1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements the IRTranslator class.
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
21 #include "llvm/CodeGen/LowLevelType.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetFrameLowering.h"
30 #include "llvm/CodeGen/TargetLowering.h"
31 #include "llvm/CodeGen/TargetPassConfig.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DebugInfo.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/MC/MCContext.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/LowLevelTypeImpl.h"
59 #include "llvm/Support/MathExtras.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetIntrinsicInfo.h"
62 #include "llvm/Target/TargetMachine.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstdint>
66 #include <iterator>
67 #include <string>
68 #include <utility>
69 #include <vector>
70 
71 #define DEBUG_TYPE "irtranslator"
72 
73 using namespace llvm;
74 
75 char IRTranslator::ID = 0;
76 
77 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
78                 false, false)
79 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
80 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
81                 false, false)
82 
83 static void reportTranslationError(MachineFunction &MF,
84                                    const TargetPassConfig &TPC,
85                                    OptimizationRemarkEmitter &ORE,
86                                    OptimizationRemarkMissed &R) {
87   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
88 
89   // Print the function name explicitly if we don't have a debug location (which
90   // makes the diagnostic less useful) or if we're going to emit a raw error.
91   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
92     R << (" (in function: " + MF.getName() + ")").str();
93 
94   if (TPC.isGlobalISelAbortEnabled())
95     report_fatal_error(R.getMsg());
96   else
97     ORE.emit(R);
98 }
99 
100 IRTranslator::IRTranslator() : MachineFunctionPass(ID) {
101   initializeIRTranslatorPass(*PassRegistry::getPassRegistry());
102 }
103 
104 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
105   AU.addRequired<TargetPassConfig>();
106   MachineFunctionPass::getAnalysisUsage(AU);
107 }
108 
109 unsigned IRTranslator::getOrCreateVReg(const Value &Val) {
110   unsigned &ValReg = ValToVReg[&Val];
111 
112   if (ValReg)
113     return ValReg;
114 
115   // Fill ValRegsSequence with the sequence of registers
116   // we need to concat together to produce the value.
117   assert(Val.getType()->isSized() &&
118          "Don't know how to create an empty vreg");
119   unsigned VReg =
120       MRI->createGenericVirtualRegister(getLLTForType(*Val.getType(), *DL));
121   ValReg = VReg;
122 
123   if (auto CV = dyn_cast<Constant>(&Val)) {
124     bool Success = translate(*CV, VReg);
125     if (!Success) {
126       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
127                                  MF->getFunction().getSubprogram(),
128                                  &MF->getFunction().getEntryBlock());
129       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
130       reportTranslationError(*MF, *TPC, *ORE, R);
131       return VReg;
132     }
133   }
134 
135   return VReg;
136 }
137 
138 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
139   if (FrameIndices.find(&AI) != FrameIndices.end())
140     return FrameIndices[&AI];
141 
142   unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType());
143   unsigned Size =
144       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
145 
146   // Always allocate at least one byte.
147   Size = std::max(Size, 1u);
148 
149   unsigned Alignment = AI.getAlignment();
150   if (!Alignment)
151     Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
152 
153   int &FI = FrameIndices[&AI];
154   FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
155   return FI;
156 }
157 
158 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
159   unsigned Alignment = 0;
160   Type *ValTy = nullptr;
161   if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
162     Alignment = SI->getAlignment();
163     ValTy = SI->getValueOperand()->getType();
164   } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
165     Alignment = LI->getAlignment();
166     ValTy = LI->getType();
167   } else {
168     OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
169     R << "unable to translate memop: " << ore::NV("Opcode", &I);
170     reportTranslationError(*MF, *TPC, *ORE, R);
171     return 1;
172   }
173 
174   return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
175 }
176 
177 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
178   MachineBasicBlock *&MBB = BBToMBB[&BB];
179   assert(MBB && "BasicBlock was not encountered before");
180   return *MBB;
181 }
182 
183 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
184   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
185   MachinePreds[Edge].push_back(NewPred);
186 }
187 
188 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
189                                      MachineIRBuilder &MIRBuilder) {
190   // FIXME: handle signed/unsigned wrapping flags.
191 
192   // Get or create a virtual register for each value.
193   // Unless the value is a Constant => loadimm cst?
194   // or inline constant each time?
195   // Creation of a virtual register needs to have a size.
196   unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
197   unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
198   unsigned Res = getOrCreateVReg(U);
199   MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1);
200   return true;
201 }
202 
203 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
204   // -0.0 - X --> G_FNEG
205   if (isa<Constant>(U.getOperand(0)) &&
206       U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
207     MIRBuilder.buildInstr(TargetOpcode::G_FNEG)
208         .addDef(getOrCreateVReg(U))
209         .addUse(getOrCreateVReg(*U.getOperand(1)));
210     return true;
211   }
212   return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
213 }
214 
215 bool IRTranslator::translateCompare(const User &U,
216                                     MachineIRBuilder &MIRBuilder) {
217   const CmpInst *CI = dyn_cast<CmpInst>(&U);
218   unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
219   unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
220   unsigned Res = getOrCreateVReg(U);
221   CmpInst::Predicate Pred =
222       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
223                                     cast<ConstantExpr>(U).getPredicate());
224   if (CmpInst::isIntPredicate(Pred))
225     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
226   else if (Pred == CmpInst::FCMP_FALSE)
227     MIRBuilder.buildCopy(
228         Res, getOrCreateVReg(*Constant::getNullValue(CI->getType())));
229   else if (Pred == CmpInst::FCMP_TRUE)
230     MIRBuilder.buildCopy(
231         Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType())));
232   else
233     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1);
234 
235   return true;
236 }
237 
238 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
239   const ReturnInst &RI = cast<ReturnInst>(U);
240   const Value *Ret = RI.getReturnValue();
241   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
242     Ret = nullptr;
243   // The target may mess up with the insertion point, but
244   // this is not important as a return is the last instruction
245   // of the block anyway.
246   return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret));
247 }
248 
249 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
250   const BranchInst &BrInst = cast<BranchInst>(U);
251   unsigned Succ = 0;
252   if (!BrInst.isUnconditional()) {
253     // We want a G_BRCOND to the true BB followed by an unconditional branch.
254     unsigned Tst = getOrCreateVReg(*BrInst.getCondition());
255     const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
256     MachineBasicBlock &TrueBB = getMBB(TrueTgt);
257     MIRBuilder.buildBrCond(Tst, TrueBB);
258   }
259 
260   const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
261   MachineBasicBlock &TgtBB = getMBB(BrTgt);
262   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
263 
264   // If the unconditional target is the layout successor, fallthrough.
265   if (!CurBB.isLayoutSuccessor(&TgtBB))
266     MIRBuilder.buildBr(TgtBB);
267 
268   // Link successors.
269   for (const BasicBlock *Succ : BrInst.successors())
270     CurBB.addSuccessor(&getMBB(*Succ));
271   return true;
272 }
273 
274 bool IRTranslator::translateSwitch(const User &U,
275                                    MachineIRBuilder &MIRBuilder) {
276   // For now, just translate as a chain of conditional branches.
277   // FIXME: could we share most of the logic/code in
278   // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel?
279   // At first sight, it seems most of the logic in there is independent of
280   // SelectionDAG-specifics and a lot of work went in to optimize switch
281   // lowering in there.
282 
283   const SwitchInst &SwInst = cast<SwitchInst>(U);
284   const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition());
285   const BasicBlock *OrigBB = SwInst.getParent();
286 
287   LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL);
288   for (auto &CaseIt : SwInst.cases()) {
289     const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue());
290     const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1);
291     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue);
292     MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
293     const BasicBlock *TrueBB = CaseIt.getCaseSuccessor();
294     MachineBasicBlock &TrueMBB = getMBB(*TrueBB);
295 
296     MIRBuilder.buildBrCond(Tst, TrueMBB);
297     CurMBB.addSuccessor(&TrueMBB);
298     addMachineCFGPred({OrigBB, TrueBB}, &CurMBB);
299 
300     MachineBasicBlock *FalseMBB =
301         MF->CreateMachineBasicBlock(SwInst.getParent());
302     // Insert the comparison blocks one after the other.
303     MF->insert(std::next(CurMBB.getIterator()), FalseMBB);
304     MIRBuilder.buildBr(*FalseMBB);
305     CurMBB.addSuccessor(FalseMBB);
306 
307     MIRBuilder.setMBB(*FalseMBB);
308   }
309   // handle default case
310   const BasicBlock *DefaultBB = SwInst.getDefaultDest();
311   MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB);
312   MIRBuilder.buildBr(DefaultMBB);
313   MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
314   CurMBB.addSuccessor(&DefaultMBB);
315   addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB);
316 
317   return true;
318 }
319 
320 bool IRTranslator::translateIndirectBr(const User &U,
321                                        MachineIRBuilder &MIRBuilder) {
322   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
323 
324   const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress());
325   MIRBuilder.buildBrIndirect(Tgt);
326 
327   // Link successors.
328   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
329   for (const BasicBlock *Succ : BrInst.successors())
330     CurBB.addSuccessor(&getMBB(*Succ));
331 
332   return true;
333 }
334 
335 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
336   const LoadInst &LI = cast<LoadInst>(U);
337 
338   auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile
339                                : MachineMemOperand::MONone;
340   Flags |= MachineMemOperand::MOLoad;
341 
342   if (DL->getTypeStoreSize(LI.getType()) == 0)
343     return true;
344 
345   unsigned Res = getOrCreateVReg(LI);
346   unsigned Addr = getOrCreateVReg(*LI.getPointerOperand());
347 
348   MIRBuilder.buildLoad(
349       Res, Addr,
350       *MF->getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()),
351                                 Flags, DL->getTypeStoreSize(LI.getType()),
352                                 getMemOpAlignment(LI), AAMDNodes(), nullptr,
353                                 LI.getSyncScopeID(), LI.getOrdering()));
354   return true;
355 }
356 
357 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
358   const StoreInst &SI = cast<StoreInst>(U);
359   auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile
360                                : MachineMemOperand::MONone;
361   Flags |= MachineMemOperand::MOStore;
362 
363   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
364     return true;
365 
366   unsigned Val = getOrCreateVReg(*SI.getValueOperand());
367   unsigned Addr = getOrCreateVReg(*SI.getPointerOperand());
368 
369   MIRBuilder.buildStore(
370       Val, Addr,
371       *MF->getMachineMemOperand(
372           MachinePointerInfo(SI.getPointerOperand()), Flags,
373           DL->getTypeStoreSize(SI.getValueOperand()->getType()),
374           getMemOpAlignment(SI), AAMDNodes(), nullptr, SI.getSyncScopeID(),
375           SI.getOrdering()));
376   return true;
377 }
378 
379 bool IRTranslator::translateExtractValue(const User &U,
380                                          MachineIRBuilder &MIRBuilder) {
381   const Value *Src = U.getOperand(0);
382   Type *Int32Ty = Type::getInt32Ty(U.getContext());
383   SmallVector<Value *, 1> Indices;
384 
385   // If Src is a single element ConstantStruct, translate extractvalue
386   // to that element to avoid inserting a cast instruction.
387   if (auto CS = dyn_cast<ConstantStruct>(Src))
388     if (CS->getNumOperands() == 1) {
389       unsigned Res = getOrCreateVReg(*CS->getOperand(0));
390       ValToVReg[&U] = Res;
391       return true;
392     }
393 
394   // getIndexedOffsetInType is designed for GEPs, so the first index is the
395   // usual array element rather than looking into the actual aggregate.
396   Indices.push_back(ConstantInt::get(Int32Ty, 0));
397 
398   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
399     for (auto Idx : EVI->indices())
400       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
401   } else {
402     for (unsigned i = 1; i < U.getNumOperands(); ++i)
403       Indices.push_back(U.getOperand(i));
404   }
405 
406   uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices);
407 
408   unsigned Res = getOrCreateVReg(U);
409   MIRBuilder.buildExtract(Res, getOrCreateVReg(*Src), Offset);
410 
411   return true;
412 }
413 
414 bool IRTranslator::translateInsertValue(const User &U,
415                                         MachineIRBuilder &MIRBuilder) {
416   const Value *Src = U.getOperand(0);
417   Type *Int32Ty = Type::getInt32Ty(U.getContext());
418   SmallVector<Value *, 1> Indices;
419 
420   // getIndexedOffsetInType is designed for GEPs, so the first index is the
421   // usual array element rather than looking into the actual aggregate.
422   Indices.push_back(ConstantInt::get(Int32Ty, 0));
423 
424   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
425     for (auto Idx : IVI->indices())
426       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
427   } else {
428     for (unsigned i = 2; i < U.getNumOperands(); ++i)
429       Indices.push_back(U.getOperand(i));
430   }
431 
432   uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices);
433 
434   unsigned Res = getOrCreateVReg(U);
435   unsigned Inserted = getOrCreateVReg(*U.getOperand(1));
436   MIRBuilder.buildInsert(Res, getOrCreateVReg(*Src), Inserted, Offset);
437 
438   return true;
439 }
440 
441 bool IRTranslator::translateSelect(const User &U,
442                                    MachineIRBuilder &MIRBuilder) {
443   unsigned Res = getOrCreateVReg(U);
444   unsigned Tst = getOrCreateVReg(*U.getOperand(0));
445   unsigned Op0 = getOrCreateVReg(*U.getOperand(1));
446   unsigned Op1 = getOrCreateVReg(*U.getOperand(2));
447   MIRBuilder.buildSelect(Res, Tst, Op0, Op1);
448   return true;
449 }
450 
451 bool IRTranslator::translateBitCast(const User &U,
452                                     MachineIRBuilder &MIRBuilder) {
453   // If we're bitcasting to the source type, we can reuse the source vreg.
454   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
455       getLLTForType(*U.getType(), *DL)) {
456     // Get the source vreg now, to avoid invalidating ValToVReg.
457     unsigned SrcReg = getOrCreateVReg(*U.getOperand(0));
458     unsigned &Reg = ValToVReg[&U];
459     // If we already assigned a vreg for this bitcast, we can't change that.
460     // Emit a copy to satisfy the users we already emitted.
461     if (Reg)
462       MIRBuilder.buildCopy(Reg, SrcReg);
463     else
464       Reg = SrcReg;
465     return true;
466   }
467   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
468 }
469 
470 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
471                                  MachineIRBuilder &MIRBuilder) {
472   unsigned Op = getOrCreateVReg(*U.getOperand(0));
473   unsigned Res = getOrCreateVReg(U);
474   MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op);
475   return true;
476 }
477 
478 bool IRTranslator::translateGetElementPtr(const User &U,
479                                           MachineIRBuilder &MIRBuilder) {
480   // FIXME: support vector GEPs.
481   if (U.getType()->isVectorTy())
482     return false;
483 
484   Value &Op0 = *U.getOperand(0);
485   unsigned BaseReg = getOrCreateVReg(Op0);
486   Type *PtrIRTy = Op0.getType();
487   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
488   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
489   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
490 
491   int64_t Offset = 0;
492   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
493        GTI != E; ++GTI) {
494     const Value *Idx = GTI.getOperand();
495     if (StructType *StTy = GTI.getStructTypeOrNull()) {
496       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
497       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
498       continue;
499     } else {
500       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
501 
502       // If this is a scalar constant or a splat vector of constants,
503       // handle it quickly.
504       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
505         Offset += ElementSize * CI->getSExtValue();
506         continue;
507       }
508 
509       if (Offset != 0) {
510         unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
511         unsigned OffsetReg =
512             getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
513         MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg);
514 
515         BaseReg = NewBaseReg;
516         Offset = 0;
517       }
518 
519       unsigned IdxReg = getOrCreateVReg(*Idx);
520       if (MRI->getType(IdxReg) != OffsetTy) {
521         unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy);
522         MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg);
523         IdxReg = NewIdxReg;
524       }
525 
526       // N = N + Idx * ElementSize;
527       // Avoid doing it for ElementSize of 1.
528       unsigned GepOffsetReg;
529       if (ElementSize != 1) {
530         unsigned ElementSizeReg =
531             getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize));
532 
533         GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy);
534         MIRBuilder.buildMul(GepOffsetReg, ElementSizeReg, IdxReg);
535       } else
536         GepOffsetReg = IdxReg;
537 
538       unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
539       MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg);
540       BaseReg = NewBaseReg;
541     }
542   }
543 
544   if (Offset != 0) {
545     unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
546     MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg);
547     return true;
548   }
549 
550   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
551   return true;
552 }
553 
554 bool IRTranslator::translateMemfunc(const CallInst &CI,
555                                     MachineIRBuilder &MIRBuilder,
556                                     unsigned ID) {
557   LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL);
558   Type *DstTy = CI.getArgOperand(0)->getType();
559   if (cast<PointerType>(DstTy)->getAddressSpace() != 0 ||
560       SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0))
561     return false;
562 
563   SmallVector<CallLowering::ArgInfo, 8> Args;
564   for (int i = 0; i < 3; ++i) {
565     const auto &Arg = CI.getArgOperand(i);
566     Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType());
567   }
568 
569   const char *Callee;
570   switch (ID) {
571   case Intrinsic::memmove:
572   case Intrinsic::memcpy: {
573     Type *SrcTy = CI.getArgOperand(1)->getType();
574     if(cast<PointerType>(SrcTy)->getAddressSpace() != 0)
575       return false;
576     Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove";
577     break;
578   }
579   case Intrinsic::memset:
580     Callee = "memset";
581     break;
582   default:
583     return false;
584   }
585 
586   return CLI->lowerCall(MIRBuilder, CI.getCallingConv(),
587                         MachineOperand::CreateES(Callee),
588                         CallLowering::ArgInfo(0, CI.getType()), Args);
589 }
590 
591 void IRTranslator::getStackGuard(unsigned DstReg,
592                                  MachineIRBuilder &MIRBuilder) {
593   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
594   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
595   auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD);
596   MIB.addDef(DstReg);
597 
598   auto &TLI = *MF->getSubtarget().getTargetLowering();
599   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
600   if (!Global)
601     return;
602 
603   MachinePointerInfo MPInfo(Global);
604   MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1);
605   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
606                MachineMemOperand::MODereferenceable;
607   *MemRefs =
608       MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
609                                DL->getPointerABIAlignment(0));
610   MIB.setMemRefs(MemRefs, MemRefs + 1);
611 }
612 
613 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
614                                               MachineIRBuilder &MIRBuilder) {
615   LLT Ty = getLLTForType(*CI.getOperand(0)->getType(), *DL);
616   LLT s1 = LLT::scalar(1);
617   unsigned Width = Ty.getSizeInBits();
618   unsigned Res = MRI->createGenericVirtualRegister(Ty);
619   unsigned Overflow = MRI->createGenericVirtualRegister(s1);
620   auto MIB = MIRBuilder.buildInstr(Op)
621                  .addDef(Res)
622                  .addDef(Overflow)
623                  .addUse(getOrCreateVReg(*CI.getOperand(0)))
624                  .addUse(getOrCreateVReg(*CI.getOperand(1)));
625 
626   if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) {
627     unsigned Zero = getOrCreateVReg(
628         *Constant::getNullValue(Type::getInt1Ty(CI.getContext())));
629     MIB.addUse(Zero);
630   }
631 
632   MIRBuilder.buildSequence(getOrCreateVReg(CI), {Res, Overflow}, {0, Width});
633   return true;
634 }
635 
636 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
637                                            MachineIRBuilder &MIRBuilder) {
638   switch (ID) {
639   default:
640     break;
641   case Intrinsic::lifetime_start:
642   case Intrinsic::lifetime_end:
643     // Stack coloring is not enabled in O0 (which we care about now) so we can
644     // drop these. Make sure someone notices when we start compiling at higher
645     // opts though.
646     if (MF->getTarget().getOptLevel() != CodeGenOpt::None)
647       return false;
648     return true;
649   case Intrinsic::dbg_declare: {
650     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
651     assert(DI.getVariable() && "Missing variable");
652 
653     const Value *Address = DI.getAddress();
654     if (!Address || isa<UndefValue>(Address)) {
655       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
656       return true;
657     }
658 
659     assert(DI.getVariable()->isValidLocationForIntrinsic(
660                MIRBuilder.getDebugLoc()) &&
661            "Expected inlined-at fields to agree");
662     auto AI = dyn_cast<AllocaInst>(Address);
663     if (AI && AI->isStaticAlloca()) {
664       // Static allocas are tracked at the MF level, no need for DBG_VALUE
665       // instructions (in fact, they get ignored if they *do* exist).
666       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
667                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
668     } else
669       MIRBuilder.buildDirectDbgValue(getOrCreateVReg(*Address),
670                                      DI.getVariable(), DI.getExpression());
671     return true;
672   }
673   case Intrinsic::vaend:
674     // No target I know of cares about va_end. Certainly no in-tree target
675     // does. Simplest intrinsic ever!
676     return true;
677   case Intrinsic::vastart: {
678     auto &TLI = *MF->getSubtarget().getTargetLowering();
679     Value *Ptr = CI.getArgOperand(0);
680     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
681 
682     MIRBuilder.buildInstr(TargetOpcode::G_VASTART)
683         .addUse(getOrCreateVReg(*Ptr))
684         .addMemOperand(MF->getMachineMemOperand(
685             MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0));
686     return true;
687   }
688   case Intrinsic::dbg_value: {
689     // This form of DBG_VALUE is target-independent.
690     const DbgValueInst &DI = cast<DbgValueInst>(CI);
691     const Value *V = DI.getValue();
692     assert(DI.getVariable()->isValidLocationForIntrinsic(
693                MIRBuilder.getDebugLoc()) &&
694            "Expected inlined-at fields to agree");
695     if (!V) {
696       // Currently the optimizer can produce this; insert an undef to
697       // help debugging.  Probably the optimizer should not do this.
698       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
699     } else if (const auto *CI = dyn_cast<Constant>(V)) {
700       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
701     } else {
702       unsigned Reg = getOrCreateVReg(*V);
703       // FIXME: This does not handle register-indirect values at offset 0. The
704       // direct/indirect thing shouldn't really be handled by something as
705       // implicit as reg+noreg vs reg+imm in the first palce, but it seems
706       // pretty baked in right now.
707       MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
708     }
709     return true;
710   }
711   case Intrinsic::uadd_with_overflow:
712     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder);
713   case Intrinsic::sadd_with_overflow:
714     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
715   case Intrinsic::usub_with_overflow:
716     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder);
717   case Intrinsic::ssub_with_overflow:
718     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
719   case Intrinsic::umul_with_overflow:
720     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
721   case Intrinsic::smul_with_overflow:
722     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
723   case Intrinsic::pow:
724     MIRBuilder.buildInstr(TargetOpcode::G_FPOW)
725         .addDef(getOrCreateVReg(CI))
726         .addUse(getOrCreateVReg(*CI.getArgOperand(0)))
727         .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
728     return true;
729   case Intrinsic::exp:
730     MIRBuilder.buildInstr(TargetOpcode::G_FEXP)
731         .addDef(getOrCreateVReg(CI))
732         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
733     return true;
734   case Intrinsic::exp2:
735     MIRBuilder.buildInstr(TargetOpcode::G_FEXP2)
736         .addDef(getOrCreateVReg(CI))
737         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
738     return true;
739   case Intrinsic::log:
740     MIRBuilder.buildInstr(TargetOpcode::G_FLOG)
741         .addDef(getOrCreateVReg(CI))
742         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
743     return true;
744   case Intrinsic::log2:
745     MIRBuilder.buildInstr(TargetOpcode::G_FLOG2)
746         .addDef(getOrCreateVReg(CI))
747         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
748     return true;
749   case Intrinsic::fma:
750     MIRBuilder.buildInstr(TargetOpcode::G_FMA)
751         .addDef(getOrCreateVReg(CI))
752         .addUse(getOrCreateVReg(*CI.getArgOperand(0)))
753         .addUse(getOrCreateVReg(*CI.getArgOperand(1)))
754         .addUse(getOrCreateVReg(*CI.getArgOperand(2)));
755     return true;
756   case Intrinsic::memcpy:
757   case Intrinsic::memmove:
758   case Intrinsic::memset:
759     return translateMemfunc(CI, MIRBuilder, ID);
760   case Intrinsic::eh_typeid_for: {
761     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
762     unsigned Reg = getOrCreateVReg(CI);
763     unsigned TypeID = MF->getTypeIDFor(GV);
764     MIRBuilder.buildConstant(Reg, TypeID);
765     return true;
766   }
767   case Intrinsic::objectsize: {
768     // If we don't know by now, we're never going to know.
769     const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1));
770 
771     MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0);
772     return true;
773   }
774   case Intrinsic::stackguard:
775     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
776     return true;
777   case Intrinsic::stackprotector: {
778     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
779     unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy);
780     getStackGuard(GuardVal, MIRBuilder);
781 
782     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
783     MIRBuilder.buildStore(
784         GuardVal, getOrCreateVReg(*Slot),
785         *MF->getMachineMemOperand(
786             MachinePointerInfo::getFixedStack(*MF,
787                                               getOrCreateFrameIndex(*Slot)),
788             MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
789             PtrTy.getSizeInBits() / 8, 8));
790     return true;
791   }
792   }
793   return false;
794 }
795 
796 bool IRTranslator::translateInlineAsm(const CallInst &CI,
797                                       MachineIRBuilder &MIRBuilder) {
798   const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue());
799   if (!IA.getConstraintString().empty())
800     return false;
801 
802   unsigned ExtraInfo = 0;
803   if (IA.hasSideEffects())
804     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
805   if (IA.getDialect() == InlineAsm::AD_Intel)
806     ExtraInfo |= InlineAsm::Extra_AsmDialect;
807 
808   MIRBuilder.buildInstr(TargetOpcode::INLINEASM)
809     .addExternalSymbol(IA.getAsmString().c_str())
810     .addImm(ExtraInfo);
811 
812   return true;
813 }
814 
815 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
816   const CallInst &CI = cast<CallInst>(U);
817   auto TII = MF->getTarget().getIntrinsicInfo();
818   const Function *F = CI.getCalledFunction();
819 
820   // FIXME: support Windows dllimport function calls.
821   if (F && F->hasDLLImportStorageClass())
822     return false;
823 
824   if (CI.isInlineAsm())
825     return translateInlineAsm(CI, MIRBuilder);
826 
827   Intrinsic::ID ID = Intrinsic::not_intrinsic;
828   if (F && F->isIntrinsic()) {
829     ID = F->getIntrinsicID();
830     if (TII && ID == Intrinsic::not_intrinsic)
831       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
832   }
833 
834   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) {
835     unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI);
836     SmallVector<unsigned, 8> Args;
837     for (auto &Arg: CI.arg_operands())
838       Args.push_back(getOrCreateVReg(*Arg));
839 
840     MF->getFrameInfo().setHasCalls(true);
841     return CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() {
842       return getOrCreateVReg(*CI.getCalledValue());
843     });
844   }
845 
846   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
847 
848   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
849     return true;
850 
851   unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI);
852   MachineInstrBuilder MIB =
853       MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory());
854 
855   for (auto &Arg : CI.arg_operands()) {
856     // Some intrinsics take metadata parameters. Reject them.
857     if (isa<MetadataAsValue>(Arg))
858       return false;
859     MIB.addUse(getOrCreateVReg(*Arg));
860   }
861 
862   // Add a MachineMemOperand if it is a target mem intrinsic.
863   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
864   TargetLowering::IntrinsicInfo Info;
865   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
866   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
867     uint64_t Size = Info.memVT.getStoreSize();
868     MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
869                                                Info.flags, Size, Info.align));
870   }
871 
872   return true;
873 }
874 
875 bool IRTranslator::translateInvoke(const User &U,
876                                    MachineIRBuilder &MIRBuilder) {
877   const InvokeInst &I = cast<InvokeInst>(U);
878   MCContext &Context = MF->getContext();
879 
880   const BasicBlock *ReturnBB = I.getSuccessor(0);
881   const BasicBlock *EHPadBB = I.getSuccessor(1);
882 
883   const Value *Callee = I.getCalledValue();
884   const Function *Fn = dyn_cast<Function>(Callee);
885   if (isa<InlineAsm>(Callee))
886     return false;
887 
888   // FIXME: support invoking patchpoint and statepoint intrinsics.
889   if (Fn && Fn->isIntrinsic())
890     return false;
891 
892   // FIXME: support whatever these are.
893   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
894     return false;
895 
896   // FIXME: support Windows exception handling.
897   if (!isa<LandingPadInst>(EHPadBB->front()))
898     return false;
899 
900   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
901   // the region covered by the try.
902   MCSymbol *BeginSymbol = Context.createTempSymbol();
903   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
904 
905   unsigned Res = I.getType()->isVoidTy() ? 0 : getOrCreateVReg(I);
906   SmallVector<unsigned, 8> Args;
907   for (auto &Arg: I.arg_operands())
908     Args.push_back(getOrCreateVReg(*Arg));
909 
910   if (!CLI->lowerCall(MIRBuilder, &I, Res, Args,
911                       [&]() { return getOrCreateVReg(*I.getCalledValue()); }))
912     return false;
913 
914   MCSymbol *EndSymbol = Context.createTempSymbol();
915   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
916 
917   // FIXME: track probabilities.
918   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
919                     &ReturnMBB = getMBB(*ReturnBB);
920   MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
921   MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
922   MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
923   MIRBuilder.buildBr(ReturnMBB);
924 
925   return true;
926 }
927 
928 bool IRTranslator::translateLandingPad(const User &U,
929                                        MachineIRBuilder &MIRBuilder) {
930   const LandingPadInst &LP = cast<LandingPadInst>(U);
931 
932   MachineBasicBlock &MBB = MIRBuilder.getMBB();
933   addLandingPadInfo(LP, MBB);
934 
935   MBB.setIsEHPad();
936 
937   // If there aren't registers to copy the values into (e.g., during SjLj
938   // exceptions), then don't bother.
939   auto &TLI = *MF->getSubtarget().getTargetLowering();
940   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
941   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
942       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
943     return true;
944 
945   // If landingpad's return type is token type, we don't create DAG nodes
946   // for its exception pointer and selector value. The extraction of exception
947   // pointer or selector value from token type landingpads is not currently
948   // supported.
949   if (LP.getType()->isTokenTy())
950     return true;
951 
952   // Add a label to mark the beginning of the landing pad.  Deletion of the
953   // landing pad can thus be detected via the MachineModuleInfo.
954   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
955     .addSym(MF->addLandingPad(&MBB));
956 
957   LLT Ty = getLLTForType(*LP.getType(), *DL);
958   unsigned Undef = MRI->createGenericVirtualRegister(Ty);
959   MIRBuilder.buildUndef(Undef);
960 
961   SmallVector<LLT, 2> Tys;
962   for (Type *Ty : cast<StructType>(LP.getType())->elements())
963     Tys.push_back(getLLTForType(*Ty, *DL));
964   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
965 
966   // Mark exception register as live in.
967   unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
968   if (!ExceptionReg)
969     return false;
970 
971   MBB.addLiveIn(ExceptionReg);
972   unsigned VReg = MRI->createGenericVirtualRegister(Tys[0]),
973            Tmp = MRI->createGenericVirtualRegister(Ty);
974   MIRBuilder.buildCopy(VReg, ExceptionReg);
975   MIRBuilder.buildInsert(Tmp, Undef, VReg, 0);
976 
977   unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
978   if (!SelectorReg)
979     return false;
980 
981   MBB.addLiveIn(SelectorReg);
982 
983   // N.b. the exception selector register always has pointer type and may not
984   // match the actual IR-level type in the landingpad so an extra cast is
985   // needed.
986   unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
987   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
988 
989   VReg = MRI->createGenericVirtualRegister(Tys[1]);
990   MIRBuilder.buildInstr(TargetOpcode::G_PTRTOINT).addDef(VReg).addUse(PtrVReg);
991   MIRBuilder.buildInsert(getOrCreateVReg(LP), Tmp, VReg,
992                          Tys[0].getSizeInBits());
993   return true;
994 }
995 
996 bool IRTranslator::translateAlloca(const User &U,
997                                    MachineIRBuilder &MIRBuilder) {
998   auto &AI = cast<AllocaInst>(U);
999 
1000   if (AI.isStaticAlloca()) {
1001     unsigned Res = getOrCreateVReg(AI);
1002     int FI = getOrCreateFrameIndex(AI);
1003     MIRBuilder.buildFrameIndex(Res, FI);
1004     return true;
1005   }
1006 
1007   // Now we're in the harder dynamic case.
1008   Type *Ty = AI.getAllocatedType();
1009   unsigned Align =
1010       std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment());
1011 
1012   unsigned NumElts = getOrCreateVReg(*AI.getArraySize());
1013 
1014   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
1015   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
1016   if (MRI->getType(NumElts) != IntPtrTy) {
1017     unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
1018     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
1019     NumElts = ExtElts;
1020   }
1021 
1022   unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
1023   unsigned TySize =
1024       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty)));
1025   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
1026 
1027   LLT PtrTy = getLLTForType(*AI.getType(), *DL);
1028   auto &TLI = *MF->getSubtarget().getTargetLowering();
1029   unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1030 
1031   unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy);
1032   MIRBuilder.buildCopy(SPTmp, SPReg);
1033 
1034   unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy);
1035   MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize);
1036 
1037   // Handle alignment. We have to realign if the allocation granule was smaller
1038   // than stack alignment, or the specific alloca requires more than stack
1039   // alignment.
1040   unsigned StackAlign =
1041       MF->getSubtarget().getFrameLowering()->getStackAlignment();
1042   Align = std::max(Align, StackAlign);
1043   if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) {
1044     // Round the size of the allocation up to the stack alignment size
1045     // by add SA-1 to the size. This doesn't overflow because we're computing
1046     // an address inside an alloca.
1047     unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy);
1048     MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align));
1049     AllocTmp = AlignedAlloc;
1050   }
1051 
1052   MIRBuilder.buildCopy(SPReg, AllocTmp);
1053   MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp);
1054 
1055   MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI);
1056   assert(MF->getFrameInfo().hasVarSizedObjects());
1057   return true;
1058 }
1059 
1060 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
1061   // FIXME: We may need more info about the type. Because of how LLT works,
1062   // we're completely discarding the i64/double distinction here (amongst
1063   // others). Fortunately the ABIs I know of where that matters don't use va_arg
1064   // anyway but that's not guaranteed.
1065   MIRBuilder.buildInstr(TargetOpcode::G_VAARG)
1066     .addDef(getOrCreateVReg(U))
1067     .addUse(getOrCreateVReg(*U.getOperand(0)))
1068     .addImm(DL->getABITypeAlignment(U.getType()));
1069   return true;
1070 }
1071 
1072 bool IRTranslator::translateInsertElement(const User &U,
1073                                           MachineIRBuilder &MIRBuilder) {
1074   // If it is a <1 x Ty> vector, use the scalar as it is
1075   // not a legal vector type in LLT.
1076   if (U.getType()->getVectorNumElements() == 1) {
1077     unsigned Elt = getOrCreateVReg(*U.getOperand(1));
1078     ValToVReg[&U] = Elt;
1079     return true;
1080   }
1081   unsigned Res = getOrCreateVReg(U);
1082   unsigned Val = getOrCreateVReg(*U.getOperand(0));
1083   unsigned Elt = getOrCreateVReg(*U.getOperand(1));
1084   unsigned Idx = getOrCreateVReg(*U.getOperand(2));
1085   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
1086   return true;
1087 }
1088 
1089 bool IRTranslator::translateExtractElement(const User &U,
1090                                            MachineIRBuilder &MIRBuilder) {
1091   // If it is a <1 x Ty> vector, use the scalar as it is
1092   // not a legal vector type in LLT.
1093   if (U.getOperand(0)->getType()->getVectorNumElements() == 1) {
1094     unsigned Elt = getOrCreateVReg(*U.getOperand(0));
1095     ValToVReg[&U] = Elt;
1096     return true;
1097   }
1098   unsigned Res = getOrCreateVReg(U);
1099   unsigned Val = getOrCreateVReg(*U.getOperand(0));
1100   unsigned Idx = getOrCreateVReg(*U.getOperand(1));
1101   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
1102   return true;
1103 }
1104 
1105 bool IRTranslator::translateShuffleVector(const User &U,
1106                                           MachineIRBuilder &MIRBuilder) {
1107   MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR)
1108       .addDef(getOrCreateVReg(U))
1109       .addUse(getOrCreateVReg(*U.getOperand(0)))
1110       .addUse(getOrCreateVReg(*U.getOperand(1)))
1111       .addUse(getOrCreateVReg(*U.getOperand(2)));
1112   return true;
1113 }
1114 
1115 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
1116   const PHINode &PI = cast<PHINode>(U);
1117   auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI);
1118   MIB.addDef(getOrCreateVReg(PI));
1119 
1120   PendingPHIs.emplace_back(&PI, MIB.getInstr());
1121   return true;
1122 }
1123 
1124 void IRTranslator::finishPendingPhis() {
1125   for (std::pair<const PHINode *, MachineInstr *> &Phi : PendingPHIs) {
1126     const PHINode *PI = Phi.first;
1127     MachineInstrBuilder MIB(*MF, Phi.second);
1128 
1129     // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator
1130     // won't create extra control flow here, otherwise we need to find the
1131     // dominating predecessor here (or perhaps force the weirder IRTranslators
1132     // to provide a simple boundary).
1133     SmallSet<const BasicBlock *, 4> HandledPreds;
1134 
1135     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
1136       auto IRPred = PI->getIncomingBlock(i);
1137       if (HandledPreds.count(IRPred))
1138         continue;
1139 
1140       HandledPreds.insert(IRPred);
1141       unsigned ValReg = getOrCreateVReg(*PI->getIncomingValue(i));
1142       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
1143         assert(Pred->isSuccessor(MIB->getParent()) &&
1144                "incorrect CFG at MachineBasicBlock level");
1145         MIB.addUse(ValReg);
1146         MIB.addMBB(Pred);
1147       }
1148     }
1149   }
1150 }
1151 
1152 bool IRTranslator::translate(const Instruction &Inst) {
1153   CurBuilder.setDebugLoc(Inst.getDebugLoc());
1154   switch(Inst.getOpcode()) {
1155 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1156     case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder);
1157 #include "llvm/IR/Instruction.def"
1158   default:
1159     return false;
1160   }
1161 }
1162 
1163 bool IRTranslator::translate(const Constant &C, unsigned Reg) {
1164   if (auto CI = dyn_cast<ConstantInt>(&C))
1165     EntryBuilder.buildConstant(Reg, *CI);
1166   else if (auto CF = dyn_cast<ConstantFP>(&C))
1167     EntryBuilder.buildFConstant(Reg, *CF);
1168   else if (isa<UndefValue>(C))
1169     EntryBuilder.buildUndef(Reg);
1170   else if (isa<ConstantPointerNull>(C))
1171     EntryBuilder.buildConstant(Reg, 0);
1172   else if (auto GV = dyn_cast<GlobalValue>(&C))
1173     EntryBuilder.buildGlobalValue(Reg, GV);
1174   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
1175     if (!CAZ->getType()->isVectorTy())
1176       return false;
1177     // Return the scalar if it is a <1 x Ty> vector.
1178     if (CAZ->getNumElements() == 1)
1179       return translate(*CAZ->getElementValue(0u), Reg);
1180     std::vector<unsigned> Ops;
1181     for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
1182       Constant &Elt = *CAZ->getElementValue(i);
1183       Ops.push_back(getOrCreateVReg(Elt));
1184     }
1185     EntryBuilder.buildMerge(Reg, Ops);
1186   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
1187     // Return the scalar if it is a <1 x Ty> vector.
1188     if (CV->getNumElements() == 1)
1189       return translate(*CV->getElementAsConstant(0), Reg);
1190     std::vector<unsigned> Ops;
1191     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
1192       Constant &Elt = *CV->getElementAsConstant(i);
1193       Ops.push_back(getOrCreateVReg(Elt));
1194     }
1195     EntryBuilder.buildMerge(Reg, Ops);
1196   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
1197     switch(CE->getOpcode()) {
1198 #define HANDLE_INST(NUM, OPCODE, CLASS)                         \
1199       case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder);
1200 #include "llvm/IR/Instruction.def"
1201     default:
1202       return false;
1203     }
1204   } else if (auto CS = dyn_cast<ConstantStruct>(&C)) {
1205     // Return the element if it is a single element ConstantStruct.
1206     if (CS->getNumOperands() == 1) {
1207       unsigned EltReg = getOrCreateVReg(*CS->getOperand(0));
1208       EntryBuilder.buildCast(Reg, EltReg);
1209       return true;
1210     }
1211     SmallVector<unsigned, 4> Ops;
1212     SmallVector<uint64_t, 4> Indices;
1213     uint64_t Offset = 0;
1214     for (unsigned i = 0; i < CS->getNumOperands(); ++i) {
1215       unsigned OpReg = getOrCreateVReg(*CS->getOperand(i));
1216       Ops.push_back(OpReg);
1217       Indices.push_back(Offset);
1218       Offset += MRI->getType(OpReg).getSizeInBits();
1219     }
1220     EntryBuilder.buildSequence(Reg, Ops, Indices);
1221   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
1222     if (CV->getNumOperands() == 1)
1223       return translate(*CV->getOperand(0), Reg);
1224     SmallVector<unsigned, 4> Ops;
1225     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
1226       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
1227     }
1228     EntryBuilder.buildMerge(Reg, Ops);
1229   } else
1230     return false;
1231 
1232   return true;
1233 }
1234 
1235 void IRTranslator::finalizeFunction() {
1236   // Release the memory used by the different maps we
1237   // needed during the translation.
1238   PendingPHIs.clear();
1239   ValToVReg.clear();
1240   FrameIndices.clear();
1241   MachinePreds.clear();
1242   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
1243   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
1244   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
1245   EntryBuilder = MachineIRBuilder();
1246   CurBuilder = MachineIRBuilder();
1247 }
1248 
1249 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
1250   MF = &CurMF;
1251   const Function &F = MF->getFunction();
1252   if (F.empty())
1253     return false;
1254   CLI = MF->getSubtarget().getCallLowering();
1255   CurBuilder.setMF(*MF);
1256   EntryBuilder.setMF(*MF);
1257   MRI = &MF->getRegInfo();
1258   DL = &F.getParent()->getDataLayout();
1259   TPC = &getAnalysis<TargetPassConfig>();
1260   ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F);
1261 
1262   assert(PendingPHIs.empty() && "stale PHIs");
1263 
1264   if (!DL->isLittleEndian()) {
1265     // Currently we don't properly handle big endian code.
1266     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1267                                F.getSubprogram(), &F.getEntryBlock());
1268     R << "unable to translate in big endian mode";
1269     reportTranslationError(*MF, *TPC, *ORE, R);
1270   }
1271 
1272   // Release the per-function state when we return, whether we succeeded or not.
1273   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
1274 
1275   // Setup a separate basic-block for the arguments and constants
1276   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
1277   MF->push_back(EntryBB);
1278   EntryBuilder.setMBB(*EntryBB);
1279 
1280   // Create all blocks, in IR order, to preserve the layout.
1281   for (const BasicBlock &BB: F) {
1282     auto *&MBB = BBToMBB[&BB];
1283 
1284     MBB = MF->CreateMachineBasicBlock(&BB);
1285     MF->push_back(MBB);
1286 
1287     if (BB.hasAddressTaken())
1288       MBB->setHasAddressTaken();
1289   }
1290 
1291   // Make our arguments/constants entry block fallthrough to the IR entry block.
1292   EntryBB->addSuccessor(&getMBB(F.front()));
1293 
1294   // Lower the actual args into this basic block.
1295   SmallVector<unsigned, 8> VRegArgs;
1296   for (const Argument &Arg: F.args()) {
1297     if (DL->getTypeStoreSize(Arg.getType()) == 0)
1298       continue; // Don't handle zero sized types.
1299     VRegArgs.push_back(getOrCreateVReg(Arg));
1300   }
1301   if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) {
1302     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1303                                F.getSubprogram(), &F.getEntryBlock());
1304     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
1305     reportTranslationError(*MF, *TPC, *ORE, R);
1306     return false;
1307   }
1308 
1309   // And translate the function!
1310   for (const BasicBlock &BB: F) {
1311     MachineBasicBlock &MBB = getMBB(BB);
1312     // Set the insertion point of all the following translations to
1313     // the end of this basic block.
1314     CurBuilder.setMBB(MBB);
1315 
1316     for (const Instruction &Inst: BB) {
1317       if (translate(Inst))
1318         continue;
1319 
1320       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1321                                  Inst.getDebugLoc(), &BB);
1322       R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
1323 
1324       if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
1325         std::string InstStrStorage;
1326         raw_string_ostream InstStr(InstStrStorage);
1327         InstStr << Inst;
1328 
1329         R << ": '" << InstStr.str() << "'";
1330       }
1331 
1332       reportTranslationError(*MF, *TPC, *ORE, R);
1333       return false;
1334     }
1335   }
1336 
1337   finishPendingPhis();
1338 
1339   // Merge the argument lowering and constants block with its single
1340   // successor, the LLVM-IR entry block.  We want the basic block to
1341   // be maximal.
1342   assert(EntryBB->succ_size() == 1 &&
1343          "Custom BB used for lowering should have only one successor");
1344   // Get the successor of the current entry block.
1345   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
1346   assert(NewEntryBB.pred_size() == 1 &&
1347          "LLVM-IR entry block has a predecessor!?");
1348   // Move all the instruction from the current entry block to the
1349   // new entry block.
1350   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
1351                     EntryBB->end());
1352 
1353   // Update the live-in information for the new entry block.
1354   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
1355     NewEntryBB.addLiveIn(LiveIn);
1356   NewEntryBB.sortUniqueLiveIns();
1357 
1358   // Get rid of the now empty basic block.
1359   EntryBB->removeSuccessor(&NewEntryBB);
1360   MF->remove(EntryBB);
1361   MF->DeleteMachineBasicBlock(EntryBB);
1362 
1363   assert(&MF->front() == &NewEntryBB &&
1364          "New entry wasn't next in the list of basic block!");
1365 
1366   return false;
1367 }
1368