1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/CodeGen/GlobalISel/Combiner.h" 10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 12 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 13 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 14 #include "llvm/CodeGen/GlobalISel/Utils.h" 15 #include "llvm/CodeGen/MachineDominators.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineInstr.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/TargetInstrInfo.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/Support/MathExtras.h" 22 #include "llvm/Target/TargetMachine.h" 23 24 #define DEBUG_TYPE "gi-combiner" 25 26 using namespace llvm; 27 using namespace MIPatternMatch; 28 29 // Option to allow testing of the combiner while no targets know about indexed 30 // addressing. 31 static cl::opt<bool> 32 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 33 cl::desc("Force all indexed operations to be " 34 "legal for the GlobalISel combiner")); 35 36 37 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 38 MachineIRBuilder &B, GISelKnownBits *KB, 39 MachineDominatorTree *MDT) 40 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 41 KB(KB), MDT(MDT) { 42 (void)this->KB; 43 } 44 45 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 46 Register ToReg) const { 47 Observer.changingAllUsesOfReg(MRI, FromReg); 48 49 if (MRI.constrainRegAttrs(ToReg, FromReg)) 50 MRI.replaceRegWith(FromReg, ToReg); 51 else 52 Builder.buildCopy(ToReg, FromReg); 53 54 Observer.finishedChangingAllUsesOfReg(); 55 } 56 57 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 58 MachineOperand &FromRegOp, 59 Register ToReg) const { 60 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 61 Observer.changingInstr(*FromRegOp.getParent()); 62 63 FromRegOp.setReg(ToReg); 64 65 Observer.changedInstr(*FromRegOp.getParent()); 66 } 67 68 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 69 if (matchCombineCopy(MI)) { 70 applyCombineCopy(MI); 71 return true; 72 } 73 return false; 74 } 75 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 76 if (MI.getOpcode() != TargetOpcode::COPY) 77 return false; 78 Register DstReg = MI.getOperand(0).getReg(); 79 Register SrcReg = MI.getOperand(1).getReg(); 80 return canReplaceReg(DstReg, SrcReg, MRI); 81 } 82 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 83 Register DstReg = MI.getOperand(0).getReg(); 84 Register SrcReg = MI.getOperand(1).getReg(); 85 MI.eraseFromParent(); 86 replaceRegWith(MRI, DstReg, SrcReg); 87 } 88 89 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 90 bool IsUndef = false; 91 SmallVector<Register, 4> Ops; 92 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 93 applyCombineConcatVectors(MI, IsUndef, Ops); 94 return true; 95 } 96 return false; 97 } 98 99 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 100 SmallVectorImpl<Register> &Ops) { 101 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 102 "Invalid instruction"); 103 IsUndef = true; 104 MachineInstr *Undef = nullptr; 105 106 // Walk over all the operands of concat vectors and check if they are 107 // build_vector themselves or undef. 108 // Then collect their operands in Ops. 109 for (const MachineOperand &MO : MI.uses()) { 110 Register Reg = MO.getReg(); 111 MachineInstr *Def = MRI.getVRegDef(Reg); 112 assert(Def && "Operand not defined"); 113 switch (Def->getOpcode()) { 114 case TargetOpcode::G_BUILD_VECTOR: 115 IsUndef = false; 116 // Remember the operands of the build_vector to fold 117 // them into the yet-to-build flattened concat vectors. 118 for (const MachineOperand &BuildVecMO : Def->uses()) 119 Ops.push_back(BuildVecMO.getReg()); 120 break; 121 case TargetOpcode::G_IMPLICIT_DEF: { 122 LLT OpType = MRI.getType(Reg); 123 // Keep one undef value for all the undef operands. 124 if (!Undef) { 125 Builder.setInsertPt(*MI.getParent(), MI); 126 Undef = Builder.buildUndef(OpType.getScalarType()); 127 } 128 assert(MRI.getType(Undef->getOperand(0).getReg()) == 129 OpType.getScalarType() && 130 "All undefs should have the same type"); 131 // Break the undef vector in as many scalar elements as needed 132 // for the flattening. 133 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 134 EltIdx != EltEnd; ++EltIdx) 135 Ops.push_back(Undef->getOperand(0).getReg()); 136 break; 137 } 138 default: 139 return false; 140 } 141 } 142 return true; 143 } 144 void CombinerHelper::applyCombineConcatVectors( 145 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 146 // We determined that the concat_vectors can be flatten. 147 // Generate the flattened build_vector. 148 Register DstReg = MI.getOperand(0).getReg(); 149 Builder.setInsertPt(*MI.getParent(), MI); 150 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 151 152 // Note: IsUndef is sort of redundant. We could have determine it by 153 // checking that at all Ops are undef. Alternatively, we could have 154 // generate a build_vector of undefs and rely on another combine to 155 // clean that up. For now, given we already gather this information 156 // in tryCombineConcatVectors, just save compile time and issue the 157 // right thing. 158 if (IsUndef) 159 Builder.buildUndef(NewDstReg); 160 else 161 Builder.buildBuildVector(NewDstReg, Ops); 162 MI.eraseFromParent(); 163 replaceRegWith(MRI, DstReg, NewDstReg); 164 } 165 166 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 167 SmallVector<Register, 4> Ops; 168 if (matchCombineShuffleVector(MI, Ops)) { 169 applyCombineShuffleVector(MI, Ops); 170 return true; 171 } 172 return false; 173 } 174 175 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 176 SmallVectorImpl<Register> &Ops) { 177 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 178 "Invalid instruction kind"); 179 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 180 Register Src1 = MI.getOperand(1).getReg(); 181 LLT SrcType = MRI.getType(Src1); 182 // As bizarre as it may look, shuffle vector can actually produce 183 // scalar! This is because at the IR level a <1 x ty> shuffle 184 // vector is perfectly valid. 185 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 186 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 187 188 // If the resulting vector is smaller than the size of the source 189 // vectors being concatenated, we won't be able to replace the 190 // shuffle vector into a concat_vectors. 191 // 192 // Note: We may still be able to produce a concat_vectors fed by 193 // extract_vector_elt and so on. It is less clear that would 194 // be better though, so don't bother for now. 195 // 196 // If the destination is a scalar, the size of the sources doesn't 197 // matter. we will lower the shuffle to a plain copy. This will 198 // work only if the source and destination have the same size. But 199 // that's covered by the next condition. 200 // 201 // TODO: If the size between the source and destination don't match 202 // we could still emit an extract vector element in that case. 203 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 204 return false; 205 206 // Check that the shuffle mask can be broken evenly between the 207 // different sources. 208 if (DstNumElts % SrcNumElts != 0) 209 return false; 210 211 // Mask length is a multiple of the source vector length. 212 // Check if the shuffle is some kind of concatenation of the input 213 // vectors. 214 unsigned NumConcat = DstNumElts / SrcNumElts; 215 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 216 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 217 for (unsigned i = 0; i != DstNumElts; ++i) { 218 int Idx = Mask[i]; 219 // Undef value. 220 if (Idx < 0) 221 continue; 222 // Ensure the indices in each SrcType sized piece are sequential and that 223 // the same source is used for the whole piece. 224 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 225 (ConcatSrcs[i / SrcNumElts] >= 0 && 226 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 227 return false; 228 // Remember which source this index came from. 229 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 230 } 231 232 // The shuffle is concatenating multiple vectors together. 233 // Collect the different operands for that. 234 Register UndefReg; 235 Register Src2 = MI.getOperand(2).getReg(); 236 for (auto Src : ConcatSrcs) { 237 if (Src < 0) { 238 if (!UndefReg) { 239 Builder.setInsertPt(*MI.getParent(), MI); 240 UndefReg = Builder.buildUndef(SrcType).getReg(0); 241 } 242 Ops.push_back(UndefReg); 243 } else if (Src == 0) 244 Ops.push_back(Src1); 245 else 246 Ops.push_back(Src2); 247 } 248 return true; 249 } 250 251 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 252 const ArrayRef<Register> Ops) { 253 Register DstReg = MI.getOperand(0).getReg(); 254 Builder.setInsertPt(*MI.getParent(), MI); 255 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 256 257 if (Ops.size() == 1) 258 Builder.buildCopy(NewDstReg, Ops[0]); 259 else 260 Builder.buildMerge(NewDstReg, Ops); 261 262 MI.eraseFromParent(); 263 replaceRegWith(MRI, DstReg, NewDstReg); 264 } 265 266 namespace { 267 268 /// Select a preference between two uses. CurrentUse is the current preference 269 /// while *ForCandidate is attributes of the candidate under consideration. 270 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 271 const LLT TyForCandidate, 272 unsigned OpcodeForCandidate, 273 MachineInstr *MIForCandidate) { 274 if (!CurrentUse.Ty.isValid()) { 275 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 276 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 277 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 278 return CurrentUse; 279 } 280 281 // We permit the extend to hoist through basic blocks but this is only 282 // sensible if the target has extending loads. If you end up lowering back 283 // into a load and extend during the legalizer then the end result is 284 // hoisting the extend up to the load. 285 286 // Prefer defined extensions to undefined extensions as these are more 287 // likely to reduce the number of instructions. 288 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 289 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 290 return CurrentUse; 291 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 292 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 293 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 294 295 // Prefer sign extensions to zero extensions as sign-extensions tend to be 296 // more expensive. 297 if (CurrentUse.Ty == TyForCandidate) { 298 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 299 OpcodeForCandidate == TargetOpcode::G_ZEXT) 300 return CurrentUse; 301 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 302 OpcodeForCandidate == TargetOpcode::G_SEXT) 303 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 304 } 305 306 // This is potentially target specific. We've chosen the largest type 307 // because G_TRUNC is usually free. One potential catch with this is that 308 // some targets have a reduced number of larger registers than smaller 309 // registers and this choice potentially increases the live-range for the 310 // larger value. 311 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 312 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 313 } 314 return CurrentUse; 315 } 316 317 /// Find a suitable place to insert some instructions and insert them. This 318 /// function accounts for special cases like inserting before a PHI node. 319 /// The current strategy for inserting before PHI's is to duplicate the 320 /// instructions for each predecessor. However, while that's ok for G_TRUNC 321 /// on most targets since it generally requires no code, other targets/cases may 322 /// want to try harder to find a dominating block. 323 static void InsertInsnsWithoutSideEffectsBeforeUse( 324 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 325 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 326 MachineOperand &UseMO)> 327 Inserter) { 328 MachineInstr &UseMI = *UseMO.getParent(); 329 330 MachineBasicBlock *InsertBB = UseMI.getParent(); 331 332 // If the use is a PHI then we want the predecessor block instead. 333 if (UseMI.isPHI()) { 334 MachineOperand *PredBB = std::next(&UseMO); 335 InsertBB = PredBB->getMBB(); 336 } 337 338 // If the block is the same block as the def then we want to insert just after 339 // the def instead of at the start of the block. 340 if (InsertBB == DefMI.getParent()) { 341 MachineBasicBlock::iterator InsertPt = &DefMI; 342 Inserter(InsertBB, std::next(InsertPt), UseMO); 343 return; 344 } 345 346 // Otherwise we want the start of the BB 347 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 348 } 349 } // end anonymous namespace 350 351 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 352 PreferredTuple Preferred; 353 if (matchCombineExtendingLoads(MI, Preferred)) { 354 applyCombineExtendingLoads(MI, Preferred); 355 return true; 356 } 357 return false; 358 } 359 360 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 361 PreferredTuple &Preferred) { 362 // We match the loads and follow the uses to the extend instead of matching 363 // the extends and following the def to the load. This is because the load 364 // must remain in the same position for correctness (unless we also add code 365 // to find a safe place to sink it) whereas the extend is freely movable. 366 // It also prevents us from duplicating the load for the volatile case or just 367 // for performance. 368 369 if (MI.getOpcode() != TargetOpcode::G_LOAD && 370 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 371 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 372 return false; 373 374 auto &LoadValue = MI.getOperand(0); 375 assert(LoadValue.isReg() && "Result wasn't a register?"); 376 377 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 378 if (!LoadValueTy.isScalar()) 379 return false; 380 381 // Most architectures are going to legalize <s8 loads into at least a 1 byte 382 // load, and the MMOs can only describe memory accesses in multiples of bytes. 383 // If we try to perform extload combining on those, we can end up with 384 // %a(s8) = extload %ptr (load 1 byte from %ptr) 385 // ... which is an illegal extload instruction. 386 if (LoadValueTy.getSizeInBits() < 8) 387 return false; 388 389 // For non power-of-2 types, they will very likely be legalized into multiple 390 // loads. Don't bother trying to match them into extending loads. 391 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 392 return false; 393 394 // Find the preferred type aside from the any-extends (unless it's the only 395 // one) and non-extending ops. We'll emit an extending load to that type and 396 // and emit a variant of (extend (trunc X)) for the others according to the 397 // relative type sizes. At the same time, pick an extend to use based on the 398 // extend involved in the chosen type. 399 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 400 ? TargetOpcode::G_ANYEXT 401 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 402 ? TargetOpcode::G_SEXT 403 : TargetOpcode::G_ZEXT; 404 Preferred = {LLT(), PreferredOpcode, nullptr}; 405 for (auto &UseMI : MRI.use_instructions(LoadValue.getReg())) { 406 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 407 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 408 UseMI.getOpcode() == TargetOpcode::G_ANYEXT) { 409 Preferred = ChoosePreferredUse(Preferred, 410 MRI.getType(UseMI.getOperand(0).getReg()), 411 UseMI.getOpcode(), &UseMI); 412 } 413 } 414 415 // There were no extends 416 if (!Preferred.MI) 417 return false; 418 // It should be impossible to chose an extend without selecting a different 419 // type since by definition the result of an extend is larger. 420 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 421 422 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 423 return true; 424 } 425 426 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 427 PreferredTuple &Preferred) { 428 // Rewrite the load to the chosen extending load. 429 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 430 431 // Inserter to insert a truncate back to the original type at a given point 432 // with some basic CSE to limit truncate duplication to one per BB. 433 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 434 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 435 MachineBasicBlock::iterator InsertBefore, 436 MachineOperand &UseMO) { 437 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 438 if (PreviouslyEmitted) { 439 Observer.changingInstr(*UseMO.getParent()); 440 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 441 Observer.changedInstr(*UseMO.getParent()); 442 return; 443 } 444 445 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 446 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 447 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 448 EmittedInsns[InsertIntoBB] = NewMI; 449 replaceRegOpWith(MRI, UseMO, NewDstReg); 450 }; 451 452 Observer.changingInstr(MI); 453 MI.setDesc( 454 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 455 ? TargetOpcode::G_SEXTLOAD 456 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 457 ? TargetOpcode::G_ZEXTLOAD 458 : TargetOpcode::G_LOAD)); 459 460 // Rewrite all the uses to fix up the types. 461 auto &LoadValue = MI.getOperand(0); 462 SmallVector<MachineOperand *, 4> Uses; 463 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 464 Uses.push_back(&UseMO); 465 466 for (auto *UseMO : Uses) { 467 MachineInstr *UseMI = UseMO->getParent(); 468 469 // If the extend is compatible with the preferred extend then we should fix 470 // up the type and extend so that it uses the preferred use. 471 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 472 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 473 Register UseDstReg = UseMI->getOperand(0).getReg(); 474 MachineOperand &UseSrcMO = UseMI->getOperand(1); 475 const LLT UseDstTy = MRI.getType(UseDstReg); 476 if (UseDstReg != ChosenDstReg) { 477 if (Preferred.Ty == UseDstTy) { 478 // If the use has the same type as the preferred use, then merge 479 // the vregs and erase the extend. For example: 480 // %1:_(s8) = G_LOAD ... 481 // %2:_(s32) = G_SEXT %1(s8) 482 // %3:_(s32) = G_ANYEXT %1(s8) 483 // ... = ... %3(s32) 484 // rewrites to: 485 // %2:_(s32) = G_SEXTLOAD ... 486 // ... = ... %2(s32) 487 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 488 Observer.erasingInstr(*UseMO->getParent()); 489 UseMO->getParent()->eraseFromParent(); 490 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 491 // If the preferred size is smaller, then keep the extend but extend 492 // from the result of the extending load. For example: 493 // %1:_(s8) = G_LOAD ... 494 // %2:_(s32) = G_SEXT %1(s8) 495 // %3:_(s64) = G_ANYEXT %1(s8) 496 // ... = ... %3(s64) 497 /// rewrites to: 498 // %2:_(s32) = G_SEXTLOAD ... 499 // %3:_(s64) = G_ANYEXT %2:_(s32) 500 // ... = ... %3(s64) 501 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 502 } else { 503 // If the preferred size is large, then insert a truncate. For 504 // example: 505 // %1:_(s8) = G_LOAD ... 506 // %2:_(s64) = G_SEXT %1(s8) 507 // %3:_(s32) = G_ZEXT %1(s8) 508 // ... = ... %3(s32) 509 /// rewrites to: 510 // %2:_(s64) = G_SEXTLOAD ... 511 // %4:_(s8) = G_TRUNC %2:_(s32) 512 // %3:_(s64) = G_ZEXT %2:_(s8) 513 // ... = ... %3(s64) 514 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 515 InsertTruncAt); 516 } 517 continue; 518 } 519 // The use is (one of) the uses of the preferred use we chose earlier. 520 // We're going to update the load to def this value later so just erase 521 // the old extend. 522 Observer.erasingInstr(*UseMO->getParent()); 523 UseMO->getParent()->eraseFromParent(); 524 continue; 525 } 526 527 // The use isn't an extend. Truncate back to the type we originally loaded. 528 // This is free on many targets. 529 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 530 } 531 532 MI.getOperand(0).setReg(ChosenDstReg); 533 Observer.changedInstr(MI); 534 } 535 536 bool CombinerHelper::isPredecessor(MachineInstr &DefMI, MachineInstr &UseMI) { 537 assert(DefMI.getParent() == UseMI.getParent()); 538 if (&DefMI == &UseMI) 539 return false; 540 541 // Loop through the basic block until we find one of the instructions. 542 MachineBasicBlock::const_iterator I = DefMI.getParent()->begin(); 543 for (; &*I != &DefMI && &*I != &UseMI; ++I) 544 return &*I == &DefMI; 545 546 llvm_unreachable("Block must contain instructions"); 547 } 548 549 bool CombinerHelper::dominates(MachineInstr &DefMI, MachineInstr &UseMI) { 550 if (MDT) 551 return MDT->dominates(&DefMI, &UseMI); 552 else if (DefMI.getParent() != UseMI.getParent()) 553 return false; 554 555 return isPredecessor(DefMI, UseMI); 556 } 557 558 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 559 Register &Base, Register &Offset) { 560 auto &MF = *MI.getParent()->getParent(); 561 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 562 563 #ifndef NDEBUG 564 unsigned Opcode = MI.getOpcode(); 565 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 566 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 567 #endif 568 569 Base = MI.getOperand(1).getReg(); 570 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 571 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 572 return false; 573 574 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 575 576 for (auto &Use : MRI.use_instructions(Base)) { 577 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 578 continue; 579 580 Offset = Use.getOperand(2).getReg(); 581 if (!ForceLegalIndexing && 582 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 583 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 584 << Use); 585 continue; 586 } 587 588 // Make sure the offset calculation is before the potentially indexed op. 589 // FIXME: we really care about dependency here. The offset calculation might 590 // be movable. 591 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 592 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 593 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 594 << Use); 595 continue; 596 } 597 598 // FIXME: check whether all uses of Base are load/store with foldable 599 // addressing modes. If so, using the normal addr-modes is better than 600 // forming an indexed one. 601 602 bool MemOpDominatesAddrUses = true; 603 for (auto &PtrAddUse : MRI.use_instructions(Use.getOperand(0).getReg())) { 604 if (!dominates(MI, PtrAddUse)) { 605 MemOpDominatesAddrUses = false; 606 break; 607 } 608 } 609 610 if (!MemOpDominatesAddrUses) { 611 LLVM_DEBUG( 612 dbgs() << " Ignoring candidate as memop does not dominate uses: " 613 << Use); 614 continue; 615 } 616 617 LLVM_DEBUG(dbgs() << " Found match: " << Use); 618 Addr = Use.getOperand(0).getReg(); 619 return true; 620 } 621 622 return false; 623 } 624 625 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 626 Register &Base, Register &Offset) { 627 auto &MF = *MI.getParent()->getParent(); 628 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 629 630 #ifndef NDEBUG 631 unsigned Opcode = MI.getOpcode(); 632 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 633 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 634 #endif 635 636 Addr = MI.getOperand(1).getReg(); 637 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 638 if (!AddrDef || MRI.hasOneUse(Addr)) 639 return false; 640 641 Base = AddrDef->getOperand(1).getReg(); 642 Offset = AddrDef->getOperand(2).getReg(); 643 644 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 645 646 if (!ForceLegalIndexing && 647 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 648 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 649 return false; 650 } 651 652 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 653 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 654 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 655 return false; 656 } 657 658 if (MI.getOpcode() == TargetOpcode::G_STORE) { 659 // Would require a copy. 660 if (Base == MI.getOperand(0).getReg()) { 661 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 662 return false; 663 } 664 665 // We're expecting one use of Addr in MI, but it could also be the 666 // value stored, which isn't actually dominated by the instruction. 667 if (MI.getOperand(0).getReg() == Addr) { 668 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 669 return false; 670 } 671 } 672 673 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 674 // That might allow us to end base's liveness here by adjusting the constant. 675 676 for (auto &UseMI : MRI.use_instructions(Addr)) { 677 if (!dominates(MI, UseMI)) { 678 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 679 return false; 680 } 681 } 682 683 return true; 684 } 685 686 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 687 IndexedLoadStoreMatchInfo MatchInfo; 688 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 689 applyCombineIndexedLoadStore(MI, MatchInfo); 690 return true; 691 } 692 return false; 693 } 694 695 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 696 unsigned Opcode = MI.getOpcode(); 697 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 698 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 699 return false; 700 701 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 702 MatchInfo.Offset); 703 if (!MatchInfo.IsPre && 704 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 705 MatchInfo.Offset)) 706 return false; 707 708 return true; 709 } 710 711 void CombinerHelper::applyCombineIndexedLoadStore( 712 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 713 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 714 MachineIRBuilder MIRBuilder(MI); 715 unsigned Opcode = MI.getOpcode(); 716 bool IsStore = Opcode == TargetOpcode::G_STORE; 717 unsigned NewOpcode; 718 switch (Opcode) { 719 case TargetOpcode::G_LOAD: 720 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 721 break; 722 case TargetOpcode::G_SEXTLOAD: 723 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 724 break; 725 case TargetOpcode::G_ZEXTLOAD: 726 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 727 break; 728 case TargetOpcode::G_STORE: 729 NewOpcode = TargetOpcode::G_INDEXED_STORE; 730 break; 731 default: 732 llvm_unreachable("Unknown load/store opcode"); 733 } 734 735 auto MIB = MIRBuilder.buildInstr(NewOpcode); 736 if (IsStore) { 737 MIB.addDef(MatchInfo.Addr); 738 MIB.addUse(MI.getOperand(0).getReg()); 739 } else { 740 MIB.addDef(MI.getOperand(0).getReg()); 741 MIB.addDef(MatchInfo.Addr); 742 } 743 744 MIB.addUse(MatchInfo.Base); 745 MIB.addUse(MatchInfo.Offset); 746 MIB.addImm(MatchInfo.IsPre); 747 MI.eraseFromParent(); 748 AddrDef.eraseFromParent(); 749 750 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 751 } 752 753 bool CombinerHelper::matchElideBrByInvertingCond(MachineInstr &MI) { 754 if (MI.getOpcode() != TargetOpcode::G_BR) 755 return false; 756 757 // Try to match the following: 758 // bb1: 759 // %c(s32) = G_ICMP pred, %a, %b 760 // %c1(s1) = G_TRUNC %c(s32) 761 // G_BRCOND %c1, %bb2 762 // G_BR %bb3 763 // bb2: 764 // ... 765 // bb3: 766 767 // The above pattern does not have a fall through to the successor bb2, always 768 // resulting in a branch no matter which path is taken. Here we try to find 769 // and replace that pattern with conditional branch to bb3 and otherwise 770 // fallthrough to bb2. 771 772 MachineBasicBlock *MBB = MI.getParent(); 773 MachineBasicBlock::iterator BrIt(MI); 774 if (BrIt == MBB->begin()) 775 return false; 776 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 777 778 MachineInstr *BrCond = &*std::prev(BrIt); 779 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 780 return false; 781 782 // Check that the next block is the conditional branch target. 783 if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB())) 784 return false; 785 786 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 787 if (!CmpMI || CmpMI->getOpcode() != TargetOpcode::G_ICMP || 788 !MRI.hasOneUse(CmpMI->getOperand(0).getReg())) 789 return false; 790 return true; 791 } 792 793 bool CombinerHelper::tryElideBrByInvertingCond(MachineInstr &MI) { 794 if (!matchElideBrByInvertingCond(MI)) 795 return false; 796 applyElideBrByInvertingCond(MI); 797 return true; 798 } 799 800 void CombinerHelper::applyElideBrByInvertingCond(MachineInstr &MI) { 801 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 802 MachineBasicBlock::iterator BrIt(MI); 803 MachineInstr *BrCond = &*std::prev(BrIt); 804 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 805 806 CmpInst::Predicate InversePred = CmpInst::getInversePredicate( 807 (CmpInst::Predicate)CmpMI->getOperand(1).getPredicate()); 808 809 // Invert the G_ICMP condition. 810 Observer.changingInstr(*CmpMI); 811 CmpMI->getOperand(1).setPredicate(InversePred); 812 Observer.changedInstr(*CmpMI); 813 814 // Change the conditional branch target. 815 Observer.changingInstr(*BrCond); 816 BrCond->getOperand(1).setMBB(BrTarget); 817 Observer.changedInstr(*BrCond); 818 MI.eraseFromParent(); 819 } 820 821 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 822 // On Darwin, -Os means optimize for size without hurting performance, so 823 // only really optimize for size when -Oz (MinSize) is used. 824 if (MF.getTarget().getTargetTriple().isOSDarwin()) 825 return MF.getFunction().hasMinSize(); 826 return MF.getFunction().hasOptSize(); 827 } 828 829 // Returns a list of types to use for memory op lowering in MemOps. A partial 830 // port of findOptimalMemOpLowering in TargetLowering. 831 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 832 unsigned Limit, const MemOp &Op, 833 unsigned DstAS, unsigned SrcAS, 834 const AttributeList &FuncAttributes, 835 const TargetLowering &TLI) { 836 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 837 return false; 838 839 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 840 841 if (Ty == LLT()) { 842 // Use the largest scalar type whose alignment constraints are satisfied. 843 // We only need to check DstAlign here as SrcAlign is always greater or 844 // equal to DstAlign (or zero). 845 Ty = LLT::scalar(64); 846 if (Op.isFixedDstAlign()) 847 while (Op.getDstAlign() < Ty.getSizeInBytes() && 848 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, 849 Op.getDstAlign().value())) 850 Ty = LLT::scalar(Ty.getSizeInBytes()); 851 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 852 // FIXME: check for the largest legal type we can load/store to. 853 } 854 855 unsigned NumMemOps = 0; 856 uint64_t Size = Op.size(); 857 while (Size) { 858 unsigned TySize = Ty.getSizeInBytes(); 859 while (TySize > Size) { 860 // For now, only use non-vector load / store's for the left-over pieces. 861 LLT NewTy = Ty; 862 // FIXME: check for mem op safety and legality of the types. Not all of 863 // SDAGisms map cleanly to GISel concepts. 864 if (NewTy.isVector()) 865 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 866 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 867 unsigned NewTySize = NewTy.getSizeInBytes(); 868 assert(NewTySize > 0 && "Could not find appropriate type"); 869 870 // If the new LLT cannot cover all of the remaining bits, then consider 871 // issuing a (or a pair of) unaligned and overlapping load / store. 872 bool Fast; 873 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 874 MVT VT = getMVTForLLT(Ty); 875 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 876 TLI.allowsMisalignedMemoryAccesses( 877 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 878 MachineMemOperand::MONone, &Fast) && 879 Fast) 880 TySize = Size; 881 else { 882 Ty = NewTy; 883 TySize = NewTySize; 884 } 885 } 886 887 if (++NumMemOps > Limit) 888 return false; 889 890 MemOps.push_back(Ty); 891 Size -= TySize; 892 } 893 894 return true; 895 } 896 897 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 898 if (Ty.isVector()) 899 return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 900 Ty.getNumElements()); 901 return IntegerType::get(C, Ty.getSizeInBits()); 902 } 903 904 // Get a vectorized representation of the memset value operand, GISel edition. 905 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 906 MachineRegisterInfo &MRI = *MIB.getMRI(); 907 unsigned NumBits = Ty.getScalarSizeInBits(); 908 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 909 if (!Ty.isVector() && ValVRegAndVal) { 910 unsigned KnownVal = ValVRegAndVal->Value; 911 APInt Scalar = APInt(8, KnownVal); 912 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 913 return MIB.buildConstant(Ty, SplatVal).getReg(0); 914 } 915 // FIXME: for vector types create a G_BUILD_VECTOR. 916 if (Ty.isVector()) 917 return Register(); 918 919 // Extend the byte value to the larger type, and then multiply by a magic 920 // value 0x010101... in order to replicate it across every byte. 921 LLT ExtType = Ty.getScalarType(); 922 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 923 if (NumBits > 8) { 924 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 925 auto MagicMI = MIB.buildConstant(ExtType, Magic); 926 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 927 } 928 929 assert(ExtType == Ty && "Vector memset value type not supported yet"); 930 return Val; 931 } 932 933 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 934 Register Val, unsigned KnownLen, 935 Align Alignment, bool IsVolatile) { 936 auto &MF = *MI.getParent()->getParent(); 937 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 938 auto &DL = MF.getDataLayout(); 939 LLVMContext &C = MF.getFunction().getContext(); 940 941 assert(KnownLen != 0 && "Have a zero length memset length!"); 942 943 bool DstAlignCanChange = false; 944 MachineFrameInfo &MFI = MF.getFrameInfo(); 945 bool OptSize = shouldLowerMemFuncForSize(MF); 946 947 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 948 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 949 DstAlignCanChange = true; 950 951 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 952 std::vector<LLT> MemOps; 953 954 const auto &DstMMO = **MI.memoperands_begin(); 955 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 956 957 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 958 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 959 960 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 961 MemOp::Set(KnownLen, DstAlignCanChange, 962 Alignment, 963 /*IsZeroMemset=*/IsZeroVal, 964 /*IsVolatile=*/IsVolatile), 965 DstPtrInfo.getAddrSpace(), ~0u, 966 MF.getFunction().getAttributes(), TLI)) 967 return false; 968 969 if (DstAlignCanChange) { 970 // Get an estimate of the type from the LLT. 971 Type *IRTy = getTypeForLLT(MemOps[0], C); 972 Align NewAlign = DL.getABITypeAlign(IRTy); 973 if (NewAlign > Alignment) { 974 Alignment = NewAlign; 975 unsigned FI = FIDef->getOperand(1).getIndex(); 976 // Give the stack frame object a larger alignment if needed. 977 if (MFI.getObjectAlign(FI) < Alignment) 978 MFI.setObjectAlignment(FI, Alignment); 979 } 980 } 981 982 MachineIRBuilder MIB(MI); 983 // Find the largest store and generate the bit pattern for it. 984 LLT LargestTy = MemOps[0]; 985 for (unsigned i = 1; i < MemOps.size(); i++) 986 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 987 LargestTy = MemOps[i]; 988 989 // The memset stored value is always defined as an s8, so in order to make it 990 // work with larger store types we need to repeat the bit pattern across the 991 // wider type. 992 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 993 994 if (!MemSetValue) 995 return false; 996 997 // Generate the stores. For each store type in the list, we generate the 998 // matching store of that type to the destination address. 999 LLT PtrTy = MRI.getType(Dst); 1000 unsigned DstOff = 0; 1001 unsigned Size = KnownLen; 1002 for (unsigned I = 0; I < MemOps.size(); I++) { 1003 LLT Ty = MemOps[I]; 1004 unsigned TySize = Ty.getSizeInBytes(); 1005 if (TySize > Size) { 1006 // Issuing an unaligned load / store pair that overlaps with the previous 1007 // pair. Adjust the offset accordingly. 1008 assert(I == MemOps.size() - 1 && I != 0); 1009 DstOff -= TySize - Size; 1010 } 1011 1012 // If this store is smaller than the largest store see whether we can get 1013 // the smaller value for free with a truncate. 1014 Register Value = MemSetValue; 1015 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1016 MVT VT = getMVTForLLT(Ty); 1017 MVT LargestVT = getMVTForLLT(LargestTy); 1018 if (!LargestTy.isVector() && !Ty.isVector() && 1019 TLI.isTruncateFree(LargestVT, VT)) 1020 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1021 else 1022 Value = getMemsetValue(Val, Ty, MIB); 1023 if (!Value) 1024 return false; 1025 } 1026 1027 auto *StoreMMO = 1028 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1029 1030 Register Ptr = Dst; 1031 if (DstOff != 0) { 1032 auto Offset = 1033 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1034 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1035 } 1036 1037 MIB.buildStore(Value, Ptr, *StoreMMO); 1038 DstOff += Ty.getSizeInBytes(); 1039 Size -= TySize; 1040 } 1041 1042 MI.eraseFromParent(); 1043 return true; 1044 } 1045 1046 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1047 Register Src, unsigned KnownLen, 1048 Align DstAlign, Align SrcAlign, 1049 bool IsVolatile) { 1050 auto &MF = *MI.getParent()->getParent(); 1051 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1052 auto &DL = MF.getDataLayout(); 1053 LLVMContext &C = MF.getFunction().getContext(); 1054 1055 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1056 1057 bool DstAlignCanChange = false; 1058 MachineFrameInfo &MFI = MF.getFrameInfo(); 1059 bool OptSize = shouldLowerMemFuncForSize(MF); 1060 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1061 1062 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1063 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1064 DstAlignCanChange = true; 1065 1066 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1067 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1068 // if the memcpy is in a tail call position. 1069 1070 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1071 std::vector<LLT> MemOps; 1072 1073 const auto &DstMMO = **MI.memoperands_begin(); 1074 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1075 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1076 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1077 1078 if (!findGISelOptimalMemOpLowering( 1079 MemOps, Limit, 1080 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1081 IsVolatile), 1082 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1083 MF.getFunction().getAttributes(), TLI)) 1084 return false; 1085 1086 if (DstAlignCanChange) { 1087 // Get an estimate of the type from the LLT. 1088 Type *IRTy = getTypeForLLT(MemOps[0], C); 1089 Align NewAlign = DL.getABITypeAlign(IRTy); 1090 1091 // Don't promote to an alignment that would require dynamic stack 1092 // realignment. 1093 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1094 if (!TRI->needsStackRealignment(MF)) 1095 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1096 NewAlign = NewAlign / 2; 1097 1098 if (NewAlign > Alignment) { 1099 Alignment = NewAlign; 1100 unsigned FI = FIDef->getOperand(1).getIndex(); 1101 // Give the stack frame object a larger alignment if needed. 1102 if (MFI.getObjectAlign(FI) < Alignment) 1103 MFI.setObjectAlignment(FI, Alignment); 1104 } 1105 } 1106 1107 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1108 1109 MachineIRBuilder MIB(MI); 1110 // Now we need to emit a pair of load and stores for each of the types we've 1111 // collected. I.e. for each type, generate a load from the source pointer of 1112 // that type width, and then generate a corresponding store to the dest buffer 1113 // of that value loaded. This can result in a sequence of loads and stores 1114 // mixed types, depending on what the target specifies as good types to use. 1115 unsigned CurrOffset = 0; 1116 LLT PtrTy = MRI.getType(Src); 1117 unsigned Size = KnownLen; 1118 for (auto CopyTy : MemOps) { 1119 // Issuing an unaligned load / store pair that overlaps with the previous 1120 // pair. Adjust the offset accordingly. 1121 if (CopyTy.getSizeInBytes() > Size) 1122 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1123 1124 // Construct MMOs for the accesses. 1125 auto *LoadMMO = 1126 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1127 auto *StoreMMO = 1128 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1129 1130 // Create the load. 1131 Register LoadPtr = Src; 1132 Register Offset; 1133 if (CurrOffset != 0) { 1134 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1135 .getReg(0); 1136 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1137 } 1138 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1139 1140 // Create the store. 1141 Register StorePtr = 1142 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1143 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1144 CurrOffset += CopyTy.getSizeInBytes(); 1145 Size -= CopyTy.getSizeInBytes(); 1146 } 1147 1148 MI.eraseFromParent(); 1149 return true; 1150 } 1151 1152 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1153 Register Src, unsigned KnownLen, 1154 Align DstAlign, Align SrcAlign, 1155 bool IsVolatile) { 1156 auto &MF = *MI.getParent()->getParent(); 1157 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1158 auto &DL = MF.getDataLayout(); 1159 LLVMContext &C = MF.getFunction().getContext(); 1160 1161 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1162 1163 bool DstAlignCanChange = false; 1164 MachineFrameInfo &MFI = MF.getFrameInfo(); 1165 bool OptSize = shouldLowerMemFuncForSize(MF); 1166 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1167 1168 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1169 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1170 DstAlignCanChange = true; 1171 1172 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1173 std::vector<LLT> MemOps; 1174 1175 const auto &DstMMO = **MI.memoperands_begin(); 1176 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1177 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1178 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1179 1180 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1181 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1182 // same thing here. 1183 if (!findGISelOptimalMemOpLowering( 1184 MemOps, Limit, 1185 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1186 /*IsVolatile*/ true), 1187 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1188 MF.getFunction().getAttributes(), TLI)) 1189 return false; 1190 1191 if (DstAlignCanChange) { 1192 // Get an estimate of the type from the LLT. 1193 Type *IRTy = getTypeForLLT(MemOps[0], C); 1194 Align NewAlign = DL.getABITypeAlign(IRTy); 1195 1196 // Don't promote to an alignment that would require dynamic stack 1197 // realignment. 1198 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1199 if (!TRI->needsStackRealignment(MF)) 1200 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1201 NewAlign = NewAlign / 2; 1202 1203 if (NewAlign > Alignment) { 1204 Alignment = NewAlign; 1205 unsigned FI = FIDef->getOperand(1).getIndex(); 1206 // Give the stack frame object a larger alignment if needed. 1207 if (MFI.getObjectAlign(FI) < Alignment) 1208 MFI.setObjectAlignment(FI, Alignment); 1209 } 1210 } 1211 1212 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1213 1214 MachineIRBuilder MIB(MI); 1215 // Memmove requires that we perform the loads first before issuing the stores. 1216 // Apart from that, this loop is pretty much doing the same thing as the 1217 // memcpy codegen function. 1218 unsigned CurrOffset = 0; 1219 LLT PtrTy = MRI.getType(Src); 1220 SmallVector<Register, 16> LoadVals; 1221 for (auto CopyTy : MemOps) { 1222 // Construct MMO for the load. 1223 auto *LoadMMO = 1224 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1225 1226 // Create the load. 1227 Register LoadPtr = Src; 1228 if (CurrOffset != 0) { 1229 auto Offset = 1230 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1231 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1232 } 1233 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1234 CurrOffset += CopyTy.getSizeInBytes(); 1235 } 1236 1237 CurrOffset = 0; 1238 for (unsigned I = 0; I < MemOps.size(); ++I) { 1239 LLT CopyTy = MemOps[I]; 1240 // Now store the values loaded. 1241 auto *StoreMMO = 1242 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1243 1244 Register StorePtr = Dst; 1245 if (CurrOffset != 0) { 1246 auto Offset = 1247 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1248 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1249 } 1250 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1251 CurrOffset += CopyTy.getSizeInBytes(); 1252 } 1253 MI.eraseFromParent(); 1254 return true; 1255 } 1256 1257 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1258 // This combine is fairly complex so it's not written with a separate 1259 // matcher function. 1260 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 1261 Intrinsic::ID ID = (Intrinsic::ID)MI.getIntrinsicID(); 1262 assert((ID == Intrinsic::memcpy || ID == Intrinsic::memmove || 1263 ID == Intrinsic::memset) && 1264 "Expected a memcpy like intrinsic"); 1265 1266 auto MMOIt = MI.memoperands_begin(); 1267 const MachineMemOperand *MemOp = *MMOIt; 1268 bool IsVolatile = MemOp->isVolatile(); 1269 // Don't try to optimize volatile. 1270 if (IsVolatile) 1271 return false; 1272 1273 Align DstAlign = MemOp->getBaseAlign(); 1274 Align SrcAlign; 1275 Register Dst = MI.getOperand(1).getReg(); 1276 Register Src = MI.getOperand(2).getReg(); 1277 Register Len = MI.getOperand(3).getReg(); 1278 1279 if (ID != Intrinsic::memset) { 1280 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1281 MemOp = *(++MMOIt); 1282 SrcAlign = MemOp->getBaseAlign(); 1283 } 1284 1285 // See if this is a constant length copy 1286 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1287 if (!LenVRegAndVal) 1288 return false; // Leave it to the legalizer to lower it to a libcall. 1289 unsigned KnownLen = LenVRegAndVal->Value; 1290 1291 if (KnownLen == 0) { 1292 MI.eraseFromParent(); 1293 return true; 1294 } 1295 1296 if (MaxLen && KnownLen > MaxLen) 1297 return false; 1298 1299 if (ID == Intrinsic::memcpy) 1300 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1301 if (ID == Intrinsic::memmove) 1302 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1303 if (ID == Intrinsic::memset) 1304 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1305 return false; 1306 } 1307 1308 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1309 PtrAddChain &MatchInfo) { 1310 // We're trying to match the following pattern: 1311 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1312 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1313 // --> 1314 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1315 1316 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1317 return false; 1318 1319 Register Add2 = MI.getOperand(1).getReg(); 1320 Register Imm1 = MI.getOperand(2).getReg(); 1321 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1322 if (!MaybeImmVal) 1323 return false; 1324 1325 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1326 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1327 return false; 1328 1329 Register Base = Add2Def->getOperand(1).getReg(); 1330 Register Imm2 = Add2Def->getOperand(2).getReg(); 1331 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1332 if (!MaybeImm2Val) 1333 return false; 1334 1335 // Pass the combined immediate to the apply function. 1336 MatchInfo.Imm = MaybeImmVal->Value + MaybeImm2Val->Value; 1337 MatchInfo.Base = Base; 1338 return true; 1339 } 1340 1341 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1342 PtrAddChain &MatchInfo) { 1343 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1344 MachineIRBuilder MIB(MI); 1345 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1346 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1347 Observer.changingInstr(MI); 1348 MI.getOperand(1).setReg(MatchInfo.Base); 1349 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1350 Observer.changedInstr(MI); 1351 return true; 1352 } 1353 1354 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1355 unsigned &ShiftVal) { 1356 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1357 auto MaybeImmVal = 1358 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1359 if (!MaybeImmVal || !isPowerOf2_64(MaybeImmVal->Value)) 1360 return false; 1361 ShiftVal = Log2_64(MaybeImmVal->Value); 1362 return true; 1363 } 1364 1365 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1366 unsigned &ShiftVal) { 1367 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1368 MachineIRBuilder MIB(MI); 1369 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1370 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1371 Observer.changingInstr(MI); 1372 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1373 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1374 Observer.changedInstr(MI); 1375 return true; 1376 } 1377 1378 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1379 unsigned TargetShiftSize, 1380 unsigned &ShiftVal) { 1381 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1382 MI.getOpcode() == TargetOpcode::G_LSHR || 1383 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1384 1385 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1386 if (Ty.isVector()) // TODO: 1387 return false; 1388 1389 // Don't narrow further than the requested size. 1390 unsigned Size = Ty.getSizeInBits(); 1391 if (Size <= TargetShiftSize) 1392 return false; 1393 1394 auto MaybeImmVal = 1395 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1396 if (!MaybeImmVal) 1397 return false; 1398 1399 ShiftVal = MaybeImmVal->Value; 1400 return ShiftVal >= Size / 2 && ShiftVal < Size; 1401 } 1402 1403 bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1404 const unsigned &ShiftVal) { 1405 Register DstReg = MI.getOperand(0).getReg(); 1406 Register SrcReg = MI.getOperand(1).getReg(); 1407 LLT Ty = MRI.getType(SrcReg); 1408 unsigned Size = Ty.getSizeInBits(); 1409 unsigned HalfSize = Size / 2; 1410 assert(ShiftVal >= HalfSize); 1411 1412 LLT HalfTy = LLT::scalar(HalfSize); 1413 1414 Builder.setInstr(MI); 1415 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1416 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1417 1418 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1419 Register Narrowed = Unmerge.getReg(1); 1420 1421 // dst = G_LSHR s64:x, C for C >= 32 1422 // => 1423 // lo, hi = G_UNMERGE_VALUES x 1424 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1425 1426 if (NarrowShiftAmt != 0) { 1427 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1428 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1429 } 1430 1431 auto Zero = Builder.buildConstant(HalfTy, 0); 1432 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1433 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1434 Register Narrowed = Unmerge.getReg(0); 1435 // dst = G_SHL s64:x, C for C >= 32 1436 // => 1437 // lo, hi = G_UNMERGE_VALUES x 1438 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1439 if (NarrowShiftAmt != 0) { 1440 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1441 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1442 } 1443 1444 auto Zero = Builder.buildConstant(HalfTy, 0); 1445 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1446 } else { 1447 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1448 auto Hi = Builder.buildAShr( 1449 HalfTy, Unmerge.getReg(1), 1450 Builder.buildConstant(HalfTy, HalfSize - 1)); 1451 1452 if (ShiftVal == HalfSize) { 1453 // (G_ASHR i64:x, 32) -> 1454 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1455 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1456 } else if (ShiftVal == Size - 1) { 1457 // Don't need a second shift. 1458 // (G_ASHR i64:x, 63) -> 1459 // %narrowed = (G_ASHR hi_32(x), 31) 1460 // G_MERGE_VALUES %narrowed, %narrowed 1461 Builder.buildMerge(DstReg, { Hi, Hi }); 1462 } else { 1463 auto Lo = Builder.buildAShr( 1464 HalfTy, Unmerge.getReg(1), 1465 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1466 1467 // (G_ASHR i64:x, C) ->, for C >= 32 1468 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1469 Builder.buildMerge(DstReg, { Lo, Hi }); 1470 } 1471 } 1472 1473 MI.eraseFromParent(); 1474 return true; 1475 } 1476 1477 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1478 unsigned TargetShiftAmount) { 1479 unsigned ShiftAmt; 1480 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1481 applyCombineShiftToUnmerge(MI, ShiftAmt); 1482 return true; 1483 } 1484 1485 return false; 1486 } 1487 1488 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 1489 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 1490 return MO.isReg() && 1491 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 1492 }); 1493 } 1494 1495 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 1496 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 1497 return !MO.isReg() || 1498 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 1499 }); 1500 } 1501 1502 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 1503 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 1504 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 1505 return all_of(Mask, [](int Elt) { return Elt < 0; }); 1506 } 1507 1508 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 1509 const MachineOperand &MOP2) { 1510 if (!MOP1.isReg() || !MOP2.isReg()) 1511 return false; 1512 MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); 1513 if (!I1) 1514 return false; 1515 MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); 1516 if (!I2) 1517 return false; 1518 1519 // Check for physical registers on the instructions first to avoid cases like 1520 // this: 1521 // 1522 // %a = COPY $physreg 1523 // ... 1524 // SOMETHING implicit-def $physreg 1525 // ... 1526 // %b = COPY $physreg 1527 // 1528 // These copies are not equivalent. 1529 if (any_of(I1->uses(), [](const MachineOperand &MO) { 1530 return MO.isReg() && MO.getReg().isPhysical(); 1531 })) { 1532 // Check if we have a case like this: 1533 // 1534 // %a = COPY $physreg 1535 // %b = COPY %a 1536 // 1537 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 1538 // From that, we know that they must have the same value, since they must 1539 // have come from the same COPY. 1540 return I1->isIdenticalTo(*I2); 1541 } 1542 1543 // We don't have any physical registers, so we don't necessarily need the 1544 // same vreg defs. 1545 // 1546 // On the off-chance that there's some target instruction feeding into the 1547 // instruction, let's use produceSameValue instead of isIdenticalTo. 1548 return Builder.getTII().produceSameValue(*I1, *I2, &MRI); 1549 } 1550 1551 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 1552 if (!MOP.isReg()) 1553 return false; 1554 int64_t Cst; 1555 return mi_match(MOP.getReg(), MRI, m_ICst(Cst)) && Cst == C; 1556 } 1557 1558 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 1559 unsigned OpIdx) { 1560 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 1561 Register OldReg = MI.getOperand(0).getReg(); 1562 Register Replacement = MI.getOperand(OpIdx).getReg(); 1563 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 1564 MI.eraseFromParent(); 1565 replaceRegWith(MRI, OldReg, Replacement); 1566 return true; 1567 } 1568 1569 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 1570 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 1571 // Match (cond ? x : x) 1572 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 1573 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 1574 MRI); 1575 } 1576 1577 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 1578 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 1579 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1580 MRI); 1581 } 1582 1583 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 1584 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 1585 Builder.setInstr(MI); 1586 Builder.buildFConstant(MI.getOperand(0), C); 1587 MI.eraseFromParent(); 1588 return true; 1589 } 1590 1591 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 1592 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 1593 Builder.setInstr(MI); 1594 Builder.buildConstant(MI.getOperand(0), C); 1595 MI.eraseFromParent(); 1596 return true; 1597 } 1598 1599 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 1600 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 1601 Builder.setInstr(MI); 1602 Builder.buildUndef(MI.getOperand(0)); 1603 MI.eraseFromParent(); 1604 return true; 1605 } 1606 1607 bool CombinerHelper::tryCombine(MachineInstr &MI) { 1608 if (tryCombineCopy(MI)) 1609 return true; 1610 if (tryCombineExtendingLoads(MI)) 1611 return true; 1612 if (tryCombineIndexedLoadStore(MI)) 1613 return true; 1614 return false; 1615 } 1616