 EntryBB->addSuccessor(&getMBB(F.front())); 1158 1159 // Lower the actual args into this basic block. 1160 SmallVector<unsigned, 8> VRegArgs; 1161 for (const Argument &Arg: F.args()) 1162 VRegArgs.push_back(getOrCreateVReg(Arg)); 1163 if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) { 1164 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1165 MF->getFunction()->getSubprogram(), 1166 &MF->getFunction()->getEntryBlock()); 1167 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 1168 reportTranslationError(*MF, *TPC, *ORE, R); 1169 return false; 1170 } 1171 1172 // And translate the function! 1173 for (const BasicBlock &BB: F) { 1174 MachineBasicBlock &MBB = getMBB(BB); 1175 // Set the insertion point of all the following translations to 1176 // the end of this basic block. 1177 CurBuilder.setMBB(MBB); 1178 1179 for (const Instruction &Inst: BB) { 1180 if (translate(Inst)) 1181 continue; 1182 1183 std::string InstStrStorage; 1184 raw_string_ostream InstStr(InstStrStorage); 1185 InstStr << Inst; 1186 1187 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1188 Inst.getDebugLoc(), &BB); 1189 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst) 1190 << ": '" << InstStr.str() << "'"; 1191 reportTranslationError(*MF, *TPC, *ORE, R); 1192 return false; 1193 } 1194 } 1195 1196 finishPendingPhis(); 1197 1198 // Now that the MachineFrameInfo has been configured, no further changes to 1199 // the reserved registers are possible. 1200 MRI->freezeReservedRegs(*MF); 1201 1202 // Merge the argument lowering and constants block with its single 1203 // successor, the LLVM-IR entry block. We want the basic block to 1204 // be maximal. 1205 assert(EntryBB->succ_size() == 1 && 1206 "Custom BB used for lowering should have only one successor"); 1207 // Get the successor of the current entry block. 1208 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 1209 assert(NewEntryBB.pred_size() == 1 && 1210 "LLVM-IR entry block has a predecessor!?"); 1211 // Move all the instruction from the current entry block to the 1212 // new entry block. 1213 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 1214 EntryBB->end()); 1215 1216 // Update the live-in information for the new entry block. 1217 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 1218 NewEntryBB.addLiveIn(LiveIn); 1219 NewEntryBB.sortUniqueLiveIns(); 1220 1221 // Get rid of the now empty basic block. 1222 EntryBB->removeSuccessor(&NewEntryBB); 1223 MF->remove(EntryBB); 1224 MF->DeleteMachineBasicBlock(EntryBB); 1225 1226 assert(&MF->front() == &NewEntryBB && 1227 "New entry wasn't next in the list of basic block!"); 1228 1229 return false; 1230 } 1231