1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 17 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 20 #include "llvm/CodeGen/GlobalISel/Utils.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetOpcodes.h" 31 #include "llvm/Support/MathExtras.h" 32 #include <tuple> 33 34 #define DEBUG_TYPE "gi-combiner" 35 36 using namespace llvm; 37 using namespace MIPatternMatch; 38 39 // Option to allow testing of the combiner while no targets know about indexed 40 // addressing. 41 static cl::opt<bool> 42 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 43 cl::desc("Force all indexed operations to be " 44 "legal for the GlobalISel combiner")); 45 46 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 47 MachineIRBuilder &B, GISelKnownBits *KB, 48 MachineDominatorTree *MDT, 49 const LegalizerInfo *LI) 50 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 51 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 52 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 53 (void)this->KB; 54 } 55 56 const TargetLowering &CombinerHelper::getTargetLowering() const { 57 return *Builder.getMF().getSubtarget().getTargetLowering(); 58 } 59 60 /// \returns The little endian in-memory byte position of byte \p I in a 61 /// \p ByteWidth bytes wide type. 62 /// 63 /// E.g. Given a 4-byte type x, x[0] -> byte 0 64 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 65 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 66 return I; 67 } 68 69 /// \returns The big endian in-memory byte position of byte \p I in a 70 /// \p ByteWidth bytes wide type. 71 /// 72 /// E.g. Given a 4-byte type x, x[0] -> byte 3 73 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 74 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 75 return ByteWidth - I - 1; 76 } 77 78 /// Given a map from byte offsets in memory to indices in a load/store, 79 /// determine if that map corresponds to a little or big endian byte pattern. 80 /// 81 /// \param MemOffset2Idx maps memory offsets to address offsets. 82 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 83 /// 84 /// \returns true if the map corresponds to a big endian byte pattern, false 85 /// if it corresponds to a little endian byte pattern, and None otherwise. 86 /// 87 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 88 /// are as follows: 89 /// 90 /// AddrOffset Little endian Big endian 91 /// 0 0 3 92 /// 1 1 2 93 /// 2 2 1 94 /// 3 3 0 95 static Optional<bool> 96 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 97 int64_t LowestIdx) { 98 // Need at least two byte positions to decide on endianness. 99 unsigned Width = MemOffset2Idx.size(); 100 if (Width < 2) 101 return None; 102 bool BigEndian = true, LittleEndian = true; 103 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 104 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 105 if (MemOffsetAndIdx == MemOffset2Idx.end()) 106 return None; 107 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 108 assert(Idx >= 0 && "Expected non-negative byte offset?"); 109 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 110 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 111 if (!BigEndian && !LittleEndian) 112 return None; 113 } 114 115 assert((BigEndian != LittleEndian) && 116 "Pattern cannot be both big and little endian!"); 117 return BigEndian; 118 } 119 120 bool CombinerHelper::isLegalOrBeforeLegalizer( 121 const LegalityQuery &Query) const { 122 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 123 } 124 125 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 126 Register ToReg) const { 127 Observer.changingAllUsesOfReg(MRI, FromReg); 128 129 if (MRI.constrainRegAttrs(ToReg, FromReg)) 130 MRI.replaceRegWith(FromReg, ToReg); 131 else 132 Builder.buildCopy(ToReg, FromReg); 133 134 Observer.finishedChangingAllUsesOfReg(); 135 } 136 137 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 138 MachineOperand &FromRegOp, 139 Register ToReg) const { 140 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 141 Observer.changingInstr(*FromRegOp.getParent()); 142 143 FromRegOp.setReg(ToReg); 144 145 Observer.changedInstr(*FromRegOp.getParent()); 146 } 147 148 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 149 return RBI->getRegBank(Reg, MRI, *TRI); 150 } 151 152 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 153 if (RegBank) 154 MRI.setRegBank(Reg, *RegBank); 155 } 156 157 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 158 if (matchCombineCopy(MI)) { 159 applyCombineCopy(MI); 160 return true; 161 } 162 return false; 163 } 164 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 165 if (MI.getOpcode() != TargetOpcode::COPY) 166 return false; 167 Register DstReg = MI.getOperand(0).getReg(); 168 Register SrcReg = MI.getOperand(1).getReg(); 169 return canReplaceReg(DstReg, SrcReg, MRI); 170 } 171 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 172 Register DstReg = MI.getOperand(0).getReg(); 173 Register SrcReg = MI.getOperand(1).getReg(); 174 MI.eraseFromParent(); 175 replaceRegWith(MRI, DstReg, SrcReg); 176 } 177 178 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 179 bool IsUndef = false; 180 SmallVector<Register, 4> Ops; 181 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 182 applyCombineConcatVectors(MI, IsUndef, Ops); 183 return true; 184 } 185 return false; 186 } 187 188 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 189 SmallVectorImpl<Register> &Ops) { 190 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 191 "Invalid instruction"); 192 IsUndef = true; 193 MachineInstr *Undef = nullptr; 194 195 // Walk over all the operands of concat vectors and check if they are 196 // build_vector themselves or undef. 197 // Then collect their operands in Ops. 198 for (const MachineOperand &MO : MI.uses()) { 199 Register Reg = MO.getReg(); 200 MachineInstr *Def = MRI.getVRegDef(Reg); 201 assert(Def && "Operand not defined"); 202 switch (Def->getOpcode()) { 203 case TargetOpcode::G_BUILD_VECTOR: 204 IsUndef = false; 205 // Remember the operands of the build_vector to fold 206 // them into the yet-to-build flattened concat vectors. 207 for (const MachineOperand &BuildVecMO : Def->uses()) 208 Ops.push_back(BuildVecMO.getReg()); 209 break; 210 case TargetOpcode::G_IMPLICIT_DEF: { 211 LLT OpType = MRI.getType(Reg); 212 // Keep one undef value for all the undef operands. 213 if (!Undef) { 214 Builder.setInsertPt(*MI.getParent(), MI); 215 Undef = Builder.buildUndef(OpType.getScalarType()); 216 } 217 assert(MRI.getType(Undef->getOperand(0).getReg()) == 218 OpType.getScalarType() && 219 "All undefs should have the same type"); 220 // Break the undef vector in as many scalar elements as needed 221 // for the flattening. 222 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 223 EltIdx != EltEnd; ++EltIdx) 224 Ops.push_back(Undef->getOperand(0).getReg()); 225 break; 226 } 227 default: 228 return false; 229 } 230 } 231 return true; 232 } 233 void CombinerHelper::applyCombineConcatVectors( 234 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 235 // We determined that the concat_vectors can be flatten. 236 // Generate the flattened build_vector. 237 Register DstReg = MI.getOperand(0).getReg(); 238 Builder.setInsertPt(*MI.getParent(), MI); 239 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 240 241 // Note: IsUndef is sort of redundant. We could have determine it by 242 // checking that at all Ops are undef. Alternatively, we could have 243 // generate a build_vector of undefs and rely on another combine to 244 // clean that up. For now, given we already gather this information 245 // in tryCombineConcatVectors, just save compile time and issue the 246 // right thing. 247 if (IsUndef) 248 Builder.buildUndef(NewDstReg); 249 else 250 Builder.buildBuildVector(NewDstReg, Ops); 251 MI.eraseFromParent(); 252 replaceRegWith(MRI, DstReg, NewDstReg); 253 } 254 255 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 256 SmallVector<Register, 4> Ops; 257 if (matchCombineShuffleVector(MI, Ops)) { 258 applyCombineShuffleVector(MI, Ops); 259 return true; 260 } 261 return false; 262 } 263 264 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 265 SmallVectorImpl<Register> &Ops) { 266 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 267 "Invalid instruction kind"); 268 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 269 Register Src1 = MI.getOperand(1).getReg(); 270 LLT SrcType = MRI.getType(Src1); 271 // As bizarre as it may look, shuffle vector can actually produce 272 // scalar! This is because at the IR level a <1 x ty> shuffle 273 // vector is perfectly valid. 274 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 275 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 276 277 // If the resulting vector is smaller than the size of the source 278 // vectors being concatenated, we won't be able to replace the 279 // shuffle vector into a concat_vectors. 280 // 281 // Note: We may still be able to produce a concat_vectors fed by 282 // extract_vector_elt and so on. It is less clear that would 283 // be better though, so don't bother for now. 284 // 285 // If the destination is a scalar, the size of the sources doesn't 286 // matter. we will lower the shuffle to a plain copy. This will 287 // work only if the source and destination have the same size. But 288 // that's covered by the next condition. 289 // 290 // TODO: If the size between the source and destination don't match 291 // we could still emit an extract vector element in that case. 292 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 293 return false; 294 295 // Check that the shuffle mask can be broken evenly between the 296 // different sources. 297 if (DstNumElts % SrcNumElts != 0) 298 return false; 299 300 // Mask length is a multiple of the source vector length. 301 // Check if the shuffle is some kind of concatenation of the input 302 // vectors. 303 unsigned NumConcat = DstNumElts / SrcNumElts; 304 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 305 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 306 for (unsigned i = 0; i != DstNumElts; ++i) { 307 int Idx = Mask[i]; 308 // Undef value. 309 if (Idx < 0) 310 continue; 311 // Ensure the indices in each SrcType sized piece are sequential and that 312 // the same source is used for the whole piece. 313 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 314 (ConcatSrcs[i / SrcNumElts] >= 0 && 315 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 316 return false; 317 // Remember which source this index came from. 318 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 319 } 320 321 // The shuffle is concatenating multiple vectors together. 322 // Collect the different operands for that. 323 Register UndefReg; 324 Register Src2 = MI.getOperand(2).getReg(); 325 for (auto Src : ConcatSrcs) { 326 if (Src < 0) { 327 if (!UndefReg) { 328 Builder.setInsertPt(*MI.getParent(), MI); 329 UndefReg = Builder.buildUndef(SrcType).getReg(0); 330 } 331 Ops.push_back(UndefReg); 332 } else if (Src == 0) 333 Ops.push_back(Src1); 334 else 335 Ops.push_back(Src2); 336 } 337 return true; 338 } 339 340 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 341 const ArrayRef<Register> Ops) { 342 Register DstReg = MI.getOperand(0).getReg(); 343 Builder.setInsertPt(*MI.getParent(), MI); 344 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 345 346 if (Ops.size() == 1) 347 Builder.buildCopy(NewDstReg, Ops[0]); 348 else 349 Builder.buildMerge(NewDstReg, Ops); 350 351 MI.eraseFromParent(); 352 replaceRegWith(MRI, DstReg, NewDstReg); 353 } 354 355 namespace { 356 357 /// Select a preference between two uses. CurrentUse is the current preference 358 /// while *ForCandidate is attributes of the candidate under consideration. 359 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 360 const LLT TyForCandidate, 361 unsigned OpcodeForCandidate, 362 MachineInstr *MIForCandidate) { 363 if (!CurrentUse.Ty.isValid()) { 364 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 365 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 366 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 367 return CurrentUse; 368 } 369 370 // We permit the extend to hoist through basic blocks but this is only 371 // sensible if the target has extending loads. If you end up lowering back 372 // into a load and extend during the legalizer then the end result is 373 // hoisting the extend up to the load. 374 375 // Prefer defined extensions to undefined extensions as these are more 376 // likely to reduce the number of instructions. 377 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 378 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 379 return CurrentUse; 380 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 381 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 382 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 383 384 // Prefer sign extensions to zero extensions as sign-extensions tend to be 385 // more expensive. 386 if (CurrentUse.Ty == TyForCandidate) { 387 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 388 OpcodeForCandidate == TargetOpcode::G_ZEXT) 389 return CurrentUse; 390 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 391 OpcodeForCandidate == TargetOpcode::G_SEXT) 392 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 393 } 394 395 // This is potentially target specific. We've chosen the largest type 396 // because G_TRUNC is usually free. One potential catch with this is that 397 // some targets have a reduced number of larger registers than smaller 398 // registers and this choice potentially increases the live-range for the 399 // larger value. 400 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 401 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 402 } 403 return CurrentUse; 404 } 405 406 /// Find a suitable place to insert some instructions and insert them. This 407 /// function accounts for special cases like inserting before a PHI node. 408 /// The current strategy for inserting before PHI's is to duplicate the 409 /// instructions for each predecessor. However, while that's ok for G_TRUNC 410 /// on most targets since it generally requires no code, other targets/cases may 411 /// want to try harder to find a dominating block. 412 static void InsertInsnsWithoutSideEffectsBeforeUse( 413 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 414 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 415 MachineOperand &UseMO)> 416 Inserter) { 417 MachineInstr &UseMI = *UseMO.getParent(); 418 419 MachineBasicBlock *InsertBB = UseMI.getParent(); 420 421 // If the use is a PHI then we want the predecessor block instead. 422 if (UseMI.isPHI()) { 423 MachineOperand *PredBB = std::next(&UseMO); 424 InsertBB = PredBB->getMBB(); 425 } 426 427 // If the block is the same block as the def then we want to insert just after 428 // the def instead of at the start of the block. 429 if (InsertBB == DefMI.getParent()) { 430 MachineBasicBlock::iterator InsertPt = &DefMI; 431 Inserter(InsertBB, std::next(InsertPt), UseMO); 432 return; 433 } 434 435 // Otherwise we want the start of the BB 436 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 437 } 438 } // end anonymous namespace 439 440 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 441 PreferredTuple Preferred; 442 if (matchCombineExtendingLoads(MI, Preferred)) { 443 applyCombineExtendingLoads(MI, Preferred); 444 return true; 445 } 446 return false; 447 } 448 449 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 450 PreferredTuple &Preferred) { 451 // We match the loads and follow the uses to the extend instead of matching 452 // the extends and following the def to the load. This is because the load 453 // must remain in the same position for correctness (unless we also add code 454 // to find a safe place to sink it) whereas the extend is freely movable. 455 // It also prevents us from duplicating the load for the volatile case or just 456 // for performance. 457 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 458 if (!LoadMI) 459 return false; 460 461 Register LoadReg = LoadMI->getDstReg(); 462 463 LLT LoadValueTy = MRI.getType(LoadReg); 464 if (!LoadValueTy.isScalar()) 465 return false; 466 467 // Most architectures are going to legalize <s8 loads into at least a 1 byte 468 // load, and the MMOs can only describe memory accesses in multiples of bytes. 469 // If we try to perform extload combining on those, we can end up with 470 // %a(s8) = extload %ptr (load 1 byte from %ptr) 471 // ... which is an illegal extload instruction. 472 if (LoadValueTy.getSizeInBits() < 8) 473 return false; 474 475 // For non power-of-2 types, they will very likely be legalized into multiple 476 // loads. Don't bother trying to match them into extending loads. 477 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 478 return false; 479 480 // Find the preferred type aside from the any-extends (unless it's the only 481 // one) and non-extending ops. We'll emit an extending load to that type and 482 // and emit a variant of (extend (trunc X)) for the others according to the 483 // relative type sizes. At the same time, pick an extend to use based on the 484 // extend involved in the chosen type. 485 unsigned PreferredOpcode = 486 isa<GLoad>(&MI) 487 ? TargetOpcode::G_ANYEXT 488 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 489 Preferred = {LLT(), PreferredOpcode, nullptr}; 490 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 491 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 492 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 493 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 494 const auto &MMO = LoadMI->getMMO(); 495 // For atomics, only form anyextending loads. 496 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 497 continue; 498 // Check for legality. 499 if (LI) { 500 LegalityQuery::MemDesc MMDesc(MMO); 501 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 502 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 503 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 504 .Action != LegalizeActions::Legal) 505 continue; 506 } 507 Preferred = ChoosePreferredUse(Preferred, 508 MRI.getType(UseMI.getOperand(0).getReg()), 509 UseMI.getOpcode(), &UseMI); 510 } 511 } 512 513 // There were no extends 514 if (!Preferred.MI) 515 return false; 516 // It should be impossible to chose an extend without selecting a different 517 // type since by definition the result of an extend is larger. 518 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 519 520 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 521 return true; 522 } 523 524 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 525 PreferredTuple &Preferred) { 526 // Rewrite the load to the chosen extending load. 527 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 528 529 // Inserter to insert a truncate back to the original type at a given point 530 // with some basic CSE to limit truncate duplication to one per BB. 531 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 532 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 533 MachineBasicBlock::iterator InsertBefore, 534 MachineOperand &UseMO) { 535 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 536 if (PreviouslyEmitted) { 537 Observer.changingInstr(*UseMO.getParent()); 538 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 539 Observer.changedInstr(*UseMO.getParent()); 540 return; 541 } 542 543 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 544 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 545 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 546 EmittedInsns[InsertIntoBB] = NewMI; 547 replaceRegOpWith(MRI, UseMO, NewDstReg); 548 }; 549 550 Observer.changingInstr(MI); 551 MI.setDesc( 552 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 553 ? TargetOpcode::G_SEXTLOAD 554 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 555 ? TargetOpcode::G_ZEXTLOAD 556 : TargetOpcode::G_LOAD)); 557 558 // Rewrite all the uses to fix up the types. 559 auto &LoadValue = MI.getOperand(0); 560 SmallVector<MachineOperand *, 4> Uses; 561 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 562 Uses.push_back(&UseMO); 563 564 for (auto *UseMO : Uses) { 565 MachineInstr *UseMI = UseMO->getParent(); 566 567 // If the extend is compatible with the preferred extend then we should fix 568 // up the type and extend so that it uses the preferred use. 569 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 570 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 571 Register UseDstReg = UseMI->getOperand(0).getReg(); 572 MachineOperand &UseSrcMO = UseMI->getOperand(1); 573 const LLT UseDstTy = MRI.getType(UseDstReg); 574 if (UseDstReg != ChosenDstReg) { 575 if (Preferred.Ty == UseDstTy) { 576 // If the use has the same type as the preferred use, then merge 577 // the vregs and erase the extend. For example: 578 // %1:_(s8) = G_LOAD ... 579 // %2:_(s32) = G_SEXT %1(s8) 580 // %3:_(s32) = G_ANYEXT %1(s8) 581 // ... = ... %3(s32) 582 // rewrites to: 583 // %2:_(s32) = G_SEXTLOAD ... 584 // ... = ... %2(s32) 585 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 586 Observer.erasingInstr(*UseMO->getParent()); 587 UseMO->getParent()->eraseFromParent(); 588 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 589 // If the preferred size is smaller, then keep the extend but extend 590 // from the result of the extending load. For example: 591 // %1:_(s8) = G_LOAD ... 592 // %2:_(s32) = G_SEXT %1(s8) 593 // %3:_(s64) = G_ANYEXT %1(s8) 594 // ... = ... %3(s64) 595 /// rewrites to: 596 // %2:_(s32) = G_SEXTLOAD ... 597 // %3:_(s64) = G_ANYEXT %2:_(s32) 598 // ... = ... %3(s64) 599 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 600 } else { 601 // If the preferred size is large, then insert a truncate. For 602 // example: 603 // %1:_(s8) = G_LOAD ... 604 // %2:_(s64) = G_SEXT %1(s8) 605 // %3:_(s32) = G_ZEXT %1(s8) 606 // ... = ... %3(s32) 607 /// rewrites to: 608 // %2:_(s64) = G_SEXTLOAD ... 609 // %4:_(s8) = G_TRUNC %2:_(s32) 610 // %3:_(s64) = G_ZEXT %2:_(s8) 611 // ... = ... %3(s64) 612 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 613 InsertTruncAt); 614 } 615 continue; 616 } 617 // The use is (one of) the uses of the preferred use we chose earlier. 618 // We're going to update the load to def this value later so just erase 619 // the old extend. 620 Observer.erasingInstr(*UseMO->getParent()); 621 UseMO->getParent()->eraseFromParent(); 622 continue; 623 } 624 625 // The use isn't an extend. Truncate back to the type we originally loaded. 626 // This is free on many targets. 627 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 628 } 629 630 MI.getOperand(0).setReg(ChosenDstReg); 631 Observer.changedInstr(MI); 632 } 633 634 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 635 const MachineInstr &UseMI) { 636 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 637 "shouldn't consider debug uses"); 638 assert(DefMI.getParent() == UseMI.getParent()); 639 if (&DefMI == &UseMI) 640 return false; 641 const MachineBasicBlock &MBB = *DefMI.getParent(); 642 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 643 return &MI == &DefMI || &MI == &UseMI; 644 }); 645 if (DefOrUse == MBB.end()) 646 llvm_unreachable("Block must contain both DefMI and UseMI!"); 647 return &*DefOrUse == &DefMI; 648 } 649 650 bool CombinerHelper::dominates(const MachineInstr &DefMI, 651 const MachineInstr &UseMI) { 652 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 653 "shouldn't consider debug uses"); 654 if (MDT) 655 return MDT->dominates(&DefMI, &UseMI); 656 else if (DefMI.getParent() != UseMI.getParent()) 657 return false; 658 659 return isPredecessor(DefMI, UseMI); 660 } 661 662 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 663 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 664 Register SrcReg = MI.getOperand(1).getReg(); 665 Register LoadUser = SrcReg; 666 667 if (MRI.getType(SrcReg).isVector()) 668 return false; 669 670 Register TruncSrc; 671 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 672 LoadUser = TruncSrc; 673 674 uint64_t SizeInBits = MI.getOperand(2).getImm(); 675 // If the source is a G_SEXTLOAD from the same bit width, then we don't 676 // need any extend at all, just a truncate. 677 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 678 // If truncating more than the original extended value, abort. 679 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 680 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 681 return false; 682 if (LoadSizeBits == SizeInBits) 683 return true; 684 } 685 return false; 686 } 687 688 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 689 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 690 Builder.setInstrAndDebugLoc(MI); 691 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 692 MI.eraseFromParent(); 693 } 694 695 bool CombinerHelper::matchSextInRegOfLoad( 696 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 697 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 698 699 // Only supports scalars for now. 700 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 701 return false; 702 703 Register SrcReg = MI.getOperand(1).getReg(); 704 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 705 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || 706 !LoadDef->isSimple()) 707 return false; 708 709 // If the sign extend extends from a narrower width than the load's width, 710 // then we can narrow the load width when we combine to a G_SEXTLOAD. 711 // Avoid widening the load at all. 712 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), 713 LoadDef->getMemSizeInBits()); 714 715 // Don't generate G_SEXTLOADs with a < 1 byte width. 716 if (NewSizeBits < 8) 717 return false; 718 // Don't bother creating a non-power-2 sextload, it will likely be broken up 719 // anyway for most targets. 720 if (!isPowerOf2_32(NewSizeBits)) 721 return false; 722 723 const MachineMemOperand &MMO = LoadDef->getMMO(); 724 LegalityQuery::MemDesc MMDesc(MMO); 725 MMDesc.MemoryTy = LLT::scalar(NewSizeBits); 726 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, 727 {MRI.getType(LoadDef->getDstReg()), 728 MRI.getType(LoadDef->getPointerReg())}, 729 {MMDesc}})) 730 return false; 731 732 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 733 return true; 734 } 735 736 void CombinerHelper::applySextInRegOfLoad( 737 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 738 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 739 Register LoadReg; 740 unsigned ScalarSizeBits; 741 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 742 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 743 744 // If we have the following: 745 // %ld = G_LOAD %ptr, (load 2) 746 // %ext = G_SEXT_INREG %ld, 8 747 // ==> 748 // %ld = G_SEXTLOAD %ptr (load 1) 749 750 auto &MMO = LoadDef->getMMO(); 751 Builder.setInstrAndDebugLoc(*LoadDef); 752 auto &MF = Builder.getMF(); 753 auto PtrInfo = MMO.getPointerInfo(); 754 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 755 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 756 LoadDef->getPointerReg(), *NewMMO); 757 MI.eraseFromParent(); 758 } 759 760 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 761 Register &Base, Register &Offset) { 762 auto &MF = *MI.getParent()->getParent(); 763 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 764 765 #ifndef NDEBUG 766 unsigned Opcode = MI.getOpcode(); 767 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 768 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 769 #endif 770 771 Base = MI.getOperand(1).getReg(); 772 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 773 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 774 return false; 775 776 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 777 // FIXME: The following use traversal needs a bail out for patholigical cases. 778 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 779 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 780 continue; 781 782 Offset = Use.getOperand(2).getReg(); 783 if (!ForceLegalIndexing && 784 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 785 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 786 << Use); 787 continue; 788 } 789 790 // Make sure the offset calculation is before the potentially indexed op. 791 // FIXME: we really care about dependency here. The offset calculation might 792 // be movable. 793 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 794 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 795 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 796 << Use); 797 continue; 798 } 799 800 // FIXME: check whether all uses of Base are load/store with foldable 801 // addressing modes. If so, using the normal addr-modes is better than 802 // forming an indexed one. 803 804 bool MemOpDominatesAddrUses = true; 805 for (auto &PtrAddUse : 806 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 807 if (!dominates(MI, PtrAddUse)) { 808 MemOpDominatesAddrUses = false; 809 break; 810 } 811 } 812 813 if (!MemOpDominatesAddrUses) { 814 LLVM_DEBUG( 815 dbgs() << " Ignoring candidate as memop does not dominate uses: " 816 << Use); 817 continue; 818 } 819 820 LLVM_DEBUG(dbgs() << " Found match: " << Use); 821 Addr = Use.getOperand(0).getReg(); 822 return true; 823 } 824 825 return false; 826 } 827 828 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 829 Register &Base, Register &Offset) { 830 auto &MF = *MI.getParent()->getParent(); 831 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 832 833 #ifndef NDEBUG 834 unsigned Opcode = MI.getOpcode(); 835 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 836 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 837 #endif 838 839 Addr = MI.getOperand(1).getReg(); 840 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 841 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 842 return false; 843 844 Base = AddrDef->getOperand(1).getReg(); 845 Offset = AddrDef->getOperand(2).getReg(); 846 847 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 848 849 if (!ForceLegalIndexing && 850 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 851 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 852 return false; 853 } 854 855 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 856 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 857 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 858 return false; 859 } 860 861 if (MI.getOpcode() == TargetOpcode::G_STORE) { 862 // Would require a copy. 863 if (Base == MI.getOperand(0).getReg()) { 864 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 865 return false; 866 } 867 868 // We're expecting one use of Addr in MI, but it could also be the 869 // value stored, which isn't actually dominated by the instruction. 870 if (MI.getOperand(0).getReg() == Addr) { 871 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 872 return false; 873 } 874 } 875 876 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 877 // That might allow us to end base's liveness here by adjusting the constant. 878 879 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 880 if (!dominates(MI, UseMI)) { 881 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 882 return false; 883 } 884 } 885 886 return true; 887 } 888 889 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 890 IndexedLoadStoreMatchInfo MatchInfo; 891 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 892 applyCombineIndexedLoadStore(MI, MatchInfo); 893 return true; 894 } 895 return false; 896 } 897 898 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 899 unsigned Opcode = MI.getOpcode(); 900 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 901 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 902 return false; 903 904 // For now, no targets actually support these opcodes so don't waste time 905 // running these unless we're forced to for testing. 906 if (!ForceLegalIndexing) 907 return false; 908 909 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 910 MatchInfo.Offset); 911 if (!MatchInfo.IsPre && 912 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 913 MatchInfo.Offset)) 914 return false; 915 916 return true; 917 } 918 919 void CombinerHelper::applyCombineIndexedLoadStore( 920 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 921 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 922 MachineIRBuilder MIRBuilder(MI); 923 unsigned Opcode = MI.getOpcode(); 924 bool IsStore = Opcode == TargetOpcode::G_STORE; 925 unsigned NewOpcode; 926 switch (Opcode) { 927 case TargetOpcode::G_LOAD: 928 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 929 break; 930 case TargetOpcode::G_SEXTLOAD: 931 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 932 break; 933 case TargetOpcode::G_ZEXTLOAD: 934 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 935 break; 936 case TargetOpcode::G_STORE: 937 NewOpcode = TargetOpcode::G_INDEXED_STORE; 938 break; 939 default: 940 llvm_unreachable("Unknown load/store opcode"); 941 } 942 943 auto MIB = MIRBuilder.buildInstr(NewOpcode); 944 if (IsStore) { 945 MIB.addDef(MatchInfo.Addr); 946 MIB.addUse(MI.getOperand(0).getReg()); 947 } else { 948 MIB.addDef(MI.getOperand(0).getReg()); 949 MIB.addDef(MatchInfo.Addr); 950 } 951 952 MIB.addUse(MatchInfo.Base); 953 MIB.addUse(MatchInfo.Offset); 954 MIB.addImm(MatchInfo.IsPre); 955 MI.eraseFromParent(); 956 AddrDef.eraseFromParent(); 957 958 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 959 } 960 961 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 962 MachineInstr *&OtherMI) { 963 unsigned Opcode = MI.getOpcode(); 964 bool IsDiv, IsSigned; 965 966 switch (Opcode) { 967 default: 968 llvm_unreachable("Unexpected opcode!"); 969 case TargetOpcode::G_SDIV: 970 case TargetOpcode::G_UDIV: { 971 IsDiv = true; 972 IsSigned = Opcode == TargetOpcode::G_SDIV; 973 break; 974 } 975 case TargetOpcode::G_SREM: 976 case TargetOpcode::G_UREM: { 977 IsDiv = false; 978 IsSigned = Opcode == TargetOpcode::G_SREM; 979 break; 980 } 981 } 982 983 Register Src1 = MI.getOperand(1).getReg(); 984 unsigned DivOpcode, RemOpcode, DivremOpcode; 985 if (IsSigned) { 986 DivOpcode = TargetOpcode::G_SDIV; 987 RemOpcode = TargetOpcode::G_SREM; 988 DivremOpcode = TargetOpcode::G_SDIVREM; 989 } else { 990 DivOpcode = TargetOpcode::G_UDIV; 991 RemOpcode = TargetOpcode::G_UREM; 992 DivremOpcode = TargetOpcode::G_UDIVREM; 993 } 994 995 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 996 return false; 997 998 // Combine: 999 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1000 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1001 // into: 1002 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1003 1004 // Combine: 1005 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1006 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1007 // into: 1008 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1009 1010 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1011 if (MI.getParent() == UseMI.getParent() && 1012 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1013 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1014 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1015 OtherMI = &UseMI; 1016 return true; 1017 } 1018 } 1019 1020 return false; 1021 } 1022 1023 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1024 MachineInstr *&OtherMI) { 1025 unsigned Opcode = MI.getOpcode(); 1026 assert(OtherMI && "OtherMI shouldn't be empty."); 1027 1028 Register DestDivReg, DestRemReg; 1029 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1030 DestDivReg = MI.getOperand(0).getReg(); 1031 DestRemReg = OtherMI->getOperand(0).getReg(); 1032 } else { 1033 DestDivReg = OtherMI->getOperand(0).getReg(); 1034 DestRemReg = MI.getOperand(0).getReg(); 1035 } 1036 1037 bool IsSigned = 1038 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1039 1040 // Check which instruction is first in the block so we don't break def-use 1041 // deps by "moving" the instruction incorrectly. 1042 if (dominates(MI, *OtherMI)) 1043 Builder.setInstrAndDebugLoc(MI); 1044 else 1045 Builder.setInstrAndDebugLoc(*OtherMI); 1046 1047 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1048 : TargetOpcode::G_UDIVREM, 1049 {DestDivReg, DestRemReg}, 1050 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1051 MI.eraseFromParent(); 1052 OtherMI->eraseFromParent(); 1053 } 1054 1055 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1056 MachineInstr *&BrCond) { 1057 assert(MI.getOpcode() == TargetOpcode::G_BR); 1058 1059 // Try to match the following: 1060 // bb1: 1061 // G_BRCOND %c1, %bb2 1062 // G_BR %bb3 1063 // bb2: 1064 // ... 1065 // bb3: 1066 1067 // The above pattern does not have a fall through to the successor bb2, always 1068 // resulting in a branch no matter which path is taken. Here we try to find 1069 // and replace that pattern with conditional branch to bb3 and otherwise 1070 // fallthrough to bb2. This is generally better for branch predictors. 1071 1072 MachineBasicBlock *MBB = MI.getParent(); 1073 MachineBasicBlock::iterator BrIt(MI); 1074 if (BrIt == MBB->begin()) 1075 return false; 1076 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1077 1078 BrCond = &*std::prev(BrIt); 1079 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1080 return false; 1081 1082 // Check that the next block is the conditional branch target. Also make sure 1083 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1084 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1085 return BrCondTarget != MI.getOperand(0).getMBB() && 1086 MBB->isLayoutSuccessor(BrCondTarget); 1087 } 1088 1089 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1090 MachineInstr *&BrCond) { 1091 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1092 Builder.setInstrAndDebugLoc(*BrCond); 1093 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1094 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1095 // this to i1 only since we might not know for sure what kind of 1096 // compare generated the condition value. 1097 auto True = Builder.buildConstant( 1098 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1099 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1100 1101 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1102 Observer.changingInstr(MI); 1103 MI.getOperand(0).setMBB(FallthroughBB); 1104 Observer.changedInstr(MI); 1105 1106 // Change the conditional branch to use the inverted condition and 1107 // new target block. 1108 Observer.changingInstr(*BrCond); 1109 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1110 BrCond->getOperand(1).setMBB(BrTarget); 1111 Observer.changedInstr(*BrCond); 1112 } 1113 1114 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1115 if (Ty.isVector()) 1116 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1117 Ty.getNumElements()); 1118 return IntegerType::get(C, Ty.getSizeInBits()); 1119 } 1120 1121 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1122 MachineIRBuilder HelperBuilder(MI); 1123 GISelObserverWrapper DummyObserver; 1124 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1125 return Helper.lowerMemcpyInline(MI) == 1126 LegalizerHelper::LegalizeResult::Legalized; 1127 } 1128 1129 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1130 MachineIRBuilder HelperBuilder(MI); 1131 GISelObserverWrapper DummyObserver; 1132 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1133 return Helper.lowerMemCpyFamily(MI, MaxLen) == 1134 LegalizerHelper::LegalizeResult::Legalized; 1135 } 1136 1137 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1138 const Register Op, 1139 const MachineRegisterInfo &MRI) { 1140 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1141 if (!MaybeCst) 1142 return None; 1143 1144 APFloat V = MaybeCst->getValueAPF(); 1145 switch (Opcode) { 1146 default: 1147 llvm_unreachable("Unexpected opcode!"); 1148 case TargetOpcode::G_FNEG: { 1149 V.changeSign(); 1150 return V; 1151 } 1152 case TargetOpcode::G_FABS: { 1153 V.clearSign(); 1154 return V; 1155 } 1156 case TargetOpcode::G_FPTRUNC: 1157 break; 1158 case TargetOpcode::G_FSQRT: { 1159 bool Unused; 1160 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1161 V = APFloat(sqrt(V.convertToDouble())); 1162 break; 1163 } 1164 case TargetOpcode::G_FLOG2: { 1165 bool Unused; 1166 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1167 V = APFloat(log2(V.convertToDouble())); 1168 break; 1169 } 1170 } 1171 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1172 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1173 // and `G_FLOG2` reach here. 1174 bool Unused; 1175 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1176 return V; 1177 } 1178 1179 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1180 Optional<APFloat> &Cst) { 1181 Register DstReg = MI.getOperand(0).getReg(); 1182 Register SrcReg = MI.getOperand(1).getReg(); 1183 LLT DstTy = MRI.getType(DstReg); 1184 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1185 return Cst.hasValue(); 1186 } 1187 1188 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1189 Optional<APFloat> &Cst) { 1190 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1191 Builder.setInstrAndDebugLoc(MI); 1192 MachineFunction &MF = Builder.getMF(); 1193 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1194 Register DstReg = MI.getOperand(0).getReg(); 1195 Builder.buildFConstant(DstReg, *FPVal); 1196 MI.eraseFromParent(); 1197 } 1198 1199 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1200 PtrAddChain &MatchInfo) { 1201 // We're trying to match the following pattern: 1202 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1203 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1204 // --> 1205 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1206 1207 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1208 return false; 1209 1210 Register Add2 = MI.getOperand(1).getReg(); 1211 Register Imm1 = MI.getOperand(2).getReg(); 1212 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1213 if (!MaybeImmVal) 1214 return false; 1215 1216 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1217 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1218 return false; 1219 1220 Register Base = Add2Def->getOperand(1).getReg(); 1221 Register Imm2 = Add2Def->getOperand(2).getReg(); 1222 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1223 if (!MaybeImm2Val) 1224 return false; 1225 1226 // Check if the new combined immediate forms an illegal addressing mode. 1227 // Do not combine if it was legal before but would get illegal. 1228 // To do so, we need to find a load/store user of the pointer to get 1229 // the access type. 1230 Type *AccessTy = nullptr; 1231 auto &MF = *MI.getMF(); 1232 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1233 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1234 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1235 MF.getFunction().getContext()); 1236 break; 1237 } 1238 } 1239 TargetLoweringBase::AddrMode AMNew; 1240 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1241 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1242 if (AccessTy) { 1243 AMNew.HasBaseReg = true; 1244 TargetLoweringBase::AddrMode AMOld; 1245 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); 1246 AMOld.HasBaseReg = true; 1247 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1248 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1249 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1250 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1251 return false; 1252 } 1253 1254 // Pass the combined immediate to the apply function. 1255 MatchInfo.Imm = AMNew.BaseOffs; 1256 MatchInfo.Base = Base; 1257 MatchInfo.Bank = getRegBank(Imm2); 1258 return true; 1259 } 1260 1261 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1262 PtrAddChain &MatchInfo) { 1263 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1264 MachineIRBuilder MIB(MI); 1265 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1266 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1267 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1268 Observer.changingInstr(MI); 1269 MI.getOperand(1).setReg(MatchInfo.Base); 1270 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1271 Observer.changedInstr(MI); 1272 } 1273 1274 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1275 RegisterImmPair &MatchInfo) { 1276 // We're trying to match the following pattern with any of 1277 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1278 // %t1 = SHIFT %base, G_CONSTANT imm1 1279 // %root = SHIFT %t1, G_CONSTANT imm2 1280 // --> 1281 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1282 1283 unsigned Opcode = MI.getOpcode(); 1284 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1285 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1286 Opcode == TargetOpcode::G_USHLSAT) && 1287 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1288 1289 Register Shl2 = MI.getOperand(1).getReg(); 1290 Register Imm1 = MI.getOperand(2).getReg(); 1291 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1292 if (!MaybeImmVal) 1293 return false; 1294 1295 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1296 if (Shl2Def->getOpcode() != Opcode) 1297 return false; 1298 1299 Register Base = Shl2Def->getOperand(1).getReg(); 1300 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1301 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1302 if (!MaybeImm2Val) 1303 return false; 1304 1305 // Pass the combined immediate to the apply function. 1306 MatchInfo.Imm = 1307 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1308 MatchInfo.Reg = Base; 1309 1310 // There is no simple replacement for a saturating unsigned left shift that 1311 // exceeds the scalar size. 1312 if (Opcode == TargetOpcode::G_USHLSAT && 1313 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1314 return false; 1315 1316 return true; 1317 } 1318 1319 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1320 RegisterImmPair &MatchInfo) { 1321 unsigned Opcode = MI.getOpcode(); 1322 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1323 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1324 Opcode == TargetOpcode::G_USHLSAT) && 1325 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1326 1327 Builder.setInstrAndDebugLoc(MI); 1328 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1329 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1330 auto Imm = MatchInfo.Imm; 1331 1332 if (Imm >= ScalarSizeInBits) { 1333 // Any logical shift that exceeds scalar size will produce zero. 1334 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1335 Builder.buildConstant(MI.getOperand(0), 0); 1336 MI.eraseFromParent(); 1337 return; 1338 } 1339 // Arithmetic shift and saturating signed left shift have no effect beyond 1340 // scalar size. 1341 Imm = ScalarSizeInBits - 1; 1342 } 1343 1344 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1345 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1346 Observer.changingInstr(MI); 1347 MI.getOperand(1).setReg(MatchInfo.Reg); 1348 MI.getOperand(2).setReg(NewImm); 1349 Observer.changedInstr(MI); 1350 } 1351 1352 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1353 ShiftOfShiftedLogic &MatchInfo) { 1354 // We're trying to match the following pattern with any of 1355 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1356 // with any of G_AND/G_OR/G_XOR logic instructions. 1357 // %t1 = SHIFT %X, G_CONSTANT C0 1358 // %t2 = LOGIC %t1, %Y 1359 // %root = SHIFT %t2, G_CONSTANT C1 1360 // --> 1361 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1362 // %t4 = SHIFT %Y, G_CONSTANT C1 1363 // %root = LOGIC %t3, %t4 1364 unsigned ShiftOpcode = MI.getOpcode(); 1365 assert((ShiftOpcode == TargetOpcode::G_SHL || 1366 ShiftOpcode == TargetOpcode::G_ASHR || 1367 ShiftOpcode == TargetOpcode::G_LSHR || 1368 ShiftOpcode == TargetOpcode::G_USHLSAT || 1369 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1370 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1371 1372 // Match a one-use bitwise logic op. 1373 Register LogicDest = MI.getOperand(1).getReg(); 1374 if (!MRI.hasOneNonDBGUse(LogicDest)) 1375 return false; 1376 1377 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1378 unsigned LogicOpcode = LogicMI->getOpcode(); 1379 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1380 LogicOpcode != TargetOpcode::G_XOR) 1381 return false; 1382 1383 // Find a matching one-use shift by constant. 1384 const Register C1 = MI.getOperand(2).getReg(); 1385 auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); 1386 if (!MaybeImmVal) 1387 return false; 1388 1389 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1390 1391 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1392 // Shift should match previous one and should be a one-use. 1393 if (MI->getOpcode() != ShiftOpcode || 1394 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1395 return false; 1396 1397 // Must be a constant. 1398 auto MaybeImmVal = 1399 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1400 if (!MaybeImmVal) 1401 return false; 1402 1403 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1404 return true; 1405 }; 1406 1407 // Logic ops are commutative, so check each operand for a match. 1408 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1409 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1410 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1411 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1412 uint64_t C0Val; 1413 1414 if (matchFirstShift(LogicMIOp1, C0Val)) { 1415 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1416 MatchInfo.Shift2 = LogicMIOp1; 1417 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1418 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1419 MatchInfo.Shift2 = LogicMIOp2; 1420 } else 1421 return false; 1422 1423 MatchInfo.ValSum = C0Val + C1Val; 1424 1425 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1426 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1427 return false; 1428 1429 MatchInfo.Logic = LogicMI; 1430 return true; 1431 } 1432 1433 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1434 ShiftOfShiftedLogic &MatchInfo) { 1435 unsigned Opcode = MI.getOpcode(); 1436 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1437 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1438 Opcode == TargetOpcode::G_SSHLSAT) && 1439 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1440 1441 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1442 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1443 Builder.setInstrAndDebugLoc(MI); 1444 1445 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1446 1447 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1448 Register Shift1 = 1449 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1450 1451 Register Shift2Const = MI.getOperand(2).getReg(); 1452 Register Shift2 = Builder 1453 .buildInstr(Opcode, {DestType}, 1454 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1455 .getReg(0); 1456 1457 Register Dest = MI.getOperand(0).getReg(); 1458 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1459 1460 // These were one use so it's safe to remove them. 1461 MatchInfo.Shift2->eraseFromParentAndMarkDBGValuesForRemoval(); 1462 MatchInfo.Logic->eraseFromParentAndMarkDBGValuesForRemoval(); 1463 1464 MI.eraseFromParent(); 1465 } 1466 1467 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1468 unsigned &ShiftVal) { 1469 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1470 auto MaybeImmVal = 1471 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1472 if (!MaybeImmVal) 1473 return false; 1474 1475 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1476 return (static_cast<int32_t>(ShiftVal) != -1); 1477 } 1478 1479 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1480 unsigned &ShiftVal) { 1481 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1482 MachineIRBuilder MIB(MI); 1483 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1484 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1485 Observer.changingInstr(MI); 1486 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1487 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1488 Observer.changedInstr(MI); 1489 } 1490 1491 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1492 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1493 RegisterImmPair &MatchData) { 1494 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1495 1496 Register LHS = MI.getOperand(1).getReg(); 1497 1498 Register ExtSrc; 1499 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1500 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1501 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1502 return false; 1503 1504 // TODO: Should handle vector splat. 1505 Register RHS = MI.getOperand(2).getReg(); 1506 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 1507 if (!MaybeShiftAmtVal) 1508 return false; 1509 1510 if (LI) { 1511 LLT SrcTy = MRI.getType(ExtSrc); 1512 1513 // We only really care about the legality with the shifted value. We can 1514 // pick any type the constant shift amount, so ask the target what to 1515 // use. Otherwise we would have to guess and hope it is reported as legal. 1516 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1517 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1518 return false; 1519 } 1520 1521 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1522 MatchData.Reg = ExtSrc; 1523 MatchData.Imm = ShiftAmt; 1524 1525 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1526 return MinLeadingZeros >= ShiftAmt; 1527 } 1528 1529 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1530 const RegisterImmPair &MatchData) { 1531 Register ExtSrcReg = MatchData.Reg; 1532 int64_t ShiftAmtVal = MatchData.Imm; 1533 1534 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1535 Builder.setInstrAndDebugLoc(MI); 1536 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1537 auto NarrowShift = 1538 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1539 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1540 MI.eraseFromParent(); 1541 } 1542 1543 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 1544 Register &MatchInfo) { 1545 GMerge &Merge = cast<GMerge>(MI); 1546 SmallVector<Register, 16> MergedValues; 1547 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 1548 MergedValues.emplace_back(Merge.getSourceReg(I)); 1549 1550 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 1551 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 1552 return false; 1553 1554 for (unsigned I = 0; I < MergedValues.size(); ++I) 1555 if (MergedValues[I] != Unmerge->getReg(I)) 1556 return false; 1557 1558 MatchInfo = Unmerge->getSourceReg(); 1559 return true; 1560 } 1561 1562 static Register peekThroughBitcast(Register Reg, 1563 const MachineRegisterInfo &MRI) { 1564 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1565 ; 1566 1567 return Reg; 1568 } 1569 1570 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1571 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1572 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1573 "Expected an unmerge"); 1574 auto &Unmerge = cast<GUnmerge>(MI); 1575 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 1576 1577 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI); 1578 if (!SrcInstr) 1579 return false; 1580 1581 // Check the source type of the merge. 1582 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 1583 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 1584 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1585 if (SrcMergeTy != Dst0Ty && !SameSize) 1586 return false; 1587 // They are the same now (modulo a bitcast). 1588 // We can collect all the src registers. 1589 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 1590 Operands.push_back(SrcInstr->getSourceReg(Idx)); 1591 return true; 1592 } 1593 1594 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1595 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1596 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1597 "Expected an unmerge"); 1598 assert((MI.getNumOperands() - 1 == Operands.size()) && 1599 "Not enough operands to replace all defs"); 1600 unsigned NumElems = MI.getNumOperands() - 1; 1601 1602 LLT SrcTy = MRI.getType(Operands[0]); 1603 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1604 bool CanReuseInputDirectly = DstTy == SrcTy; 1605 Builder.setInstrAndDebugLoc(MI); 1606 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1607 Register DstReg = MI.getOperand(Idx).getReg(); 1608 Register SrcReg = Operands[Idx]; 1609 if (CanReuseInputDirectly) 1610 replaceRegWith(MRI, DstReg, SrcReg); 1611 else 1612 Builder.buildCast(DstReg, SrcReg); 1613 } 1614 MI.eraseFromParent(); 1615 } 1616 1617 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1618 SmallVectorImpl<APInt> &Csts) { 1619 unsigned SrcIdx = MI.getNumOperands() - 1; 1620 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1621 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1622 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1623 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1624 return false; 1625 // Break down the big constant in smaller ones. 1626 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1627 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1628 ? CstVal.getCImm()->getValue() 1629 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1630 1631 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1632 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1633 // Unmerge a constant. 1634 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1635 Csts.emplace_back(Val.trunc(ShiftAmt)); 1636 Val = Val.lshr(ShiftAmt); 1637 } 1638 1639 return true; 1640 } 1641 1642 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1643 SmallVectorImpl<APInt> &Csts) { 1644 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1645 "Expected an unmerge"); 1646 assert((MI.getNumOperands() - 1 == Csts.size()) && 1647 "Not enough operands to replace all defs"); 1648 unsigned NumElems = MI.getNumOperands() - 1; 1649 Builder.setInstrAndDebugLoc(MI); 1650 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1651 Register DstReg = MI.getOperand(Idx).getReg(); 1652 Builder.buildConstant(DstReg, Csts[Idx]); 1653 } 1654 1655 MI.eraseFromParent(); 1656 } 1657 1658 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1659 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1660 "Expected an unmerge"); 1661 // Check that all the lanes are dead except the first one. 1662 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1663 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1664 return false; 1665 } 1666 return true; 1667 } 1668 1669 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1670 Builder.setInstrAndDebugLoc(MI); 1671 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1672 // Truncating a vector is going to truncate every single lane, 1673 // whereas we want the full lowbits. 1674 // Do the operation on a scalar instead. 1675 LLT SrcTy = MRI.getType(SrcReg); 1676 if (SrcTy.isVector()) 1677 SrcReg = 1678 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1679 1680 Register Dst0Reg = MI.getOperand(0).getReg(); 1681 LLT Dst0Ty = MRI.getType(Dst0Reg); 1682 if (Dst0Ty.isVector()) { 1683 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 1684 Builder.buildCast(Dst0Reg, MIB); 1685 } else 1686 Builder.buildTrunc(Dst0Reg, SrcReg); 1687 MI.eraseFromParent(); 1688 } 1689 1690 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 1691 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1692 "Expected an unmerge"); 1693 Register Dst0Reg = MI.getOperand(0).getReg(); 1694 LLT Dst0Ty = MRI.getType(Dst0Reg); 1695 // G_ZEXT on vector applies to each lane, so it will 1696 // affect all destinations. Therefore we won't be able 1697 // to simplify the unmerge to just the first definition. 1698 if (Dst0Ty.isVector()) 1699 return false; 1700 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1701 LLT SrcTy = MRI.getType(SrcReg); 1702 if (SrcTy.isVector()) 1703 return false; 1704 1705 Register ZExtSrcReg; 1706 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 1707 return false; 1708 1709 // Finally we can replace the first definition with 1710 // a zext of the source if the definition is big enough to hold 1711 // all of ZExtSrc bits. 1712 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1713 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 1714 } 1715 1716 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 1717 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1718 "Expected an unmerge"); 1719 1720 Register Dst0Reg = MI.getOperand(0).getReg(); 1721 1722 MachineInstr *ZExtInstr = 1723 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 1724 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 1725 "Expecting a G_ZEXT"); 1726 1727 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 1728 LLT Dst0Ty = MRI.getType(Dst0Reg); 1729 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1730 1731 Builder.setInstrAndDebugLoc(MI); 1732 1733 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 1734 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 1735 } else { 1736 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 1737 "ZExt src doesn't fit in destination"); 1738 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 1739 } 1740 1741 Register ZeroReg; 1742 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1743 if (!ZeroReg) 1744 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 1745 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 1746 } 1747 MI.eraseFromParent(); 1748 } 1749 1750 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1751 unsigned TargetShiftSize, 1752 unsigned &ShiftVal) { 1753 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1754 MI.getOpcode() == TargetOpcode::G_LSHR || 1755 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1756 1757 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1758 if (Ty.isVector()) // TODO: 1759 return false; 1760 1761 // Don't narrow further than the requested size. 1762 unsigned Size = Ty.getSizeInBits(); 1763 if (Size <= TargetShiftSize) 1764 return false; 1765 1766 auto MaybeImmVal = 1767 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1768 if (!MaybeImmVal) 1769 return false; 1770 1771 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1772 return ShiftVal >= Size / 2 && ShiftVal < Size; 1773 } 1774 1775 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1776 const unsigned &ShiftVal) { 1777 Register DstReg = MI.getOperand(0).getReg(); 1778 Register SrcReg = MI.getOperand(1).getReg(); 1779 LLT Ty = MRI.getType(SrcReg); 1780 unsigned Size = Ty.getSizeInBits(); 1781 unsigned HalfSize = Size / 2; 1782 assert(ShiftVal >= HalfSize); 1783 1784 LLT HalfTy = LLT::scalar(HalfSize); 1785 1786 Builder.setInstr(MI); 1787 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1788 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1789 1790 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1791 Register Narrowed = Unmerge.getReg(1); 1792 1793 // dst = G_LSHR s64:x, C for C >= 32 1794 // => 1795 // lo, hi = G_UNMERGE_VALUES x 1796 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1797 1798 if (NarrowShiftAmt != 0) { 1799 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1800 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1801 } 1802 1803 auto Zero = Builder.buildConstant(HalfTy, 0); 1804 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1805 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1806 Register Narrowed = Unmerge.getReg(0); 1807 // dst = G_SHL s64:x, C for C >= 32 1808 // => 1809 // lo, hi = G_UNMERGE_VALUES x 1810 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1811 if (NarrowShiftAmt != 0) { 1812 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1813 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1814 } 1815 1816 auto Zero = Builder.buildConstant(HalfTy, 0); 1817 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1818 } else { 1819 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1820 auto Hi = Builder.buildAShr( 1821 HalfTy, Unmerge.getReg(1), 1822 Builder.buildConstant(HalfTy, HalfSize - 1)); 1823 1824 if (ShiftVal == HalfSize) { 1825 // (G_ASHR i64:x, 32) -> 1826 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1827 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1828 } else if (ShiftVal == Size - 1) { 1829 // Don't need a second shift. 1830 // (G_ASHR i64:x, 63) -> 1831 // %narrowed = (G_ASHR hi_32(x), 31) 1832 // G_MERGE_VALUES %narrowed, %narrowed 1833 Builder.buildMerge(DstReg, { Hi, Hi }); 1834 } else { 1835 auto Lo = Builder.buildAShr( 1836 HalfTy, Unmerge.getReg(1), 1837 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1838 1839 // (G_ASHR i64:x, C) ->, for C >= 32 1840 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1841 Builder.buildMerge(DstReg, { Lo, Hi }); 1842 } 1843 } 1844 1845 MI.eraseFromParent(); 1846 } 1847 1848 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1849 unsigned TargetShiftAmount) { 1850 unsigned ShiftAmt; 1851 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1852 applyCombineShiftToUnmerge(MI, ShiftAmt); 1853 return true; 1854 } 1855 1856 return false; 1857 } 1858 1859 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1860 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1861 Register DstReg = MI.getOperand(0).getReg(); 1862 LLT DstTy = MRI.getType(DstReg); 1863 Register SrcReg = MI.getOperand(1).getReg(); 1864 return mi_match(SrcReg, MRI, 1865 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 1866 } 1867 1868 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1869 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1870 Register DstReg = MI.getOperand(0).getReg(); 1871 Builder.setInstr(MI); 1872 Builder.buildCopy(DstReg, Reg); 1873 MI.eraseFromParent(); 1874 } 1875 1876 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1877 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1878 Register SrcReg = MI.getOperand(1).getReg(); 1879 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 1880 } 1881 1882 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1883 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1884 Register DstReg = MI.getOperand(0).getReg(); 1885 Builder.setInstr(MI); 1886 Builder.buildZExtOrTrunc(DstReg, Reg); 1887 MI.eraseFromParent(); 1888 } 1889 1890 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 1891 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1892 assert(MI.getOpcode() == TargetOpcode::G_ADD); 1893 Register LHS = MI.getOperand(1).getReg(); 1894 Register RHS = MI.getOperand(2).getReg(); 1895 LLT IntTy = MRI.getType(LHS); 1896 1897 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 1898 // instruction. 1899 PtrReg.second = false; 1900 for (Register SrcReg : {LHS, RHS}) { 1901 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 1902 // Don't handle cases where the integer is implicitly converted to the 1903 // pointer width. 1904 LLT PtrTy = MRI.getType(PtrReg.first); 1905 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 1906 return true; 1907 } 1908 1909 PtrReg.second = true; 1910 } 1911 1912 return false; 1913 } 1914 1915 void CombinerHelper::applyCombineAddP2IToPtrAdd( 1916 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1917 Register Dst = MI.getOperand(0).getReg(); 1918 Register LHS = MI.getOperand(1).getReg(); 1919 Register RHS = MI.getOperand(2).getReg(); 1920 1921 const bool DoCommute = PtrReg.second; 1922 if (DoCommute) 1923 std::swap(LHS, RHS); 1924 LHS = PtrReg.first; 1925 1926 LLT PtrTy = MRI.getType(LHS); 1927 1928 Builder.setInstrAndDebugLoc(MI); 1929 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 1930 Builder.buildPtrToInt(Dst, PtrAdd); 1931 MI.eraseFromParent(); 1932 } 1933 1934 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 1935 int64_t &NewCst) { 1936 auto &PtrAdd = cast<GPtrAdd>(MI); 1937 Register LHS = PtrAdd.getBaseReg(); 1938 Register RHS = PtrAdd.getOffsetReg(); 1939 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 1940 1941 if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { 1942 int64_t Cst; 1943 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 1944 NewCst = Cst + *RHSCst; 1945 return true; 1946 } 1947 } 1948 1949 return false; 1950 } 1951 1952 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 1953 int64_t &NewCst) { 1954 auto &PtrAdd = cast<GPtrAdd>(MI); 1955 Register Dst = PtrAdd.getReg(0); 1956 1957 Builder.setInstrAndDebugLoc(MI); 1958 Builder.buildConstant(Dst, NewCst); 1959 PtrAdd.eraseFromParent(); 1960 } 1961 1962 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 1963 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 1964 Register DstReg = MI.getOperand(0).getReg(); 1965 Register SrcReg = MI.getOperand(1).getReg(); 1966 LLT DstTy = MRI.getType(DstReg); 1967 return mi_match(SrcReg, MRI, 1968 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 1969 } 1970 1971 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 1972 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 1973 Register DstReg = MI.getOperand(0).getReg(); 1974 Register SrcReg = MI.getOperand(1).getReg(); 1975 LLT DstTy = MRI.getType(DstReg); 1976 if (mi_match(SrcReg, MRI, 1977 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 1978 unsigned DstSize = DstTy.getScalarSizeInBits(); 1979 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 1980 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 1981 } 1982 return false; 1983 } 1984 1985 bool CombinerHelper::matchCombineExtOfExt( 1986 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 1987 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 1988 MI.getOpcode() == TargetOpcode::G_SEXT || 1989 MI.getOpcode() == TargetOpcode::G_ZEXT) && 1990 "Expected a G_[ASZ]EXT"); 1991 Register SrcReg = MI.getOperand(1).getReg(); 1992 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 1993 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 1994 unsigned Opc = MI.getOpcode(); 1995 unsigned SrcOpc = SrcMI->getOpcode(); 1996 if (Opc == SrcOpc || 1997 (Opc == TargetOpcode::G_ANYEXT && 1998 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 1999 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2000 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2001 return true; 2002 } 2003 return false; 2004 } 2005 2006 void CombinerHelper::applyCombineExtOfExt( 2007 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2008 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2009 MI.getOpcode() == TargetOpcode::G_SEXT || 2010 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2011 "Expected a G_[ASZ]EXT"); 2012 2013 Register Reg = std::get<0>(MatchInfo); 2014 unsigned SrcExtOp = std::get<1>(MatchInfo); 2015 2016 // Combine exts with the same opcode. 2017 if (MI.getOpcode() == SrcExtOp) { 2018 Observer.changingInstr(MI); 2019 MI.getOperand(1).setReg(Reg); 2020 Observer.changedInstr(MI); 2021 return; 2022 } 2023 2024 // Combine: 2025 // - anyext([sz]ext x) to [sz]ext x 2026 // - sext(zext x) to zext x 2027 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2028 (MI.getOpcode() == TargetOpcode::G_SEXT && 2029 SrcExtOp == TargetOpcode::G_ZEXT)) { 2030 Register DstReg = MI.getOperand(0).getReg(); 2031 Builder.setInstrAndDebugLoc(MI); 2032 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2033 MI.eraseFromParent(); 2034 } 2035 } 2036 2037 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2038 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2039 Register DstReg = MI.getOperand(0).getReg(); 2040 Register SrcReg = MI.getOperand(1).getReg(); 2041 LLT DstTy = MRI.getType(DstReg); 2042 2043 Builder.setInstrAndDebugLoc(MI); 2044 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2045 MI.getFlags()); 2046 MI.eraseFromParent(); 2047 } 2048 2049 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2050 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2051 Register SrcReg = MI.getOperand(1).getReg(); 2052 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2053 } 2054 2055 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2056 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2057 Src = MI.getOperand(1).getReg(); 2058 Register AbsSrc; 2059 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2060 } 2061 2062 bool CombinerHelper::matchCombineTruncOfExt( 2063 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2064 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2065 Register SrcReg = MI.getOperand(1).getReg(); 2066 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2067 unsigned SrcOpc = SrcMI->getOpcode(); 2068 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2069 SrcOpc == TargetOpcode::G_ZEXT) { 2070 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2071 return true; 2072 } 2073 return false; 2074 } 2075 2076 void CombinerHelper::applyCombineTruncOfExt( 2077 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2078 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2079 Register SrcReg = MatchInfo.first; 2080 unsigned SrcExtOp = MatchInfo.second; 2081 Register DstReg = MI.getOperand(0).getReg(); 2082 LLT SrcTy = MRI.getType(SrcReg); 2083 LLT DstTy = MRI.getType(DstReg); 2084 if (SrcTy == DstTy) { 2085 MI.eraseFromParent(); 2086 replaceRegWith(MRI, DstReg, SrcReg); 2087 return; 2088 } 2089 Builder.setInstrAndDebugLoc(MI); 2090 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2091 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2092 else 2093 Builder.buildTrunc(DstReg, SrcReg); 2094 MI.eraseFromParent(); 2095 } 2096 2097 bool CombinerHelper::matchCombineTruncOfShl( 2098 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2099 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2100 Register DstReg = MI.getOperand(0).getReg(); 2101 Register SrcReg = MI.getOperand(1).getReg(); 2102 LLT DstTy = MRI.getType(DstReg); 2103 Register ShiftSrc; 2104 Register ShiftAmt; 2105 2106 if (MRI.hasOneNonDBGUse(SrcReg) && 2107 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2108 isLegalOrBeforeLegalizer( 2109 {TargetOpcode::G_SHL, 2110 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2111 KnownBits Known = KB->getKnownBits(ShiftAmt); 2112 unsigned Size = DstTy.getSizeInBits(); 2113 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2114 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2115 return true; 2116 } 2117 } 2118 return false; 2119 } 2120 2121 void CombinerHelper::applyCombineTruncOfShl( 2122 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2123 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2124 Register DstReg = MI.getOperand(0).getReg(); 2125 Register SrcReg = MI.getOperand(1).getReg(); 2126 LLT DstTy = MRI.getType(DstReg); 2127 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2128 2129 Register ShiftSrc = MatchInfo.first; 2130 Register ShiftAmt = MatchInfo.second; 2131 Builder.setInstrAndDebugLoc(MI); 2132 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2133 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2134 MI.eraseFromParent(); 2135 } 2136 2137 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2138 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2139 return MO.isReg() && 2140 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2141 }); 2142 } 2143 2144 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2145 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2146 return !MO.isReg() || 2147 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2148 }); 2149 } 2150 2151 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2152 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2153 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2154 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2155 } 2156 2157 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2158 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2159 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2160 MRI); 2161 } 2162 2163 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2164 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2165 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2166 MRI); 2167 } 2168 2169 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2170 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2171 if (auto MaybeCstCmp = 2172 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2173 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; 2174 return true; 2175 } 2176 return false; 2177 } 2178 2179 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2180 MI.eraseFromParent(); 2181 return true; 2182 } 2183 2184 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2185 const MachineOperand &MOP2) { 2186 if (!MOP1.isReg() || !MOP2.isReg()) 2187 return false; 2188 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2189 if (!InstAndDef1) 2190 return false; 2191 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2192 if (!InstAndDef2) 2193 return false; 2194 MachineInstr *I1 = InstAndDef1->MI; 2195 MachineInstr *I2 = InstAndDef2->MI; 2196 2197 // Handle a case like this: 2198 // 2199 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2200 // 2201 // Even though %0 and %1 are produced by the same instruction they are not 2202 // the same values. 2203 if (I1 == I2) 2204 return MOP1.getReg() == MOP2.getReg(); 2205 2206 // If we have an instruction which loads or stores, we can't guarantee that 2207 // it is identical. 2208 // 2209 // For example, we may have 2210 // 2211 // %x1 = G_LOAD %addr (load N from @somewhere) 2212 // ... 2213 // call @foo 2214 // ... 2215 // %x2 = G_LOAD %addr (load N from @somewhere) 2216 // ... 2217 // %or = G_OR %x1, %x2 2218 // 2219 // It's possible that @foo will modify whatever lives at the address we're 2220 // loading from. To be safe, let's just assume that all loads and stores 2221 // are different (unless we have something which is guaranteed to not 2222 // change.) 2223 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2224 return false; 2225 2226 // Check for physical registers on the instructions first to avoid cases 2227 // like this: 2228 // 2229 // %a = COPY $physreg 2230 // ... 2231 // SOMETHING implicit-def $physreg 2232 // ... 2233 // %b = COPY $physreg 2234 // 2235 // These copies are not equivalent. 2236 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2237 return MO.isReg() && MO.getReg().isPhysical(); 2238 })) { 2239 // Check if we have a case like this: 2240 // 2241 // %a = COPY $physreg 2242 // %b = COPY %a 2243 // 2244 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2245 // From that, we know that they must have the same value, since they must 2246 // have come from the same COPY. 2247 return I1->isIdenticalTo(*I2); 2248 } 2249 2250 // We don't have any physical registers, so we don't necessarily need the 2251 // same vreg defs. 2252 // 2253 // On the off-chance that there's some target instruction feeding into the 2254 // instruction, let's use produceSameValue instead of isIdenticalTo. 2255 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2256 // Handle instructions with multiple defs that produce same values. Values 2257 // are same for operands with same index. 2258 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2259 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2260 // I1 and I2 are different instructions but produce same values, 2261 // %1 and %6 are same, %1 and %7 are not the same value. 2262 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2263 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2264 } 2265 return false; 2266 } 2267 2268 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2269 if (!MOP.isReg()) 2270 return false; 2271 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2272 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2273 return ValAndVReg && ValAndVReg->Value == C; 2274 } 2275 2276 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2277 unsigned OpIdx) { 2278 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2279 Register OldReg = MI.getOperand(0).getReg(); 2280 Register Replacement = MI.getOperand(OpIdx).getReg(); 2281 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2282 MI.eraseFromParent(); 2283 replaceRegWith(MRI, OldReg, Replacement); 2284 return true; 2285 } 2286 2287 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2288 Register Replacement) { 2289 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2290 Register OldReg = MI.getOperand(0).getReg(); 2291 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2292 MI.eraseFromParent(); 2293 replaceRegWith(MRI, OldReg, Replacement); 2294 return true; 2295 } 2296 2297 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2298 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2299 // Match (cond ? x : x) 2300 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2301 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2302 MRI); 2303 } 2304 2305 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2306 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2307 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2308 MRI); 2309 } 2310 2311 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2312 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2313 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2314 MRI); 2315 } 2316 2317 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2318 MachineOperand &MO = MI.getOperand(OpIdx); 2319 return MO.isReg() && 2320 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2321 } 2322 2323 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2324 unsigned OpIdx) { 2325 MachineOperand &MO = MI.getOperand(OpIdx); 2326 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2327 } 2328 2329 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2330 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2331 Builder.setInstr(MI); 2332 Builder.buildFConstant(MI.getOperand(0), C); 2333 MI.eraseFromParent(); 2334 return true; 2335 } 2336 2337 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2338 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2339 Builder.setInstr(MI); 2340 Builder.buildConstant(MI.getOperand(0), C); 2341 MI.eraseFromParent(); 2342 return true; 2343 } 2344 2345 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2346 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2347 Builder.setInstr(MI); 2348 Builder.buildConstant(MI.getOperand(0), C); 2349 MI.eraseFromParent(); 2350 return true; 2351 } 2352 2353 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2354 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2355 Builder.setInstr(MI); 2356 Builder.buildUndef(MI.getOperand(0)); 2357 MI.eraseFromParent(); 2358 return true; 2359 } 2360 2361 bool CombinerHelper::matchSimplifyAddToSub( 2362 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2363 Register LHS = MI.getOperand(1).getReg(); 2364 Register RHS = MI.getOperand(2).getReg(); 2365 Register &NewLHS = std::get<0>(MatchInfo); 2366 Register &NewRHS = std::get<1>(MatchInfo); 2367 2368 // Helper lambda to check for opportunities for 2369 // ((0-A) + B) -> B - A 2370 // (A + (0-B)) -> A - B 2371 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2372 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2373 return false; 2374 NewLHS = MaybeNewLHS; 2375 return true; 2376 }; 2377 2378 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2379 } 2380 2381 bool CombinerHelper::matchCombineInsertVecElts( 2382 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2383 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2384 "Invalid opcode"); 2385 Register DstReg = MI.getOperand(0).getReg(); 2386 LLT DstTy = MRI.getType(DstReg); 2387 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2388 unsigned NumElts = DstTy.getNumElements(); 2389 // If this MI is part of a sequence of insert_vec_elts, then 2390 // don't do the combine in the middle of the sequence. 2391 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2392 TargetOpcode::G_INSERT_VECTOR_ELT) 2393 return false; 2394 MachineInstr *CurrInst = &MI; 2395 MachineInstr *TmpInst; 2396 int64_t IntImm; 2397 Register TmpReg; 2398 MatchInfo.resize(NumElts); 2399 while (mi_match( 2400 CurrInst->getOperand(0).getReg(), MRI, 2401 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2402 if (IntImm >= NumElts) 2403 return false; 2404 if (!MatchInfo[IntImm]) 2405 MatchInfo[IntImm] = TmpReg; 2406 CurrInst = TmpInst; 2407 } 2408 // Variable index. 2409 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2410 return false; 2411 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2412 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2413 if (!MatchInfo[I - 1].isValid()) 2414 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2415 } 2416 return true; 2417 } 2418 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2419 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2420 } 2421 2422 void CombinerHelper::applyCombineInsertVecElts( 2423 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2424 Builder.setInstr(MI); 2425 Register UndefReg; 2426 auto GetUndef = [&]() { 2427 if (UndefReg) 2428 return UndefReg; 2429 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2430 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2431 return UndefReg; 2432 }; 2433 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2434 if (!MatchInfo[I]) 2435 MatchInfo[I] = GetUndef(); 2436 } 2437 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2438 MI.eraseFromParent(); 2439 } 2440 2441 void CombinerHelper::applySimplifyAddToSub( 2442 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2443 Builder.setInstr(MI); 2444 Register SubLHS, SubRHS; 2445 std::tie(SubLHS, SubRHS) = MatchInfo; 2446 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2447 MI.eraseFromParent(); 2448 } 2449 2450 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2451 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2452 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2453 // 2454 // Creates the new hand + logic instruction (but does not insert them.) 2455 // 2456 // On success, MatchInfo is populated with the new instructions. These are 2457 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2458 unsigned LogicOpcode = MI.getOpcode(); 2459 assert(LogicOpcode == TargetOpcode::G_AND || 2460 LogicOpcode == TargetOpcode::G_OR || 2461 LogicOpcode == TargetOpcode::G_XOR); 2462 MachineIRBuilder MIB(MI); 2463 Register Dst = MI.getOperand(0).getReg(); 2464 Register LHSReg = MI.getOperand(1).getReg(); 2465 Register RHSReg = MI.getOperand(2).getReg(); 2466 2467 // Don't recompute anything. 2468 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2469 return false; 2470 2471 // Make sure we have (hand x, ...), (hand y, ...) 2472 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2473 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2474 if (!LeftHandInst || !RightHandInst) 2475 return false; 2476 unsigned HandOpcode = LeftHandInst->getOpcode(); 2477 if (HandOpcode != RightHandInst->getOpcode()) 2478 return false; 2479 if (!LeftHandInst->getOperand(1).isReg() || 2480 !RightHandInst->getOperand(1).isReg()) 2481 return false; 2482 2483 // Make sure the types match up, and if we're doing this post-legalization, 2484 // we end up with legal types. 2485 Register X = LeftHandInst->getOperand(1).getReg(); 2486 Register Y = RightHandInst->getOperand(1).getReg(); 2487 LLT XTy = MRI.getType(X); 2488 LLT YTy = MRI.getType(Y); 2489 if (XTy != YTy) 2490 return false; 2491 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2492 return false; 2493 2494 // Optional extra source register. 2495 Register ExtraHandOpSrcReg; 2496 switch (HandOpcode) { 2497 default: 2498 return false; 2499 case TargetOpcode::G_ANYEXT: 2500 case TargetOpcode::G_SEXT: 2501 case TargetOpcode::G_ZEXT: { 2502 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2503 break; 2504 } 2505 case TargetOpcode::G_AND: 2506 case TargetOpcode::G_ASHR: 2507 case TargetOpcode::G_LSHR: 2508 case TargetOpcode::G_SHL: { 2509 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2510 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2511 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2512 return false; 2513 ExtraHandOpSrcReg = ZOp.getReg(); 2514 break; 2515 } 2516 } 2517 2518 // Record the steps to build the new instructions. 2519 // 2520 // Steps to build (logic x, y) 2521 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2522 OperandBuildSteps LogicBuildSteps = { 2523 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2524 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2525 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2526 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2527 2528 // Steps to build hand (logic x, y), ...z 2529 OperandBuildSteps HandBuildSteps = { 2530 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2531 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2532 if (ExtraHandOpSrcReg.isValid()) 2533 HandBuildSteps.push_back( 2534 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2535 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2536 2537 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2538 return true; 2539 } 2540 2541 void CombinerHelper::applyBuildInstructionSteps( 2542 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2543 assert(MatchInfo.InstrsToBuild.size() && 2544 "Expected at least one instr to build?"); 2545 Builder.setInstr(MI); 2546 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2547 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2548 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2549 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2550 for (auto &OperandFn : InstrToBuild.OperandFns) 2551 OperandFn(Instr); 2552 } 2553 MI.eraseFromParent(); 2554 } 2555 2556 bool CombinerHelper::matchAshrShlToSextInreg( 2557 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2558 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2559 int64_t ShlCst, AshrCst; 2560 Register Src; 2561 // FIXME: detect splat constant vectors. 2562 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2563 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2564 return false; 2565 if (ShlCst != AshrCst) 2566 return false; 2567 if (!isLegalOrBeforeLegalizer( 2568 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2569 return false; 2570 MatchInfo = std::make_tuple(Src, ShlCst); 2571 return true; 2572 } 2573 2574 void CombinerHelper::applyAshShlToSextInreg( 2575 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2576 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2577 Register Src; 2578 int64_t ShiftAmt; 2579 std::tie(Src, ShiftAmt) = MatchInfo; 2580 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2581 Builder.setInstrAndDebugLoc(MI); 2582 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2583 MI.eraseFromParent(); 2584 } 2585 2586 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 2587 bool CombinerHelper::matchOverlappingAnd( 2588 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 2589 assert(MI.getOpcode() == TargetOpcode::G_AND); 2590 2591 Register Dst = MI.getOperand(0).getReg(); 2592 LLT Ty = MRI.getType(Dst); 2593 2594 Register R; 2595 int64_t C1; 2596 int64_t C2; 2597 if (!mi_match( 2598 Dst, MRI, 2599 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 2600 return false; 2601 2602 MatchInfo = [=](MachineIRBuilder &B) { 2603 if (C1 & C2) { 2604 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 2605 return; 2606 } 2607 auto Zero = B.buildConstant(Ty, 0); 2608 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 2609 }; 2610 return true; 2611 } 2612 2613 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2614 Register &Replacement) { 2615 // Given 2616 // 2617 // %y:_(sN) = G_SOMETHING 2618 // %x:_(sN) = G_SOMETHING 2619 // %res:_(sN) = G_AND %x, %y 2620 // 2621 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 2622 // 2623 // Patterns like this can appear as a result of legalization. E.g. 2624 // 2625 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2626 // %one:_(s32) = G_CONSTANT i32 1 2627 // %and:_(s32) = G_AND %cmp, %one 2628 // 2629 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2630 assert(MI.getOpcode() == TargetOpcode::G_AND); 2631 if (!KB) 2632 return false; 2633 2634 Register AndDst = MI.getOperand(0).getReg(); 2635 LLT DstTy = MRI.getType(AndDst); 2636 2637 // FIXME: This should be removed once GISelKnownBits supports vectors. 2638 if (DstTy.isVector()) 2639 return false; 2640 2641 Register LHS = MI.getOperand(1).getReg(); 2642 Register RHS = MI.getOperand(2).getReg(); 2643 KnownBits LHSBits = KB->getKnownBits(LHS); 2644 KnownBits RHSBits = KB->getKnownBits(RHS); 2645 2646 // Check that x & Mask == x. 2647 // x & 1 == x, always 2648 // x & 0 == x, only if x is also 0 2649 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 2650 // 2651 // Check if we can replace AndDst with the LHS of the G_AND 2652 if (canReplaceReg(AndDst, LHS, MRI) && 2653 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 2654 Replacement = LHS; 2655 return true; 2656 } 2657 2658 // Check if we can replace AndDst with the RHS of the G_AND 2659 if (canReplaceReg(AndDst, RHS, MRI) && 2660 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 2661 Replacement = RHS; 2662 return true; 2663 } 2664 2665 return false; 2666 } 2667 2668 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 2669 // Given 2670 // 2671 // %y:_(sN) = G_SOMETHING 2672 // %x:_(sN) = G_SOMETHING 2673 // %res:_(sN) = G_OR %x, %y 2674 // 2675 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 2676 assert(MI.getOpcode() == TargetOpcode::G_OR); 2677 if (!KB) 2678 return false; 2679 2680 Register OrDst = MI.getOperand(0).getReg(); 2681 LLT DstTy = MRI.getType(OrDst); 2682 2683 // FIXME: This should be removed once GISelKnownBits supports vectors. 2684 if (DstTy.isVector()) 2685 return false; 2686 2687 Register LHS = MI.getOperand(1).getReg(); 2688 Register RHS = MI.getOperand(2).getReg(); 2689 KnownBits LHSBits = KB->getKnownBits(LHS); 2690 KnownBits RHSBits = KB->getKnownBits(RHS); 2691 2692 // Check that x | Mask == x. 2693 // x | 0 == x, always 2694 // x | 1 == x, only if x is also 1 2695 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 2696 // 2697 // Check if we can replace OrDst with the LHS of the G_OR 2698 if (canReplaceReg(OrDst, LHS, MRI) && 2699 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 2700 Replacement = LHS; 2701 return true; 2702 } 2703 2704 // Check if we can replace OrDst with the RHS of the G_OR 2705 if (canReplaceReg(OrDst, RHS, MRI) && 2706 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 2707 Replacement = RHS; 2708 return true; 2709 } 2710 2711 return false; 2712 } 2713 2714 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 2715 // If the input is already sign extended, just drop the extension. 2716 Register Src = MI.getOperand(1).getReg(); 2717 unsigned ExtBits = MI.getOperand(2).getImm(); 2718 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 2719 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 2720 } 2721 2722 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 2723 int64_t Cst, bool IsVector, bool IsFP) { 2724 // For i1, Cst will always be -1 regardless of boolean contents. 2725 return (ScalarSizeBits == 1 && Cst == -1) || 2726 isConstTrueVal(TLI, Cst, IsVector, IsFP); 2727 } 2728 2729 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 2730 SmallVectorImpl<Register> &RegsToNegate) { 2731 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2732 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2733 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 2734 Register XorSrc; 2735 Register CstReg; 2736 // We match xor(src, true) here. 2737 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2738 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 2739 return false; 2740 2741 if (!MRI.hasOneNonDBGUse(XorSrc)) 2742 return false; 2743 2744 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 2745 // and ORs. The suffix of RegsToNegate starting from index I is used a work 2746 // list of tree nodes to visit. 2747 RegsToNegate.push_back(XorSrc); 2748 // Remember whether the comparisons are all integer or all floating point. 2749 bool IsInt = false; 2750 bool IsFP = false; 2751 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 2752 Register Reg = RegsToNegate[I]; 2753 if (!MRI.hasOneNonDBGUse(Reg)) 2754 return false; 2755 MachineInstr *Def = MRI.getVRegDef(Reg); 2756 switch (Def->getOpcode()) { 2757 default: 2758 // Don't match if the tree contains anything other than ANDs, ORs and 2759 // comparisons. 2760 return false; 2761 case TargetOpcode::G_ICMP: 2762 if (IsFP) 2763 return false; 2764 IsInt = true; 2765 // When we apply the combine we will invert the predicate. 2766 break; 2767 case TargetOpcode::G_FCMP: 2768 if (IsInt) 2769 return false; 2770 IsFP = true; 2771 // When we apply the combine we will invert the predicate. 2772 break; 2773 case TargetOpcode::G_AND: 2774 case TargetOpcode::G_OR: 2775 // Implement De Morgan's laws: 2776 // ~(x & y) -> ~x | ~y 2777 // ~(x | y) -> ~x & ~y 2778 // When we apply the combine we will change the opcode and recursively 2779 // negate the operands. 2780 RegsToNegate.push_back(Def->getOperand(1).getReg()); 2781 RegsToNegate.push_back(Def->getOperand(2).getReg()); 2782 break; 2783 } 2784 } 2785 2786 // Now we know whether the comparisons are integer or floating point, check 2787 // the constant in the xor. 2788 int64_t Cst; 2789 if (Ty.isVector()) { 2790 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 2791 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 2792 if (!MaybeCst) 2793 return false; 2794 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 2795 return false; 2796 } else { 2797 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 2798 return false; 2799 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 2800 return false; 2801 } 2802 2803 return true; 2804 } 2805 2806 void CombinerHelper::applyNotCmp(MachineInstr &MI, 2807 SmallVectorImpl<Register> &RegsToNegate) { 2808 for (Register Reg : RegsToNegate) { 2809 MachineInstr *Def = MRI.getVRegDef(Reg); 2810 Observer.changingInstr(*Def); 2811 // For each comparison, invert the opcode. For each AND and OR, change the 2812 // opcode. 2813 switch (Def->getOpcode()) { 2814 default: 2815 llvm_unreachable("Unexpected opcode"); 2816 case TargetOpcode::G_ICMP: 2817 case TargetOpcode::G_FCMP: { 2818 MachineOperand &PredOp = Def->getOperand(1); 2819 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 2820 (CmpInst::Predicate)PredOp.getPredicate()); 2821 PredOp.setPredicate(NewP); 2822 break; 2823 } 2824 case TargetOpcode::G_AND: 2825 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 2826 break; 2827 case TargetOpcode::G_OR: 2828 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2829 break; 2830 } 2831 Observer.changedInstr(*Def); 2832 } 2833 2834 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 2835 MI.eraseFromParent(); 2836 } 2837 2838 bool CombinerHelper::matchXorOfAndWithSameReg( 2839 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2840 // Match (xor (and x, y), y) (or any of its commuted cases) 2841 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2842 Register &X = MatchInfo.first; 2843 Register &Y = MatchInfo.second; 2844 Register AndReg = MI.getOperand(1).getReg(); 2845 Register SharedReg = MI.getOperand(2).getReg(); 2846 2847 // Find a G_AND on either side of the G_XOR. 2848 // Look for one of 2849 // 2850 // (xor (and x, y), SharedReg) 2851 // (xor SharedReg, (and x, y)) 2852 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 2853 std::swap(AndReg, SharedReg); 2854 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 2855 return false; 2856 } 2857 2858 // Only do this if we'll eliminate the G_AND. 2859 if (!MRI.hasOneNonDBGUse(AndReg)) 2860 return false; 2861 2862 // We can combine if SharedReg is the same as either the LHS or RHS of the 2863 // G_AND. 2864 if (Y != SharedReg) 2865 std::swap(X, Y); 2866 return Y == SharedReg; 2867 } 2868 2869 void CombinerHelper::applyXorOfAndWithSameReg( 2870 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2871 // Fold (xor (and x, y), y) -> (and (not x), y) 2872 Builder.setInstrAndDebugLoc(MI); 2873 Register X, Y; 2874 std::tie(X, Y) = MatchInfo; 2875 auto Not = Builder.buildNot(MRI.getType(X), X); 2876 Observer.changingInstr(MI); 2877 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2878 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 2879 MI.getOperand(2).setReg(Y); 2880 Observer.changedInstr(MI); 2881 } 2882 2883 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 2884 auto &PtrAdd = cast<GPtrAdd>(MI); 2885 Register DstReg = PtrAdd.getReg(0); 2886 LLT Ty = MRI.getType(DstReg); 2887 const DataLayout &DL = Builder.getMF().getDataLayout(); 2888 2889 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 2890 return false; 2891 2892 if (Ty.isPointer()) { 2893 auto ConstVal = getConstantVRegVal(PtrAdd.getBaseReg(), MRI); 2894 return ConstVal && *ConstVal == 0; 2895 } 2896 2897 assert(Ty.isVector() && "Expecting a vector type"); 2898 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 2899 return isBuildVectorAllZeros(*VecMI, MRI); 2900 } 2901 2902 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 2903 auto &PtrAdd = cast<GPtrAdd>(MI); 2904 Builder.setInstrAndDebugLoc(PtrAdd); 2905 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 2906 PtrAdd.eraseFromParent(); 2907 } 2908 2909 /// The second source operand is known to be a power of 2. 2910 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 2911 Register DstReg = MI.getOperand(0).getReg(); 2912 Register Src0 = MI.getOperand(1).getReg(); 2913 Register Pow2Src1 = MI.getOperand(2).getReg(); 2914 LLT Ty = MRI.getType(DstReg); 2915 Builder.setInstrAndDebugLoc(MI); 2916 2917 // Fold (urem x, pow2) -> (and x, pow2-1) 2918 auto NegOne = Builder.buildConstant(Ty, -1); 2919 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 2920 Builder.buildAnd(DstReg, Src0, Add); 2921 MI.eraseFromParent(); 2922 } 2923 2924 Optional<SmallVector<Register, 8>> 2925 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 2926 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 2927 // We want to detect if Root is part of a tree which represents a bunch 2928 // of loads being merged into a larger load. We'll try to recognize patterns 2929 // like, for example: 2930 // 2931 // Reg Reg 2932 // \ / 2933 // OR_1 Reg 2934 // \ / 2935 // OR_2 2936 // \ Reg 2937 // .. / 2938 // Root 2939 // 2940 // Reg Reg Reg Reg 2941 // \ / \ / 2942 // OR_1 OR_2 2943 // \ / 2944 // \ / 2945 // ... 2946 // Root 2947 // 2948 // Each "Reg" may have been produced by a load + some arithmetic. This 2949 // function will save each of them. 2950 SmallVector<Register, 8> RegsToVisit; 2951 SmallVector<const MachineInstr *, 7> Ors = {Root}; 2952 2953 // In the "worst" case, we're dealing with a load for each byte. So, there 2954 // are at most #bytes - 1 ORs. 2955 const unsigned MaxIter = 2956 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 2957 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 2958 if (Ors.empty()) 2959 break; 2960 const MachineInstr *Curr = Ors.pop_back_val(); 2961 Register OrLHS = Curr->getOperand(1).getReg(); 2962 Register OrRHS = Curr->getOperand(2).getReg(); 2963 2964 // In the combine, we want to elimate the entire tree. 2965 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 2966 return None; 2967 2968 // If it's a G_OR, save it and continue to walk. If it's not, then it's 2969 // something that may be a load + arithmetic. 2970 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 2971 Ors.push_back(Or); 2972 else 2973 RegsToVisit.push_back(OrLHS); 2974 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 2975 Ors.push_back(Or); 2976 else 2977 RegsToVisit.push_back(OrRHS); 2978 } 2979 2980 // We're going to try and merge each register into a wider power-of-2 type, 2981 // so we ought to have an even number of registers. 2982 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 2983 return None; 2984 return RegsToVisit; 2985 } 2986 2987 /// Helper function for findLoadOffsetsForLoadOrCombine. 2988 /// 2989 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 2990 /// and then moving that value into a specific byte offset. 2991 /// 2992 /// e.g. x[i] << 24 2993 /// 2994 /// \returns The load instruction and the byte offset it is moved into. 2995 static Optional<std::pair<GZExtLoad *, int64_t>> 2996 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 2997 const MachineRegisterInfo &MRI) { 2998 assert(MRI.hasOneNonDBGUse(Reg) && 2999 "Expected Reg to only have one non-debug use?"); 3000 Register MaybeLoad; 3001 int64_t Shift; 3002 if (!mi_match(Reg, MRI, 3003 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3004 Shift = 0; 3005 MaybeLoad = Reg; 3006 } 3007 3008 if (Shift % MemSizeInBits != 0) 3009 return None; 3010 3011 // TODO: Handle other types of loads. 3012 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3013 if (!Load) 3014 return None; 3015 3016 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3017 return None; 3018 3019 return std::make_pair(Load, Shift / MemSizeInBits); 3020 } 3021 3022 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3023 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3024 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3025 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3026 3027 // Each load found for the pattern. There should be one for each RegsToVisit. 3028 SmallSetVector<const MachineInstr *, 8> Loads; 3029 3030 // The lowest index used in any load. (The lowest "i" for each x[i].) 3031 int64_t LowestIdx = INT64_MAX; 3032 3033 // The load which uses the lowest index. 3034 GZExtLoad *LowestIdxLoad = nullptr; 3035 3036 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3037 SmallSet<int64_t, 8> SeenIdx; 3038 3039 // Ensure each load is in the same MBB. 3040 // TODO: Support multiple MachineBasicBlocks. 3041 MachineBasicBlock *MBB = nullptr; 3042 const MachineMemOperand *MMO = nullptr; 3043 3044 // Earliest instruction-order load in the pattern. 3045 GZExtLoad *EarliestLoad = nullptr; 3046 3047 // Latest instruction-order load in the pattern. 3048 GZExtLoad *LatestLoad = nullptr; 3049 3050 // Base pointer which every load should share. 3051 Register BasePtr; 3052 3053 // We want to find a load for each register. Each load should have some 3054 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3055 // track of the load which uses the lowest index. Later, we will check if we 3056 // can use its pointer in the final, combined load. 3057 for (auto Reg : RegsToVisit) { 3058 // Find the load, and find the position that it will end up in (e.g. a 3059 // shifted) value. 3060 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3061 if (!LoadAndPos) 3062 return None; 3063 GZExtLoad *Load; 3064 int64_t DstPos; 3065 std::tie(Load, DstPos) = *LoadAndPos; 3066 3067 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3068 // it is difficult to check for stores/calls/etc between loads. 3069 MachineBasicBlock *LoadMBB = Load->getParent(); 3070 if (!MBB) 3071 MBB = LoadMBB; 3072 if (LoadMBB != MBB) 3073 return None; 3074 3075 // Make sure that the MachineMemOperands of every seen load are compatible. 3076 auto &LoadMMO = Load->getMMO(); 3077 if (!MMO) 3078 MMO = &LoadMMO; 3079 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3080 return None; 3081 3082 // Find out what the base pointer and index for the load is. 3083 Register LoadPtr; 3084 int64_t Idx; 3085 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3086 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3087 LoadPtr = Load->getOperand(1).getReg(); 3088 Idx = 0; 3089 } 3090 3091 // Don't combine things like a[i], a[i] -> a bigger load. 3092 if (!SeenIdx.insert(Idx).second) 3093 return None; 3094 3095 // Every load must share the same base pointer; don't combine things like: 3096 // 3097 // a[i], b[i + 1] -> a bigger load. 3098 if (!BasePtr.isValid()) 3099 BasePtr = LoadPtr; 3100 if (BasePtr != LoadPtr) 3101 return None; 3102 3103 if (Idx < LowestIdx) { 3104 LowestIdx = Idx; 3105 LowestIdxLoad = Load; 3106 } 3107 3108 // Keep track of the byte offset that this load ends up at. If we have seen 3109 // the byte offset, then stop here. We do not want to combine: 3110 // 3111 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3112 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3113 return None; 3114 Loads.insert(Load); 3115 3116 // Keep track of the position of the earliest/latest loads in the pattern. 3117 // We will check that there are no load fold barriers between them later 3118 // on. 3119 // 3120 // FIXME: Is there a better way to check for load fold barriers? 3121 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3122 EarliestLoad = Load; 3123 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3124 LatestLoad = Load; 3125 } 3126 3127 // We found a load for each register. Let's check if each load satisfies the 3128 // pattern. 3129 assert(Loads.size() == RegsToVisit.size() && 3130 "Expected to find a load for each register?"); 3131 assert(EarliestLoad != LatestLoad && EarliestLoad && 3132 LatestLoad && "Expected at least two loads?"); 3133 3134 // Check if there are any stores, calls, etc. between any of the loads. If 3135 // there are, then we can't safely perform the combine. 3136 // 3137 // MaxIter is chosen based off the (worst case) number of iterations it 3138 // typically takes to succeed in the LLVM test suite plus some padding. 3139 // 3140 // FIXME: Is there a better way to check for load fold barriers? 3141 const unsigned MaxIter = 20; 3142 unsigned Iter = 0; 3143 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3144 LatestLoad->getIterator())) { 3145 if (Loads.count(&MI)) 3146 continue; 3147 if (MI.isLoadFoldBarrier()) 3148 return None; 3149 if (Iter++ == MaxIter) 3150 return None; 3151 } 3152 3153 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3154 } 3155 3156 bool CombinerHelper::matchLoadOrCombine( 3157 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3158 assert(MI.getOpcode() == TargetOpcode::G_OR); 3159 MachineFunction &MF = *MI.getMF(); 3160 // Assuming a little-endian target, transform: 3161 // s8 *a = ... 3162 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3163 // => 3164 // s32 val = *((i32)a) 3165 // 3166 // s8 *a = ... 3167 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3168 // => 3169 // s32 val = BSWAP(*((s32)a)) 3170 Register Dst = MI.getOperand(0).getReg(); 3171 LLT Ty = MRI.getType(Dst); 3172 if (Ty.isVector()) 3173 return false; 3174 3175 // We need to combine at least two loads into this type. Since the smallest 3176 // possible load is into a byte, we need at least a 16-bit wide type. 3177 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3178 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3179 return false; 3180 3181 // Match a collection of non-OR instructions in the pattern. 3182 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3183 if (!RegsToVisit) 3184 return false; 3185 3186 // We have a collection of non-OR instructions. Figure out how wide each of 3187 // the small loads should be based off of the number of potential loads we 3188 // found. 3189 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3190 if (NarrowMemSizeInBits % 8 != 0) 3191 return false; 3192 3193 // Check if each register feeding into each OR is a load from the same 3194 // base pointer + some arithmetic. 3195 // 3196 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3197 // 3198 // Also verify that each of these ends up putting a[i] into the same memory 3199 // offset as a load into a wide type would. 3200 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3201 GZExtLoad *LowestIdxLoad, *LatestLoad; 3202 int64_t LowestIdx; 3203 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3204 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3205 if (!MaybeLoadInfo) 3206 return false; 3207 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3208 3209 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3210 // we found before, check if this corresponds to a big or little endian byte 3211 // pattern. If it does, then we can represent it using a load + possibly a 3212 // BSWAP. 3213 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3214 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3215 if (!IsBigEndian.hasValue()) 3216 return false; 3217 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3218 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3219 return false; 3220 3221 // Make sure that the load from the lowest index produces offset 0 in the 3222 // final value. 3223 // 3224 // This ensures that we won't combine something like this: 3225 // 3226 // load x[i] -> byte 2 3227 // load x[i+1] -> byte 0 ---> wide_load x[i] 3228 // load x[i+2] -> byte 1 3229 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3230 const unsigned ZeroByteOffset = 3231 *IsBigEndian 3232 ? bigEndianByteAt(NumLoadsInTy, 0) 3233 : littleEndianByteAt(NumLoadsInTy, 0); 3234 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3235 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3236 ZeroOffsetIdx->second != LowestIdx) 3237 return false; 3238 3239 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3240 // may not use index 0. 3241 Register Ptr = LowestIdxLoad->getPointerReg(); 3242 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3243 LegalityQuery::MemDesc MMDesc(MMO); 3244 MMDesc.MemoryTy = Ty; 3245 if (!isLegalOrBeforeLegalizer( 3246 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3247 return false; 3248 auto PtrInfo = MMO.getPointerInfo(); 3249 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3250 3251 // Load must be allowed and fast on the target. 3252 LLVMContext &C = MF.getFunction().getContext(); 3253 auto &DL = MF.getDataLayout(); 3254 bool Fast = false; 3255 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3256 !Fast) 3257 return false; 3258 3259 MatchInfo = [=](MachineIRBuilder &MIB) { 3260 MIB.setInstrAndDebugLoc(*LatestLoad); 3261 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3262 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3263 if (NeedsBSwap) 3264 MIB.buildBSwap(Dst, LoadDst); 3265 }; 3266 return true; 3267 } 3268 3269 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3270 MachineInstr *&ExtMI) { 3271 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3272 3273 Register DstReg = MI.getOperand(0).getReg(); 3274 3275 // TODO: Extending a vector may be expensive, don't do this until heuristics 3276 // are better. 3277 if (MRI.getType(DstReg).isVector()) 3278 return false; 3279 3280 // Try to match a phi, whose only use is an extend. 3281 if (!MRI.hasOneNonDBGUse(DstReg)) 3282 return false; 3283 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3284 switch (ExtMI->getOpcode()) { 3285 case TargetOpcode::G_ANYEXT: 3286 return true; // G_ANYEXT is usually free. 3287 case TargetOpcode::G_ZEXT: 3288 case TargetOpcode::G_SEXT: 3289 break; 3290 default: 3291 return false; 3292 } 3293 3294 // If the target is likely to fold this extend away, don't propagate. 3295 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3296 return false; 3297 3298 // We don't want to propagate the extends unless there's a good chance that 3299 // they'll be optimized in some way. 3300 // Collect the unique incoming values. 3301 SmallPtrSet<MachineInstr *, 4> InSrcs; 3302 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3303 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3304 switch (DefMI->getOpcode()) { 3305 case TargetOpcode::G_LOAD: 3306 case TargetOpcode::G_TRUNC: 3307 case TargetOpcode::G_SEXT: 3308 case TargetOpcode::G_ZEXT: 3309 case TargetOpcode::G_ANYEXT: 3310 case TargetOpcode::G_CONSTANT: 3311 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3312 // Don't try to propagate if there are too many places to create new 3313 // extends, chances are it'll increase code size. 3314 if (InSrcs.size() > 2) 3315 return false; 3316 break; 3317 default: 3318 return false; 3319 } 3320 } 3321 return true; 3322 } 3323 3324 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3325 MachineInstr *&ExtMI) { 3326 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3327 Register DstReg = ExtMI->getOperand(0).getReg(); 3328 LLT ExtTy = MRI.getType(DstReg); 3329 3330 // Propagate the extension into the block of each incoming reg's block. 3331 // Use a SetVector here because PHIs can have duplicate edges, and we want 3332 // deterministic iteration order. 3333 SmallSetVector<MachineInstr *, 8> SrcMIs; 3334 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3335 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3336 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3337 if (!SrcMIs.insert(SrcMI)) 3338 continue; 3339 3340 // Build an extend after each src inst. 3341 auto *MBB = SrcMI->getParent(); 3342 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3343 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3344 InsertPt = MBB->getFirstNonPHI(); 3345 3346 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3347 Builder.setDebugLoc(MI.getDebugLoc()); 3348 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3349 SrcMI->getOperand(0).getReg()); 3350 OldToNewSrcMap[SrcMI] = NewExt; 3351 } 3352 3353 // Create a new phi with the extended inputs. 3354 Builder.setInstrAndDebugLoc(MI); 3355 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3356 NewPhi.addDef(DstReg); 3357 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3358 auto &MO = MI.getOperand(SrcIdx); 3359 if (!MO.isReg()) { 3360 NewPhi.addMBB(MO.getMBB()); 3361 continue; 3362 } 3363 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3364 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3365 } 3366 Builder.insertInstr(NewPhi); 3367 ExtMI->eraseFromParent(); 3368 } 3369 3370 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3371 Register &Reg) { 3372 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3373 // If we have a constant index, look for a G_BUILD_VECTOR source 3374 // and find the source register that the index maps to. 3375 Register SrcVec = MI.getOperand(1).getReg(); 3376 LLT SrcTy = MRI.getType(SrcVec); 3377 if (!isLegalOrBeforeLegalizer( 3378 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3379 return false; 3380 3381 auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3382 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3383 return false; 3384 3385 unsigned VecIdx = Cst->Value.getZExtValue(); 3386 MachineInstr *BuildVecMI = 3387 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3388 if (!BuildVecMI) { 3389 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3390 if (!BuildVecMI) 3391 return false; 3392 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3393 if (!isLegalOrBeforeLegalizer( 3394 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3395 return false; 3396 } 3397 3398 EVT Ty(getMVTForLLT(SrcTy)); 3399 if (!MRI.hasOneNonDBGUse(SrcVec) && 3400 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3401 return false; 3402 3403 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3404 return true; 3405 } 3406 3407 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3408 Register &Reg) { 3409 // Check the type of the register, since it may have come from a 3410 // G_BUILD_VECTOR_TRUNC. 3411 LLT ScalarTy = MRI.getType(Reg); 3412 Register DstReg = MI.getOperand(0).getReg(); 3413 LLT DstTy = MRI.getType(DstReg); 3414 3415 Builder.setInstrAndDebugLoc(MI); 3416 if (ScalarTy != DstTy) { 3417 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3418 Builder.buildTrunc(DstReg, Reg); 3419 MI.eraseFromParent(); 3420 return; 3421 } 3422 replaceSingleDefInstWithReg(MI, Reg); 3423 } 3424 3425 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3426 MachineInstr &MI, 3427 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3428 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3429 // This combine tries to find build_vector's which have every source element 3430 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3431 // the masked load scalarization is run late in the pipeline. There's already 3432 // a combine for a similar pattern starting from the extract, but that 3433 // doesn't attempt to do it if there are multiple uses of the build_vector, 3434 // which in this case is true. Starting the combine from the build_vector 3435 // feels more natural than trying to find sibling nodes of extracts. 3436 // E.g. 3437 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3438 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3439 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3440 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3441 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3442 // ==> 3443 // replace ext{1,2,3,4} with %s{1,2,3,4} 3444 3445 Register DstReg = MI.getOperand(0).getReg(); 3446 LLT DstTy = MRI.getType(DstReg); 3447 unsigned NumElts = DstTy.getNumElements(); 3448 3449 SmallBitVector ExtractedElts(NumElts); 3450 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), 3451 MRI.use_instr_nodbg_end())) { 3452 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3453 return false; 3454 auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI); 3455 if (!Cst) 3456 return false; 3457 unsigned Idx = Cst.getValue().getZExtValue(); 3458 if (Idx >= NumElts) 3459 return false; // Out of range. 3460 ExtractedElts.set(Idx); 3461 SrcDstPairs.emplace_back( 3462 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3463 } 3464 // Match if every element was extracted. 3465 return ExtractedElts.all(); 3466 } 3467 3468 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3469 MachineInstr &MI, 3470 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3471 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3472 for (auto &Pair : SrcDstPairs) { 3473 auto *ExtMI = Pair.second; 3474 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3475 ExtMI->eraseFromParent(); 3476 } 3477 MI.eraseFromParent(); 3478 } 3479 3480 void CombinerHelper::applyBuildFn( 3481 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3482 Builder.setInstrAndDebugLoc(MI); 3483 MatchInfo(Builder); 3484 MI.eraseFromParent(); 3485 } 3486 3487 void CombinerHelper::applyBuildFnNoErase( 3488 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3489 Builder.setInstrAndDebugLoc(MI); 3490 MatchInfo(Builder); 3491 } 3492 3493 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3494 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3495 unsigned Opc = MI.getOpcode(); 3496 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3497 Register X = MI.getOperand(1).getReg(); 3498 Register Y = MI.getOperand(2).getReg(); 3499 if (X != Y) 3500 return false; 3501 unsigned RotateOpc = 3502 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3503 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3504 } 3505 3506 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3507 unsigned Opc = MI.getOpcode(); 3508 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3509 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3510 Observer.changingInstr(MI); 3511 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3512 : TargetOpcode::G_ROTR)); 3513 MI.RemoveOperand(2); 3514 Observer.changedInstr(MI); 3515 } 3516 3517 // Fold (rot x, c) -> (rot x, c % BitSize) 3518 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3519 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3520 MI.getOpcode() == TargetOpcode::G_ROTR); 3521 unsigned Bitsize = 3522 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3523 Register AmtReg = MI.getOperand(2).getReg(); 3524 bool OutOfRange = false; 3525 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 3526 if (auto *CI = dyn_cast<ConstantInt>(C)) 3527 OutOfRange |= CI->getValue().uge(Bitsize); 3528 return true; 3529 }; 3530 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 3531 } 3532 3533 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 3534 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3535 MI.getOpcode() == TargetOpcode::G_ROTR); 3536 unsigned Bitsize = 3537 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3538 Builder.setInstrAndDebugLoc(MI); 3539 Register Amt = MI.getOperand(2).getReg(); 3540 LLT AmtTy = MRI.getType(Amt); 3541 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 3542 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 3543 Observer.changingInstr(MI); 3544 MI.getOperand(2).setReg(Amt); 3545 Observer.changedInstr(MI); 3546 } 3547 3548 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 3549 int64_t &MatchInfo) { 3550 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3551 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3552 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 3553 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 3554 Optional<bool> KnownVal; 3555 switch (Pred) { 3556 default: 3557 llvm_unreachable("Unexpected G_ICMP predicate?"); 3558 case CmpInst::ICMP_EQ: 3559 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 3560 break; 3561 case CmpInst::ICMP_NE: 3562 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 3563 break; 3564 case CmpInst::ICMP_SGE: 3565 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 3566 break; 3567 case CmpInst::ICMP_SGT: 3568 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 3569 break; 3570 case CmpInst::ICMP_SLE: 3571 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 3572 break; 3573 case CmpInst::ICMP_SLT: 3574 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 3575 break; 3576 case CmpInst::ICMP_UGE: 3577 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 3578 break; 3579 case CmpInst::ICMP_UGT: 3580 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 3581 break; 3582 case CmpInst::ICMP_ULE: 3583 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 3584 break; 3585 case CmpInst::ICMP_ULT: 3586 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 3587 break; 3588 } 3589 if (!KnownVal) 3590 return false; 3591 MatchInfo = 3592 *KnownVal 3593 ? getICmpTrueVal(getTargetLowering(), 3594 /*IsVector = */ 3595 MRI.getType(MI.getOperand(0).getReg()).isVector(), 3596 /* IsFP = */ false) 3597 : 0; 3598 return true; 3599 } 3600 3601 bool CombinerHelper::matchICmpToLHSKnownBits( 3602 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3603 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3604 // Given: 3605 // 3606 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 3607 // %cmp = G_ICMP ne %x, 0 3608 // 3609 // Or: 3610 // 3611 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 3612 // %cmp = G_ICMP eq %x, 1 3613 // 3614 // We can replace %cmp with %x assuming true is 1 on the target. 3615 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3616 if (!CmpInst::isEquality(Pred)) 3617 return false; 3618 Register Dst = MI.getOperand(0).getReg(); 3619 LLT DstTy = MRI.getType(Dst); 3620 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), 3621 /* IsFP = */ false) != 1) 3622 return false; 3623 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; 3624 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) 3625 return false; 3626 Register LHS = MI.getOperand(2).getReg(); 3627 auto KnownLHS = KB->getKnownBits(LHS); 3628 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) 3629 return false; 3630 // Make sure replacing Dst with the LHS is a legal operation. 3631 LLT LHSTy = MRI.getType(LHS); 3632 unsigned LHSSize = LHSTy.getSizeInBits(); 3633 unsigned DstSize = DstTy.getSizeInBits(); 3634 unsigned Op = TargetOpcode::COPY; 3635 if (DstSize != LHSSize) 3636 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; 3637 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) 3638 return false; 3639 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; 3640 return true; 3641 } 3642 3643 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 3644 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 3645 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3646 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 3647 Register Dst = MI.getOperand(0).getReg(); 3648 Register Src = MI.getOperand(1).getReg(); 3649 LLT Ty = MRI.getType(Src); 3650 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 3651 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 3652 return false; 3653 int64_t Width = MI.getOperand(2).getImm(); 3654 Register ShiftSrc; 3655 int64_t ShiftImm; 3656 if (!mi_match( 3657 Src, MRI, 3658 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 3659 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 3660 return false; 3661 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 3662 return false; 3663 3664 MatchInfo = [=](MachineIRBuilder &B) { 3665 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 3666 auto Cst2 = B.buildConstant(ExtractTy, Width); 3667 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 3668 }; 3669 return true; 3670 } 3671 3672 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 3673 bool CombinerHelper::matchBitfieldExtractFromAnd( 3674 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3675 assert(MI.getOpcode() == TargetOpcode::G_AND); 3676 Register Dst = MI.getOperand(0).getReg(); 3677 LLT Ty = MRI.getType(Dst); 3678 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 3679 TargetOpcode::G_UBFX, Ty, Ty)) 3680 return false; 3681 3682 int64_t AndImm, LSBImm; 3683 Register ShiftSrc; 3684 const unsigned Size = Ty.getScalarSizeInBits(); 3685 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3686 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 3687 m_ICst(AndImm)))) 3688 return false; 3689 3690 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 3691 auto MaybeMask = static_cast<uint64_t>(AndImm); 3692 if (MaybeMask & (MaybeMask + 1)) 3693 return false; 3694 3695 // LSB must fit within the register. 3696 if (static_cast<uint64_t>(LSBImm) >= Size) 3697 return false; 3698 3699 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 3700 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 3701 MatchInfo = [=](MachineIRBuilder &B) { 3702 auto WidthCst = B.buildConstant(ExtractTy, Width); 3703 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 3704 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 3705 }; 3706 return true; 3707 } 3708 3709 bool CombinerHelper::matchBitfieldExtractFromShr( 3710 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3711 const unsigned Opcode = MI.getOpcode(); 3712 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 3713 3714 const Register Dst = MI.getOperand(0).getReg(); 3715 3716 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 3717 ? TargetOpcode::G_SBFX 3718 : TargetOpcode::G_UBFX; 3719 3720 // Check if the type we would use for the extract is legal 3721 LLT Ty = MRI.getType(Dst); 3722 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 3723 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 3724 return false; 3725 3726 Register ShlSrc; 3727 int64_t ShrAmt; 3728 int64_t ShlAmt; 3729 const unsigned Size = Ty.getScalarSizeInBits(); 3730 3731 // Try to match shr (shl x, c1), c2 3732 if (!mi_match(Dst, MRI, 3733 m_BinOp(Opcode, 3734 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 3735 m_ICst(ShrAmt)))) 3736 return false; 3737 3738 // Make sure that the shift sizes can fit a bitfield extract 3739 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 3740 return false; 3741 3742 // Skip this combine if the G_SEXT_INREG combine could handle it 3743 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 3744 return false; 3745 3746 // Calculate start position and width of the extract 3747 const int64_t Pos = ShrAmt - ShlAmt; 3748 const int64_t Width = Size - ShrAmt; 3749 3750 MatchInfo = [=](MachineIRBuilder &B) { 3751 auto WidthCst = B.buildConstant(ExtractTy, Width); 3752 auto PosCst = B.buildConstant(ExtractTy, Pos); 3753 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 3754 }; 3755 return true; 3756 } 3757 3758 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 3759 MachineInstr &PtrAdd) { 3760 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 3761 3762 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 3763 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 3764 if (!Src1Def) 3765 return false; 3766 3767 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 3768 3769 if (MRI.hasOneNonDBGUse(Src1Reg)) 3770 return false; 3771 3772 auto C1 = getConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 3773 if (!C1) 3774 return false; 3775 auto C2 = getConstantVRegVal(Src2Reg, MRI); 3776 if (!C2) 3777 return false; 3778 3779 const APInt &C1APIntVal = *C1; 3780 const APInt &C2APIntVal = *C2; 3781 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 3782 3783 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 3784 // This combine may end up running before ptrtoint/inttoptr combines 3785 // manage to eliminate redundant conversions, so try to look through them. 3786 MachineInstr *ConvUseMI = &UseMI; 3787 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 3788 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 3789 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 3790 Register DefReg = ConvUseMI->getOperand(0).getReg(); 3791 if (!MRI.hasOneNonDBGUse(DefReg)) 3792 break; 3793 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 3794 ConvUseOpc = ConvUseMI->getOpcode(); 3795 } 3796 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 3797 ConvUseOpc == TargetOpcode::G_STORE; 3798 if (!LoadStore) 3799 continue; 3800 // Is x[offset2] already not a legal addressing mode? If so then 3801 // reassociating the constants breaks nothing (we test offset2 because 3802 // that's the one we hope to fold into the load or store). 3803 TargetLoweringBase::AddrMode AM; 3804 AM.HasBaseReg = true; 3805 AM.BaseOffs = C2APIntVal.getSExtValue(); 3806 unsigned AS = 3807 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 3808 Type *AccessTy = 3809 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 3810 PtrAdd.getMF()->getFunction().getContext()); 3811 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 3812 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 3813 AccessTy, AS)) 3814 continue; 3815 3816 // Would x[offset1+offset2] still be a legal addressing mode? 3817 AM.BaseOffs = CombinedValue; 3818 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 3819 AccessTy, AS)) 3820 return true; 3821 } 3822 3823 return false; 3824 } 3825 3826 bool CombinerHelper::matchReassocPtrAdd( 3827 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3828 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 3829 // We're trying to match a few pointer computation patterns here for 3830 // re-association opportunities. 3831 // 1) Isolating a constant operand to be on the RHS, e.g.: 3832 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 3833 // 3834 // 2) Folding two constants in each sub-tree as long as such folding 3835 // doesn't break a legal addressing mode. 3836 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 3837 Register Src1Reg = MI.getOperand(1).getReg(); 3838 Register Src2Reg = MI.getOperand(2).getReg(); 3839 MachineInstr *LHS = MRI.getVRegDef(Src1Reg); 3840 MachineInstr *RHS = MRI.getVRegDef(Src2Reg); 3841 3842 if (LHS->getOpcode() != TargetOpcode::G_PTR_ADD) { 3843 // Try to match example 1). 3844 if (RHS->getOpcode() != TargetOpcode::G_ADD) 3845 return false; 3846 auto C2 = getConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 3847 if (!C2) 3848 return false; 3849 3850 MatchInfo = [=,&MI](MachineIRBuilder &B) { 3851 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 3852 3853 auto NewBase = 3854 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 3855 Observer.changingInstr(MI); 3856 MI.getOperand(1).setReg(NewBase.getReg(0)); 3857 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 3858 Observer.changedInstr(MI); 3859 }; 3860 } else { 3861 // Try to match example 2. 3862 Register LHSSrc1 = LHS->getOperand(1).getReg(); 3863 Register LHSSrc2 = LHS->getOperand(2).getReg(); 3864 auto C1 = getConstantVRegVal(LHSSrc2, MRI); 3865 if (!C1) 3866 return false; 3867 auto C2 = getConstantVRegVal(Src2Reg, MRI); 3868 if (!C2) 3869 return false; 3870 3871 MatchInfo = [=, &MI](MachineIRBuilder &B) { 3872 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 3873 Observer.changingInstr(MI); 3874 MI.getOperand(1).setReg(LHSSrc1); 3875 MI.getOperand(2).setReg(NewCst.getReg(0)); 3876 Observer.changedInstr(MI); 3877 }; 3878 } 3879 return !reassociationCanBreakAddressingModePattern(MI); 3880 } 3881 3882 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 3883 Register Op1 = MI.getOperand(1).getReg(); 3884 Register Op2 = MI.getOperand(2).getReg(); 3885 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 3886 if (!MaybeCst) 3887 return false; 3888 MatchInfo = *MaybeCst; 3889 return true; 3890 } 3891 3892 bool CombinerHelper::matchNarrowBinopFeedingAnd( 3893 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3894 // Look for a binop feeding into an AND with a mask: 3895 // 3896 // %add = G_ADD %lhs, %rhs 3897 // %and = G_AND %add, 000...11111111 3898 // 3899 // Check if it's possible to perform the binop at a narrower width and zext 3900 // back to the original width like so: 3901 // 3902 // %narrow_lhs = G_TRUNC %lhs 3903 // %narrow_rhs = G_TRUNC %rhs 3904 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 3905 // %new_add = G_ZEXT %narrow_add 3906 // %and = G_AND %new_add, 000...11111111 3907 // 3908 // This can allow later combines to eliminate the G_AND if it turns out 3909 // that the mask is irrelevant. 3910 assert(MI.getOpcode() == TargetOpcode::G_AND); 3911 Register Dst = MI.getOperand(0).getReg(); 3912 Register AndLHS = MI.getOperand(1).getReg(); 3913 Register AndRHS = MI.getOperand(2).getReg(); 3914 LLT WideTy = MRI.getType(Dst); 3915 3916 // If the potential binop has more than one use, then it's possible that one 3917 // of those uses will need its full width. 3918 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 3919 return false; 3920 3921 // Check if the LHS feeding the AND is impacted by the high bits that we're 3922 // masking out. 3923 // 3924 // e.g. for 64-bit x, y: 3925 // 3926 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 3927 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 3928 if (!LHSInst) 3929 return false; 3930 unsigned LHSOpc = LHSInst->getOpcode(); 3931 switch (LHSOpc) { 3932 default: 3933 return false; 3934 case TargetOpcode::G_ADD: 3935 case TargetOpcode::G_SUB: 3936 case TargetOpcode::G_MUL: 3937 case TargetOpcode::G_AND: 3938 case TargetOpcode::G_OR: 3939 case TargetOpcode::G_XOR: 3940 break; 3941 } 3942 3943 // Find the mask on the RHS. 3944 auto Cst = getConstantVRegValWithLookThrough(AndRHS, MRI); 3945 if (!Cst) 3946 return false; 3947 auto Mask = Cst->Value; 3948 if (!Mask.isMask()) 3949 return false; 3950 3951 // No point in combining if there's nothing to truncate. 3952 unsigned NarrowWidth = Mask.countTrailingOnes(); 3953 if (NarrowWidth == WideTy.getSizeInBits()) 3954 return false; 3955 LLT NarrowTy = LLT::scalar(NarrowWidth); 3956 3957 // Check if adding the zext + truncates could be harmful. 3958 auto &MF = *MI.getMF(); 3959 const auto &TLI = getTargetLowering(); 3960 LLVMContext &Ctx = MF.getFunction().getContext(); 3961 auto &DL = MF.getDataLayout(); 3962 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 3963 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 3964 return false; 3965 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 3966 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 3967 return false; 3968 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 3969 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 3970 MatchInfo = [=, &MI](MachineIRBuilder &B) { 3971 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 3972 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 3973 auto NarrowBinOp = 3974 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 3975 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 3976 Observer.changingInstr(MI); 3977 MI.getOperand(1).setReg(Ext.getReg(0)); 3978 Observer.changedInstr(MI); 3979 }; 3980 return true; 3981 } 3982 3983 bool CombinerHelper::tryCombine(MachineInstr &MI) { 3984 if (tryCombineCopy(MI)) 3985 return true; 3986 if (tryCombineExtendingLoads(MI)) 3987 return true; 3988 if (tryCombineIndexedLoadStore(MI)) 3989 return true; 3990 return false; 3991 } 3992