1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 16 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 19 #include "llvm/CodeGen/GlobalISel/Utils.h" 20 #include "llvm/CodeGen/LowLevelType.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetInstrInfo.h" 28 #include "llvm/CodeGen/TargetLowering.h" 29 #include "llvm/CodeGen/TargetOpcodes.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetMachine.h" 32 #include <tuple> 33 34 #define DEBUG_TYPE "gi-combiner" 35 36 using namespace llvm; 37 using namespace MIPatternMatch; 38 39 // Option to allow testing of the combiner while no targets know about indexed 40 // addressing. 41 static cl::opt<bool> 42 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 43 cl::desc("Force all indexed operations to be " 44 "legal for the GlobalISel combiner")); 45 46 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 47 MachineIRBuilder &B, GISelKnownBits *KB, 48 MachineDominatorTree *MDT, 49 const LegalizerInfo *LI) 50 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 51 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 52 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 53 (void)this->KB; 54 } 55 56 const TargetLowering &CombinerHelper::getTargetLowering() const { 57 return *Builder.getMF().getSubtarget().getTargetLowering(); 58 } 59 60 /// \returns The little endian in-memory byte position of byte \p I in a 61 /// \p ByteWidth bytes wide type. 62 /// 63 /// E.g. Given a 4-byte type x, x[0] -> byte 0 64 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 65 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 66 return I; 67 } 68 69 /// \returns The big endian in-memory byte position of byte \p I in a 70 /// \p ByteWidth bytes wide type. 71 /// 72 /// E.g. Given a 4-byte type x, x[0] -> byte 3 73 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 74 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 75 return ByteWidth - I - 1; 76 } 77 78 /// Given a map from byte offsets in memory to indices in a load/store, 79 /// determine if that map corresponds to a little or big endian byte pattern. 80 /// 81 /// \param MemOffset2Idx maps memory offsets to address offsets. 82 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 83 /// 84 /// \returns true if the map corresponds to a big endian byte pattern, false 85 /// if it corresponds to a little endian byte pattern, and None otherwise. 86 /// 87 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 88 /// are as follows: 89 /// 90 /// AddrOffset Little endian Big endian 91 /// 0 0 3 92 /// 1 1 2 93 /// 2 2 1 94 /// 3 3 0 95 static Optional<bool> 96 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 97 int64_t LowestIdx) { 98 // Need at least two byte positions to decide on endianness. 99 unsigned Width = MemOffset2Idx.size(); 100 if (Width < 2) 101 return None; 102 bool BigEndian = true, LittleEndian = true; 103 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 104 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 105 if (MemOffsetAndIdx == MemOffset2Idx.end()) 106 return None; 107 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 108 assert(Idx >= 0 && "Expected non-negative byte offset?"); 109 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 110 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 111 if (!BigEndian && !LittleEndian) 112 return None; 113 } 114 115 assert((BigEndian != LittleEndian) && 116 "Pattern cannot be both big and little endian!"); 117 return BigEndian; 118 } 119 120 bool CombinerHelper::isLegalOrBeforeLegalizer( 121 const LegalityQuery &Query) const { 122 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 123 } 124 125 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 126 Register ToReg) const { 127 Observer.changingAllUsesOfReg(MRI, FromReg); 128 129 if (MRI.constrainRegAttrs(ToReg, FromReg)) 130 MRI.replaceRegWith(FromReg, ToReg); 131 else 132 Builder.buildCopy(ToReg, FromReg); 133 134 Observer.finishedChangingAllUsesOfReg(); 135 } 136 137 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 138 MachineOperand &FromRegOp, 139 Register ToReg) const { 140 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 141 Observer.changingInstr(*FromRegOp.getParent()); 142 143 FromRegOp.setReg(ToReg); 144 145 Observer.changedInstr(*FromRegOp.getParent()); 146 } 147 148 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 149 return RBI->getRegBank(Reg, MRI, *TRI); 150 } 151 152 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 153 if (RegBank) 154 MRI.setRegBank(Reg, *RegBank); 155 } 156 157 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 158 if (matchCombineCopy(MI)) { 159 applyCombineCopy(MI); 160 return true; 161 } 162 return false; 163 } 164 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 165 if (MI.getOpcode() != TargetOpcode::COPY) 166 return false; 167 Register DstReg = MI.getOperand(0).getReg(); 168 Register SrcReg = MI.getOperand(1).getReg(); 169 return canReplaceReg(DstReg, SrcReg, MRI); 170 } 171 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 172 Register DstReg = MI.getOperand(0).getReg(); 173 Register SrcReg = MI.getOperand(1).getReg(); 174 MI.eraseFromParent(); 175 replaceRegWith(MRI, DstReg, SrcReg); 176 } 177 178 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 179 bool IsUndef = false; 180 SmallVector<Register, 4> Ops; 181 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 182 applyCombineConcatVectors(MI, IsUndef, Ops); 183 return true; 184 } 185 return false; 186 } 187 188 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 189 SmallVectorImpl<Register> &Ops) { 190 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 191 "Invalid instruction"); 192 IsUndef = true; 193 MachineInstr *Undef = nullptr; 194 195 // Walk over all the operands of concat vectors and check if they are 196 // build_vector themselves or undef. 197 // Then collect their operands in Ops. 198 for (const MachineOperand &MO : MI.uses()) { 199 Register Reg = MO.getReg(); 200 MachineInstr *Def = MRI.getVRegDef(Reg); 201 assert(Def && "Operand not defined"); 202 switch (Def->getOpcode()) { 203 case TargetOpcode::G_BUILD_VECTOR: 204 IsUndef = false; 205 // Remember the operands of the build_vector to fold 206 // them into the yet-to-build flattened concat vectors. 207 for (const MachineOperand &BuildVecMO : Def->uses()) 208 Ops.push_back(BuildVecMO.getReg()); 209 break; 210 case TargetOpcode::G_IMPLICIT_DEF: { 211 LLT OpType = MRI.getType(Reg); 212 // Keep one undef value for all the undef operands. 213 if (!Undef) { 214 Builder.setInsertPt(*MI.getParent(), MI); 215 Undef = Builder.buildUndef(OpType.getScalarType()); 216 } 217 assert(MRI.getType(Undef->getOperand(0).getReg()) == 218 OpType.getScalarType() && 219 "All undefs should have the same type"); 220 // Break the undef vector in as many scalar elements as needed 221 // for the flattening. 222 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 223 EltIdx != EltEnd; ++EltIdx) 224 Ops.push_back(Undef->getOperand(0).getReg()); 225 break; 226 } 227 default: 228 return false; 229 } 230 } 231 return true; 232 } 233 void CombinerHelper::applyCombineConcatVectors( 234 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 235 // We determined that the concat_vectors can be flatten. 236 // Generate the flattened build_vector. 237 Register DstReg = MI.getOperand(0).getReg(); 238 Builder.setInsertPt(*MI.getParent(), MI); 239 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 240 241 // Note: IsUndef is sort of redundant. We could have determine it by 242 // checking that at all Ops are undef. Alternatively, we could have 243 // generate a build_vector of undefs and rely on another combine to 244 // clean that up. For now, given we already gather this information 245 // in tryCombineConcatVectors, just save compile time and issue the 246 // right thing. 247 if (IsUndef) 248 Builder.buildUndef(NewDstReg); 249 else 250 Builder.buildBuildVector(NewDstReg, Ops); 251 MI.eraseFromParent(); 252 replaceRegWith(MRI, DstReg, NewDstReg); 253 } 254 255 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 256 SmallVector<Register, 4> Ops; 257 if (matchCombineShuffleVector(MI, Ops)) { 258 applyCombineShuffleVector(MI, Ops); 259 return true; 260 } 261 return false; 262 } 263 264 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 265 SmallVectorImpl<Register> &Ops) { 266 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 267 "Invalid instruction kind"); 268 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 269 Register Src1 = MI.getOperand(1).getReg(); 270 LLT SrcType = MRI.getType(Src1); 271 // As bizarre as it may look, shuffle vector can actually produce 272 // scalar! This is because at the IR level a <1 x ty> shuffle 273 // vector is perfectly valid. 274 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 275 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 276 277 // If the resulting vector is smaller than the size of the source 278 // vectors being concatenated, we won't be able to replace the 279 // shuffle vector into a concat_vectors. 280 // 281 // Note: We may still be able to produce a concat_vectors fed by 282 // extract_vector_elt and so on. It is less clear that would 283 // be better though, so don't bother for now. 284 // 285 // If the destination is a scalar, the size of the sources doesn't 286 // matter. we will lower the shuffle to a plain copy. This will 287 // work only if the source and destination have the same size. But 288 // that's covered by the next condition. 289 // 290 // TODO: If the size between the source and destination don't match 291 // we could still emit an extract vector element in that case. 292 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 293 return false; 294 295 // Check that the shuffle mask can be broken evenly between the 296 // different sources. 297 if (DstNumElts % SrcNumElts != 0) 298 return false; 299 300 // Mask length is a multiple of the source vector length. 301 // Check if the shuffle is some kind of concatenation of the input 302 // vectors. 303 unsigned NumConcat = DstNumElts / SrcNumElts; 304 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 305 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 306 for (unsigned i = 0; i != DstNumElts; ++i) { 307 int Idx = Mask[i]; 308 // Undef value. 309 if (Idx < 0) 310 continue; 311 // Ensure the indices in each SrcType sized piece are sequential and that 312 // the same source is used for the whole piece. 313 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 314 (ConcatSrcs[i / SrcNumElts] >= 0 && 315 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 316 return false; 317 // Remember which source this index came from. 318 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 319 } 320 321 // The shuffle is concatenating multiple vectors together. 322 // Collect the different operands for that. 323 Register UndefReg; 324 Register Src2 = MI.getOperand(2).getReg(); 325 for (auto Src : ConcatSrcs) { 326 if (Src < 0) { 327 if (!UndefReg) { 328 Builder.setInsertPt(*MI.getParent(), MI); 329 UndefReg = Builder.buildUndef(SrcType).getReg(0); 330 } 331 Ops.push_back(UndefReg); 332 } else if (Src == 0) 333 Ops.push_back(Src1); 334 else 335 Ops.push_back(Src2); 336 } 337 return true; 338 } 339 340 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 341 const ArrayRef<Register> Ops) { 342 Register DstReg = MI.getOperand(0).getReg(); 343 Builder.setInsertPt(*MI.getParent(), MI); 344 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 345 346 if (Ops.size() == 1) 347 Builder.buildCopy(NewDstReg, Ops[0]); 348 else 349 Builder.buildMerge(NewDstReg, Ops); 350 351 MI.eraseFromParent(); 352 replaceRegWith(MRI, DstReg, NewDstReg); 353 } 354 355 namespace { 356 357 /// Select a preference between two uses. CurrentUse is the current preference 358 /// while *ForCandidate is attributes of the candidate under consideration. 359 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 360 const LLT TyForCandidate, 361 unsigned OpcodeForCandidate, 362 MachineInstr *MIForCandidate) { 363 if (!CurrentUse.Ty.isValid()) { 364 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 365 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 366 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 367 return CurrentUse; 368 } 369 370 // We permit the extend to hoist through basic blocks but this is only 371 // sensible if the target has extending loads. If you end up lowering back 372 // into a load and extend during the legalizer then the end result is 373 // hoisting the extend up to the load. 374 375 // Prefer defined extensions to undefined extensions as these are more 376 // likely to reduce the number of instructions. 377 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 378 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 379 return CurrentUse; 380 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 381 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 382 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 383 384 // Prefer sign extensions to zero extensions as sign-extensions tend to be 385 // more expensive. 386 if (CurrentUse.Ty == TyForCandidate) { 387 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 388 OpcodeForCandidate == TargetOpcode::G_ZEXT) 389 return CurrentUse; 390 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 391 OpcodeForCandidate == TargetOpcode::G_SEXT) 392 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 393 } 394 395 // This is potentially target specific. We've chosen the largest type 396 // because G_TRUNC is usually free. One potential catch with this is that 397 // some targets have a reduced number of larger registers than smaller 398 // registers and this choice potentially increases the live-range for the 399 // larger value. 400 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 401 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 402 } 403 return CurrentUse; 404 } 405 406 /// Find a suitable place to insert some instructions and insert them. This 407 /// function accounts for special cases like inserting before a PHI node. 408 /// The current strategy for inserting before PHI's is to duplicate the 409 /// instructions for each predecessor. However, while that's ok for G_TRUNC 410 /// on most targets since it generally requires no code, other targets/cases may 411 /// want to try harder to find a dominating block. 412 static void InsertInsnsWithoutSideEffectsBeforeUse( 413 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 414 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 415 MachineOperand &UseMO)> 416 Inserter) { 417 MachineInstr &UseMI = *UseMO.getParent(); 418 419 MachineBasicBlock *InsertBB = UseMI.getParent(); 420 421 // If the use is a PHI then we want the predecessor block instead. 422 if (UseMI.isPHI()) { 423 MachineOperand *PredBB = std::next(&UseMO); 424 InsertBB = PredBB->getMBB(); 425 } 426 427 // If the block is the same block as the def then we want to insert just after 428 // the def instead of at the start of the block. 429 if (InsertBB == DefMI.getParent()) { 430 MachineBasicBlock::iterator InsertPt = &DefMI; 431 Inserter(InsertBB, std::next(InsertPt), UseMO); 432 return; 433 } 434 435 // Otherwise we want the start of the BB 436 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 437 } 438 } // end anonymous namespace 439 440 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 441 PreferredTuple Preferred; 442 if (matchCombineExtendingLoads(MI, Preferred)) { 443 applyCombineExtendingLoads(MI, Preferred); 444 return true; 445 } 446 return false; 447 } 448 449 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 450 PreferredTuple &Preferred) { 451 // We match the loads and follow the uses to the extend instead of matching 452 // the extends and following the def to the load. This is because the load 453 // must remain in the same position for correctness (unless we also add code 454 // to find a safe place to sink it) whereas the extend is freely movable. 455 // It also prevents us from duplicating the load for the volatile case or just 456 // for performance. 457 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 458 if (!LoadMI) 459 return false; 460 461 Register LoadReg = LoadMI->getDstReg(); 462 463 LLT LoadValueTy = MRI.getType(LoadReg); 464 if (!LoadValueTy.isScalar()) 465 return false; 466 467 // Most architectures are going to legalize <s8 loads into at least a 1 byte 468 // load, and the MMOs can only describe memory accesses in multiples of bytes. 469 // If we try to perform extload combining on those, we can end up with 470 // %a(s8) = extload %ptr (load 1 byte from %ptr) 471 // ... which is an illegal extload instruction. 472 if (LoadValueTy.getSizeInBits() < 8) 473 return false; 474 475 // For non power-of-2 types, they will very likely be legalized into multiple 476 // loads. Don't bother trying to match them into extending loads. 477 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 478 return false; 479 480 // Find the preferred type aside from the any-extends (unless it's the only 481 // one) and non-extending ops. We'll emit an extending load to that type and 482 // and emit a variant of (extend (trunc X)) for the others according to the 483 // relative type sizes. At the same time, pick an extend to use based on the 484 // extend involved in the chosen type. 485 unsigned PreferredOpcode = 486 isa<GLoad>(&MI) 487 ? TargetOpcode::G_ANYEXT 488 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 489 Preferred = {LLT(), PreferredOpcode, nullptr}; 490 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 491 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 492 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 493 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 494 const auto &MMO = LoadMI->getMMO(); 495 // For atomics, only form anyextending loads. 496 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 497 continue; 498 // Check for legality. 499 if (LI) { 500 LegalityQuery::MemDesc MMDesc(MMO); 501 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 502 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 503 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 504 .Action != LegalizeActions::Legal) 505 continue; 506 } 507 Preferred = ChoosePreferredUse(Preferred, 508 MRI.getType(UseMI.getOperand(0).getReg()), 509 UseMI.getOpcode(), &UseMI); 510 } 511 } 512 513 // There were no extends 514 if (!Preferred.MI) 515 return false; 516 // It should be impossible to chose an extend without selecting a different 517 // type since by definition the result of an extend is larger. 518 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 519 520 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 521 return true; 522 } 523 524 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 525 PreferredTuple &Preferred) { 526 // Rewrite the load to the chosen extending load. 527 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 528 529 // Inserter to insert a truncate back to the original type at a given point 530 // with some basic CSE to limit truncate duplication to one per BB. 531 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 532 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 533 MachineBasicBlock::iterator InsertBefore, 534 MachineOperand &UseMO) { 535 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 536 if (PreviouslyEmitted) { 537 Observer.changingInstr(*UseMO.getParent()); 538 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 539 Observer.changedInstr(*UseMO.getParent()); 540 return; 541 } 542 543 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 544 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 545 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 546 EmittedInsns[InsertIntoBB] = NewMI; 547 replaceRegOpWith(MRI, UseMO, NewDstReg); 548 }; 549 550 Observer.changingInstr(MI); 551 MI.setDesc( 552 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 553 ? TargetOpcode::G_SEXTLOAD 554 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 555 ? TargetOpcode::G_ZEXTLOAD 556 : TargetOpcode::G_LOAD)); 557 558 // Rewrite all the uses to fix up the types. 559 auto &LoadValue = MI.getOperand(0); 560 SmallVector<MachineOperand *, 4> Uses; 561 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 562 Uses.push_back(&UseMO); 563 564 for (auto *UseMO : Uses) { 565 MachineInstr *UseMI = UseMO->getParent(); 566 567 // If the extend is compatible with the preferred extend then we should fix 568 // up the type and extend so that it uses the preferred use. 569 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 570 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 571 Register UseDstReg = UseMI->getOperand(0).getReg(); 572 MachineOperand &UseSrcMO = UseMI->getOperand(1); 573 const LLT UseDstTy = MRI.getType(UseDstReg); 574 if (UseDstReg != ChosenDstReg) { 575 if (Preferred.Ty == UseDstTy) { 576 // If the use has the same type as the preferred use, then merge 577 // the vregs and erase the extend. For example: 578 // %1:_(s8) = G_LOAD ... 579 // %2:_(s32) = G_SEXT %1(s8) 580 // %3:_(s32) = G_ANYEXT %1(s8) 581 // ... = ... %3(s32) 582 // rewrites to: 583 // %2:_(s32) = G_SEXTLOAD ... 584 // ... = ... %2(s32) 585 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 586 Observer.erasingInstr(*UseMO->getParent()); 587 UseMO->getParent()->eraseFromParent(); 588 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 589 // If the preferred size is smaller, then keep the extend but extend 590 // from the result of the extending load. For example: 591 // %1:_(s8) = G_LOAD ... 592 // %2:_(s32) = G_SEXT %1(s8) 593 // %3:_(s64) = G_ANYEXT %1(s8) 594 // ... = ... %3(s64) 595 /// rewrites to: 596 // %2:_(s32) = G_SEXTLOAD ... 597 // %3:_(s64) = G_ANYEXT %2:_(s32) 598 // ... = ... %3(s64) 599 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 600 } else { 601 // If the preferred size is large, then insert a truncate. For 602 // example: 603 // %1:_(s8) = G_LOAD ... 604 // %2:_(s64) = G_SEXT %1(s8) 605 // %3:_(s32) = G_ZEXT %1(s8) 606 // ... = ... %3(s32) 607 /// rewrites to: 608 // %2:_(s64) = G_SEXTLOAD ... 609 // %4:_(s8) = G_TRUNC %2:_(s32) 610 // %3:_(s64) = G_ZEXT %2:_(s8) 611 // ... = ... %3(s64) 612 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 613 InsertTruncAt); 614 } 615 continue; 616 } 617 // The use is (one of) the uses of the preferred use we chose earlier. 618 // We're going to update the load to def this value later so just erase 619 // the old extend. 620 Observer.erasingInstr(*UseMO->getParent()); 621 UseMO->getParent()->eraseFromParent(); 622 continue; 623 } 624 625 // The use isn't an extend. Truncate back to the type we originally loaded. 626 // This is free on many targets. 627 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 628 } 629 630 MI.getOperand(0).setReg(ChosenDstReg); 631 Observer.changedInstr(MI); 632 } 633 634 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 635 const MachineInstr &UseMI) { 636 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 637 "shouldn't consider debug uses"); 638 assert(DefMI.getParent() == UseMI.getParent()); 639 if (&DefMI == &UseMI) 640 return false; 641 const MachineBasicBlock &MBB = *DefMI.getParent(); 642 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 643 return &MI == &DefMI || &MI == &UseMI; 644 }); 645 if (DefOrUse == MBB.end()) 646 llvm_unreachable("Block must contain both DefMI and UseMI!"); 647 return &*DefOrUse == &DefMI; 648 } 649 650 bool CombinerHelper::dominates(const MachineInstr &DefMI, 651 const MachineInstr &UseMI) { 652 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 653 "shouldn't consider debug uses"); 654 if (MDT) 655 return MDT->dominates(&DefMI, &UseMI); 656 else if (DefMI.getParent() != UseMI.getParent()) 657 return false; 658 659 return isPredecessor(DefMI, UseMI); 660 } 661 662 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 663 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 664 Register SrcReg = MI.getOperand(1).getReg(); 665 Register LoadUser = SrcReg; 666 667 if (MRI.getType(SrcReg).isVector()) 668 return false; 669 670 Register TruncSrc; 671 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 672 LoadUser = TruncSrc; 673 674 uint64_t SizeInBits = MI.getOperand(2).getImm(); 675 // If the source is a G_SEXTLOAD from the same bit width, then we don't 676 // need any extend at all, just a truncate. 677 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 678 // If truncating more than the original extended value, abort. 679 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 680 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 681 return false; 682 if (LoadSizeBits == SizeInBits) 683 return true; 684 } 685 return false; 686 } 687 688 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 689 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 690 Builder.setInstrAndDebugLoc(MI); 691 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 692 MI.eraseFromParent(); 693 } 694 695 bool CombinerHelper::matchSextInRegOfLoad( 696 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 697 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 698 699 // Only supports scalars for now. 700 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 701 return false; 702 703 Register SrcReg = MI.getOperand(1).getReg(); 704 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 705 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || 706 !LoadDef->isSimple()) 707 return false; 708 709 // If the sign extend extends from a narrower width than the load's width, 710 // then we can narrow the load width when we combine to a G_SEXTLOAD. 711 // Avoid widening the load at all. 712 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), 713 LoadDef->getMemSizeInBits()); 714 715 // Don't generate G_SEXTLOADs with a < 1 byte width. 716 if (NewSizeBits < 8) 717 return false; 718 // Don't bother creating a non-power-2 sextload, it will likely be broken up 719 // anyway for most targets. 720 if (!isPowerOf2_32(NewSizeBits)) 721 return false; 722 723 const MachineMemOperand &MMO = LoadDef->getMMO(); 724 LegalityQuery::MemDesc MMDesc(MMO); 725 MMDesc.MemoryTy = LLT::scalar(NewSizeBits); 726 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, 727 {MRI.getType(LoadDef->getDstReg()), 728 MRI.getType(LoadDef->getPointerReg())}, 729 {MMDesc}})) 730 return false; 731 732 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 733 return true; 734 } 735 736 void CombinerHelper::applySextInRegOfLoad( 737 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 738 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 739 Register LoadReg; 740 unsigned ScalarSizeBits; 741 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 742 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 743 744 // If we have the following: 745 // %ld = G_LOAD %ptr, (load 2) 746 // %ext = G_SEXT_INREG %ld, 8 747 // ==> 748 // %ld = G_SEXTLOAD %ptr (load 1) 749 750 auto &MMO = LoadDef->getMMO(); 751 Builder.setInstrAndDebugLoc(*LoadDef); 752 auto &MF = Builder.getMF(); 753 auto PtrInfo = MMO.getPointerInfo(); 754 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 755 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 756 LoadDef->getPointerReg(), *NewMMO); 757 MI.eraseFromParent(); 758 } 759 760 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 761 Register &Base, Register &Offset) { 762 auto &MF = *MI.getParent()->getParent(); 763 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 764 765 #ifndef NDEBUG 766 unsigned Opcode = MI.getOpcode(); 767 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 768 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 769 #endif 770 771 Base = MI.getOperand(1).getReg(); 772 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 773 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 774 return false; 775 776 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 777 // FIXME: The following use traversal needs a bail out for patholigical cases. 778 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 779 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 780 continue; 781 782 Offset = Use.getOperand(2).getReg(); 783 if (!ForceLegalIndexing && 784 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 785 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 786 << Use); 787 continue; 788 } 789 790 // Make sure the offset calculation is before the potentially indexed op. 791 // FIXME: we really care about dependency here. The offset calculation might 792 // be movable. 793 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 794 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 795 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 796 << Use); 797 continue; 798 } 799 800 // FIXME: check whether all uses of Base are load/store with foldable 801 // addressing modes. If so, using the normal addr-modes is better than 802 // forming an indexed one. 803 804 bool MemOpDominatesAddrUses = true; 805 for (auto &PtrAddUse : 806 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 807 if (!dominates(MI, PtrAddUse)) { 808 MemOpDominatesAddrUses = false; 809 break; 810 } 811 } 812 813 if (!MemOpDominatesAddrUses) { 814 LLVM_DEBUG( 815 dbgs() << " Ignoring candidate as memop does not dominate uses: " 816 << Use); 817 continue; 818 } 819 820 LLVM_DEBUG(dbgs() << " Found match: " << Use); 821 Addr = Use.getOperand(0).getReg(); 822 return true; 823 } 824 825 return false; 826 } 827 828 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 829 Register &Base, Register &Offset) { 830 auto &MF = *MI.getParent()->getParent(); 831 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 832 833 #ifndef NDEBUG 834 unsigned Opcode = MI.getOpcode(); 835 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 836 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 837 #endif 838 839 Addr = MI.getOperand(1).getReg(); 840 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 841 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 842 return false; 843 844 Base = AddrDef->getOperand(1).getReg(); 845 Offset = AddrDef->getOperand(2).getReg(); 846 847 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 848 849 if (!ForceLegalIndexing && 850 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 851 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 852 return false; 853 } 854 855 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 856 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 857 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 858 return false; 859 } 860 861 if (MI.getOpcode() == TargetOpcode::G_STORE) { 862 // Would require a copy. 863 if (Base == MI.getOperand(0).getReg()) { 864 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 865 return false; 866 } 867 868 // We're expecting one use of Addr in MI, but it could also be the 869 // value stored, which isn't actually dominated by the instruction. 870 if (MI.getOperand(0).getReg() == Addr) { 871 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 872 return false; 873 } 874 } 875 876 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 877 // That might allow us to end base's liveness here by adjusting the constant. 878 879 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 880 if (!dominates(MI, UseMI)) { 881 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 882 return false; 883 } 884 } 885 886 return true; 887 } 888 889 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 890 IndexedLoadStoreMatchInfo MatchInfo; 891 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 892 applyCombineIndexedLoadStore(MI, MatchInfo); 893 return true; 894 } 895 return false; 896 } 897 898 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 899 unsigned Opcode = MI.getOpcode(); 900 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 901 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 902 return false; 903 904 // For now, no targets actually support these opcodes so don't waste time 905 // running these unless we're forced to for testing. 906 if (!ForceLegalIndexing) 907 return false; 908 909 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 910 MatchInfo.Offset); 911 if (!MatchInfo.IsPre && 912 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 913 MatchInfo.Offset)) 914 return false; 915 916 return true; 917 } 918 919 void CombinerHelper::applyCombineIndexedLoadStore( 920 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 921 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 922 MachineIRBuilder MIRBuilder(MI); 923 unsigned Opcode = MI.getOpcode(); 924 bool IsStore = Opcode == TargetOpcode::G_STORE; 925 unsigned NewOpcode; 926 switch (Opcode) { 927 case TargetOpcode::G_LOAD: 928 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 929 break; 930 case TargetOpcode::G_SEXTLOAD: 931 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 932 break; 933 case TargetOpcode::G_ZEXTLOAD: 934 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 935 break; 936 case TargetOpcode::G_STORE: 937 NewOpcode = TargetOpcode::G_INDEXED_STORE; 938 break; 939 default: 940 llvm_unreachable("Unknown load/store opcode"); 941 } 942 943 auto MIB = MIRBuilder.buildInstr(NewOpcode); 944 if (IsStore) { 945 MIB.addDef(MatchInfo.Addr); 946 MIB.addUse(MI.getOperand(0).getReg()); 947 } else { 948 MIB.addDef(MI.getOperand(0).getReg()); 949 MIB.addDef(MatchInfo.Addr); 950 } 951 952 MIB.addUse(MatchInfo.Base); 953 MIB.addUse(MatchInfo.Offset); 954 MIB.addImm(MatchInfo.IsPre); 955 MI.eraseFromParent(); 956 AddrDef.eraseFromParent(); 957 958 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 959 } 960 961 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 962 MachineInstr *&OtherMI) { 963 unsigned Opcode = MI.getOpcode(); 964 bool IsDiv, IsSigned; 965 966 switch (Opcode) { 967 default: 968 llvm_unreachable("Unexpected opcode!"); 969 case TargetOpcode::G_SDIV: 970 case TargetOpcode::G_UDIV: { 971 IsDiv = true; 972 IsSigned = Opcode == TargetOpcode::G_SDIV; 973 break; 974 } 975 case TargetOpcode::G_SREM: 976 case TargetOpcode::G_UREM: { 977 IsDiv = false; 978 IsSigned = Opcode == TargetOpcode::G_SREM; 979 break; 980 } 981 } 982 983 Register Src1 = MI.getOperand(1).getReg(); 984 unsigned DivOpcode, RemOpcode, DivremOpcode; 985 if (IsSigned) { 986 DivOpcode = TargetOpcode::G_SDIV; 987 RemOpcode = TargetOpcode::G_SREM; 988 DivremOpcode = TargetOpcode::G_SDIVREM; 989 } else { 990 DivOpcode = TargetOpcode::G_UDIV; 991 RemOpcode = TargetOpcode::G_UREM; 992 DivremOpcode = TargetOpcode::G_UDIVREM; 993 } 994 995 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 996 return false; 997 998 // Combine: 999 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1000 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1001 // into: 1002 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1003 1004 // Combine: 1005 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1006 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1007 // into: 1008 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1009 1010 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1011 if (MI.getParent() == UseMI.getParent() && 1012 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1013 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1014 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1015 OtherMI = &UseMI; 1016 return true; 1017 } 1018 } 1019 1020 return false; 1021 } 1022 1023 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1024 MachineInstr *&OtherMI) { 1025 unsigned Opcode = MI.getOpcode(); 1026 assert(OtherMI && "OtherMI shouldn't be empty."); 1027 1028 Register DestDivReg, DestRemReg; 1029 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1030 DestDivReg = MI.getOperand(0).getReg(); 1031 DestRemReg = OtherMI->getOperand(0).getReg(); 1032 } else { 1033 DestDivReg = OtherMI->getOperand(0).getReg(); 1034 DestRemReg = MI.getOperand(0).getReg(); 1035 } 1036 1037 bool IsSigned = 1038 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1039 1040 // Check which instruction is first in the block so we don't break def-use 1041 // deps by "moving" the instruction incorrectly. 1042 if (dominates(MI, *OtherMI)) 1043 Builder.setInstrAndDebugLoc(MI); 1044 else 1045 Builder.setInstrAndDebugLoc(*OtherMI); 1046 1047 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1048 : TargetOpcode::G_UDIVREM, 1049 {DestDivReg, DestRemReg}, 1050 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1051 MI.eraseFromParent(); 1052 OtherMI->eraseFromParent(); 1053 } 1054 1055 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1056 MachineInstr *&BrCond) { 1057 assert(MI.getOpcode() == TargetOpcode::G_BR); 1058 1059 // Try to match the following: 1060 // bb1: 1061 // G_BRCOND %c1, %bb2 1062 // G_BR %bb3 1063 // bb2: 1064 // ... 1065 // bb3: 1066 1067 // The above pattern does not have a fall through to the successor bb2, always 1068 // resulting in a branch no matter which path is taken. Here we try to find 1069 // and replace that pattern with conditional branch to bb3 and otherwise 1070 // fallthrough to bb2. This is generally better for branch predictors. 1071 1072 MachineBasicBlock *MBB = MI.getParent(); 1073 MachineBasicBlock::iterator BrIt(MI); 1074 if (BrIt == MBB->begin()) 1075 return false; 1076 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1077 1078 BrCond = &*std::prev(BrIt); 1079 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1080 return false; 1081 1082 // Check that the next block is the conditional branch target. Also make sure 1083 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1084 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1085 return BrCondTarget != MI.getOperand(0).getMBB() && 1086 MBB->isLayoutSuccessor(BrCondTarget); 1087 } 1088 1089 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1090 MachineInstr *&BrCond) { 1091 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1092 Builder.setInstrAndDebugLoc(*BrCond); 1093 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1094 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1095 // this to i1 only since we might not know for sure what kind of 1096 // compare generated the condition value. 1097 auto True = Builder.buildConstant( 1098 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1099 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1100 1101 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1102 Observer.changingInstr(MI); 1103 MI.getOperand(0).setMBB(FallthroughBB); 1104 Observer.changedInstr(MI); 1105 1106 // Change the conditional branch to use the inverted condition and 1107 // new target block. 1108 Observer.changingInstr(*BrCond); 1109 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1110 BrCond->getOperand(1).setMBB(BrTarget); 1111 Observer.changedInstr(*BrCond); 1112 } 1113 1114 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 1115 // On Darwin, -Os means optimize for size without hurting performance, so 1116 // only really optimize for size when -Oz (MinSize) is used. 1117 if (MF.getTarget().getTargetTriple().isOSDarwin()) 1118 return MF.getFunction().hasMinSize(); 1119 return MF.getFunction().hasOptSize(); 1120 } 1121 1122 // Returns a list of types to use for memory op lowering in MemOps. A partial 1123 // port of findOptimalMemOpLowering in TargetLowering. 1124 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 1125 unsigned Limit, const MemOp &Op, 1126 unsigned DstAS, unsigned SrcAS, 1127 const AttributeList &FuncAttributes, 1128 const TargetLowering &TLI) { 1129 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 1130 return false; 1131 1132 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 1133 1134 if (Ty == LLT()) { 1135 // Use the largest scalar type whose alignment constraints are satisfied. 1136 // We only need to check DstAlign here as SrcAlign is always greater or 1137 // equal to DstAlign (or zero). 1138 Ty = LLT::scalar(64); 1139 if (Op.isFixedDstAlign()) 1140 while (Op.getDstAlign() < Ty.getSizeInBytes() && 1141 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 1142 Ty = LLT::scalar(Ty.getSizeInBytes()); 1143 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 1144 // FIXME: check for the largest legal type we can load/store to. 1145 } 1146 1147 unsigned NumMemOps = 0; 1148 uint64_t Size = Op.size(); 1149 while (Size) { 1150 unsigned TySize = Ty.getSizeInBytes(); 1151 while (TySize > Size) { 1152 // For now, only use non-vector load / store's for the left-over pieces. 1153 LLT NewTy = Ty; 1154 // FIXME: check for mem op safety and legality of the types. Not all of 1155 // SDAGisms map cleanly to GISel concepts. 1156 if (NewTy.isVector()) 1157 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 1158 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 1159 unsigned NewTySize = NewTy.getSizeInBytes(); 1160 assert(NewTySize > 0 && "Could not find appropriate type"); 1161 1162 // If the new LLT cannot cover all of the remaining bits, then consider 1163 // issuing a (or a pair of) unaligned and overlapping load / store. 1164 bool Fast; 1165 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 1166 MVT VT = getMVTForLLT(Ty); 1167 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 1168 TLI.allowsMisalignedMemoryAccesses( 1169 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 1170 MachineMemOperand::MONone, &Fast) && 1171 Fast) 1172 TySize = Size; 1173 else { 1174 Ty = NewTy; 1175 TySize = NewTySize; 1176 } 1177 } 1178 1179 if (++NumMemOps > Limit) 1180 return false; 1181 1182 MemOps.push_back(Ty); 1183 Size -= TySize; 1184 } 1185 1186 return true; 1187 } 1188 1189 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1190 if (Ty.isVector()) 1191 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1192 Ty.getNumElements()); 1193 return IntegerType::get(C, Ty.getSizeInBits()); 1194 } 1195 1196 // Get a vectorized representation of the memset value operand, GISel edition. 1197 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 1198 MachineRegisterInfo &MRI = *MIB.getMRI(); 1199 unsigned NumBits = Ty.getScalarSizeInBits(); 1200 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1201 if (!Ty.isVector() && ValVRegAndVal) { 1202 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 1203 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 1204 return MIB.buildConstant(Ty, SplatVal).getReg(0); 1205 } 1206 1207 // Extend the byte value to the larger type, and then multiply by a magic 1208 // value 0x010101... in order to replicate it across every byte. 1209 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 1210 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 1211 return MIB.buildConstant(Ty, 0).getReg(0); 1212 } 1213 1214 LLT ExtType = Ty.getScalarType(); 1215 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 1216 if (NumBits > 8) { 1217 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 1218 auto MagicMI = MIB.buildConstant(ExtType, Magic); 1219 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 1220 } 1221 1222 // For vector types create a G_BUILD_VECTOR. 1223 if (Ty.isVector()) 1224 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 1225 1226 return Val; 1227 } 1228 1229 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 1230 Register Val, uint64_t KnownLen, 1231 Align Alignment, bool IsVolatile) { 1232 auto &MF = *MI.getParent()->getParent(); 1233 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1234 auto &DL = MF.getDataLayout(); 1235 LLVMContext &C = MF.getFunction().getContext(); 1236 1237 assert(KnownLen != 0 && "Have a zero length memset length!"); 1238 1239 bool DstAlignCanChange = false; 1240 MachineFrameInfo &MFI = MF.getFrameInfo(); 1241 bool OptSize = shouldLowerMemFuncForSize(MF); 1242 1243 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1244 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1245 DstAlignCanChange = true; 1246 1247 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1248 std::vector<LLT> MemOps; 1249 1250 const auto &DstMMO = **MI.memoperands_begin(); 1251 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1252 1253 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1254 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1255 1256 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1257 MemOp::Set(KnownLen, DstAlignCanChange, 1258 Alignment, 1259 /*IsZeroMemset=*/IsZeroVal, 1260 /*IsVolatile=*/IsVolatile), 1261 DstPtrInfo.getAddrSpace(), ~0u, 1262 MF.getFunction().getAttributes(), TLI)) 1263 return false; 1264 1265 if (DstAlignCanChange) { 1266 // Get an estimate of the type from the LLT. 1267 Type *IRTy = getTypeForLLT(MemOps[0], C); 1268 Align NewAlign = DL.getABITypeAlign(IRTy); 1269 if (NewAlign > Alignment) { 1270 Alignment = NewAlign; 1271 unsigned FI = FIDef->getOperand(1).getIndex(); 1272 // Give the stack frame object a larger alignment if needed. 1273 if (MFI.getObjectAlign(FI) < Alignment) 1274 MFI.setObjectAlignment(FI, Alignment); 1275 } 1276 } 1277 1278 MachineIRBuilder MIB(MI); 1279 // Find the largest store and generate the bit pattern for it. 1280 LLT LargestTy = MemOps[0]; 1281 for (unsigned i = 1; i < MemOps.size(); i++) 1282 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1283 LargestTy = MemOps[i]; 1284 1285 // The memset stored value is always defined as an s8, so in order to make it 1286 // work with larger store types we need to repeat the bit pattern across the 1287 // wider type. 1288 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1289 1290 if (!MemSetValue) 1291 return false; 1292 1293 // Generate the stores. For each store type in the list, we generate the 1294 // matching store of that type to the destination address. 1295 LLT PtrTy = MRI.getType(Dst); 1296 unsigned DstOff = 0; 1297 unsigned Size = KnownLen; 1298 for (unsigned I = 0; I < MemOps.size(); I++) { 1299 LLT Ty = MemOps[I]; 1300 unsigned TySize = Ty.getSizeInBytes(); 1301 if (TySize > Size) { 1302 // Issuing an unaligned load / store pair that overlaps with the previous 1303 // pair. Adjust the offset accordingly. 1304 assert(I == MemOps.size() - 1 && I != 0); 1305 DstOff -= TySize - Size; 1306 } 1307 1308 // If this store is smaller than the largest store see whether we can get 1309 // the smaller value for free with a truncate. 1310 Register Value = MemSetValue; 1311 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1312 MVT VT = getMVTForLLT(Ty); 1313 MVT LargestVT = getMVTForLLT(LargestTy); 1314 if (!LargestTy.isVector() && !Ty.isVector() && 1315 TLI.isTruncateFree(LargestVT, VT)) 1316 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1317 else 1318 Value = getMemsetValue(Val, Ty, MIB); 1319 if (!Value) 1320 return false; 1321 } 1322 1323 auto *StoreMMO = 1324 MF.getMachineMemOperand(&DstMMO, DstOff, Ty); 1325 1326 Register Ptr = Dst; 1327 if (DstOff != 0) { 1328 auto Offset = 1329 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1330 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1331 } 1332 1333 MIB.buildStore(Value, Ptr, *StoreMMO); 1334 DstOff += Ty.getSizeInBytes(); 1335 Size -= TySize; 1336 } 1337 1338 MI.eraseFromParent(); 1339 return true; 1340 } 1341 1342 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1343 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 1344 1345 Register Dst = MI.getOperand(0).getReg(); 1346 Register Src = MI.getOperand(1).getReg(); 1347 Register Len = MI.getOperand(2).getReg(); 1348 1349 const auto *MMOIt = MI.memoperands_begin(); 1350 const MachineMemOperand *MemOp = *MMOIt; 1351 bool IsVolatile = MemOp->isVolatile(); 1352 1353 // See if this is a constant length copy 1354 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1355 // FIXME: support dynamically sized G_MEMCPY_INLINE 1356 assert(LenVRegAndVal.hasValue() && 1357 "inline memcpy with dynamic size is not yet supported"); 1358 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 1359 if (KnownLen == 0) { 1360 MI.eraseFromParent(); 1361 return true; 1362 } 1363 1364 const auto &DstMMO = **MI.memoperands_begin(); 1365 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1366 Align DstAlign = DstMMO.getBaseAlign(); 1367 Align SrcAlign = SrcMMO.getBaseAlign(); 1368 1369 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 1370 IsVolatile); 1371 } 1372 1373 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI, Register Dst, 1374 Register Src, uint64_t KnownLen, 1375 Align DstAlign, Align SrcAlign, 1376 bool IsVolatile) { 1377 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 1378 return optimizeMemcpy(MI, Dst, Src, KnownLen, 1379 std::numeric_limits<uint64_t>::max(), DstAlign, 1380 SrcAlign, IsVolatile); 1381 } 1382 1383 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1384 Register Src, uint64_t KnownLen, 1385 uint64_t Limit, Align DstAlign, 1386 Align SrcAlign, bool IsVolatile) { 1387 auto &MF = *MI.getParent()->getParent(); 1388 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1389 auto &DL = MF.getDataLayout(); 1390 LLVMContext &C = MF.getFunction().getContext(); 1391 1392 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1393 1394 bool DstAlignCanChange = false; 1395 MachineFrameInfo &MFI = MF.getFrameInfo(); 1396 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1397 1398 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1399 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1400 DstAlignCanChange = true; 1401 1402 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1403 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1404 // if the memcpy is in a tail call position. 1405 1406 std::vector<LLT> MemOps; 1407 1408 const auto &DstMMO = **MI.memoperands_begin(); 1409 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1410 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1411 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1412 1413 if (!findGISelOptimalMemOpLowering( 1414 MemOps, Limit, 1415 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1416 IsVolatile), 1417 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1418 MF.getFunction().getAttributes(), TLI)) 1419 return false; 1420 1421 if (DstAlignCanChange) { 1422 // Get an estimate of the type from the LLT. 1423 Type *IRTy = getTypeForLLT(MemOps[0], C); 1424 Align NewAlign = DL.getABITypeAlign(IRTy); 1425 1426 // Don't promote to an alignment that would require dynamic stack 1427 // realignment. 1428 if (!TRI->hasStackRealignment(MF)) 1429 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1430 NewAlign = NewAlign / 2; 1431 1432 if (NewAlign > Alignment) { 1433 Alignment = NewAlign; 1434 unsigned FI = FIDef->getOperand(1).getIndex(); 1435 // Give the stack frame object a larger alignment if needed. 1436 if (MFI.getObjectAlign(FI) < Alignment) 1437 MFI.setObjectAlignment(FI, Alignment); 1438 } 1439 } 1440 1441 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1442 1443 MachineIRBuilder MIB(MI); 1444 // Now we need to emit a pair of load and stores for each of the types we've 1445 // collected. I.e. for each type, generate a load from the source pointer of 1446 // that type width, and then generate a corresponding store to the dest buffer 1447 // of that value loaded. This can result in a sequence of loads and stores 1448 // mixed types, depending on what the target specifies as good types to use. 1449 unsigned CurrOffset = 0; 1450 LLT PtrTy = MRI.getType(Src); 1451 unsigned Size = KnownLen; 1452 for (auto CopyTy : MemOps) { 1453 // Issuing an unaligned load / store pair that overlaps with the previous 1454 // pair. Adjust the offset accordingly. 1455 if (CopyTy.getSizeInBytes() > Size) 1456 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1457 1458 // Construct MMOs for the accesses. 1459 auto *LoadMMO = 1460 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1461 auto *StoreMMO = 1462 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1463 1464 // Create the load. 1465 Register LoadPtr = Src; 1466 Register Offset; 1467 if (CurrOffset != 0) { 1468 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1469 .getReg(0); 1470 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1471 } 1472 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1473 1474 // Create the store. 1475 Register StorePtr = 1476 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1477 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1478 CurrOffset += CopyTy.getSizeInBytes(); 1479 Size -= CopyTy.getSizeInBytes(); 1480 } 1481 1482 MI.eraseFromParent(); 1483 return true; 1484 } 1485 1486 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1487 Register Src, uint64_t KnownLen, 1488 Align DstAlign, Align SrcAlign, 1489 bool IsVolatile) { 1490 auto &MF = *MI.getParent()->getParent(); 1491 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1492 auto &DL = MF.getDataLayout(); 1493 LLVMContext &C = MF.getFunction().getContext(); 1494 1495 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1496 1497 bool DstAlignCanChange = false; 1498 MachineFrameInfo &MFI = MF.getFrameInfo(); 1499 bool OptSize = shouldLowerMemFuncForSize(MF); 1500 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1501 1502 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1503 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1504 DstAlignCanChange = true; 1505 1506 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1507 std::vector<LLT> MemOps; 1508 1509 const auto &DstMMO = **MI.memoperands_begin(); 1510 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1511 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1512 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1513 1514 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1515 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1516 // same thing here. 1517 if (!findGISelOptimalMemOpLowering( 1518 MemOps, Limit, 1519 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1520 /*IsVolatile*/ true), 1521 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1522 MF.getFunction().getAttributes(), TLI)) 1523 return false; 1524 1525 if (DstAlignCanChange) { 1526 // Get an estimate of the type from the LLT. 1527 Type *IRTy = getTypeForLLT(MemOps[0], C); 1528 Align NewAlign = DL.getABITypeAlign(IRTy); 1529 1530 // Don't promote to an alignment that would require dynamic stack 1531 // realignment. 1532 if (!TRI->hasStackRealignment(MF)) 1533 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1534 NewAlign = NewAlign / 2; 1535 1536 if (NewAlign > Alignment) { 1537 Alignment = NewAlign; 1538 unsigned FI = FIDef->getOperand(1).getIndex(); 1539 // Give the stack frame object a larger alignment if needed. 1540 if (MFI.getObjectAlign(FI) < Alignment) 1541 MFI.setObjectAlignment(FI, Alignment); 1542 } 1543 } 1544 1545 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1546 1547 MachineIRBuilder MIB(MI); 1548 // Memmove requires that we perform the loads first before issuing the stores. 1549 // Apart from that, this loop is pretty much doing the same thing as the 1550 // memcpy codegen function. 1551 unsigned CurrOffset = 0; 1552 LLT PtrTy = MRI.getType(Src); 1553 SmallVector<Register, 16> LoadVals; 1554 for (auto CopyTy : MemOps) { 1555 // Construct MMO for the load. 1556 auto *LoadMMO = 1557 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1558 1559 // Create the load. 1560 Register LoadPtr = Src; 1561 if (CurrOffset != 0) { 1562 auto Offset = 1563 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1564 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1565 } 1566 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1567 CurrOffset += CopyTy.getSizeInBytes(); 1568 } 1569 1570 CurrOffset = 0; 1571 for (unsigned I = 0; I < MemOps.size(); ++I) { 1572 LLT CopyTy = MemOps[I]; 1573 // Now store the values loaded. 1574 auto *StoreMMO = 1575 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1576 1577 Register StorePtr = Dst; 1578 if (CurrOffset != 0) { 1579 auto Offset = 1580 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1581 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1582 } 1583 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1584 CurrOffset += CopyTy.getSizeInBytes(); 1585 } 1586 MI.eraseFromParent(); 1587 return true; 1588 } 1589 1590 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1591 const unsigned Opc = MI.getOpcode(); 1592 // This combine is fairly complex so it's not written with a separate 1593 // matcher function. 1594 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 1595 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); 1596 1597 auto MMOIt = MI.memoperands_begin(); 1598 const MachineMemOperand *MemOp = *MMOIt; 1599 1600 Align DstAlign = MemOp->getBaseAlign(); 1601 Align SrcAlign; 1602 Register Dst = MI.getOperand(0).getReg(); 1603 Register Src = MI.getOperand(1).getReg(); 1604 Register Len = MI.getOperand(2).getReg(); 1605 1606 if (Opc != TargetOpcode::G_MEMSET) { 1607 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1608 MemOp = *(++MMOIt); 1609 SrcAlign = MemOp->getBaseAlign(); 1610 } 1611 1612 // See if this is a constant length copy 1613 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1614 if (!LenVRegAndVal) 1615 return false; // Leave it to the legalizer to lower it to a libcall. 1616 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 1617 1618 if (KnownLen == 0) { 1619 MI.eraseFromParent(); 1620 return true; 1621 } 1622 1623 bool IsVolatile = MemOp->isVolatile(); 1624 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 1625 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 1626 IsVolatile); 1627 1628 // Don't try to optimize volatile. 1629 if (IsVolatile) 1630 return false; 1631 1632 if (MaxLen && KnownLen > MaxLen) 1633 return false; 1634 1635 if (Opc == TargetOpcode::G_MEMCPY) { 1636 auto &MF = *MI.getParent()->getParent(); 1637 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1638 bool OptSize = shouldLowerMemFuncForSize(MF); 1639 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1640 return optimizeMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 1641 IsVolatile); 1642 } 1643 if (Opc == TargetOpcode::G_MEMMOVE) 1644 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1645 if (Opc == TargetOpcode::G_MEMSET) 1646 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1647 return false; 1648 } 1649 1650 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1651 const Register Op, 1652 const MachineRegisterInfo &MRI) { 1653 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1654 if (!MaybeCst) 1655 return None; 1656 1657 APFloat V = MaybeCst->getValueAPF(); 1658 switch (Opcode) { 1659 default: 1660 llvm_unreachable("Unexpected opcode!"); 1661 case TargetOpcode::G_FNEG: { 1662 V.changeSign(); 1663 return V; 1664 } 1665 case TargetOpcode::G_FABS: { 1666 V.clearSign(); 1667 return V; 1668 } 1669 case TargetOpcode::G_FPTRUNC: 1670 break; 1671 case TargetOpcode::G_FSQRT: { 1672 bool Unused; 1673 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1674 V = APFloat(sqrt(V.convertToDouble())); 1675 break; 1676 } 1677 case TargetOpcode::G_FLOG2: { 1678 bool Unused; 1679 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1680 V = APFloat(log2(V.convertToDouble())); 1681 break; 1682 } 1683 } 1684 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1685 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1686 // and `G_FLOG2` reach here. 1687 bool Unused; 1688 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1689 return V; 1690 } 1691 1692 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1693 Optional<APFloat> &Cst) { 1694 Register DstReg = MI.getOperand(0).getReg(); 1695 Register SrcReg = MI.getOperand(1).getReg(); 1696 LLT DstTy = MRI.getType(DstReg); 1697 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1698 return Cst.hasValue(); 1699 } 1700 1701 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1702 Optional<APFloat> &Cst) { 1703 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1704 Builder.setInstrAndDebugLoc(MI); 1705 MachineFunction &MF = Builder.getMF(); 1706 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1707 Register DstReg = MI.getOperand(0).getReg(); 1708 Builder.buildFConstant(DstReg, *FPVal); 1709 MI.eraseFromParent(); 1710 } 1711 1712 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1713 PtrAddChain &MatchInfo) { 1714 // We're trying to match the following pattern: 1715 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1716 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1717 // --> 1718 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1719 1720 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1721 return false; 1722 1723 Register Add2 = MI.getOperand(1).getReg(); 1724 Register Imm1 = MI.getOperand(2).getReg(); 1725 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1726 if (!MaybeImmVal) 1727 return false; 1728 1729 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1730 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1731 return false; 1732 1733 Register Base = Add2Def->getOperand(1).getReg(); 1734 Register Imm2 = Add2Def->getOperand(2).getReg(); 1735 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1736 if (!MaybeImm2Val) 1737 return false; 1738 1739 // Check if the new combined immediate forms an illegal addressing mode. 1740 // Do not combine if it was legal before but would get illegal. 1741 // To do so, we need to find a load/store user of the pointer to get 1742 // the access type. 1743 Type *AccessTy = nullptr; 1744 auto &MF = *MI.getMF(); 1745 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1746 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1747 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1748 MF.getFunction().getContext()); 1749 break; 1750 } 1751 } 1752 TargetLoweringBase::AddrMode AMNew; 1753 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1754 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1755 if (AccessTy) { 1756 AMNew.HasBaseReg = true; 1757 TargetLoweringBase::AddrMode AMOld; 1758 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); 1759 AMOld.HasBaseReg = true; 1760 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1761 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1762 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1763 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1764 return false; 1765 } 1766 1767 // Pass the combined immediate to the apply function. 1768 MatchInfo.Imm = AMNew.BaseOffs; 1769 MatchInfo.Base = Base; 1770 MatchInfo.Bank = getRegBank(Imm2); 1771 return true; 1772 } 1773 1774 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1775 PtrAddChain &MatchInfo) { 1776 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1777 MachineIRBuilder MIB(MI); 1778 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1779 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1780 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1781 Observer.changingInstr(MI); 1782 MI.getOperand(1).setReg(MatchInfo.Base); 1783 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1784 Observer.changedInstr(MI); 1785 } 1786 1787 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1788 RegisterImmPair &MatchInfo) { 1789 // We're trying to match the following pattern with any of 1790 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1791 // %t1 = SHIFT %base, G_CONSTANT imm1 1792 // %root = SHIFT %t1, G_CONSTANT imm2 1793 // --> 1794 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1795 1796 unsigned Opcode = MI.getOpcode(); 1797 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1798 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1799 Opcode == TargetOpcode::G_USHLSAT) && 1800 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1801 1802 Register Shl2 = MI.getOperand(1).getReg(); 1803 Register Imm1 = MI.getOperand(2).getReg(); 1804 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1805 if (!MaybeImmVal) 1806 return false; 1807 1808 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1809 if (Shl2Def->getOpcode() != Opcode) 1810 return false; 1811 1812 Register Base = Shl2Def->getOperand(1).getReg(); 1813 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1814 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1815 if (!MaybeImm2Val) 1816 return false; 1817 1818 // Pass the combined immediate to the apply function. 1819 MatchInfo.Imm = 1820 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1821 MatchInfo.Reg = Base; 1822 1823 // There is no simple replacement for a saturating unsigned left shift that 1824 // exceeds the scalar size. 1825 if (Opcode == TargetOpcode::G_USHLSAT && 1826 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1827 return false; 1828 1829 return true; 1830 } 1831 1832 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1833 RegisterImmPair &MatchInfo) { 1834 unsigned Opcode = MI.getOpcode(); 1835 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1836 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1837 Opcode == TargetOpcode::G_USHLSAT) && 1838 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1839 1840 Builder.setInstrAndDebugLoc(MI); 1841 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1842 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1843 auto Imm = MatchInfo.Imm; 1844 1845 if (Imm >= ScalarSizeInBits) { 1846 // Any logical shift that exceeds scalar size will produce zero. 1847 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1848 Builder.buildConstant(MI.getOperand(0), 0); 1849 MI.eraseFromParent(); 1850 return; 1851 } 1852 // Arithmetic shift and saturating signed left shift have no effect beyond 1853 // scalar size. 1854 Imm = ScalarSizeInBits - 1; 1855 } 1856 1857 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1858 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1859 Observer.changingInstr(MI); 1860 MI.getOperand(1).setReg(MatchInfo.Reg); 1861 MI.getOperand(2).setReg(NewImm); 1862 Observer.changedInstr(MI); 1863 } 1864 1865 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1866 ShiftOfShiftedLogic &MatchInfo) { 1867 // We're trying to match the following pattern with any of 1868 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1869 // with any of G_AND/G_OR/G_XOR logic instructions. 1870 // %t1 = SHIFT %X, G_CONSTANT C0 1871 // %t2 = LOGIC %t1, %Y 1872 // %root = SHIFT %t2, G_CONSTANT C1 1873 // --> 1874 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1875 // %t4 = SHIFT %Y, G_CONSTANT C1 1876 // %root = LOGIC %t3, %t4 1877 unsigned ShiftOpcode = MI.getOpcode(); 1878 assert((ShiftOpcode == TargetOpcode::G_SHL || 1879 ShiftOpcode == TargetOpcode::G_ASHR || 1880 ShiftOpcode == TargetOpcode::G_LSHR || 1881 ShiftOpcode == TargetOpcode::G_USHLSAT || 1882 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1883 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1884 1885 // Match a one-use bitwise logic op. 1886 Register LogicDest = MI.getOperand(1).getReg(); 1887 if (!MRI.hasOneNonDBGUse(LogicDest)) 1888 return false; 1889 1890 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1891 unsigned LogicOpcode = LogicMI->getOpcode(); 1892 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1893 LogicOpcode != TargetOpcode::G_XOR) 1894 return false; 1895 1896 // Find a matching one-use shift by constant. 1897 const Register C1 = MI.getOperand(2).getReg(); 1898 auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); 1899 if (!MaybeImmVal) 1900 return false; 1901 1902 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1903 1904 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1905 // Shift should match previous one and should be a one-use. 1906 if (MI->getOpcode() != ShiftOpcode || 1907 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1908 return false; 1909 1910 // Must be a constant. 1911 auto MaybeImmVal = 1912 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1913 if (!MaybeImmVal) 1914 return false; 1915 1916 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1917 return true; 1918 }; 1919 1920 // Logic ops are commutative, so check each operand for a match. 1921 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1922 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1923 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1924 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1925 uint64_t C0Val; 1926 1927 if (matchFirstShift(LogicMIOp1, C0Val)) { 1928 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1929 MatchInfo.Shift2 = LogicMIOp1; 1930 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1931 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1932 MatchInfo.Shift2 = LogicMIOp2; 1933 } else 1934 return false; 1935 1936 MatchInfo.ValSum = C0Val + C1Val; 1937 1938 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1939 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1940 return false; 1941 1942 MatchInfo.Logic = LogicMI; 1943 return true; 1944 } 1945 1946 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1947 ShiftOfShiftedLogic &MatchInfo) { 1948 unsigned Opcode = MI.getOpcode(); 1949 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1950 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1951 Opcode == TargetOpcode::G_SSHLSAT) && 1952 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1953 1954 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1955 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1956 Builder.setInstrAndDebugLoc(MI); 1957 1958 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1959 1960 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1961 Register Shift1 = 1962 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1963 1964 Register Shift2Const = MI.getOperand(2).getReg(); 1965 Register Shift2 = Builder 1966 .buildInstr(Opcode, {DestType}, 1967 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1968 .getReg(0); 1969 1970 Register Dest = MI.getOperand(0).getReg(); 1971 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1972 1973 // These were one use so it's safe to remove them. 1974 MatchInfo.Shift2->eraseFromParentAndMarkDBGValuesForRemoval(); 1975 MatchInfo.Logic->eraseFromParentAndMarkDBGValuesForRemoval(); 1976 1977 MI.eraseFromParent(); 1978 } 1979 1980 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1981 unsigned &ShiftVal) { 1982 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1983 auto MaybeImmVal = 1984 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1985 if (!MaybeImmVal) 1986 return false; 1987 1988 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1989 return (static_cast<int32_t>(ShiftVal) != -1); 1990 } 1991 1992 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1993 unsigned &ShiftVal) { 1994 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1995 MachineIRBuilder MIB(MI); 1996 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1997 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1998 Observer.changingInstr(MI); 1999 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 2000 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 2001 Observer.changedInstr(MI); 2002 } 2003 2004 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 2005 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 2006 RegisterImmPair &MatchData) { 2007 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 2008 2009 Register LHS = MI.getOperand(1).getReg(); 2010 2011 Register ExtSrc; 2012 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 2013 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 2014 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 2015 return false; 2016 2017 // TODO: Should handle vector splat. 2018 Register RHS = MI.getOperand(2).getReg(); 2019 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 2020 if (!MaybeShiftAmtVal) 2021 return false; 2022 2023 if (LI) { 2024 LLT SrcTy = MRI.getType(ExtSrc); 2025 2026 // We only really care about the legality with the shifted value. We can 2027 // pick any type the constant shift amount, so ask the target what to 2028 // use. Otherwise we would have to guess and hope it is reported as legal. 2029 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 2030 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 2031 return false; 2032 } 2033 2034 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 2035 MatchData.Reg = ExtSrc; 2036 MatchData.Imm = ShiftAmt; 2037 2038 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 2039 return MinLeadingZeros >= ShiftAmt; 2040 } 2041 2042 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 2043 const RegisterImmPair &MatchData) { 2044 Register ExtSrcReg = MatchData.Reg; 2045 int64_t ShiftAmtVal = MatchData.Imm; 2046 2047 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 2048 Builder.setInstrAndDebugLoc(MI); 2049 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 2050 auto NarrowShift = 2051 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 2052 Builder.buildZExt(MI.getOperand(0), NarrowShift); 2053 MI.eraseFromParent(); 2054 } 2055 2056 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 2057 Register &MatchInfo) { 2058 GMerge &Merge = cast<GMerge>(MI); 2059 SmallVector<Register, 16> MergedValues; 2060 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 2061 MergedValues.emplace_back(Merge.getSourceReg(I)); 2062 2063 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 2064 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 2065 return false; 2066 2067 for (unsigned I = 0; I < MergedValues.size(); ++I) 2068 if (MergedValues[I] != Unmerge->getReg(I)) 2069 return false; 2070 2071 MatchInfo = Unmerge->getSourceReg(); 2072 return true; 2073 } 2074 2075 static Register peekThroughBitcast(Register Reg, 2076 const MachineRegisterInfo &MRI) { 2077 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 2078 ; 2079 2080 return Reg; 2081 } 2082 2083 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 2084 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2085 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2086 "Expected an unmerge"); 2087 auto &Unmerge = cast<GUnmerge>(MI); 2088 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 2089 2090 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI); 2091 if (!SrcInstr) 2092 return false; 2093 2094 // Check the source type of the merge. 2095 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 2096 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 2097 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 2098 if (SrcMergeTy != Dst0Ty && !SameSize) 2099 return false; 2100 // They are the same now (modulo a bitcast). 2101 // We can collect all the src registers. 2102 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 2103 Operands.push_back(SrcInstr->getSourceReg(Idx)); 2104 return true; 2105 } 2106 2107 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 2108 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2109 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2110 "Expected an unmerge"); 2111 assert((MI.getNumOperands() - 1 == Operands.size()) && 2112 "Not enough operands to replace all defs"); 2113 unsigned NumElems = MI.getNumOperands() - 1; 2114 2115 LLT SrcTy = MRI.getType(Operands[0]); 2116 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2117 bool CanReuseInputDirectly = DstTy == SrcTy; 2118 Builder.setInstrAndDebugLoc(MI); 2119 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2120 Register DstReg = MI.getOperand(Idx).getReg(); 2121 Register SrcReg = Operands[Idx]; 2122 if (CanReuseInputDirectly) 2123 replaceRegWith(MRI, DstReg, SrcReg); 2124 else 2125 Builder.buildCast(DstReg, SrcReg); 2126 } 2127 MI.eraseFromParent(); 2128 } 2129 2130 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 2131 SmallVectorImpl<APInt> &Csts) { 2132 unsigned SrcIdx = MI.getNumOperands() - 1; 2133 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 2134 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 2135 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 2136 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 2137 return false; 2138 // Break down the big constant in smaller ones. 2139 const MachineOperand &CstVal = SrcInstr->getOperand(1); 2140 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 2141 ? CstVal.getCImm()->getValue() 2142 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 2143 2144 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 2145 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 2146 // Unmerge a constant. 2147 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 2148 Csts.emplace_back(Val.trunc(ShiftAmt)); 2149 Val = Val.lshr(ShiftAmt); 2150 } 2151 2152 return true; 2153 } 2154 2155 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 2156 SmallVectorImpl<APInt> &Csts) { 2157 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2158 "Expected an unmerge"); 2159 assert((MI.getNumOperands() - 1 == Csts.size()) && 2160 "Not enough operands to replace all defs"); 2161 unsigned NumElems = MI.getNumOperands() - 1; 2162 Builder.setInstrAndDebugLoc(MI); 2163 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2164 Register DstReg = MI.getOperand(Idx).getReg(); 2165 Builder.buildConstant(DstReg, Csts[Idx]); 2166 } 2167 2168 MI.eraseFromParent(); 2169 } 2170 2171 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2172 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2173 "Expected an unmerge"); 2174 // Check that all the lanes are dead except the first one. 2175 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2176 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 2177 return false; 2178 } 2179 return true; 2180 } 2181 2182 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2183 Builder.setInstrAndDebugLoc(MI); 2184 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2185 // Truncating a vector is going to truncate every single lane, 2186 // whereas we want the full lowbits. 2187 // Do the operation on a scalar instead. 2188 LLT SrcTy = MRI.getType(SrcReg); 2189 if (SrcTy.isVector()) 2190 SrcReg = 2191 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 2192 2193 Register Dst0Reg = MI.getOperand(0).getReg(); 2194 LLT Dst0Ty = MRI.getType(Dst0Reg); 2195 if (Dst0Ty.isVector()) { 2196 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 2197 Builder.buildCast(Dst0Reg, MIB); 2198 } else 2199 Builder.buildTrunc(Dst0Reg, SrcReg); 2200 MI.eraseFromParent(); 2201 } 2202 2203 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 2204 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2205 "Expected an unmerge"); 2206 Register Dst0Reg = MI.getOperand(0).getReg(); 2207 LLT Dst0Ty = MRI.getType(Dst0Reg); 2208 // G_ZEXT on vector applies to each lane, so it will 2209 // affect all destinations. Therefore we won't be able 2210 // to simplify the unmerge to just the first definition. 2211 if (Dst0Ty.isVector()) 2212 return false; 2213 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2214 LLT SrcTy = MRI.getType(SrcReg); 2215 if (SrcTy.isVector()) 2216 return false; 2217 2218 Register ZExtSrcReg; 2219 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 2220 return false; 2221 2222 // Finally we can replace the first definition with 2223 // a zext of the source if the definition is big enough to hold 2224 // all of ZExtSrc bits. 2225 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2226 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 2227 } 2228 2229 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 2230 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2231 "Expected an unmerge"); 2232 2233 Register Dst0Reg = MI.getOperand(0).getReg(); 2234 2235 MachineInstr *ZExtInstr = 2236 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 2237 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 2238 "Expecting a G_ZEXT"); 2239 2240 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 2241 LLT Dst0Ty = MRI.getType(Dst0Reg); 2242 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2243 2244 Builder.setInstrAndDebugLoc(MI); 2245 2246 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 2247 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 2248 } else { 2249 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 2250 "ZExt src doesn't fit in destination"); 2251 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 2252 } 2253 2254 Register ZeroReg; 2255 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2256 if (!ZeroReg) 2257 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 2258 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 2259 } 2260 MI.eraseFromParent(); 2261 } 2262 2263 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 2264 unsigned TargetShiftSize, 2265 unsigned &ShiftVal) { 2266 assert((MI.getOpcode() == TargetOpcode::G_SHL || 2267 MI.getOpcode() == TargetOpcode::G_LSHR || 2268 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 2269 2270 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2271 if (Ty.isVector()) // TODO: 2272 return false; 2273 2274 // Don't narrow further than the requested size. 2275 unsigned Size = Ty.getSizeInBits(); 2276 if (Size <= TargetShiftSize) 2277 return false; 2278 2279 auto MaybeImmVal = 2280 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 2281 if (!MaybeImmVal) 2282 return false; 2283 2284 ShiftVal = MaybeImmVal->Value.getSExtValue(); 2285 return ShiftVal >= Size / 2 && ShiftVal < Size; 2286 } 2287 2288 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 2289 const unsigned &ShiftVal) { 2290 Register DstReg = MI.getOperand(0).getReg(); 2291 Register SrcReg = MI.getOperand(1).getReg(); 2292 LLT Ty = MRI.getType(SrcReg); 2293 unsigned Size = Ty.getSizeInBits(); 2294 unsigned HalfSize = Size / 2; 2295 assert(ShiftVal >= HalfSize); 2296 2297 LLT HalfTy = LLT::scalar(HalfSize); 2298 2299 Builder.setInstr(MI); 2300 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 2301 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 2302 2303 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2304 Register Narrowed = Unmerge.getReg(1); 2305 2306 // dst = G_LSHR s64:x, C for C >= 32 2307 // => 2308 // lo, hi = G_UNMERGE_VALUES x 2309 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 2310 2311 if (NarrowShiftAmt != 0) { 2312 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 2313 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2314 } 2315 2316 auto Zero = Builder.buildConstant(HalfTy, 0); 2317 Builder.buildMerge(DstReg, { Narrowed, Zero }); 2318 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 2319 Register Narrowed = Unmerge.getReg(0); 2320 // dst = G_SHL s64:x, C for C >= 32 2321 // => 2322 // lo, hi = G_UNMERGE_VALUES x 2323 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 2324 if (NarrowShiftAmt != 0) { 2325 Narrowed = Builder.buildShl(HalfTy, Narrowed, 2326 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2327 } 2328 2329 auto Zero = Builder.buildConstant(HalfTy, 0); 2330 Builder.buildMerge(DstReg, { Zero, Narrowed }); 2331 } else { 2332 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2333 auto Hi = Builder.buildAShr( 2334 HalfTy, Unmerge.getReg(1), 2335 Builder.buildConstant(HalfTy, HalfSize - 1)); 2336 2337 if (ShiftVal == HalfSize) { 2338 // (G_ASHR i64:x, 32) -> 2339 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 2340 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 2341 } else if (ShiftVal == Size - 1) { 2342 // Don't need a second shift. 2343 // (G_ASHR i64:x, 63) -> 2344 // %narrowed = (G_ASHR hi_32(x), 31) 2345 // G_MERGE_VALUES %narrowed, %narrowed 2346 Builder.buildMerge(DstReg, { Hi, Hi }); 2347 } else { 2348 auto Lo = Builder.buildAShr( 2349 HalfTy, Unmerge.getReg(1), 2350 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 2351 2352 // (G_ASHR i64:x, C) ->, for C >= 32 2353 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 2354 Builder.buildMerge(DstReg, { Lo, Hi }); 2355 } 2356 } 2357 2358 MI.eraseFromParent(); 2359 } 2360 2361 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 2362 unsigned TargetShiftAmount) { 2363 unsigned ShiftAmt; 2364 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 2365 applyCombineShiftToUnmerge(MI, ShiftAmt); 2366 return true; 2367 } 2368 2369 return false; 2370 } 2371 2372 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2373 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2374 Register DstReg = MI.getOperand(0).getReg(); 2375 LLT DstTy = MRI.getType(DstReg); 2376 Register SrcReg = MI.getOperand(1).getReg(); 2377 return mi_match(SrcReg, MRI, 2378 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2379 } 2380 2381 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2382 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2383 Register DstReg = MI.getOperand(0).getReg(); 2384 Builder.setInstr(MI); 2385 Builder.buildCopy(DstReg, Reg); 2386 MI.eraseFromParent(); 2387 } 2388 2389 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2390 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2391 Register SrcReg = MI.getOperand(1).getReg(); 2392 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2393 } 2394 2395 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2396 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2397 Register DstReg = MI.getOperand(0).getReg(); 2398 Builder.setInstr(MI); 2399 Builder.buildZExtOrTrunc(DstReg, Reg); 2400 MI.eraseFromParent(); 2401 } 2402 2403 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2404 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2405 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2406 Register LHS = MI.getOperand(1).getReg(); 2407 Register RHS = MI.getOperand(2).getReg(); 2408 LLT IntTy = MRI.getType(LHS); 2409 2410 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2411 // instruction. 2412 PtrReg.second = false; 2413 for (Register SrcReg : {LHS, RHS}) { 2414 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2415 // Don't handle cases where the integer is implicitly converted to the 2416 // pointer width. 2417 LLT PtrTy = MRI.getType(PtrReg.first); 2418 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2419 return true; 2420 } 2421 2422 PtrReg.second = true; 2423 } 2424 2425 return false; 2426 } 2427 2428 void CombinerHelper::applyCombineAddP2IToPtrAdd( 2429 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2430 Register Dst = MI.getOperand(0).getReg(); 2431 Register LHS = MI.getOperand(1).getReg(); 2432 Register RHS = MI.getOperand(2).getReg(); 2433 2434 const bool DoCommute = PtrReg.second; 2435 if (DoCommute) 2436 std::swap(LHS, RHS); 2437 LHS = PtrReg.first; 2438 2439 LLT PtrTy = MRI.getType(LHS); 2440 2441 Builder.setInstrAndDebugLoc(MI); 2442 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2443 Builder.buildPtrToInt(Dst, PtrAdd); 2444 MI.eraseFromParent(); 2445 } 2446 2447 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2448 int64_t &NewCst) { 2449 auto &PtrAdd = cast<GPtrAdd>(MI); 2450 Register LHS = PtrAdd.getBaseReg(); 2451 Register RHS = PtrAdd.getOffsetReg(); 2452 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2453 2454 if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { 2455 int64_t Cst; 2456 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2457 NewCst = Cst + *RHSCst; 2458 return true; 2459 } 2460 } 2461 2462 return false; 2463 } 2464 2465 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2466 int64_t &NewCst) { 2467 auto &PtrAdd = cast<GPtrAdd>(MI); 2468 Register Dst = PtrAdd.getReg(0); 2469 2470 Builder.setInstrAndDebugLoc(MI); 2471 Builder.buildConstant(Dst, NewCst); 2472 PtrAdd.eraseFromParent(); 2473 } 2474 2475 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2476 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2477 Register DstReg = MI.getOperand(0).getReg(); 2478 Register SrcReg = MI.getOperand(1).getReg(); 2479 LLT DstTy = MRI.getType(DstReg); 2480 return mi_match(SrcReg, MRI, 2481 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2482 } 2483 2484 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2485 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2486 Register DstReg = MI.getOperand(0).getReg(); 2487 Register SrcReg = MI.getOperand(1).getReg(); 2488 LLT DstTy = MRI.getType(DstReg); 2489 if (mi_match(SrcReg, MRI, 2490 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2491 unsigned DstSize = DstTy.getScalarSizeInBits(); 2492 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2493 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2494 } 2495 return false; 2496 } 2497 2498 bool CombinerHelper::matchCombineExtOfExt( 2499 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2500 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2501 MI.getOpcode() == TargetOpcode::G_SEXT || 2502 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2503 "Expected a G_[ASZ]EXT"); 2504 Register SrcReg = MI.getOperand(1).getReg(); 2505 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2506 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2507 unsigned Opc = MI.getOpcode(); 2508 unsigned SrcOpc = SrcMI->getOpcode(); 2509 if (Opc == SrcOpc || 2510 (Opc == TargetOpcode::G_ANYEXT && 2511 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2512 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2513 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2514 return true; 2515 } 2516 return false; 2517 } 2518 2519 void CombinerHelper::applyCombineExtOfExt( 2520 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2521 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2522 MI.getOpcode() == TargetOpcode::G_SEXT || 2523 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2524 "Expected a G_[ASZ]EXT"); 2525 2526 Register Reg = std::get<0>(MatchInfo); 2527 unsigned SrcExtOp = std::get<1>(MatchInfo); 2528 2529 // Combine exts with the same opcode. 2530 if (MI.getOpcode() == SrcExtOp) { 2531 Observer.changingInstr(MI); 2532 MI.getOperand(1).setReg(Reg); 2533 Observer.changedInstr(MI); 2534 return; 2535 } 2536 2537 // Combine: 2538 // - anyext([sz]ext x) to [sz]ext x 2539 // - sext(zext x) to zext x 2540 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2541 (MI.getOpcode() == TargetOpcode::G_SEXT && 2542 SrcExtOp == TargetOpcode::G_ZEXT)) { 2543 Register DstReg = MI.getOperand(0).getReg(); 2544 Builder.setInstrAndDebugLoc(MI); 2545 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2546 MI.eraseFromParent(); 2547 } 2548 } 2549 2550 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2551 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2552 Register DstReg = MI.getOperand(0).getReg(); 2553 Register SrcReg = MI.getOperand(1).getReg(); 2554 LLT DstTy = MRI.getType(DstReg); 2555 2556 Builder.setInstrAndDebugLoc(MI); 2557 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2558 MI.getFlags()); 2559 MI.eraseFromParent(); 2560 } 2561 2562 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2563 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2564 Register SrcReg = MI.getOperand(1).getReg(); 2565 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2566 } 2567 2568 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2569 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2570 Src = MI.getOperand(1).getReg(); 2571 Register AbsSrc; 2572 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2573 } 2574 2575 bool CombinerHelper::matchCombineTruncOfExt( 2576 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2577 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2578 Register SrcReg = MI.getOperand(1).getReg(); 2579 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2580 unsigned SrcOpc = SrcMI->getOpcode(); 2581 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2582 SrcOpc == TargetOpcode::G_ZEXT) { 2583 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2584 return true; 2585 } 2586 return false; 2587 } 2588 2589 void CombinerHelper::applyCombineTruncOfExt( 2590 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2591 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2592 Register SrcReg = MatchInfo.first; 2593 unsigned SrcExtOp = MatchInfo.second; 2594 Register DstReg = MI.getOperand(0).getReg(); 2595 LLT SrcTy = MRI.getType(SrcReg); 2596 LLT DstTy = MRI.getType(DstReg); 2597 if (SrcTy == DstTy) { 2598 MI.eraseFromParent(); 2599 replaceRegWith(MRI, DstReg, SrcReg); 2600 return; 2601 } 2602 Builder.setInstrAndDebugLoc(MI); 2603 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2604 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2605 else 2606 Builder.buildTrunc(DstReg, SrcReg); 2607 MI.eraseFromParent(); 2608 } 2609 2610 bool CombinerHelper::matchCombineTruncOfShl( 2611 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2612 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2613 Register DstReg = MI.getOperand(0).getReg(); 2614 Register SrcReg = MI.getOperand(1).getReg(); 2615 LLT DstTy = MRI.getType(DstReg); 2616 Register ShiftSrc; 2617 Register ShiftAmt; 2618 2619 if (MRI.hasOneNonDBGUse(SrcReg) && 2620 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2621 isLegalOrBeforeLegalizer( 2622 {TargetOpcode::G_SHL, 2623 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2624 KnownBits Known = KB->getKnownBits(ShiftAmt); 2625 unsigned Size = DstTy.getSizeInBits(); 2626 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2627 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2628 return true; 2629 } 2630 } 2631 return false; 2632 } 2633 2634 void CombinerHelper::applyCombineTruncOfShl( 2635 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2636 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2637 Register DstReg = MI.getOperand(0).getReg(); 2638 Register SrcReg = MI.getOperand(1).getReg(); 2639 LLT DstTy = MRI.getType(DstReg); 2640 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2641 2642 Register ShiftSrc = MatchInfo.first; 2643 Register ShiftAmt = MatchInfo.second; 2644 Builder.setInstrAndDebugLoc(MI); 2645 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2646 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2647 MI.eraseFromParent(); 2648 } 2649 2650 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2651 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2652 return MO.isReg() && 2653 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2654 }); 2655 } 2656 2657 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2658 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2659 return !MO.isReg() || 2660 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2661 }); 2662 } 2663 2664 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2665 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2666 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2667 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2668 } 2669 2670 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2671 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2672 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2673 MRI); 2674 } 2675 2676 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2677 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2678 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2679 MRI); 2680 } 2681 2682 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2683 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2684 if (auto MaybeCstCmp = 2685 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2686 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; 2687 return true; 2688 } 2689 return false; 2690 } 2691 2692 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2693 MI.eraseFromParent(); 2694 return true; 2695 } 2696 2697 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2698 const MachineOperand &MOP2) { 2699 if (!MOP1.isReg() || !MOP2.isReg()) 2700 return false; 2701 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2702 if (!InstAndDef1) 2703 return false; 2704 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2705 if (!InstAndDef2) 2706 return false; 2707 MachineInstr *I1 = InstAndDef1->MI; 2708 MachineInstr *I2 = InstAndDef2->MI; 2709 2710 // Handle a case like this: 2711 // 2712 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2713 // 2714 // Even though %0 and %1 are produced by the same instruction they are not 2715 // the same values. 2716 if (I1 == I2) 2717 return MOP1.getReg() == MOP2.getReg(); 2718 2719 // If we have an instruction which loads or stores, we can't guarantee that 2720 // it is identical. 2721 // 2722 // For example, we may have 2723 // 2724 // %x1 = G_LOAD %addr (load N from @somewhere) 2725 // ... 2726 // call @foo 2727 // ... 2728 // %x2 = G_LOAD %addr (load N from @somewhere) 2729 // ... 2730 // %or = G_OR %x1, %x2 2731 // 2732 // It's possible that @foo will modify whatever lives at the address we're 2733 // loading from. To be safe, let's just assume that all loads and stores 2734 // are different (unless we have something which is guaranteed to not 2735 // change.) 2736 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2737 return false; 2738 2739 // Check for physical registers on the instructions first to avoid cases 2740 // like this: 2741 // 2742 // %a = COPY $physreg 2743 // ... 2744 // SOMETHING implicit-def $physreg 2745 // ... 2746 // %b = COPY $physreg 2747 // 2748 // These copies are not equivalent. 2749 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2750 return MO.isReg() && MO.getReg().isPhysical(); 2751 })) { 2752 // Check if we have a case like this: 2753 // 2754 // %a = COPY $physreg 2755 // %b = COPY %a 2756 // 2757 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2758 // From that, we know that they must have the same value, since they must 2759 // have come from the same COPY. 2760 return I1->isIdenticalTo(*I2); 2761 } 2762 2763 // We don't have any physical registers, so we don't necessarily need the 2764 // same vreg defs. 2765 // 2766 // On the off-chance that there's some target instruction feeding into the 2767 // instruction, let's use produceSameValue instead of isIdenticalTo. 2768 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2769 // Handle instructions with multiple defs that produce same values. Values 2770 // are same for operands with same index. 2771 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2772 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2773 // I1 and I2 are different instructions but produce same values, 2774 // %1 and %6 are same, %1 and %7 are not the same value. 2775 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2776 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2777 } 2778 return false; 2779 } 2780 2781 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2782 if (!MOP.isReg()) 2783 return false; 2784 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2785 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2786 return ValAndVReg && ValAndVReg->Value == C; 2787 } 2788 2789 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2790 unsigned OpIdx) { 2791 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2792 Register OldReg = MI.getOperand(0).getReg(); 2793 Register Replacement = MI.getOperand(OpIdx).getReg(); 2794 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2795 MI.eraseFromParent(); 2796 replaceRegWith(MRI, OldReg, Replacement); 2797 return true; 2798 } 2799 2800 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2801 Register Replacement) { 2802 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2803 Register OldReg = MI.getOperand(0).getReg(); 2804 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2805 MI.eraseFromParent(); 2806 replaceRegWith(MRI, OldReg, Replacement); 2807 return true; 2808 } 2809 2810 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2811 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2812 // Match (cond ? x : x) 2813 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2814 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2815 MRI); 2816 } 2817 2818 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2819 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2820 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2821 MRI); 2822 } 2823 2824 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2825 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2826 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2827 MRI); 2828 } 2829 2830 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2831 MachineOperand &MO = MI.getOperand(OpIdx); 2832 return MO.isReg() && 2833 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2834 } 2835 2836 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2837 unsigned OpIdx) { 2838 MachineOperand &MO = MI.getOperand(OpIdx); 2839 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2840 } 2841 2842 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2843 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2844 Builder.setInstr(MI); 2845 Builder.buildFConstant(MI.getOperand(0), C); 2846 MI.eraseFromParent(); 2847 return true; 2848 } 2849 2850 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2851 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2852 Builder.setInstr(MI); 2853 Builder.buildConstant(MI.getOperand(0), C); 2854 MI.eraseFromParent(); 2855 return true; 2856 } 2857 2858 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2859 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2860 Builder.setInstr(MI); 2861 Builder.buildConstant(MI.getOperand(0), C); 2862 MI.eraseFromParent(); 2863 return true; 2864 } 2865 2866 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2867 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2868 Builder.setInstr(MI); 2869 Builder.buildUndef(MI.getOperand(0)); 2870 MI.eraseFromParent(); 2871 return true; 2872 } 2873 2874 bool CombinerHelper::matchSimplifyAddToSub( 2875 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2876 Register LHS = MI.getOperand(1).getReg(); 2877 Register RHS = MI.getOperand(2).getReg(); 2878 Register &NewLHS = std::get<0>(MatchInfo); 2879 Register &NewRHS = std::get<1>(MatchInfo); 2880 2881 // Helper lambda to check for opportunities for 2882 // ((0-A) + B) -> B - A 2883 // (A + (0-B)) -> A - B 2884 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2885 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2886 return false; 2887 NewLHS = MaybeNewLHS; 2888 return true; 2889 }; 2890 2891 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2892 } 2893 2894 bool CombinerHelper::matchCombineInsertVecElts( 2895 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2896 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2897 "Invalid opcode"); 2898 Register DstReg = MI.getOperand(0).getReg(); 2899 LLT DstTy = MRI.getType(DstReg); 2900 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2901 unsigned NumElts = DstTy.getNumElements(); 2902 // If this MI is part of a sequence of insert_vec_elts, then 2903 // don't do the combine in the middle of the sequence. 2904 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2905 TargetOpcode::G_INSERT_VECTOR_ELT) 2906 return false; 2907 MachineInstr *CurrInst = &MI; 2908 MachineInstr *TmpInst; 2909 int64_t IntImm; 2910 Register TmpReg; 2911 MatchInfo.resize(NumElts); 2912 while (mi_match( 2913 CurrInst->getOperand(0).getReg(), MRI, 2914 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2915 if (IntImm >= NumElts) 2916 return false; 2917 if (!MatchInfo[IntImm]) 2918 MatchInfo[IntImm] = TmpReg; 2919 CurrInst = TmpInst; 2920 } 2921 // Variable index. 2922 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2923 return false; 2924 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2925 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2926 if (!MatchInfo[I - 1].isValid()) 2927 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2928 } 2929 return true; 2930 } 2931 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2932 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2933 } 2934 2935 void CombinerHelper::applyCombineInsertVecElts( 2936 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2937 Builder.setInstr(MI); 2938 Register UndefReg; 2939 auto GetUndef = [&]() { 2940 if (UndefReg) 2941 return UndefReg; 2942 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2943 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2944 return UndefReg; 2945 }; 2946 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2947 if (!MatchInfo[I]) 2948 MatchInfo[I] = GetUndef(); 2949 } 2950 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2951 MI.eraseFromParent(); 2952 } 2953 2954 void CombinerHelper::applySimplifyAddToSub( 2955 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2956 Builder.setInstr(MI); 2957 Register SubLHS, SubRHS; 2958 std::tie(SubLHS, SubRHS) = MatchInfo; 2959 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2960 MI.eraseFromParent(); 2961 } 2962 2963 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2964 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2965 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2966 // 2967 // Creates the new hand + logic instruction (but does not insert them.) 2968 // 2969 // On success, MatchInfo is populated with the new instructions. These are 2970 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2971 unsigned LogicOpcode = MI.getOpcode(); 2972 assert(LogicOpcode == TargetOpcode::G_AND || 2973 LogicOpcode == TargetOpcode::G_OR || 2974 LogicOpcode == TargetOpcode::G_XOR); 2975 MachineIRBuilder MIB(MI); 2976 Register Dst = MI.getOperand(0).getReg(); 2977 Register LHSReg = MI.getOperand(1).getReg(); 2978 Register RHSReg = MI.getOperand(2).getReg(); 2979 2980 // Don't recompute anything. 2981 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2982 return false; 2983 2984 // Make sure we have (hand x, ...), (hand y, ...) 2985 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2986 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2987 if (!LeftHandInst || !RightHandInst) 2988 return false; 2989 unsigned HandOpcode = LeftHandInst->getOpcode(); 2990 if (HandOpcode != RightHandInst->getOpcode()) 2991 return false; 2992 if (!LeftHandInst->getOperand(1).isReg() || 2993 !RightHandInst->getOperand(1).isReg()) 2994 return false; 2995 2996 // Make sure the types match up, and if we're doing this post-legalization, 2997 // we end up with legal types. 2998 Register X = LeftHandInst->getOperand(1).getReg(); 2999 Register Y = RightHandInst->getOperand(1).getReg(); 3000 LLT XTy = MRI.getType(X); 3001 LLT YTy = MRI.getType(Y); 3002 if (XTy != YTy) 3003 return false; 3004 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 3005 return false; 3006 3007 // Optional extra source register. 3008 Register ExtraHandOpSrcReg; 3009 switch (HandOpcode) { 3010 default: 3011 return false; 3012 case TargetOpcode::G_ANYEXT: 3013 case TargetOpcode::G_SEXT: 3014 case TargetOpcode::G_ZEXT: { 3015 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 3016 break; 3017 } 3018 case TargetOpcode::G_AND: 3019 case TargetOpcode::G_ASHR: 3020 case TargetOpcode::G_LSHR: 3021 case TargetOpcode::G_SHL: { 3022 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 3023 MachineOperand &ZOp = LeftHandInst->getOperand(2); 3024 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 3025 return false; 3026 ExtraHandOpSrcReg = ZOp.getReg(); 3027 break; 3028 } 3029 } 3030 3031 // Record the steps to build the new instructions. 3032 // 3033 // Steps to build (logic x, y) 3034 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 3035 OperandBuildSteps LogicBuildSteps = { 3036 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 3037 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 3038 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 3039 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 3040 3041 // Steps to build hand (logic x, y), ...z 3042 OperandBuildSteps HandBuildSteps = { 3043 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 3044 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 3045 if (ExtraHandOpSrcReg.isValid()) 3046 HandBuildSteps.push_back( 3047 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 3048 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 3049 3050 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 3051 return true; 3052 } 3053 3054 void CombinerHelper::applyBuildInstructionSteps( 3055 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 3056 assert(MatchInfo.InstrsToBuild.size() && 3057 "Expected at least one instr to build?"); 3058 Builder.setInstr(MI); 3059 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 3060 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 3061 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 3062 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 3063 for (auto &OperandFn : InstrToBuild.OperandFns) 3064 OperandFn(Instr); 3065 } 3066 MI.eraseFromParent(); 3067 } 3068 3069 bool CombinerHelper::matchAshrShlToSextInreg( 3070 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 3071 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 3072 int64_t ShlCst, AshrCst; 3073 Register Src; 3074 // FIXME: detect splat constant vectors. 3075 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3076 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 3077 return false; 3078 if (ShlCst != AshrCst) 3079 return false; 3080 if (!isLegalOrBeforeLegalizer( 3081 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 3082 return false; 3083 MatchInfo = std::make_tuple(Src, ShlCst); 3084 return true; 3085 } 3086 3087 void CombinerHelper::applyAshShlToSextInreg( 3088 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 3089 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 3090 Register Src; 3091 int64_t ShiftAmt; 3092 std::tie(Src, ShiftAmt) = MatchInfo; 3093 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 3094 Builder.setInstrAndDebugLoc(MI); 3095 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 3096 MI.eraseFromParent(); 3097 } 3098 3099 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 3100 bool CombinerHelper::matchOverlappingAnd( 3101 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3102 assert(MI.getOpcode() == TargetOpcode::G_AND); 3103 3104 Register Dst = MI.getOperand(0).getReg(); 3105 LLT Ty = MRI.getType(Dst); 3106 3107 Register R; 3108 int64_t C1; 3109 int64_t C2; 3110 if (!mi_match( 3111 Dst, MRI, 3112 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 3113 return false; 3114 3115 MatchInfo = [=](MachineIRBuilder &B) { 3116 if (C1 & C2) { 3117 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 3118 return; 3119 } 3120 auto Zero = B.buildConstant(Ty, 0); 3121 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 3122 }; 3123 return true; 3124 } 3125 3126 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 3127 Register &Replacement) { 3128 // Given 3129 // 3130 // %y:_(sN) = G_SOMETHING 3131 // %x:_(sN) = G_SOMETHING 3132 // %res:_(sN) = G_AND %x, %y 3133 // 3134 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 3135 // 3136 // Patterns like this can appear as a result of legalization. E.g. 3137 // 3138 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 3139 // %one:_(s32) = G_CONSTANT i32 1 3140 // %and:_(s32) = G_AND %cmp, %one 3141 // 3142 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 3143 assert(MI.getOpcode() == TargetOpcode::G_AND); 3144 if (!KB) 3145 return false; 3146 3147 Register AndDst = MI.getOperand(0).getReg(); 3148 LLT DstTy = MRI.getType(AndDst); 3149 3150 // FIXME: This should be removed once GISelKnownBits supports vectors. 3151 if (DstTy.isVector()) 3152 return false; 3153 3154 Register LHS = MI.getOperand(1).getReg(); 3155 Register RHS = MI.getOperand(2).getReg(); 3156 KnownBits LHSBits = KB->getKnownBits(LHS); 3157 KnownBits RHSBits = KB->getKnownBits(RHS); 3158 3159 // Check that x & Mask == x. 3160 // x & 1 == x, always 3161 // x & 0 == x, only if x is also 0 3162 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 3163 // 3164 // Check if we can replace AndDst with the LHS of the G_AND 3165 if (canReplaceReg(AndDst, LHS, MRI) && 3166 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3167 Replacement = LHS; 3168 return true; 3169 } 3170 3171 // Check if we can replace AndDst with the RHS of the G_AND 3172 if (canReplaceReg(AndDst, RHS, MRI) && 3173 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3174 Replacement = RHS; 3175 return true; 3176 } 3177 3178 return false; 3179 } 3180 3181 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 3182 // Given 3183 // 3184 // %y:_(sN) = G_SOMETHING 3185 // %x:_(sN) = G_SOMETHING 3186 // %res:_(sN) = G_OR %x, %y 3187 // 3188 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 3189 assert(MI.getOpcode() == TargetOpcode::G_OR); 3190 if (!KB) 3191 return false; 3192 3193 Register OrDst = MI.getOperand(0).getReg(); 3194 LLT DstTy = MRI.getType(OrDst); 3195 3196 // FIXME: This should be removed once GISelKnownBits supports vectors. 3197 if (DstTy.isVector()) 3198 return false; 3199 3200 Register LHS = MI.getOperand(1).getReg(); 3201 Register RHS = MI.getOperand(2).getReg(); 3202 KnownBits LHSBits = KB->getKnownBits(LHS); 3203 KnownBits RHSBits = KB->getKnownBits(RHS); 3204 3205 // Check that x | Mask == x. 3206 // x | 0 == x, always 3207 // x | 1 == x, only if x is also 1 3208 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 3209 // 3210 // Check if we can replace OrDst with the LHS of the G_OR 3211 if (canReplaceReg(OrDst, LHS, MRI) && 3212 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3213 Replacement = LHS; 3214 return true; 3215 } 3216 3217 // Check if we can replace OrDst with the RHS of the G_OR 3218 if (canReplaceReg(OrDst, RHS, MRI) && 3219 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3220 Replacement = RHS; 3221 return true; 3222 } 3223 3224 return false; 3225 } 3226 3227 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 3228 // If the input is already sign extended, just drop the extension. 3229 Register Src = MI.getOperand(1).getReg(); 3230 unsigned ExtBits = MI.getOperand(2).getImm(); 3231 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 3232 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 3233 } 3234 3235 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 3236 int64_t Cst, bool IsVector, bool IsFP) { 3237 // For i1, Cst will always be -1 regardless of boolean contents. 3238 return (ScalarSizeBits == 1 && Cst == -1) || 3239 isConstTrueVal(TLI, Cst, IsVector, IsFP); 3240 } 3241 3242 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 3243 SmallVectorImpl<Register> &RegsToNegate) { 3244 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3245 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3246 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 3247 Register XorSrc; 3248 Register CstReg; 3249 // We match xor(src, true) here. 3250 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3251 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 3252 return false; 3253 3254 if (!MRI.hasOneNonDBGUse(XorSrc)) 3255 return false; 3256 3257 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 3258 // and ORs. The suffix of RegsToNegate starting from index I is used a work 3259 // list of tree nodes to visit. 3260 RegsToNegate.push_back(XorSrc); 3261 // Remember whether the comparisons are all integer or all floating point. 3262 bool IsInt = false; 3263 bool IsFP = false; 3264 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 3265 Register Reg = RegsToNegate[I]; 3266 if (!MRI.hasOneNonDBGUse(Reg)) 3267 return false; 3268 MachineInstr *Def = MRI.getVRegDef(Reg); 3269 switch (Def->getOpcode()) { 3270 default: 3271 // Don't match if the tree contains anything other than ANDs, ORs and 3272 // comparisons. 3273 return false; 3274 case TargetOpcode::G_ICMP: 3275 if (IsFP) 3276 return false; 3277 IsInt = true; 3278 // When we apply the combine we will invert the predicate. 3279 break; 3280 case TargetOpcode::G_FCMP: 3281 if (IsInt) 3282 return false; 3283 IsFP = true; 3284 // When we apply the combine we will invert the predicate. 3285 break; 3286 case TargetOpcode::G_AND: 3287 case TargetOpcode::G_OR: 3288 // Implement De Morgan's laws: 3289 // ~(x & y) -> ~x | ~y 3290 // ~(x | y) -> ~x & ~y 3291 // When we apply the combine we will change the opcode and recursively 3292 // negate the operands. 3293 RegsToNegate.push_back(Def->getOperand(1).getReg()); 3294 RegsToNegate.push_back(Def->getOperand(2).getReg()); 3295 break; 3296 } 3297 } 3298 3299 // Now we know whether the comparisons are integer or floating point, check 3300 // the constant in the xor. 3301 int64_t Cst; 3302 if (Ty.isVector()) { 3303 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 3304 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 3305 if (!MaybeCst) 3306 return false; 3307 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 3308 return false; 3309 } else { 3310 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 3311 return false; 3312 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 3313 return false; 3314 } 3315 3316 return true; 3317 } 3318 3319 void CombinerHelper::applyNotCmp(MachineInstr &MI, 3320 SmallVectorImpl<Register> &RegsToNegate) { 3321 for (Register Reg : RegsToNegate) { 3322 MachineInstr *Def = MRI.getVRegDef(Reg); 3323 Observer.changingInstr(*Def); 3324 // For each comparison, invert the opcode. For each AND and OR, change the 3325 // opcode. 3326 switch (Def->getOpcode()) { 3327 default: 3328 llvm_unreachable("Unexpected opcode"); 3329 case TargetOpcode::G_ICMP: 3330 case TargetOpcode::G_FCMP: { 3331 MachineOperand &PredOp = Def->getOperand(1); 3332 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 3333 (CmpInst::Predicate)PredOp.getPredicate()); 3334 PredOp.setPredicate(NewP); 3335 break; 3336 } 3337 case TargetOpcode::G_AND: 3338 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3339 break; 3340 case TargetOpcode::G_OR: 3341 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3342 break; 3343 } 3344 Observer.changedInstr(*Def); 3345 } 3346 3347 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3348 MI.eraseFromParent(); 3349 } 3350 3351 bool CombinerHelper::matchXorOfAndWithSameReg( 3352 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3353 // Match (xor (and x, y), y) (or any of its commuted cases) 3354 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3355 Register &X = MatchInfo.first; 3356 Register &Y = MatchInfo.second; 3357 Register AndReg = MI.getOperand(1).getReg(); 3358 Register SharedReg = MI.getOperand(2).getReg(); 3359 3360 // Find a G_AND on either side of the G_XOR. 3361 // Look for one of 3362 // 3363 // (xor (and x, y), SharedReg) 3364 // (xor SharedReg, (and x, y)) 3365 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3366 std::swap(AndReg, SharedReg); 3367 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3368 return false; 3369 } 3370 3371 // Only do this if we'll eliminate the G_AND. 3372 if (!MRI.hasOneNonDBGUse(AndReg)) 3373 return false; 3374 3375 // We can combine if SharedReg is the same as either the LHS or RHS of the 3376 // G_AND. 3377 if (Y != SharedReg) 3378 std::swap(X, Y); 3379 return Y == SharedReg; 3380 } 3381 3382 void CombinerHelper::applyXorOfAndWithSameReg( 3383 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3384 // Fold (xor (and x, y), y) -> (and (not x), y) 3385 Builder.setInstrAndDebugLoc(MI); 3386 Register X, Y; 3387 std::tie(X, Y) = MatchInfo; 3388 auto Not = Builder.buildNot(MRI.getType(X), X); 3389 Observer.changingInstr(MI); 3390 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3391 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3392 MI.getOperand(2).setReg(Y); 3393 Observer.changedInstr(MI); 3394 } 3395 3396 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3397 auto &PtrAdd = cast<GPtrAdd>(MI); 3398 Register DstReg = PtrAdd.getReg(0); 3399 LLT Ty = MRI.getType(DstReg); 3400 const DataLayout &DL = Builder.getMF().getDataLayout(); 3401 3402 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3403 return false; 3404 3405 if (Ty.isPointer()) { 3406 auto ConstVal = getConstantVRegVal(PtrAdd.getBaseReg(), MRI); 3407 return ConstVal && *ConstVal == 0; 3408 } 3409 3410 assert(Ty.isVector() && "Expecting a vector type"); 3411 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 3412 return isBuildVectorAllZeros(*VecMI, MRI); 3413 } 3414 3415 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3416 auto &PtrAdd = cast<GPtrAdd>(MI); 3417 Builder.setInstrAndDebugLoc(PtrAdd); 3418 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 3419 PtrAdd.eraseFromParent(); 3420 } 3421 3422 /// The second source operand is known to be a power of 2. 3423 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3424 Register DstReg = MI.getOperand(0).getReg(); 3425 Register Src0 = MI.getOperand(1).getReg(); 3426 Register Pow2Src1 = MI.getOperand(2).getReg(); 3427 LLT Ty = MRI.getType(DstReg); 3428 Builder.setInstrAndDebugLoc(MI); 3429 3430 // Fold (urem x, pow2) -> (and x, pow2-1) 3431 auto NegOne = Builder.buildConstant(Ty, -1); 3432 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3433 Builder.buildAnd(DstReg, Src0, Add); 3434 MI.eraseFromParent(); 3435 } 3436 3437 Optional<SmallVector<Register, 8>> 3438 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3439 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3440 // We want to detect if Root is part of a tree which represents a bunch 3441 // of loads being merged into a larger load. We'll try to recognize patterns 3442 // like, for example: 3443 // 3444 // Reg Reg 3445 // \ / 3446 // OR_1 Reg 3447 // \ / 3448 // OR_2 3449 // \ Reg 3450 // .. / 3451 // Root 3452 // 3453 // Reg Reg Reg Reg 3454 // \ / \ / 3455 // OR_1 OR_2 3456 // \ / 3457 // \ / 3458 // ... 3459 // Root 3460 // 3461 // Each "Reg" may have been produced by a load + some arithmetic. This 3462 // function will save each of them. 3463 SmallVector<Register, 8> RegsToVisit; 3464 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3465 3466 // In the "worst" case, we're dealing with a load for each byte. So, there 3467 // are at most #bytes - 1 ORs. 3468 const unsigned MaxIter = 3469 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3470 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3471 if (Ors.empty()) 3472 break; 3473 const MachineInstr *Curr = Ors.pop_back_val(); 3474 Register OrLHS = Curr->getOperand(1).getReg(); 3475 Register OrRHS = Curr->getOperand(2).getReg(); 3476 3477 // In the combine, we want to elimate the entire tree. 3478 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3479 return None; 3480 3481 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3482 // something that may be a load + arithmetic. 3483 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3484 Ors.push_back(Or); 3485 else 3486 RegsToVisit.push_back(OrLHS); 3487 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3488 Ors.push_back(Or); 3489 else 3490 RegsToVisit.push_back(OrRHS); 3491 } 3492 3493 // We're going to try and merge each register into a wider power-of-2 type, 3494 // so we ought to have an even number of registers. 3495 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3496 return None; 3497 return RegsToVisit; 3498 } 3499 3500 /// Helper function for findLoadOffsetsForLoadOrCombine. 3501 /// 3502 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3503 /// and then moving that value into a specific byte offset. 3504 /// 3505 /// e.g. x[i] << 24 3506 /// 3507 /// \returns The load instruction and the byte offset it is moved into. 3508 static Optional<std::pair<GZExtLoad *, int64_t>> 3509 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3510 const MachineRegisterInfo &MRI) { 3511 assert(MRI.hasOneNonDBGUse(Reg) && 3512 "Expected Reg to only have one non-debug use?"); 3513 Register MaybeLoad; 3514 int64_t Shift; 3515 if (!mi_match(Reg, MRI, 3516 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3517 Shift = 0; 3518 MaybeLoad = Reg; 3519 } 3520 3521 if (Shift % MemSizeInBits != 0) 3522 return None; 3523 3524 // TODO: Handle other types of loads. 3525 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3526 if (!Load) 3527 return None; 3528 3529 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3530 return None; 3531 3532 return std::make_pair(Load, Shift / MemSizeInBits); 3533 } 3534 3535 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3536 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3537 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3538 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3539 3540 // Each load found for the pattern. There should be one for each RegsToVisit. 3541 SmallSetVector<const MachineInstr *, 8> Loads; 3542 3543 // The lowest index used in any load. (The lowest "i" for each x[i].) 3544 int64_t LowestIdx = INT64_MAX; 3545 3546 // The load which uses the lowest index. 3547 GZExtLoad *LowestIdxLoad = nullptr; 3548 3549 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3550 SmallSet<int64_t, 8> SeenIdx; 3551 3552 // Ensure each load is in the same MBB. 3553 // TODO: Support multiple MachineBasicBlocks. 3554 MachineBasicBlock *MBB = nullptr; 3555 const MachineMemOperand *MMO = nullptr; 3556 3557 // Earliest instruction-order load in the pattern. 3558 GZExtLoad *EarliestLoad = nullptr; 3559 3560 // Latest instruction-order load in the pattern. 3561 GZExtLoad *LatestLoad = nullptr; 3562 3563 // Base pointer which every load should share. 3564 Register BasePtr; 3565 3566 // We want to find a load for each register. Each load should have some 3567 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3568 // track of the load which uses the lowest index. Later, we will check if we 3569 // can use its pointer in the final, combined load. 3570 for (auto Reg : RegsToVisit) { 3571 // Find the load, and find the position that it will end up in (e.g. a 3572 // shifted) value. 3573 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3574 if (!LoadAndPos) 3575 return None; 3576 GZExtLoad *Load; 3577 int64_t DstPos; 3578 std::tie(Load, DstPos) = *LoadAndPos; 3579 3580 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3581 // it is difficult to check for stores/calls/etc between loads. 3582 MachineBasicBlock *LoadMBB = Load->getParent(); 3583 if (!MBB) 3584 MBB = LoadMBB; 3585 if (LoadMBB != MBB) 3586 return None; 3587 3588 // Make sure that the MachineMemOperands of every seen load are compatible. 3589 auto &LoadMMO = Load->getMMO(); 3590 if (!MMO) 3591 MMO = &LoadMMO; 3592 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3593 return None; 3594 3595 // Find out what the base pointer and index for the load is. 3596 Register LoadPtr; 3597 int64_t Idx; 3598 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3599 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3600 LoadPtr = Load->getOperand(1).getReg(); 3601 Idx = 0; 3602 } 3603 3604 // Don't combine things like a[i], a[i] -> a bigger load. 3605 if (!SeenIdx.insert(Idx).second) 3606 return None; 3607 3608 // Every load must share the same base pointer; don't combine things like: 3609 // 3610 // a[i], b[i + 1] -> a bigger load. 3611 if (!BasePtr.isValid()) 3612 BasePtr = LoadPtr; 3613 if (BasePtr != LoadPtr) 3614 return None; 3615 3616 if (Idx < LowestIdx) { 3617 LowestIdx = Idx; 3618 LowestIdxLoad = Load; 3619 } 3620 3621 // Keep track of the byte offset that this load ends up at. If we have seen 3622 // the byte offset, then stop here. We do not want to combine: 3623 // 3624 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3625 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3626 return None; 3627 Loads.insert(Load); 3628 3629 // Keep track of the position of the earliest/latest loads in the pattern. 3630 // We will check that there are no load fold barriers between them later 3631 // on. 3632 // 3633 // FIXME: Is there a better way to check for load fold barriers? 3634 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3635 EarliestLoad = Load; 3636 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3637 LatestLoad = Load; 3638 } 3639 3640 // We found a load for each register. Let's check if each load satisfies the 3641 // pattern. 3642 assert(Loads.size() == RegsToVisit.size() && 3643 "Expected to find a load for each register?"); 3644 assert(EarliestLoad != LatestLoad && EarliestLoad && 3645 LatestLoad && "Expected at least two loads?"); 3646 3647 // Check if there are any stores, calls, etc. between any of the loads. If 3648 // there are, then we can't safely perform the combine. 3649 // 3650 // MaxIter is chosen based off the (worst case) number of iterations it 3651 // typically takes to succeed in the LLVM test suite plus some padding. 3652 // 3653 // FIXME: Is there a better way to check for load fold barriers? 3654 const unsigned MaxIter = 20; 3655 unsigned Iter = 0; 3656 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3657 LatestLoad->getIterator())) { 3658 if (Loads.count(&MI)) 3659 continue; 3660 if (MI.isLoadFoldBarrier()) 3661 return None; 3662 if (Iter++ == MaxIter) 3663 return None; 3664 } 3665 3666 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3667 } 3668 3669 bool CombinerHelper::matchLoadOrCombine( 3670 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3671 assert(MI.getOpcode() == TargetOpcode::G_OR); 3672 MachineFunction &MF = *MI.getMF(); 3673 // Assuming a little-endian target, transform: 3674 // s8 *a = ... 3675 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3676 // => 3677 // s32 val = *((i32)a) 3678 // 3679 // s8 *a = ... 3680 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3681 // => 3682 // s32 val = BSWAP(*((s32)a)) 3683 Register Dst = MI.getOperand(0).getReg(); 3684 LLT Ty = MRI.getType(Dst); 3685 if (Ty.isVector()) 3686 return false; 3687 3688 // We need to combine at least two loads into this type. Since the smallest 3689 // possible load is into a byte, we need at least a 16-bit wide type. 3690 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3691 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3692 return false; 3693 3694 // Match a collection of non-OR instructions in the pattern. 3695 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3696 if (!RegsToVisit) 3697 return false; 3698 3699 // We have a collection of non-OR instructions. Figure out how wide each of 3700 // the small loads should be based off of the number of potential loads we 3701 // found. 3702 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3703 if (NarrowMemSizeInBits % 8 != 0) 3704 return false; 3705 3706 // Check if each register feeding into each OR is a load from the same 3707 // base pointer + some arithmetic. 3708 // 3709 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3710 // 3711 // Also verify that each of these ends up putting a[i] into the same memory 3712 // offset as a load into a wide type would. 3713 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3714 GZExtLoad *LowestIdxLoad, *LatestLoad; 3715 int64_t LowestIdx; 3716 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3717 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3718 if (!MaybeLoadInfo) 3719 return false; 3720 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3721 3722 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3723 // we found before, check if this corresponds to a big or little endian byte 3724 // pattern. If it does, then we can represent it using a load + possibly a 3725 // BSWAP. 3726 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3727 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3728 if (!IsBigEndian.hasValue()) 3729 return false; 3730 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3731 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3732 return false; 3733 3734 // Make sure that the load from the lowest index produces offset 0 in the 3735 // final value. 3736 // 3737 // This ensures that we won't combine something like this: 3738 // 3739 // load x[i] -> byte 2 3740 // load x[i+1] -> byte 0 ---> wide_load x[i] 3741 // load x[i+2] -> byte 1 3742 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3743 const unsigned ZeroByteOffset = 3744 *IsBigEndian 3745 ? bigEndianByteAt(NumLoadsInTy, 0) 3746 : littleEndianByteAt(NumLoadsInTy, 0); 3747 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3748 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3749 ZeroOffsetIdx->second != LowestIdx) 3750 return false; 3751 3752 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3753 // may not use index 0. 3754 Register Ptr = LowestIdxLoad->getPointerReg(); 3755 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3756 LegalityQuery::MemDesc MMDesc(MMO); 3757 MMDesc.MemoryTy = Ty; 3758 if (!isLegalOrBeforeLegalizer( 3759 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3760 return false; 3761 auto PtrInfo = MMO.getPointerInfo(); 3762 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3763 3764 // Load must be allowed and fast on the target. 3765 LLVMContext &C = MF.getFunction().getContext(); 3766 auto &DL = MF.getDataLayout(); 3767 bool Fast = false; 3768 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3769 !Fast) 3770 return false; 3771 3772 MatchInfo = [=](MachineIRBuilder &MIB) { 3773 MIB.setInstrAndDebugLoc(*LatestLoad); 3774 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3775 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3776 if (NeedsBSwap) 3777 MIB.buildBSwap(Dst, LoadDst); 3778 }; 3779 return true; 3780 } 3781 3782 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3783 MachineInstr *&ExtMI) { 3784 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3785 3786 Register DstReg = MI.getOperand(0).getReg(); 3787 3788 // TODO: Extending a vector may be expensive, don't do this until heuristics 3789 // are better. 3790 if (MRI.getType(DstReg).isVector()) 3791 return false; 3792 3793 // Try to match a phi, whose only use is an extend. 3794 if (!MRI.hasOneNonDBGUse(DstReg)) 3795 return false; 3796 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3797 switch (ExtMI->getOpcode()) { 3798 case TargetOpcode::G_ANYEXT: 3799 return true; // G_ANYEXT is usually free. 3800 case TargetOpcode::G_ZEXT: 3801 case TargetOpcode::G_SEXT: 3802 break; 3803 default: 3804 return false; 3805 } 3806 3807 // If the target is likely to fold this extend away, don't propagate. 3808 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3809 return false; 3810 3811 // We don't want to propagate the extends unless there's a good chance that 3812 // they'll be optimized in some way. 3813 // Collect the unique incoming values. 3814 SmallPtrSet<MachineInstr *, 4> InSrcs; 3815 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3816 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3817 switch (DefMI->getOpcode()) { 3818 case TargetOpcode::G_LOAD: 3819 case TargetOpcode::G_TRUNC: 3820 case TargetOpcode::G_SEXT: 3821 case TargetOpcode::G_ZEXT: 3822 case TargetOpcode::G_ANYEXT: 3823 case TargetOpcode::G_CONSTANT: 3824 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3825 // Don't try to propagate if there are too many places to create new 3826 // extends, chances are it'll increase code size. 3827 if (InSrcs.size() > 2) 3828 return false; 3829 break; 3830 default: 3831 return false; 3832 } 3833 } 3834 return true; 3835 } 3836 3837 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3838 MachineInstr *&ExtMI) { 3839 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3840 Register DstReg = ExtMI->getOperand(0).getReg(); 3841 LLT ExtTy = MRI.getType(DstReg); 3842 3843 // Propagate the extension into the block of each incoming reg's block. 3844 // Use a SetVector here because PHIs can have duplicate edges, and we want 3845 // deterministic iteration order. 3846 SmallSetVector<MachineInstr *, 8> SrcMIs; 3847 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3848 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3849 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3850 if (!SrcMIs.insert(SrcMI)) 3851 continue; 3852 3853 // Build an extend after each src inst. 3854 auto *MBB = SrcMI->getParent(); 3855 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3856 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3857 InsertPt = MBB->getFirstNonPHI(); 3858 3859 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3860 Builder.setDebugLoc(MI.getDebugLoc()); 3861 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3862 SrcMI->getOperand(0).getReg()); 3863 OldToNewSrcMap[SrcMI] = NewExt; 3864 } 3865 3866 // Create a new phi with the extended inputs. 3867 Builder.setInstrAndDebugLoc(MI); 3868 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3869 NewPhi.addDef(DstReg); 3870 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3871 auto &MO = MI.getOperand(SrcIdx); 3872 if (!MO.isReg()) { 3873 NewPhi.addMBB(MO.getMBB()); 3874 continue; 3875 } 3876 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3877 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3878 } 3879 Builder.insertInstr(NewPhi); 3880 ExtMI->eraseFromParent(); 3881 } 3882 3883 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3884 Register &Reg) { 3885 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3886 // If we have a constant index, look for a G_BUILD_VECTOR source 3887 // and find the source register that the index maps to. 3888 Register SrcVec = MI.getOperand(1).getReg(); 3889 LLT SrcTy = MRI.getType(SrcVec); 3890 if (!isLegalOrBeforeLegalizer( 3891 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3892 return false; 3893 3894 auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3895 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3896 return false; 3897 3898 unsigned VecIdx = Cst->Value.getZExtValue(); 3899 MachineInstr *BuildVecMI = 3900 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3901 if (!BuildVecMI) { 3902 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3903 if (!BuildVecMI) 3904 return false; 3905 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3906 if (!isLegalOrBeforeLegalizer( 3907 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3908 return false; 3909 } 3910 3911 EVT Ty(getMVTForLLT(SrcTy)); 3912 if (!MRI.hasOneNonDBGUse(SrcVec) && 3913 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3914 return false; 3915 3916 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3917 return true; 3918 } 3919 3920 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3921 Register &Reg) { 3922 // Check the type of the register, since it may have come from a 3923 // G_BUILD_VECTOR_TRUNC. 3924 LLT ScalarTy = MRI.getType(Reg); 3925 Register DstReg = MI.getOperand(0).getReg(); 3926 LLT DstTy = MRI.getType(DstReg); 3927 3928 Builder.setInstrAndDebugLoc(MI); 3929 if (ScalarTy != DstTy) { 3930 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3931 Builder.buildTrunc(DstReg, Reg); 3932 MI.eraseFromParent(); 3933 return; 3934 } 3935 replaceSingleDefInstWithReg(MI, Reg); 3936 } 3937 3938 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3939 MachineInstr &MI, 3940 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3941 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3942 // This combine tries to find build_vector's which have every source element 3943 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3944 // the masked load scalarization is run late in the pipeline. There's already 3945 // a combine for a similar pattern starting from the extract, but that 3946 // doesn't attempt to do it if there are multiple uses of the build_vector, 3947 // which in this case is true. Starting the combine from the build_vector 3948 // feels more natural than trying to find sibling nodes of extracts. 3949 // E.g. 3950 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3951 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3952 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3953 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3954 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3955 // ==> 3956 // replace ext{1,2,3,4} with %s{1,2,3,4} 3957 3958 Register DstReg = MI.getOperand(0).getReg(); 3959 LLT DstTy = MRI.getType(DstReg); 3960 unsigned NumElts = DstTy.getNumElements(); 3961 3962 SmallBitVector ExtractedElts(NumElts); 3963 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), 3964 MRI.use_instr_nodbg_end())) { 3965 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3966 return false; 3967 auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI); 3968 if (!Cst) 3969 return false; 3970 unsigned Idx = Cst.getValue().getZExtValue(); 3971 if (Idx >= NumElts) 3972 return false; // Out of range. 3973 ExtractedElts.set(Idx); 3974 SrcDstPairs.emplace_back( 3975 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3976 } 3977 // Match if every element was extracted. 3978 return ExtractedElts.all(); 3979 } 3980 3981 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3982 MachineInstr &MI, 3983 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3984 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3985 for (auto &Pair : SrcDstPairs) { 3986 auto *ExtMI = Pair.second; 3987 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3988 ExtMI->eraseFromParent(); 3989 } 3990 MI.eraseFromParent(); 3991 } 3992 3993 void CombinerHelper::applyBuildFn( 3994 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3995 Builder.setInstrAndDebugLoc(MI); 3996 MatchInfo(Builder); 3997 MI.eraseFromParent(); 3998 } 3999 4000 void CombinerHelper::applyBuildFnNoErase( 4001 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4002 Builder.setInstrAndDebugLoc(MI); 4003 MatchInfo(Builder); 4004 } 4005 4006 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 4007 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 4008 unsigned Opc = MI.getOpcode(); 4009 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 4010 Register X = MI.getOperand(1).getReg(); 4011 Register Y = MI.getOperand(2).getReg(); 4012 if (X != Y) 4013 return false; 4014 unsigned RotateOpc = 4015 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 4016 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 4017 } 4018 4019 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 4020 unsigned Opc = MI.getOpcode(); 4021 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 4022 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 4023 Observer.changingInstr(MI); 4024 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 4025 : TargetOpcode::G_ROTR)); 4026 MI.RemoveOperand(2); 4027 Observer.changedInstr(MI); 4028 } 4029 4030 // Fold (rot x, c) -> (rot x, c % BitSize) 4031 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 4032 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4033 MI.getOpcode() == TargetOpcode::G_ROTR); 4034 unsigned Bitsize = 4035 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4036 Register AmtReg = MI.getOperand(2).getReg(); 4037 bool OutOfRange = false; 4038 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 4039 if (auto *CI = dyn_cast<ConstantInt>(C)) 4040 OutOfRange |= CI->getValue().uge(Bitsize); 4041 return true; 4042 }; 4043 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 4044 } 4045 4046 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 4047 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4048 MI.getOpcode() == TargetOpcode::G_ROTR); 4049 unsigned Bitsize = 4050 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4051 Builder.setInstrAndDebugLoc(MI); 4052 Register Amt = MI.getOperand(2).getReg(); 4053 LLT AmtTy = MRI.getType(Amt); 4054 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 4055 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 4056 Observer.changingInstr(MI); 4057 MI.getOperand(2).setReg(Amt); 4058 Observer.changedInstr(MI); 4059 } 4060 4061 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 4062 int64_t &MatchInfo) { 4063 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4064 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4065 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 4066 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 4067 Optional<bool> KnownVal; 4068 switch (Pred) { 4069 default: 4070 llvm_unreachable("Unexpected G_ICMP predicate?"); 4071 case CmpInst::ICMP_EQ: 4072 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 4073 break; 4074 case CmpInst::ICMP_NE: 4075 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 4076 break; 4077 case CmpInst::ICMP_SGE: 4078 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 4079 break; 4080 case CmpInst::ICMP_SGT: 4081 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 4082 break; 4083 case CmpInst::ICMP_SLE: 4084 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 4085 break; 4086 case CmpInst::ICMP_SLT: 4087 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 4088 break; 4089 case CmpInst::ICMP_UGE: 4090 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 4091 break; 4092 case CmpInst::ICMP_UGT: 4093 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 4094 break; 4095 case CmpInst::ICMP_ULE: 4096 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 4097 break; 4098 case CmpInst::ICMP_ULT: 4099 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 4100 break; 4101 } 4102 if (!KnownVal) 4103 return false; 4104 MatchInfo = 4105 *KnownVal 4106 ? getICmpTrueVal(getTargetLowering(), 4107 /*IsVector = */ 4108 MRI.getType(MI.getOperand(0).getReg()).isVector(), 4109 /* IsFP = */ false) 4110 : 0; 4111 return true; 4112 } 4113 4114 bool CombinerHelper::matchICmpToLHSKnownBits( 4115 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4116 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4117 // Given: 4118 // 4119 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4120 // %cmp = G_ICMP ne %x, 0 4121 // 4122 // Or: 4123 // 4124 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4125 // %cmp = G_ICMP eq %x, 1 4126 // 4127 // We can replace %cmp with %x assuming true is 1 on the target. 4128 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4129 if (!CmpInst::isEquality(Pred)) 4130 return false; 4131 Register Dst = MI.getOperand(0).getReg(); 4132 LLT DstTy = MRI.getType(Dst); 4133 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), 4134 /* IsFP = */ false) != 1) 4135 return false; 4136 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; 4137 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) 4138 return false; 4139 Register LHS = MI.getOperand(2).getReg(); 4140 auto KnownLHS = KB->getKnownBits(LHS); 4141 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) 4142 return false; 4143 // Make sure replacing Dst with the LHS is a legal operation. 4144 LLT LHSTy = MRI.getType(LHS); 4145 unsigned LHSSize = LHSTy.getSizeInBits(); 4146 unsigned DstSize = DstTy.getSizeInBits(); 4147 unsigned Op = TargetOpcode::COPY; 4148 if (DstSize != LHSSize) 4149 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; 4150 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) 4151 return false; 4152 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; 4153 return true; 4154 } 4155 4156 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4157 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4158 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4159 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4160 Register Dst = MI.getOperand(0).getReg(); 4161 Register Src = MI.getOperand(1).getReg(); 4162 LLT Ty = MRI.getType(Src); 4163 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4164 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4165 return false; 4166 int64_t Width = MI.getOperand(2).getImm(); 4167 Register ShiftSrc; 4168 int64_t ShiftImm; 4169 if (!mi_match( 4170 Src, MRI, 4171 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4172 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4173 return false; 4174 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4175 return false; 4176 4177 MatchInfo = [=](MachineIRBuilder &B) { 4178 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4179 auto Cst2 = B.buildConstant(ExtractTy, Width); 4180 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4181 }; 4182 return true; 4183 } 4184 4185 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4186 bool CombinerHelper::matchBitfieldExtractFromAnd( 4187 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4188 assert(MI.getOpcode() == TargetOpcode::G_AND); 4189 Register Dst = MI.getOperand(0).getReg(); 4190 LLT Ty = MRI.getType(Dst); 4191 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 4192 TargetOpcode::G_UBFX, Ty, Ty)) 4193 return false; 4194 4195 int64_t AndImm, LSBImm; 4196 Register ShiftSrc; 4197 const unsigned Size = Ty.getScalarSizeInBits(); 4198 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4199 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4200 m_ICst(AndImm)))) 4201 return false; 4202 4203 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4204 auto MaybeMask = static_cast<uint64_t>(AndImm); 4205 if (MaybeMask & (MaybeMask + 1)) 4206 return false; 4207 4208 // LSB must fit within the register. 4209 if (static_cast<uint64_t>(LSBImm) >= Size) 4210 return false; 4211 4212 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4213 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4214 MatchInfo = [=](MachineIRBuilder &B) { 4215 auto WidthCst = B.buildConstant(ExtractTy, Width); 4216 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4217 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4218 }; 4219 return true; 4220 } 4221 4222 bool CombinerHelper::matchBitfieldExtractFromShr( 4223 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4224 const unsigned Opcode = MI.getOpcode(); 4225 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 4226 4227 const Register Dst = MI.getOperand(0).getReg(); 4228 4229 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 4230 ? TargetOpcode::G_SBFX 4231 : TargetOpcode::G_UBFX; 4232 4233 // Check if the type we would use for the extract is legal 4234 LLT Ty = MRI.getType(Dst); 4235 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4236 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 4237 return false; 4238 4239 Register ShlSrc; 4240 int64_t ShrAmt; 4241 int64_t ShlAmt; 4242 const unsigned Size = Ty.getScalarSizeInBits(); 4243 4244 // Try to match shr (shl x, c1), c2 4245 if (!mi_match(Dst, MRI, 4246 m_BinOp(Opcode, 4247 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4248 m_ICst(ShrAmt)))) 4249 return false; 4250 4251 // Make sure that the shift sizes can fit a bitfield extract 4252 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4253 return false; 4254 4255 // Skip this combine if the G_SEXT_INREG combine could handle it 4256 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4257 return false; 4258 4259 // Calculate start position and width of the extract 4260 const int64_t Pos = ShrAmt - ShlAmt; 4261 const int64_t Width = Size - ShrAmt; 4262 4263 MatchInfo = [=](MachineIRBuilder &B) { 4264 auto WidthCst = B.buildConstant(ExtractTy, Width); 4265 auto PosCst = B.buildConstant(ExtractTy, Pos); 4266 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4267 }; 4268 return true; 4269 } 4270 4271 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4272 MachineInstr &PtrAdd) { 4273 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4274 4275 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4276 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4277 if (!Src1Def) 4278 return false; 4279 4280 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4281 4282 if (MRI.hasOneNonDBGUse(Src1Reg)) 4283 return false; 4284 4285 auto C1 = getConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4286 if (!C1) 4287 return false; 4288 auto C2 = getConstantVRegVal(Src2Reg, MRI); 4289 if (!C2) 4290 return false; 4291 4292 const APInt &C1APIntVal = *C1; 4293 const APInt &C2APIntVal = *C2; 4294 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4295 4296 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4297 // This combine may end up running before ptrtoint/inttoptr combines 4298 // manage to eliminate redundant conversions, so try to look through them. 4299 MachineInstr *ConvUseMI = &UseMI; 4300 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4301 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4302 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4303 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4304 if (!MRI.hasOneNonDBGUse(DefReg)) 4305 break; 4306 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4307 ConvUseOpc = ConvUseMI->getOpcode(); 4308 } 4309 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4310 ConvUseOpc == TargetOpcode::G_STORE; 4311 if (!LoadStore) 4312 continue; 4313 // Is x[offset2] already not a legal addressing mode? If so then 4314 // reassociating the constants breaks nothing (we test offset2 because 4315 // that's the one we hope to fold into the load or store). 4316 TargetLoweringBase::AddrMode AM; 4317 AM.HasBaseReg = true; 4318 AM.BaseOffs = C2APIntVal.getSExtValue(); 4319 unsigned AS = 4320 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4321 Type *AccessTy = 4322 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4323 PtrAdd.getMF()->getFunction().getContext()); 4324 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4325 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4326 AccessTy, AS)) 4327 continue; 4328 4329 // Would x[offset1+offset2] still be a legal addressing mode? 4330 AM.BaseOffs = CombinedValue; 4331 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4332 AccessTy, AS)) 4333 return true; 4334 } 4335 4336 return false; 4337 } 4338 4339 bool CombinerHelper::matchReassocPtrAdd( 4340 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4341 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 4342 // We're trying to match a few pointer computation patterns here for 4343 // re-association opportunities. 4344 // 1) Isolating a constant operand to be on the RHS, e.g.: 4345 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4346 // 4347 // 2) Folding two constants in each sub-tree as long as such folding 4348 // doesn't break a legal addressing mode. 4349 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4350 Register Src1Reg = MI.getOperand(1).getReg(); 4351 Register Src2Reg = MI.getOperand(2).getReg(); 4352 MachineInstr *LHS = MRI.getVRegDef(Src1Reg); 4353 MachineInstr *RHS = MRI.getVRegDef(Src2Reg); 4354 4355 if (LHS->getOpcode() != TargetOpcode::G_PTR_ADD) { 4356 // Try to match example 1). 4357 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4358 return false; 4359 auto C2 = getConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4360 if (!C2) 4361 return false; 4362 4363 MatchInfo = [=,&MI](MachineIRBuilder &B) { 4364 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4365 4366 auto NewBase = 4367 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4368 Observer.changingInstr(MI); 4369 MI.getOperand(1).setReg(NewBase.getReg(0)); 4370 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4371 Observer.changedInstr(MI); 4372 }; 4373 } else { 4374 // Try to match example 2. 4375 Register LHSSrc1 = LHS->getOperand(1).getReg(); 4376 Register LHSSrc2 = LHS->getOperand(2).getReg(); 4377 auto C1 = getConstantVRegVal(LHSSrc2, MRI); 4378 if (!C1) 4379 return false; 4380 auto C2 = getConstantVRegVal(Src2Reg, MRI); 4381 if (!C2) 4382 return false; 4383 4384 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4385 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4386 Observer.changingInstr(MI); 4387 MI.getOperand(1).setReg(LHSSrc1); 4388 MI.getOperand(2).setReg(NewCst.getReg(0)); 4389 Observer.changedInstr(MI); 4390 }; 4391 } 4392 return !reassociationCanBreakAddressingModePattern(MI); 4393 } 4394 4395 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4396 Register Op1 = MI.getOperand(1).getReg(); 4397 Register Op2 = MI.getOperand(2).getReg(); 4398 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4399 if (!MaybeCst) 4400 return false; 4401 MatchInfo = *MaybeCst; 4402 return true; 4403 } 4404 4405 bool CombinerHelper::matchNarrowBinopFeedingAnd( 4406 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4407 // Look for a binop feeding into an AND with a mask: 4408 // 4409 // %add = G_ADD %lhs, %rhs 4410 // %and = G_AND %add, 000...11111111 4411 // 4412 // Check if it's possible to perform the binop at a narrower width and zext 4413 // back to the original width like so: 4414 // 4415 // %narrow_lhs = G_TRUNC %lhs 4416 // %narrow_rhs = G_TRUNC %rhs 4417 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 4418 // %new_add = G_ZEXT %narrow_add 4419 // %and = G_AND %new_add, 000...11111111 4420 // 4421 // This can allow later combines to eliminate the G_AND if it turns out 4422 // that the mask is irrelevant. 4423 assert(MI.getOpcode() == TargetOpcode::G_AND); 4424 Register Dst = MI.getOperand(0).getReg(); 4425 Register AndLHS = MI.getOperand(1).getReg(); 4426 Register AndRHS = MI.getOperand(2).getReg(); 4427 LLT WideTy = MRI.getType(Dst); 4428 4429 // If the potential binop has more than one use, then it's possible that one 4430 // of those uses will need its full width. 4431 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 4432 return false; 4433 4434 // Check if the LHS feeding the AND is impacted by the high bits that we're 4435 // masking out. 4436 // 4437 // e.g. for 64-bit x, y: 4438 // 4439 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 4440 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 4441 if (!LHSInst) 4442 return false; 4443 unsigned LHSOpc = LHSInst->getOpcode(); 4444 switch (LHSOpc) { 4445 default: 4446 return false; 4447 case TargetOpcode::G_ADD: 4448 case TargetOpcode::G_SUB: 4449 case TargetOpcode::G_MUL: 4450 case TargetOpcode::G_AND: 4451 case TargetOpcode::G_OR: 4452 case TargetOpcode::G_XOR: 4453 break; 4454 } 4455 4456 // Find the mask on the RHS. 4457 auto Cst = getConstantVRegValWithLookThrough(AndRHS, MRI); 4458 if (!Cst) 4459 return false; 4460 auto Mask = Cst->Value; 4461 if (!Mask.isMask()) 4462 return false; 4463 4464 // No point in combining if there's nothing to truncate. 4465 unsigned NarrowWidth = Mask.countTrailingOnes(); 4466 if (NarrowWidth == WideTy.getSizeInBits()) 4467 return false; 4468 LLT NarrowTy = LLT::scalar(NarrowWidth); 4469 4470 // Check if adding the zext + truncates could be harmful. 4471 auto &MF = *MI.getMF(); 4472 const auto &TLI = getTargetLowering(); 4473 LLVMContext &Ctx = MF.getFunction().getContext(); 4474 auto &DL = MF.getDataLayout(); 4475 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 4476 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 4477 return false; 4478 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 4479 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 4480 return false; 4481 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 4482 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 4483 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4484 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 4485 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 4486 auto NarrowBinOp = 4487 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 4488 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 4489 Observer.changingInstr(MI); 4490 MI.getOperand(1).setReg(Ext.getReg(0)); 4491 Observer.changedInstr(MI); 4492 }; 4493 return true; 4494 } 4495 4496 bool CombinerHelper::tryCombine(MachineInstr &MI) { 4497 if (tryCombineCopy(MI)) 4498 return true; 4499 if (tryCombineExtendingLoads(MI)) 4500 return true; 4501 if (tryCombineIndexedLoadStore(MI)) 4502 return true; 4503 return false; 4504 } 4505