1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/CodeGen/GlobalISel/Combiner.h" 10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 12 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 13 #include "llvm/CodeGen/GlobalISel/Utils.h" 14 #include "llvm/CodeGen/MachineDominators.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineInstr.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/TargetInstrInfo.h" 19 #include "llvm/CodeGen/TargetLowering.h" 20 #include "llvm/Target/TargetMachine.h" 21 22 #define DEBUG_TYPE "gi-combiner" 23 24 using namespace llvm; 25 26 // Option to allow testing of the combiner while no targets know about indexed 27 // addressing. 28 static cl::opt<bool> 29 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 30 cl::desc("Force all indexed operations to be " 31 "legal for the GlobalISel combiner")); 32 33 34 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 35 MachineIRBuilder &B, GISelKnownBits *KB, 36 MachineDominatorTree *MDT) 37 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 38 KB(KB), MDT(MDT) { 39 (void)this->KB; 40 } 41 42 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 43 Register ToReg) const { 44 Observer.changingAllUsesOfReg(MRI, FromReg); 45 46 if (MRI.constrainRegAttrs(ToReg, FromReg)) 47 MRI.replaceRegWith(FromReg, ToReg); 48 else 49 Builder.buildCopy(ToReg, FromReg); 50 51 Observer.finishedChangingAllUsesOfReg(); 52 } 53 54 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 55 MachineOperand &FromRegOp, 56 Register ToReg) const { 57 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 58 Observer.changingInstr(*FromRegOp.getParent()); 59 60 FromRegOp.setReg(ToReg); 61 62 Observer.changedInstr(*FromRegOp.getParent()); 63 } 64 65 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 66 if (matchCombineCopy(MI)) { 67 applyCombineCopy(MI); 68 return true; 69 } 70 return false; 71 } 72 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 73 if (MI.getOpcode() != TargetOpcode::COPY) 74 return false; 75 Register DstReg = MI.getOperand(0).getReg(); 76 Register SrcReg = MI.getOperand(1).getReg(); 77 78 // Give up if either DstReg or SrcReg is a physical register. 79 if (Register::isPhysicalRegister(DstReg) || 80 Register::isPhysicalRegister(SrcReg)) 81 return false; 82 83 // Give up the types don't match. 84 LLT DstTy = MRI.getType(DstReg); 85 LLT SrcTy = MRI.getType(SrcReg); 86 // Give up if one has a valid LLT, but the other doesn't. 87 if (DstTy.isValid() != SrcTy.isValid()) 88 return false; 89 // Give up if the types don't match. 90 if (DstTy.isValid() && SrcTy.isValid() && DstTy != SrcTy) 91 return false; 92 93 // Get the register banks and classes. 94 const RegisterBank *DstBank = MRI.getRegBankOrNull(DstReg); 95 const RegisterBank *SrcBank = MRI.getRegBankOrNull(SrcReg); 96 const TargetRegisterClass *DstRC = MRI.getRegClassOrNull(DstReg); 97 const TargetRegisterClass *SrcRC = MRI.getRegClassOrNull(SrcReg); 98 99 // Replace if the register constraints match. 100 if ((SrcRC == DstRC) && (SrcBank == DstBank)) 101 return true; 102 // Replace if DstReg has no constraints. 103 if (!DstBank && !DstRC) 104 return true; 105 106 return false; 107 } 108 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 109 Register DstReg = MI.getOperand(0).getReg(); 110 Register SrcReg = MI.getOperand(1).getReg(); 111 MI.eraseFromParent(); 112 replaceRegWith(MRI, DstReg, SrcReg); 113 } 114 115 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 116 bool IsUndef = false; 117 SmallVector<Register, 4> Ops; 118 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 119 applyCombineConcatVectors(MI, IsUndef, Ops); 120 return true; 121 } 122 return false; 123 } 124 125 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 126 SmallVectorImpl<Register> &Ops) { 127 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 128 "Invalid instruction"); 129 IsUndef = true; 130 MachineInstr *Undef = nullptr; 131 132 // Walk over all the operands of concat vectors and check if they are 133 // build_vector themselves or undef. 134 // Then collect their operands in Ops. 135 for (const MachineOperand &MO : MI.uses()) { 136 Register Reg = MO.getReg(); 137 MachineInstr *Def = MRI.getVRegDef(Reg); 138 assert(Def && "Operand not defined"); 139 switch (Def->getOpcode()) { 140 case TargetOpcode::G_BUILD_VECTOR: 141 IsUndef = false; 142 // Remember the operands of the build_vector to fold 143 // them into the yet-to-build flattened concat vectors. 144 for (const MachineOperand &BuildVecMO : Def->uses()) 145 Ops.push_back(BuildVecMO.getReg()); 146 break; 147 case TargetOpcode::G_IMPLICIT_DEF: { 148 LLT OpType = MRI.getType(Reg); 149 // Keep one undef value for all the undef operands. 150 if (!Undef) { 151 Builder.setInsertPt(*MI.getParent(), MI); 152 Undef = Builder.buildUndef(OpType.getScalarType()); 153 } 154 assert(MRI.getType(Undef->getOperand(0).getReg()) == 155 OpType.getScalarType() && 156 "All undefs should have the same type"); 157 // Break the undef vector in as many scalar elements as needed 158 // for the flattening. 159 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 160 EltIdx != EltEnd; ++EltIdx) 161 Ops.push_back(Undef->getOperand(0).getReg()); 162 break; 163 } 164 default: 165 return false; 166 } 167 } 168 return true; 169 } 170 void CombinerHelper::applyCombineConcatVectors( 171 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 172 // We determined that the concat_vectors can be flatten. 173 // Generate the flattened build_vector. 174 Register DstReg = MI.getOperand(0).getReg(); 175 Builder.setInsertPt(*MI.getParent(), MI); 176 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 177 178 // Note: IsUndef is sort of redundant. We could have determine it by 179 // checking that at all Ops are undef. Alternatively, we could have 180 // generate a build_vector of undefs and rely on another combine to 181 // clean that up. For now, given we already gather this information 182 // in tryCombineConcatVectors, just save compile time and issue the 183 // right thing. 184 if (IsUndef) 185 Builder.buildUndef(NewDstReg); 186 else 187 Builder.buildBuildVector(NewDstReg, Ops); 188 MI.eraseFromParent(); 189 replaceRegWith(MRI, DstReg, NewDstReg); 190 } 191 192 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 193 SmallVector<Register, 4> Ops; 194 if (matchCombineShuffleVector(MI, Ops)) { 195 applyCombineShuffleVector(MI, Ops); 196 return true; 197 } 198 return false; 199 } 200 201 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 202 SmallVectorImpl<Register> &Ops) { 203 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 204 "Invalid instruction kind"); 205 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 206 Register Src1 = MI.getOperand(1).getReg(); 207 LLT SrcType = MRI.getType(Src1); 208 // As bizarre as it may look, shuffle vector can actually produce 209 // scalar! This is because at the IR level a <1 x ty> shuffle 210 // vector is perfectly valid. 211 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 212 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 213 214 // If the resulting vector is smaller than the size of the source 215 // vectors being concatenated, we won't be able to replace the 216 // shuffle vector into a concat_vectors. 217 // 218 // Note: We may still be able to produce a concat_vectors fed by 219 // extract_vector_elt and so on. It is less clear that would 220 // be better though, so don't bother for now. 221 // 222 // If the destination is a scalar, the size of the sources doesn't 223 // matter. we will lower the shuffle to a plain copy. This will 224 // work only if the source and destination have the same size. But 225 // that's covered by the next condition. 226 // 227 // TODO: If the size between the source and destination don't match 228 // we could still emit an extract vector element in that case. 229 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 230 return false; 231 232 // Check that the shuffle mask can be broken evenly between the 233 // different sources. 234 if (DstNumElts % SrcNumElts != 0) 235 return false; 236 237 // Mask length is a multiple of the source vector length. 238 // Check if the shuffle is some kind of concatenation of the input 239 // vectors. 240 unsigned NumConcat = DstNumElts / SrcNumElts; 241 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 242 SmallVector<int, 8> Mask; 243 ShuffleVectorInst::getShuffleMask(MI.getOperand(3).getShuffleMask(), Mask); 244 for (unsigned i = 0; i != DstNumElts; ++i) { 245 int Idx = Mask[i]; 246 // Undef value. 247 if (Idx < 0) 248 continue; 249 // Ensure the indices in each SrcType sized piece are sequential and that 250 // the same source is used for the whole piece. 251 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 252 (ConcatSrcs[i / SrcNumElts] >= 0 && 253 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 254 return false; 255 // Remember which source this index came from. 256 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 257 } 258 259 // The shuffle is concatenating multiple vectors together. 260 // Collect the different operands for that. 261 Register UndefReg; 262 Register Src2 = MI.getOperand(2).getReg(); 263 for (auto Src : ConcatSrcs) { 264 if (Src < 0) { 265 if (!UndefReg) { 266 Builder.setInsertPt(*MI.getParent(), MI); 267 UndefReg = Builder.buildUndef(SrcType).getReg(0); 268 } 269 Ops.push_back(UndefReg); 270 } else if (Src == 0) 271 Ops.push_back(Src1); 272 else 273 Ops.push_back(Src2); 274 } 275 return true; 276 } 277 278 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 279 const ArrayRef<Register> Ops) { 280 Register DstReg = MI.getOperand(0).getReg(); 281 Builder.setInsertPt(*MI.getParent(), MI); 282 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 283 284 if (Ops.size() == 1) 285 Builder.buildCopy(NewDstReg, Ops[0]); 286 else 287 Builder.buildMerge(NewDstReg, Ops); 288 289 MI.eraseFromParent(); 290 replaceRegWith(MRI, DstReg, NewDstReg); 291 } 292 293 namespace { 294 295 /// Select a preference between two uses. CurrentUse is the current preference 296 /// while *ForCandidate is attributes of the candidate under consideration. 297 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 298 const LLT &TyForCandidate, 299 unsigned OpcodeForCandidate, 300 MachineInstr *MIForCandidate) { 301 if (!CurrentUse.Ty.isValid()) { 302 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 303 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 304 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 305 return CurrentUse; 306 } 307 308 // We permit the extend to hoist through basic blocks but this is only 309 // sensible if the target has extending loads. If you end up lowering back 310 // into a load and extend during the legalizer then the end result is 311 // hoisting the extend up to the load. 312 313 // Prefer defined extensions to undefined extensions as these are more 314 // likely to reduce the number of instructions. 315 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 316 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 317 return CurrentUse; 318 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 319 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 320 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 321 322 // Prefer sign extensions to zero extensions as sign-extensions tend to be 323 // more expensive. 324 if (CurrentUse.Ty == TyForCandidate) { 325 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 326 OpcodeForCandidate == TargetOpcode::G_ZEXT) 327 return CurrentUse; 328 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 329 OpcodeForCandidate == TargetOpcode::G_SEXT) 330 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 331 } 332 333 // This is potentially target specific. We've chosen the largest type 334 // because G_TRUNC is usually free. One potential catch with this is that 335 // some targets have a reduced number of larger registers than smaller 336 // registers and this choice potentially increases the live-range for the 337 // larger value. 338 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 339 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 340 } 341 return CurrentUse; 342 } 343 344 /// Find a suitable place to insert some instructions and insert them. This 345 /// function accounts for special cases like inserting before a PHI node. 346 /// The current strategy for inserting before PHI's is to duplicate the 347 /// instructions for each predecessor. However, while that's ok for G_TRUNC 348 /// on most targets since it generally requires no code, other targets/cases may 349 /// want to try harder to find a dominating block. 350 static void InsertInsnsWithoutSideEffectsBeforeUse( 351 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 352 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 353 MachineOperand &UseMO)> 354 Inserter) { 355 MachineInstr &UseMI = *UseMO.getParent(); 356 357 MachineBasicBlock *InsertBB = UseMI.getParent(); 358 359 // If the use is a PHI then we want the predecessor block instead. 360 if (UseMI.isPHI()) { 361 MachineOperand *PredBB = std::next(&UseMO); 362 InsertBB = PredBB->getMBB(); 363 } 364 365 // If the block is the same block as the def then we want to insert just after 366 // the def instead of at the start of the block. 367 if (InsertBB == DefMI.getParent()) { 368 MachineBasicBlock::iterator InsertPt = &DefMI; 369 Inserter(InsertBB, std::next(InsertPt), UseMO); 370 return; 371 } 372 373 // Otherwise we want the start of the BB 374 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 375 } 376 } // end anonymous namespace 377 378 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 379 PreferredTuple Preferred; 380 if (matchCombineExtendingLoads(MI, Preferred)) { 381 applyCombineExtendingLoads(MI, Preferred); 382 return true; 383 } 384 return false; 385 } 386 387 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 388 PreferredTuple &Preferred) { 389 // We match the loads and follow the uses to the extend instead of matching 390 // the extends and following the def to the load. This is because the load 391 // must remain in the same position for correctness (unless we also add code 392 // to find a safe place to sink it) whereas the extend is freely movable. 393 // It also prevents us from duplicating the load for the volatile case or just 394 // for performance. 395 396 if (MI.getOpcode() != TargetOpcode::G_LOAD && 397 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 398 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 399 return false; 400 401 auto &LoadValue = MI.getOperand(0); 402 assert(LoadValue.isReg() && "Result wasn't a register?"); 403 404 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 405 if (!LoadValueTy.isScalar()) 406 return false; 407 408 // Most architectures are going to legalize <s8 loads into at least a 1 byte 409 // load, and the MMOs can only describe memory accesses in multiples of bytes. 410 // If we try to perform extload combining on those, we can end up with 411 // %a(s8) = extload %ptr (load 1 byte from %ptr) 412 // ... which is an illegal extload instruction. 413 if (LoadValueTy.getSizeInBits() < 8) 414 return false; 415 416 // For non power-of-2 types, they will very likely be legalized into multiple 417 // loads. Don't bother trying to match them into extending loads. 418 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 419 return false; 420 421 // Find the preferred type aside from the any-extends (unless it's the only 422 // one) and non-extending ops. We'll emit an extending load to that type and 423 // and emit a variant of (extend (trunc X)) for the others according to the 424 // relative type sizes. At the same time, pick an extend to use based on the 425 // extend involved in the chosen type. 426 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 427 ? TargetOpcode::G_ANYEXT 428 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 429 ? TargetOpcode::G_SEXT 430 : TargetOpcode::G_ZEXT; 431 Preferred = {LLT(), PreferredOpcode, nullptr}; 432 for (auto &UseMI : MRI.use_instructions(LoadValue.getReg())) { 433 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 434 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 435 UseMI.getOpcode() == TargetOpcode::G_ANYEXT) { 436 Preferred = ChoosePreferredUse(Preferred, 437 MRI.getType(UseMI.getOperand(0).getReg()), 438 UseMI.getOpcode(), &UseMI); 439 } 440 } 441 442 // There were no extends 443 if (!Preferred.MI) 444 return false; 445 // It should be impossible to chose an extend without selecting a different 446 // type since by definition the result of an extend is larger. 447 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 448 449 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 450 return true; 451 } 452 453 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 454 PreferredTuple &Preferred) { 455 // Rewrite the load to the chosen extending load. 456 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 457 458 // Inserter to insert a truncate back to the original type at a given point 459 // with some basic CSE to limit truncate duplication to one per BB. 460 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 461 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 462 MachineBasicBlock::iterator InsertBefore, 463 MachineOperand &UseMO) { 464 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 465 if (PreviouslyEmitted) { 466 Observer.changingInstr(*UseMO.getParent()); 467 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 468 Observer.changedInstr(*UseMO.getParent()); 469 return; 470 } 471 472 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 473 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 474 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 475 EmittedInsns[InsertIntoBB] = NewMI; 476 replaceRegOpWith(MRI, UseMO, NewDstReg); 477 }; 478 479 Observer.changingInstr(MI); 480 MI.setDesc( 481 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 482 ? TargetOpcode::G_SEXTLOAD 483 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 484 ? TargetOpcode::G_ZEXTLOAD 485 : TargetOpcode::G_LOAD)); 486 487 // Rewrite all the uses to fix up the types. 488 auto &LoadValue = MI.getOperand(0); 489 SmallVector<MachineOperand *, 4> Uses; 490 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 491 Uses.push_back(&UseMO); 492 493 for (auto *UseMO : Uses) { 494 MachineInstr *UseMI = UseMO->getParent(); 495 496 // If the extend is compatible with the preferred extend then we should fix 497 // up the type and extend so that it uses the preferred use. 498 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 499 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 500 Register UseDstReg = UseMI->getOperand(0).getReg(); 501 MachineOperand &UseSrcMO = UseMI->getOperand(1); 502 const LLT &UseDstTy = MRI.getType(UseDstReg); 503 if (UseDstReg != ChosenDstReg) { 504 if (Preferred.Ty == UseDstTy) { 505 // If the use has the same type as the preferred use, then merge 506 // the vregs and erase the extend. For example: 507 // %1:_(s8) = G_LOAD ... 508 // %2:_(s32) = G_SEXT %1(s8) 509 // %3:_(s32) = G_ANYEXT %1(s8) 510 // ... = ... %3(s32) 511 // rewrites to: 512 // %2:_(s32) = G_SEXTLOAD ... 513 // ... = ... %2(s32) 514 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 515 Observer.erasingInstr(*UseMO->getParent()); 516 UseMO->getParent()->eraseFromParent(); 517 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 518 // If the preferred size is smaller, then keep the extend but extend 519 // from the result of the extending load. For example: 520 // %1:_(s8) = G_LOAD ... 521 // %2:_(s32) = G_SEXT %1(s8) 522 // %3:_(s64) = G_ANYEXT %1(s8) 523 // ... = ... %3(s64) 524 /// rewrites to: 525 // %2:_(s32) = G_SEXTLOAD ... 526 // %3:_(s64) = G_ANYEXT %2:_(s32) 527 // ... = ... %3(s64) 528 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 529 } else { 530 // If the preferred size is large, then insert a truncate. For 531 // example: 532 // %1:_(s8) = G_LOAD ... 533 // %2:_(s64) = G_SEXT %1(s8) 534 // %3:_(s32) = G_ZEXT %1(s8) 535 // ... = ... %3(s32) 536 /// rewrites to: 537 // %2:_(s64) = G_SEXTLOAD ... 538 // %4:_(s8) = G_TRUNC %2:_(s32) 539 // %3:_(s64) = G_ZEXT %2:_(s8) 540 // ... = ... %3(s64) 541 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 542 InsertTruncAt); 543 } 544 continue; 545 } 546 // The use is (one of) the uses of the preferred use we chose earlier. 547 // We're going to update the load to def this value later so just erase 548 // the old extend. 549 Observer.erasingInstr(*UseMO->getParent()); 550 UseMO->getParent()->eraseFromParent(); 551 continue; 552 } 553 554 // The use isn't an extend. Truncate back to the type we originally loaded. 555 // This is free on many targets. 556 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 557 } 558 559 MI.getOperand(0).setReg(ChosenDstReg); 560 Observer.changedInstr(MI); 561 } 562 563 bool CombinerHelper::isPredecessor(MachineInstr &DefMI, MachineInstr &UseMI) { 564 assert(DefMI.getParent() == UseMI.getParent()); 565 if (&DefMI == &UseMI) 566 return false; 567 568 // Loop through the basic block until we find one of the instructions. 569 MachineBasicBlock::const_iterator I = DefMI.getParent()->begin(); 570 for (; &*I != &DefMI && &*I != &UseMI; ++I) 571 return &*I == &DefMI; 572 573 llvm_unreachable("Block must contain instructions"); 574 } 575 576 bool CombinerHelper::dominates(MachineInstr &DefMI, MachineInstr &UseMI) { 577 if (MDT) 578 return MDT->dominates(&DefMI, &UseMI); 579 else if (DefMI.getParent() != UseMI.getParent()) 580 return false; 581 582 return isPredecessor(DefMI, UseMI); 583 } 584 585 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 586 Register &Base, Register &Offset) { 587 auto &MF = *MI.getParent()->getParent(); 588 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 589 590 #ifndef NDEBUG 591 unsigned Opcode = MI.getOpcode(); 592 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 593 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 594 #endif 595 596 Base = MI.getOperand(1).getReg(); 597 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 598 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 599 return false; 600 601 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 602 603 for (auto &Use : MRI.use_instructions(Base)) { 604 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 605 continue; 606 607 Offset = Use.getOperand(2).getReg(); 608 if (!ForceLegalIndexing && 609 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 610 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 611 << Use); 612 continue; 613 } 614 615 // Make sure the offset calculation is before the potentially indexed op. 616 // FIXME: we really care about dependency here. The offset calculation might 617 // be movable. 618 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 619 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 620 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 621 << Use); 622 continue; 623 } 624 625 // FIXME: check whether all uses of Base are load/store with foldable 626 // addressing modes. If so, using the normal addr-modes is better than 627 // forming an indexed one. 628 629 bool MemOpDominatesAddrUses = true; 630 for (auto &PtrAddUse : MRI.use_instructions(Use.getOperand(0).getReg())) { 631 if (!dominates(MI, PtrAddUse)) { 632 MemOpDominatesAddrUses = false; 633 break; 634 } 635 } 636 637 if (!MemOpDominatesAddrUses) { 638 LLVM_DEBUG( 639 dbgs() << " Ignoring candidate as memop does not dominate uses: " 640 << Use); 641 continue; 642 } 643 644 LLVM_DEBUG(dbgs() << " Found match: " << Use); 645 Addr = Use.getOperand(0).getReg(); 646 return true; 647 } 648 649 return false; 650 } 651 652 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 653 Register &Base, Register &Offset) { 654 auto &MF = *MI.getParent()->getParent(); 655 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 656 657 #ifndef NDEBUG 658 unsigned Opcode = MI.getOpcode(); 659 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 660 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 661 #endif 662 663 Addr = MI.getOperand(1).getReg(); 664 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 665 if (!AddrDef || MRI.hasOneUse(Addr)) 666 return false; 667 668 Base = AddrDef->getOperand(1).getReg(); 669 Offset = AddrDef->getOperand(2).getReg(); 670 671 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 672 673 if (!ForceLegalIndexing && 674 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 675 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 676 return false; 677 } 678 679 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 680 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 681 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 682 return false; 683 } 684 685 if (MI.getOpcode() == TargetOpcode::G_STORE) { 686 // Would require a copy. 687 if (Base == MI.getOperand(0).getReg()) { 688 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 689 return false; 690 } 691 692 // We're expecting one use of Addr in MI, but it could also be the 693 // value stored, which isn't actually dominated by the instruction. 694 if (MI.getOperand(0).getReg() == Addr) { 695 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 696 return false; 697 } 698 } 699 700 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 701 // That might allow us to end base's liveness here by adjusting the constant. 702 703 for (auto &UseMI : MRI.use_instructions(Addr)) { 704 if (!dominates(MI, UseMI)) { 705 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 706 return false; 707 } 708 } 709 710 return true; 711 } 712 713 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 714 IndexedLoadStoreMatchInfo MatchInfo; 715 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 716 applyCombineIndexedLoadStore(MI, MatchInfo); 717 return true; 718 } 719 return false; 720 } 721 722 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 723 unsigned Opcode = MI.getOpcode(); 724 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 725 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 726 return false; 727 728 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 729 MatchInfo.Offset); 730 if (!MatchInfo.IsPre && 731 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 732 MatchInfo.Offset)) 733 return false; 734 735 return true; 736 } 737 738 void CombinerHelper::applyCombineIndexedLoadStore( 739 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 740 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 741 MachineIRBuilder MIRBuilder(MI); 742 unsigned Opcode = MI.getOpcode(); 743 bool IsStore = Opcode == TargetOpcode::G_STORE; 744 unsigned NewOpcode; 745 switch (Opcode) { 746 case TargetOpcode::G_LOAD: 747 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 748 break; 749 case TargetOpcode::G_SEXTLOAD: 750 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 751 break; 752 case TargetOpcode::G_ZEXTLOAD: 753 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 754 break; 755 case TargetOpcode::G_STORE: 756 NewOpcode = TargetOpcode::G_INDEXED_STORE; 757 break; 758 default: 759 llvm_unreachable("Unknown load/store opcode"); 760 } 761 762 auto MIB = MIRBuilder.buildInstr(NewOpcode); 763 if (IsStore) { 764 MIB.addDef(MatchInfo.Addr); 765 MIB.addUse(MI.getOperand(0).getReg()); 766 } else { 767 MIB.addDef(MI.getOperand(0).getReg()); 768 MIB.addDef(MatchInfo.Addr); 769 } 770 771 MIB.addUse(MatchInfo.Base); 772 MIB.addUse(MatchInfo.Offset); 773 MIB.addImm(MatchInfo.IsPre); 774 MI.eraseFromParent(); 775 AddrDef.eraseFromParent(); 776 777 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 778 } 779 780 bool CombinerHelper::matchElideBrByInvertingCond(MachineInstr &MI) { 781 if (MI.getOpcode() != TargetOpcode::G_BR) 782 return false; 783 784 // Try to match the following: 785 // bb1: 786 // %c(s32) = G_ICMP pred, %a, %b 787 // %c1(s1) = G_TRUNC %c(s32) 788 // G_BRCOND %c1, %bb2 789 // G_BR %bb3 790 // bb2: 791 // ... 792 // bb3: 793 794 // The above pattern does not have a fall through to the successor bb2, always 795 // resulting in a branch no matter which path is taken. Here we try to find 796 // and replace that pattern with conditional branch to bb3 and otherwise 797 // fallthrough to bb2. 798 799 MachineBasicBlock *MBB = MI.getParent(); 800 MachineBasicBlock::iterator BrIt(MI); 801 if (BrIt == MBB->begin()) 802 return false; 803 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 804 805 MachineInstr *BrCond = &*std::prev(BrIt); 806 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 807 return false; 808 809 // Check that the next block is the conditional branch target. 810 if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB())) 811 return false; 812 813 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 814 if (!CmpMI || CmpMI->getOpcode() != TargetOpcode::G_ICMP || 815 !MRI.hasOneUse(CmpMI->getOperand(0).getReg())) 816 return false; 817 return true; 818 } 819 820 bool CombinerHelper::tryElideBrByInvertingCond(MachineInstr &MI) { 821 if (!matchElideBrByInvertingCond(MI)) 822 return false; 823 applyElideBrByInvertingCond(MI); 824 return true; 825 } 826 827 void CombinerHelper::applyElideBrByInvertingCond(MachineInstr &MI) { 828 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 829 MachineBasicBlock::iterator BrIt(MI); 830 MachineInstr *BrCond = &*std::prev(BrIt); 831 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 832 833 CmpInst::Predicate InversePred = CmpInst::getInversePredicate( 834 (CmpInst::Predicate)CmpMI->getOperand(1).getPredicate()); 835 836 // Invert the G_ICMP condition. 837 Observer.changingInstr(*CmpMI); 838 CmpMI->getOperand(1).setPredicate(InversePred); 839 Observer.changedInstr(*CmpMI); 840 841 // Change the conditional branch target. 842 Observer.changingInstr(*BrCond); 843 BrCond->getOperand(1).setMBB(BrTarget); 844 Observer.changedInstr(*BrCond); 845 MI.eraseFromParent(); 846 } 847 848 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 849 // On Darwin, -Os means optimize for size without hurting performance, so 850 // only really optimize for size when -Oz (MinSize) is used. 851 if (MF.getTarget().getTargetTriple().isOSDarwin()) 852 return MF.getFunction().hasMinSize(); 853 return MF.getFunction().hasOptSize(); 854 } 855 856 // Returns a list of types to use for memory op lowering in MemOps. A partial 857 // port of findOptimalMemOpLowering in TargetLowering. 858 static bool findGISelOptimalMemOpLowering( 859 std::vector<LLT> &MemOps, unsigned Limit, uint64_t Size, unsigned DstAlign, 860 unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, 861 bool AllowOverlap, unsigned DstAS, unsigned SrcAS, 862 const AttributeList &FuncAttributes, const TargetLowering &TLI) { 863 // If 'SrcAlign' is zero, that means the memory operation does not need to 864 // load the value, i.e. memset or memcpy from constant string. Otherwise, 865 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 866 // is the specified alignment of the memory operation. If it is zero, that 867 // means it's possible to change the alignment of the destination. 868 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 869 // not need to be loaded. 870 if (SrcAlign != 0 && SrcAlign < DstAlign) 871 return false; 872 873 LLT Ty = TLI.getOptimalMemOpLLT(Size, DstAlign, SrcAlign, IsMemset, 874 ZeroMemset, MemcpyStrSrc, FuncAttributes); 875 876 if (Ty == LLT()) { 877 // Use the largest scalar type whose alignment constraints are satisfied. 878 // We only need to check DstAlign here as SrcAlign is always greater or 879 // equal to DstAlign (or zero). 880 Ty = LLT::scalar(64); 881 while (DstAlign && DstAlign < Ty.getSizeInBytes() && 882 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, DstAlign)) 883 Ty = LLT::scalar(Ty.getSizeInBytes()); 884 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 885 // FIXME: check for the largest legal type we can load/store to. 886 } 887 888 unsigned NumMemOps = 0; 889 while (Size != 0) { 890 unsigned TySize = Ty.getSizeInBytes(); 891 while (TySize > Size) { 892 // For now, only use non-vector load / store's for the left-over pieces. 893 LLT NewTy = Ty; 894 // FIXME: check for mem op safety and legality of the types. Not all of 895 // SDAGisms map cleanly to GISel concepts. 896 if (NewTy.isVector()) 897 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 898 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 899 unsigned NewTySize = NewTy.getSizeInBytes(); 900 assert(NewTySize > 0 && "Could not find appropriate type"); 901 902 // If the new LLT cannot cover all of the remaining bits, then consider 903 // issuing a (or a pair of) unaligned and overlapping load / store. 904 bool Fast; 905 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 906 MVT VT = getMVTForLLT(Ty); 907 if (NumMemOps && AllowOverlap && NewTySize < Size && 908 TLI.allowsMisalignedMemoryAccesses( 909 VT, DstAS, DstAlign, MachineMemOperand::MONone, &Fast) && 910 Fast) 911 TySize = Size; 912 else { 913 Ty = NewTy; 914 TySize = NewTySize; 915 } 916 } 917 918 if (++NumMemOps > Limit) 919 return false; 920 921 MemOps.push_back(Ty); 922 Size -= TySize; 923 } 924 925 return true; 926 } 927 928 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 929 if (Ty.isVector()) 930 return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 931 Ty.getNumElements()); 932 return IntegerType::get(C, Ty.getSizeInBits()); 933 } 934 935 // Get a vectorized representation of the memset value operand, GISel edition. 936 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 937 MachineRegisterInfo &MRI = *MIB.getMRI(); 938 unsigned NumBits = Ty.getScalarSizeInBits(); 939 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 940 if (!Ty.isVector() && ValVRegAndVal) { 941 unsigned KnownVal = ValVRegAndVal->Value; 942 APInt Scalar = APInt(8, KnownVal); 943 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 944 return MIB.buildConstant(Ty, SplatVal).getReg(0); 945 } 946 // FIXME: for vector types create a G_BUILD_VECTOR. 947 if (Ty.isVector()) 948 return Register(); 949 950 // Extend the byte value to the larger type, and then multiply by a magic 951 // value 0x010101... in order to replicate it across every byte. 952 LLT ExtType = Ty.getScalarType(); 953 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 954 if (NumBits > 8) { 955 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 956 auto MagicMI = MIB.buildConstant(ExtType, Magic); 957 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 958 } 959 960 assert(ExtType == Ty && "Vector memset value type not supported yet"); 961 return Val; 962 } 963 964 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, Register Val, 965 unsigned KnownLen, unsigned Align, 966 bool IsVolatile) { 967 auto &MF = *MI.getParent()->getParent(); 968 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 969 auto &DL = MF.getDataLayout(); 970 LLVMContext &C = MF.getFunction().getContext(); 971 972 assert(KnownLen != 0 && "Have a zero length memset length!"); 973 974 bool DstAlignCanChange = false; 975 MachineFrameInfo &MFI = MF.getFrameInfo(); 976 bool OptSize = shouldLowerMemFuncForSize(MF); 977 978 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 979 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 980 DstAlignCanChange = true; 981 982 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 983 std::vector<LLT> MemOps; 984 985 const auto &DstMMO = **MI.memoperands_begin(); 986 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 987 988 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 989 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 990 991 if (!findGISelOptimalMemOpLowering( 992 MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Align), 0, 993 /*IsMemset=*/true, 994 /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false, 995 /*AllowOverlap=*/!IsVolatile, DstPtrInfo.getAddrSpace(), ~0u, 996 MF.getFunction().getAttributes(), TLI)) 997 return false; 998 999 if (DstAlignCanChange) { 1000 // Get an estimate of the type from the LLT. 1001 Type *IRTy = getTypeForLLT(MemOps[0], C); 1002 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy); 1003 if (NewAlign > Align) { 1004 Align = NewAlign; 1005 unsigned FI = FIDef->getOperand(1).getIndex(); 1006 // Give the stack frame object a larger alignment if needed. 1007 if (MFI.getObjectAlignment(FI) < Align) 1008 MFI.setObjectAlignment(FI, Align); 1009 } 1010 } 1011 1012 MachineIRBuilder MIB(MI); 1013 // Find the largest store and generate the bit pattern for it. 1014 LLT LargestTy = MemOps[0]; 1015 for (unsigned i = 1; i < MemOps.size(); i++) 1016 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1017 LargestTy = MemOps[i]; 1018 1019 // The memset stored value is always defined as an s8, so in order to make it 1020 // work with larger store types we need to repeat the bit pattern across the 1021 // wider type. 1022 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1023 1024 if (!MemSetValue) 1025 return false; 1026 1027 // Generate the stores. For each store type in the list, we generate the 1028 // matching store of that type to the destination address. 1029 LLT PtrTy = MRI.getType(Dst); 1030 unsigned DstOff = 0; 1031 unsigned Size = KnownLen; 1032 for (unsigned I = 0; I < MemOps.size(); I++) { 1033 LLT Ty = MemOps[I]; 1034 unsigned TySize = Ty.getSizeInBytes(); 1035 if (TySize > Size) { 1036 // Issuing an unaligned load / store pair that overlaps with the previous 1037 // pair. Adjust the offset accordingly. 1038 assert(I == MemOps.size() - 1 && I != 0); 1039 DstOff -= TySize - Size; 1040 } 1041 1042 // If this store is smaller than the largest store see whether we can get 1043 // the smaller value for free with a truncate. 1044 Register Value = MemSetValue; 1045 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1046 MVT VT = getMVTForLLT(Ty); 1047 MVT LargestVT = getMVTForLLT(LargestTy); 1048 if (!LargestTy.isVector() && !Ty.isVector() && 1049 TLI.isTruncateFree(LargestVT, VT)) 1050 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1051 else 1052 Value = getMemsetValue(Val, Ty, MIB); 1053 if (!Value) 1054 return false; 1055 } 1056 1057 auto *StoreMMO = 1058 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1059 1060 Register Ptr = Dst; 1061 if (DstOff != 0) { 1062 auto Offset = 1063 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1064 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1065 } 1066 1067 MIB.buildStore(Value, Ptr, *StoreMMO); 1068 DstOff += Ty.getSizeInBytes(); 1069 Size -= TySize; 1070 } 1071 1072 MI.eraseFromParent(); 1073 return true; 1074 } 1075 1076 1077 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1078 Register Src, unsigned KnownLen, 1079 unsigned DstAlign, unsigned SrcAlign, 1080 bool IsVolatile) { 1081 auto &MF = *MI.getParent()->getParent(); 1082 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1083 auto &DL = MF.getDataLayout(); 1084 LLVMContext &C = MF.getFunction().getContext(); 1085 1086 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1087 1088 bool DstAlignCanChange = false; 1089 MachineFrameInfo &MFI = MF.getFrameInfo(); 1090 bool OptSize = shouldLowerMemFuncForSize(MF); 1091 unsigned Alignment = MinAlign(DstAlign, SrcAlign); 1092 1093 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1094 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1095 DstAlignCanChange = true; 1096 1097 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1098 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1099 // if the memcpy is in a tail call position. 1100 1101 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1102 std::vector<LLT> MemOps; 1103 1104 const auto &DstMMO = **MI.memoperands_begin(); 1105 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1106 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1107 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1108 1109 if (!findGISelOptimalMemOpLowering( 1110 MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Alignment), 1111 SrcAlign, 1112 /*IsMemset=*/false, 1113 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, 1114 /*AllowOverlap=*/!IsVolatile, DstPtrInfo.getAddrSpace(), 1115 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI)) 1116 return false; 1117 1118 if (DstAlignCanChange) { 1119 // Get an estimate of the type from the LLT. 1120 Type *IRTy = getTypeForLLT(MemOps[0], C); 1121 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy); 1122 1123 // Don't promote to an alignment that would require dynamic stack 1124 // realignment. 1125 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1126 if (!TRI->needsStackRealignment(MF)) 1127 while (NewAlign > Alignment && 1128 DL.exceedsNaturalStackAlignment(Align(NewAlign))) 1129 NewAlign /= 2; 1130 1131 if (NewAlign > Alignment) { 1132 Alignment = NewAlign; 1133 unsigned FI = FIDef->getOperand(1).getIndex(); 1134 // Give the stack frame object a larger alignment if needed. 1135 if (MFI.getObjectAlignment(FI) < Alignment) 1136 MFI.setObjectAlignment(FI, Alignment); 1137 } 1138 } 1139 1140 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1141 1142 MachineIRBuilder MIB(MI); 1143 // Now we need to emit a pair of load and stores for each of the types we've 1144 // collected. I.e. for each type, generate a load from the source pointer of 1145 // that type width, and then generate a corresponding store to the dest buffer 1146 // of that value loaded. This can result in a sequence of loads and stores 1147 // mixed types, depending on what the target specifies as good types to use. 1148 unsigned CurrOffset = 0; 1149 LLT PtrTy = MRI.getType(Src); 1150 unsigned Size = KnownLen; 1151 for (auto CopyTy : MemOps) { 1152 // Issuing an unaligned load / store pair that overlaps with the previous 1153 // pair. Adjust the offset accordingly. 1154 if (CopyTy.getSizeInBytes() > Size) 1155 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1156 1157 // Construct MMOs for the accesses. 1158 auto *LoadMMO = 1159 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1160 auto *StoreMMO = 1161 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1162 1163 // Create the load. 1164 Register LoadPtr = Src; 1165 Register Offset; 1166 if (CurrOffset != 0) { 1167 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1168 .getReg(0); 1169 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1170 } 1171 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1172 1173 // Create the store. 1174 Register StorePtr = 1175 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1176 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1177 CurrOffset += CopyTy.getSizeInBytes(); 1178 Size -= CopyTy.getSizeInBytes(); 1179 } 1180 1181 MI.eraseFromParent(); 1182 return true; 1183 } 1184 1185 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1186 Register Src, unsigned KnownLen, 1187 unsigned DstAlign, unsigned SrcAlign, 1188 bool IsVolatile) { 1189 auto &MF = *MI.getParent()->getParent(); 1190 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1191 auto &DL = MF.getDataLayout(); 1192 LLVMContext &C = MF.getFunction().getContext(); 1193 1194 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1195 1196 bool DstAlignCanChange = false; 1197 MachineFrameInfo &MFI = MF.getFrameInfo(); 1198 bool OptSize = shouldLowerMemFuncForSize(MF); 1199 unsigned Alignment = MinAlign(DstAlign, SrcAlign); 1200 1201 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1202 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1203 DstAlignCanChange = true; 1204 1205 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1206 std::vector<LLT> MemOps; 1207 1208 const auto &DstMMO = **MI.memoperands_begin(); 1209 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1210 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1211 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1212 1213 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1214 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1215 // same thing here. 1216 if (!findGISelOptimalMemOpLowering( 1217 MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Alignment), 1218 SrcAlign, 1219 /*IsMemset=*/false, 1220 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, 1221 /*AllowOverlap=*/false, DstPtrInfo.getAddrSpace(), 1222 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI)) 1223 return false; 1224 1225 if (DstAlignCanChange) { 1226 // Get an estimate of the type from the LLT. 1227 Type *IRTy = getTypeForLLT(MemOps[0], C); 1228 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy); 1229 1230 // Don't promote to an alignment that would require dynamic stack 1231 // realignment. 1232 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1233 if (!TRI->needsStackRealignment(MF)) 1234 while (NewAlign > Alignment && 1235 DL.exceedsNaturalStackAlignment(Align(NewAlign))) 1236 NewAlign /= 2; 1237 1238 if (NewAlign > Alignment) { 1239 Alignment = NewAlign; 1240 unsigned FI = FIDef->getOperand(1).getIndex(); 1241 // Give the stack frame object a larger alignment if needed. 1242 if (MFI.getObjectAlignment(FI) < Alignment) 1243 MFI.setObjectAlignment(FI, Alignment); 1244 } 1245 } 1246 1247 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1248 1249 MachineIRBuilder MIB(MI); 1250 // Memmove requires that we perform the loads first before issuing the stores. 1251 // Apart from that, this loop is pretty much doing the same thing as the 1252 // memcpy codegen function. 1253 unsigned CurrOffset = 0; 1254 LLT PtrTy = MRI.getType(Src); 1255 SmallVector<Register, 16> LoadVals; 1256 for (auto CopyTy : MemOps) { 1257 // Construct MMO for the load. 1258 auto *LoadMMO = 1259 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1260 1261 // Create the load. 1262 Register LoadPtr = Src; 1263 if (CurrOffset != 0) { 1264 auto Offset = 1265 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1266 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1267 } 1268 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1269 CurrOffset += CopyTy.getSizeInBytes(); 1270 } 1271 1272 CurrOffset = 0; 1273 for (unsigned I = 0; I < MemOps.size(); ++I) { 1274 LLT CopyTy = MemOps[I]; 1275 // Now store the values loaded. 1276 auto *StoreMMO = 1277 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1278 1279 Register StorePtr = Dst; 1280 if (CurrOffset != 0) { 1281 auto Offset = 1282 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1283 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1284 } 1285 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1286 CurrOffset += CopyTy.getSizeInBytes(); 1287 } 1288 MI.eraseFromParent(); 1289 return true; 1290 } 1291 1292 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1293 // This combine is fairly complex so it's not written with a separate 1294 // matcher function. 1295 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 1296 Intrinsic::ID ID = (Intrinsic::ID)MI.getIntrinsicID(); 1297 assert((ID == Intrinsic::memcpy || ID == Intrinsic::memmove || 1298 ID == Intrinsic::memset) && 1299 "Expected a memcpy like intrinsic"); 1300 1301 auto MMOIt = MI.memoperands_begin(); 1302 const MachineMemOperand *MemOp = *MMOIt; 1303 bool IsVolatile = MemOp->isVolatile(); 1304 // Don't try to optimize volatile. 1305 if (IsVolatile) 1306 return false; 1307 1308 unsigned DstAlign = MemOp->getBaseAlignment(); 1309 unsigned SrcAlign = 0; 1310 Register Dst = MI.getOperand(1).getReg(); 1311 Register Src = MI.getOperand(2).getReg(); 1312 Register Len = MI.getOperand(3).getReg(); 1313 1314 if (ID != Intrinsic::memset) { 1315 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1316 MemOp = *(++MMOIt); 1317 SrcAlign = MemOp->getBaseAlignment(); 1318 } 1319 1320 // See if this is a constant length copy 1321 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1322 if (!LenVRegAndVal) 1323 return false; // Leave it to the legalizer to lower it to a libcall. 1324 unsigned KnownLen = LenVRegAndVal->Value; 1325 1326 if (KnownLen == 0) { 1327 MI.eraseFromParent(); 1328 return true; 1329 } 1330 1331 if (MaxLen && KnownLen > MaxLen) 1332 return false; 1333 1334 if (ID == Intrinsic::memcpy) 1335 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1336 if (ID == Intrinsic::memmove) 1337 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1338 if (ID == Intrinsic::memset) 1339 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1340 return false; 1341 } 1342 1343 bool CombinerHelper::tryCombine(MachineInstr &MI) { 1344 if (tryCombineCopy(MI)) 1345 return true; 1346 if (tryCombineExtendingLoads(MI)) 1347 return true; 1348 if (tryCombineIndexedLoadStore(MI)) 1349 return true; 1350 return false; 1351 } 1352