1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 16 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/LowLevelType.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetLowering.h" 28 #include "llvm/CodeGen/TargetOpcodes.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include <tuple> 32 33 #define DEBUG_TYPE "gi-combiner" 34 35 using namespace llvm; 36 using namespace MIPatternMatch; 37 38 // Option to allow testing of the combiner while no targets know about indexed 39 // addressing. 40 static cl::opt<bool> 41 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 42 cl::desc("Force all indexed operations to be " 43 "legal for the GlobalISel combiner")); 44 45 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 46 MachineIRBuilder &B, GISelKnownBits *KB, 47 MachineDominatorTree *MDT, 48 const LegalizerInfo *LI) 49 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 50 KB(KB), MDT(MDT), LI(LI) { 51 (void)this->KB; 52 } 53 54 const TargetLowering &CombinerHelper::getTargetLowering() const { 55 return *Builder.getMF().getSubtarget().getTargetLowering(); 56 } 57 58 /// \returns The little endian in-memory byte position of byte \p I in a 59 /// \p ByteWidth bytes wide type. 60 /// 61 /// E.g. Given a 4-byte type x, x[0] -> byte 0 62 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 63 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 64 return I; 65 } 66 67 /// \returns The big endian in-memory byte position of byte \p I in a 68 /// \p ByteWidth bytes wide type. 69 /// 70 /// E.g. Given a 4-byte type x, x[0] -> byte 3 71 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 72 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 73 return ByteWidth - I - 1; 74 } 75 76 /// Given a map from byte offsets in memory to indices in a load/store, 77 /// determine if that map corresponds to a little or big endian byte pattern. 78 /// 79 /// \param MemOffset2Idx maps memory offsets to address offsets. 80 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 81 /// 82 /// \returns true if the map corresponds to a big endian byte pattern, false 83 /// if it corresponds to a little endian byte pattern, and None otherwise. 84 /// 85 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 86 /// are as follows: 87 /// 88 /// AddrOffset Little endian Big endian 89 /// 0 0 3 90 /// 1 1 2 91 /// 2 2 1 92 /// 3 3 0 93 static Optional<bool> 94 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 95 int64_t LowestIdx) { 96 // Need at least two byte positions to decide on endianness. 97 unsigned Width = MemOffset2Idx.size(); 98 if (Width < 2) 99 return None; 100 bool BigEndian = true, LittleEndian = true; 101 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 102 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 103 if (MemOffsetAndIdx == MemOffset2Idx.end()) 104 return None; 105 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 106 assert(Idx >= 0 && "Expected non-negative byte offset?"); 107 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 108 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 109 if (!BigEndian && !LittleEndian) 110 return None; 111 } 112 113 assert((BigEndian != LittleEndian) && 114 "Pattern cannot be both big and little endian!"); 115 return BigEndian; 116 } 117 118 bool CombinerHelper::isLegalOrBeforeLegalizer( 119 const LegalityQuery &Query) const { 120 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 121 } 122 123 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 124 Register ToReg) const { 125 Observer.changingAllUsesOfReg(MRI, FromReg); 126 127 if (MRI.constrainRegAttrs(ToReg, FromReg)) 128 MRI.replaceRegWith(FromReg, ToReg); 129 else 130 Builder.buildCopy(ToReg, FromReg); 131 132 Observer.finishedChangingAllUsesOfReg(); 133 } 134 135 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 136 MachineOperand &FromRegOp, 137 Register ToReg) const { 138 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 139 Observer.changingInstr(*FromRegOp.getParent()); 140 141 FromRegOp.setReg(ToReg); 142 143 Observer.changedInstr(*FromRegOp.getParent()); 144 } 145 146 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 147 if (matchCombineCopy(MI)) { 148 applyCombineCopy(MI); 149 return true; 150 } 151 return false; 152 } 153 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 154 if (MI.getOpcode() != TargetOpcode::COPY) 155 return false; 156 Register DstReg = MI.getOperand(0).getReg(); 157 Register SrcReg = MI.getOperand(1).getReg(); 158 return canReplaceReg(DstReg, SrcReg, MRI); 159 } 160 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 161 Register DstReg = MI.getOperand(0).getReg(); 162 Register SrcReg = MI.getOperand(1).getReg(); 163 MI.eraseFromParent(); 164 replaceRegWith(MRI, DstReg, SrcReg); 165 } 166 167 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 168 bool IsUndef = false; 169 SmallVector<Register, 4> Ops; 170 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 171 applyCombineConcatVectors(MI, IsUndef, Ops); 172 return true; 173 } 174 return false; 175 } 176 177 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 178 SmallVectorImpl<Register> &Ops) { 179 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 180 "Invalid instruction"); 181 IsUndef = true; 182 MachineInstr *Undef = nullptr; 183 184 // Walk over all the operands of concat vectors and check if they are 185 // build_vector themselves or undef. 186 // Then collect their operands in Ops. 187 for (const MachineOperand &MO : MI.uses()) { 188 Register Reg = MO.getReg(); 189 MachineInstr *Def = MRI.getVRegDef(Reg); 190 assert(Def && "Operand not defined"); 191 switch (Def->getOpcode()) { 192 case TargetOpcode::G_BUILD_VECTOR: 193 IsUndef = false; 194 // Remember the operands of the build_vector to fold 195 // them into the yet-to-build flattened concat vectors. 196 for (const MachineOperand &BuildVecMO : Def->uses()) 197 Ops.push_back(BuildVecMO.getReg()); 198 break; 199 case TargetOpcode::G_IMPLICIT_DEF: { 200 LLT OpType = MRI.getType(Reg); 201 // Keep one undef value for all the undef operands. 202 if (!Undef) { 203 Builder.setInsertPt(*MI.getParent(), MI); 204 Undef = Builder.buildUndef(OpType.getScalarType()); 205 } 206 assert(MRI.getType(Undef->getOperand(0).getReg()) == 207 OpType.getScalarType() && 208 "All undefs should have the same type"); 209 // Break the undef vector in as many scalar elements as needed 210 // for the flattening. 211 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 212 EltIdx != EltEnd; ++EltIdx) 213 Ops.push_back(Undef->getOperand(0).getReg()); 214 break; 215 } 216 default: 217 return false; 218 } 219 } 220 return true; 221 } 222 void CombinerHelper::applyCombineConcatVectors( 223 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 224 // We determined that the concat_vectors can be flatten. 225 // Generate the flattened build_vector. 226 Register DstReg = MI.getOperand(0).getReg(); 227 Builder.setInsertPt(*MI.getParent(), MI); 228 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 229 230 // Note: IsUndef is sort of redundant. We could have determine it by 231 // checking that at all Ops are undef. Alternatively, we could have 232 // generate a build_vector of undefs and rely on another combine to 233 // clean that up. For now, given we already gather this information 234 // in tryCombineConcatVectors, just save compile time and issue the 235 // right thing. 236 if (IsUndef) 237 Builder.buildUndef(NewDstReg); 238 else 239 Builder.buildBuildVector(NewDstReg, Ops); 240 MI.eraseFromParent(); 241 replaceRegWith(MRI, DstReg, NewDstReg); 242 } 243 244 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 245 SmallVector<Register, 4> Ops; 246 if (matchCombineShuffleVector(MI, Ops)) { 247 applyCombineShuffleVector(MI, Ops); 248 return true; 249 } 250 return false; 251 } 252 253 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 254 SmallVectorImpl<Register> &Ops) { 255 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 256 "Invalid instruction kind"); 257 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 258 Register Src1 = MI.getOperand(1).getReg(); 259 LLT SrcType = MRI.getType(Src1); 260 // As bizarre as it may look, shuffle vector can actually produce 261 // scalar! This is because at the IR level a <1 x ty> shuffle 262 // vector is perfectly valid. 263 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 264 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 265 266 // If the resulting vector is smaller than the size of the source 267 // vectors being concatenated, we won't be able to replace the 268 // shuffle vector into a concat_vectors. 269 // 270 // Note: We may still be able to produce a concat_vectors fed by 271 // extract_vector_elt and so on. It is less clear that would 272 // be better though, so don't bother for now. 273 // 274 // If the destination is a scalar, the size of the sources doesn't 275 // matter. we will lower the shuffle to a plain copy. This will 276 // work only if the source and destination have the same size. But 277 // that's covered by the next condition. 278 // 279 // TODO: If the size between the source and destination don't match 280 // we could still emit an extract vector element in that case. 281 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 282 return false; 283 284 // Check that the shuffle mask can be broken evenly between the 285 // different sources. 286 if (DstNumElts % SrcNumElts != 0) 287 return false; 288 289 // Mask length is a multiple of the source vector length. 290 // Check if the shuffle is some kind of concatenation of the input 291 // vectors. 292 unsigned NumConcat = DstNumElts / SrcNumElts; 293 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 294 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 295 for (unsigned i = 0; i != DstNumElts; ++i) { 296 int Idx = Mask[i]; 297 // Undef value. 298 if (Idx < 0) 299 continue; 300 // Ensure the indices in each SrcType sized piece are sequential and that 301 // the same source is used for the whole piece. 302 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 303 (ConcatSrcs[i / SrcNumElts] >= 0 && 304 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 305 return false; 306 // Remember which source this index came from. 307 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 308 } 309 310 // The shuffle is concatenating multiple vectors together. 311 // Collect the different operands for that. 312 Register UndefReg; 313 Register Src2 = MI.getOperand(2).getReg(); 314 for (auto Src : ConcatSrcs) { 315 if (Src < 0) { 316 if (!UndefReg) { 317 Builder.setInsertPt(*MI.getParent(), MI); 318 UndefReg = Builder.buildUndef(SrcType).getReg(0); 319 } 320 Ops.push_back(UndefReg); 321 } else if (Src == 0) 322 Ops.push_back(Src1); 323 else 324 Ops.push_back(Src2); 325 } 326 return true; 327 } 328 329 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 330 const ArrayRef<Register> Ops) { 331 Register DstReg = MI.getOperand(0).getReg(); 332 Builder.setInsertPt(*MI.getParent(), MI); 333 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 334 335 if (Ops.size() == 1) 336 Builder.buildCopy(NewDstReg, Ops[0]); 337 else 338 Builder.buildMerge(NewDstReg, Ops); 339 340 MI.eraseFromParent(); 341 replaceRegWith(MRI, DstReg, NewDstReg); 342 } 343 344 namespace { 345 346 /// Select a preference between two uses. CurrentUse is the current preference 347 /// while *ForCandidate is attributes of the candidate under consideration. 348 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 349 const LLT TyForCandidate, 350 unsigned OpcodeForCandidate, 351 MachineInstr *MIForCandidate) { 352 if (!CurrentUse.Ty.isValid()) { 353 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 354 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 355 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 356 return CurrentUse; 357 } 358 359 // We permit the extend to hoist through basic blocks but this is only 360 // sensible if the target has extending loads. If you end up lowering back 361 // into a load and extend during the legalizer then the end result is 362 // hoisting the extend up to the load. 363 364 // Prefer defined extensions to undefined extensions as these are more 365 // likely to reduce the number of instructions. 366 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 367 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 368 return CurrentUse; 369 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 370 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 371 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 372 373 // Prefer sign extensions to zero extensions as sign-extensions tend to be 374 // more expensive. 375 if (CurrentUse.Ty == TyForCandidate) { 376 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 377 OpcodeForCandidate == TargetOpcode::G_ZEXT) 378 return CurrentUse; 379 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 380 OpcodeForCandidate == TargetOpcode::G_SEXT) 381 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 382 } 383 384 // This is potentially target specific. We've chosen the largest type 385 // because G_TRUNC is usually free. One potential catch with this is that 386 // some targets have a reduced number of larger registers than smaller 387 // registers and this choice potentially increases the live-range for the 388 // larger value. 389 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 390 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 391 } 392 return CurrentUse; 393 } 394 395 /// Find a suitable place to insert some instructions and insert them. This 396 /// function accounts for special cases like inserting before a PHI node. 397 /// The current strategy for inserting before PHI's is to duplicate the 398 /// instructions for each predecessor. However, while that's ok for G_TRUNC 399 /// on most targets since it generally requires no code, other targets/cases may 400 /// want to try harder to find a dominating block. 401 static void InsertInsnsWithoutSideEffectsBeforeUse( 402 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 403 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 404 MachineOperand &UseMO)> 405 Inserter) { 406 MachineInstr &UseMI = *UseMO.getParent(); 407 408 MachineBasicBlock *InsertBB = UseMI.getParent(); 409 410 // If the use is a PHI then we want the predecessor block instead. 411 if (UseMI.isPHI()) { 412 MachineOperand *PredBB = std::next(&UseMO); 413 InsertBB = PredBB->getMBB(); 414 } 415 416 // If the block is the same block as the def then we want to insert just after 417 // the def instead of at the start of the block. 418 if (InsertBB == DefMI.getParent()) { 419 MachineBasicBlock::iterator InsertPt = &DefMI; 420 Inserter(InsertBB, std::next(InsertPt), UseMO); 421 return; 422 } 423 424 // Otherwise we want the start of the BB 425 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 426 } 427 } // end anonymous namespace 428 429 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 430 PreferredTuple Preferred; 431 if (matchCombineExtendingLoads(MI, Preferred)) { 432 applyCombineExtendingLoads(MI, Preferred); 433 return true; 434 } 435 return false; 436 } 437 438 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 439 PreferredTuple &Preferred) { 440 // We match the loads and follow the uses to the extend instead of matching 441 // the extends and following the def to the load. This is because the load 442 // must remain in the same position for correctness (unless we also add code 443 // to find a safe place to sink it) whereas the extend is freely movable. 444 // It also prevents us from duplicating the load for the volatile case or just 445 // for performance. 446 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 447 if (!LoadMI) 448 return false; 449 450 Register LoadReg = LoadMI->getDstReg(); 451 452 LLT LoadValueTy = MRI.getType(LoadReg); 453 if (!LoadValueTy.isScalar()) 454 return false; 455 456 // Most architectures are going to legalize <s8 loads into at least a 1 byte 457 // load, and the MMOs can only describe memory accesses in multiples of bytes. 458 // If we try to perform extload combining on those, we can end up with 459 // %a(s8) = extload %ptr (load 1 byte from %ptr) 460 // ... which is an illegal extload instruction. 461 if (LoadValueTy.getSizeInBits() < 8) 462 return false; 463 464 // For non power-of-2 types, they will very likely be legalized into multiple 465 // loads. Don't bother trying to match them into extending loads. 466 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 467 return false; 468 469 // Find the preferred type aside from the any-extends (unless it's the only 470 // one) and non-extending ops. We'll emit an extending load to that type and 471 // and emit a variant of (extend (trunc X)) for the others according to the 472 // relative type sizes. At the same time, pick an extend to use based on the 473 // extend involved in the chosen type. 474 unsigned PreferredOpcode = 475 isa<GLoad>(&MI) 476 ? TargetOpcode::G_ANYEXT 477 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 478 Preferred = {LLT(), PreferredOpcode, nullptr}; 479 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 480 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 481 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 482 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 483 const auto &MMO = LoadMI->getMMO(); 484 // For atomics, only form anyextending loads. 485 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 486 continue; 487 // Check for legality. 488 if (LI) { 489 LegalityQuery::MemDesc MMDesc; 490 MMDesc.MemoryTy = MMO.getMemoryType(); 491 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 492 MMDesc.Ordering = MMO.getSuccessOrdering(); 493 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 494 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 495 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 496 .Action != LegalizeActions::Legal) 497 continue; 498 } 499 Preferred = ChoosePreferredUse(Preferred, 500 MRI.getType(UseMI.getOperand(0).getReg()), 501 UseMI.getOpcode(), &UseMI); 502 } 503 } 504 505 // There were no extends 506 if (!Preferred.MI) 507 return false; 508 // It should be impossible to chose an extend without selecting a different 509 // type since by definition the result of an extend is larger. 510 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 511 512 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 513 return true; 514 } 515 516 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 517 PreferredTuple &Preferred) { 518 // Rewrite the load to the chosen extending load. 519 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 520 521 // Inserter to insert a truncate back to the original type at a given point 522 // with some basic CSE to limit truncate duplication to one per BB. 523 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 524 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 525 MachineBasicBlock::iterator InsertBefore, 526 MachineOperand &UseMO) { 527 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 528 if (PreviouslyEmitted) { 529 Observer.changingInstr(*UseMO.getParent()); 530 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 531 Observer.changedInstr(*UseMO.getParent()); 532 return; 533 } 534 535 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 536 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 537 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 538 EmittedInsns[InsertIntoBB] = NewMI; 539 replaceRegOpWith(MRI, UseMO, NewDstReg); 540 }; 541 542 Observer.changingInstr(MI); 543 MI.setDesc( 544 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 545 ? TargetOpcode::G_SEXTLOAD 546 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 547 ? TargetOpcode::G_ZEXTLOAD 548 : TargetOpcode::G_LOAD)); 549 550 // Rewrite all the uses to fix up the types. 551 auto &LoadValue = MI.getOperand(0); 552 SmallVector<MachineOperand *, 4> Uses; 553 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 554 Uses.push_back(&UseMO); 555 556 for (auto *UseMO : Uses) { 557 MachineInstr *UseMI = UseMO->getParent(); 558 559 // If the extend is compatible with the preferred extend then we should fix 560 // up the type and extend so that it uses the preferred use. 561 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 562 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 563 Register UseDstReg = UseMI->getOperand(0).getReg(); 564 MachineOperand &UseSrcMO = UseMI->getOperand(1); 565 const LLT UseDstTy = MRI.getType(UseDstReg); 566 if (UseDstReg != ChosenDstReg) { 567 if (Preferred.Ty == UseDstTy) { 568 // If the use has the same type as the preferred use, then merge 569 // the vregs and erase the extend. For example: 570 // %1:_(s8) = G_LOAD ... 571 // %2:_(s32) = G_SEXT %1(s8) 572 // %3:_(s32) = G_ANYEXT %1(s8) 573 // ... = ... %3(s32) 574 // rewrites to: 575 // %2:_(s32) = G_SEXTLOAD ... 576 // ... = ... %2(s32) 577 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 578 Observer.erasingInstr(*UseMO->getParent()); 579 UseMO->getParent()->eraseFromParent(); 580 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 581 // If the preferred size is smaller, then keep the extend but extend 582 // from the result of the extending load. For example: 583 // %1:_(s8) = G_LOAD ... 584 // %2:_(s32) = G_SEXT %1(s8) 585 // %3:_(s64) = G_ANYEXT %1(s8) 586 // ... = ... %3(s64) 587 /// rewrites to: 588 // %2:_(s32) = G_SEXTLOAD ... 589 // %3:_(s64) = G_ANYEXT %2:_(s32) 590 // ... = ... %3(s64) 591 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 592 } else { 593 // If the preferred size is large, then insert a truncate. For 594 // example: 595 // %1:_(s8) = G_LOAD ... 596 // %2:_(s64) = G_SEXT %1(s8) 597 // %3:_(s32) = G_ZEXT %1(s8) 598 // ... = ... %3(s32) 599 /// rewrites to: 600 // %2:_(s64) = G_SEXTLOAD ... 601 // %4:_(s8) = G_TRUNC %2:_(s32) 602 // %3:_(s64) = G_ZEXT %2:_(s8) 603 // ... = ... %3(s64) 604 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 605 InsertTruncAt); 606 } 607 continue; 608 } 609 // The use is (one of) the uses of the preferred use we chose earlier. 610 // We're going to update the load to def this value later so just erase 611 // the old extend. 612 Observer.erasingInstr(*UseMO->getParent()); 613 UseMO->getParent()->eraseFromParent(); 614 continue; 615 } 616 617 // The use isn't an extend. Truncate back to the type we originally loaded. 618 // This is free on many targets. 619 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 620 } 621 622 MI.getOperand(0).setReg(ChosenDstReg); 623 Observer.changedInstr(MI); 624 } 625 626 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 627 const MachineInstr &UseMI) { 628 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 629 "shouldn't consider debug uses"); 630 assert(DefMI.getParent() == UseMI.getParent()); 631 if (&DefMI == &UseMI) 632 return false; 633 const MachineBasicBlock &MBB = *DefMI.getParent(); 634 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 635 return &MI == &DefMI || &MI == &UseMI; 636 }); 637 if (DefOrUse == MBB.end()) 638 llvm_unreachable("Block must contain both DefMI and UseMI!"); 639 return &*DefOrUse == &DefMI; 640 } 641 642 bool CombinerHelper::dominates(const MachineInstr &DefMI, 643 const MachineInstr &UseMI) { 644 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 645 "shouldn't consider debug uses"); 646 if (MDT) 647 return MDT->dominates(&DefMI, &UseMI); 648 else if (DefMI.getParent() != UseMI.getParent()) 649 return false; 650 651 return isPredecessor(DefMI, UseMI); 652 } 653 654 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 655 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 656 Register SrcReg = MI.getOperand(1).getReg(); 657 Register LoadUser = SrcReg; 658 659 if (MRI.getType(SrcReg).isVector()) 660 return false; 661 662 Register TruncSrc; 663 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 664 LoadUser = TruncSrc; 665 666 uint64_t SizeInBits = MI.getOperand(2).getImm(); 667 // If the source is a G_SEXTLOAD from the same bit width, then we don't 668 // need any extend at all, just a truncate. 669 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 670 // If truncating more than the original extended value, abort. 671 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 672 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 673 return false; 674 if (LoadSizeBits == SizeInBits) 675 return true; 676 } 677 return false; 678 } 679 680 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 681 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 682 Builder.setInstrAndDebugLoc(MI); 683 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 684 MI.eraseFromParent(); 685 } 686 687 bool CombinerHelper::matchSextInRegOfLoad( 688 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 689 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 690 691 // Only supports scalars for now. 692 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 693 return false; 694 695 Register SrcReg = MI.getOperand(1).getReg(); 696 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 697 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || 698 !LoadDef->isSimple()) 699 return false; 700 701 // If the sign extend extends from a narrower width than the load's width, 702 // then we can narrow the load width when we combine to a G_SEXTLOAD. 703 // Avoid widening the load at all. 704 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), 705 LoadDef->getMemSizeInBits()); 706 707 // Don't generate G_SEXTLOADs with a < 1 byte width. 708 if (NewSizeBits < 8) 709 return false; 710 // Don't bother creating a non-power-2 sextload, it will likely be broken up 711 // anyway for most targets. 712 if (!isPowerOf2_32(NewSizeBits)) 713 return false; 714 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 715 return true; 716 } 717 718 void CombinerHelper::applySextInRegOfLoad( 719 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 720 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 721 Register LoadReg; 722 unsigned ScalarSizeBits; 723 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 724 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 725 726 // If we have the following: 727 // %ld = G_LOAD %ptr, (load 2) 728 // %ext = G_SEXT_INREG %ld, 8 729 // ==> 730 // %ld = G_SEXTLOAD %ptr (load 1) 731 732 auto &MMO = LoadDef->getMMO(); 733 Builder.setInstrAndDebugLoc(*LoadDef); 734 auto &MF = Builder.getMF(); 735 auto PtrInfo = MMO.getPointerInfo(); 736 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 737 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 738 LoadDef->getPointerReg(), *NewMMO); 739 MI.eraseFromParent(); 740 } 741 742 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 743 Register &Base, Register &Offset) { 744 auto &MF = *MI.getParent()->getParent(); 745 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 746 747 #ifndef NDEBUG 748 unsigned Opcode = MI.getOpcode(); 749 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 750 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 751 #endif 752 753 Base = MI.getOperand(1).getReg(); 754 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 755 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 756 return false; 757 758 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 759 // FIXME: The following use traversal needs a bail out for patholigical cases. 760 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 761 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 762 continue; 763 764 Offset = Use.getOperand(2).getReg(); 765 if (!ForceLegalIndexing && 766 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 767 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 768 << Use); 769 continue; 770 } 771 772 // Make sure the offset calculation is before the potentially indexed op. 773 // FIXME: we really care about dependency here. The offset calculation might 774 // be movable. 775 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 776 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 777 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 778 << Use); 779 continue; 780 } 781 782 // FIXME: check whether all uses of Base are load/store with foldable 783 // addressing modes. If so, using the normal addr-modes is better than 784 // forming an indexed one. 785 786 bool MemOpDominatesAddrUses = true; 787 for (auto &PtrAddUse : 788 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 789 if (!dominates(MI, PtrAddUse)) { 790 MemOpDominatesAddrUses = false; 791 break; 792 } 793 } 794 795 if (!MemOpDominatesAddrUses) { 796 LLVM_DEBUG( 797 dbgs() << " Ignoring candidate as memop does not dominate uses: " 798 << Use); 799 continue; 800 } 801 802 LLVM_DEBUG(dbgs() << " Found match: " << Use); 803 Addr = Use.getOperand(0).getReg(); 804 return true; 805 } 806 807 return false; 808 } 809 810 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 811 Register &Base, Register &Offset) { 812 auto &MF = *MI.getParent()->getParent(); 813 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 814 815 #ifndef NDEBUG 816 unsigned Opcode = MI.getOpcode(); 817 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 818 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 819 #endif 820 821 Addr = MI.getOperand(1).getReg(); 822 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 823 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 824 return false; 825 826 Base = AddrDef->getOperand(1).getReg(); 827 Offset = AddrDef->getOperand(2).getReg(); 828 829 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 830 831 if (!ForceLegalIndexing && 832 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 833 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 834 return false; 835 } 836 837 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 838 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 839 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 840 return false; 841 } 842 843 if (MI.getOpcode() == TargetOpcode::G_STORE) { 844 // Would require a copy. 845 if (Base == MI.getOperand(0).getReg()) { 846 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 847 return false; 848 } 849 850 // We're expecting one use of Addr in MI, but it could also be the 851 // value stored, which isn't actually dominated by the instruction. 852 if (MI.getOperand(0).getReg() == Addr) { 853 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 854 return false; 855 } 856 } 857 858 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 859 // That might allow us to end base's liveness here by adjusting the constant. 860 861 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 862 if (!dominates(MI, UseMI)) { 863 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 864 return false; 865 } 866 } 867 868 return true; 869 } 870 871 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 872 IndexedLoadStoreMatchInfo MatchInfo; 873 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 874 applyCombineIndexedLoadStore(MI, MatchInfo); 875 return true; 876 } 877 return false; 878 } 879 880 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 881 unsigned Opcode = MI.getOpcode(); 882 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 883 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 884 return false; 885 886 // For now, no targets actually support these opcodes so don't waste time 887 // running these unless we're forced to for testing. 888 if (!ForceLegalIndexing) 889 return false; 890 891 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 892 MatchInfo.Offset); 893 if (!MatchInfo.IsPre && 894 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 895 MatchInfo.Offset)) 896 return false; 897 898 return true; 899 } 900 901 void CombinerHelper::applyCombineIndexedLoadStore( 902 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 903 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 904 MachineIRBuilder MIRBuilder(MI); 905 unsigned Opcode = MI.getOpcode(); 906 bool IsStore = Opcode == TargetOpcode::G_STORE; 907 unsigned NewOpcode; 908 switch (Opcode) { 909 case TargetOpcode::G_LOAD: 910 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 911 break; 912 case TargetOpcode::G_SEXTLOAD: 913 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 914 break; 915 case TargetOpcode::G_ZEXTLOAD: 916 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 917 break; 918 case TargetOpcode::G_STORE: 919 NewOpcode = TargetOpcode::G_INDEXED_STORE; 920 break; 921 default: 922 llvm_unreachable("Unknown load/store opcode"); 923 } 924 925 auto MIB = MIRBuilder.buildInstr(NewOpcode); 926 if (IsStore) { 927 MIB.addDef(MatchInfo.Addr); 928 MIB.addUse(MI.getOperand(0).getReg()); 929 } else { 930 MIB.addDef(MI.getOperand(0).getReg()); 931 MIB.addDef(MatchInfo.Addr); 932 } 933 934 MIB.addUse(MatchInfo.Base); 935 MIB.addUse(MatchInfo.Offset); 936 MIB.addImm(MatchInfo.IsPre); 937 MI.eraseFromParent(); 938 AddrDef.eraseFromParent(); 939 940 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 941 } 942 943 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 944 MachineInstr *&OtherMI) { 945 unsigned Opcode = MI.getOpcode(); 946 bool IsDiv, IsSigned; 947 948 switch (Opcode) { 949 default: 950 llvm_unreachable("Unexpected opcode!"); 951 case TargetOpcode::G_SDIV: 952 case TargetOpcode::G_UDIV: { 953 IsDiv = true; 954 IsSigned = Opcode == TargetOpcode::G_SDIV; 955 break; 956 } 957 case TargetOpcode::G_SREM: 958 case TargetOpcode::G_UREM: { 959 IsDiv = false; 960 IsSigned = Opcode == TargetOpcode::G_SREM; 961 break; 962 } 963 } 964 965 Register Src1 = MI.getOperand(1).getReg(); 966 unsigned DivOpcode, RemOpcode, DivremOpcode; 967 if (IsSigned) { 968 DivOpcode = TargetOpcode::G_SDIV; 969 RemOpcode = TargetOpcode::G_SREM; 970 DivremOpcode = TargetOpcode::G_SDIVREM; 971 } else { 972 DivOpcode = TargetOpcode::G_UDIV; 973 RemOpcode = TargetOpcode::G_UREM; 974 DivremOpcode = TargetOpcode::G_UDIVREM; 975 } 976 977 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 978 return false; 979 980 // Combine: 981 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 982 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 983 // into: 984 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 985 986 // Combine: 987 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 988 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 989 // into: 990 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 991 992 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 993 if (MI.getParent() == UseMI.getParent() && 994 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 995 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 996 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 997 OtherMI = &UseMI; 998 return true; 999 } 1000 } 1001 1002 return false; 1003 } 1004 1005 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1006 MachineInstr *&OtherMI) { 1007 unsigned Opcode = MI.getOpcode(); 1008 assert(OtherMI && "OtherMI shouldn't be empty."); 1009 1010 Register DestDivReg, DestRemReg; 1011 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1012 DestDivReg = MI.getOperand(0).getReg(); 1013 DestRemReg = OtherMI->getOperand(0).getReg(); 1014 } else { 1015 DestDivReg = OtherMI->getOperand(0).getReg(); 1016 DestRemReg = MI.getOperand(0).getReg(); 1017 } 1018 1019 bool IsSigned = 1020 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1021 1022 // Check which instruction is first in the block so we don't break def-use 1023 // deps by "moving" the instruction incorrectly. 1024 if (dominates(MI, *OtherMI)) 1025 Builder.setInstrAndDebugLoc(MI); 1026 else 1027 Builder.setInstrAndDebugLoc(*OtherMI); 1028 1029 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1030 : TargetOpcode::G_UDIVREM, 1031 {DestDivReg, DestRemReg}, 1032 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1033 MI.eraseFromParent(); 1034 OtherMI->eraseFromParent(); 1035 } 1036 1037 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1038 MachineInstr *&BrCond) { 1039 assert(MI.getOpcode() == TargetOpcode::G_BR); 1040 1041 // Try to match the following: 1042 // bb1: 1043 // G_BRCOND %c1, %bb2 1044 // G_BR %bb3 1045 // bb2: 1046 // ... 1047 // bb3: 1048 1049 // The above pattern does not have a fall through to the successor bb2, always 1050 // resulting in a branch no matter which path is taken. Here we try to find 1051 // and replace that pattern with conditional branch to bb3 and otherwise 1052 // fallthrough to bb2. This is generally better for branch predictors. 1053 1054 MachineBasicBlock *MBB = MI.getParent(); 1055 MachineBasicBlock::iterator BrIt(MI); 1056 if (BrIt == MBB->begin()) 1057 return false; 1058 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1059 1060 BrCond = &*std::prev(BrIt); 1061 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1062 return false; 1063 1064 // Check that the next block is the conditional branch target. Also make sure 1065 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1066 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1067 return BrCondTarget != MI.getOperand(0).getMBB() && 1068 MBB->isLayoutSuccessor(BrCondTarget); 1069 } 1070 1071 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1072 MachineInstr *&BrCond) { 1073 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1074 Builder.setInstrAndDebugLoc(*BrCond); 1075 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1076 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1077 // this to i1 only since we might not know for sure what kind of 1078 // compare generated the condition value. 1079 auto True = Builder.buildConstant( 1080 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1081 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1082 1083 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1084 Observer.changingInstr(MI); 1085 MI.getOperand(0).setMBB(FallthroughBB); 1086 Observer.changedInstr(MI); 1087 1088 // Change the conditional branch to use the inverted condition and 1089 // new target block. 1090 Observer.changingInstr(*BrCond); 1091 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1092 BrCond->getOperand(1).setMBB(BrTarget); 1093 Observer.changedInstr(*BrCond); 1094 } 1095 1096 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 1097 // On Darwin, -Os means optimize for size without hurting performance, so 1098 // only really optimize for size when -Oz (MinSize) is used. 1099 if (MF.getTarget().getTargetTriple().isOSDarwin()) 1100 return MF.getFunction().hasMinSize(); 1101 return MF.getFunction().hasOptSize(); 1102 } 1103 1104 // Returns a list of types to use for memory op lowering in MemOps. A partial 1105 // port of findOptimalMemOpLowering in TargetLowering. 1106 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 1107 unsigned Limit, const MemOp &Op, 1108 unsigned DstAS, unsigned SrcAS, 1109 const AttributeList &FuncAttributes, 1110 const TargetLowering &TLI) { 1111 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 1112 return false; 1113 1114 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 1115 1116 if (Ty == LLT()) { 1117 // Use the largest scalar type whose alignment constraints are satisfied. 1118 // We only need to check DstAlign here as SrcAlign is always greater or 1119 // equal to DstAlign (or zero). 1120 Ty = LLT::scalar(64); 1121 if (Op.isFixedDstAlign()) 1122 while (Op.getDstAlign() < Ty.getSizeInBytes() && 1123 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 1124 Ty = LLT::scalar(Ty.getSizeInBytes()); 1125 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 1126 // FIXME: check for the largest legal type we can load/store to. 1127 } 1128 1129 unsigned NumMemOps = 0; 1130 uint64_t Size = Op.size(); 1131 while (Size) { 1132 unsigned TySize = Ty.getSizeInBytes(); 1133 while (TySize > Size) { 1134 // For now, only use non-vector load / store's for the left-over pieces. 1135 LLT NewTy = Ty; 1136 // FIXME: check for mem op safety and legality of the types. Not all of 1137 // SDAGisms map cleanly to GISel concepts. 1138 if (NewTy.isVector()) 1139 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 1140 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 1141 unsigned NewTySize = NewTy.getSizeInBytes(); 1142 assert(NewTySize > 0 && "Could not find appropriate type"); 1143 1144 // If the new LLT cannot cover all of the remaining bits, then consider 1145 // issuing a (or a pair of) unaligned and overlapping load / store. 1146 bool Fast; 1147 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 1148 MVT VT = getMVTForLLT(Ty); 1149 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 1150 TLI.allowsMisalignedMemoryAccesses( 1151 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 1152 MachineMemOperand::MONone, &Fast) && 1153 Fast) 1154 TySize = Size; 1155 else { 1156 Ty = NewTy; 1157 TySize = NewTySize; 1158 } 1159 } 1160 1161 if (++NumMemOps > Limit) 1162 return false; 1163 1164 MemOps.push_back(Ty); 1165 Size -= TySize; 1166 } 1167 1168 return true; 1169 } 1170 1171 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1172 if (Ty.isVector()) 1173 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1174 Ty.getNumElements()); 1175 return IntegerType::get(C, Ty.getSizeInBits()); 1176 } 1177 1178 // Get a vectorized representation of the memset value operand, GISel edition. 1179 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 1180 MachineRegisterInfo &MRI = *MIB.getMRI(); 1181 unsigned NumBits = Ty.getScalarSizeInBits(); 1182 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1183 if (!Ty.isVector() && ValVRegAndVal) { 1184 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 1185 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 1186 return MIB.buildConstant(Ty, SplatVal).getReg(0); 1187 } 1188 1189 // Extend the byte value to the larger type, and then multiply by a magic 1190 // value 0x010101... in order to replicate it across every byte. 1191 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 1192 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 1193 return MIB.buildConstant(Ty, 0).getReg(0); 1194 } 1195 1196 LLT ExtType = Ty.getScalarType(); 1197 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 1198 if (NumBits > 8) { 1199 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 1200 auto MagicMI = MIB.buildConstant(ExtType, Magic); 1201 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 1202 } 1203 1204 // For vector types create a G_BUILD_VECTOR. 1205 if (Ty.isVector()) 1206 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 1207 1208 return Val; 1209 } 1210 1211 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 1212 Register Val, uint64_t KnownLen, 1213 Align Alignment, bool IsVolatile) { 1214 auto &MF = *MI.getParent()->getParent(); 1215 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1216 auto &DL = MF.getDataLayout(); 1217 LLVMContext &C = MF.getFunction().getContext(); 1218 1219 assert(KnownLen != 0 && "Have a zero length memset length!"); 1220 1221 bool DstAlignCanChange = false; 1222 MachineFrameInfo &MFI = MF.getFrameInfo(); 1223 bool OptSize = shouldLowerMemFuncForSize(MF); 1224 1225 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1226 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1227 DstAlignCanChange = true; 1228 1229 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1230 std::vector<LLT> MemOps; 1231 1232 const auto &DstMMO = **MI.memoperands_begin(); 1233 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1234 1235 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1236 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1237 1238 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1239 MemOp::Set(KnownLen, DstAlignCanChange, 1240 Alignment, 1241 /*IsZeroMemset=*/IsZeroVal, 1242 /*IsVolatile=*/IsVolatile), 1243 DstPtrInfo.getAddrSpace(), ~0u, 1244 MF.getFunction().getAttributes(), TLI)) 1245 return false; 1246 1247 if (DstAlignCanChange) { 1248 // Get an estimate of the type from the LLT. 1249 Type *IRTy = getTypeForLLT(MemOps[0], C); 1250 Align NewAlign = DL.getABITypeAlign(IRTy); 1251 if (NewAlign > Alignment) { 1252 Alignment = NewAlign; 1253 unsigned FI = FIDef->getOperand(1).getIndex(); 1254 // Give the stack frame object a larger alignment if needed. 1255 if (MFI.getObjectAlign(FI) < Alignment) 1256 MFI.setObjectAlignment(FI, Alignment); 1257 } 1258 } 1259 1260 MachineIRBuilder MIB(MI); 1261 // Find the largest store and generate the bit pattern for it. 1262 LLT LargestTy = MemOps[0]; 1263 for (unsigned i = 1; i < MemOps.size(); i++) 1264 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1265 LargestTy = MemOps[i]; 1266 1267 // The memset stored value is always defined as an s8, so in order to make it 1268 // work with larger store types we need to repeat the bit pattern across the 1269 // wider type. 1270 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1271 1272 if (!MemSetValue) 1273 return false; 1274 1275 // Generate the stores. For each store type in the list, we generate the 1276 // matching store of that type to the destination address. 1277 LLT PtrTy = MRI.getType(Dst); 1278 unsigned DstOff = 0; 1279 unsigned Size = KnownLen; 1280 for (unsigned I = 0; I < MemOps.size(); I++) { 1281 LLT Ty = MemOps[I]; 1282 unsigned TySize = Ty.getSizeInBytes(); 1283 if (TySize > Size) { 1284 // Issuing an unaligned load / store pair that overlaps with the previous 1285 // pair. Adjust the offset accordingly. 1286 assert(I == MemOps.size() - 1 && I != 0); 1287 DstOff -= TySize - Size; 1288 } 1289 1290 // If this store is smaller than the largest store see whether we can get 1291 // the smaller value for free with a truncate. 1292 Register Value = MemSetValue; 1293 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1294 MVT VT = getMVTForLLT(Ty); 1295 MVT LargestVT = getMVTForLLT(LargestTy); 1296 if (!LargestTy.isVector() && !Ty.isVector() && 1297 TLI.isTruncateFree(LargestVT, VT)) 1298 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1299 else 1300 Value = getMemsetValue(Val, Ty, MIB); 1301 if (!Value) 1302 return false; 1303 } 1304 1305 auto *StoreMMO = 1306 MF.getMachineMemOperand(&DstMMO, DstOff, Ty); 1307 1308 Register Ptr = Dst; 1309 if (DstOff != 0) { 1310 auto Offset = 1311 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1312 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1313 } 1314 1315 MIB.buildStore(Value, Ptr, *StoreMMO); 1316 DstOff += Ty.getSizeInBytes(); 1317 Size -= TySize; 1318 } 1319 1320 MI.eraseFromParent(); 1321 return true; 1322 } 1323 1324 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1325 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 1326 1327 Register Dst = MI.getOperand(0).getReg(); 1328 Register Src = MI.getOperand(1).getReg(); 1329 Register Len = MI.getOperand(2).getReg(); 1330 1331 const auto *MMOIt = MI.memoperands_begin(); 1332 const MachineMemOperand *MemOp = *MMOIt; 1333 bool IsVolatile = MemOp->isVolatile(); 1334 1335 // See if this is a constant length copy 1336 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1337 // FIXME: support dynamically sized G_MEMCPY_INLINE 1338 assert(LenVRegAndVal.hasValue() && 1339 "inline memcpy with dynamic size is not yet supported"); 1340 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 1341 if (KnownLen == 0) { 1342 MI.eraseFromParent(); 1343 return true; 1344 } 1345 1346 const auto &DstMMO = **MI.memoperands_begin(); 1347 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1348 Align DstAlign = DstMMO.getBaseAlign(); 1349 Align SrcAlign = SrcMMO.getBaseAlign(); 1350 1351 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 1352 IsVolatile); 1353 } 1354 1355 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI, Register Dst, 1356 Register Src, uint64_t KnownLen, 1357 Align DstAlign, Align SrcAlign, 1358 bool IsVolatile) { 1359 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 1360 return optimizeMemcpy(MI, Dst, Src, KnownLen, 1361 std::numeric_limits<uint64_t>::max(), DstAlign, 1362 SrcAlign, IsVolatile); 1363 } 1364 1365 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1366 Register Src, uint64_t KnownLen, 1367 uint64_t Limit, Align DstAlign, 1368 Align SrcAlign, bool IsVolatile) { 1369 auto &MF = *MI.getParent()->getParent(); 1370 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1371 auto &DL = MF.getDataLayout(); 1372 LLVMContext &C = MF.getFunction().getContext(); 1373 1374 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1375 1376 bool DstAlignCanChange = false; 1377 MachineFrameInfo &MFI = MF.getFrameInfo(); 1378 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1379 1380 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1381 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1382 DstAlignCanChange = true; 1383 1384 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1385 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1386 // if the memcpy is in a tail call position. 1387 1388 std::vector<LLT> MemOps; 1389 1390 const auto &DstMMO = **MI.memoperands_begin(); 1391 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1392 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1393 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1394 1395 if (!findGISelOptimalMemOpLowering( 1396 MemOps, Limit, 1397 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1398 IsVolatile), 1399 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1400 MF.getFunction().getAttributes(), TLI)) 1401 return false; 1402 1403 if (DstAlignCanChange) { 1404 // Get an estimate of the type from the LLT. 1405 Type *IRTy = getTypeForLLT(MemOps[0], C); 1406 Align NewAlign = DL.getABITypeAlign(IRTy); 1407 1408 // Don't promote to an alignment that would require dynamic stack 1409 // realignment. 1410 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1411 if (!TRI->hasStackRealignment(MF)) 1412 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1413 NewAlign = NewAlign / 2; 1414 1415 if (NewAlign > Alignment) { 1416 Alignment = NewAlign; 1417 unsigned FI = FIDef->getOperand(1).getIndex(); 1418 // Give the stack frame object a larger alignment if needed. 1419 if (MFI.getObjectAlign(FI) < Alignment) 1420 MFI.setObjectAlignment(FI, Alignment); 1421 } 1422 } 1423 1424 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1425 1426 MachineIRBuilder MIB(MI); 1427 // Now we need to emit a pair of load and stores for each of the types we've 1428 // collected. I.e. for each type, generate a load from the source pointer of 1429 // that type width, and then generate a corresponding store to the dest buffer 1430 // of that value loaded. This can result in a sequence of loads and stores 1431 // mixed types, depending on what the target specifies as good types to use. 1432 unsigned CurrOffset = 0; 1433 LLT PtrTy = MRI.getType(Src); 1434 unsigned Size = KnownLen; 1435 for (auto CopyTy : MemOps) { 1436 // Issuing an unaligned load / store pair that overlaps with the previous 1437 // pair. Adjust the offset accordingly. 1438 if (CopyTy.getSizeInBytes() > Size) 1439 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1440 1441 // Construct MMOs for the accesses. 1442 auto *LoadMMO = 1443 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1444 auto *StoreMMO = 1445 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1446 1447 // Create the load. 1448 Register LoadPtr = Src; 1449 Register Offset; 1450 if (CurrOffset != 0) { 1451 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1452 .getReg(0); 1453 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1454 } 1455 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1456 1457 // Create the store. 1458 Register StorePtr = 1459 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1460 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1461 CurrOffset += CopyTy.getSizeInBytes(); 1462 Size -= CopyTy.getSizeInBytes(); 1463 } 1464 1465 MI.eraseFromParent(); 1466 return true; 1467 } 1468 1469 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1470 Register Src, uint64_t KnownLen, 1471 Align DstAlign, Align SrcAlign, 1472 bool IsVolatile) { 1473 auto &MF = *MI.getParent()->getParent(); 1474 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1475 auto &DL = MF.getDataLayout(); 1476 LLVMContext &C = MF.getFunction().getContext(); 1477 1478 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1479 1480 bool DstAlignCanChange = false; 1481 MachineFrameInfo &MFI = MF.getFrameInfo(); 1482 bool OptSize = shouldLowerMemFuncForSize(MF); 1483 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1484 1485 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1486 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1487 DstAlignCanChange = true; 1488 1489 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1490 std::vector<LLT> MemOps; 1491 1492 const auto &DstMMO = **MI.memoperands_begin(); 1493 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1494 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1495 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1496 1497 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1498 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1499 // same thing here. 1500 if (!findGISelOptimalMemOpLowering( 1501 MemOps, Limit, 1502 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1503 /*IsVolatile*/ true), 1504 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1505 MF.getFunction().getAttributes(), TLI)) 1506 return false; 1507 1508 if (DstAlignCanChange) { 1509 // Get an estimate of the type from the LLT. 1510 Type *IRTy = getTypeForLLT(MemOps[0], C); 1511 Align NewAlign = DL.getABITypeAlign(IRTy); 1512 1513 // Don't promote to an alignment that would require dynamic stack 1514 // realignment. 1515 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1516 if (!TRI->hasStackRealignment(MF)) 1517 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1518 NewAlign = NewAlign / 2; 1519 1520 if (NewAlign > Alignment) { 1521 Alignment = NewAlign; 1522 unsigned FI = FIDef->getOperand(1).getIndex(); 1523 // Give the stack frame object a larger alignment if needed. 1524 if (MFI.getObjectAlign(FI) < Alignment) 1525 MFI.setObjectAlignment(FI, Alignment); 1526 } 1527 } 1528 1529 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1530 1531 MachineIRBuilder MIB(MI); 1532 // Memmove requires that we perform the loads first before issuing the stores. 1533 // Apart from that, this loop is pretty much doing the same thing as the 1534 // memcpy codegen function. 1535 unsigned CurrOffset = 0; 1536 LLT PtrTy = MRI.getType(Src); 1537 SmallVector<Register, 16> LoadVals; 1538 for (auto CopyTy : MemOps) { 1539 // Construct MMO for the load. 1540 auto *LoadMMO = 1541 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1542 1543 // Create the load. 1544 Register LoadPtr = Src; 1545 if (CurrOffset != 0) { 1546 auto Offset = 1547 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1548 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1549 } 1550 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1551 CurrOffset += CopyTy.getSizeInBytes(); 1552 } 1553 1554 CurrOffset = 0; 1555 for (unsigned I = 0; I < MemOps.size(); ++I) { 1556 LLT CopyTy = MemOps[I]; 1557 // Now store the values loaded. 1558 auto *StoreMMO = 1559 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1560 1561 Register StorePtr = Dst; 1562 if (CurrOffset != 0) { 1563 auto Offset = 1564 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1565 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1566 } 1567 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1568 CurrOffset += CopyTy.getSizeInBytes(); 1569 } 1570 MI.eraseFromParent(); 1571 return true; 1572 } 1573 1574 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1575 const unsigned Opc = MI.getOpcode(); 1576 // This combine is fairly complex so it's not written with a separate 1577 // matcher function. 1578 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 1579 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); 1580 1581 auto MMOIt = MI.memoperands_begin(); 1582 const MachineMemOperand *MemOp = *MMOIt; 1583 1584 Align DstAlign = MemOp->getBaseAlign(); 1585 Align SrcAlign; 1586 Register Dst = MI.getOperand(0).getReg(); 1587 Register Src = MI.getOperand(1).getReg(); 1588 Register Len = MI.getOperand(2).getReg(); 1589 1590 if (Opc != TargetOpcode::G_MEMSET) { 1591 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1592 MemOp = *(++MMOIt); 1593 SrcAlign = MemOp->getBaseAlign(); 1594 } 1595 1596 // See if this is a constant length copy 1597 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1598 if (!LenVRegAndVal) 1599 return false; // Leave it to the legalizer to lower it to a libcall. 1600 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 1601 1602 if (KnownLen == 0) { 1603 MI.eraseFromParent(); 1604 return true; 1605 } 1606 1607 bool IsVolatile = MemOp->isVolatile(); 1608 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 1609 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 1610 IsVolatile); 1611 1612 // Don't try to optimize volatile. 1613 if (IsVolatile) 1614 return false; 1615 1616 if (MaxLen && KnownLen > MaxLen) 1617 return false; 1618 1619 if (Opc == TargetOpcode::G_MEMCPY) { 1620 auto &MF = *MI.getParent()->getParent(); 1621 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1622 bool OptSize = shouldLowerMemFuncForSize(MF); 1623 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1624 return optimizeMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 1625 IsVolatile); 1626 } 1627 if (Opc == TargetOpcode::G_MEMMOVE) 1628 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1629 if (Opc == TargetOpcode::G_MEMSET) 1630 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1631 return false; 1632 } 1633 1634 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1635 const Register Op, 1636 const MachineRegisterInfo &MRI) { 1637 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1638 if (!MaybeCst) 1639 return None; 1640 1641 APFloat V = MaybeCst->getValueAPF(); 1642 switch (Opcode) { 1643 default: 1644 llvm_unreachable("Unexpected opcode!"); 1645 case TargetOpcode::G_FNEG: { 1646 V.changeSign(); 1647 return V; 1648 } 1649 case TargetOpcode::G_FABS: { 1650 V.clearSign(); 1651 return V; 1652 } 1653 case TargetOpcode::G_FPTRUNC: 1654 break; 1655 case TargetOpcode::G_FSQRT: { 1656 bool Unused; 1657 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1658 V = APFloat(sqrt(V.convertToDouble())); 1659 break; 1660 } 1661 case TargetOpcode::G_FLOG2: { 1662 bool Unused; 1663 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1664 V = APFloat(log2(V.convertToDouble())); 1665 break; 1666 } 1667 } 1668 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1669 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1670 // and `G_FLOG2` reach here. 1671 bool Unused; 1672 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1673 return V; 1674 } 1675 1676 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1677 Optional<APFloat> &Cst) { 1678 Register DstReg = MI.getOperand(0).getReg(); 1679 Register SrcReg = MI.getOperand(1).getReg(); 1680 LLT DstTy = MRI.getType(DstReg); 1681 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1682 return Cst.hasValue(); 1683 } 1684 1685 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1686 Optional<APFloat> &Cst) { 1687 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1688 Builder.setInstrAndDebugLoc(MI); 1689 MachineFunction &MF = Builder.getMF(); 1690 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1691 Register DstReg = MI.getOperand(0).getReg(); 1692 Builder.buildFConstant(DstReg, *FPVal); 1693 MI.eraseFromParent(); 1694 } 1695 1696 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1697 PtrAddChain &MatchInfo) { 1698 // We're trying to match the following pattern: 1699 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1700 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1701 // --> 1702 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1703 1704 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1705 return false; 1706 1707 Register Add2 = MI.getOperand(1).getReg(); 1708 Register Imm1 = MI.getOperand(2).getReg(); 1709 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1710 if (!MaybeImmVal) 1711 return false; 1712 1713 // Don't do this combine if there multiple uses of the first PTR_ADD, 1714 // since we may be able to compute the second PTR_ADD as an immediate 1715 // offset anyway. Folding the first offset into the second may cause us 1716 // to go beyond the bounds of our legal addressing modes. 1717 if (!MRI.hasOneNonDBGUse(Add2)) 1718 return false; 1719 1720 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1721 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1722 return false; 1723 1724 Register Base = Add2Def->getOperand(1).getReg(); 1725 Register Imm2 = Add2Def->getOperand(2).getReg(); 1726 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1727 if (!MaybeImm2Val) 1728 return false; 1729 1730 // Pass the combined immediate to the apply function. 1731 MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue(); 1732 MatchInfo.Base = Base; 1733 return true; 1734 } 1735 1736 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1737 PtrAddChain &MatchInfo) { 1738 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1739 MachineIRBuilder MIB(MI); 1740 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1741 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1742 Observer.changingInstr(MI); 1743 MI.getOperand(1).setReg(MatchInfo.Base); 1744 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1745 Observer.changedInstr(MI); 1746 } 1747 1748 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1749 RegisterImmPair &MatchInfo) { 1750 // We're trying to match the following pattern with any of 1751 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1752 // %t1 = SHIFT %base, G_CONSTANT imm1 1753 // %root = SHIFT %t1, G_CONSTANT imm2 1754 // --> 1755 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1756 1757 unsigned Opcode = MI.getOpcode(); 1758 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1759 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1760 Opcode == TargetOpcode::G_USHLSAT) && 1761 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1762 1763 Register Shl2 = MI.getOperand(1).getReg(); 1764 Register Imm1 = MI.getOperand(2).getReg(); 1765 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1766 if (!MaybeImmVal) 1767 return false; 1768 1769 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1770 if (Shl2Def->getOpcode() != Opcode) 1771 return false; 1772 1773 Register Base = Shl2Def->getOperand(1).getReg(); 1774 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1775 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1776 if (!MaybeImm2Val) 1777 return false; 1778 1779 // Pass the combined immediate to the apply function. 1780 MatchInfo.Imm = 1781 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1782 MatchInfo.Reg = Base; 1783 1784 // There is no simple replacement for a saturating unsigned left shift that 1785 // exceeds the scalar size. 1786 if (Opcode == TargetOpcode::G_USHLSAT && 1787 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1788 return false; 1789 1790 return true; 1791 } 1792 1793 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1794 RegisterImmPair &MatchInfo) { 1795 unsigned Opcode = MI.getOpcode(); 1796 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1797 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1798 Opcode == TargetOpcode::G_USHLSAT) && 1799 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1800 1801 Builder.setInstrAndDebugLoc(MI); 1802 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1803 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1804 auto Imm = MatchInfo.Imm; 1805 1806 if (Imm >= ScalarSizeInBits) { 1807 // Any logical shift that exceeds scalar size will produce zero. 1808 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1809 Builder.buildConstant(MI.getOperand(0), 0); 1810 MI.eraseFromParent(); 1811 return; 1812 } 1813 // Arithmetic shift and saturating signed left shift have no effect beyond 1814 // scalar size. 1815 Imm = ScalarSizeInBits - 1; 1816 } 1817 1818 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1819 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1820 Observer.changingInstr(MI); 1821 MI.getOperand(1).setReg(MatchInfo.Reg); 1822 MI.getOperand(2).setReg(NewImm); 1823 Observer.changedInstr(MI); 1824 } 1825 1826 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1827 ShiftOfShiftedLogic &MatchInfo) { 1828 // We're trying to match the following pattern with any of 1829 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1830 // with any of G_AND/G_OR/G_XOR logic instructions. 1831 // %t1 = SHIFT %X, G_CONSTANT C0 1832 // %t2 = LOGIC %t1, %Y 1833 // %root = SHIFT %t2, G_CONSTANT C1 1834 // --> 1835 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1836 // %t4 = SHIFT %Y, G_CONSTANT C1 1837 // %root = LOGIC %t3, %t4 1838 unsigned ShiftOpcode = MI.getOpcode(); 1839 assert((ShiftOpcode == TargetOpcode::G_SHL || 1840 ShiftOpcode == TargetOpcode::G_ASHR || 1841 ShiftOpcode == TargetOpcode::G_LSHR || 1842 ShiftOpcode == TargetOpcode::G_USHLSAT || 1843 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1844 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1845 1846 // Match a one-use bitwise logic op. 1847 Register LogicDest = MI.getOperand(1).getReg(); 1848 if (!MRI.hasOneNonDBGUse(LogicDest)) 1849 return false; 1850 1851 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1852 unsigned LogicOpcode = LogicMI->getOpcode(); 1853 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1854 LogicOpcode != TargetOpcode::G_XOR) 1855 return false; 1856 1857 // Find a matching one-use shift by constant. 1858 const Register C1 = MI.getOperand(2).getReg(); 1859 auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); 1860 if (!MaybeImmVal) 1861 return false; 1862 1863 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1864 1865 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1866 // Shift should match previous one and should be a one-use. 1867 if (MI->getOpcode() != ShiftOpcode || 1868 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1869 return false; 1870 1871 // Must be a constant. 1872 auto MaybeImmVal = 1873 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1874 if (!MaybeImmVal) 1875 return false; 1876 1877 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1878 return true; 1879 }; 1880 1881 // Logic ops are commutative, so check each operand for a match. 1882 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1883 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1884 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1885 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1886 uint64_t C0Val; 1887 1888 if (matchFirstShift(LogicMIOp1, C0Val)) { 1889 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1890 MatchInfo.Shift2 = LogicMIOp1; 1891 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1892 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1893 MatchInfo.Shift2 = LogicMIOp2; 1894 } else 1895 return false; 1896 1897 MatchInfo.ValSum = C0Val + C1Val; 1898 1899 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1900 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1901 return false; 1902 1903 MatchInfo.Logic = LogicMI; 1904 return true; 1905 } 1906 1907 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1908 ShiftOfShiftedLogic &MatchInfo) { 1909 unsigned Opcode = MI.getOpcode(); 1910 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1911 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1912 Opcode == TargetOpcode::G_SSHLSAT) && 1913 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1914 1915 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1916 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1917 Builder.setInstrAndDebugLoc(MI); 1918 1919 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1920 1921 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1922 Register Shift1 = 1923 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1924 1925 Register Shift2Const = MI.getOperand(2).getReg(); 1926 Register Shift2 = Builder 1927 .buildInstr(Opcode, {DestType}, 1928 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1929 .getReg(0); 1930 1931 Register Dest = MI.getOperand(0).getReg(); 1932 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1933 1934 // These were one use so it's safe to remove them. 1935 MatchInfo.Shift2->eraseFromParent(); 1936 MatchInfo.Logic->eraseFromParent(); 1937 1938 MI.eraseFromParent(); 1939 } 1940 1941 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1942 unsigned &ShiftVal) { 1943 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1944 auto MaybeImmVal = 1945 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1946 if (!MaybeImmVal) 1947 return false; 1948 1949 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1950 return (static_cast<int32_t>(ShiftVal) != -1); 1951 } 1952 1953 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1954 unsigned &ShiftVal) { 1955 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1956 MachineIRBuilder MIB(MI); 1957 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1958 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1959 Observer.changingInstr(MI); 1960 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1961 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1962 Observer.changedInstr(MI); 1963 } 1964 1965 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1966 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1967 RegisterImmPair &MatchData) { 1968 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1969 1970 Register LHS = MI.getOperand(1).getReg(); 1971 1972 Register ExtSrc; 1973 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1974 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1975 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1976 return false; 1977 1978 // TODO: Should handle vector splat. 1979 Register RHS = MI.getOperand(2).getReg(); 1980 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 1981 if (!MaybeShiftAmtVal) 1982 return false; 1983 1984 if (LI) { 1985 LLT SrcTy = MRI.getType(ExtSrc); 1986 1987 // We only really care about the legality with the shifted value. We can 1988 // pick any type the constant shift amount, so ask the target what to 1989 // use. Otherwise we would have to guess and hope it is reported as legal. 1990 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1991 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1992 return false; 1993 } 1994 1995 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1996 MatchData.Reg = ExtSrc; 1997 MatchData.Imm = ShiftAmt; 1998 1999 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 2000 return MinLeadingZeros >= ShiftAmt; 2001 } 2002 2003 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 2004 const RegisterImmPair &MatchData) { 2005 Register ExtSrcReg = MatchData.Reg; 2006 int64_t ShiftAmtVal = MatchData.Imm; 2007 2008 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 2009 Builder.setInstrAndDebugLoc(MI); 2010 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 2011 auto NarrowShift = 2012 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 2013 Builder.buildZExt(MI.getOperand(0), NarrowShift); 2014 MI.eraseFromParent(); 2015 } 2016 2017 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 2018 Register &MatchInfo) { 2019 GMerge &Merge = cast<GMerge>(MI); 2020 SmallVector<Register, 16> MergedValues; 2021 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 2022 MergedValues.emplace_back(Merge.getSourceReg(I)); 2023 2024 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 2025 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 2026 return false; 2027 2028 for (unsigned I = 0; I < MergedValues.size(); ++I) 2029 if (MergedValues[I] != Unmerge->getReg(I)) 2030 return false; 2031 2032 MatchInfo = Unmerge->getSourceReg(); 2033 return true; 2034 } 2035 2036 static Register peekThroughBitcast(Register Reg, 2037 const MachineRegisterInfo &MRI) { 2038 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 2039 ; 2040 2041 return Reg; 2042 } 2043 2044 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 2045 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2046 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2047 "Expected an unmerge"); 2048 auto &Unmerge = cast<GUnmerge>(MI); 2049 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 2050 2051 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI); 2052 if (!SrcInstr) 2053 return false; 2054 2055 // Check the source type of the merge. 2056 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 2057 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 2058 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 2059 if (SrcMergeTy != Dst0Ty && !SameSize) 2060 return false; 2061 // They are the same now (modulo a bitcast). 2062 // We can collect all the src registers. 2063 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 2064 Operands.push_back(SrcInstr->getSourceReg(Idx)); 2065 return true; 2066 } 2067 2068 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 2069 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2070 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2071 "Expected an unmerge"); 2072 assert((MI.getNumOperands() - 1 == Operands.size()) && 2073 "Not enough operands to replace all defs"); 2074 unsigned NumElems = MI.getNumOperands() - 1; 2075 2076 LLT SrcTy = MRI.getType(Operands[0]); 2077 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2078 bool CanReuseInputDirectly = DstTy == SrcTy; 2079 Builder.setInstrAndDebugLoc(MI); 2080 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2081 Register DstReg = MI.getOperand(Idx).getReg(); 2082 Register SrcReg = Operands[Idx]; 2083 if (CanReuseInputDirectly) 2084 replaceRegWith(MRI, DstReg, SrcReg); 2085 else 2086 Builder.buildCast(DstReg, SrcReg); 2087 } 2088 MI.eraseFromParent(); 2089 } 2090 2091 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 2092 SmallVectorImpl<APInt> &Csts) { 2093 unsigned SrcIdx = MI.getNumOperands() - 1; 2094 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 2095 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 2096 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 2097 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 2098 return false; 2099 // Break down the big constant in smaller ones. 2100 const MachineOperand &CstVal = SrcInstr->getOperand(1); 2101 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 2102 ? CstVal.getCImm()->getValue() 2103 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 2104 2105 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 2106 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 2107 // Unmerge a constant. 2108 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 2109 Csts.emplace_back(Val.trunc(ShiftAmt)); 2110 Val = Val.lshr(ShiftAmt); 2111 } 2112 2113 return true; 2114 } 2115 2116 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 2117 SmallVectorImpl<APInt> &Csts) { 2118 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2119 "Expected an unmerge"); 2120 assert((MI.getNumOperands() - 1 == Csts.size()) && 2121 "Not enough operands to replace all defs"); 2122 unsigned NumElems = MI.getNumOperands() - 1; 2123 Builder.setInstrAndDebugLoc(MI); 2124 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2125 Register DstReg = MI.getOperand(Idx).getReg(); 2126 Builder.buildConstant(DstReg, Csts[Idx]); 2127 } 2128 2129 MI.eraseFromParent(); 2130 } 2131 2132 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2133 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2134 "Expected an unmerge"); 2135 // Check that all the lanes are dead except the first one. 2136 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2137 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 2138 return false; 2139 } 2140 return true; 2141 } 2142 2143 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2144 Builder.setInstrAndDebugLoc(MI); 2145 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2146 // Truncating a vector is going to truncate every single lane, 2147 // whereas we want the full lowbits. 2148 // Do the operation on a scalar instead. 2149 LLT SrcTy = MRI.getType(SrcReg); 2150 if (SrcTy.isVector()) 2151 SrcReg = 2152 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 2153 2154 Register Dst0Reg = MI.getOperand(0).getReg(); 2155 LLT Dst0Ty = MRI.getType(Dst0Reg); 2156 if (Dst0Ty.isVector()) { 2157 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 2158 Builder.buildCast(Dst0Reg, MIB); 2159 } else 2160 Builder.buildTrunc(Dst0Reg, SrcReg); 2161 MI.eraseFromParent(); 2162 } 2163 2164 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 2165 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2166 "Expected an unmerge"); 2167 Register Dst0Reg = MI.getOperand(0).getReg(); 2168 LLT Dst0Ty = MRI.getType(Dst0Reg); 2169 // G_ZEXT on vector applies to each lane, so it will 2170 // affect all destinations. Therefore we won't be able 2171 // to simplify the unmerge to just the first definition. 2172 if (Dst0Ty.isVector()) 2173 return false; 2174 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2175 LLT SrcTy = MRI.getType(SrcReg); 2176 if (SrcTy.isVector()) 2177 return false; 2178 2179 Register ZExtSrcReg; 2180 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 2181 return false; 2182 2183 // Finally we can replace the first definition with 2184 // a zext of the source if the definition is big enough to hold 2185 // all of ZExtSrc bits. 2186 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2187 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 2188 } 2189 2190 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 2191 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2192 "Expected an unmerge"); 2193 2194 Register Dst0Reg = MI.getOperand(0).getReg(); 2195 2196 MachineInstr *ZExtInstr = 2197 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 2198 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 2199 "Expecting a G_ZEXT"); 2200 2201 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 2202 LLT Dst0Ty = MRI.getType(Dst0Reg); 2203 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2204 2205 Builder.setInstrAndDebugLoc(MI); 2206 2207 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 2208 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 2209 } else { 2210 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 2211 "ZExt src doesn't fit in destination"); 2212 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 2213 } 2214 2215 Register ZeroReg; 2216 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2217 if (!ZeroReg) 2218 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 2219 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 2220 } 2221 MI.eraseFromParent(); 2222 } 2223 2224 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 2225 unsigned TargetShiftSize, 2226 unsigned &ShiftVal) { 2227 assert((MI.getOpcode() == TargetOpcode::G_SHL || 2228 MI.getOpcode() == TargetOpcode::G_LSHR || 2229 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 2230 2231 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2232 if (Ty.isVector()) // TODO: 2233 return false; 2234 2235 // Don't narrow further than the requested size. 2236 unsigned Size = Ty.getSizeInBits(); 2237 if (Size <= TargetShiftSize) 2238 return false; 2239 2240 auto MaybeImmVal = 2241 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 2242 if (!MaybeImmVal) 2243 return false; 2244 2245 ShiftVal = MaybeImmVal->Value.getSExtValue(); 2246 return ShiftVal >= Size / 2 && ShiftVal < Size; 2247 } 2248 2249 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 2250 const unsigned &ShiftVal) { 2251 Register DstReg = MI.getOperand(0).getReg(); 2252 Register SrcReg = MI.getOperand(1).getReg(); 2253 LLT Ty = MRI.getType(SrcReg); 2254 unsigned Size = Ty.getSizeInBits(); 2255 unsigned HalfSize = Size / 2; 2256 assert(ShiftVal >= HalfSize); 2257 2258 LLT HalfTy = LLT::scalar(HalfSize); 2259 2260 Builder.setInstr(MI); 2261 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 2262 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 2263 2264 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2265 Register Narrowed = Unmerge.getReg(1); 2266 2267 // dst = G_LSHR s64:x, C for C >= 32 2268 // => 2269 // lo, hi = G_UNMERGE_VALUES x 2270 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 2271 2272 if (NarrowShiftAmt != 0) { 2273 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 2274 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2275 } 2276 2277 auto Zero = Builder.buildConstant(HalfTy, 0); 2278 Builder.buildMerge(DstReg, { Narrowed, Zero }); 2279 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 2280 Register Narrowed = Unmerge.getReg(0); 2281 // dst = G_SHL s64:x, C for C >= 32 2282 // => 2283 // lo, hi = G_UNMERGE_VALUES x 2284 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 2285 if (NarrowShiftAmt != 0) { 2286 Narrowed = Builder.buildShl(HalfTy, Narrowed, 2287 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2288 } 2289 2290 auto Zero = Builder.buildConstant(HalfTy, 0); 2291 Builder.buildMerge(DstReg, { Zero, Narrowed }); 2292 } else { 2293 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2294 auto Hi = Builder.buildAShr( 2295 HalfTy, Unmerge.getReg(1), 2296 Builder.buildConstant(HalfTy, HalfSize - 1)); 2297 2298 if (ShiftVal == HalfSize) { 2299 // (G_ASHR i64:x, 32) -> 2300 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 2301 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 2302 } else if (ShiftVal == Size - 1) { 2303 // Don't need a second shift. 2304 // (G_ASHR i64:x, 63) -> 2305 // %narrowed = (G_ASHR hi_32(x), 31) 2306 // G_MERGE_VALUES %narrowed, %narrowed 2307 Builder.buildMerge(DstReg, { Hi, Hi }); 2308 } else { 2309 auto Lo = Builder.buildAShr( 2310 HalfTy, Unmerge.getReg(1), 2311 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 2312 2313 // (G_ASHR i64:x, C) ->, for C >= 32 2314 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 2315 Builder.buildMerge(DstReg, { Lo, Hi }); 2316 } 2317 } 2318 2319 MI.eraseFromParent(); 2320 } 2321 2322 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 2323 unsigned TargetShiftAmount) { 2324 unsigned ShiftAmt; 2325 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 2326 applyCombineShiftToUnmerge(MI, ShiftAmt); 2327 return true; 2328 } 2329 2330 return false; 2331 } 2332 2333 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2334 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2335 Register DstReg = MI.getOperand(0).getReg(); 2336 LLT DstTy = MRI.getType(DstReg); 2337 Register SrcReg = MI.getOperand(1).getReg(); 2338 return mi_match(SrcReg, MRI, 2339 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2340 } 2341 2342 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2343 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2344 Register DstReg = MI.getOperand(0).getReg(); 2345 Builder.setInstr(MI); 2346 Builder.buildCopy(DstReg, Reg); 2347 MI.eraseFromParent(); 2348 } 2349 2350 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2351 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2352 Register SrcReg = MI.getOperand(1).getReg(); 2353 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2354 } 2355 2356 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2357 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2358 Register DstReg = MI.getOperand(0).getReg(); 2359 Builder.setInstr(MI); 2360 Builder.buildZExtOrTrunc(DstReg, Reg); 2361 MI.eraseFromParent(); 2362 } 2363 2364 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2365 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2366 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2367 Register LHS = MI.getOperand(1).getReg(); 2368 Register RHS = MI.getOperand(2).getReg(); 2369 LLT IntTy = MRI.getType(LHS); 2370 2371 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2372 // instruction. 2373 PtrReg.second = false; 2374 for (Register SrcReg : {LHS, RHS}) { 2375 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2376 // Don't handle cases where the integer is implicitly converted to the 2377 // pointer width. 2378 LLT PtrTy = MRI.getType(PtrReg.first); 2379 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2380 return true; 2381 } 2382 2383 PtrReg.second = true; 2384 } 2385 2386 return false; 2387 } 2388 2389 void CombinerHelper::applyCombineAddP2IToPtrAdd( 2390 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2391 Register Dst = MI.getOperand(0).getReg(); 2392 Register LHS = MI.getOperand(1).getReg(); 2393 Register RHS = MI.getOperand(2).getReg(); 2394 2395 const bool DoCommute = PtrReg.second; 2396 if (DoCommute) 2397 std::swap(LHS, RHS); 2398 LHS = PtrReg.first; 2399 2400 LLT PtrTy = MRI.getType(LHS); 2401 2402 Builder.setInstrAndDebugLoc(MI); 2403 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2404 Builder.buildPtrToInt(Dst, PtrAdd); 2405 MI.eraseFromParent(); 2406 } 2407 2408 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2409 int64_t &NewCst) { 2410 auto &PtrAdd = cast<GPtrAdd>(MI); 2411 Register LHS = PtrAdd.getBaseReg(); 2412 Register RHS = PtrAdd.getOffsetReg(); 2413 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2414 2415 if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { 2416 int64_t Cst; 2417 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2418 NewCst = Cst + *RHSCst; 2419 return true; 2420 } 2421 } 2422 2423 return false; 2424 } 2425 2426 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2427 int64_t &NewCst) { 2428 auto &PtrAdd = cast<GPtrAdd>(MI); 2429 Register Dst = PtrAdd.getReg(0); 2430 2431 Builder.setInstrAndDebugLoc(MI); 2432 Builder.buildConstant(Dst, NewCst); 2433 PtrAdd.eraseFromParent(); 2434 } 2435 2436 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2437 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2438 Register DstReg = MI.getOperand(0).getReg(); 2439 Register SrcReg = MI.getOperand(1).getReg(); 2440 LLT DstTy = MRI.getType(DstReg); 2441 return mi_match(SrcReg, MRI, 2442 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2443 } 2444 2445 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2446 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2447 Register DstReg = MI.getOperand(0).getReg(); 2448 Register SrcReg = MI.getOperand(1).getReg(); 2449 LLT DstTy = MRI.getType(DstReg); 2450 if (mi_match(SrcReg, MRI, 2451 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2452 unsigned DstSize = DstTy.getScalarSizeInBits(); 2453 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2454 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2455 } 2456 return false; 2457 } 2458 2459 bool CombinerHelper::matchCombineExtOfExt( 2460 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2461 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2462 MI.getOpcode() == TargetOpcode::G_SEXT || 2463 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2464 "Expected a G_[ASZ]EXT"); 2465 Register SrcReg = MI.getOperand(1).getReg(); 2466 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2467 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2468 unsigned Opc = MI.getOpcode(); 2469 unsigned SrcOpc = SrcMI->getOpcode(); 2470 if (Opc == SrcOpc || 2471 (Opc == TargetOpcode::G_ANYEXT && 2472 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2473 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2474 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2475 return true; 2476 } 2477 return false; 2478 } 2479 2480 void CombinerHelper::applyCombineExtOfExt( 2481 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2482 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2483 MI.getOpcode() == TargetOpcode::G_SEXT || 2484 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2485 "Expected a G_[ASZ]EXT"); 2486 2487 Register Reg = std::get<0>(MatchInfo); 2488 unsigned SrcExtOp = std::get<1>(MatchInfo); 2489 2490 // Combine exts with the same opcode. 2491 if (MI.getOpcode() == SrcExtOp) { 2492 Observer.changingInstr(MI); 2493 MI.getOperand(1).setReg(Reg); 2494 Observer.changedInstr(MI); 2495 return; 2496 } 2497 2498 // Combine: 2499 // - anyext([sz]ext x) to [sz]ext x 2500 // - sext(zext x) to zext x 2501 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2502 (MI.getOpcode() == TargetOpcode::G_SEXT && 2503 SrcExtOp == TargetOpcode::G_ZEXT)) { 2504 Register DstReg = MI.getOperand(0).getReg(); 2505 Builder.setInstrAndDebugLoc(MI); 2506 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2507 MI.eraseFromParent(); 2508 } 2509 } 2510 2511 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2512 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2513 Register DstReg = MI.getOperand(0).getReg(); 2514 Register SrcReg = MI.getOperand(1).getReg(); 2515 LLT DstTy = MRI.getType(DstReg); 2516 2517 Builder.setInstrAndDebugLoc(MI); 2518 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2519 MI.getFlags()); 2520 MI.eraseFromParent(); 2521 } 2522 2523 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2524 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2525 Register SrcReg = MI.getOperand(1).getReg(); 2526 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2527 } 2528 2529 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2530 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2531 Src = MI.getOperand(1).getReg(); 2532 Register AbsSrc; 2533 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2534 } 2535 2536 bool CombinerHelper::matchCombineTruncOfExt( 2537 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2538 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2539 Register SrcReg = MI.getOperand(1).getReg(); 2540 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2541 unsigned SrcOpc = SrcMI->getOpcode(); 2542 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2543 SrcOpc == TargetOpcode::G_ZEXT) { 2544 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2545 return true; 2546 } 2547 return false; 2548 } 2549 2550 void CombinerHelper::applyCombineTruncOfExt( 2551 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2552 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2553 Register SrcReg = MatchInfo.first; 2554 unsigned SrcExtOp = MatchInfo.second; 2555 Register DstReg = MI.getOperand(0).getReg(); 2556 LLT SrcTy = MRI.getType(SrcReg); 2557 LLT DstTy = MRI.getType(DstReg); 2558 if (SrcTy == DstTy) { 2559 MI.eraseFromParent(); 2560 replaceRegWith(MRI, DstReg, SrcReg); 2561 return; 2562 } 2563 Builder.setInstrAndDebugLoc(MI); 2564 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2565 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2566 else 2567 Builder.buildTrunc(DstReg, SrcReg); 2568 MI.eraseFromParent(); 2569 } 2570 2571 bool CombinerHelper::matchCombineTruncOfShl( 2572 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2573 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2574 Register DstReg = MI.getOperand(0).getReg(); 2575 Register SrcReg = MI.getOperand(1).getReg(); 2576 LLT DstTy = MRI.getType(DstReg); 2577 Register ShiftSrc; 2578 Register ShiftAmt; 2579 2580 if (MRI.hasOneNonDBGUse(SrcReg) && 2581 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2582 isLegalOrBeforeLegalizer( 2583 {TargetOpcode::G_SHL, 2584 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2585 KnownBits Known = KB->getKnownBits(ShiftAmt); 2586 unsigned Size = DstTy.getSizeInBits(); 2587 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2588 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2589 return true; 2590 } 2591 } 2592 return false; 2593 } 2594 2595 void CombinerHelper::applyCombineTruncOfShl( 2596 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2597 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2598 Register DstReg = MI.getOperand(0).getReg(); 2599 Register SrcReg = MI.getOperand(1).getReg(); 2600 LLT DstTy = MRI.getType(DstReg); 2601 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2602 2603 Register ShiftSrc = MatchInfo.first; 2604 Register ShiftAmt = MatchInfo.second; 2605 Builder.setInstrAndDebugLoc(MI); 2606 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2607 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2608 MI.eraseFromParent(); 2609 } 2610 2611 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2612 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2613 return MO.isReg() && 2614 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2615 }); 2616 } 2617 2618 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2619 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2620 return !MO.isReg() || 2621 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2622 }); 2623 } 2624 2625 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2626 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2627 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2628 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2629 } 2630 2631 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2632 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2633 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2634 MRI); 2635 } 2636 2637 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2638 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2639 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2640 MRI); 2641 } 2642 2643 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2644 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2645 if (auto MaybeCstCmp = 2646 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2647 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; 2648 return true; 2649 } 2650 return false; 2651 } 2652 2653 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2654 MI.eraseFromParent(); 2655 return true; 2656 } 2657 2658 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2659 const MachineOperand &MOP2) { 2660 if (!MOP1.isReg() || !MOP2.isReg()) 2661 return false; 2662 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2663 if (!InstAndDef1) 2664 return false; 2665 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2666 if (!InstAndDef2) 2667 return false; 2668 MachineInstr *I1 = InstAndDef1->MI; 2669 MachineInstr *I2 = InstAndDef2->MI; 2670 2671 // Handle a case like this: 2672 // 2673 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2674 // 2675 // Even though %0 and %1 are produced by the same instruction they are not 2676 // the same values. 2677 if (I1 == I2) 2678 return MOP1.getReg() == MOP2.getReg(); 2679 2680 // If we have an instruction which loads or stores, we can't guarantee that 2681 // it is identical. 2682 // 2683 // For example, we may have 2684 // 2685 // %x1 = G_LOAD %addr (load N from @somewhere) 2686 // ... 2687 // call @foo 2688 // ... 2689 // %x2 = G_LOAD %addr (load N from @somewhere) 2690 // ... 2691 // %or = G_OR %x1, %x2 2692 // 2693 // It's possible that @foo will modify whatever lives at the address we're 2694 // loading from. To be safe, let's just assume that all loads and stores 2695 // are different (unless we have something which is guaranteed to not 2696 // change.) 2697 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2698 return false; 2699 2700 // Check for physical registers on the instructions first to avoid cases 2701 // like this: 2702 // 2703 // %a = COPY $physreg 2704 // ... 2705 // SOMETHING implicit-def $physreg 2706 // ... 2707 // %b = COPY $physreg 2708 // 2709 // These copies are not equivalent. 2710 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2711 return MO.isReg() && MO.getReg().isPhysical(); 2712 })) { 2713 // Check if we have a case like this: 2714 // 2715 // %a = COPY $physreg 2716 // %b = COPY %a 2717 // 2718 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2719 // From that, we know that they must have the same value, since they must 2720 // have come from the same COPY. 2721 return I1->isIdenticalTo(*I2); 2722 } 2723 2724 // We don't have any physical registers, so we don't necessarily need the 2725 // same vreg defs. 2726 // 2727 // On the off-chance that there's some target instruction feeding into the 2728 // instruction, let's use produceSameValue instead of isIdenticalTo. 2729 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2730 // Handle instructions with multiple defs that produce same values. Values 2731 // are same for operands with same index. 2732 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2733 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2734 // I1 and I2 are different instructions but produce same values, 2735 // %1 and %6 are same, %1 and %7 are not the same value. 2736 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2737 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2738 } 2739 return false; 2740 } 2741 2742 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2743 if (!MOP.isReg()) 2744 return false; 2745 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2746 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2747 return ValAndVReg && ValAndVReg->Value == C; 2748 } 2749 2750 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2751 unsigned OpIdx) { 2752 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2753 Register OldReg = MI.getOperand(0).getReg(); 2754 Register Replacement = MI.getOperand(OpIdx).getReg(); 2755 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2756 MI.eraseFromParent(); 2757 replaceRegWith(MRI, OldReg, Replacement); 2758 return true; 2759 } 2760 2761 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2762 Register Replacement) { 2763 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2764 Register OldReg = MI.getOperand(0).getReg(); 2765 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2766 MI.eraseFromParent(); 2767 replaceRegWith(MRI, OldReg, Replacement); 2768 return true; 2769 } 2770 2771 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2772 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2773 // Match (cond ? x : x) 2774 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2775 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2776 MRI); 2777 } 2778 2779 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2780 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2781 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2782 MRI); 2783 } 2784 2785 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2786 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2787 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2788 MRI); 2789 } 2790 2791 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2792 MachineOperand &MO = MI.getOperand(OpIdx); 2793 return MO.isReg() && 2794 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2795 } 2796 2797 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2798 unsigned OpIdx) { 2799 MachineOperand &MO = MI.getOperand(OpIdx); 2800 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2801 } 2802 2803 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2804 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2805 Builder.setInstr(MI); 2806 Builder.buildFConstant(MI.getOperand(0), C); 2807 MI.eraseFromParent(); 2808 return true; 2809 } 2810 2811 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2812 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2813 Builder.setInstr(MI); 2814 Builder.buildConstant(MI.getOperand(0), C); 2815 MI.eraseFromParent(); 2816 return true; 2817 } 2818 2819 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2820 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2821 Builder.setInstr(MI); 2822 Builder.buildConstant(MI.getOperand(0), C); 2823 MI.eraseFromParent(); 2824 return true; 2825 } 2826 2827 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2828 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2829 Builder.setInstr(MI); 2830 Builder.buildUndef(MI.getOperand(0)); 2831 MI.eraseFromParent(); 2832 return true; 2833 } 2834 2835 bool CombinerHelper::matchSimplifyAddToSub( 2836 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2837 Register LHS = MI.getOperand(1).getReg(); 2838 Register RHS = MI.getOperand(2).getReg(); 2839 Register &NewLHS = std::get<0>(MatchInfo); 2840 Register &NewRHS = std::get<1>(MatchInfo); 2841 2842 // Helper lambda to check for opportunities for 2843 // ((0-A) + B) -> B - A 2844 // (A + (0-B)) -> A - B 2845 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2846 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2847 return false; 2848 NewLHS = MaybeNewLHS; 2849 return true; 2850 }; 2851 2852 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2853 } 2854 2855 bool CombinerHelper::matchCombineInsertVecElts( 2856 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2857 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2858 "Invalid opcode"); 2859 Register DstReg = MI.getOperand(0).getReg(); 2860 LLT DstTy = MRI.getType(DstReg); 2861 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2862 unsigned NumElts = DstTy.getNumElements(); 2863 // If this MI is part of a sequence of insert_vec_elts, then 2864 // don't do the combine in the middle of the sequence. 2865 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2866 TargetOpcode::G_INSERT_VECTOR_ELT) 2867 return false; 2868 MachineInstr *CurrInst = &MI; 2869 MachineInstr *TmpInst; 2870 int64_t IntImm; 2871 Register TmpReg; 2872 MatchInfo.resize(NumElts); 2873 while (mi_match( 2874 CurrInst->getOperand(0).getReg(), MRI, 2875 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2876 if (IntImm >= NumElts) 2877 return false; 2878 if (!MatchInfo[IntImm]) 2879 MatchInfo[IntImm] = TmpReg; 2880 CurrInst = TmpInst; 2881 } 2882 // Variable index. 2883 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2884 return false; 2885 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2886 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2887 if (!MatchInfo[I - 1].isValid()) 2888 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2889 } 2890 return true; 2891 } 2892 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2893 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2894 } 2895 2896 void CombinerHelper::applyCombineInsertVecElts( 2897 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2898 Builder.setInstr(MI); 2899 Register UndefReg; 2900 auto GetUndef = [&]() { 2901 if (UndefReg) 2902 return UndefReg; 2903 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2904 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2905 return UndefReg; 2906 }; 2907 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2908 if (!MatchInfo[I]) 2909 MatchInfo[I] = GetUndef(); 2910 } 2911 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2912 MI.eraseFromParent(); 2913 } 2914 2915 void CombinerHelper::applySimplifyAddToSub( 2916 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2917 Builder.setInstr(MI); 2918 Register SubLHS, SubRHS; 2919 std::tie(SubLHS, SubRHS) = MatchInfo; 2920 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2921 MI.eraseFromParent(); 2922 } 2923 2924 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2925 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2926 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2927 // 2928 // Creates the new hand + logic instruction (but does not insert them.) 2929 // 2930 // On success, MatchInfo is populated with the new instructions. These are 2931 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2932 unsigned LogicOpcode = MI.getOpcode(); 2933 assert(LogicOpcode == TargetOpcode::G_AND || 2934 LogicOpcode == TargetOpcode::G_OR || 2935 LogicOpcode == TargetOpcode::G_XOR); 2936 MachineIRBuilder MIB(MI); 2937 Register Dst = MI.getOperand(0).getReg(); 2938 Register LHSReg = MI.getOperand(1).getReg(); 2939 Register RHSReg = MI.getOperand(2).getReg(); 2940 2941 // Don't recompute anything. 2942 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2943 return false; 2944 2945 // Make sure we have (hand x, ...), (hand y, ...) 2946 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2947 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2948 if (!LeftHandInst || !RightHandInst) 2949 return false; 2950 unsigned HandOpcode = LeftHandInst->getOpcode(); 2951 if (HandOpcode != RightHandInst->getOpcode()) 2952 return false; 2953 if (!LeftHandInst->getOperand(1).isReg() || 2954 !RightHandInst->getOperand(1).isReg()) 2955 return false; 2956 2957 // Make sure the types match up, and if we're doing this post-legalization, 2958 // we end up with legal types. 2959 Register X = LeftHandInst->getOperand(1).getReg(); 2960 Register Y = RightHandInst->getOperand(1).getReg(); 2961 LLT XTy = MRI.getType(X); 2962 LLT YTy = MRI.getType(Y); 2963 if (XTy != YTy) 2964 return false; 2965 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2966 return false; 2967 2968 // Optional extra source register. 2969 Register ExtraHandOpSrcReg; 2970 switch (HandOpcode) { 2971 default: 2972 return false; 2973 case TargetOpcode::G_ANYEXT: 2974 case TargetOpcode::G_SEXT: 2975 case TargetOpcode::G_ZEXT: { 2976 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2977 break; 2978 } 2979 case TargetOpcode::G_AND: 2980 case TargetOpcode::G_ASHR: 2981 case TargetOpcode::G_LSHR: 2982 case TargetOpcode::G_SHL: { 2983 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2984 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2985 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2986 return false; 2987 ExtraHandOpSrcReg = ZOp.getReg(); 2988 break; 2989 } 2990 } 2991 2992 // Record the steps to build the new instructions. 2993 // 2994 // Steps to build (logic x, y) 2995 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2996 OperandBuildSteps LogicBuildSteps = { 2997 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2998 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2999 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 3000 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 3001 3002 // Steps to build hand (logic x, y), ...z 3003 OperandBuildSteps HandBuildSteps = { 3004 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 3005 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 3006 if (ExtraHandOpSrcReg.isValid()) 3007 HandBuildSteps.push_back( 3008 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 3009 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 3010 3011 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 3012 return true; 3013 } 3014 3015 void CombinerHelper::applyBuildInstructionSteps( 3016 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 3017 assert(MatchInfo.InstrsToBuild.size() && 3018 "Expected at least one instr to build?"); 3019 Builder.setInstr(MI); 3020 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 3021 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 3022 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 3023 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 3024 for (auto &OperandFn : InstrToBuild.OperandFns) 3025 OperandFn(Instr); 3026 } 3027 MI.eraseFromParent(); 3028 } 3029 3030 bool CombinerHelper::matchAshrShlToSextInreg( 3031 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 3032 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 3033 int64_t ShlCst, AshrCst; 3034 Register Src; 3035 // FIXME: detect splat constant vectors. 3036 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3037 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 3038 return false; 3039 if (ShlCst != AshrCst) 3040 return false; 3041 if (!isLegalOrBeforeLegalizer( 3042 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 3043 return false; 3044 MatchInfo = std::make_tuple(Src, ShlCst); 3045 return true; 3046 } 3047 3048 void CombinerHelper::applyAshShlToSextInreg( 3049 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 3050 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 3051 Register Src; 3052 int64_t ShiftAmt; 3053 std::tie(Src, ShiftAmt) = MatchInfo; 3054 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 3055 Builder.setInstrAndDebugLoc(MI); 3056 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 3057 MI.eraseFromParent(); 3058 } 3059 3060 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 3061 bool CombinerHelper::matchOverlappingAnd( 3062 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3063 assert(MI.getOpcode() == TargetOpcode::G_AND); 3064 3065 Register Dst = MI.getOperand(0).getReg(); 3066 LLT Ty = MRI.getType(Dst); 3067 3068 Register R; 3069 int64_t C1; 3070 int64_t C2; 3071 if (!mi_match( 3072 Dst, MRI, 3073 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 3074 return false; 3075 3076 MatchInfo = [=](MachineIRBuilder &B) { 3077 if (C1 & C2) { 3078 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 3079 return; 3080 } 3081 auto Zero = B.buildConstant(Ty, 0); 3082 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 3083 }; 3084 return true; 3085 } 3086 3087 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 3088 Register &Replacement) { 3089 // Given 3090 // 3091 // %y:_(sN) = G_SOMETHING 3092 // %x:_(sN) = G_SOMETHING 3093 // %res:_(sN) = G_AND %x, %y 3094 // 3095 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 3096 // 3097 // Patterns like this can appear as a result of legalization. E.g. 3098 // 3099 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 3100 // %one:_(s32) = G_CONSTANT i32 1 3101 // %and:_(s32) = G_AND %cmp, %one 3102 // 3103 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 3104 assert(MI.getOpcode() == TargetOpcode::G_AND); 3105 if (!KB) 3106 return false; 3107 3108 Register AndDst = MI.getOperand(0).getReg(); 3109 LLT DstTy = MRI.getType(AndDst); 3110 3111 // FIXME: This should be removed once GISelKnownBits supports vectors. 3112 if (DstTy.isVector()) 3113 return false; 3114 3115 Register LHS = MI.getOperand(1).getReg(); 3116 Register RHS = MI.getOperand(2).getReg(); 3117 KnownBits LHSBits = KB->getKnownBits(LHS); 3118 KnownBits RHSBits = KB->getKnownBits(RHS); 3119 3120 // Check that x & Mask == x. 3121 // x & 1 == x, always 3122 // x & 0 == x, only if x is also 0 3123 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 3124 // 3125 // Check if we can replace AndDst with the LHS of the G_AND 3126 if (canReplaceReg(AndDst, LHS, MRI) && 3127 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3128 Replacement = LHS; 3129 return true; 3130 } 3131 3132 // Check if we can replace AndDst with the RHS of the G_AND 3133 if (canReplaceReg(AndDst, RHS, MRI) && 3134 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3135 Replacement = RHS; 3136 return true; 3137 } 3138 3139 return false; 3140 } 3141 3142 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 3143 // Given 3144 // 3145 // %y:_(sN) = G_SOMETHING 3146 // %x:_(sN) = G_SOMETHING 3147 // %res:_(sN) = G_OR %x, %y 3148 // 3149 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 3150 assert(MI.getOpcode() == TargetOpcode::G_OR); 3151 if (!KB) 3152 return false; 3153 3154 Register OrDst = MI.getOperand(0).getReg(); 3155 LLT DstTy = MRI.getType(OrDst); 3156 3157 // FIXME: This should be removed once GISelKnownBits supports vectors. 3158 if (DstTy.isVector()) 3159 return false; 3160 3161 Register LHS = MI.getOperand(1).getReg(); 3162 Register RHS = MI.getOperand(2).getReg(); 3163 KnownBits LHSBits = KB->getKnownBits(LHS); 3164 KnownBits RHSBits = KB->getKnownBits(RHS); 3165 3166 // Check that x | Mask == x. 3167 // x | 0 == x, always 3168 // x | 1 == x, only if x is also 1 3169 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 3170 // 3171 // Check if we can replace OrDst with the LHS of the G_OR 3172 if (canReplaceReg(OrDst, LHS, MRI) && 3173 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3174 Replacement = LHS; 3175 return true; 3176 } 3177 3178 // Check if we can replace OrDst with the RHS of the G_OR 3179 if (canReplaceReg(OrDst, RHS, MRI) && 3180 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3181 Replacement = RHS; 3182 return true; 3183 } 3184 3185 return false; 3186 } 3187 3188 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 3189 // If the input is already sign extended, just drop the extension. 3190 Register Src = MI.getOperand(1).getReg(); 3191 unsigned ExtBits = MI.getOperand(2).getImm(); 3192 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 3193 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 3194 } 3195 3196 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 3197 int64_t Cst, bool IsVector, bool IsFP) { 3198 // For i1, Cst will always be -1 regardless of boolean contents. 3199 return (ScalarSizeBits == 1 && Cst == -1) || 3200 isConstTrueVal(TLI, Cst, IsVector, IsFP); 3201 } 3202 3203 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 3204 SmallVectorImpl<Register> &RegsToNegate) { 3205 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3206 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3207 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 3208 Register XorSrc; 3209 Register CstReg; 3210 // We match xor(src, true) here. 3211 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3212 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 3213 return false; 3214 3215 if (!MRI.hasOneNonDBGUse(XorSrc)) 3216 return false; 3217 3218 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 3219 // and ORs. The suffix of RegsToNegate starting from index I is used a work 3220 // list of tree nodes to visit. 3221 RegsToNegate.push_back(XorSrc); 3222 // Remember whether the comparisons are all integer or all floating point. 3223 bool IsInt = false; 3224 bool IsFP = false; 3225 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 3226 Register Reg = RegsToNegate[I]; 3227 if (!MRI.hasOneNonDBGUse(Reg)) 3228 return false; 3229 MachineInstr *Def = MRI.getVRegDef(Reg); 3230 switch (Def->getOpcode()) { 3231 default: 3232 // Don't match if the tree contains anything other than ANDs, ORs and 3233 // comparisons. 3234 return false; 3235 case TargetOpcode::G_ICMP: 3236 if (IsFP) 3237 return false; 3238 IsInt = true; 3239 // When we apply the combine we will invert the predicate. 3240 break; 3241 case TargetOpcode::G_FCMP: 3242 if (IsInt) 3243 return false; 3244 IsFP = true; 3245 // When we apply the combine we will invert the predicate. 3246 break; 3247 case TargetOpcode::G_AND: 3248 case TargetOpcode::G_OR: 3249 // Implement De Morgan's laws: 3250 // ~(x & y) -> ~x | ~y 3251 // ~(x | y) -> ~x & ~y 3252 // When we apply the combine we will change the opcode and recursively 3253 // negate the operands. 3254 RegsToNegate.push_back(Def->getOperand(1).getReg()); 3255 RegsToNegate.push_back(Def->getOperand(2).getReg()); 3256 break; 3257 } 3258 } 3259 3260 // Now we know whether the comparisons are integer or floating point, check 3261 // the constant in the xor. 3262 int64_t Cst; 3263 if (Ty.isVector()) { 3264 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 3265 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 3266 if (!MaybeCst) 3267 return false; 3268 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 3269 return false; 3270 } else { 3271 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 3272 return false; 3273 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 3274 return false; 3275 } 3276 3277 return true; 3278 } 3279 3280 void CombinerHelper::applyNotCmp(MachineInstr &MI, 3281 SmallVectorImpl<Register> &RegsToNegate) { 3282 for (Register Reg : RegsToNegate) { 3283 MachineInstr *Def = MRI.getVRegDef(Reg); 3284 Observer.changingInstr(*Def); 3285 // For each comparison, invert the opcode. For each AND and OR, change the 3286 // opcode. 3287 switch (Def->getOpcode()) { 3288 default: 3289 llvm_unreachable("Unexpected opcode"); 3290 case TargetOpcode::G_ICMP: 3291 case TargetOpcode::G_FCMP: { 3292 MachineOperand &PredOp = Def->getOperand(1); 3293 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 3294 (CmpInst::Predicate)PredOp.getPredicate()); 3295 PredOp.setPredicate(NewP); 3296 break; 3297 } 3298 case TargetOpcode::G_AND: 3299 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3300 break; 3301 case TargetOpcode::G_OR: 3302 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3303 break; 3304 } 3305 Observer.changedInstr(*Def); 3306 } 3307 3308 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3309 MI.eraseFromParent(); 3310 } 3311 3312 bool CombinerHelper::matchXorOfAndWithSameReg( 3313 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3314 // Match (xor (and x, y), y) (or any of its commuted cases) 3315 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3316 Register &X = MatchInfo.first; 3317 Register &Y = MatchInfo.second; 3318 Register AndReg = MI.getOperand(1).getReg(); 3319 Register SharedReg = MI.getOperand(2).getReg(); 3320 3321 // Find a G_AND on either side of the G_XOR. 3322 // Look for one of 3323 // 3324 // (xor (and x, y), SharedReg) 3325 // (xor SharedReg, (and x, y)) 3326 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3327 std::swap(AndReg, SharedReg); 3328 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3329 return false; 3330 } 3331 3332 // Only do this if we'll eliminate the G_AND. 3333 if (!MRI.hasOneNonDBGUse(AndReg)) 3334 return false; 3335 3336 // We can combine if SharedReg is the same as either the LHS or RHS of the 3337 // G_AND. 3338 if (Y != SharedReg) 3339 std::swap(X, Y); 3340 return Y == SharedReg; 3341 } 3342 3343 void CombinerHelper::applyXorOfAndWithSameReg( 3344 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3345 // Fold (xor (and x, y), y) -> (and (not x), y) 3346 Builder.setInstrAndDebugLoc(MI); 3347 Register X, Y; 3348 std::tie(X, Y) = MatchInfo; 3349 auto Not = Builder.buildNot(MRI.getType(X), X); 3350 Observer.changingInstr(MI); 3351 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3352 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3353 MI.getOperand(2).setReg(Y); 3354 Observer.changedInstr(MI); 3355 } 3356 3357 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3358 auto &PtrAdd = cast<GPtrAdd>(MI); 3359 Register DstReg = PtrAdd.getReg(0); 3360 LLT Ty = MRI.getType(DstReg); 3361 const DataLayout &DL = Builder.getMF().getDataLayout(); 3362 3363 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3364 return false; 3365 3366 if (Ty.isPointer()) { 3367 auto ConstVal = getConstantVRegVal(PtrAdd.getBaseReg(), MRI); 3368 return ConstVal && *ConstVal == 0; 3369 } 3370 3371 assert(Ty.isVector() && "Expecting a vector type"); 3372 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 3373 return isBuildVectorAllZeros(*VecMI, MRI); 3374 } 3375 3376 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3377 auto &PtrAdd = cast<GPtrAdd>(MI); 3378 Builder.setInstrAndDebugLoc(PtrAdd); 3379 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 3380 PtrAdd.eraseFromParent(); 3381 } 3382 3383 /// The second source operand is known to be a power of 2. 3384 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3385 Register DstReg = MI.getOperand(0).getReg(); 3386 Register Src0 = MI.getOperand(1).getReg(); 3387 Register Pow2Src1 = MI.getOperand(2).getReg(); 3388 LLT Ty = MRI.getType(DstReg); 3389 Builder.setInstrAndDebugLoc(MI); 3390 3391 // Fold (urem x, pow2) -> (and x, pow2-1) 3392 auto NegOne = Builder.buildConstant(Ty, -1); 3393 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3394 Builder.buildAnd(DstReg, Src0, Add); 3395 MI.eraseFromParent(); 3396 } 3397 3398 Optional<SmallVector<Register, 8>> 3399 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3400 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3401 // We want to detect if Root is part of a tree which represents a bunch 3402 // of loads being merged into a larger load. We'll try to recognize patterns 3403 // like, for example: 3404 // 3405 // Reg Reg 3406 // \ / 3407 // OR_1 Reg 3408 // \ / 3409 // OR_2 3410 // \ Reg 3411 // .. / 3412 // Root 3413 // 3414 // Reg Reg Reg Reg 3415 // \ / \ / 3416 // OR_1 OR_2 3417 // \ / 3418 // \ / 3419 // ... 3420 // Root 3421 // 3422 // Each "Reg" may have been produced by a load + some arithmetic. This 3423 // function will save each of them. 3424 SmallVector<Register, 8> RegsToVisit; 3425 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3426 3427 // In the "worst" case, we're dealing with a load for each byte. So, there 3428 // are at most #bytes - 1 ORs. 3429 const unsigned MaxIter = 3430 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3431 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3432 if (Ors.empty()) 3433 break; 3434 const MachineInstr *Curr = Ors.pop_back_val(); 3435 Register OrLHS = Curr->getOperand(1).getReg(); 3436 Register OrRHS = Curr->getOperand(2).getReg(); 3437 3438 // In the combine, we want to elimate the entire tree. 3439 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3440 return None; 3441 3442 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3443 // something that may be a load + arithmetic. 3444 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3445 Ors.push_back(Or); 3446 else 3447 RegsToVisit.push_back(OrLHS); 3448 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3449 Ors.push_back(Or); 3450 else 3451 RegsToVisit.push_back(OrRHS); 3452 } 3453 3454 // We're going to try and merge each register into a wider power-of-2 type, 3455 // so we ought to have an even number of registers. 3456 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3457 return None; 3458 return RegsToVisit; 3459 } 3460 3461 /// Helper function for findLoadOffsetsForLoadOrCombine. 3462 /// 3463 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3464 /// and then moving that value into a specific byte offset. 3465 /// 3466 /// e.g. x[i] << 24 3467 /// 3468 /// \returns The load instruction and the byte offset it is moved into. 3469 static Optional<std::pair<GZExtLoad *, int64_t>> 3470 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3471 const MachineRegisterInfo &MRI) { 3472 assert(MRI.hasOneNonDBGUse(Reg) && 3473 "Expected Reg to only have one non-debug use?"); 3474 Register MaybeLoad; 3475 int64_t Shift; 3476 if (!mi_match(Reg, MRI, 3477 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3478 Shift = 0; 3479 MaybeLoad = Reg; 3480 } 3481 3482 if (Shift % MemSizeInBits != 0) 3483 return None; 3484 3485 // TODO: Handle other types of loads. 3486 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3487 if (!Load) 3488 return None; 3489 3490 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3491 return None; 3492 3493 return std::make_pair(Load, Shift / MemSizeInBits); 3494 } 3495 3496 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3497 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3498 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3499 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3500 3501 // Each load found for the pattern. There should be one for each RegsToVisit. 3502 SmallSetVector<const MachineInstr *, 8> Loads; 3503 3504 // The lowest index used in any load. (The lowest "i" for each x[i].) 3505 int64_t LowestIdx = INT64_MAX; 3506 3507 // The load which uses the lowest index. 3508 GZExtLoad *LowestIdxLoad = nullptr; 3509 3510 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3511 SmallSet<int64_t, 8> SeenIdx; 3512 3513 // Ensure each load is in the same MBB. 3514 // TODO: Support multiple MachineBasicBlocks. 3515 MachineBasicBlock *MBB = nullptr; 3516 const MachineMemOperand *MMO = nullptr; 3517 3518 // Earliest instruction-order load in the pattern. 3519 GZExtLoad *EarliestLoad = nullptr; 3520 3521 // Latest instruction-order load in the pattern. 3522 GZExtLoad *LatestLoad = nullptr; 3523 3524 // Base pointer which every load should share. 3525 Register BasePtr; 3526 3527 // We want to find a load for each register. Each load should have some 3528 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3529 // track of the load which uses the lowest index. Later, we will check if we 3530 // can use its pointer in the final, combined load. 3531 for (auto Reg : RegsToVisit) { 3532 // Find the load, and find the position that it will end up in (e.g. a 3533 // shifted) value. 3534 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3535 if (!LoadAndPos) 3536 return None; 3537 GZExtLoad *Load; 3538 int64_t DstPos; 3539 std::tie(Load, DstPos) = *LoadAndPos; 3540 3541 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3542 // it is difficult to check for stores/calls/etc between loads. 3543 MachineBasicBlock *LoadMBB = Load->getParent(); 3544 if (!MBB) 3545 MBB = LoadMBB; 3546 if (LoadMBB != MBB) 3547 return None; 3548 3549 // Make sure that the MachineMemOperands of every seen load are compatible. 3550 auto &LoadMMO = Load->getMMO(); 3551 if (!MMO) 3552 MMO = &LoadMMO; 3553 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3554 return None; 3555 3556 // Find out what the base pointer and index for the load is. 3557 Register LoadPtr; 3558 int64_t Idx; 3559 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3560 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3561 LoadPtr = Load->getOperand(1).getReg(); 3562 Idx = 0; 3563 } 3564 3565 // Don't combine things like a[i], a[i] -> a bigger load. 3566 if (!SeenIdx.insert(Idx).second) 3567 return None; 3568 3569 // Every load must share the same base pointer; don't combine things like: 3570 // 3571 // a[i], b[i + 1] -> a bigger load. 3572 if (!BasePtr.isValid()) 3573 BasePtr = LoadPtr; 3574 if (BasePtr != LoadPtr) 3575 return None; 3576 3577 if (Idx < LowestIdx) { 3578 LowestIdx = Idx; 3579 LowestIdxLoad = Load; 3580 } 3581 3582 // Keep track of the byte offset that this load ends up at. If we have seen 3583 // the byte offset, then stop here. We do not want to combine: 3584 // 3585 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3586 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3587 return None; 3588 Loads.insert(Load); 3589 3590 // Keep track of the position of the earliest/latest loads in the pattern. 3591 // We will check that there are no load fold barriers between them later 3592 // on. 3593 // 3594 // FIXME: Is there a better way to check for load fold barriers? 3595 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3596 EarliestLoad = Load; 3597 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3598 LatestLoad = Load; 3599 } 3600 3601 // We found a load for each register. Let's check if each load satisfies the 3602 // pattern. 3603 assert(Loads.size() == RegsToVisit.size() && 3604 "Expected to find a load for each register?"); 3605 assert(EarliestLoad != LatestLoad && EarliestLoad && 3606 LatestLoad && "Expected at least two loads?"); 3607 3608 // Check if there are any stores, calls, etc. between any of the loads. If 3609 // there are, then we can't safely perform the combine. 3610 // 3611 // MaxIter is chosen based off the (worst case) number of iterations it 3612 // typically takes to succeed in the LLVM test suite plus some padding. 3613 // 3614 // FIXME: Is there a better way to check for load fold barriers? 3615 const unsigned MaxIter = 20; 3616 unsigned Iter = 0; 3617 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3618 LatestLoad->getIterator())) { 3619 if (Loads.count(&MI)) 3620 continue; 3621 if (MI.isLoadFoldBarrier()) 3622 return None; 3623 if (Iter++ == MaxIter) 3624 return None; 3625 } 3626 3627 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3628 } 3629 3630 bool CombinerHelper::matchLoadOrCombine( 3631 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3632 assert(MI.getOpcode() == TargetOpcode::G_OR); 3633 MachineFunction &MF = *MI.getMF(); 3634 // Assuming a little-endian target, transform: 3635 // s8 *a = ... 3636 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3637 // => 3638 // s32 val = *((i32)a) 3639 // 3640 // s8 *a = ... 3641 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3642 // => 3643 // s32 val = BSWAP(*((s32)a)) 3644 Register Dst = MI.getOperand(0).getReg(); 3645 LLT Ty = MRI.getType(Dst); 3646 if (Ty.isVector()) 3647 return false; 3648 3649 // We need to combine at least two loads into this type. Since the smallest 3650 // possible load is into a byte, we need at least a 16-bit wide type. 3651 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3652 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3653 return false; 3654 3655 // Match a collection of non-OR instructions in the pattern. 3656 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3657 if (!RegsToVisit) 3658 return false; 3659 3660 // We have a collection of non-OR instructions. Figure out how wide each of 3661 // the small loads should be based off of the number of potential loads we 3662 // found. 3663 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3664 if (NarrowMemSizeInBits % 8 != 0) 3665 return false; 3666 3667 // Check if each register feeding into each OR is a load from the same 3668 // base pointer + some arithmetic. 3669 // 3670 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3671 // 3672 // Also verify that each of these ends up putting a[i] into the same memory 3673 // offset as a load into a wide type would. 3674 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3675 GZExtLoad *LowestIdxLoad, *LatestLoad; 3676 int64_t LowestIdx; 3677 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3678 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3679 if (!MaybeLoadInfo) 3680 return false; 3681 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3682 3683 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3684 // we found before, check if this corresponds to a big or little endian byte 3685 // pattern. If it does, then we can represent it using a load + possibly a 3686 // BSWAP. 3687 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3688 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3689 if (!IsBigEndian.hasValue()) 3690 return false; 3691 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3692 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3693 return false; 3694 3695 // Make sure that the load from the lowest index produces offset 0 in the 3696 // final value. 3697 // 3698 // This ensures that we won't combine something like this: 3699 // 3700 // load x[i] -> byte 2 3701 // load x[i+1] -> byte 0 ---> wide_load x[i] 3702 // load x[i+2] -> byte 1 3703 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3704 const unsigned ZeroByteOffset = 3705 *IsBigEndian 3706 ? bigEndianByteAt(NumLoadsInTy, 0) 3707 : littleEndianByteAt(NumLoadsInTy, 0); 3708 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3709 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3710 ZeroOffsetIdx->second != LowestIdx) 3711 return false; 3712 3713 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3714 // may not use index 0. 3715 Register Ptr = LowestIdxLoad->getPointerReg(); 3716 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3717 LegalityQuery::MemDesc MMDesc; 3718 MMDesc.MemoryTy = Ty; 3719 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 3720 MMDesc.Ordering = MMO.getSuccessOrdering(); 3721 if (!isLegalOrBeforeLegalizer( 3722 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3723 return false; 3724 auto PtrInfo = MMO.getPointerInfo(); 3725 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3726 3727 // Load must be allowed and fast on the target. 3728 LLVMContext &C = MF.getFunction().getContext(); 3729 auto &DL = MF.getDataLayout(); 3730 bool Fast = false; 3731 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3732 !Fast) 3733 return false; 3734 3735 MatchInfo = [=](MachineIRBuilder &MIB) { 3736 MIB.setInstrAndDebugLoc(*LatestLoad); 3737 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3738 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3739 if (NeedsBSwap) 3740 MIB.buildBSwap(Dst, LoadDst); 3741 }; 3742 return true; 3743 } 3744 3745 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3746 MachineInstr *&ExtMI) { 3747 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3748 3749 Register DstReg = MI.getOperand(0).getReg(); 3750 3751 // TODO: Extending a vector may be expensive, don't do this until heuristics 3752 // are better. 3753 if (MRI.getType(DstReg).isVector()) 3754 return false; 3755 3756 // Try to match a phi, whose only use is an extend. 3757 if (!MRI.hasOneNonDBGUse(DstReg)) 3758 return false; 3759 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3760 switch (ExtMI->getOpcode()) { 3761 case TargetOpcode::G_ANYEXT: 3762 return true; // G_ANYEXT is usually free. 3763 case TargetOpcode::G_ZEXT: 3764 case TargetOpcode::G_SEXT: 3765 break; 3766 default: 3767 return false; 3768 } 3769 3770 // If the target is likely to fold this extend away, don't propagate. 3771 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3772 return false; 3773 3774 // We don't want to propagate the extends unless there's a good chance that 3775 // they'll be optimized in some way. 3776 // Collect the unique incoming values. 3777 SmallPtrSet<MachineInstr *, 4> InSrcs; 3778 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3779 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3780 switch (DefMI->getOpcode()) { 3781 case TargetOpcode::G_LOAD: 3782 case TargetOpcode::G_TRUNC: 3783 case TargetOpcode::G_SEXT: 3784 case TargetOpcode::G_ZEXT: 3785 case TargetOpcode::G_ANYEXT: 3786 case TargetOpcode::G_CONSTANT: 3787 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3788 // Don't try to propagate if there are too many places to create new 3789 // extends, chances are it'll increase code size. 3790 if (InSrcs.size() > 2) 3791 return false; 3792 break; 3793 default: 3794 return false; 3795 } 3796 } 3797 return true; 3798 } 3799 3800 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3801 MachineInstr *&ExtMI) { 3802 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3803 Register DstReg = ExtMI->getOperand(0).getReg(); 3804 LLT ExtTy = MRI.getType(DstReg); 3805 3806 // Propagate the extension into the block of each incoming reg's block. 3807 // Use a SetVector here because PHIs can have duplicate edges, and we want 3808 // deterministic iteration order. 3809 SmallSetVector<MachineInstr *, 8> SrcMIs; 3810 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3811 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3812 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3813 if (!SrcMIs.insert(SrcMI)) 3814 continue; 3815 3816 // Build an extend after each src inst. 3817 auto *MBB = SrcMI->getParent(); 3818 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3819 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3820 InsertPt = MBB->getFirstNonPHI(); 3821 3822 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3823 Builder.setDebugLoc(MI.getDebugLoc()); 3824 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3825 SrcMI->getOperand(0).getReg()); 3826 OldToNewSrcMap[SrcMI] = NewExt; 3827 } 3828 3829 // Create a new phi with the extended inputs. 3830 Builder.setInstrAndDebugLoc(MI); 3831 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3832 NewPhi.addDef(DstReg); 3833 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3834 auto &MO = MI.getOperand(SrcIdx); 3835 if (!MO.isReg()) { 3836 NewPhi.addMBB(MO.getMBB()); 3837 continue; 3838 } 3839 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3840 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3841 } 3842 Builder.insertInstr(NewPhi); 3843 ExtMI->eraseFromParent(); 3844 } 3845 3846 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3847 Register &Reg) { 3848 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3849 // If we have a constant index, look for a G_BUILD_VECTOR source 3850 // and find the source register that the index maps to. 3851 Register SrcVec = MI.getOperand(1).getReg(); 3852 LLT SrcTy = MRI.getType(SrcVec); 3853 if (!isLegalOrBeforeLegalizer( 3854 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3855 return false; 3856 3857 auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3858 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3859 return false; 3860 3861 unsigned VecIdx = Cst->Value.getZExtValue(); 3862 MachineInstr *BuildVecMI = 3863 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3864 if (!BuildVecMI) { 3865 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3866 if (!BuildVecMI) 3867 return false; 3868 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3869 if (!isLegalOrBeforeLegalizer( 3870 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3871 return false; 3872 } 3873 3874 EVT Ty(getMVTForLLT(SrcTy)); 3875 if (!MRI.hasOneNonDBGUse(SrcVec) && 3876 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3877 return false; 3878 3879 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3880 return true; 3881 } 3882 3883 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3884 Register &Reg) { 3885 // Check the type of the register, since it may have come from a 3886 // G_BUILD_VECTOR_TRUNC. 3887 LLT ScalarTy = MRI.getType(Reg); 3888 Register DstReg = MI.getOperand(0).getReg(); 3889 LLT DstTy = MRI.getType(DstReg); 3890 3891 Builder.setInstrAndDebugLoc(MI); 3892 if (ScalarTy != DstTy) { 3893 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3894 Builder.buildTrunc(DstReg, Reg); 3895 MI.eraseFromParent(); 3896 return; 3897 } 3898 replaceSingleDefInstWithReg(MI, Reg); 3899 } 3900 3901 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3902 MachineInstr &MI, 3903 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3904 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3905 // This combine tries to find build_vector's which have every source element 3906 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3907 // the masked load scalarization is run late in the pipeline. There's already 3908 // a combine for a similar pattern starting from the extract, but that 3909 // doesn't attempt to do it if there are multiple uses of the build_vector, 3910 // which in this case is true. Starting the combine from the build_vector 3911 // feels more natural than trying to find sibling nodes of extracts. 3912 // E.g. 3913 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3914 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3915 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3916 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3917 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3918 // ==> 3919 // replace ext{1,2,3,4} with %s{1,2,3,4} 3920 3921 Register DstReg = MI.getOperand(0).getReg(); 3922 LLT DstTy = MRI.getType(DstReg); 3923 unsigned NumElts = DstTy.getNumElements(); 3924 3925 SmallBitVector ExtractedElts(NumElts); 3926 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), 3927 MRI.use_instr_nodbg_end())) { 3928 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3929 return false; 3930 auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI); 3931 if (!Cst) 3932 return false; 3933 unsigned Idx = Cst.getValue().getZExtValue(); 3934 if (Idx >= NumElts) 3935 return false; // Out of range. 3936 ExtractedElts.set(Idx); 3937 SrcDstPairs.emplace_back( 3938 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3939 } 3940 // Match if every element was extracted. 3941 return ExtractedElts.all(); 3942 } 3943 3944 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3945 MachineInstr &MI, 3946 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3947 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3948 for (auto &Pair : SrcDstPairs) { 3949 auto *ExtMI = Pair.second; 3950 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3951 ExtMI->eraseFromParent(); 3952 } 3953 MI.eraseFromParent(); 3954 } 3955 3956 void CombinerHelper::applyBuildFn( 3957 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3958 Builder.setInstrAndDebugLoc(MI); 3959 MatchInfo(Builder); 3960 MI.eraseFromParent(); 3961 } 3962 3963 void CombinerHelper::applyBuildFnNoErase( 3964 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3965 Builder.setInstrAndDebugLoc(MI); 3966 MatchInfo(Builder); 3967 } 3968 3969 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3970 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3971 unsigned Opc = MI.getOpcode(); 3972 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3973 Register X = MI.getOperand(1).getReg(); 3974 Register Y = MI.getOperand(2).getReg(); 3975 if (X != Y) 3976 return false; 3977 unsigned RotateOpc = 3978 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3979 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3980 } 3981 3982 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3983 unsigned Opc = MI.getOpcode(); 3984 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3985 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3986 Observer.changingInstr(MI); 3987 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3988 : TargetOpcode::G_ROTR)); 3989 MI.RemoveOperand(2); 3990 Observer.changedInstr(MI); 3991 } 3992 3993 // Fold (rot x, c) -> (rot x, c % BitSize) 3994 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3995 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3996 MI.getOpcode() == TargetOpcode::G_ROTR); 3997 unsigned Bitsize = 3998 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3999 Register AmtReg = MI.getOperand(2).getReg(); 4000 bool OutOfRange = false; 4001 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 4002 if (auto *CI = dyn_cast<ConstantInt>(C)) 4003 OutOfRange |= CI->getValue().uge(Bitsize); 4004 return true; 4005 }; 4006 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 4007 } 4008 4009 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 4010 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4011 MI.getOpcode() == TargetOpcode::G_ROTR); 4012 unsigned Bitsize = 4013 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4014 Builder.setInstrAndDebugLoc(MI); 4015 Register Amt = MI.getOperand(2).getReg(); 4016 LLT AmtTy = MRI.getType(Amt); 4017 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 4018 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 4019 Observer.changingInstr(MI); 4020 MI.getOperand(2).setReg(Amt); 4021 Observer.changedInstr(MI); 4022 } 4023 4024 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 4025 int64_t &MatchInfo) { 4026 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4027 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4028 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 4029 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 4030 Optional<bool> KnownVal; 4031 switch (Pred) { 4032 default: 4033 llvm_unreachable("Unexpected G_ICMP predicate?"); 4034 case CmpInst::ICMP_EQ: 4035 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 4036 break; 4037 case CmpInst::ICMP_NE: 4038 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 4039 break; 4040 case CmpInst::ICMP_SGE: 4041 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 4042 break; 4043 case CmpInst::ICMP_SGT: 4044 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 4045 break; 4046 case CmpInst::ICMP_SLE: 4047 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 4048 break; 4049 case CmpInst::ICMP_SLT: 4050 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 4051 break; 4052 case CmpInst::ICMP_UGE: 4053 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 4054 break; 4055 case CmpInst::ICMP_UGT: 4056 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 4057 break; 4058 case CmpInst::ICMP_ULE: 4059 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 4060 break; 4061 case CmpInst::ICMP_ULT: 4062 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 4063 break; 4064 } 4065 if (!KnownVal) 4066 return false; 4067 MatchInfo = 4068 *KnownVal 4069 ? getICmpTrueVal(getTargetLowering(), 4070 /*IsVector = */ 4071 MRI.getType(MI.getOperand(0).getReg()).isVector(), 4072 /* IsFP = */ false) 4073 : 0; 4074 return true; 4075 } 4076 4077 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4078 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4079 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4080 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4081 Register Dst = MI.getOperand(0).getReg(); 4082 Register Src = MI.getOperand(1).getReg(); 4083 LLT Ty = MRI.getType(Src); 4084 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4085 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4086 return false; 4087 int64_t Width = MI.getOperand(2).getImm(); 4088 Register ShiftSrc; 4089 int64_t ShiftImm; 4090 if (!mi_match( 4091 Src, MRI, 4092 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4093 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4094 return false; 4095 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4096 return false; 4097 4098 MatchInfo = [=](MachineIRBuilder &B) { 4099 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4100 auto Cst2 = B.buildConstant(ExtractTy, Width); 4101 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4102 }; 4103 return true; 4104 } 4105 4106 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4107 bool CombinerHelper::matchBitfieldExtractFromAnd( 4108 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4109 assert(MI.getOpcode() == TargetOpcode::G_AND); 4110 Register Dst = MI.getOperand(0).getReg(); 4111 LLT Ty = MRI.getType(Dst); 4112 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 4113 TargetOpcode::G_UBFX, Ty, Ty)) 4114 return false; 4115 4116 int64_t AndImm, LSBImm; 4117 Register ShiftSrc; 4118 const unsigned Size = Ty.getScalarSizeInBits(); 4119 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4120 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4121 m_ICst(AndImm)))) 4122 return false; 4123 4124 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4125 auto MaybeMask = static_cast<uint64_t>(AndImm); 4126 if (MaybeMask & (MaybeMask + 1)) 4127 return false; 4128 4129 // LSB must fit within the register. 4130 if (static_cast<uint64_t>(LSBImm) >= Size) 4131 return false; 4132 4133 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4134 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4135 MatchInfo = [=](MachineIRBuilder &B) { 4136 auto WidthCst = B.buildConstant(ExtractTy, Width); 4137 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4138 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4139 }; 4140 return true; 4141 } 4142 4143 bool CombinerHelper::matchBitfieldExtractFromShr( 4144 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4145 const unsigned Opcode = MI.getOpcode(); 4146 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 4147 4148 const Register Dst = MI.getOperand(0).getReg(); 4149 4150 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 4151 ? TargetOpcode::G_SBFX 4152 : TargetOpcode::G_UBFX; 4153 4154 // Check if the type we would use for the extract is legal 4155 LLT Ty = MRI.getType(Dst); 4156 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4157 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 4158 return false; 4159 4160 Register ShlSrc; 4161 int64_t ShrAmt; 4162 int64_t ShlAmt; 4163 const unsigned Size = Ty.getScalarSizeInBits(); 4164 4165 // Try to match shr (shl x, c1), c2 4166 if (!mi_match(Dst, MRI, 4167 m_BinOp(Opcode, 4168 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4169 m_ICst(ShrAmt)))) 4170 return false; 4171 4172 // Make sure that the shift sizes can fit a bitfield extract 4173 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4174 return false; 4175 4176 // Skip this combine if the G_SEXT_INREG combine could handle it 4177 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4178 return false; 4179 4180 // Calculate start position and width of the extract 4181 const int64_t Pos = ShrAmt - ShlAmt; 4182 const int64_t Width = Size - ShrAmt; 4183 4184 MatchInfo = [=](MachineIRBuilder &B) { 4185 auto WidthCst = B.buildConstant(ExtractTy, Width); 4186 auto PosCst = B.buildConstant(ExtractTy, Pos); 4187 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4188 }; 4189 return true; 4190 } 4191 4192 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4193 MachineInstr &PtrAdd) { 4194 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4195 4196 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4197 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4198 if (!Src1Def) 4199 return false; 4200 4201 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4202 4203 if (MRI.hasOneNonDBGUse(Src1Reg)) 4204 return false; 4205 4206 auto C1 = getConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4207 if (!C1) 4208 return false; 4209 auto C2 = getConstantVRegVal(Src2Reg, MRI); 4210 if (!C2) 4211 return false; 4212 4213 const APInt &C1APIntVal = *C1; 4214 const APInt &C2APIntVal = *C2; 4215 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4216 4217 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4218 // This combine may end up running before ptrtoint/inttoptr combines 4219 // manage to eliminate redundant conversions, so try to look through them. 4220 MachineInstr *ConvUseMI = &UseMI; 4221 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4222 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4223 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4224 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4225 if (!MRI.hasOneNonDBGUse(DefReg)) 4226 break; 4227 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4228 ConvUseOpc = ConvUseMI->getOpcode(); 4229 } 4230 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4231 ConvUseOpc == TargetOpcode::G_STORE; 4232 if (!LoadStore) 4233 continue; 4234 // Is x[offset2] already not a legal addressing mode? If so then 4235 // reassociating the constants breaks nothing (we test offset2 because 4236 // that's the one we hope to fold into the load or store). 4237 TargetLoweringBase::AddrMode AM; 4238 AM.HasBaseReg = true; 4239 AM.BaseOffs = C2APIntVal.getSExtValue(); 4240 unsigned AS = 4241 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4242 Type *AccessTy = 4243 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4244 PtrAdd.getMF()->getFunction().getContext()); 4245 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4246 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4247 AccessTy, AS)) 4248 continue; 4249 4250 // Would x[offset1+offset2] still be a legal addressing mode? 4251 AM.BaseOffs = CombinedValue; 4252 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4253 AccessTy, AS)) 4254 return true; 4255 } 4256 4257 return false; 4258 } 4259 4260 bool CombinerHelper::matchReassocPtrAdd( 4261 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4262 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 4263 // We're trying to match a few pointer computation patterns here for 4264 // re-association opportunities. 4265 // 1) Isolating a constant operand to be on the RHS, e.g.: 4266 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4267 // 4268 // 2) Folding two constants in each sub-tree as long as such folding 4269 // doesn't break a legal addressing mode. 4270 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4271 Register Src1Reg = MI.getOperand(1).getReg(); 4272 Register Src2Reg = MI.getOperand(2).getReg(); 4273 MachineInstr *LHS = MRI.getVRegDef(Src1Reg); 4274 MachineInstr *RHS = MRI.getVRegDef(Src2Reg); 4275 4276 if (LHS->getOpcode() != TargetOpcode::G_PTR_ADD) { 4277 // Try to match example 1). 4278 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4279 return false; 4280 auto C2 = getConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4281 if (!C2) 4282 return false; 4283 4284 MatchInfo = [=,&MI](MachineIRBuilder &B) { 4285 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4286 4287 auto NewBase = 4288 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4289 Observer.changingInstr(MI); 4290 MI.getOperand(1).setReg(NewBase.getReg(0)); 4291 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4292 Observer.changedInstr(MI); 4293 }; 4294 } else { 4295 // Try to match example 2. 4296 Register LHSSrc1 = LHS->getOperand(1).getReg(); 4297 Register LHSSrc2 = LHS->getOperand(2).getReg(); 4298 auto C1 = getConstantVRegVal(LHSSrc2, MRI); 4299 if (!C1) 4300 return false; 4301 auto C2 = getConstantVRegVal(Src2Reg, MRI); 4302 if (!C2) 4303 return false; 4304 4305 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4306 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4307 Observer.changingInstr(MI); 4308 MI.getOperand(1).setReg(LHSSrc1); 4309 MI.getOperand(2).setReg(NewCst.getReg(0)); 4310 Observer.changedInstr(MI); 4311 }; 4312 } 4313 return !reassociationCanBreakAddressingModePattern(MI); 4314 } 4315 4316 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4317 Register Op1 = MI.getOperand(1).getReg(); 4318 Register Op2 = MI.getOperand(2).getReg(); 4319 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4320 if (!MaybeCst) 4321 return false; 4322 MatchInfo = *MaybeCst; 4323 return true; 4324 } 4325 4326 bool CombinerHelper::tryCombine(MachineInstr &MI) { 4327 if (tryCombineCopy(MI)) 4328 return true; 4329 if (tryCombineExtendingLoads(MI)) 4330 return true; 4331 if (tryCombineIndexedLoadStore(MI)) 4332 return true; 4333 return false; 4334 } 4335