1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/CodeGen/GlobalISel/Combiner.h" 10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 12 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 13 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 14 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 15 #include "llvm/CodeGen/GlobalISel/Utils.h" 16 #include "llvm/CodeGen/MachineDominators.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineInstr.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetInstrInfo.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/Support/MathExtras.h" 23 #include "llvm/Target/TargetMachine.h" 24 25 #define DEBUG_TYPE "gi-combiner" 26 27 using namespace llvm; 28 using namespace MIPatternMatch; 29 30 // Option to allow testing of the combiner while no targets know about indexed 31 // addressing. 32 static cl::opt<bool> 33 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 34 cl::desc("Force all indexed operations to be " 35 "legal for the GlobalISel combiner")); 36 37 38 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 39 MachineIRBuilder &B, GISelKnownBits *KB, 40 MachineDominatorTree *MDT, 41 const LegalizerInfo *LI) 42 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 43 KB(KB), MDT(MDT), LI(LI) { 44 (void)this->KB; 45 } 46 47 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 48 Register ToReg) const { 49 Observer.changingAllUsesOfReg(MRI, FromReg); 50 51 if (MRI.constrainRegAttrs(ToReg, FromReg)) 52 MRI.replaceRegWith(FromReg, ToReg); 53 else 54 Builder.buildCopy(ToReg, FromReg); 55 56 Observer.finishedChangingAllUsesOfReg(); 57 } 58 59 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 60 MachineOperand &FromRegOp, 61 Register ToReg) const { 62 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 63 Observer.changingInstr(*FromRegOp.getParent()); 64 65 FromRegOp.setReg(ToReg); 66 67 Observer.changedInstr(*FromRegOp.getParent()); 68 } 69 70 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 71 if (matchCombineCopy(MI)) { 72 applyCombineCopy(MI); 73 return true; 74 } 75 return false; 76 } 77 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 78 if (MI.getOpcode() != TargetOpcode::COPY) 79 return false; 80 Register DstReg = MI.getOperand(0).getReg(); 81 Register SrcReg = MI.getOperand(1).getReg(); 82 return canReplaceReg(DstReg, SrcReg, MRI); 83 } 84 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 85 Register DstReg = MI.getOperand(0).getReg(); 86 Register SrcReg = MI.getOperand(1).getReg(); 87 MI.eraseFromParent(); 88 replaceRegWith(MRI, DstReg, SrcReg); 89 } 90 91 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 92 bool IsUndef = false; 93 SmallVector<Register, 4> Ops; 94 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 95 applyCombineConcatVectors(MI, IsUndef, Ops); 96 return true; 97 } 98 return false; 99 } 100 101 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 102 SmallVectorImpl<Register> &Ops) { 103 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 104 "Invalid instruction"); 105 IsUndef = true; 106 MachineInstr *Undef = nullptr; 107 108 // Walk over all the operands of concat vectors and check if they are 109 // build_vector themselves or undef. 110 // Then collect their operands in Ops. 111 for (const MachineOperand &MO : MI.uses()) { 112 Register Reg = MO.getReg(); 113 MachineInstr *Def = MRI.getVRegDef(Reg); 114 assert(Def && "Operand not defined"); 115 switch (Def->getOpcode()) { 116 case TargetOpcode::G_BUILD_VECTOR: 117 IsUndef = false; 118 // Remember the operands of the build_vector to fold 119 // them into the yet-to-build flattened concat vectors. 120 for (const MachineOperand &BuildVecMO : Def->uses()) 121 Ops.push_back(BuildVecMO.getReg()); 122 break; 123 case TargetOpcode::G_IMPLICIT_DEF: { 124 LLT OpType = MRI.getType(Reg); 125 // Keep one undef value for all the undef operands. 126 if (!Undef) { 127 Builder.setInsertPt(*MI.getParent(), MI); 128 Undef = Builder.buildUndef(OpType.getScalarType()); 129 } 130 assert(MRI.getType(Undef->getOperand(0).getReg()) == 131 OpType.getScalarType() && 132 "All undefs should have the same type"); 133 // Break the undef vector in as many scalar elements as needed 134 // for the flattening. 135 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 136 EltIdx != EltEnd; ++EltIdx) 137 Ops.push_back(Undef->getOperand(0).getReg()); 138 break; 139 } 140 default: 141 return false; 142 } 143 } 144 return true; 145 } 146 void CombinerHelper::applyCombineConcatVectors( 147 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 148 // We determined that the concat_vectors can be flatten. 149 // Generate the flattened build_vector. 150 Register DstReg = MI.getOperand(0).getReg(); 151 Builder.setInsertPt(*MI.getParent(), MI); 152 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 153 154 // Note: IsUndef is sort of redundant. We could have determine it by 155 // checking that at all Ops are undef. Alternatively, we could have 156 // generate a build_vector of undefs and rely on another combine to 157 // clean that up. For now, given we already gather this information 158 // in tryCombineConcatVectors, just save compile time and issue the 159 // right thing. 160 if (IsUndef) 161 Builder.buildUndef(NewDstReg); 162 else 163 Builder.buildBuildVector(NewDstReg, Ops); 164 MI.eraseFromParent(); 165 replaceRegWith(MRI, DstReg, NewDstReg); 166 } 167 168 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 169 SmallVector<Register, 4> Ops; 170 if (matchCombineShuffleVector(MI, Ops)) { 171 applyCombineShuffleVector(MI, Ops); 172 return true; 173 } 174 return false; 175 } 176 177 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 178 SmallVectorImpl<Register> &Ops) { 179 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 180 "Invalid instruction kind"); 181 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 182 Register Src1 = MI.getOperand(1).getReg(); 183 LLT SrcType = MRI.getType(Src1); 184 // As bizarre as it may look, shuffle vector can actually produce 185 // scalar! This is because at the IR level a <1 x ty> shuffle 186 // vector is perfectly valid. 187 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 188 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 189 190 // If the resulting vector is smaller than the size of the source 191 // vectors being concatenated, we won't be able to replace the 192 // shuffle vector into a concat_vectors. 193 // 194 // Note: We may still be able to produce a concat_vectors fed by 195 // extract_vector_elt and so on. It is less clear that would 196 // be better though, so don't bother for now. 197 // 198 // If the destination is a scalar, the size of the sources doesn't 199 // matter. we will lower the shuffle to a plain copy. This will 200 // work only if the source and destination have the same size. But 201 // that's covered by the next condition. 202 // 203 // TODO: If the size between the source and destination don't match 204 // we could still emit an extract vector element in that case. 205 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 206 return false; 207 208 // Check that the shuffle mask can be broken evenly between the 209 // different sources. 210 if (DstNumElts % SrcNumElts != 0) 211 return false; 212 213 // Mask length is a multiple of the source vector length. 214 // Check if the shuffle is some kind of concatenation of the input 215 // vectors. 216 unsigned NumConcat = DstNumElts / SrcNumElts; 217 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 218 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 219 for (unsigned i = 0; i != DstNumElts; ++i) { 220 int Idx = Mask[i]; 221 // Undef value. 222 if (Idx < 0) 223 continue; 224 // Ensure the indices in each SrcType sized piece are sequential and that 225 // the same source is used for the whole piece. 226 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 227 (ConcatSrcs[i / SrcNumElts] >= 0 && 228 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 229 return false; 230 // Remember which source this index came from. 231 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 232 } 233 234 // The shuffle is concatenating multiple vectors together. 235 // Collect the different operands for that. 236 Register UndefReg; 237 Register Src2 = MI.getOperand(2).getReg(); 238 for (auto Src : ConcatSrcs) { 239 if (Src < 0) { 240 if (!UndefReg) { 241 Builder.setInsertPt(*MI.getParent(), MI); 242 UndefReg = Builder.buildUndef(SrcType).getReg(0); 243 } 244 Ops.push_back(UndefReg); 245 } else if (Src == 0) 246 Ops.push_back(Src1); 247 else 248 Ops.push_back(Src2); 249 } 250 return true; 251 } 252 253 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 254 const ArrayRef<Register> Ops) { 255 Register DstReg = MI.getOperand(0).getReg(); 256 Builder.setInsertPt(*MI.getParent(), MI); 257 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 258 259 if (Ops.size() == 1) 260 Builder.buildCopy(NewDstReg, Ops[0]); 261 else 262 Builder.buildMerge(NewDstReg, Ops); 263 264 MI.eraseFromParent(); 265 replaceRegWith(MRI, DstReg, NewDstReg); 266 } 267 268 namespace { 269 270 /// Select a preference between two uses. CurrentUse is the current preference 271 /// while *ForCandidate is attributes of the candidate under consideration. 272 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 273 const LLT TyForCandidate, 274 unsigned OpcodeForCandidate, 275 MachineInstr *MIForCandidate) { 276 if (!CurrentUse.Ty.isValid()) { 277 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 278 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 279 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 280 return CurrentUse; 281 } 282 283 // We permit the extend to hoist through basic blocks but this is only 284 // sensible if the target has extending loads. If you end up lowering back 285 // into a load and extend during the legalizer then the end result is 286 // hoisting the extend up to the load. 287 288 // Prefer defined extensions to undefined extensions as these are more 289 // likely to reduce the number of instructions. 290 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 291 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 292 return CurrentUse; 293 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 294 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 295 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 296 297 // Prefer sign extensions to zero extensions as sign-extensions tend to be 298 // more expensive. 299 if (CurrentUse.Ty == TyForCandidate) { 300 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 301 OpcodeForCandidate == TargetOpcode::G_ZEXT) 302 return CurrentUse; 303 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 304 OpcodeForCandidate == TargetOpcode::G_SEXT) 305 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 306 } 307 308 // This is potentially target specific. We've chosen the largest type 309 // because G_TRUNC is usually free. One potential catch with this is that 310 // some targets have a reduced number of larger registers than smaller 311 // registers and this choice potentially increases the live-range for the 312 // larger value. 313 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 314 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 315 } 316 return CurrentUse; 317 } 318 319 /// Find a suitable place to insert some instructions and insert them. This 320 /// function accounts for special cases like inserting before a PHI node. 321 /// The current strategy for inserting before PHI's is to duplicate the 322 /// instructions for each predecessor. However, while that's ok for G_TRUNC 323 /// on most targets since it generally requires no code, other targets/cases may 324 /// want to try harder to find a dominating block. 325 static void InsertInsnsWithoutSideEffectsBeforeUse( 326 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 327 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 328 MachineOperand &UseMO)> 329 Inserter) { 330 MachineInstr &UseMI = *UseMO.getParent(); 331 332 MachineBasicBlock *InsertBB = UseMI.getParent(); 333 334 // If the use is a PHI then we want the predecessor block instead. 335 if (UseMI.isPHI()) { 336 MachineOperand *PredBB = std::next(&UseMO); 337 InsertBB = PredBB->getMBB(); 338 } 339 340 // If the block is the same block as the def then we want to insert just after 341 // the def instead of at the start of the block. 342 if (InsertBB == DefMI.getParent()) { 343 MachineBasicBlock::iterator InsertPt = &DefMI; 344 Inserter(InsertBB, std::next(InsertPt), UseMO); 345 return; 346 } 347 348 // Otherwise we want the start of the BB 349 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 350 } 351 } // end anonymous namespace 352 353 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 354 PreferredTuple Preferred; 355 if (matchCombineExtendingLoads(MI, Preferred)) { 356 applyCombineExtendingLoads(MI, Preferred); 357 return true; 358 } 359 return false; 360 } 361 362 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 363 PreferredTuple &Preferred) { 364 // We match the loads and follow the uses to the extend instead of matching 365 // the extends and following the def to the load. This is because the load 366 // must remain in the same position for correctness (unless we also add code 367 // to find a safe place to sink it) whereas the extend is freely movable. 368 // It also prevents us from duplicating the load for the volatile case or just 369 // for performance. 370 371 if (MI.getOpcode() != TargetOpcode::G_LOAD && 372 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 373 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 374 return false; 375 376 auto &LoadValue = MI.getOperand(0); 377 assert(LoadValue.isReg() && "Result wasn't a register?"); 378 379 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 380 if (!LoadValueTy.isScalar()) 381 return false; 382 383 // Most architectures are going to legalize <s8 loads into at least a 1 byte 384 // load, and the MMOs can only describe memory accesses in multiples of bytes. 385 // If we try to perform extload combining on those, we can end up with 386 // %a(s8) = extload %ptr (load 1 byte from %ptr) 387 // ... which is an illegal extload instruction. 388 if (LoadValueTy.getSizeInBits() < 8) 389 return false; 390 391 // For non power-of-2 types, they will very likely be legalized into multiple 392 // loads. Don't bother trying to match them into extending loads. 393 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 394 return false; 395 396 // Find the preferred type aside from the any-extends (unless it's the only 397 // one) and non-extending ops. We'll emit an extending load to that type and 398 // and emit a variant of (extend (trunc X)) for the others according to the 399 // relative type sizes. At the same time, pick an extend to use based on the 400 // extend involved in the chosen type. 401 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 402 ? TargetOpcode::G_ANYEXT 403 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 404 ? TargetOpcode::G_SEXT 405 : TargetOpcode::G_ZEXT; 406 Preferred = {LLT(), PreferredOpcode, nullptr}; 407 for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) { 408 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 409 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 410 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 411 // Check for legality. 412 if (LI) { 413 LegalityQuery::MemDesc MMDesc; 414 const auto &MMO = **MI.memoperands_begin(); 415 MMDesc.SizeInBits = MMO.getSizeInBits(); 416 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 417 MMDesc.Ordering = MMO.getOrdering(); 418 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 419 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 420 if (LI->getAction({MI.getOpcode(), {UseTy, SrcTy}, {MMDesc}}).Action != 421 LegalizeActions::Legal) 422 continue; 423 } 424 Preferred = ChoosePreferredUse(Preferred, 425 MRI.getType(UseMI.getOperand(0).getReg()), 426 UseMI.getOpcode(), &UseMI); 427 } 428 } 429 430 // There were no extends 431 if (!Preferred.MI) 432 return false; 433 // It should be impossible to chose an extend without selecting a different 434 // type since by definition the result of an extend is larger. 435 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 436 437 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 438 return true; 439 } 440 441 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 442 PreferredTuple &Preferred) { 443 // Rewrite the load to the chosen extending load. 444 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 445 446 // Inserter to insert a truncate back to the original type at a given point 447 // with some basic CSE to limit truncate duplication to one per BB. 448 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 449 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 450 MachineBasicBlock::iterator InsertBefore, 451 MachineOperand &UseMO) { 452 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 453 if (PreviouslyEmitted) { 454 Observer.changingInstr(*UseMO.getParent()); 455 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 456 Observer.changedInstr(*UseMO.getParent()); 457 return; 458 } 459 460 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 461 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 462 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 463 EmittedInsns[InsertIntoBB] = NewMI; 464 replaceRegOpWith(MRI, UseMO, NewDstReg); 465 }; 466 467 Observer.changingInstr(MI); 468 MI.setDesc( 469 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 470 ? TargetOpcode::G_SEXTLOAD 471 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 472 ? TargetOpcode::G_ZEXTLOAD 473 : TargetOpcode::G_LOAD)); 474 475 // Rewrite all the uses to fix up the types. 476 auto &LoadValue = MI.getOperand(0); 477 SmallVector<MachineOperand *, 4> Uses; 478 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 479 Uses.push_back(&UseMO); 480 481 for (auto *UseMO : Uses) { 482 MachineInstr *UseMI = UseMO->getParent(); 483 484 // If the extend is compatible with the preferred extend then we should fix 485 // up the type and extend so that it uses the preferred use. 486 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 487 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 488 Register UseDstReg = UseMI->getOperand(0).getReg(); 489 MachineOperand &UseSrcMO = UseMI->getOperand(1); 490 const LLT UseDstTy = MRI.getType(UseDstReg); 491 if (UseDstReg != ChosenDstReg) { 492 if (Preferred.Ty == UseDstTy) { 493 // If the use has the same type as the preferred use, then merge 494 // the vregs and erase the extend. For example: 495 // %1:_(s8) = G_LOAD ... 496 // %2:_(s32) = G_SEXT %1(s8) 497 // %3:_(s32) = G_ANYEXT %1(s8) 498 // ... = ... %3(s32) 499 // rewrites to: 500 // %2:_(s32) = G_SEXTLOAD ... 501 // ... = ... %2(s32) 502 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 503 Observer.erasingInstr(*UseMO->getParent()); 504 UseMO->getParent()->eraseFromParent(); 505 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 506 // If the preferred size is smaller, then keep the extend but extend 507 // from the result of the extending load. For example: 508 // %1:_(s8) = G_LOAD ... 509 // %2:_(s32) = G_SEXT %1(s8) 510 // %3:_(s64) = G_ANYEXT %1(s8) 511 // ... = ... %3(s64) 512 /// rewrites to: 513 // %2:_(s32) = G_SEXTLOAD ... 514 // %3:_(s64) = G_ANYEXT %2:_(s32) 515 // ... = ... %3(s64) 516 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 517 } else { 518 // If the preferred size is large, then insert a truncate. For 519 // example: 520 // %1:_(s8) = G_LOAD ... 521 // %2:_(s64) = G_SEXT %1(s8) 522 // %3:_(s32) = G_ZEXT %1(s8) 523 // ... = ... %3(s32) 524 /// rewrites to: 525 // %2:_(s64) = G_SEXTLOAD ... 526 // %4:_(s8) = G_TRUNC %2:_(s32) 527 // %3:_(s64) = G_ZEXT %2:_(s8) 528 // ... = ... %3(s64) 529 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 530 InsertTruncAt); 531 } 532 continue; 533 } 534 // The use is (one of) the uses of the preferred use we chose earlier. 535 // We're going to update the load to def this value later so just erase 536 // the old extend. 537 Observer.erasingInstr(*UseMO->getParent()); 538 UseMO->getParent()->eraseFromParent(); 539 continue; 540 } 541 542 // The use isn't an extend. Truncate back to the type we originally loaded. 543 // This is free on many targets. 544 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 545 } 546 547 MI.getOperand(0).setReg(ChosenDstReg); 548 Observer.changedInstr(MI); 549 } 550 551 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 552 const MachineInstr &UseMI) { 553 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 554 "shouldn't consider debug uses"); 555 assert(DefMI.getParent() == UseMI.getParent()); 556 if (&DefMI == &UseMI) 557 return false; 558 559 // Loop through the basic block until we find one of the instructions. 560 MachineBasicBlock::const_iterator I = DefMI.getParent()->begin(); 561 for (; &*I != &DefMI && &*I != &UseMI; ++I) 562 return &*I == &DefMI; 563 564 llvm_unreachable("Block must contain instructions"); 565 } 566 567 bool CombinerHelper::dominates(const MachineInstr &DefMI, 568 const MachineInstr &UseMI) { 569 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 570 "shouldn't consider debug uses"); 571 if (MDT) 572 return MDT->dominates(&DefMI, &UseMI); 573 else if (DefMI.getParent() != UseMI.getParent()) 574 return false; 575 576 return isPredecessor(DefMI, UseMI); 577 } 578 579 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 580 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 581 Register SrcReg = MI.getOperand(1).getReg(); 582 Register LoadUser = SrcReg; 583 584 if (MRI.getType(SrcReg).isVector()) 585 return false; 586 587 Register TruncSrc; 588 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 589 LoadUser = TruncSrc; 590 591 uint64_t SizeInBits = MI.getOperand(2).getImm(); 592 // If the source is a G_SEXTLOAD from the same bit width, then we don't 593 // need any extend at all, just a truncate. 594 if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) { 595 const auto &MMO = **LoadMI->memoperands_begin(); 596 // If truncating more than the original extended value, abort. 597 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits()) 598 return false; 599 if (MMO.getSizeInBits() == SizeInBits) 600 return true; 601 } 602 return false; 603 } 604 605 bool CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 606 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 607 Builder.setInstrAndDebugLoc(MI); 608 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 609 MI.eraseFromParent(); 610 return true; 611 } 612 613 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 614 Register &Base, Register &Offset) { 615 auto &MF = *MI.getParent()->getParent(); 616 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 617 618 #ifndef NDEBUG 619 unsigned Opcode = MI.getOpcode(); 620 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 621 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 622 #endif 623 624 Base = MI.getOperand(1).getReg(); 625 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 626 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 627 return false; 628 629 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 630 631 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 632 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 633 continue; 634 635 Offset = Use.getOperand(2).getReg(); 636 if (!ForceLegalIndexing && 637 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 638 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 639 << Use); 640 continue; 641 } 642 643 // Make sure the offset calculation is before the potentially indexed op. 644 // FIXME: we really care about dependency here. The offset calculation might 645 // be movable. 646 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 647 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 648 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 649 << Use); 650 continue; 651 } 652 653 // FIXME: check whether all uses of Base are load/store with foldable 654 // addressing modes. If so, using the normal addr-modes is better than 655 // forming an indexed one. 656 657 bool MemOpDominatesAddrUses = true; 658 for (auto &PtrAddUse : 659 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 660 if (!dominates(MI, PtrAddUse)) { 661 MemOpDominatesAddrUses = false; 662 break; 663 } 664 } 665 666 if (!MemOpDominatesAddrUses) { 667 LLVM_DEBUG( 668 dbgs() << " Ignoring candidate as memop does not dominate uses: " 669 << Use); 670 continue; 671 } 672 673 LLVM_DEBUG(dbgs() << " Found match: " << Use); 674 Addr = Use.getOperand(0).getReg(); 675 return true; 676 } 677 678 return false; 679 } 680 681 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 682 Register &Base, Register &Offset) { 683 auto &MF = *MI.getParent()->getParent(); 684 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 685 686 #ifndef NDEBUG 687 unsigned Opcode = MI.getOpcode(); 688 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 689 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 690 #endif 691 692 Addr = MI.getOperand(1).getReg(); 693 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 694 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 695 return false; 696 697 Base = AddrDef->getOperand(1).getReg(); 698 Offset = AddrDef->getOperand(2).getReg(); 699 700 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 701 702 if (!ForceLegalIndexing && 703 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 704 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 705 return false; 706 } 707 708 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 709 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 710 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 711 return false; 712 } 713 714 if (MI.getOpcode() == TargetOpcode::G_STORE) { 715 // Would require a copy. 716 if (Base == MI.getOperand(0).getReg()) { 717 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 718 return false; 719 } 720 721 // We're expecting one use of Addr in MI, but it could also be the 722 // value stored, which isn't actually dominated by the instruction. 723 if (MI.getOperand(0).getReg() == Addr) { 724 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 725 return false; 726 } 727 } 728 729 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 730 // That might allow us to end base's liveness here by adjusting the constant. 731 732 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 733 if (!dominates(MI, UseMI)) { 734 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 735 return false; 736 } 737 } 738 739 return true; 740 } 741 742 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 743 IndexedLoadStoreMatchInfo MatchInfo; 744 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 745 applyCombineIndexedLoadStore(MI, MatchInfo); 746 return true; 747 } 748 return false; 749 } 750 751 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 752 unsigned Opcode = MI.getOpcode(); 753 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 754 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 755 return false; 756 757 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 758 MatchInfo.Offset); 759 if (!MatchInfo.IsPre && 760 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 761 MatchInfo.Offset)) 762 return false; 763 764 return true; 765 } 766 767 void CombinerHelper::applyCombineIndexedLoadStore( 768 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 769 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 770 MachineIRBuilder MIRBuilder(MI); 771 unsigned Opcode = MI.getOpcode(); 772 bool IsStore = Opcode == TargetOpcode::G_STORE; 773 unsigned NewOpcode; 774 switch (Opcode) { 775 case TargetOpcode::G_LOAD: 776 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 777 break; 778 case TargetOpcode::G_SEXTLOAD: 779 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 780 break; 781 case TargetOpcode::G_ZEXTLOAD: 782 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 783 break; 784 case TargetOpcode::G_STORE: 785 NewOpcode = TargetOpcode::G_INDEXED_STORE; 786 break; 787 default: 788 llvm_unreachable("Unknown load/store opcode"); 789 } 790 791 auto MIB = MIRBuilder.buildInstr(NewOpcode); 792 if (IsStore) { 793 MIB.addDef(MatchInfo.Addr); 794 MIB.addUse(MI.getOperand(0).getReg()); 795 } else { 796 MIB.addDef(MI.getOperand(0).getReg()); 797 MIB.addDef(MatchInfo.Addr); 798 } 799 800 MIB.addUse(MatchInfo.Base); 801 MIB.addUse(MatchInfo.Offset); 802 MIB.addImm(MatchInfo.IsPre); 803 MI.eraseFromParent(); 804 AddrDef.eraseFromParent(); 805 806 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 807 } 808 809 bool CombinerHelper::matchElideBrByInvertingCond(MachineInstr &MI) { 810 if (MI.getOpcode() != TargetOpcode::G_BR) 811 return false; 812 813 // Try to match the following: 814 // bb1: 815 // %c(s32) = G_ICMP pred, %a, %b 816 // %c1(s1) = G_TRUNC %c(s32) 817 // G_BRCOND %c1, %bb2 818 // G_BR %bb3 819 // bb2: 820 // ... 821 // bb3: 822 823 // The above pattern does not have a fall through to the successor bb2, always 824 // resulting in a branch no matter which path is taken. Here we try to find 825 // and replace that pattern with conditional branch to bb3 and otherwise 826 // fallthrough to bb2. 827 828 MachineBasicBlock *MBB = MI.getParent(); 829 MachineBasicBlock::iterator BrIt(MI); 830 if (BrIt == MBB->begin()) 831 return false; 832 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 833 834 MachineInstr *BrCond = &*std::prev(BrIt); 835 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 836 return false; 837 838 // Check that the next block is the conditional branch target. 839 if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB())) 840 return false; 841 842 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 843 if (!CmpMI || CmpMI->getOpcode() != TargetOpcode::G_ICMP || 844 !MRI.hasOneNonDBGUse(CmpMI->getOperand(0).getReg())) 845 return false; 846 return true; 847 } 848 849 bool CombinerHelper::tryElideBrByInvertingCond(MachineInstr &MI) { 850 if (!matchElideBrByInvertingCond(MI)) 851 return false; 852 applyElideBrByInvertingCond(MI); 853 return true; 854 } 855 856 void CombinerHelper::applyElideBrByInvertingCond(MachineInstr &MI) { 857 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 858 MachineBasicBlock::iterator BrIt(MI); 859 MachineInstr *BrCond = &*std::prev(BrIt); 860 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 861 862 CmpInst::Predicate InversePred = CmpInst::getInversePredicate( 863 (CmpInst::Predicate)CmpMI->getOperand(1).getPredicate()); 864 865 // Invert the G_ICMP condition. 866 Observer.changingInstr(*CmpMI); 867 CmpMI->getOperand(1).setPredicate(InversePred); 868 Observer.changedInstr(*CmpMI); 869 870 // Change the conditional branch target. 871 Observer.changingInstr(*BrCond); 872 BrCond->getOperand(1).setMBB(BrTarget); 873 Observer.changedInstr(*BrCond); 874 MI.eraseFromParent(); 875 } 876 877 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 878 // On Darwin, -Os means optimize for size without hurting performance, so 879 // only really optimize for size when -Oz (MinSize) is used. 880 if (MF.getTarget().getTargetTriple().isOSDarwin()) 881 return MF.getFunction().hasMinSize(); 882 return MF.getFunction().hasOptSize(); 883 } 884 885 // Returns a list of types to use for memory op lowering in MemOps. A partial 886 // port of findOptimalMemOpLowering in TargetLowering. 887 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 888 unsigned Limit, const MemOp &Op, 889 unsigned DstAS, unsigned SrcAS, 890 const AttributeList &FuncAttributes, 891 const TargetLowering &TLI) { 892 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 893 return false; 894 895 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 896 897 if (Ty == LLT()) { 898 // Use the largest scalar type whose alignment constraints are satisfied. 899 // We only need to check DstAlign here as SrcAlign is always greater or 900 // equal to DstAlign (or zero). 901 Ty = LLT::scalar(64); 902 if (Op.isFixedDstAlign()) 903 while (Op.getDstAlign() < Ty.getSizeInBytes() && 904 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 905 Ty = LLT::scalar(Ty.getSizeInBytes()); 906 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 907 // FIXME: check for the largest legal type we can load/store to. 908 } 909 910 unsigned NumMemOps = 0; 911 uint64_t Size = Op.size(); 912 while (Size) { 913 unsigned TySize = Ty.getSizeInBytes(); 914 while (TySize > Size) { 915 // For now, only use non-vector load / store's for the left-over pieces. 916 LLT NewTy = Ty; 917 // FIXME: check for mem op safety and legality of the types. Not all of 918 // SDAGisms map cleanly to GISel concepts. 919 if (NewTy.isVector()) 920 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 921 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 922 unsigned NewTySize = NewTy.getSizeInBytes(); 923 assert(NewTySize > 0 && "Could not find appropriate type"); 924 925 // If the new LLT cannot cover all of the remaining bits, then consider 926 // issuing a (or a pair of) unaligned and overlapping load / store. 927 bool Fast; 928 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 929 MVT VT = getMVTForLLT(Ty); 930 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 931 TLI.allowsMisalignedMemoryAccesses( 932 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 933 MachineMemOperand::MONone, &Fast) && 934 Fast) 935 TySize = Size; 936 else { 937 Ty = NewTy; 938 TySize = NewTySize; 939 } 940 } 941 942 if (++NumMemOps > Limit) 943 return false; 944 945 MemOps.push_back(Ty); 946 Size -= TySize; 947 } 948 949 return true; 950 } 951 952 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 953 if (Ty.isVector()) 954 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 955 Ty.getNumElements()); 956 return IntegerType::get(C, Ty.getSizeInBits()); 957 } 958 959 // Get a vectorized representation of the memset value operand, GISel edition. 960 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 961 MachineRegisterInfo &MRI = *MIB.getMRI(); 962 unsigned NumBits = Ty.getScalarSizeInBits(); 963 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 964 if (!Ty.isVector() && ValVRegAndVal) { 965 unsigned KnownVal = ValVRegAndVal->Value; 966 APInt Scalar = APInt(8, KnownVal); 967 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 968 return MIB.buildConstant(Ty, SplatVal).getReg(0); 969 } 970 971 // Extend the byte value to the larger type, and then multiply by a magic 972 // value 0x010101... in order to replicate it across every byte. 973 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 974 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 975 return MIB.buildConstant(Ty, 0).getReg(0); 976 } 977 978 LLT ExtType = Ty.getScalarType(); 979 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 980 if (NumBits > 8) { 981 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 982 auto MagicMI = MIB.buildConstant(ExtType, Magic); 983 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 984 } 985 986 // For vector types create a G_BUILD_VECTOR. 987 if (Ty.isVector()) 988 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 989 990 return Val; 991 } 992 993 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 994 Register Val, unsigned KnownLen, 995 Align Alignment, bool IsVolatile) { 996 auto &MF = *MI.getParent()->getParent(); 997 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 998 auto &DL = MF.getDataLayout(); 999 LLVMContext &C = MF.getFunction().getContext(); 1000 1001 assert(KnownLen != 0 && "Have a zero length memset length!"); 1002 1003 bool DstAlignCanChange = false; 1004 MachineFrameInfo &MFI = MF.getFrameInfo(); 1005 bool OptSize = shouldLowerMemFuncForSize(MF); 1006 1007 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1008 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1009 DstAlignCanChange = true; 1010 1011 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1012 std::vector<LLT> MemOps; 1013 1014 const auto &DstMMO = **MI.memoperands_begin(); 1015 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1016 1017 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1018 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1019 1020 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1021 MemOp::Set(KnownLen, DstAlignCanChange, 1022 Alignment, 1023 /*IsZeroMemset=*/IsZeroVal, 1024 /*IsVolatile=*/IsVolatile), 1025 DstPtrInfo.getAddrSpace(), ~0u, 1026 MF.getFunction().getAttributes(), TLI)) 1027 return false; 1028 1029 if (DstAlignCanChange) { 1030 // Get an estimate of the type from the LLT. 1031 Type *IRTy = getTypeForLLT(MemOps[0], C); 1032 Align NewAlign = DL.getABITypeAlign(IRTy); 1033 if (NewAlign > Alignment) { 1034 Alignment = NewAlign; 1035 unsigned FI = FIDef->getOperand(1).getIndex(); 1036 // Give the stack frame object a larger alignment if needed. 1037 if (MFI.getObjectAlign(FI) < Alignment) 1038 MFI.setObjectAlignment(FI, Alignment); 1039 } 1040 } 1041 1042 MachineIRBuilder MIB(MI); 1043 // Find the largest store and generate the bit pattern for it. 1044 LLT LargestTy = MemOps[0]; 1045 for (unsigned i = 1; i < MemOps.size(); i++) 1046 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1047 LargestTy = MemOps[i]; 1048 1049 // The memset stored value is always defined as an s8, so in order to make it 1050 // work with larger store types we need to repeat the bit pattern across the 1051 // wider type. 1052 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1053 1054 if (!MemSetValue) 1055 return false; 1056 1057 // Generate the stores. For each store type in the list, we generate the 1058 // matching store of that type to the destination address. 1059 LLT PtrTy = MRI.getType(Dst); 1060 unsigned DstOff = 0; 1061 unsigned Size = KnownLen; 1062 for (unsigned I = 0; I < MemOps.size(); I++) { 1063 LLT Ty = MemOps[I]; 1064 unsigned TySize = Ty.getSizeInBytes(); 1065 if (TySize > Size) { 1066 // Issuing an unaligned load / store pair that overlaps with the previous 1067 // pair. Adjust the offset accordingly. 1068 assert(I == MemOps.size() - 1 && I != 0); 1069 DstOff -= TySize - Size; 1070 } 1071 1072 // If this store is smaller than the largest store see whether we can get 1073 // the smaller value for free with a truncate. 1074 Register Value = MemSetValue; 1075 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1076 MVT VT = getMVTForLLT(Ty); 1077 MVT LargestVT = getMVTForLLT(LargestTy); 1078 if (!LargestTy.isVector() && !Ty.isVector() && 1079 TLI.isTruncateFree(LargestVT, VT)) 1080 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1081 else 1082 Value = getMemsetValue(Val, Ty, MIB); 1083 if (!Value) 1084 return false; 1085 } 1086 1087 auto *StoreMMO = 1088 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1089 1090 Register Ptr = Dst; 1091 if (DstOff != 0) { 1092 auto Offset = 1093 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1094 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1095 } 1096 1097 MIB.buildStore(Value, Ptr, *StoreMMO); 1098 DstOff += Ty.getSizeInBytes(); 1099 Size -= TySize; 1100 } 1101 1102 MI.eraseFromParent(); 1103 return true; 1104 } 1105 1106 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1107 Register Src, unsigned KnownLen, 1108 Align DstAlign, Align SrcAlign, 1109 bool IsVolatile) { 1110 auto &MF = *MI.getParent()->getParent(); 1111 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1112 auto &DL = MF.getDataLayout(); 1113 LLVMContext &C = MF.getFunction().getContext(); 1114 1115 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1116 1117 bool DstAlignCanChange = false; 1118 MachineFrameInfo &MFI = MF.getFrameInfo(); 1119 bool OptSize = shouldLowerMemFuncForSize(MF); 1120 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1121 1122 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1123 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1124 DstAlignCanChange = true; 1125 1126 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1127 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1128 // if the memcpy is in a tail call position. 1129 1130 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1131 std::vector<LLT> MemOps; 1132 1133 const auto &DstMMO = **MI.memoperands_begin(); 1134 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1135 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1136 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1137 1138 if (!findGISelOptimalMemOpLowering( 1139 MemOps, Limit, 1140 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1141 IsVolatile), 1142 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1143 MF.getFunction().getAttributes(), TLI)) 1144 return false; 1145 1146 if (DstAlignCanChange) { 1147 // Get an estimate of the type from the LLT. 1148 Type *IRTy = getTypeForLLT(MemOps[0], C); 1149 Align NewAlign = DL.getABITypeAlign(IRTy); 1150 1151 // Don't promote to an alignment that would require dynamic stack 1152 // realignment. 1153 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1154 if (!TRI->needsStackRealignment(MF)) 1155 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1156 NewAlign = NewAlign / 2; 1157 1158 if (NewAlign > Alignment) { 1159 Alignment = NewAlign; 1160 unsigned FI = FIDef->getOperand(1).getIndex(); 1161 // Give the stack frame object a larger alignment if needed. 1162 if (MFI.getObjectAlign(FI) < Alignment) 1163 MFI.setObjectAlignment(FI, Alignment); 1164 } 1165 } 1166 1167 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1168 1169 MachineIRBuilder MIB(MI); 1170 // Now we need to emit a pair of load and stores for each of the types we've 1171 // collected. I.e. for each type, generate a load from the source pointer of 1172 // that type width, and then generate a corresponding store to the dest buffer 1173 // of that value loaded. This can result in a sequence of loads and stores 1174 // mixed types, depending on what the target specifies as good types to use. 1175 unsigned CurrOffset = 0; 1176 LLT PtrTy = MRI.getType(Src); 1177 unsigned Size = KnownLen; 1178 for (auto CopyTy : MemOps) { 1179 // Issuing an unaligned load / store pair that overlaps with the previous 1180 // pair. Adjust the offset accordingly. 1181 if (CopyTy.getSizeInBytes() > Size) 1182 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1183 1184 // Construct MMOs for the accesses. 1185 auto *LoadMMO = 1186 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1187 auto *StoreMMO = 1188 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1189 1190 // Create the load. 1191 Register LoadPtr = Src; 1192 Register Offset; 1193 if (CurrOffset != 0) { 1194 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1195 .getReg(0); 1196 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1197 } 1198 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1199 1200 // Create the store. 1201 Register StorePtr = 1202 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1203 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1204 CurrOffset += CopyTy.getSizeInBytes(); 1205 Size -= CopyTy.getSizeInBytes(); 1206 } 1207 1208 MI.eraseFromParent(); 1209 return true; 1210 } 1211 1212 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1213 Register Src, unsigned KnownLen, 1214 Align DstAlign, Align SrcAlign, 1215 bool IsVolatile) { 1216 auto &MF = *MI.getParent()->getParent(); 1217 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1218 auto &DL = MF.getDataLayout(); 1219 LLVMContext &C = MF.getFunction().getContext(); 1220 1221 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1222 1223 bool DstAlignCanChange = false; 1224 MachineFrameInfo &MFI = MF.getFrameInfo(); 1225 bool OptSize = shouldLowerMemFuncForSize(MF); 1226 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1227 1228 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1229 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1230 DstAlignCanChange = true; 1231 1232 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1233 std::vector<LLT> MemOps; 1234 1235 const auto &DstMMO = **MI.memoperands_begin(); 1236 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1237 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1238 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1239 1240 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1241 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1242 // same thing here. 1243 if (!findGISelOptimalMemOpLowering( 1244 MemOps, Limit, 1245 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1246 /*IsVolatile*/ true), 1247 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1248 MF.getFunction().getAttributes(), TLI)) 1249 return false; 1250 1251 if (DstAlignCanChange) { 1252 // Get an estimate of the type from the LLT. 1253 Type *IRTy = getTypeForLLT(MemOps[0], C); 1254 Align NewAlign = DL.getABITypeAlign(IRTy); 1255 1256 // Don't promote to an alignment that would require dynamic stack 1257 // realignment. 1258 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1259 if (!TRI->needsStackRealignment(MF)) 1260 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1261 NewAlign = NewAlign / 2; 1262 1263 if (NewAlign > Alignment) { 1264 Alignment = NewAlign; 1265 unsigned FI = FIDef->getOperand(1).getIndex(); 1266 // Give the stack frame object a larger alignment if needed. 1267 if (MFI.getObjectAlign(FI) < Alignment) 1268 MFI.setObjectAlignment(FI, Alignment); 1269 } 1270 } 1271 1272 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1273 1274 MachineIRBuilder MIB(MI); 1275 // Memmove requires that we perform the loads first before issuing the stores. 1276 // Apart from that, this loop is pretty much doing the same thing as the 1277 // memcpy codegen function. 1278 unsigned CurrOffset = 0; 1279 LLT PtrTy = MRI.getType(Src); 1280 SmallVector<Register, 16> LoadVals; 1281 for (auto CopyTy : MemOps) { 1282 // Construct MMO for the load. 1283 auto *LoadMMO = 1284 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1285 1286 // Create the load. 1287 Register LoadPtr = Src; 1288 if (CurrOffset != 0) { 1289 auto Offset = 1290 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1291 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1292 } 1293 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1294 CurrOffset += CopyTy.getSizeInBytes(); 1295 } 1296 1297 CurrOffset = 0; 1298 for (unsigned I = 0; I < MemOps.size(); ++I) { 1299 LLT CopyTy = MemOps[I]; 1300 // Now store the values loaded. 1301 auto *StoreMMO = 1302 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1303 1304 Register StorePtr = Dst; 1305 if (CurrOffset != 0) { 1306 auto Offset = 1307 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1308 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1309 } 1310 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1311 CurrOffset += CopyTy.getSizeInBytes(); 1312 } 1313 MI.eraseFromParent(); 1314 return true; 1315 } 1316 1317 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1318 // This combine is fairly complex so it's not written with a separate 1319 // matcher function. 1320 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 1321 Intrinsic::ID ID = (Intrinsic::ID)MI.getIntrinsicID(); 1322 assert((ID == Intrinsic::memcpy || ID == Intrinsic::memmove || 1323 ID == Intrinsic::memset) && 1324 "Expected a memcpy like intrinsic"); 1325 1326 auto MMOIt = MI.memoperands_begin(); 1327 const MachineMemOperand *MemOp = *MMOIt; 1328 bool IsVolatile = MemOp->isVolatile(); 1329 // Don't try to optimize volatile. 1330 if (IsVolatile) 1331 return false; 1332 1333 Align DstAlign = MemOp->getBaseAlign(); 1334 Align SrcAlign; 1335 Register Dst = MI.getOperand(1).getReg(); 1336 Register Src = MI.getOperand(2).getReg(); 1337 Register Len = MI.getOperand(3).getReg(); 1338 1339 if (ID != Intrinsic::memset) { 1340 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1341 MemOp = *(++MMOIt); 1342 SrcAlign = MemOp->getBaseAlign(); 1343 } 1344 1345 // See if this is a constant length copy 1346 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1347 if (!LenVRegAndVal) 1348 return false; // Leave it to the legalizer to lower it to a libcall. 1349 unsigned KnownLen = LenVRegAndVal->Value; 1350 1351 if (KnownLen == 0) { 1352 MI.eraseFromParent(); 1353 return true; 1354 } 1355 1356 if (MaxLen && KnownLen > MaxLen) 1357 return false; 1358 1359 if (ID == Intrinsic::memcpy) 1360 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1361 if (ID == Intrinsic::memmove) 1362 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1363 if (ID == Intrinsic::memset) 1364 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1365 return false; 1366 } 1367 1368 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1369 PtrAddChain &MatchInfo) { 1370 // We're trying to match the following pattern: 1371 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1372 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1373 // --> 1374 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1375 1376 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1377 return false; 1378 1379 Register Add2 = MI.getOperand(1).getReg(); 1380 Register Imm1 = MI.getOperand(2).getReg(); 1381 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1382 if (!MaybeImmVal) 1383 return false; 1384 1385 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1386 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1387 return false; 1388 1389 Register Base = Add2Def->getOperand(1).getReg(); 1390 Register Imm2 = Add2Def->getOperand(2).getReg(); 1391 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1392 if (!MaybeImm2Val) 1393 return false; 1394 1395 // Pass the combined immediate to the apply function. 1396 MatchInfo.Imm = MaybeImmVal->Value + MaybeImm2Val->Value; 1397 MatchInfo.Base = Base; 1398 return true; 1399 } 1400 1401 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1402 PtrAddChain &MatchInfo) { 1403 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1404 MachineIRBuilder MIB(MI); 1405 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1406 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1407 Observer.changingInstr(MI); 1408 MI.getOperand(1).setReg(MatchInfo.Base); 1409 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1410 Observer.changedInstr(MI); 1411 return true; 1412 } 1413 1414 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1415 unsigned &ShiftVal) { 1416 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1417 auto MaybeImmVal = 1418 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1419 if (!MaybeImmVal || !isPowerOf2_64(MaybeImmVal->Value)) 1420 return false; 1421 ShiftVal = Log2_64(MaybeImmVal->Value); 1422 return true; 1423 } 1424 1425 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1426 unsigned &ShiftVal) { 1427 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1428 MachineIRBuilder MIB(MI); 1429 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1430 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1431 Observer.changingInstr(MI); 1432 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1433 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1434 Observer.changedInstr(MI); 1435 return true; 1436 } 1437 1438 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1439 unsigned TargetShiftSize, 1440 unsigned &ShiftVal) { 1441 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1442 MI.getOpcode() == TargetOpcode::G_LSHR || 1443 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1444 1445 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1446 if (Ty.isVector()) // TODO: 1447 return false; 1448 1449 // Don't narrow further than the requested size. 1450 unsigned Size = Ty.getSizeInBits(); 1451 if (Size <= TargetShiftSize) 1452 return false; 1453 1454 auto MaybeImmVal = 1455 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1456 if (!MaybeImmVal) 1457 return false; 1458 1459 ShiftVal = MaybeImmVal->Value; 1460 return ShiftVal >= Size / 2 && ShiftVal < Size; 1461 } 1462 1463 bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1464 const unsigned &ShiftVal) { 1465 Register DstReg = MI.getOperand(0).getReg(); 1466 Register SrcReg = MI.getOperand(1).getReg(); 1467 LLT Ty = MRI.getType(SrcReg); 1468 unsigned Size = Ty.getSizeInBits(); 1469 unsigned HalfSize = Size / 2; 1470 assert(ShiftVal >= HalfSize); 1471 1472 LLT HalfTy = LLT::scalar(HalfSize); 1473 1474 Builder.setInstr(MI); 1475 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1476 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1477 1478 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1479 Register Narrowed = Unmerge.getReg(1); 1480 1481 // dst = G_LSHR s64:x, C for C >= 32 1482 // => 1483 // lo, hi = G_UNMERGE_VALUES x 1484 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1485 1486 if (NarrowShiftAmt != 0) { 1487 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1488 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1489 } 1490 1491 auto Zero = Builder.buildConstant(HalfTy, 0); 1492 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1493 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1494 Register Narrowed = Unmerge.getReg(0); 1495 // dst = G_SHL s64:x, C for C >= 32 1496 // => 1497 // lo, hi = G_UNMERGE_VALUES x 1498 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1499 if (NarrowShiftAmt != 0) { 1500 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1501 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1502 } 1503 1504 auto Zero = Builder.buildConstant(HalfTy, 0); 1505 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1506 } else { 1507 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1508 auto Hi = Builder.buildAShr( 1509 HalfTy, Unmerge.getReg(1), 1510 Builder.buildConstant(HalfTy, HalfSize - 1)); 1511 1512 if (ShiftVal == HalfSize) { 1513 // (G_ASHR i64:x, 32) -> 1514 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1515 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1516 } else if (ShiftVal == Size - 1) { 1517 // Don't need a second shift. 1518 // (G_ASHR i64:x, 63) -> 1519 // %narrowed = (G_ASHR hi_32(x), 31) 1520 // G_MERGE_VALUES %narrowed, %narrowed 1521 Builder.buildMerge(DstReg, { Hi, Hi }); 1522 } else { 1523 auto Lo = Builder.buildAShr( 1524 HalfTy, Unmerge.getReg(1), 1525 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1526 1527 // (G_ASHR i64:x, C) ->, for C >= 32 1528 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1529 Builder.buildMerge(DstReg, { Lo, Hi }); 1530 } 1531 } 1532 1533 MI.eraseFromParent(); 1534 return true; 1535 } 1536 1537 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1538 unsigned TargetShiftAmount) { 1539 unsigned ShiftAmt; 1540 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1541 applyCombineShiftToUnmerge(MI, ShiftAmt); 1542 return true; 1543 } 1544 1545 return false; 1546 } 1547 1548 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1549 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1550 Register DstReg = MI.getOperand(0).getReg(); 1551 LLT DstTy = MRI.getType(DstReg); 1552 Register SrcReg = MI.getOperand(1).getReg(); 1553 return mi_match(SrcReg, MRI, 1554 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 1555 } 1556 1557 bool CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1558 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1559 Register DstReg = MI.getOperand(0).getReg(); 1560 Builder.setInstr(MI); 1561 Builder.buildCopy(DstReg, Reg); 1562 MI.eraseFromParent(); 1563 return true; 1564 } 1565 1566 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1567 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1568 Register SrcReg = MI.getOperand(1).getReg(); 1569 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 1570 } 1571 1572 bool CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1573 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1574 Register DstReg = MI.getOperand(0).getReg(); 1575 Builder.setInstr(MI); 1576 Builder.buildZExtOrTrunc(DstReg, Reg); 1577 MI.eraseFromParent(); 1578 return true; 1579 } 1580 1581 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 1582 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 1583 return MO.isReg() && 1584 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 1585 }); 1586 } 1587 1588 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 1589 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 1590 return !MO.isReg() || 1591 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 1592 }); 1593 } 1594 1595 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 1596 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 1597 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 1598 return all_of(Mask, [](int Elt) { return Elt < 0; }); 1599 } 1600 1601 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 1602 assert(MI.getOpcode() == TargetOpcode::G_STORE); 1603 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 1604 MRI); 1605 } 1606 1607 bool CombinerHelper::eraseInst(MachineInstr &MI) { 1608 MI.eraseFromParent(); 1609 return true; 1610 } 1611 1612 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 1613 const MachineOperand &MOP2) { 1614 if (!MOP1.isReg() || !MOP2.isReg()) 1615 return false; 1616 MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); 1617 if (!I1) 1618 return false; 1619 MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); 1620 if (!I2) 1621 return false; 1622 1623 // Handle a case like this: 1624 // 1625 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 1626 // 1627 // Even though %0 and %1 are produced by the same instruction they are not 1628 // the same values. 1629 if (I1 == I2) 1630 return MOP1.getReg() == MOP2.getReg(); 1631 1632 // If we have an instruction which loads or stores, we can't guarantee that 1633 // it is identical. 1634 // 1635 // For example, we may have 1636 // 1637 // %x1 = G_LOAD %addr (load N from @somewhere) 1638 // ... 1639 // call @foo 1640 // ... 1641 // %x2 = G_LOAD %addr (load N from @somewhere) 1642 // ... 1643 // %or = G_OR %x1, %x2 1644 // 1645 // It's possible that @foo will modify whatever lives at the address we're 1646 // loading from. To be safe, let's just assume that all loads and stores 1647 // are different (unless we have something which is guaranteed to not 1648 // change.) 1649 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 1650 return false; 1651 1652 // Check for physical registers on the instructions first to avoid cases 1653 // like this: 1654 // 1655 // %a = COPY $physreg 1656 // ... 1657 // SOMETHING implicit-def $physreg 1658 // ... 1659 // %b = COPY $physreg 1660 // 1661 // These copies are not equivalent. 1662 if (any_of(I1->uses(), [](const MachineOperand &MO) { 1663 return MO.isReg() && MO.getReg().isPhysical(); 1664 })) { 1665 // Check if we have a case like this: 1666 // 1667 // %a = COPY $physreg 1668 // %b = COPY %a 1669 // 1670 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 1671 // From that, we know that they must have the same value, since they must 1672 // have come from the same COPY. 1673 return I1->isIdenticalTo(*I2); 1674 } 1675 1676 // We don't have any physical registers, so we don't necessarily need the 1677 // same vreg defs. 1678 // 1679 // On the off-chance that there's some target instruction feeding into the 1680 // instruction, let's use produceSameValue instead of isIdenticalTo. 1681 return Builder.getTII().produceSameValue(*I1, *I2, &MRI); 1682 } 1683 1684 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 1685 if (!MOP.isReg()) 1686 return false; 1687 // MIPatternMatch doesn't let us look through G_ZEXT etc. 1688 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 1689 return ValAndVReg && ValAndVReg->Value == C; 1690 } 1691 1692 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 1693 unsigned OpIdx) { 1694 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 1695 Register OldReg = MI.getOperand(0).getReg(); 1696 Register Replacement = MI.getOperand(OpIdx).getReg(); 1697 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 1698 MI.eraseFromParent(); 1699 replaceRegWith(MRI, OldReg, Replacement); 1700 return true; 1701 } 1702 1703 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 1704 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 1705 // Match (cond ? x : x) 1706 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 1707 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 1708 MRI); 1709 } 1710 1711 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 1712 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 1713 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1714 MRI); 1715 } 1716 1717 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 1718 return matchConstantOp(MI.getOperand(OpIdx), 0) && 1719 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 1720 MRI); 1721 } 1722 1723 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 1724 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 1725 Builder.setInstr(MI); 1726 Builder.buildFConstant(MI.getOperand(0), C); 1727 MI.eraseFromParent(); 1728 return true; 1729 } 1730 1731 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 1732 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 1733 Builder.setInstr(MI); 1734 Builder.buildConstant(MI.getOperand(0), C); 1735 MI.eraseFromParent(); 1736 return true; 1737 } 1738 1739 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 1740 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 1741 Builder.setInstr(MI); 1742 Builder.buildUndef(MI.getOperand(0)); 1743 MI.eraseFromParent(); 1744 return true; 1745 } 1746 1747 bool CombinerHelper::matchSimplifyAddToSub( 1748 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 1749 Register LHS = MI.getOperand(1).getReg(); 1750 Register RHS = MI.getOperand(2).getReg(); 1751 Register &NewLHS = std::get<0>(MatchInfo); 1752 Register &NewRHS = std::get<1>(MatchInfo); 1753 1754 // Helper lambda to check for opportunities for 1755 // ((0-A) + B) -> B - A 1756 // (A + (0-B)) -> A - B 1757 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 1758 int64_t Cst; 1759 if (!mi_match(MaybeSub, MRI, m_GSub(m_ICst(Cst), m_Reg(NewRHS))) || 1760 Cst != 0) 1761 return false; 1762 NewLHS = MaybeNewLHS; 1763 return true; 1764 }; 1765 1766 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 1767 } 1768 1769 bool CombinerHelper::applySimplifyAddToSub( 1770 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 1771 Builder.setInstr(MI); 1772 Register SubLHS, SubRHS; 1773 std::tie(SubLHS, SubRHS) = MatchInfo; 1774 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 1775 MI.eraseFromParent(); 1776 return true; 1777 } 1778 1779 bool CombinerHelper::tryCombine(MachineInstr &MI) { 1780 if (tryCombineCopy(MI)) 1781 return true; 1782 if (tryCombineExtendingLoads(MI)) 1783 return true; 1784 if (tryCombineIndexedLoadStore(MI)) 1785 return true; 1786 return false; 1787 } 1788