1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BranchProbabilityInfo.h"
19 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
25 #include "llvm/CodeGen/LowLevelType.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/StackProtector.h"
34 #include "llvm/CodeGen/TargetFrameLowering.h"
35 #include "llvm/CodeGen/TargetInstrInfo.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/CFG.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfo.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GetElementPtrTypeIterator.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/User.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/Pass.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/LowLevelTypeImpl.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetIntrinsicInfo.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <iterator>
74 #include <string>
75 #include <utility>
76 #include <vector>
77 
78 #define DEBUG_TYPE "irtranslator"
79 
80 using namespace llvm;
81 
82 static cl::opt<bool>
83     EnableCSEInIRTranslator("enable-cse-in-irtranslator",
84                             cl::desc("Should enable CSE in irtranslator"),
85                             cl::Optional, cl::init(false));
86 char IRTranslator::ID = 0;
87 
88 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
89                 false, false)
90 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
91 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
92 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
93                 false, false)
94 
95 static void reportTranslationError(MachineFunction &MF,
96                                    const TargetPassConfig &TPC,
97                                    OptimizationRemarkEmitter &ORE,
98                                    OptimizationRemarkMissed &R) {
99   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
100 
101   // Print the function name explicitly if we don't have a debug location (which
102   // makes the diagnostic less useful) or if we're going to emit a raw error.
103   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
104     R << (" (in function: " + MF.getName() + ")").str();
105 
106   if (TPC.isGlobalISelAbortEnabled())
107     report_fatal_error(R.getMsg());
108   else
109     ORE.emit(R);
110 }
111 
112 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { }
113 
114 #ifndef NDEBUG
115 namespace {
116 /// Verify that every instruction created has the same DILocation as the
117 /// instruction being translated.
118 class DILocationVerifier : public GISelChangeObserver {
119   const Instruction *CurrInst = nullptr;
120 
121 public:
122   DILocationVerifier() = default;
123   ~DILocationVerifier() = default;
124 
125   const Instruction *getCurrentInst() const { return CurrInst; }
126   void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
127 
128   void erasingInstr(MachineInstr &MI) override {}
129   void changingInstr(MachineInstr &MI) override {}
130   void changedInstr(MachineInstr &MI) override {}
131 
132   void createdInstr(MachineInstr &MI) override {
133     assert(getCurrentInst() && "Inserted instruction without a current MI");
134 
135     // Only print the check message if we're actually checking it.
136 #ifndef NDEBUG
137     LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
138                       << " was copied to " << MI);
139 #endif
140     // We allow insts in the entry block to have a debug loc line of 0 because
141     // they could have originated from constants, and we don't want a jumpy
142     // debug experience.
143     assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
144             MI.getDebugLoc().getLine() == 0) &&
145            "Line info was not transferred to all instructions");
146   }
147 };
148 } // namespace
149 #endif // ifndef NDEBUG
150 
151 
152 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
153   AU.addRequired<StackProtector>();
154   AU.addRequired<TargetPassConfig>();
155   AU.addRequired<GISelCSEAnalysisWrapperPass>();
156   getSelectionDAGFallbackAnalysisUsage(AU);
157   MachineFunctionPass::getAnalysisUsage(AU);
158 }
159 
160 IRTranslator::ValueToVRegInfo::VRegListT &
161 IRTranslator::allocateVRegs(const Value &Val) {
162   assert(!VMap.contains(Val) && "Value already allocated in VMap");
163   auto *Regs = VMap.getVRegs(Val);
164   auto *Offsets = VMap.getOffsets(Val);
165   SmallVector<LLT, 4> SplitTys;
166   computeValueLLTs(*DL, *Val.getType(), SplitTys,
167                    Offsets->empty() ? Offsets : nullptr);
168   for (unsigned i = 0; i < SplitTys.size(); ++i)
169     Regs->push_back(0);
170   return *Regs;
171 }
172 
173 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
174   auto VRegsIt = VMap.findVRegs(Val);
175   if (VRegsIt != VMap.vregs_end())
176     return *VRegsIt->second;
177 
178   if (Val.getType()->isVoidTy())
179     return *VMap.getVRegs(Val);
180 
181   // Create entry for this type.
182   auto *VRegs = VMap.getVRegs(Val);
183   auto *Offsets = VMap.getOffsets(Val);
184 
185   assert(Val.getType()->isSized() &&
186          "Don't know how to create an empty vreg");
187 
188   SmallVector<LLT, 4> SplitTys;
189   computeValueLLTs(*DL, *Val.getType(), SplitTys,
190                    Offsets->empty() ? Offsets : nullptr);
191 
192   if (!isa<Constant>(Val)) {
193     for (auto Ty : SplitTys)
194       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
195     return *VRegs;
196   }
197 
198   if (Val.getType()->isAggregateType()) {
199     // UndefValue, ConstantAggregateZero
200     auto &C = cast<Constant>(Val);
201     unsigned Idx = 0;
202     while (auto Elt = C.getAggregateElement(Idx++)) {
203       auto EltRegs = getOrCreateVRegs(*Elt);
204       llvm::copy(EltRegs, std::back_inserter(*VRegs));
205     }
206   } else {
207     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
208     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
209     bool Success = translate(cast<Constant>(Val), VRegs->front());
210     if (!Success) {
211       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
212                                  MF->getFunction().getSubprogram(),
213                                  &MF->getFunction().getEntryBlock());
214       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
215       reportTranslationError(*MF, *TPC, *ORE, R);
216       return *VRegs;
217     }
218   }
219 
220   return *VRegs;
221 }
222 
223 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
224   if (FrameIndices.find(&AI) != FrameIndices.end())
225     return FrameIndices[&AI];
226 
227   unsigned ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
228   unsigned Size =
229       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
230 
231   // Always allocate at least one byte.
232   Size = std::max(Size, 1u);
233 
234   unsigned Alignment = AI.getAlignment();
235   if (!Alignment)
236     Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
237 
238   int &FI = FrameIndices[&AI];
239   FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
240   return FI;
241 }
242 
243 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
244   unsigned Alignment = 0;
245   Type *ValTy = nullptr;
246   if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
247     Alignment = SI->getAlignment();
248     ValTy = SI->getValueOperand()->getType();
249   } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
250     Alignment = LI->getAlignment();
251     ValTy = LI->getType();
252   } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
253     // TODO(PR27168): This instruction has no alignment attribute, but unlike
254     // the default alignment for load/store, the default here is to assume
255     // it has NATURAL alignment, not DataLayout-specified alignment.
256     const DataLayout &DL = AI->getModule()->getDataLayout();
257     Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
258     ValTy = AI->getCompareOperand()->getType();
259   } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
260     // TODO(PR27168): This instruction has no alignment attribute, but unlike
261     // the default alignment for load/store, the default here is to assume
262     // it has NATURAL alignment, not DataLayout-specified alignment.
263     const DataLayout &DL = AI->getModule()->getDataLayout();
264     Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType());
265     ValTy = AI->getType();
266   } else {
267     OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
268     R << "unable to translate memop: " << ore::NV("Opcode", &I);
269     reportTranslationError(*MF, *TPC, *ORE, R);
270     return 1;
271   }
272 
273   return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
274 }
275 
276 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
277   MachineBasicBlock *&MBB = BBToMBB[&BB];
278   assert(MBB && "BasicBlock was not encountered before");
279   return *MBB;
280 }
281 
282 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
283   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
284   MachinePreds[Edge].push_back(NewPred);
285 }
286 
287 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
288                                      MachineIRBuilder &MIRBuilder) {
289   // Get or create a virtual register for each value.
290   // Unless the value is a Constant => loadimm cst?
291   // or inline constant each time?
292   // Creation of a virtual register needs to have a size.
293   Register Op0 = getOrCreateVReg(*U.getOperand(0));
294   Register Op1 = getOrCreateVReg(*U.getOperand(1));
295   Register Res = getOrCreateVReg(U);
296   uint16_t Flags = 0;
297   if (isa<Instruction>(U)) {
298     const Instruction &I = cast<Instruction>(U);
299     Flags = MachineInstr::copyFlagsFromInstruction(I);
300   }
301 
302   MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
303   return true;
304 }
305 
306 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
307   // -0.0 - X --> G_FNEG
308   if (isa<Constant>(U.getOperand(0)) &&
309       U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
310     Register Op1 = getOrCreateVReg(*U.getOperand(1));
311     Register Res = getOrCreateVReg(U);
312     uint16_t Flags = 0;
313     if (isa<Instruction>(U)) {
314       const Instruction &I = cast<Instruction>(U);
315       Flags = MachineInstr::copyFlagsFromInstruction(I);
316     }
317     // Negate the last operand of the FSUB
318     MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op1}, Flags);
319     return true;
320   }
321   return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
322 }
323 
324 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
325   Register Op0 = getOrCreateVReg(*U.getOperand(0));
326   Register Res = getOrCreateVReg(U);
327   uint16_t Flags = 0;
328   if (isa<Instruction>(U)) {
329     const Instruction &I = cast<Instruction>(U);
330     Flags = MachineInstr::copyFlagsFromInstruction(I);
331   }
332   MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op0}, Flags);
333   return true;
334 }
335 
336 bool IRTranslator::translateCompare(const User &U,
337                                     MachineIRBuilder &MIRBuilder) {
338   auto *CI = dyn_cast<CmpInst>(&U);
339   Register Op0 = getOrCreateVReg(*U.getOperand(0));
340   Register Op1 = getOrCreateVReg(*U.getOperand(1));
341   Register Res = getOrCreateVReg(U);
342   CmpInst::Predicate Pred =
343       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
344                                     cast<ConstantExpr>(U).getPredicate());
345   if (CmpInst::isIntPredicate(Pred))
346     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
347   else if (Pred == CmpInst::FCMP_FALSE)
348     MIRBuilder.buildCopy(
349         Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
350   else if (Pred == CmpInst::FCMP_TRUE)
351     MIRBuilder.buildCopy(
352         Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
353   else {
354     assert(CI && "Instruction should be CmpInst");
355     MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1},
356                           MachineInstr::copyFlagsFromInstruction(*CI));
357   }
358 
359   return true;
360 }
361 
362 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
363   const ReturnInst &RI = cast<ReturnInst>(U);
364   const Value *Ret = RI.getReturnValue();
365   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
366     Ret = nullptr;
367 
368   ArrayRef<Register> VRegs;
369   if (Ret)
370     VRegs = getOrCreateVRegs(*Ret);
371 
372   Register SwiftErrorVReg = 0;
373   if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
374     SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
375         &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
376   }
377 
378   // The target may mess up with the insertion point, but
379   // this is not important as a return is the last instruction
380   // of the block anyway.
381   return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg);
382 }
383 
384 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
385   const BranchInst &BrInst = cast<BranchInst>(U);
386   unsigned Succ = 0;
387   if (!BrInst.isUnconditional()) {
388     // We want a G_BRCOND to the true BB followed by an unconditional branch.
389     Register Tst = getOrCreateVReg(*BrInst.getCondition());
390     const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
391     MachineBasicBlock &TrueBB = getMBB(TrueTgt);
392     MIRBuilder.buildBrCond(Tst, TrueBB);
393   }
394 
395   const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
396   MachineBasicBlock &TgtBB = getMBB(BrTgt);
397   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
398 
399   // If the unconditional target is the layout successor, fallthrough.
400   if (!CurBB.isLayoutSuccessor(&TgtBB))
401     MIRBuilder.buildBr(TgtBB);
402 
403   // Link successors.
404   for (const BasicBlock *Succ : successors(&BrInst))
405     CurBB.addSuccessor(&getMBB(*Succ));
406   return true;
407 }
408 
409 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
410                                         MachineBasicBlock *Dst,
411                                         BranchProbability Prob) {
412   if (!FuncInfo.BPI) {
413     Src->addSuccessorWithoutProb(Dst);
414     return;
415   }
416   if (Prob.isUnknown())
417     Prob = getEdgeProbability(Src, Dst);
418   Src->addSuccessor(Dst, Prob);
419 }
420 
421 BranchProbability
422 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
423                                  const MachineBasicBlock *Dst) const {
424   const BasicBlock *SrcBB = Src->getBasicBlock();
425   const BasicBlock *DstBB = Dst->getBasicBlock();
426   if (!FuncInfo.BPI) {
427     // If BPI is not available, set the default probability as 1 / N, where N is
428     // the number of successors.
429     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
430     return BranchProbability(1, SuccSize);
431   }
432   return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
433 }
434 
435 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
436   using namespace SwitchCG;
437   // Extract cases from the switch.
438   const SwitchInst &SI = cast<SwitchInst>(U);
439   BranchProbabilityInfo *BPI = FuncInfo.BPI;
440   CaseClusterVector Clusters;
441   Clusters.reserve(SI.getNumCases());
442   for (auto &I : SI.cases()) {
443     MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
444     assert(Succ && "Could not find successor mbb in mapping");
445     const ConstantInt *CaseVal = I.getCaseValue();
446     BranchProbability Prob =
447         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
448             : BranchProbability(1, SI.getNumCases() + 1);
449     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
450   }
451 
452   MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
453 
454   // Cluster adjacent cases with the same destination. We do this at all
455   // optimization levels because it's cheap to do and will make codegen faster
456   // if there are many clusters.
457   sortAndRangeify(Clusters);
458 
459   MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
460 
461   // If there is only the default destination, jump there directly.
462   if (Clusters.empty()) {
463     SwitchMBB->addSuccessor(DefaultMBB);
464     if (DefaultMBB != SwitchMBB->getNextNode())
465       MIB.buildBr(*DefaultMBB);
466     return true;
467   }
468 
469   SL->findJumpTables(Clusters, &SI, DefaultMBB);
470 
471   LLVM_DEBUG({
472     dbgs() << "Case clusters: ";
473     for (const CaseCluster &C : Clusters) {
474       if (C.Kind == CC_JumpTable)
475         dbgs() << "JT:";
476       if (C.Kind == CC_BitTests)
477         dbgs() << "BT:";
478 
479       C.Low->getValue().print(dbgs(), true);
480       if (C.Low != C.High) {
481         dbgs() << '-';
482         C.High->getValue().print(dbgs(), true);
483       }
484       dbgs() << ' ';
485     }
486     dbgs() << '\n';
487   });
488 
489   assert(!Clusters.empty());
490   SwitchWorkList WorkList;
491   CaseClusterIt First = Clusters.begin();
492   CaseClusterIt Last = Clusters.end() - 1;
493   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
494   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
495 
496   // FIXME: At the moment we don't do any splitting optimizations here like
497   // SelectionDAG does, so this worklist only has one entry.
498   while (!WorkList.empty()) {
499     SwitchWorkListItem W = WorkList.back();
500     WorkList.pop_back();
501     if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
502       return false;
503   }
504   return true;
505 }
506 
507 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
508                                  MachineBasicBlock *MBB) {
509   // Emit the code for the jump table
510   assert(JT.Reg != -1U && "Should lower JT Header first!");
511   MachineIRBuilder MIB(*MBB->getParent());
512   MIB.setMBB(*MBB);
513   MIB.setDebugLoc(CurBuilder->getDebugLoc());
514 
515   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
516   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
517 
518   auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
519   MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
520 }
521 
522 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
523                                        SwitchCG::JumpTableHeader &JTH,
524                                        MachineBasicBlock *HeaderBB) {
525   MachineIRBuilder MIB(*HeaderBB->getParent());
526   MIB.setMBB(*HeaderBB);
527   MIB.setDebugLoc(CurBuilder->getDebugLoc());
528 
529   const Value &SValue = *JTH.SValue;
530   // Subtract the lowest switch case value from the value being switched on.
531   const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
532   Register SwitchOpReg = getOrCreateVReg(SValue);
533   auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
534   auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
535 
536   // This value may be smaller or larger than the target's pointer type, and
537   // therefore require extension or truncating.
538   Type *PtrIRTy = SValue.getType()->getPointerTo();
539   const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
540   Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
541 
542   JT.Reg = Sub.getReg(0);
543 
544   if (JTH.OmitRangeCheck) {
545     if (JT.MBB != HeaderBB->getNextNode())
546       MIB.buildBr(*JT.MBB);
547     return true;
548   }
549 
550   // Emit the range check for the jump table, and branch to the default block
551   // for the switch statement if the value being switched on exceeds the
552   // largest case in the switch.
553   auto Cst = getOrCreateVReg(
554       *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
555   Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
556   auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
557 
558   auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
559 
560   // Avoid emitting unnecessary branches to the next block.
561   if (JT.MBB != HeaderBB->getNextNode())
562     BrCond = MIB.buildBr(*JT.MBB);
563   return true;
564 }
565 
566 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
567                                   MachineBasicBlock *SwitchBB,
568                                   MachineIRBuilder &MIB) {
569   Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
570   Register Cond;
571   DebugLoc OldDbgLoc = MIB.getDebugLoc();
572   MIB.setDebugLoc(CB.DbgLoc);
573   MIB.setMBB(*CB.ThisBB);
574 
575   if (CB.PredInfo.NoCmp) {
576     // Branch or fall through to TrueBB.
577     addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
578     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
579                       CB.ThisBB);
580     CB.ThisBB->normalizeSuccProbs();
581     if (CB.TrueBB != CB.ThisBB->getNextNode())
582       MIB.buildBr(*CB.TrueBB);
583     MIB.setDebugLoc(OldDbgLoc);
584     return;
585   }
586 
587   const LLT i1Ty = LLT::scalar(1);
588   // Build the compare.
589   if (!CB.CmpMHS) {
590     Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
591     Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
592   } else {
593     assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
594            "Can only handle SLE ranges");
595 
596     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
597     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
598 
599     Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
600     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
601       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
602       Cond =
603           MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
604     } else {
605       const LLT &CmpTy = MRI->getType(CmpOpReg);
606       auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
607       auto Diff = MIB.buildConstant(CmpTy, High - Low);
608       Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
609     }
610   }
611 
612   // Update successor info
613   addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
614 
615   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
616                     CB.ThisBB);
617 
618   // TrueBB and FalseBB are always different unless the incoming IR is
619   // degenerate. This only happens when running llc on weird IR.
620   if (CB.TrueBB != CB.FalseBB)
621     addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
622   CB.ThisBB->normalizeSuccProbs();
623 
624   //  if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock())
625     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
626                       CB.ThisBB);
627 
628   // If the lhs block is the next block, invert the condition so that we can
629   // fall through to the lhs instead of the rhs block.
630   if (CB.TrueBB == CB.ThisBB->getNextNode()) {
631     std::swap(CB.TrueBB, CB.FalseBB);
632     auto True = MIB.buildConstant(i1Ty, 1);
633     Cond = MIB.buildInstr(TargetOpcode::G_XOR, {i1Ty}, {Cond, True}, None)
634                .getReg(0);
635   }
636 
637   MIB.buildBrCond(Cond, *CB.TrueBB);
638   MIB.buildBr(*CB.FalseBB);
639   MIB.setDebugLoc(OldDbgLoc);
640 }
641 
642 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
643                                           MachineBasicBlock *SwitchMBB,
644                                           MachineBasicBlock *CurMBB,
645                                           MachineBasicBlock *DefaultMBB,
646                                           MachineIRBuilder &MIB,
647                                           MachineFunction::iterator BBI,
648                                           BranchProbability UnhandledProbs,
649                                           SwitchCG::CaseClusterIt I,
650                                           MachineBasicBlock *Fallthrough,
651                                           bool FallthroughUnreachable) {
652   using namespace SwitchCG;
653   MachineFunction *CurMF = SwitchMBB->getParent();
654   // FIXME: Optimize away range check based on pivot comparisons.
655   JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
656   SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
657   BranchProbability DefaultProb = W.DefaultProb;
658 
659   // The jump block hasn't been inserted yet; insert it here.
660   MachineBasicBlock *JumpMBB = JT->MBB;
661   CurMF->insert(BBI, JumpMBB);
662 
663   // Since the jump table block is separate from the switch block, we need
664   // to keep track of it as a machine predecessor to the default block,
665   // otherwise we lose the phi edges.
666   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
667                     CurMBB);
668   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
669                     JumpMBB);
670 
671   auto JumpProb = I->Prob;
672   auto FallthroughProb = UnhandledProbs;
673 
674   // If the default statement is a target of the jump table, we evenly
675   // distribute the default probability to successors of CurMBB. Also
676   // update the probability on the edge from JumpMBB to Fallthrough.
677   for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
678                                         SE = JumpMBB->succ_end();
679        SI != SE; ++SI) {
680     if (*SI == DefaultMBB) {
681       JumpProb += DefaultProb / 2;
682       FallthroughProb -= DefaultProb / 2;
683       JumpMBB->setSuccProbability(SI, DefaultProb / 2);
684       JumpMBB->normalizeSuccProbs();
685     } else {
686       // Also record edges from the jump table block to it's successors.
687       addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
688                         JumpMBB);
689     }
690   }
691 
692   // Skip the range check if the fallthrough block is unreachable.
693   if (FallthroughUnreachable)
694     JTH->OmitRangeCheck = true;
695 
696   if (!JTH->OmitRangeCheck)
697     addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
698   addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
699   CurMBB->normalizeSuccProbs();
700 
701   // The jump table header will be inserted in our current block, do the
702   // range check, and fall through to our fallthrough block.
703   JTH->HeaderBB = CurMBB;
704   JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
705 
706   // If we're in the right place, emit the jump table header right now.
707   if (CurMBB == SwitchMBB) {
708     if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
709       return false;
710     JTH->Emitted = true;
711   }
712   return true;
713 }
714 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
715                                             Value *Cond,
716                                             MachineBasicBlock *Fallthrough,
717                                             bool FallthroughUnreachable,
718                                             BranchProbability UnhandledProbs,
719                                             MachineBasicBlock *CurMBB,
720                                             MachineIRBuilder &MIB,
721                                             MachineBasicBlock *SwitchMBB) {
722   using namespace SwitchCG;
723   const Value *RHS, *LHS, *MHS;
724   CmpInst::Predicate Pred;
725   if (I->Low == I->High) {
726     // Check Cond == I->Low.
727     Pred = CmpInst::ICMP_EQ;
728     LHS = Cond;
729     RHS = I->Low;
730     MHS = nullptr;
731   } else {
732     // Check I->Low <= Cond <= I->High.
733     Pred = CmpInst::ICMP_SLE;
734     LHS = I->Low;
735     MHS = Cond;
736     RHS = I->High;
737   }
738 
739   // If Fallthrough is unreachable, fold away the comparison.
740   // The false probability is the sum of all unhandled cases.
741   CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
742                CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
743 
744   emitSwitchCase(CB, SwitchMBB, MIB);
745   return true;
746 }
747 
748 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
749                                        Value *Cond,
750                                        MachineBasicBlock *SwitchMBB,
751                                        MachineBasicBlock *DefaultMBB,
752                                        MachineIRBuilder &MIB) {
753   using namespace SwitchCG;
754   MachineFunction *CurMF = FuncInfo.MF;
755   MachineBasicBlock *NextMBB = nullptr;
756   MachineFunction::iterator BBI(W.MBB);
757   if (++BBI != FuncInfo.MF->end())
758     NextMBB = &*BBI;
759 
760   if (EnableOpts) {
761     // Here, we order cases by probability so the most likely case will be
762     // checked first. However, two clusters can have the same probability in
763     // which case their relative ordering is non-deterministic. So we use Low
764     // as a tie-breaker as clusters are guaranteed to never overlap.
765     llvm::sort(W.FirstCluster, W.LastCluster + 1,
766                [](const CaseCluster &a, const CaseCluster &b) {
767                  return a.Prob != b.Prob
768                             ? a.Prob > b.Prob
769                             : a.Low->getValue().slt(b.Low->getValue());
770                });
771 
772     // Rearrange the case blocks so that the last one falls through if possible
773     // without changing the order of probabilities.
774     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
775       --I;
776       if (I->Prob > W.LastCluster->Prob)
777         break;
778       if (I->Kind == CC_Range && I->MBB == NextMBB) {
779         std::swap(*I, *W.LastCluster);
780         break;
781       }
782     }
783   }
784 
785   // Compute total probability.
786   BranchProbability DefaultProb = W.DefaultProb;
787   BranchProbability UnhandledProbs = DefaultProb;
788   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
789     UnhandledProbs += I->Prob;
790 
791   MachineBasicBlock *CurMBB = W.MBB;
792   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
793     bool FallthroughUnreachable = false;
794     MachineBasicBlock *Fallthrough;
795     if (I == W.LastCluster) {
796       // For the last cluster, fall through to the default destination.
797       Fallthrough = DefaultMBB;
798       FallthroughUnreachable = isa<UnreachableInst>(
799           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
800     } else {
801       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
802       CurMF->insert(BBI, Fallthrough);
803     }
804     UnhandledProbs -= I->Prob;
805 
806     switch (I->Kind) {
807     case CC_BitTests: {
808       LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented");
809       return false; // Bit tests currently unimplemented.
810     }
811     case CC_JumpTable: {
812       if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
813                                   UnhandledProbs, I, Fallthrough,
814                                   FallthroughUnreachable)) {
815         LLVM_DEBUG(dbgs() << "Failed to lower jump table");
816         return false;
817       }
818       break;
819     }
820     case CC_Range: {
821       if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
822                                     FallthroughUnreachable, UnhandledProbs,
823                                     CurMBB, MIB, SwitchMBB)) {
824         LLVM_DEBUG(dbgs() << "Failed to lower switch range");
825         return false;
826       }
827       break;
828     }
829     }
830     CurMBB = Fallthrough;
831   }
832 
833   return true;
834 }
835 
836 bool IRTranslator::translateIndirectBr(const User &U,
837                                        MachineIRBuilder &MIRBuilder) {
838   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
839 
840   const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
841   MIRBuilder.buildBrIndirect(Tgt);
842 
843   // Link successors.
844   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
845   for (const BasicBlock *Succ : successors(&BrInst))
846     CurBB.addSuccessor(&getMBB(*Succ));
847 
848   return true;
849 }
850 
851 static bool isSwiftError(const Value *V) {
852   if (auto Arg = dyn_cast<Argument>(V))
853     return Arg->hasSwiftErrorAttr();
854   if (auto AI = dyn_cast<AllocaInst>(V))
855     return AI->isSwiftError();
856   return false;
857 }
858 
859 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
860   const LoadInst &LI = cast<LoadInst>(U);
861 
862   auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile
863                                : MachineMemOperand::MONone;
864   Flags |= MachineMemOperand::MOLoad;
865 
866   if (DL->getTypeStoreSize(LI.getType()) == 0)
867     return true;
868 
869   ArrayRef<Register> Regs = getOrCreateVRegs(LI);
870   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
871   Register Base = getOrCreateVReg(*LI.getPointerOperand());
872 
873   Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
874   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
875 
876   if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
877     assert(Regs.size() == 1 && "swifterror should be single pointer");
878     Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
879                                                     LI.getPointerOperand());
880     MIRBuilder.buildCopy(Regs[0], VReg);
881     return true;
882   }
883 
884   const MDNode *Ranges =
885       Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
886   for (unsigned i = 0; i < Regs.size(); ++i) {
887     Register Addr;
888     MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8);
889 
890     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
891     unsigned BaseAlign = getMemOpAlignment(LI);
892     auto MMO = MF->getMachineMemOperand(
893         Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8,
894         MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), Ranges,
895         LI.getSyncScopeID(), LI.getOrdering());
896     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
897   }
898 
899   return true;
900 }
901 
902 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
903   const StoreInst &SI = cast<StoreInst>(U);
904   auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile
905                                : MachineMemOperand::MONone;
906   Flags |= MachineMemOperand::MOStore;
907 
908   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
909     return true;
910 
911   ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
912   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
913   Register Base = getOrCreateVReg(*SI.getPointerOperand());
914 
915   Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
916   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
917 
918   if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
919     assert(Vals.size() == 1 && "swifterror should be single pointer");
920 
921     Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
922                                                     SI.getPointerOperand());
923     MIRBuilder.buildCopy(VReg, Vals[0]);
924     return true;
925   }
926 
927   for (unsigned i = 0; i < Vals.size(); ++i) {
928     Register Addr;
929     MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8);
930 
931     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
932     unsigned BaseAlign = getMemOpAlignment(SI);
933     auto MMO = MF->getMachineMemOperand(
934         Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8,
935         MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
936         SI.getSyncScopeID(), SI.getOrdering());
937     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
938   }
939   return true;
940 }
941 
942 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
943   const Value *Src = U.getOperand(0);
944   Type *Int32Ty = Type::getInt32Ty(U.getContext());
945 
946   // getIndexedOffsetInType is designed for GEPs, so the first index is the
947   // usual array element rather than looking into the actual aggregate.
948   SmallVector<Value *, 1> Indices;
949   Indices.push_back(ConstantInt::get(Int32Ty, 0));
950 
951   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
952     for (auto Idx : EVI->indices())
953       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
954   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
955     for (auto Idx : IVI->indices())
956       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
957   } else {
958     for (unsigned i = 1; i < U.getNumOperands(); ++i)
959       Indices.push_back(U.getOperand(i));
960   }
961 
962   return 8 * static_cast<uint64_t>(
963                  DL.getIndexedOffsetInType(Src->getType(), Indices));
964 }
965 
966 bool IRTranslator::translateExtractValue(const User &U,
967                                          MachineIRBuilder &MIRBuilder) {
968   const Value *Src = U.getOperand(0);
969   uint64_t Offset = getOffsetFromIndices(U, *DL);
970   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
971   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
972   unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
973   auto &DstRegs = allocateVRegs(U);
974 
975   for (unsigned i = 0; i < DstRegs.size(); ++i)
976     DstRegs[i] = SrcRegs[Idx++];
977 
978   return true;
979 }
980 
981 bool IRTranslator::translateInsertValue(const User &U,
982                                         MachineIRBuilder &MIRBuilder) {
983   const Value *Src = U.getOperand(0);
984   uint64_t Offset = getOffsetFromIndices(U, *DL);
985   auto &DstRegs = allocateVRegs(U);
986   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
987   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
988   ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
989   auto InsertedIt = InsertedRegs.begin();
990 
991   for (unsigned i = 0; i < DstRegs.size(); ++i) {
992     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
993       DstRegs[i] = *InsertedIt++;
994     else
995       DstRegs[i] = SrcRegs[i];
996   }
997 
998   return true;
999 }
1000 
1001 bool IRTranslator::translateSelect(const User &U,
1002                                    MachineIRBuilder &MIRBuilder) {
1003   Register Tst = getOrCreateVReg(*U.getOperand(0));
1004   ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1005   ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1006   ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1007 
1008   const SelectInst &SI = cast<SelectInst>(U);
1009   uint16_t Flags = 0;
1010   if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition()))
1011     Flags = MachineInstr::copyFlagsFromInstruction(*Cmp);
1012 
1013   for (unsigned i = 0; i < ResRegs.size(); ++i) {
1014     MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]},
1015                           {Tst, Op0Regs[i], Op1Regs[i]}, Flags);
1016   }
1017 
1018   return true;
1019 }
1020 
1021 bool IRTranslator::translateBitCast(const User &U,
1022                                     MachineIRBuilder &MIRBuilder) {
1023   // If we're bitcasting to the source type, we can reuse the source vreg.
1024   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1025       getLLTForType(*U.getType(), *DL)) {
1026     Register SrcReg = getOrCreateVReg(*U.getOperand(0));
1027     auto &Regs = *VMap.getVRegs(U);
1028     // If we already assigned a vreg for this bitcast, we can't change that.
1029     // Emit a copy to satisfy the users we already emitted.
1030     if (!Regs.empty())
1031       MIRBuilder.buildCopy(Regs[0], SrcReg);
1032     else {
1033       Regs.push_back(SrcReg);
1034       VMap.getOffsets(U)->push_back(0);
1035     }
1036     return true;
1037   }
1038   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1039 }
1040 
1041 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1042                                  MachineIRBuilder &MIRBuilder) {
1043   Register Op = getOrCreateVReg(*U.getOperand(0));
1044   Register Res = getOrCreateVReg(U);
1045   MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1046   return true;
1047 }
1048 
1049 bool IRTranslator::translateGetElementPtr(const User &U,
1050                                           MachineIRBuilder &MIRBuilder) {
1051   // FIXME: support vector GEPs.
1052   if (U.getType()->isVectorTy())
1053     return false;
1054 
1055   Value &Op0 = *U.getOperand(0);
1056   Register BaseReg = getOrCreateVReg(Op0);
1057   Type *PtrIRTy = Op0.getType();
1058   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1059   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1060   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1061 
1062   int64_t Offset = 0;
1063   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1064        GTI != E; ++GTI) {
1065     const Value *Idx = GTI.getOperand();
1066     if (StructType *StTy = GTI.getStructTypeOrNull()) {
1067       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1068       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1069       continue;
1070     } else {
1071       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1072 
1073       // If this is a scalar constant or a splat vector of constants,
1074       // handle it quickly.
1075       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1076         Offset += ElementSize * CI->getSExtValue();
1077         continue;
1078       }
1079 
1080       if (Offset != 0) {
1081         LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1082         auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1083         BaseReg =
1084             MIRBuilder.buildGEP(PtrTy, BaseReg, OffsetMIB.getReg(0)).getReg(0);
1085         Offset = 0;
1086       }
1087 
1088       Register IdxReg = getOrCreateVReg(*Idx);
1089       if (MRI->getType(IdxReg) != OffsetTy)
1090         IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1091 
1092       // N = N + Idx * ElementSize;
1093       // Avoid doing it for ElementSize of 1.
1094       Register GepOffsetReg;
1095       if (ElementSize != 1) {
1096         auto ElementSizeMIB = MIRBuilder.buildConstant(
1097             getLLTForType(*OffsetIRTy, *DL), ElementSize);
1098         GepOffsetReg =
1099             MIRBuilder.buildMul(OffsetTy, ElementSizeMIB, IdxReg).getReg(0);
1100       } else
1101         GepOffsetReg = IdxReg;
1102 
1103       BaseReg = MIRBuilder.buildGEP(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1104     }
1105   }
1106 
1107   if (Offset != 0) {
1108     auto OffsetMIB =
1109         MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset);
1110     MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1111     return true;
1112   }
1113 
1114   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1115   return true;
1116 }
1117 
1118 bool IRTranslator::translateMemFunc(const CallInst &CI,
1119                                     MachineIRBuilder &MIRBuilder,
1120                                     Intrinsic::ID ID) {
1121 
1122   // If the source is undef, then just emit a nop.
1123   if (isa<UndefValue>(CI.getArgOperand(1)))
1124     return true;
1125 
1126   ArrayRef<Register> Res;
1127   auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true);
1128   for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI)
1129     ICall.addUse(getOrCreateVReg(**AI));
1130 
1131   unsigned DstAlign = 0, SrcAlign = 0;
1132   unsigned IsVol =
1133       cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
1134           ->getZExtValue();
1135 
1136   if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1137     DstAlign = std::max<unsigned>(MCI->getDestAlignment(), 1);
1138     SrcAlign = std::max<unsigned>(MCI->getSourceAlignment(), 1);
1139   } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1140     DstAlign = std::max<unsigned>(MMI->getDestAlignment(), 1);
1141     SrcAlign = std::max<unsigned>(MMI->getSourceAlignment(), 1);
1142   } else {
1143     auto *MSI = cast<MemSetInst>(&CI);
1144     DstAlign = std::max<unsigned>(MSI->getDestAlignment(), 1);
1145   }
1146 
1147   // We need to propagate the tail call flag from the IR inst as an argument.
1148   // Otherwise, we have to pessimize and assume later that we cannot tail call
1149   // any memory intrinsics.
1150   ICall.addImm(CI.isTailCall() ? 1 : 0);
1151 
1152   // Create mem operands to store the alignment and volatile info.
1153   auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
1154   ICall.addMemOperand(MF->getMachineMemOperand(
1155       MachinePointerInfo(CI.getArgOperand(0)),
1156       MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
1157   if (ID != Intrinsic::memset)
1158     ICall.addMemOperand(MF->getMachineMemOperand(
1159         MachinePointerInfo(CI.getArgOperand(1)),
1160         MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
1161 
1162   return true;
1163 }
1164 
1165 void IRTranslator::getStackGuard(Register DstReg,
1166                                  MachineIRBuilder &MIRBuilder) {
1167   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1168   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1169   auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD);
1170   MIB.addDef(DstReg);
1171 
1172   auto &TLI = *MF->getSubtarget().getTargetLowering();
1173   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1174   if (!Global)
1175     return;
1176 
1177   MachinePointerInfo MPInfo(Global);
1178   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1179                MachineMemOperand::MODereferenceable;
1180   MachineMemOperand *MemRef =
1181       MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
1182                                DL->getPointerABIAlignment(0).value());
1183   MIB.setMemRefs({MemRef});
1184 }
1185 
1186 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1187                                               MachineIRBuilder &MIRBuilder) {
1188   ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1189   MIRBuilder.buildInstr(Op)
1190       .addDef(ResRegs[0])
1191       .addDef(ResRegs[1])
1192       .addUse(getOrCreateVReg(*CI.getOperand(0)))
1193       .addUse(getOrCreateVReg(*CI.getOperand(1)));
1194 
1195   return true;
1196 }
1197 
1198 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1199   switch (ID) {
1200     default:
1201       break;
1202     case Intrinsic::bswap:
1203       return TargetOpcode::G_BSWAP;
1204   case Intrinsic::bitreverse:
1205       return TargetOpcode::G_BITREVERSE;
1206     case Intrinsic::ceil:
1207       return TargetOpcode::G_FCEIL;
1208     case Intrinsic::cos:
1209       return TargetOpcode::G_FCOS;
1210     case Intrinsic::ctpop:
1211       return TargetOpcode::G_CTPOP;
1212     case Intrinsic::exp:
1213       return TargetOpcode::G_FEXP;
1214     case Intrinsic::exp2:
1215       return TargetOpcode::G_FEXP2;
1216     case Intrinsic::fabs:
1217       return TargetOpcode::G_FABS;
1218     case Intrinsic::copysign:
1219       return TargetOpcode::G_FCOPYSIGN;
1220     case Intrinsic::minnum:
1221       return TargetOpcode::G_FMINNUM;
1222     case Intrinsic::maxnum:
1223       return TargetOpcode::G_FMAXNUM;
1224     case Intrinsic::minimum:
1225       return TargetOpcode::G_FMINIMUM;
1226     case Intrinsic::maximum:
1227       return TargetOpcode::G_FMAXIMUM;
1228     case Intrinsic::canonicalize:
1229       return TargetOpcode::G_FCANONICALIZE;
1230     case Intrinsic::floor:
1231       return TargetOpcode::G_FFLOOR;
1232     case Intrinsic::fma:
1233       return TargetOpcode::G_FMA;
1234     case Intrinsic::log:
1235       return TargetOpcode::G_FLOG;
1236     case Intrinsic::log2:
1237       return TargetOpcode::G_FLOG2;
1238     case Intrinsic::log10:
1239       return TargetOpcode::G_FLOG10;
1240     case Intrinsic::nearbyint:
1241       return TargetOpcode::G_FNEARBYINT;
1242     case Intrinsic::pow:
1243       return TargetOpcode::G_FPOW;
1244     case Intrinsic::rint:
1245       return TargetOpcode::G_FRINT;
1246     case Intrinsic::round:
1247       return TargetOpcode::G_INTRINSIC_ROUND;
1248     case Intrinsic::sin:
1249       return TargetOpcode::G_FSIN;
1250     case Intrinsic::sqrt:
1251       return TargetOpcode::G_FSQRT;
1252     case Intrinsic::trunc:
1253       return TargetOpcode::G_INTRINSIC_TRUNC;
1254   }
1255   return Intrinsic::not_intrinsic;
1256 }
1257 
1258 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1259                                             Intrinsic::ID ID,
1260                                             MachineIRBuilder &MIRBuilder) {
1261 
1262   unsigned Op = getSimpleIntrinsicOpcode(ID);
1263 
1264   // Is this a simple intrinsic?
1265   if (Op == Intrinsic::not_intrinsic)
1266     return false;
1267 
1268   // Yes. Let's translate it.
1269   SmallVector<llvm::SrcOp, 4> VRegs;
1270   for (auto &Arg : CI.arg_operands())
1271     VRegs.push_back(getOrCreateVReg(*Arg));
1272 
1273   MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1274                         MachineInstr::copyFlagsFromInstruction(CI));
1275   return true;
1276 }
1277 
1278 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1279                                            MachineIRBuilder &MIRBuilder) {
1280 
1281   // If this is a simple intrinsic (that is, we just need to add a def of
1282   // a vreg, and uses for each arg operand, then translate it.
1283   if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1284     return true;
1285 
1286   switch (ID) {
1287   default:
1288     break;
1289   case Intrinsic::lifetime_start:
1290   case Intrinsic::lifetime_end: {
1291     // No stack colouring in O0, discard region information.
1292     if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1293       return true;
1294 
1295     unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1296                                                   : TargetOpcode::LIFETIME_END;
1297 
1298     // Get the underlying objects for the location passed on the lifetime
1299     // marker.
1300     SmallVector<const Value *, 4> Allocas;
1301     GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL);
1302 
1303     // Iterate over each underlying object, creating lifetime markers for each
1304     // static alloca. Quit if we find a non-static alloca.
1305     for (const Value *V : Allocas) {
1306       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1307       if (!AI)
1308         continue;
1309 
1310       if (!AI->isStaticAlloca())
1311         return true;
1312 
1313       MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1314     }
1315     return true;
1316   }
1317   case Intrinsic::dbg_declare: {
1318     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1319     assert(DI.getVariable() && "Missing variable");
1320 
1321     const Value *Address = DI.getAddress();
1322     if (!Address || isa<UndefValue>(Address)) {
1323       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1324       return true;
1325     }
1326 
1327     assert(DI.getVariable()->isValidLocationForIntrinsic(
1328                MIRBuilder.getDebugLoc()) &&
1329            "Expected inlined-at fields to agree");
1330     auto AI = dyn_cast<AllocaInst>(Address);
1331     if (AI && AI->isStaticAlloca()) {
1332       // Static allocas are tracked at the MF level, no need for DBG_VALUE
1333       // instructions (in fact, they get ignored if they *do* exist).
1334       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
1335                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
1336     } else {
1337       // A dbg.declare describes the address of a source variable, so lower it
1338       // into an indirect DBG_VALUE.
1339       MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
1340                                        DI.getVariable(), DI.getExpression());
1341     }
1342     return true;
1343   }
1344   case Intrinsic::dbg_label: {
1345     const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
1346     assert(DI.getLabel() && "Missing label");
1347 
1348     assert(DI.getLabel()->isValidLocationForIntrinsic(
1349                MIRBuilder.getDebugLoc()) &&
1350            "Expected inlined-at fields to agree");
1351 
1352     MIRBuilder.buildDbgLabel(DI.getLabel());
1353     return true;
1354   }
1355   case Intrinsic::vaend:
1356     // No target I know of cares about va_end. Certainly no in-tree target
1357     // does. Simplest intrinsic ever!
1358     return true;
1359   case Intrinsic::vastart: {
1360     auto &TLI = *MF->getSubtarget().getTargetLowering();
1361     Value *Ptr = CI.getArgOperand(0);
1362     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
1363 
1364     // FIXME: Get alignment
1365     MIRBuilder.buildInstr(TargetOpcode::G_VASTART)
1366         .addUse(getOrCreateVReg(*Ptr))
1367         .addMemOperand(MF->getMachineMemOperand(
1368             MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1));
1369     return true;
1370   }
1371   case Intrinsic::dbg_value: {
1372     // This form of DBG_VALUE is target-independent.
1373     const DbgValueInst &DI = cast<DbgValueInst>(CI);
1374     const Value *V = DI.getValue();
1375     assert(DI.getVariable()->isValidLocationForIntrinsic(
1376                MIRBuilder.getDebugLoc()) &&
1377            "Expected inlined-at fields to agree");
1378     if (!V) {
1379       // Currently the optimizer can produce this; insert an undef to
1380       // help debugging.  Probably the optimizer should not do this.
1381       MIRBuilder.buildDirectDbgValue(0, DI.getVariable(), DI.getExpression());
1382     } else if (const auto *CI = dyn_cast<Constant>(V)) {
1383       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
1384     } else {
1385       for (Register Reg : getOrCreateVRegs(*V)) {
1386         // FIXME: This does not handle register-indirect values at offset 0. The
1387         // direct/indirect thing shouldn't really be handled by something as
1388         // implicit as reg+noreg vs reg+imm in the first place, but it seems
1389         // pretty baked in right now.
1390         MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
1391       }
1392     }
1393     return true;
1394   }
1395   case Intrinsic::uadd_with_overflow:
1396     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
1397   case Intrinsic::sadd_with_overflow:
1398     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
1399   case Intrinsic::usub_with_overflow:
1400     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
1401   case Intrinsic::ssub_with_overflow:
1402     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
1403   case Intrinsic::umul_with_overflow:
1404     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
1405   case Intrinsic::smul_with_overflow:
1406     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
1407   case Intrinsic::fmuladd: {
1408     const TargetMachine &TM = MF->getTarget();
1409     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1410     Register Dst = getOrCreateVReg(CI);
1411     Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
1412     Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
1413     Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
1414     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
1415         TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) {
1416       // TODO: Revisit this to see if we should move this part of the
1417       // lowering to the combiner.
1418       MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2},
1419                             MachineInstr::copyFlagsFromInstruction(CI));
1420     } else {
1421       LLT Ty = getLLTForType(*CI.getType(), *DL);
1422       auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1},
1423                                         MachineInstr::copyFlagsFromInstruction(CI));
1424       MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2},
1425                             MachineInstr::copyFlagsFromInstruction(CI));
1426     }
1427     return true;
1428   }
1429   case Intrinsic::memcpy:
1430   case Intrinsic::memmove:
1431   case Intrinsic::memset:
1432     return translateMemFunc(CI, MIRBuilder, ID);
1433   case Intrinsic::eh_typeid_for: {
1434     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
1435     Register Reg = getOrCreateVReg(CI);
1436     unsigned TypeID = MF->getTypeIDFor(GV);
1437     MIRBuilder.buildConstant(Reg, TypeID);
1438     return true;
1439   }
1440   case Intrinsic::objectsize:
1441     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1442 
1443   case Intrinsic::is_constant:
1444     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1445 
1446   case Intrinsic::stackguard:
1447     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
1448     return true;
1449   case Intrinsic::stackprotector: {
1450     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
1451     Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
1452     getStackGuard(GuardVal, MIRBuilder);
1453 
1454     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
1455     int FI = getOrCreateFrameIndex(*Slot);
1456     MF->getFrameInfo().setStackProtectorIndex(FI);
1457 
1458     MIRBuilder.buildStore(
1459         GuardVal, getOrCreateVReg(*Slot),
1460         *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
1461                                   MachineMemOperand::MOStore |
1462                                       MachineMemOperand::MOVolatile,
1463                                   PtrTy.getSizeInBits() / 8, 8));
1464     return true;
1465   }
1466   case Intrinsic::stacksave: {
1467     // Save the stack pointer to the location provided by the intrinsic.
1468     Register Reg = getOrCreateVReg(CI);
1469     Register StackPtr = MF->getSubtarget()
1470                             .getTargetLowering()
1471                             ->getStackPointerRegisterToSaveRestore();
1472 
1473     // If the target doesn't specify a stack pointer, then fall back.
1474     if (!StackPtr)
1475       return false;
1476 
1477     MIRBuilder.buildCopy(Reg, StackPtr);
1478     return true;
1479   }
1480   case Intrinsic::stackrestore: {
1481     // Restore the stack pointer from the location provided by the intrinsic.
1482     Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
1483     Register StackPtr = MF->getSubtarget()
1484                             .getTargetLowering()
1485                             ->getStackPointerRegisterToSaveRestore();
1486 
1487     // If the target doesn't specify a stack pointer, then fall back.
1488     if (!StackPtr)
1489       return false;
1490 
1491     MIRBuilder.buildCopy(StackPtr, Reg);
1492     return true;
1493   }
1494   case Intrinsic::cttz:
1495   case Intrinsic::ctlz: {
1496     ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
1497     bool isTrailing = ID == Intrinsic::cttz;
1498     unsigned Opcode = isTrailing
1499                           ? Cst->isZero() ? TargetOpcode::G_CTTZ
1500                                           : TargetOpcode::G_CTTZ_ZERO_UNDEF
1501                           : Cst->isZero() ? TargetOpcode::G_CTLZ
1502                                           : TargetOpcode::G_CTLZ_ZERO_UNDEF;
1503     MIRBuilder.buildInstr(Opcode)
1504         .addDef(getOrCreateVReg(CI))
1505         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
1506     return true;
1507   }
1508   case Intrinsic::invariant_start: {
1509     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
1510     Register Undef = MRI->createGenericVirtualRegister(PtrTy);
1511     MIRBuilder.buildUndef(Undef);
1512     return true;
1513   }
1514   case Intrinsic::invariant_end:
1515     return true;
1516   case Intrinsic::assume:
1517   case Intrinsic::var_annotation:
1518   case Intrinsic::sideeffect:
1519     // Discard annotate attributes, assumptions, and artificial side-effects.
1520     return true;
1521   }
1522   return false;
1523 }
1524 
1525 bool IRTranslator::translateInlineAsm(const CallInst &CI,
1526                                       MachineIRBuilder &MIRBuilder) {
1527   const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue());
1528   if (!IA.getConstraintString().empty())
1529     return false;
1530 
1531   unsigned ExtraInfo = 0;
1532   if (IA.hasSideEffects())
1533     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1534   if (IA.getDialect() == InlineAsm::AD_Intel)
1535     ExtraInfo |= InlineAsm::Extra_AsmDialect;
1536 
1537   MIRBuilder.buildInstr(TargetOpcode::INLINEASM)
1538     .addExternalSymbol(IA.getAsmString().c_str())
1539     .addImm(ExtraInfo);
1540 
1541   return true;
1542 }
1543 
1544 bool IRTranslator::translateCallSite(const ImmutableCallSite &CS,
1545                                      MachineIRBuilder &MIRBuilder) {
1546   const Instruction &I = *CS.getInstruction();
1547   ArrayRef<Register> Res = getOrCreateVRegs(I);
1548 
1549   SmallVector<ArrayRef<Register>, 8> Args;
1550   Register SwiftInVReg = 0;
1551   Register SwiftErrorVReg = 0;
1552   for (auto &Arg : CS.args()) {
1553     if (CLI->supportSwiftError() && isSwiftError(Arg)) {
1554       assert(SwiftInVReg == 0 && "Expected only one swift error argument");
1555       LLT Ty = getLLTForType(*Arg->getType(), *DL);
1556       SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
1557       MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
1558                                             &I, &MIRBuilder.getMBB(), Arg));
1559       Args.emplace_back(makeArrayRef(SwiftInVReg));
1560       SwiftErrorVReg =
1561           SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg);
1562       continue;
1563     }
1564     Args.push_back(getOrCreateVRegs(*Arg));
1565   }
1566 
1567   // We don't set HasCalls on MFI here yet because call lowering may decide to
1568   // optimize into tail calls. Instead, we defer that to selection where a final
1569   // scan is done to check if any instructions are calls.
1570   bool Success =
1571       CLI->lowerCall(MIRBuilder, CS, Res, Args, SwiftErrorVReg,
1572                      [&]() { return getOrCreateVReg(*CS.getCalledValue()); });
1573 
1574   // Check if we just inserted a tail call.
1575   if (Success) {
1576     assert(!HasTailCall && "Can't tail call return twice from block?");
1577     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1578     HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
1579   }
1580 
1581   return Success;
1582 }
1583 
1584 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
1585   const CallInst &CI = cast<CallInst>(U);
1586   auto TII = MF->getTarget().getIntrinsicInfo();
1587   const Function *F = CI.getCalledFunction();
1588 
1589   // FIXME: support Windows dllimport function calls.
1590   if (F && F->hasDLLImportStorageClass())
1591     return false;
1592 
1593   // FIXME: support control flow guard targets.
1594   if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
1595     return false;
1596 
1597   if (CI.isInlineAsm())
1598     return translateInlineAsm(CI, MIRBuilder);
1599 
1600   Intrinsic::ID ID = Intrinsic::not_intrinsic;
1601   if (F && F->isIntrinsic()) {
1602     ID = F->getIntrinsicID();
1603     if (TII && ID == Intrinsic::not_intrinsic)
1604       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
1605   }
1606 
1607   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
1608     return translateCallSite(&CI, MIRBuilder);
1609 
1610   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
1611 
1612   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
1613     return true;
1614 
1615   ArrayRef<Register> ResultRegs;
1616   if (!CI.getType()->isVoidTy())
1617     ResultRegs = getOrCreateVRegs(CI);
1618 
1619   // Ignore the callsite attributes. Backend code is most likely not expecting
1620   // an intrinsic to sometimes have side effects and sometimes not.
1621   MachineInstrBuilder MIB =
1622       MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
1623   if (isa<FPMathOperator>(CI))
1624     MIB->copyIRFlags(CI);
1625 
1626   for (auto &Arg : enumerate(CI.arg_operands())) {
1627     // Some intrinsics take metadata parameters. Reject them.
1628     if (isa<MetadataAsValue>(Arg.value()))
1629       return false;
1630 
1631     // If this is required to be an immediate, don't materialize it in a
1632     // register.
1633     if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
1634       if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
1635         // imm arguments are more convenient than cimm (and realistically
1636         // probably sufficient), so use them.
1637         assert(CI->getBitWidth() <= 64 &&
1638                "large intrinsic immediates not handled");
1639         MIB.addImm(CI->getSExtValue());
1640       } else {
1641         MIB.addFPImm(cast<ConstantFP>(Arg.value()));
1642       }
1643     } else {
1644       ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
1645       if (VRegs.size() > 1)
1646         return false;
1647       MIB.addUse(VRegs[0]);
1648     }
1649   }
1650 
1651   // Add a MachineMemOperand if it is a target mem intrinsic.
1652   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1653   TargetLowering::IntrinsicInfo Info;
1654   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
1655   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
1656     MaybeAlign Align = Info.align;
1657     if (!Align)
1658       Align = MaybeAlign(
1659           DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext())));
1660 
1661     uint64_t Size = Info.memVT.getStoreSize();
1662     MIB.addMemOperand(MF->getMachineMemOperand(
1663         MachinePointerInfo(Info.ptrVal), Info.flags, Size, Align->value()));
1664   }
1665 
1666   return true;
1667 }
1668 
1669 bool IRTranslator::translateInvoke(const User &U,
1670                                    MachineIRBuilder &MIRBuilder) {
1671   const InvokeInst &I = cast<InvokeInst>(U);
1672   MCContext &Context = MF->getContext();
1673 
1674   const BasicBlock *ReturnBB = I.getSuccessor(0);
1675   const BasicBlock *EHPadBB = I.getSuccessor(1);
1676 
1677   const Value *Callee = I.getCalledValue();
1678   const Function *Fn = dyn_cast<Function>(Callee);
1679   if (isa<InlineAsm>(Callee))
1680     return false;
1681 
1682   // FIXME: support invoking patchpoint and statepoint intrinsics.
1683   if (Fn && Fn->isIntrinsic())
1684     return false;
1685 
1686   // FIXME: support whatever these are.
1687   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
1688     return false;
1689 
1690   // FIXME: support control flow guard targets.
1691   if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
1692     return false;
1693 
1694   // FIXME: support Windows exception handling.
1695   if (!isa<LandingPadInst>(EHPadBB->front()))
1696     return false;
1697 
1698   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
1699   // the region covered by the try.
1700   MCSymbol *BeginSymbol = Context.createTempSymbol();
1701   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
1702 
1703   if (!translateCallSite(&I, MIRBuilder))
1704     return false;
1705 
1706   MCSymbol *EndSymbol = Context.createTempSymbol();
1707   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
1708 
1709   // FIXME: track probabilities.
1710   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
1711                     &ReturnMBB = getMBB(*ReturnBB);
1712   MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
1713   MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
1714   MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
1715   MIRBuilder.buildBr(ReturnMBB);
1716 
1717   return true;
1718 }
1719 
1720 bool IRTranslator::translateCallBr(const User &U,
1721                                    MachineIRBuilder &MIRBuilder) {
1722   // FIXME: Implement this.
1723   return false;
1724 }
1725 
1726 bool IRTranslator::translateLandingPad(const User &U,
1727                                        MachineIRBuilder &MIRBuilder) {
1728   const LandingPadInst &LP = cast<LandingPadInst>(U);
1729 
1730   MachineBasicBlock &MBB = MIRBuilder.getMBB();
1731 
1732   MBB.setIsEHPad();
1733 
1734   // If there aren't registers to copy the values into (e.g., during SjLj
1735   // exceptions), then don't bother.
1736   auto &TLI = *MF->getSubtarget().getTargetLowering();
1737   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
1738   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
1739       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
1740     return true;
1741 
1742   // If landingpad's return type is token type, we don't create DAG nodes
1743   // for its exception pointer and selector value. The extraction of exception
1744   // pointer or selector value from token type landingpads is not currently
1745   // supported.
1746   if (LP.getType()->isTokenTy())
1747     return true;
1748 
1749   // Add a label to mark the beginning of the landing pad.  Deletion of the
1750   // landing pad can thus be detected via the MachineModuleInfo.
1751   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
1752     .addSym(MF->addLandingPad(&MBB));
1753 
1754   LLT Ty = getLLTForType(*LP.getType(), *DL);
1755   Register Undef = MRI->createGenericVirtualRegister(Ty);
1756   MIRBuilder.buildUndef(Undef);
1757 
1758   SmallVector<LLT, 2> Tys;
1759   for (Type *Ty : cast<StructType>(LP.getType())->elements())
1760     Tys.push_back(getLLTForType(*Ty, *DL));
1761   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
1762 
1763   // Mark exception register as live in.
1764   Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
1765   if (!ExceptionReg)
1766     return false;
1767 
1768   MBB.addLiveIn(ExceptionReg);
1769   ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
1770   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
1771 
1772   Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
1773   if (!SelectorReg)
1774     return false;
1775 
1776   MBB.addLiveIn(SelectorReg);
1777   Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
1778   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
1779   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
1780 
1781   return true;
1782 }
1783 
1784 bool IRTranslator::translateAlloca(const User &U,
1785                                    MachineIRBuilder &MIRBuilder) {
1786   auto &AI = cast<AllocaInst>(U);
1787 
1788   if (AI.isSwiftError())
1789     return true;
1790 
1791   if (AI.isStaticAlloca()) {
1792     Register Res = getOrCreateVReg(AI);
1793     int FI = getOrCreateFrameIndex(AI);
1794     MIRBuilder.buildFrameIndex(Res, FI);
1795     return true;
1796   }
1797 
1798   // FIXME: support stack probing for Windows.
1799   if (MF->getTarget().getTargetTriple().isOSWindows())
1800     return false;
1801 
1802   // Now we're in the harder dynamic case.
1803   Type *Ty = AI.getAllocatedType();
1804   unsigned Align =
1805       std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment());
1806 
1807   Register NumElts = getOrCreateVReg(*AI.getArraySize());
1808 
1809   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
1810   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
1811   if (MRI->getType(NumElts) != IntPtrTy) {
1812     Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
1813     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
1814     NumElts = ExtElts;
1815   }
1816 
1817   Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
1818   Register TySize =
1819       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
1820   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
1821 
1822   unsigned StackAlign =
1823       MF->getSubtarget().getFrameLowering()->getStackAlignment();
1824   if (Align <= StackAlign)
1825     Align = 0;
1826 
1827   // Round the size of the allocation up to the stack alignment size
1828   // by add SA-1 to the size. This doesn't overflow because we're computing
1829   // an address inside an alloca.
1830   auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign - 1);
1831   auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
1832                                       MachineInstr::NoUWrap);
1833   auto AlignCst =
1834       MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign - 1));
1835   auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
1836 
1837   MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Align);
1838 
1839   MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI);
1840   assert(MF->getFrameInfo().hasVarSizedObjects());
1841   return true;
1842 }
1843 
1844 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
1845   // FIXME: We may need more info about the type. Because of how LLT works,
1846   // we're completely discarding the i64/double distinction here (amongst
1847   // others). Fortunately the ABIs I know of where that matters don't use va_arg
1848   // anyway but that's not guaranteed.
1849   MIRBuilder.buildInstr(TargetOpcode::G_VAARG)
1850     .addDef(getOrCreateVReg(U))
1851     .addUse(getOrCreateVReg(*U.getOperand(0)))
1852     .addImm(DL->getABITypeAlignment(U.getType()));
1853   return true;
1854 }
1855 
1856 bool IRTranslator::translateInsertElement(const User &U,
1857                                           MachineIRBuilder &MIRBuilder) {
1858   // If it is a <1 x Ty> vector, use the scalar as it is
1859   // not a legal vector type in LLT.
1860   if (U.getType()->getVectorNumElements() == 1) {
1861     Register Elt = getOrCreateVReg(*U.getOperand(1));
1862     auto &Regs = *VMap.getVRegs(U);
1863     if (Regs.empty()) {
1864       Regs.push_back(Elt);
1865       VMap.getOffsets(U)->push_back(0);
1866     } else {
1867       MIRBuilder.buildCopy(Regs[0], Elt);
1868     }
1869     return true;
1870   }
1871 
1872   Register Res = getOrCreateVReg(U);
1873   Register Val = getOrCreateVReg(*U.getOperand(0));
1874   Register Elt = getOrCreateVReg(*U.getOperand(1));
1875   Register Idx = getOrCreateVReg(*U.getOperand(2));
1876   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
1877   return true;
1878 }
1879 
1880 bool IRTranslator::translateExtractElement(const User &U,
1881                                            MachineIRBuilder &MIRBuilder) {
1882   // If it is a <1 x Ty> vector, use the scalar as it is
1883   // not a legal vector type in LLT.
1884   if (U.getOperand(0)->getType()->getVectorNumElements() == 1) {
1885     Register Elt = getOrCreateVReg(*U.getOperand(0));
1886     auto &Regs = *VMap.getVRegs(U);
1887     if (Regs.empty()) {
1888       Regs.push_back(Elt);
1889       VMap.getOffsets(U)->push_back(0);
1890     } else {
1891       MIRBuilder.buildCopy(Regs[0], Elt);
1892     }
1893     return true;
1894   }
1895   Register Res = getOrCreateVReg(U);
1896   Register Val = getOrCreateVReg(*U.getOperand(0));
1897   const auto &TLI = *MF->getSubtarget().getTargetLowering();
1898   unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
1899   Register Idx;
1900   if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
1901     if (CI->getBitWidth() != PreferredVecIdxWidth) {
1902       APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
1903       auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
1904       Idx = getOrCreateVReg(*NewIdxCI);
1905     }
1906   }
1907   if (!Idx)
1908     Idx = getOrCreateVReg(*U.getOperand(1));
1909   if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
1910     const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
1911     Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg();
1912   }
1913   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
1914   return true;
1915 }
1916 
1917 bool IRTranslator::translateShuffleVector(const User &U,
1918                                           MachineIRBuilder &MIRBuilder) {
1919   MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR)
1920       .addDef(getOrCreateVReg(U))
1921       .addUse(getOrCreateVReg(*U.getOperand(0)))
1922       .addUse(getOrCreateVReg(*U.getOperand(1)))
1923       .addShuffleMask(cast<Constant>(U.getOperand(2)));
1924   return true;
1925 }
1926 
1927 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
1928   const PHINode &PI = cast<PHINode>(U);
1929 
1930   SmallVector<MachineInstr *, 4> Insts;
1931   for (auto Reg : getOrCreateVRegs(PI)) {
1932     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
1933     Insts.push_back(MIB.getInstr());
1934   }
1935 
1936   PendingPHIs.emplace_back(&PI, std::move(Insts));
1937   return true;
1938 }
1939 
1940 bool IRTranslator::translateAtomicCmpXchg(const User &U,
1941                                           MachineIRBuilder &MIRBuilder) {
1942   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
1943 
1944   if (I.isWeak())
1945     return false;
1946 
1947   auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
1948                               : MachineMemOperand::MONone;
1949   Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1950 
1951   Type *ResType = I.getType();
1952   Type *ValType = ResType->Type::getStructElementType(0);
1953 
1954   auto Res = getOrCreateVRegs(I);
1955   Register OldValRes = Res[0];
1956   Register SuccessRes = Res[1];
1957   Register Addr = getOrCreateVReg(*I.getPointerOperand());
1958   Register Cmp = getOrCreateVReg(*I.getCompareOperand());
1959   Register NewVal = getOrCreateVReg(*I.getNewValOperand());
1960 
1961   MIRBuilder.buildAtomicCmpXchgWithSuccess(
1962       OldValRes, SuccessRes, Addr, Cmp, NewVal,
1963       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
1964                                 Flags, DL->getTypeStoreSize(ValType),
1965                                 getMemOpAlignment(I), AAMDNodes(), nullptr,
1966                                 I.getSyncScopeID(), I.getSuccessOrdering(),
1967                                 I.getFailureOrdering()));
1968   return true;
1969 }
1970 
1971 bool IRTranslator::translateAtomicRMW(const User &U,
1972                                       MachineIRBuilder &MIRBuilder) {
1973   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
1974 
1975   auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
1976                               : MachineMemOperand::MONone;
1977   Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1978 
1979   Type *ResType = I.getType();
1980 
1981   Register Res = getOrCreateVReg(I);
1982   Register Addr = getOrCreateVReg(*I.getPointerOperand());
1983   Register Val = getOrCreateVReg(*I.getValOperand());
1984 
1985   unsigned Opcode = 0;
1986   switch (I.getOperation()) {
1987   default:
1988     return false;
1989   case AtomicRMWInst::Xchg:
1990     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
1991     break;
1992   case AtomicRMWInst::Add:
1993     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
1994     break;
1995   case AtomicRMWInst::Sub:
1996     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
1997     break;
1998   case AtomicRMWInst::And:
1999     Opcode = TargetOpcode::G_ATOMICRMW_AND;
2000     break;
2001   case AtomicRMWInst::Nand:
2002     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
2003     break;
2004   case AtomicRMWInst::Or:
2005     Opcode = TargetOpcode::G_ATOMICRMW_OR;
2006     break;
2007   case AtomicRMWInst::Xor:
2008     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
2009     break;
2010   case AtomicRMWInst::Max:
2011     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
2012     break;
2013   case AtomicRMWInst::Min:
2014     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
2015     break;
2016   case AtomicRMWInst::UMax:
2017     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
2018     break;
2019   case AtomicRMWInst::UMin:
2020     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
2021     break;
2022   case AtomicRMWInst::FAdd:
2023     Opcode = TargetOpcode::G_ATOMICRMW_FADD;
2024     break;
2025   case AtomicRMWInst::FSub:
2026     Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
2027     break;
2028   }
2029 
2030   MIRBuilder.buildAtomicRMW(
2031       Opcode, Res, Addr, Val,
2032       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
2033                                 Flags, DL->getTypeStoreSize(ResType),
2034                                 getMemOpAlignment(I), AAMDNodes(), nullptr,
2035                                 I.getSyncScopeID(), I.getOrdering()));
2036   return true;
2037 }
2038 
2039 bool IRTranslator::translateFence(const User &U,
2040                                   MachineIRBuilder &MIRBuilder) {
2041   const FenceInst &Fence = cast<FenceInst>(U);
2042   MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
2043                         Fence.getSyncScopeID());
2044   return true;
2045 }
2046 
2047 void IRTranslator::finishPendingPhis() {
2048 #ifndef NDEBUG
2049   DILocationVerifier Verifier;
2050   GISelObserverWrapper WrapperObserver(&Verifier);
2051   RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2052 #endif // ifndef NDEBUG
2053   for (auto &Phi : PendingPHIs) {
2054     const PHINode *PI = Phi.first;
2055     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
2056     MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
2057     EntryBuilder->setDebugLoc(PI->getDebugLoc());
2058 #ifndef NDEBUG
2059     Verifier.setCurrentInst(PI);
2060 #endif // ifndef NDEBUG
2061 
2062     SmallSet<const MachineBasicBlock *, 16> SeenPreds;
2063     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
2064       auto IRPred = PI->getIncomingBlock(i);
2065       ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
2066       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
2067         if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
2068           continue;
2069         SeenPreds.insert(Pred);
2070         for (unsigned j = 0; j < ValRegs.size(); ++j) {
2071           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
2072           MIB.addUse(ValRegs[j]);
2073           MIB.addMBB(Pred);
2074         }
2075       }
2076     }
2077   }
2078 }
2079 
2080 bool IRTranslator::valueIsSplit(const Value &V,
2081                                 SmallVectorImpl<uint64_t> *Offsets) {
2082   SmallVector<LLT, 4> SplitTys;
2083   if (Offsets && !Offsets->empty())
2084     Offsets->clear();
2085   computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
2086   return SplitTys.size() > 1;
2087 }
2088 
2089 bool IRTranslator::translate(const Instruction &Inst) {
2090   CurBuilder->setDebugLoc(Inst.getDebugLoc());
2091   // We only emit constants into the entry block from here. To prevent jumpy
2092   // debug behaviour set the line to 0.
2093   if (const DebugLoc &DL = Inst.getDebugLoc())
2094     EntryBuilder->setDebugLoc(
2095         DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
2096   else
2097     EntryBuilder->setDebugLoc(DebugLoc());
2098 
2099   switch (Inst.getOpcode()) {
2100 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2101   case Instruction::OPCODE:                                                    \
2102     return translate##OPCODE(Inst, *CurBuilder.get());
2103 #include "llvm/IR/Instruction.def"
2104   default:
2105     return false;
2106   }
2107 }
2108 
2109 bool IRTranslator::translate(const Constant &C, Register Reg) {
2110   if (auto CI = dyn_cast<ConstantInt>(&C))
2111     EntryBuilder->buildConstant(Reg, *CI);
2112   else if (auto CF = dyn_cast<ConstantFP>(&C))
2113     EntryBuilder->buildFConstant(Reg, *CF);
2114   else if (isa<UndefValue>(C))
2115     EntryBuilder->buildUndef(Reg);
2116   else if (isa<ConstantPointerNull>(C)) {
2117     // As we are trying to build a constant val of 0 into a pointer,
2118     // insert a cast to make them correct with respect to types.
2119     unsigned NullSize = DL->getTypeSizeInBits(C.getType());
2120     auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize);
2121     auto *ZeroVal = ConstantInt::get(ZeroTy, 0);
2122     Register ZeroReg = getOrCreateVReg(*ZeroVal);
2123     EntryBuilder->buildCast(Reg, ZeroReg);
2124   } else if (auto GV = dyn_cast<GlobalValue>(&C))
2125     EntryBuilder->buildGlobalValue(Reg, GV);
2126   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
2127     if (!CAZ->getType()->isVectorTy())
2128       return false;
2129     // Return the scalar if it is a <1 x Ty> vector.
2130     if (CAZ->getNumElements() == 1)
2131       return translate(*CAZ->getElementValue(0u), Reg);
2132     SmallVector<Register, 4> Ops;
2133     for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
2134       Constant &Elt = *CAZ->getElementValue(i);
2135       Ops.push_back(getOrCreateVReg(Elt));
2136     }
2137     EntryBuilder->buildBuildVector(Reg, Ops);
2138   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
2139     // Return the scalar if it is a <1 x Ty> vector.
2140     if (CV->getNumElements() == 1)
2141       return translate(*CV->getElementAsConstant(0), Reg);
2142     SmallVector<Register, 4> Ops;
2143     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
2144       Constant &Elt = *CV->getElementAsConstant(i);
2145       Ops.push_back(getOrCreateVReg(Elt));
2146     }
2147     EntryBuilder->buildBuildVector(Reg, Ops);
2148   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
2149     switch(CE->getOpcode()) {
2150 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2151   case Instruction::OPCODE:                                                    \
2152     return translate##OPCODE(*CE, *EntryBuilder.get());
2153 #include "llvm/IR/Instruction.def"
2154     default:
2155       return false;
2156     }
2157   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
2158     if (CV->getNumOperands() == 1)
2159       return translate(*CV->getOperand(0), Reg);
2160     SmallVector<Register, 4> Ops;
2161     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
2162       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
2163     }
2164     EntryBuilder->buildBuildVector(Reg, Ops);
2165   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
2166     EntryBuilder->buildBlockAddress(Reg, BA);
2167   } else
2168     return false;
2169 
2170   return true;
2171 }
2172 
2173 void IRTranslator::finalizeBasicBlock() {
2174   for (auto &JTCase : SL->JTCases) {
2175     // Emit header first, if it wasn't already emitted.
2176     if (!JTCase.first.Emitted)
2177       emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
2178 
2179     emitJumpTable(JTCase.second, JTCase.second.MBB);
2180   }
2181   SL->JTCases.clear();
2182 }
2183 
2184 void IRTranslator::finalizeFunction() {
2185   // Release the memory used by the different maps we
2186   // needed during the translation.
2187   PendingPHIs.clear();
2188   VMap.reset();
2189   FrameIndices.clear();
2190   MachinePreds.clear();
2191   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
2192   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
2193   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
2194   EntryBuilder.reset();
2195   CurBuilder.reset();
2196   FuncInfo.clear();
2197 }
2198 
2199 /// Returns true if a BasicBlock \p BB within a variadic function contains a
2200 /// variadic musttail call.
2201 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
2202   if (!IsVarArg)
2203     return false;
2204 
2205   // Walk the block backwards, because tail calls usually only appear at the end
2206   // of a block.
2207   return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
2208     const auto *CI = dyn_cast<CallInst>(&I);
2209     return CI && CI->isMustTailCall();
2210   });
2211 }
2212 
2213 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
2214   MF = &CurMF;
2215   const Function &F = MF->getFunction();
2216   if (F.empty())
2217     return false;
2218   GISelCSEAnalysisWrapper &Wrapper =
2219       getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
2220   // Set the CSEConfig and run the analysis.
2221   GISelCSEInfo *CSEInfo = nullptr;
2222   TPC = &getAnalysis<TargetPassConfig>();
2223   bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
2224                        ? EnableCSEInIRTranslator
2225                        : TPC->isGISelCSEEnabled();
2226 
2227   if (EnableCSE) {
2228     EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
2229     CSEInfo = &Wrapper.get(TPC->getCSEConfig());
2230     EntryBuilder->setCSEInfo(CSEInfo);
2231     CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
2232     CurBuilder->setCSEInfo(CSEInfo);
2233   } else {
2234     EntryBuilder = std::make_unique<MachineIRBuilder>();
2235     CurBuilder = std::make_unique<MachineIRBuilder>();
2236   }
2237   CLI = MF->getSubtarget().getCallLowering();
2238   CurBuilder->setMF(*MF);
2239   EntryBuilder->setMF(*MF);
2240   MRI = &MF->getRegInfo();
2241   DL = &F.getParent()->getDataLayout();
2242   ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
2243   FuncInfo.MF = MF;
2244   FuncInfo.BPI = nullptr;
2245   const auto &TLI = *MF->getSubtarget().getTargetLowering();
2246   const TargetMachine &TM = MF->getTarget();
2247   SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
2248   SL->init(TLI, TM, *DL);
2249 
2250   EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F);
2251 
2252   assert(PendingPHIs.empty() && "stale PHIs");
2253 
2254   if (!DL->isLittleEndian()) {
2255     // Currently we don't properly handle big endian code.
2256     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2257                                F.getSubprogram(), &F.getEntryBlock());
2258     R << "unable to translate in big endian mode";
2259     reportTranslationError(*MF, *TPC, *ORE, R);
2260   }
2261 
2262   // Release the per-function state when we return, whether we succeeded or not.
2263   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
2264 
2265   // Setup a separate basic-block for the arguments and constants
2266   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
2267   MF->push_back(EntryBB);
2268   EntryBuilder->setMBB(*EntryBB);
2269 
2270   DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
2271   SwiftError.setFunction(CurMF);
2272   SwiftError.createEntriesInEntryBlock(DbgLoc);
2273 
2274   bool IsVarArg = F.isVarArg();
2275   bool HasMustTailInVarArgFn = false;
2276 
2277   // Create all blocks, in IR order, to preserve the layout.
2278   for (const BasicBlock &BB: F) {
2279     auto *&MBB = BBToMBB[&BB];
2280 
2281     MBB = MF->CreateMachineBasicBlock(&BB);
2282     MF->push_back(MBB);
2283 
2284     if (BB.hasAddressTaken())
2285       MBB->setHasAddressTaken();
2286 
2287     if (!HasMustTailInVarArgFn)
2288       HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
2289   }
2290 
2291   MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
2292 
2293   // Make our arguments/constants entry block fallthrough to the IR entry block.
2294   EntryBB->addSuccessor(&getMBB(F.front()));
2295 
2296   // Lower the actual args into this basic block.
2297   SmallVector<ArrayRef<Register>, 8> VRegArgs;
2298   for (const Argument &Arg: F.args()) {
2299     if (DL->getTypeStoreSize(Arg.getType()) == 0)
2300       continue; // Don't handle zero sized types.
2301     ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
2302     VRegArgs.push_back(VRegs);
2303 
2304     if (Arg.hasSwiftErrorAttr()) {
2305       assert(VRegs.size() == 1 && "Too many vregs for Swift error");
2306       SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
2307     }
2308   }
2309 
2310   if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) {
2311     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2312                                F.getSubprogram(), &F.getEntryBlock());
2313     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
2314     reportTranslationError(*MF, *TPC, *ORE, R);
2315     return false;
2316   }
2317 
2318   // Need to visit defs before uses when translating instructions.
2319   GISelObserverWrapper WrapperObserver;
2320   if (EnableCSE && CSEInfo)
2321     WrapperObserver.addObserver(CSEInfo);
2322   {
2323     ReversePostOrderTraversal<const Function *> RPOT(&F);
2324 #ifndef NDEBUG
2325     DILocationVerifier Verifier;
2326     WrapperObserver.addObserver(&Verifier);
2327 #endif // ifndef NDEBUG
2328     RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2329     for (const BasicBlock *BB : RPOT) {
2330       MachineBasicBlock &MBB = getMBB(*BB);
2331       // Set the insertion point of all the following translations to
2332       // the end of this basic block.
2333       CurBuilder->setMBB(MBB);
2334       HasTailCall = false;
2335       for (const Instruction &Inst : *BB) {
2336         // If we translated a tail call in the last step, then we know
2337         // everything after the call is either a return, or something that is
2338         // handled by the call itself. (E.g. a lifetime marker or assume
2339         // intrinsic.) In this case, we should stop translating the block and
2340         // move on.
2341         if (HasTailCall)
2342           break;
2343 #ifndef NDEBUG
2344         Verifier.setCurrentInst(&Inst);
2345 #endif // ifndef NDEBUG
2346         if (translate(Inst))
2347           continue;
2348 
2349         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2350                                    Inst.getDebugLoc(), BB);
2351         R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
2352 
2353         if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
2354           std::string InstStrStorage;
2355           raw_string_ostream InstStr(InstStrStorage);
2356           InstStr << Inst;
2357 
2358           R << ": '" << InstStr.str() << "'";
2359         }
2360 
2361         reportTranslationError(*MF, *TPC, *ORE, R);
2362         return false;
2363       }
2364 
2365       finalizeBasicBlock();
2366     }
2367 #ifndef NDEBUG
2368     WrapperObserver.removeObserver(&Verifier);
2369 #endif
2370   }
2371 
2372   finishPendingPhis();
2373 
2374   SwiftError.propagateVRegs();
2375 
2376   // Merge the argument lowering and constants block with its single
2377   // successor, the LLVM-IR entry block.  We want the basic block to
2378   // be maximal.
2379   assert(EntryBB->succ_size() == 1 &&
2380          "Custom BB used for lowering should have only one successor");
2381   // Get the successor of the current entry block.
2382   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
2383   assert(NewEntryBB.pred_size() == 1 &&
2384          "LLVM-IR entry block has a predecessor!?");
2385   // Move all the instruction from the current entry block to the
2386   // new entry block.
2387   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
2388                     EntryBB->end());
2389 
2390   // Update the live-in information for the new entry block.
2391   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
2392     NewEntryBB.addLiveIn(LiveIn);
2393   NewEntryBB.sortUniqueLiveIns();
2394 
2395   // Get rid of the now empty basic block.
2396   EntryBB->removeSuccessor(&NewEntryBB);
2397   MF->remove(EntryBB);
2398   MF->DeleteMachineBasicBlock(EntryBB);
2399 
2400   assert(&MF->front() == &NewEntryBB &&
2401          "New entry wasn't next in the list of basic block!");
2402 
2403   // Initialize stack protector information.
2404   StackProtector &SP = getAnalysis<StackProtector>();
2405   SP.copyToMachineFrameInfo(MF->getFrameInfo());
2406 
2407   return false;
2408 }
2409