1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/CodeGen/GlobalISel/Combiner.h" 10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 12 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 13 #include "llvm/CodeGen/GlobalISel/Utils.h" 14 #include "llvm/CodeGen/MachineDominators.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineInstr.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/TargetInstrInfo.h" 19 #include "llvm/CodeGen/TargetLowering.h" 20 #include "llvm/Target/TargetMachine.h" 21 22 #define DEBUG_TYPE "gi-combiner" 23 24 using namespace llvm; 25 26 // Option to allow testing of the combiner while no targets know about indexed 27 // addressing. 28 static cl::opt<bool> 29 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 30 cl::desc("Force all indexed operations to be " 31 "legal for the GlobalISel combiner")); 32 33 34 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 35 MachineIRBuilder &B, GISelKnownBits *KB, 36 MachineDominatorTree *MDT) 37 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 38 KB(KB), MDT(MDT) { 39 (void)this->KB; 40 } 41 42 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 43 Register ToReg) const { 44 Observer.changingAllUsesOfReg(MRI, FromReg); 45 46 if (MRI.constrainRegAttrs(ToReg, FromReg)) 47 MRI.replaceRegWith(FromReg, ToReg); 48 else 49 Builder.buildCopy(ToReg, FromReg); 50 51 Observer.finishedChangingAllUsesOfReg(); 52 } 53 54 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 55 MachineOperand &FromRegOp, 56 Register ToReg) const { 57 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 58 Observer.changingInstr(*FromRegOp.getParent()); 59 60 FromRegOp.setReg(ToReg); 61 62 Observer.changedInstr(*FromRegOp.getParent()); 63 } 64 65 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 66 if (matchCombineCopy(MI)) { 67 applyCombineCopy(MI); 68 return true; 69 } 70 return false; 71 } 72 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 73 if (MI.getOpcode() != TargetOpcode::COPY) 74 return false; 75 Register DstReg = MI.getOperand(0).getReg(); 76 Register SrcReg = MI.getOperand(1).getReg(); 77 LLT DstTy = MRI.getType(DstReg); 78 LLT SrcTy = MRI.getType(SrcReg); 79 // Simple Copy Propagation. 80 // a(sx) = COPY b(sx) -> Replace all uses of a with b. 81 if (DstTy.isValid() && SrcTy.isValid() && DstTy == SrcTy) 82 return true; 83 return false; 84 } 85 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 86 Register DstReg = MI.getOperand(0).getReg(); 87 Register SrcReg = MI.getOperand(1).getReg(); 88 MI.eraseFromParent(); 89 replaceRegWith(MRI, DstReg, SrcReg); 90 } 91 92 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 93 bool IsUndef = false; 94 SmallVector<Register, 4> Ops; 95 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 96 applyCombineConcatVectors(MI, IsUndef, Ops); 97 return true; 98 } 99 return false; 100 } 101 102 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 103 SmallVectorImpl<Register> &Ops) { 104 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 105 "Invalid instruction"); 106 IsUndef = true; 107 MachineInstr *Undef = nullptr; 108 109 // Walk over all the operands of concat vectors and check if they are 110 // build_vector themselves or undef. 111 // Then collect their operands in Ops. 112 for (const MachineOperand &MO : MI.uses()) { 113 Register Reg = MO.getReg(); 114 MachineInstr *Def = MRI.getVRegDef(Reg); 115 assert(Def && "Operand not defined"); 116 switch (Def->getOpcode()) { 117 case TargetOpcode::G_BUILD_VECTOR: 118 IsUndef = false; 119 // Remember the operands of the build_vector to fold 120 // them into the yet-to-build flattened concat vectors. 121 for (const MachineOperand &BuildVecMO : Def->uses()) 122 Ops.push_back(BuildVecMO.getReg()); 123 break; 124 case TargetOpcode::G_IMPLICIT_DEF: { 125 LLT OpType = MRI.getType(Reg); 126 // Keep one undef value for all the undef operands. 127 if (!Undef) { 128 Builder.setInsertPt(*MI.getParent(), MI); 129 Undef = Builder.buildUndef(OpType.getScalarType()); 130 } 131 assert(MRI.getType(Undef->getOperand(0).getReg()) == 132 OpType.getScalarType() && 133 "All undefs should have the same type"); 134 // Break the undef vector in as many scalar elements as needed 135 // for the flattening. 136 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 137 EltIdx != EltEnd; ++EltIdx) 138 Ops.push_back(Undef->getOperand(0).getReg()); 139 break; 140 } 141 default: 142 return false; 143 } 144 } 145 return true; 146 } 147 void CombinerHelper::applyCombineConcatVectors( 148 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 149 // We determined that the concat_vectors can be flatten. 150 // Generate the flattened build_vector. 151 Register DstReg = MI.getOperand(0).getReg(); 152 Builder.setInsertPt(*MI.getParent(), MI); 153 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 154 155 // Note: IsUndef is sort of redundant. We could have determine it by 156 // checking that at all Ops are undef. Alternatively, we could have 157 // generate a build_vector of undefs and rely on another combine to 158 // clean that up. For now, given we already gather this information 159 // in tryCombineConcatVectors, just save compile time and issue the 160 // right thing. 161 if (IsUndef) 162 Builder.buildUndef(NewDstReg); 163 else 164 Builder.buildBuildVector(NewDstReg, Ops); 165 MI.eraseFromParent(); 166 replaceRegWith(MRI, DstReg, NewDstReg); 167 } 168 169 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 170 SmallVector<Register, 4> Ops; 171 if (matchCombineShuffleVector(MI, Ops)) { 172 applyCombineShuffleVector(MI, Ops); 173 return true; 174 } 175 return false; 176 } 177 178 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 179 SmallVectorImpl<Register> &Ops) { 180 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 181 "Invalid instruction kind"); 182 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 183 Register Src1 = MI.getOperand(1).getReg(); 184 LLT SrcType = MRI.getType(Src1); 185 // As bizarre as it may look, shuffle vector can actually produce 186 // scalar! This is because at the IR level a <1 x ty> shuffle 187 // vector is perfectly valid. 188 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 189 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 190 191 // If the resulting vector is smaller than the size of the source 192 // vectors being concatenated, we won't be able to replace the 193 // shuffle vector into a concat_vectors. 194 // 195 // Note: We may still be able to produce a concat_vectors fed by 196 // extract_vector_elt and so on. It is less clear that would 197 // be better though, so don't bother for now. 198 // 199 // If the destination is a scalar, the size of the sources doesn't 200 // matter. we will lower the shuffle to a plain copy. This will 201 // work only if the source and destination have the same size. But 202 // that's covered by the next condition. 203 // 204 // TODO: If the size between the source and destination don't match 205 // we could still emit an extract vector element in that case. 206 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 207 return false; 208 209 // Check that the shuffle mask can be broken evenly between the 210 // different sources. 211 if (DstNumElts % SrcNumElts != 0) 212 return false; 213 214 // Mask length is a multiple of the source vector length. 215 // Check if the shuffle is some kind of concatenation of the input 216 // vectors. 217 unsigned NumConcat = DstNumElts / SrcNumElts; 218 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 219 SmallVector<int, 8> Mask; 220 ShuffleVectorInst::getShuffleMask(MI.getOperand(3).getShuffleMask(), Mask); 221 for (unsigned i = 0; i != DstNumElts; ++i) { 222 int Idx = Mask[i]; 223 // Undef value. 224 if (Idx < 0) 225 continue; 226 // Ensure the indices in each SrcType sized piece are sequential and that 227 // the same source is used for the whole piece. 228 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 229 (ConcatSrcs[i / SrcNumElts] >= 0 && 230 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 231 return false; 232 // Remember which source this index came from. 233 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 234 } 235 236 // The shuffle is concatenating multiple vectors together. 237 // Collect the different operands for that. 238 Register UndefReg; 239 Register Src2 = MI.getOperand(2).getReg(); 240 for (auto Src : ConcatSrcs) { 241 if (Src < 0) { 242 if (!UndefReg) { 243 Builder.setInsertPt(*MI.getParent(), MI); 244 UndefReg = Builder.buildUndef(SrcType).getReg(0); 245 } 246 Ops.push_back(UndefReg); 247 } else if (Src == 0) 248 Ops.push_back(Src1); 249 else 250 Ops.push_back(Src2); 251 } 252 return true; 253 } 254 255 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 256 const ArrayRef<Register> Ops) { 257 Register DstReg = MI.getOperand(0).getReg(); 258 Builder.setInsertPt(*MI.getParent(), MI); 259 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 260 261 if (Ops.size() == 1) 262 Builder.buildCopy(NewDstReg, Ops[0]); 263 else 264 Builder.buildMerge(NewDstReg, Ops); 265 266 MI.eraseFromParent(); 267 replaceRegWith(MRI, DstReg, NewDstReg); 268 } 269 270 namespace { 271 272 /// Select a preference between two uses. CurrentUse is the current preference 273 /// while *ForCandidate is attributes of the candidate under consideration. 274 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 275 const LLT &TyForCandidate, 276 unsigned OpcodeForCandidate, 277 MachineInstr *MIForCandidate) { 278 if (!CurrentUse.Ty.isValid()) { 279 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 280 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 281 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 282 return CurrentUse; 283 } 284 285 // We permit the extend to hoist through basic blocks but this is only 286 // sensible if the target has extending loads. If you end up lowering back 287 // into a load and extend during the legalizer then the end result is 288 // hoisting the extend up to the load. 289 290 // Prefer defined extensions to undefined extensions as these are more 291 // likely to reduce the number of instructions. 292 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 293 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 294 return CurrentUse; 295 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 296 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 297 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 298 299 // Prefer sign extensions to zero extensions as sign-extensions tend to be 300 // more expensive. 301 if (CurrentUse.Ty == TyForCandidate) { 302 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 303 OpcodeForCandidate == TargetOpcode::G_ZEXT) 304 return CurrentUse; 305 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 306 OpcodeForCandidate == TargetOpcode::G_SEXT) 307 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 308 } 309 310 // This is potentially target specific. We've chosen the largest type 311 // because G_TRUNC is usually free. One potential catch with this is that 312 // some targets have a reduced number of larger registers than smaller 313 // registers and this choice potentially increases the live-range for the 314 // larger value. 315 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 316 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 317 } 318 return CurrentUse; 319 } 320 321 /// Find a suitable place to insert some instructions and insert them. This 322 /// function accounts for special cases like inserting before a PHI node. 323 /// The current strategy for inserting before PHI's is to duplicate the 324 /// instructions for each predecessor. However, while that's ok for G_TRUNC 325 /// on most targets since it generally requires no code, other targets/cases may 326 /// want to try harder to find a dominating block. 327 static void InsertInsnsWithoutSideEffectsBeforeUse( 328 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 329 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 330 MachineOperand &UseMO)> 331 Inserter) { 332 MachineInstr &UseMI = *UseMO.getParent(); 333 334 MachineBasicBlock *InsertBB = UseMI.getParent(); 335 336 // If the use is a PHI then we want the predecessor block instead. 337 if (UseMI.isPHI()) { 338 MachineOperand *PredBB = std::next(&UseMO); 339 InsertBB = PredBB->getMBB(); 340 } 341 342 // If the block is the same block as the def then we want to insert just after 343 // the def instead of at the start of the block. 344 if (InsertBB == DefMI.getParent()) { 345 MachineBasicBlock::iterator InsertPt = &DefMI; 346 Inserter(InsertBB, std::next(InsertPt), UseMO); 347 return; 348 } 349 350 // Otherwise we want the start of the BB 351 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 352 } 353 } // end anonymous namespace 354 355 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 356 PreferredTuple Preferred; 357 if (matchCombineExtendingLoads(MI, Preferred)) { 358 applyCombineExtendingLoads(MI, Preferred); 359 return true; 360 } 361 return false; 362 } 363 364 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 365 PreferredTuple &Preferred) { 366 // We match the loads and follow the uses to the extend instead of matching 367 // the extends and following the def to the load. This is because the load 368 // must remain in the same position for correctness (unless we also add code 369 // to find a safe place to sink it) whereas the extend is freely movable. 370 // It also prevents us from duplicating the load for the volatile case or just 371 // for performance. 372 373 if (MI.getOpcode() != TargetOpcode::G_LOAD && 374 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 375 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 376 return false; 377 378 auto &LoadValue = MI.getOperand(0); 379 assert(LoadValue.isReg() && "Result wasn't a register?"); 380 381 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 382 if (!LoadValueTy.isScalar()) 383 return false; 384 385 // Most architectures are going to legalize <s8 loads into at least a 1 byte 386 // load, and the MMOs can only describe memory accesses in multiples of bytes. 387 // If we try to perform extload combining on those, we can end up with 388 // %a(s8) = extload %ptr (load 1 byte from %ptr) 389 // ... which is an illegal extload instruction. 390 if (LoadValueTy.getSizeInBits() < 8) 391 return false; 392 393 // For non power-of-2 types, they will very likely be legalized into multiple 394 // loads. Don't bother trying to match them into extending loads. 395 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 396 return false; 397 398 // Find the preferred type aside from the any-extends (unless it's the only 399 // one) and non-extending ops. We'll emit an extending load to that type and 400 // and emit a variant of (extend (trunc X)) for the others according to the 401 // relative type sizes. At the same time, pick an extend to use based on the 402 // extend involved in the chosen type. 403 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 404 ? TargetOpcode::G_ANYEXT 405 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 406 ? TargetOpcode::G_SEXT 407 : TargetOpcode::G_ZEXT; 408 Preferred = {LLT(), PreferredOpcode, nullptr}; 409 for (auto &UseMI : MRI.use_instructions(LoadValue.getReg())) { 410 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 411 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 412 UseMI.getOpcode() == TargetOpcode::G_ANYEXT) { 413 Preferred = ChoosePreferredUse(Preferred, 414 MRI.getType(UseMI.getOperand(0).getReg()), 415 UseMI.getOpcode(), &UseMI); 416 } 417 } 418 419 // There were no extends 420 if (!Preferred.MI) 421 return false; 422 // It should be impossible to chose an extend without selecting a different 423 // type since by definition the result of an extend is larger. 424 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 425 426 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 427 return true; 428 } 429 430 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 431 PreferredTuple &Preferred) { 432 // Rewrite the load to the chosen extending load. 433 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 434 435 // Inserter to insert a truncate back to the original type at a given point 436 // with some basic CSE to limit truncate duplication to one per BB. 437 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 438 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 439 MachineBasicBlock::iterator InsertBefore, 440 MachineOperand &UseMO) { 441 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 442 if (PreviouslyEmitted) { 443 Observer.changingInstr(*UseMO.getParent()); 444 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 445 Observer.changedInstr(*UseMO.getParent()); 446 return; 447 } 448 449 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 450 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 451 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 452 EmittedInsns[InsertIntoBB] = NewMI; 453 replaceRegOpWith(MRI, UseMO, NewDstReg); 454 }; 455 456 Observer.changingInstr(MI); 457 MI.setDesc( 458 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 459 ? TargetOpcode::G_SEXTLOAD 460 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 461 ? TargetOpcode::G_ZEXTLOAD 462 : TargetOpcode::G_LOAD)); 463 464 // Rewrite all the uses to fix up the types. 465 auto &LoadValue = MI.getOperand(0); 466 SmallVector<MachineOperand *, 4> Uses; 467 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 468 Uses.push_back(&UseMO); 469 470 for (auto *UseMO : Uses) { 471 MachineInstr *UseMI = UseMO->getParent(); 472 473 // If the extend is compatible with the preferred extend then we should fix 474 // up the type and extend so that it uses the preferred use. 475 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 476 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 477 Register UseDstReg = UseMI->getOperand(0).getReg(); 478 MachineOperand &UseSrcMO = UseMI->getOperand(1); 479 const LLT &UseDstTy = MRI.getType(UseDstReg); 480 if (UseDstReg != ChosenDstReg) { 481 if (Preferred.Ty == UseDstTy) { 482 // If the use has the same type as the preferred use, then merge 483 // the vregs and erase the extend. For example: 484 // %1:_(s8) = G_LOAD ... 485 // %2:_(s32) = G_SEXT %1(s8) 486 // %3:_(s32) = G_ANYEXT %1(s8) 487 // ... = ... %3(s32) 488 // rewrites to: 489 // %2:_(s32) = G_SEXTLOAD ... 490 // ... = ... %2(s32) 491 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 492 Observer.erasingInstr(*UseMO->getParent()); 493 UseMO->getParent()->eraseFromParent(); 494 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 495 // If the preferred size is smaller, then keep the extend but extend 496 // from the result of the extending load. For example: 497 // %1:_(s8) = G_LOAD ... 498 // %2:_(s32) = G_SEXT %1(s8) 499 // %3:_(s64) = G_ANYEXT %1(s8) 500 // ... = ... %3(s64) 501 /// rewrites to: 502 // %2:_(s32) = G_SEXTLOAD ... 503 // %3:_(s64) = G_ANYEXT %2:_(s32) 504 // ... = ... %3(s64) 505 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 506 } else { 507 // If the preferred size is large, then insert a truncate. For 508 // example: 509 // %1:_(s8) = G_LOAD ... 510 // %2:_(s64) = G_SEXT %1(s8) 511 // %3:_(s32) = G_ZEXT %1(s8) 512 // ... = ... %3(s32) 513 /// rewrites to: 514 // %2:_(s64) = G_SEXTLOAD ... 515 // %4:_(s8) = G_TRUNC %2:_(s32) 516 // %3:_(s64) = G_ZEXT %2:_(s8) 517 // ... = ... %3(s64) 518 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 519 InsertTruncAt); 520 } 521 continue; 522 } 523 // The use is (one of) the uses of the preferred use we chose earlier. 524 // We're going to update the load to def this value later so just erase 525 // the old extend. 526 Observer.erasingInstr(*UseMO->getParent()); 527 UseMO->getParent()->eraseFromParent(); 528 continue; 529 } 530 531 // The use isn't an extend. Truncate back to the type we originally loaded. 532 // This is free on many targets. 533 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 534 } 535 536 MI.getOperand(0).setReg(ChosenDstReg); 537 Observer.changedInstr(MI); 538 } 539 540 bool CombinerHelper::isPredecessor(MachineInstr &DefMI, MachineInstr &UseMI) { 541 assert(DefMI.getParent() == UseMI.getParent()); 542 if (&DefMI == &UseMI) 543 return false; 544 545 // Loop through the basic block until we find one of the instructions. 546 MachineBasicBlock::const_iterator I = DefMI.getParent()->begin(); 547 for (; &*I != &DefMI && &*I != &UseMI; ++I) 548 return &*I == &DefMI; 549 550 llvm_unreachable("Block must contain instructions"); 551 } 552 553 bool CombinerHelper::dominates(MachineInstr &DefMI, MachineInstr &UseMI) { 554 if (MDT) 555 return MDT->dominates(&DefMI, &UseMI); 556 else if (DefMI.getParent() != UseMI.getParent()) 557 return false; 558 559 return isPredecessor(DefMI, UseMI); 560 } 561 562 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 563 Register &Base, Register &Offset) { 564 auto &MF = *MI.getParent()->getParent(); 565 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 566 567 #ifndef NDEBUG 568 unsigned Opcode = MI.getOpcode(); 569 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 570 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 571 #endif 572 573 Base = MI.getOperand(1).getReg(); 574 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 575 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 576 return false; 577 578 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 579 580 for (auto &Use : MRI.use_instructions(Base)) { 581 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 582 continue; 583 584 Offset = Use.getOperand(2).getReg(); 585 if (!ForceLegalIndexing && 586 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 587 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 588 << Use); 589 continue; 590 } 591 592 // Make sure the offset calculation is before the potentially indexed op. 593 // FIXME: we really care about dependency here. The offset calculation might 594 // be movable. 595 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 596 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 597 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 598 << Use); 599 continue; 600 } 601 602 // FIXME: check whether all uses of Base are load/store with foldable 603 // addressing modes. If so, using the normal addr-modes is better than 604 // forming an indexed one. 605 606 bool MemOpDominatesAddrUses = true; 607 for (auto &PtrAddUse : MRI.use_instructions(Use.getOperand(0).getReg())) { 608 if (!dominates(MI, PtrAddUse)) { 609 MemOpDominatesAddrUses = false; 610 break; 611 } 612 } 613 614 if (!MemOpDominatesAddrUses) { 615 LLVM_DEBUG( 616 dbgs() << " Ignoring candidate as memop does not dominate uses: " 617 << Use); 618 continue; 619 } 620 621 LLVM_DEBUG(dbgs() << " Found match: " << Use); 622 Addr = Use.getOperand(0).getReg(); 623 return true; 624 } 625 626 return false; 627 } 628 629 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 630 Register &Base, Register &Offset) { 631 auto &MF = *MI.getParent()->getParent(); 632 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 633 634 #ifndef NDEBUG 635 unsigned Opcode = MI.getOpcode(); 636 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 637 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 638 #endif 639 640 Addr = MI.getOperand(1).getReg(); 641 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 642 if (!AddrDef || MRI.hasOneUse(Addr)) 643 return false; 644 645 Base = AddrDef->getOperand(1).getReg(); 646 Offset = AddrDef->getOperand(2).getReg(); 647 648 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 649 650 if (!ForceLegalIndexing && 651 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 652 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 653 return false; 654 } 655 656 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 657 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 658 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 659 return false; 660 } 661 662 if (MI.getOpcode() == TargetOpcode::G_STORE) { 663 // Would require a copy. 664 if (Base == MI.getOperand(0).getReg()) { 665 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 666 return false; 667 } 668 669 // We're expecting one use of Addr in MI, but it could also be the 670 // value stored, which isn't actually dominated by the instruction. 671 if (MI.getOperand(0).getReg() == Addr) { 672 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 673 return false; 674 } 675 } 676 677 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 678 // That might allow us to end base's liveness here by adjusting the constant. 679 680 for (auto &UseMI : MRI.use_instructions(Addr)) { 681 if (!dominates(MI, UseMI)) { 682 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 683 return false; 684 } 685 } 686 687 return true; 688 } 689 690 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 691 unsigned Opcode = MI.getOpcode(); 692 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 693 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 694 return false; 695 696 bool IsStore = Opcode == TargetOpcode::G_STORE; 697 Register Addr, Base, Offset; 698 bool IsPre = findPreIndexCandidate(MI, Addr, Base, Offset); 699 if (!IsPre && !findPostIndexCandidate(MI, Addr, Base, Offset)) 700 return false; 701 702 703 unsigned NewOpcode; 704 switch (Opcode) { 705 case TargetOpcode::G_LOAD: 706 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 707 break; 708 case TargetOpcode::G_SEXTLOAD: 709 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 710 break; 711 case TargetOpcode::G_ZEXTLOAD: 712 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 713 break; 714 case TargetOpcode::G_STORE: 715 NewOpcode = TargetOpcode::G_INDEXED_STORE; 716 break; 717 default: 718 llvm_unreachable("Unknown load/store opcode"); 719 } 720 721 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(Addr); 722 MachineIRBuilder MIRBuilder(MI); 723 auto MIB = MIRBuilder.buildInstr(NewOpcode); 724 if (IsStore) { 725 MIB.addDef(Addr); 726 MIB.addUse(MI.getOperand(0).getReg()); 727 } else { 728 MIB.addDef(MI.getOperand(0).getReg()); 729 MIB.addDef(Addr); 730 } 731 732 MIB.addUse(Base); 733 MIB.addUse(Offset); 734 MIB.addImm(IsPre); 735 MI.eraseFromParent(); 736 AddrDef.eraseFromParent(); 737 738 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 739 return true; 740 } 741 742 bool CombinerHelper::matchElideBrByInvertingCond(MachineInstr &MI) { 743 if (MI.getOpcode() != TargetOpcode::G_BR) 744 return false; 745 746 // Try to match the following: 747 // bb1: 748 // %c(s32) = G_ICMP pred, %a, %b 749 // %c1(s1) = G_TRUNC %c(s32) 750 // G_BRCOND %c1, %bb2 751 // G_BR %bb3 752 // bb2: 753 // ... 754 // bb3: 755 756 // The above pattern does not have a fall through to the successor bb2, always 757 // resulting in a branch no matter which path is taken. Here we try to find 758 // and replace that pattern with conditional branch to bb3 and otherwise 759 // fallthrough to bb2. 760 761 MachineBasicBlock *MBB = MI.getParent(); 762 MachineBasicBlock::iterator BrIt(MI); 763 if (BrIt == MBB->begin()) 764 return false; 765 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 766 767 MachineInstr *BrCond = &*std::prev(BrIt); 768 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 769 return false; 770 771 // Check that the next block is the conditional branch target. 772 if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB())) 773 return false; 774 775 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 776 if (!CmpMI || CmpMI->getOpcode() != TargetOpcode::G_ICMP || 777 !MRI.hasOneUse(CmpMI->getOperand(0).getReg())) 778 return false; 779 return true; 780 } 781 782 bool CombinerHelper::tryElideBrByInvertingCond(MachineInstr &MI) { 783 if (!matchElideBrByInvertingCond(MI)) 784 return false; 785 applyElideBrByInvertingCond(MI); 786 return true; 787 } 788 789 void CombinerHelper::applyElideBrByInvertingCond(MachineInstr &MI) { 790 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 791 MachineBasicBlock::iterator BrIt(MI); 792 MachineInstr *BrCond = &*std::prev(BrIt); 793 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 794 795 CmpInst::Predicate InversePred = CmpInst::getInversePredicate( 796 (CmpInst::Predicate)CmpMI->getOperand(1).getPredicate()); 797 798 // Invert the G_ICMP condition. 799 Observer.changingInstr(*CmpMI); 800 CmpMI->getOperand(1).setPredicate(InversePred); 801 Observer.changedInstr(*CmpMI); 802 803 // Change the conditional branch target. 804 Observer.changingInstr(*BrCond); 805 BrCond->getOperand(1).setMBB(BrTarget); 806 Observer.changedInstr(*BrCond); 807 MI.eraseFromParent(); 808 } 809 810 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 811 // On Darwin, -Os means optimize for size without hurting performance, so 812 // only really optimize for size when -Oz (MinSize) is used. 813 if (MF.getTarget().getTargetTriple().isOSDarwin()) 814 return MF.getFunction().hasMinSize(); 815 return MF.getFunction().hasOptSize(); 816 } 817 818 // Returns a list of types to use for memory op lowering in MemOps. A partial 819 // port of findOptimalMemOpLowering in TargetLowering. 820 static bool findGISelOptimalMemOpLowering( 821 std::vector<LLT> &MemOps, unsigned Limit, uint64_t Size, unsigned DstAlign, 822 unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, 823 bool AllowOverlap, unsigned DstAS, unsigned SrcAS, 824 const AttributeList &FuncAttributes, const TargetLowering &TLI) { 825 // If 'SrcAlign' is zero, that means the memory operation does not need to 826 // load the value, i.e. memset or memcpy from constant string. Otherwise, 827 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 828 // is the specified alignment of the memory operation. If it is zero, that 829 // means it's possible to change the alignment of the destination. 830 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 831 // not need to be loaded. 832 if (SrcAlign != 0 && SrcAlign < DstAlign) 833 return false; 834 835 LLT Ty = TLI.getOptimalMemOpLLT(Size, DstAlign, SrcAlign, IsMemset, 836 ZeroMemset, MemcpyStrSrc, FuncAttributes); 837 838 if (Ty == LLT()) { 839 // Use the largest scalar type whose alignment constraints are satisfied. 840 // We only need to check DstAlign here as SrcAlign is always greater or 841 // equal to DstAlign (or zero). 842 Ty = LLT::scalar(64); 843 while (DstAlign && DstAlign < Ty.getSizeInBytes() && 844 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, DstAlign)) 845 Ty = LLT::scalar(Ty.getSizeInBytes()); 846 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 847 // FIXME: check for the largest legal type we can load/store to. 848 } 849 850 unsigned NumMemOps = 0; 851 while (Size != 0) { 852 unsigned TySize = Ty.getSizeInBytes(); 853 while (TySize > Size) { 854 // For now, only use non-vector load / store's for the left-over pieces. 855 LLT NewTy = Ty; 856 // FIXME: check for mem op safety and legality of the types. Not all of 857 // SDAGisms map cleanly to GISel concepts. 858 if (NewTy.isVector()) 859 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 860 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 861 unsigned NewTySize = NewTy.getSizeInBytes(); 862 assert(NewTySize > 0 && "Could not find appropriate type"); 863 864 // If the new LLT cannot cover all of the remaining bits, then consider 865 // issuing a (or a pair of) unaligned and overlapping load / store. 866 bool Fast; 867 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 868 MVT VT = getMVTForLLT(Ty); 869 if (NumMemOps && AllowOverlap && NewTySize < Size && 870 TLI.allowsMisalignedMemoryAccesses( 871 VT, DstAS, DstAlign, MachineMemOperand::MONone, &Fast) && 872 Fast) 873 TySize = Size; 874 else { 875 Ty = NewTy; 876 TySize = NewTySize; 877 } 878 } 879 880 if (++NumMemOps > Limit) 881 return false; 882 883 MemOps.push_back(Ty); 884 Size -= TySize; 885 } 886 887 return true; 888 } 889 890 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 891 if (Ty.isVector()) 892 return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 893 Ty.getNumElements()); 894 return IntegerType::get(C, Ty.getSizeInBits()); 895 } 896 897 // Get a vectorized representation of the memset value operand, GISel edition. 898 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 899 MachineRegisterInfo &MRI = *MIB.getMRI(); 900 unsigned NumBits = Ty.getScalarSizeInBits(); 901 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 902 if (!Ty.isVector() && ValVRegAndVal) { 903 unsigned KnownVal = ValVRegAndVal->Value; 904 APInt Scalar = APInt(8, KnownVal); 905 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 906 return MIB.buildConstant(Ty, SplatVal).getReg(0); 907 } 908 // FIXME: for vector types create a G_BUILD_VECTOR. 909 if (Ty.isVector()) 910 return Register(); 911 912 // Extend the byte value to the larger type, and then multiply by a magic 913 // value 0x010101... in order to replicate it across every byte. 914 LLT ExtType = Ty.getScalarType(); 915 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 916 if (NumBits > 8) { 917 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 918 auto MagicMI = MIB.buildConstant(ExtType, Magic); 919 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 920 } 921 922 assert(ExtType == Ty && "Vector memset value type not supported yet"); 923 return Val; 924 } 925 926 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, Register Val, 927 unsigned KnownLen, unsigned Align, 928 bool IsVolatile) { 929 auto &MF = *MI.getParent()->getParent(); 930 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 931 auto &DL = MF.getDataLayout(); 932 LLVMContext &C = MF.getFunction().getContext(); 933 934 assert(KnownLen != 0 && "Have a zero length memset length!"); 935 936 bool DstAlignCanChange = false; 937 MachineFrameInfo &MFI = MF.getFrameInfo(); 938 bool OptSize = shouldLowerMemFuncForSize(MF); 939 940 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 941 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 942 DstAlignCanChange = true; 943 944 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 945 std::vector<LLT> MemOps; 946 947 const auto &DstMMO = **MI.memoperands_begin(); 948 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 949 950 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 951 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 952 953 if (!findGISelOptimalMemOpLowering( 954 MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Align), 0, 955 /*IsMemset=*/true, 956 /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false, 957 /*AllowOverlap=*/!IsVolatile, DstPtrInfo.getAddrSpace(), ~0u, 958 MF.getFunction().getAttributes(), TLI)) 959 return false; 960 961 if (DstAlignCanChange) { 962 // Get an estimate of the type from the LLT. 963 Type *IRTy = getTypeForLLT(MemOps[0], C); 964 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy); 965 if (NewAlign > Align) { 966 Align = NewAlign; 967 unsigned FI = FIDef->getOperand(1).getIndex(); 968 // Give the stack frame object a larger alignment if needed. 969 if (MFI.getObjectAlignment(FI) < Align) 970 MFI.setObjectAlignment(FI, Align); 971 } 972 } 973 974 MachineIRBuilder MIB(MI); 975 // Find the largest store and generate the bit pattern for it. 976 LLT LargestTy = MemOps[0]; 977 for (unsigned i = 1; i < MemOps.size(); i++) 978 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 979 LargestTy = MemOps[i]; 980 981 // The memset stored value is always defined as an s8, so in order to make it 982 // work with larger store types we need to repeat the bit pattern across the 983 // wider type. 984 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 985 986 if (!MemSetValue) 987 return false; 988 989 // Generate the stores. For each store type in the list, we generate the 990 // matching store of that type to the destination address. 991 LLT PtrTy = MRI.getType(Dst); 992 unsigned DstOff = 0; 993 unsigned Size = KnownLen; 994 for (unsigned I = 0; I < MemOps.size(); I++) { 995 LLT Ty = MemOps[I]; 996 unsigned TySize = Ty.getSizeInBytes(); 997 if (TySize > Size) { 998 // Issuing an unaligned load / store pair that overlaps with the previous 999 // pair. Adjust the offset accordingly. 1000 assert(I == MemOps.size() - 1 && I != 0); 1001 DstOff -= TySize - Size; 1002 } 1003 1004 // If this store is smaller than the largest store see whether we can get 1005 // the smaller value for free with a truncate. 1006 Register Value = MemSetValue; 1007 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1008 MVT VT = getMVTForLLT(Ty); 1009 MVT LargestVT = getMVTForLLT(LargestTy); 1010 if (!LargestTy.isVector() && !Ty.isVector() && 1011 TLI.isTruncateFree(LargestVT, VT)) 1012 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1013 else 1014 Value = getMemsetValue(Val, Ty, MIB); 1015 if (!Value) 1016 return false; 1017 } 1018 1019 auto *StoreMMO = 1020 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1021 1022 Register Ptr = Dst; 1023 if (DstOff != 0) { 1024 auto Offset = 1025 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1026 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1027 } 1028 1029 MIB.buildStore(Value, Ptr, *StoreMMO); 1030 DstOff += Ty.getSizeInBytes(); 1031 Size -= TySize; 1032 } 1033 1034 MI.eraseFromParent(); 1035 return true; 1036 } 1037 1038 1039 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1040 Register Src, unsigned KnownLen, 1041 unsigned DstAlign, unsigned SrcAlign, 1042 bool IsVolatile) { 1043 auto &MF = *MI.getParent()->getParent(); 1044 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1045 auto &DL = MF.getDataLayout(); 1046 LLVMContext &C = MF.getFunction().getContext(); 1047 1048 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1049 1050 bool DstAlignCanChange = false; 1051 MachineFrameInfo &MFI = MF.getFrameInfo(); 1052 bool OptSize = shouldLowerMemFuncForSize(MF); 1053 unsigned Alignment = MinAlign(DstAlign, SrcAlign); 1054 1055 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1056 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1057 DstAlignCanChange = true; 1058 1059 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1060 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1061 // if the memcpy is in a tail call position. 1062 1063 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1064 std::vector<LLT> MemOps; 1065 1066 const auto &DstMMO = **MI.memoperands_begin(); 1067 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1068 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1069 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1070 1071 if (!findGISelOptimalMemOpLowering( 1072 MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Alignment), 1073 SrcAlign, 1074 /*IsMemset=*/false, 1075 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, 1076 /*AllowOverlap=*/!IsVolatile, DstPtrInfo.getAddrSpace(), 1077 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI)) 1078 return false; 1079 1080 if (DstAlignCanChange) { 1081 // Get an estimate of the type from the LLT. 1082 Type *IRTy = getTypeForLLT(MemOps[0], C); 1083 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy); 1084 1085 // Don't promote to an alignment that would require dynamic stack 1086 // realignment. 1087 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1088 if (!TRI->needsStackRealignment(MF)) 1089 while (NewAlign > Alignment && 1090 DL.exceedsNaturalStackAlignment(Align(NewAlign))) 1091 NewAlign /= 2; 1092 1093 if (NewAlign > Alignment) { 1094 Alignment = NewAlign; 1095 unsigned FI = FIDef->getOperand(1).getIndex(); 1096 // Give the stack frame object a larger alignment if needed. 1097 if (MFI.getObjectAlignment(FI) < Alignment) 1098 MFI.setObjectAlignment(FI, Alignment); 1099 } 1100 } 1101 1102 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1103 1104 MachineIRBuilder MIB(MI); 1105 // Now we need to emit a pair of load and stores for each of the types we've 1106 // collected. I.e. for each type, generate a load from the source pointer of 1107 // that type width, and then generate a corresponding store to the dest buffer 1108 // of that value loaded. This can result in a sequence of loads and stores 1109 // mixed types, depending on what the target specifies as good types to use. 1110 unsigned CurrOffset = 0; 1111 LLT PtrTy = MRI.getType(Src); 1112 unsigned Size = KnownLen; 1113 for (auto CopyTy : MemOps) { 1114 // Issuing an unaligned load / store pair that overlaps with the previous 1115 // pair. Adjust the offset accordingly. 1116 if (CopyTy.getSizeInBytes() > Size) 1117 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1118 1119 // Construct MMOs for the accesses. 1120 auto *LoadMMO = 1121 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1122 auto *StoreMMO = 1123 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1124 1125 // Create the load. 1126 Register LoadPtr = Src; 1127 Register Offset; 1128 if (CurrOffset != 0) { 1129 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1130 .getReg(0); 1131 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1132 } 1133 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1134 1135 // Create the store. 1136 Register StorePtr = 1137 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1138 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1139 CurrOffset += CopyTy.getSizeInBytes(); 1140 Size -= CopyTy.getSizeInBytes(); 1141 } 1142 1143 MI.eraseFromParent(); 1144 return true; 1145 } 1146 1147 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1148 Register Src, unsigned KnownLen, 1149 unsigned DstAlign, unsigned SrcAlign, 1150 bool IsVolatile) { 1151 auto &MF = *MI.getParent()->getParent(); 1152 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1153 auto &DL = MF.getDataLayout(); 1154 LLVMContext &C = MF.getFunction().getContext(); 1155 1156 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1157 1158 bool DstAlignCanChange = false; 1159 MachineFrameInfo &MFI = MF.getFrameInfo(); 1160 bool OptSize = shouldLowerMemFuncForSize(MF); 1161 unsigned Alignment = MinAlign(DstAlign, SrcAlign); 1162 1163 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1164 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1165 DstAlignCanChange = true; 1166 1167 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1168 std::vector<LLT> MemOps; 1169 1170 const auto &DstMMO = **MI.memoperands_begin(); 1171 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1172 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1173 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1174 1175 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1176 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1177 // same thing here. 1178 if (!findGISelOptimalMemOpLowering( 1179 MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Alignment), 1180 SrcAlign, 1181 /*IsMemset=*/false, 1182 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, 1183 /*AllowOverlap=*/false, DstPtrInfo.getAddrSpace(), 1184 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI)) 1185 return false; 1186 1187 if (DstAlignCanChange) { 1188 // Get an estimate of the type from the LLT. 1189 Type *IRTy = getTypeForLLT(MemOps[0], C); 1190 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy); 1191 1192 // Don't promote to an alignment that would require dynamic stack 1193 // realignment. 1194 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1195 if (!TRI->needsStackRealignment(MF)) 1196 while (NewAlign > Alignment && 1197 DL.exceedsNaturalStackAlignment(Align(NewAlign))) 1198 NewAlign /= 2; 1199 1200 if (NewAlign > Alignment) { 1201 Alignment = NewAlign; 1202 unsigned FI = FIDef->getOperand(1).getIndex(); 1203 // Give the stack frame object a larger alignment if needed. 1204 if (MFI.getObjectAlignment(FI) < Alignment) 1205 MFI.setObjectAlignment(FI, Alignment); 1206 } 1207 } 1208 1209 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1210 1211 MachineIRBuilder MIB(MI); 1212 // Memmove requires that we perform the loads first before issuing the stores. 1213 // Apart from that, this loop is pretty much doing the same thing as the 1214 // memcpy codegen function. 1215 unsigned CurrOffset = 0; 1216 LLT PtrTy = MRI.getType(Src); 1217 SmallVector<Register, 16> LoadVals; 1218 for (auto CopyTy : MemOps) { 1219 // Construct MMO for the load. 1220 auto *LoadMMO = 1221 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1222 1223 // Create the load. 1224 Register LoadPtr = Src; 1225 if (CurrOffset != 0) { 1226 auto Offset = 1227 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1228 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1229 } 1230 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1231 CurrOffset += CopyTy.getSizeInBytes(); 1232 } 1233 1234 CurrOffset = 0; 1235 for (unsigned I = 0; I < MemOps.size(); ++I) { 1236 LLT CopyTy = MemOps[I]; 1237 // Now store the values loaded. 1238 auto *StoreMMO = 1239 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1240 1241 Register StorePtr = Dst; 1242 if (CurrOffset != 0) { 1243 auto Offset = 1244 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1245 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1246 } 1247 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1248 CurrOffset += CopyTy.getSizeInBytes(); 1249 } 1250 MI.eraseFromParent(); 1251 return true; 1252 } 1253 1254 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1255 // This combine is fairly complex so it's not written with a separate 1256 // matcher function. 1257 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 1258 Intrinsic::ID ID = (Intrinsic::ID)MI.getIntrinsicID(); 1259 assert((ID == Intrinsic::memcpy || ID == Intrinsic::memmove || 1260 ID == Intrinsic::memset) && 1261 "Expected a memcpy like intrinsic"); 1262 1263 auto MMOIt = MI.memoperands_begin(); 1264 const MachineMemOperand *MemOp = *MMOIt; 1265 bool IsVolatile = MemOp->isVolatile(); 1266 // Don't try to optimize volatile. 1267 if (IsVolatile) 1268 return false; 1269 1270 unsigned DstAlign = MemOp->getBaseAlignment(); 1271 unsigned SrcAlign = 0; 1272 Register Dst = MI.getOperand(1).getReg(); 1273 Register Src = MI.getOperand(2).getReg(); 1274 Register Len = MI.getOperand(3).getReg(); 1275 1276 if (ID != Intrinsic::memset) { 1277 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1278 MemOp = *(++MMOIt); 1279 SrcAlign = MemOp->getBaseAlignment(); 1280 } 1281 1282 // See if this is a constant length copy 1283 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1284 if (!LenVRegAndVal) 1285 return false; // Leave it to the legalizer to lower it to a libcall. 1286 unsigned KnownLen = LenVRegAndVal->Value; 1287 1288 if (KnownLen == 0) { 1289 MI.eraseFromParent(); 1290 return true; 1291 } 1292 1293 if (MaxLen && KnownLen > MaxLen) 1294 return false; 1295 1296 if (ID == Intrinsic::memcpy) 1297 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1298 if (ID == Intrinsic::memmove) 1299 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1300 if (ID == Intrinsic::memset) 1301 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1302 return false; 1303 } 1304 1305 bool CombinerHelper::tryCombine(MachineInstr &MI) { 1306 if (tryCombineCopy(MI)) 1307 return true; 1308 if (tryCombineExtendingLoads(MI)) 1309 return true; 1310 if (tryCombineIndexedLoadStore(MI)) 1311 return true; 1312 return false; 1313 } 1314