1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/CodeGen/GlobalISel/Combiner.h" 10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 12 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 13 #include "llvm/CodeGen/GlobalISel/Utils.h" 14 #include "llvm/CodeGen/MachineDominators.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineInstr.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/TargetInstrInfo.h" 19 #include "llvm/CodeGen/TargetLowering.h" 20 #include "llvm/Support/MathExtras.h" 21 #include "llvm/Target/TargetMachine.h" 22 23 #define DEBUG_TYPE "gi-combiner" 24 25 using namespace llvm; 26 27 // Option to allow testing of the combiner while no targets know about indexed 28 // addressing. 29 static cl::opt<bool> 30 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 31 cl::desc("Force all indexed operations to be " 32 "legal for the GlobalISel combiner")); 33 34 35 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 36 MachineIRBuilder &B, GISelKnownBits *KB, 37 MachineDominatorTree *MDT) 38 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 39 KB(KB), MDT(MDT) { 40 (void)this->KB; 41 } 42 43 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 44 Register ToReg) const { 45 Observer.changingAllUsesOfReg(MRI, FromReg); 46 47 if (MRI.constrainRegAttrs(ToReg, FromReg)) 48 MRI.replaceRegWith(FromReg, ToReg); 49 else 50 Builder.buildCopy(ToReg, FromReg); 51 52 Observer.finishedChangingAllUsesOfReg(); 53 } 54 55 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 56 MachineOperand &FromRegOp, 57 Register ToReg) const { 58 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 59 Observer.changingInstr(*FromRegOp.getParent()); 60 61 FromRegOp.setReg(ToReg); 62 63 Observer.changedInstr(*FromRegOp.getParent()); 64 } 65 66 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 67 if (matchCombineCopy(MI)) { 68 applyCombineCopy(MI); 69 return true; 70 } 71 return false; 72 } 73 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 74 if (MI.getOpcode() != TargetOpcode::COPY) 75 return false; 76 Register DstReg = MI.getOperand(0).getReg(); 77 Register SrcReg = MI.getOperand(1).getReg(); 78 return canReplaceReg(DstReg, SrcReg, MRI); 79 } 80 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 81 Register DstReg = MI.getOperand(0).getReg(); 82 Register SrcReg = MI.getOperand(1).getReg(); 83 MI.eraseFromParent(); 84 replaceRegWith(MRI, DstReg, SrcReg); 85 } 86 87 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 88 bool IsUndef = false; 89 SmallVector<Register, 4> Ops; 90 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 91 applyCombineConcatVectors(MI, IsUndef, Ops); 92 return true; 93 } 94 return false; 95 } 96 97 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 98 SmallVectorImpl<Register> &Ops) { 99 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 100 "Invalid instruction"); 101 IsUndef = true; 102 MachineInstr *Undef = nullptr; 103 104 // Walk over all the operands of concat vectors and check if they are 105 // build_vector themselves or undef. 106 // Then collect their operands in Ops. 107 for (const MachineOperand &MO : MI.uses()) { 108 Register Reg = MO.getReg(); 109 MachineInstr *Def = MRI.getVRegDef(Reg); 110 assert(Def && "Operand not defined"); 111 switch (Def->getOpcode()) { 112 case TargetOpcode::G_BUILD_VECTOR: 113 IsUndef = false; 114 // Remember the operands of the build_vector to fold 115 // them into the yet-to-build flattened concat vectors. 116 for (const MachineOperand &BuildVecMO : Def->uses()) 117 Ops.push_back(BuildVecMO.getReg()); 118 break; 119 case TargetOpcode::G_IMPLICIT_DEF: { 120 LLT OpType = MRI.getType(Reg); 121 // Keep one undef value for all the undef operands. 122 if (!Undef) { 123 Builder.setInsertPt(*MI.getParent(), MI); 124 Undef = Builder.buildUndef(OpType.getScalarType()); 125 } 126 assert(MRI.getType(Undef->getOperand(0).getReg()) == 127 OpType.getScalarType() && 128 "All undefs should have the same type"); 129 // Break the undef vector in as many scalar elements as needed 130 // for the flattening. 131 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 132 EltIdx != EltEnd; ++EltIdx) 133 Ops.push_back(Undef->getOperand(0).getReg()); 134 break; 135 } 136 default: 137 return false; 138 } 139 } 140 return true; 141 } 142 void CombinerHelper::applyCombineConcatVectors( 143 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 144 // We determined that the concat_vectors can be flatten. 145 // Generate the flattened build_vector. 146 Register DstReg = MI.getOperand(0).getReg(); 147 Builder.setInsertPt(*MI.getParent(), MI); 148 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 149 150 // Note: IsUndef is sort of redundant. We could have determine it by 151 // checking that at all Ops are undef. Alternatively, we could have 152 // generate a build_vector of undefs and rely on another combine to 153 // clean that up. For now, given we already gather this information 154 // in tryCombineConcatVectors, just save compile time and issue the 155 // right thing. 156 if (IsUndef) 157 Builder.buildUndef(NewDstReg); 158 else 159 Builder.buildBuildVector(NewDstReg, Ops); 160 MI.eraseFromParent(); 161 replaceRegWith(MRI, DstReg, NewDstReg); 162 } 163 164 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 165 SmallVector<Register, 4> Ops; 166 if (matchCombineShuffleVector(MI, Ops)) { 167 applyCombineShuffleVector(MI, Ops); 168 return true; 169 } 170 return false; 171 } 172 173 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 174 SmallVectorImpl<Register> &Ops) { 175 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 176 "Invalid instruction kind"); 177 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 178 Register Src1 = MI.getOperand(1).getReg(); 179 LLT SrcType = MRI.getType(Src1); 180 // As bizarre as it may look, shuffle vector can actually produce 181 // scalar! This is because at the IR level a <1 x ty> shuffle 182 // vector is perfectly valid. 183 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 184 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 185 186 // If the resulting vector is smaller than the size of the source 187 // vectors being concatenated, we won't be able to replace the 188 // shuffle vector into a concat_vectors. 189 // 190 // Note: We may still be able to produce a concat_vectors fed by 191 // extract_vector_elt and so on. It is less clear that would 192 // be better though, so don't bother for now. 193 // 194 // If the destination is a scalar, the size of the sources doesn't 195 // matter. we will lower the shuffle to a plain copy. This will 196 // work only if the source and destination have the same size. But 197 // that's covered by the next condition. 198 // 199 // TODO: If the size between the source and destination don't match 200 // we could still emit an extract vector element in that case. 201 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 202 return false; 203 204 // Check that the shuffle mask can be broken evenly between the 205 // different sources. 206 if (DstNumElts % SrcNumElts != 0) 207 return false; 208 209 // Mask length is a multiple of the source vector length. 210 // Check if the shuffle is some kind of concatenation of the input 211 // vectors. 212 unsigned NumConcat = DstNumElts / SrcNumElts; 213 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 214 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 215 for (unsigned i = 0; i != DstNumElts; ++i) { 216 int Idx = Mask[i]; 217 // Undef value. 218 if (Idx < 0) 219 continue; 220 // Ensure the indices in each SrcType sized piece are sequential and that 221 // the same source is used for the whole piece. 222 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 223 (ConcatSrcs[i / SrcNumElts] >= 0 && 224 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 225 return false; 226 // Remember which source this index came from. 227 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 228 } 229 230 // The shuffle is concatenating multiple vectors together. 231 // Collect the different operands for that. 232 Register UndefReg; 233 Register Src2 = MI.getOperand(2).getReg(); 234 for (auto Src : ConcatSrcs) { 235 if (Src < 0) { 236 if (!UndefReg) { 237 Builder.setInsertPt(*MI.getParent(), MI); 238 UndefReg = Builder.buildUndef(SrcType).getReg(0); 239 } 240 Ops.push_back(UndefReg); 241 } else if (Src == 0) 242 Ops.push_back(Src1); 243 else 244 Ops.push_back(Src2); 245 } 246 return true; 247 } 248 249 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 250 const ArrayRef<Register> Ops) { 251 Register DstReg = MI.getOperand(0).getReg(); 252 Builder.setInsertPt(*MI.getParent(), MI); 253 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 254 255 if (Ops.size() == 1) 256 Builder.buildCopy(NewDstReg, Ops[0]); 257 else 258 Builder.buildMerge(NewDstReg, Ops); 259 260 MI.eraseFromParent(); 261 replaceRegWith(MRI, DstReg, NewDstReg); 262 } 263 264 namespace { 265 266 /// Select a preference between two uses. CurrentUse is the current preference 267 /// while *ForCandidate is attributes of the candidate under consideration. 268 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 269 const LLT TyForCandidate, 270 unsigned OpcodeForCandidate, 271 MachineInstr *MIForCandidate) { 272 if (!CurrentUse.Ty.isValid()) { 273 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 274 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 275 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 276 return CurrentUse; 277 } 278 279 // We permit the extend to hoist through basic blocks but this is only 280 // sensible if the target has extending loads. If you end up lowering back 281 // into a load and extend during the legalizer then the end result is 282 // hoisting the extend up to the load. 283 284 // Prefer defined extensions to undefined extensions as these are more 285 // likely to reduce the number of instructions. 286 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 287 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 288 return CurrentUse; 289 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 290 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 291 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 292 293 // Prefer sign extensions to zero extensions as sign-extensions tend to be 294 // more expensive. 295 if (CurrentUse.Ty == TyForCandidate) { 296 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 297 OpcodeForCandidate == TargetOpcode::G_ZEXT) 298 return CurrentUse; 299 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 300 OpcodeForCandidate == TargetOpcode::G_SEXT) 301 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 302 } 303 304 // This is potentially target specific. We've chosen the largest type 305 // because G_TRUNC is usually free. One potential catch with this is that 306 // some targets have a reduced number of larger registers than smaller 307 // registers and this choice potentially increases the live-range for the 308 // larger value. 309 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 310 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 311 } 312 return CurrentUse; 313 } 314 315 /// Find a suitable place to insert some instructions and insert them. This 316 /// function accounts for special cases like inserting before a PHI node. 317 /// The current strategy for inserting before PHI's is to duplicate the 318 /// instructions for each predecessor. However, while that's ok for G_TRUNC 319 /// on most targets since it generally requires no code, other targets/cases may 320 /// want to try harder to find a dominating block. 321 static void InsertInsnsWithoutSideEffectsBeforeUse( 322 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 323 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 324 MachineOperand &UseMO)> 325 Inserter) { 326 MachineInstr &UseMI = *UseMO.getParent(); 327 328 MachineBasicBlock *InsertBB = UseMI.getParent(); 329 330 // If the use is a PHI then we want the predecessor block instead. 331 if (UseMI.isPHI()) { 332 MachineOperand *PredBB = std::next(&UseMO); 333 InsertBB = PredBB->getMBB(); 334 } 335 336 // If the block is the same block as the def then we want to insert just after 337 // the def instead of at the start of the block. 338 if (InsertBB == DefMI.getParent()) { 339 MachineBasicBlock::iterator InsertPt = &DefMI; 340 Inserter(InsertBB, std::next(InsertPt), UseMO); 341 return; 342 } 343 344 // Otherwise we want the start of the BB 345 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 346 } 347 } // end anonymous namespace 348 349 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 350 PreferredTuple Preferred; 351 if (matchCombineExtendingLoads(MI, Preferred)) { 352 applyCombineExtendingLoads(MI, Preferred); 353 return true; 354 } 355 return false; 356 } 357 358 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 359 PreferredTuple &Preferred) { 360 // We match the loads and follow the uses to the extend instead of matching 361 // the extends and following the def to the load. This is because the load 362 // must remain in the same position for correctness (unless we also add code 363 // to find a safe place to sink it) whereas the extend is freely movable. 364 // It also prevents us from duplicating the load for the volatile case or just 365 // for performance. 366 367 if (MI.getOpcode() != TargetOpcode::G_LOAD && 368 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 369 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 370 return false; 371 372 auto &LoadValue = MI.getOperand(0); 373 assert(LoadValue.isReg() && "Result wasn't a register?"); 374 375 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 376 if (!LoadValueTy.isScalar()) 377 return false; 378 379 // Most architectures are going to legalize <s8 loads into at least a 1 byte 380 // load, and the MMOs can only describe memory accesses in multiples of bytes. 381 // If we try to perform extload combining on those, we can end up with 382 // %a(s8) = extload %ptr (load 1 byte from %ptr) 383 // ... which is an illegal extload instruction. 384 if (LoadValueTy.getSizeInBits() < 8) 385 return false; 386 387 // For non power-of-2 types, they will very likely be legalized into multiple 388 // loads. Don't bother trying to match them into extending loads. 389 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 390 return false; 391 392 // Find the preferred type aside from the any-extends (unless it's the only 393 // one) and non-extending ops. We'll emit an extending load to that type and 394 // and emit a variant of (extend (trunc X)) for the others according to the 395 // relative type sizes. At the same time, pick an extend to use based on the 396 // extend involved in the chosen type. 397 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 398 ? TargetOpcode::G_ANYEXT 399 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 400 ? TargetOpcode::G_SEXT 401 : TargetOpcode::G_ZEXT; 402 Preferred = {LLT(), PreferredOpcode, nullptr}; 403 for (auto &UseMI : MRI.use_instructions(LoadValue.getReg())) { 404 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 405 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 406 UseMI.getOpcode() == TargetOpcode::G_ANYEXT) { 407 Preferred = ChoosePreferredUse(Preferred, 408 MRI.getType(UseMI.getOperand(0).getReg()), 409 UseMI.getOpcode(), &UseMI); 410 } 411 } 412 413 // There were no extends 414 if (!Preferred.MI) 415 return false; 416 // It should be impossible to chose an extend without selecting a different 417 // type since by definition the result of an extend is larger. 418 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 419 420 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 421 return true; 422 } 423 424 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 425 PreferredTuple &Preferred) { 426 // Rewrite the load to the chosen extending load. 427 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 428 429 // Inserter to insert a truncate back to the original type at a given point 430 // with some basic CSE to limit truncate duplication to one per BB. 431 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 432 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 433 MachineBasicBlock::iterator InsertBefore, 434 MachineOperand &UseMO) { 435 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 436 if (PreviouslyEmitted) { 437 Observer.changingInstr(*UseMO.getParent()); 438 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 439 Observer.changedInstr(*UseMO.getParent()); 440 return; 441 } 442 443 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 444 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 445 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 446 EmittedInsns[InsertIntoBB] = NewMI; 447 replaceRegOpWith(MRI, UseMO, NewDstReg); 448 }; 449 450 Observer.changingInstr(MI); 451 MI.setDesc( 452 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 453 ? TargetOpcode::G_SEXTLOAD 454 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 455 ? TargetOpcode::G_ZEXTLOAD 456 : TargetOpcode::G_LOAD)); 457 458 // Rewrite all the uses to fix up the types. 459 auto &LoadValue = MI.getOperand(0); 460 SmallVector<MachineOperand *, 4> Uses; 461 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 462 Uses.push_back(&UseMO); 463 464 for (auto *UseMO : Uses) { 465 MachineInstr *UseMI = UseMO->getParent(); 466 467 // If the extend is compatible with the preferred extend then we should fix 468 // up the type and extend so that it uses the preferred use. 469 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 470 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 471 Register UseDstReg = UseMI->getOperand(0).getReg(); 472 MachineOperand &UseSrcMO = UseMI->getOperand(1); 473 const LLT UseDstTy = MRI.getType(UseDstReg); 474 if (UseDstReg != ChosenDstReg) { 475 if (Preferred.Ty == UseDstTy) { 476 // If the use has the same type as the preferred use, then merge 477 // the vregs and erase the extend. For example: 478 // %1:_(s8) = G_LOAD ... 479 // %2:_(s32) = G_SEXT %1(s8) 480 // %3:_(s32) = G_ANYEXT %1(s8) 481 // ... = ... %3(s32) 482 // rewrites to: 483 // %2:_(s32) = G_SEXTLOAD ... 484 // ... = ... %2(s32) 485 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 486 Observer.erasingInstr(*UseMO->getParent()); 487 UseMO->getParent()->eraseFromParent(); 488 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 489 // If the preferred size is smaller, then keep the extend but extend 490 // from the result of the extending load. For example: 491 // %1:_(s8) = G_LOAD ... 492 // %2:_(s32) = G_SEXT %1(s8) 493 // %3:_(s64) = G_ANYEXT %1(s8) 494 // ... = ... %3(s64) 495 /// rewrites to: 496 // %2:_(s32) = G_SEXTLOAD ... 497 // %3:_(s64) = G_ANYEXT %2:_(s32) 498 // ... = ... %3(s64) 499 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 500 } else { 501 // If the preferred size is large, then insert a truncate. For 502 // example: 503 // %1:_(s8) = G_LOAD ... 504 // %2:_(s64) = G_SEXT %1(s8) 505 // %3:_(s32) = G_ZEXT %1(s8) 506 // ... = ... %3(s32) 507 /// rewrites to: 508 // %2:_(s64) = G_SEXTLOAD ... 509 // %4:_(s8) = G_TRUNC %2:_(s32) 510 // %3:_(s64) = G_ZEXT %2:_(s8) 511 // ... = ... %3(s64) 512 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 513 InsertTruncAt); 514 } 515 continue; 516 } 517 // The use is (one of) the uses of the preferred use we chose earlier. 518 // We're going to update the load to def this value later so just erase 519 // the old extend. 520 Observer.erasingInstr(*UseMO->getParent()); 521 UseMO->getParent()->eraseFromParent(); 522 continue; 523 } 524 525 // The use isn't an extend. Truncate back to the type we originally loaded. 526 // This is free on many targets. 527 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 528 } 529 530 MI.getOperand(0).setReg(ChosenDstReg); 531 Observer.changedInstr(MI); 532 } 533 534 bool CombinerHelper::isPredecessor(MachineInstr &DefMI, MachineInstr &UseMI) { 535 assert(DefMI.getParent() == UseMI.getParent()); 536 if (&DefMI == &UseMI) 537 return false; 538 539 // Loop through the basic block until we find one of the instructions. 540 MachineBasicBlock::const_iterator I = DefMI.getParent()->begin(); 541 for (; &*I != &DefMI && &*I != &UseMI; ++I) 542 return &*I == &DefMI; 543 544 llvm_unreachable("Block must contain instructions"); 545 } 546 547 bool CombinerHelper::dominates(MachineInstr &DefMI, MachineInstr &UseMI) { 548 if (MDT) 549 return MDT->dominates(&DefMI, &UseMI); 550 else if (DefMI.getParent() != UseMI.getParent()) 551 return false; 552 553 return isPredecessor(DefMI, UseMI); 554 } 555 556 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 557 Register &Base, Register &Offset) { 558 auto &MF = *MI.getParent()->getParent(); 559 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 560 561 #ifndef NDEBUG 562 unsigned Opcode = MI.getOpcode(); 563 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 564 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 565 #endif 566 567 Base = MI.getOperand(1).getReg(); 568 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 569 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 570 return false; 571 572 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 573 574 for (auto &Use : MRI.use_instructions(Base)) { 575 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 576 continue; 577 578 Offset = Use.getOperand(2).getReg(); 579 if (!ForceLegalIndexing && 580 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 581 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 582 << Use); 583 continue; 584 } 585 586 // Make sure the offset calculation is before the potentially indexed op. 587 // FIXME: we really care about dependency here. The offset calculation might 588 // be movable. 589 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 590 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 591 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 592 << Use); 593 continue; 594 } 595 596 // FIXME: check whether all uses of Base are load/store with foldable 597 // addressing modes. If so, using the normal addr-modes is better than 598 // forming an indexed one. 599 600 bool MemOpDominatesAddrUses = true; 601 for (auto &PtrAddUse : MRI.use_instructions(Use.getOperand(0).getReg())) { 602 if (!dominates(MI, PtrAddUse)) { 603 MemOpDominatesAddrUses = false; 604 break; 605 } 606 } 607 608 if (!MemOpDominatesAddrUses) { 609 LLVM_DEBUG( 610 dbgs() << " Ignoring candidate as memop does not dominate uses: " 611 << Use); 612 continue; 613 } 614 615 LLVM_DEBUG(dbgs() << " Found match: " << Use); 616 Addr = Use.getOperand(0).getReg(); 617 return true; 618 } 619 620 return false; 621 } 622 623 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 624 Register &Base, Register &Offset) { 625 auto &MF = *MI.getParent()->getParent(); 626 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 627 628 #ifndef NDEBUG 629 unsigned Opcode = MI.getOpcode(); 630 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 631 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 632 #endif 633 634 Addr = MI.getOperand(1).getReg(); 635 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 636 if (!AddrDef || MRI.hasOneUse(Addr)) 637 return false; 638 639 Base = AddrDef->getOperand(1).getReg(); 640 Offset = AddrDef->getOperand(2).getReg(); 641 642 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 643 644 if (!ForceLegalIndexing && 645 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 646 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 647 return false; 648 } 649 650 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 651 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 652 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 653 return false; 654 } 655 656 if (MI.getOpcode() == TargetOpcode::G_STORE) { 657 // Would require a copy. 658 if (Base == MI.getOperand(0).getReg()) { 659 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 660 return false; 661 } 662 663 // We're expecting one use of Addr in MI, but it could also be the 664 // value stored, which isn't actually dominated by the instruction. 665 if (MI.getOperand(0).getReg() == Addr) { 666 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 667 return false; 668 } 669 } 670 671 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 672 // That might allow us to end base's liveness here by adjusting the constant. 673 674 for (auto &UseMI : MRI.use_instructions(Addr)) { 675 if (!dominates(MI, UseMI)) { 676 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 677 return false; 678 } 679 } 680 681 return true; 682 } 683 684 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 685 IndexedLoadStoreMatchInfo MatchInfo; 686 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 687 applyCombineIndexedLoadStore(MI, MatchInfo); 688 return true; 689 } 690 return false; 691 } 692 693 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 694 unsigned Opcode = MI.getOpcode(); 695 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 696 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 697 return false; 698 699 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 700 MatchInfo.Offset); 701 if (!MatchInfo.IsPre && 702 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 703 MatchInfo.Offset)) 704 return false; 705 706 return true; 707 } 708 709 void CombinerHelper::applyCombineIndexedLoadStore( 710 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 711 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 712 MachineIRBuilder MIRBuilder(MI); 713 unsigned Opcode = MI.getOpcode(); 714 bool IsStore = Opcode == TargetOpcode::G_STORE; 715 unsigned NewOpcode; 716 switch (Opcode) { 717 case TargetOpcode::G_LOAD: 718 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 719 break; 720 case TargetOpcode::G_SEXTLOAD: 721 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 722 break; 723 case TargetOpcode::G_ZEXTLOAD: 724 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 725 break; 726 case TargetOpcode::G_STORE: 727 NewOpcode = TargetOpcode::G_INDEXED_STORE; 728 break; 729 default: 730 llvm_unreachable("Unknown load/store opcode"); 731 } 732 733 auto MIB = MIRBuilder.buildInstr(NewOpcode); 734 if (IsStore) { 735 MIB.addDef(MatchInfo.Addr); 736 MIB.addUse(MI.getOperand(0).getReg()); 737 } else { 738 MIB.addDef(MI.getOperand(0).getReg()); 739 MIB.addDef(MatchInfo.Addr); 740 } 741 742 MIB.addUse(MatchInfo.Base); 743 MIB.addUse(MatchInfo.Offset); 744 MIB.addImm(MatchInfo.IsPre); 745 MI.eraseFromParent(); 746 AddrDef.eraseFromParent(); 747 748 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 749 } 750 751 bool CombinerHelper::matchElideBrByInvertingCond(MachineInstr &MI) { 752 if (MI.getOpcode() != TargetOpcode::G_BR) 753 return false; 754 755 // Try to match the following: 756 // bb1: 757 // %c(s32) = G_ICMP pred, %a, %b 758 // %c1(s1) = G_TRUNC %c(s32) 759 // G_BRCOND %c1, %bb2 760 // G_BR %bb3 761 // bb2: 762 // ... 763 // bb3: 764 765 // The above pattern does not have a fall through to the successor bb2, always 766 // resulting in a branch no matter which path is taken. Here we try to find 767 // and replace that pattern with conditional branch to bb3 and otherwise 768 // fallthrough to bb2. 769 770 MachineBasicBlock *MBB = MI.getParent(); 771 MachineBasicBlock::iterator BrIt(MI); 772 if (BrIt == MBB->begin()) 773 return false; 774 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 775 776 MachineInstr *BrCond = &*std::prev(BrIt); 777 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 778 return false; 779 780 // Check that the next block is the conditional branch target. 781 if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB())) 782 return false; 783 784 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 785 if (!CmpMI || CmpMI->getOpcode() != TargetOpcode::G_ICMP || 786 !MRI.hasOneUse(CmpMI->getOperand(0).getReg())) 787 return false; 788 return true; 789 } 790 791 bool CombinerHelper::tryElideBrByInvertingCond(MachineInstr &MI) { 792 if (!matchElideBrByInvertingCond(MI)) 793 return false; 794 applyElideBrByInvertingCond(MI); 795 return true; 796 } 797 798 void CombinerHelper::applyElideBrByInvertingCond(MachineInstr &MI) { 799 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 800 MachineBasicBlock::iterator BrIt(MI); 801 MachineInstr *BrCond = &*std::prev(BrIt); 802 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 803 804 CmpInst::Predicate InversePred = CmpInst::getInversePredicate( 805 (CmpInst::Predicate)CmpMI->getOperand(1).getPredicate()); 806 807 // Invert the G_ICMP condition. 808 Observer.changingInstr(*CmpMI); 809 CmpMI->getOperand(1).setPredicate(InversePred); 810 Observer.changedInstr(*CmpMI); 811 812 // Change the conditional branch target. 813 Observer.changingInstr(*BrCond); 814 BrCond->getOperand(1).setMBB(BrTarget); 815 Observer.changedInstr(*BrCond); 816 MI.eraseFromParent(); 817 } 818 819 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 820 // On Darwin, -Os means optimize for size without hurting performance, so 821 // only really optimize for size when -Oz (MinSize) is used. 822 if (MF.getTarget().getTargetTriple().isOSDarwin()) 823 return MF.getFunction().hasMinSize(); 824 return MF.getFunction().hasOptSize(); 825 } 826 827 // Returns a list of types to use for memory op lowering in MemOps. A partial 828 // port of findOptimalMemOpLowering in TargetLowering. 829 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 830 unsigned Limit, const MemOp &Op, 831 unsigned DstAS, unsigned SrcAS, 832 const AttributeList &FuncAttributes, 833 const TargetLowering &TLI) { 834 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 835 return false; 836 837 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 838 839 if (Ty == LLT()) { 840 // Use the largest scalar type whose alignment constraints are satisfied. 841 // We only need to check DstAlign here as SrcAlign is always greater or 842 // equal to DstAlign (or zero). 843 Ty = LLT::scalar(64); 844 if (Op.isFixedDstAlign()) 845 while (Op.getDstAlign() < Ty.getSizeInBytes() && 846 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, 847 Op.getDstAlign().value())) 848 Ty = LLT::scalar(Ty.getSizeInBytes()); 849 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 850 // FIXME: check for the largest legal type we can load/store to. 851 } 852 853 unsigned NumMemOps = 0; 854 uint64_t Size = Op.size(); 855 while (Size) { 856 unsigned TySize = Ty.getSizeInBytes(); 857 while (TySize > Size) { 858 // For now, only use non-vector load / store's for the left-over pieces. 859 LLT NewTy = Ty; 860 // FIXME: check for mem op safety and legality of the types. Not all of 861 // SDAGisms map cleanly to GISel concepts. 862 if (NewTy.isVector()) 863 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 864 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 865 unsigned NewTySize = NewTy.getSizeInBytes(); 866 assert(NewTySize > 0 && "Could not find appropriate type"); 867 868 // If the new LLT cannot cover all of the remaining bits, then consider 869 // issuing a (or a pair of) unaligned and overlapping load / store. 870 bool Fast; 871 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 872 MVT VT = getMVTForLLT(Ty); 873 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 874 TLI.allowsMisalignedMemoryAccesses( 875 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 876 MachineMemOperand::MONone, &Fast) && 877 Fast) 878 TySize = Size; 879 else { 880 Ty = NewTy; 881 TySize = NewTySize; 882 } 883 } 884 885 if (++NumMemOps > Limit) 886 return false; 887 888 MemOps.push_back(Ty); 889 Size -= TySize; 890 } 891 892 return true; 893 } 894 895 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 896 if (Ty.isVector()) 897 return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 898 Ty.getNumElements()); 899 return IntegerType::get(C, Ty.getSizeInBits()); 900 } 901 902 // Get a vectorized representation of the memset value operand, GISel edition. 903 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 904 MachineRegisterInfo &MRI = *MIB.getMRI(); 905 unsigned NumBits = Ty.getScalarSizeInBits(); 906 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 907 if (!Ty.isVector() && ValVRegAndVal) { 908 unsigned KnownVal = ValVRegAndVal->Value; 909 APInt Scalar = APInt(8, KnownVal); 910 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 911 return MIB.buildConstant(Ty, SplatVal).getReg(0); 912 } 913 // FIXME: for vector types create a G_BUILD_VECTOR. 914 if (Ty.isVector()) 915 return Register(); 916 917 // Extend the byte value to the larger type, and then multiply by a magic 918 // value 0x010101... in order to replicate it across every byte. 919 LLT ExtType = Ty.getScalarType(); 920 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 921 if (NumBits > 8) { 922 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 923 auto MagicMI = MIB.buildConstant(ExtType, Magic); 924 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 925 } 926 927 assert(ExtType == Ty && "Vector memset value type not supported yet"); 928 return Val; 929 } 930 931 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 932 Register Val, unsigned KnownLen, 933 Align Alignment, bool IsVolatile) { 934 auto &MF = *MI.getParent()->getParent(); 935 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 936 auto &DL = MF.getDataLayout(); 937 LLVMContext &C = MF.getFunction().getContext(); 938 939 assert(KnownLen != 0 && "Have a zero length memset length!"); 940 941 bool DstAlignCanChange = false; 942 MachineFrameInfo &MFI = MF.getFrameInfo(); 943 bool OptSize = shouldLowerMemFuncForSize(MF); 944 945 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 946 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 947 DstAlignCanChange = true; 948 949 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 950 std::vector<LLT> MemOps; 951 952 const auto &DstMMO = **MI.memoperands_begin(); 953 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 954 955 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 956 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 957 958 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 959 MemOp::Set(KnownLen, DstAlignCanChange, 960 Alignment, 961 /*IsZeroMemset=*/IsZeroVal, 962 /*IsVolatile=*/IsVolatile), 963 DstPtrInfo.getAddrSpace(), ~0u, 964 MF.getFunction().getAttributes(), TLI)) 965 return false; 966 967 if (DstAlignCanChange) { 968 // Get an estimate of the type from the LLT. 969 Type *IRTy = getTypeForLLT(MemOps[0], C); 970 Align NewAlign = DL.getABITypeAlign(IRTy); 971 if (NewAlign > Alignment) { 972 Alignment = NewAlign; 973 unsigned FI = FIDef->getOperand(1).getIndex(); 974 // Give the stack frame object a larger alignment if needed. 975 if (MFI.getObjectAlign(FI) < Alignment) 976 MFI.setObjectAlignment(FI, Alignment); 977 } 978 } 979 980 MachineIRBuilder MIB(MI); 981 // Find the largest store and generate the bit pattern for it. 982 LLT LargestTy = MemOps[0]; 983 for (unsigned i = 1; i < MemOps.size(); i++) 984 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 985 LargestTy = MemOps[i]; 986 987 // The memset stored value is always defined as an s8, so in order to make it 988 // work with larger store types we need to repeat the bit pattern across the 989 // wider type. 990 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 991 992 if (!MemSetValue) 993 return false; 994 995 // Generate the stores. For each store type in the list, we generate the 996 // matching store of that type to the destination address. 997 LLT PtrTy = MRI.getType(Dst); 998 unsigned DstOff = 0; 999 unsigned Size = KnownLen; 1000 for (unsigned I = 0; I < MemOps.size(); I++) { 1001 LLT Ty = MemOps[I]; 1002 unsigned TySize = Ty.getSizeInBytes(); 1003 if (TySize > Size) { 1004 // Issuing an unaligned load / store pair that overlaps with the previous 1005 // pair. Adjust the offset accordingly. 1006 assert(I == MemOps.size() - 1 && I != 0); 1007 DstOff -= TySize - Size; 1008 } 1009 1010 // If this store is smaller than the largest store see whether we can get 1011 // the smaller value for free with a truncate. 1012 Register Value = MemSetValue; 1013 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1014 MVT VT = getMVTForLLT(Ty); 1015 MVT LargestVT = getMVTForLLT(LargestTy); 1016 if (!LargestTy.isVector() && !Ty.isVector() && 1017 TLI.isTruncateFree(LargestVT, VT)) 1018 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1019 else 1020 Value = getMemsetValue(Val, Ty, MIB); 1021 if (!Value) 1022 return false; 1023 } 1024 1025 auto *StoreMMO = 1026 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1027 1028 Register Ptr = Dst; 1029 if (DstOff != 0) { 1030 auto Offset = 1031 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1032 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1033 } 1034 1035 MIB.buildStore(Value, Ptr, *StoreMMO); 1036 DstOff += Ty.getSizeInBytes(); 1037 Size -= TySize; 1038 } 1039 1040 MI.eraseFromParent(); 1041 return true; 1042 } 1043 1044 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1045 Register Src, unsigned KnownLen, 1046 Align DstAlign, Align SrcAlign, 1047 bool IsVolatile) { 1048 auto &MF = *MI.getParent()->getParent(); 1049 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1050 auto &DL = MF.getDataLayout(); 1051 LLVMContext &C = MF.getFunction().getContext(); 1052 1053 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1054 1055 bool DstAlignCanChange = false; 1056 MachineFrameInfo &MFI = MF.getFrameInfo(); 1057 bool OptSize = shouldLowerMemFuncForSize(MF); 1058 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1059 1060 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1061 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1062 DstAlignCanChange = true; 1063 1064 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1065 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1066 // if the memcpy is in a tail call position. 1067 1068 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1069 std::vector<LLT> MemOps; 1070 1071 const auto &DstMMO = **MI.memoperands_begin(); 1072 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1073 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1074 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1075 1076 if (!findGISelOptimalMemOpLowering( 1077 MemOps, Limit, 1078 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1079 IsVolatile), 1080 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1081 MF.getFunction().getAttributes(), TLI)) 1082 return false; 1083 1084 if (DstAlignCanChange) { 1085 // Get an estimate of the type from the LLT. 1086 Type *IRTy = getTypeForLLT(MemOps[0], C); 1087 Align NewAlign = DL.getABITypeAlign(IRTy); 1088 1089 // Don't promote to an alignment that would require dynamic stack 1090 // realignment. 1091 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1092 if (!TRI->needsStackRealignment(MF)) 1093 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1094 NewAlign = NewAlign / 2; 1095 1096 if (NewAlign > Alignment) { 1097 Alignment = NewAlign; 1098 unsigned FI = FIDef->getOperand(1).getIndex(); 1099 // Give the stack frame object a larger alignment if needed. 1100 if (MFI.getObjectAlign(FI) < Alignment) 1101 MFI.setObjectAlignment(FI, Alignment); 1102 } 1103 } 1104 1105 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1106 1107 MachineIRBuilder MIB(MI); 1108 // Now we need to emit a pair of load and stores for each of the types we've 1109 // collected. I.e. for each type, generate a load from the source pointer of 1110 // that type width, and then generate a corresponding store to the dest buffer 1111 // of that value loaded. This can result in a sequence of loads and stores 1112 // mixed types, depending on what the target specifies as good types to use. 1113 unsigned CurrOffset = 0; 1114 LLT PtrTy = MRI.getType(Src); 1115 unsigned Size = KnownLen; 1116 for (auto CopyTy : MemOps) { 1117 // Issuing an unaligned load / store pair that overlaps with the previous 1118 // pair. Adjust the offset accordingly. 1119 if (CopyTy.getSizeInBytes() > Size) 1120 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1121 1122 // Construct MMOs for the accesses. 1123 auto *LoadMMO = 1124 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1125 auto *StoreMMO = 1126 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1127 1128 // Create the load. 1129 Register LoadPtr = Src; 1130 Register Offset; 1131 if (CurrOffset != 0) { 1132 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1133 .getReg(0); 1134 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1135 } 1136 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1137 1138 // Create the store. 1139 Register StorePtr = 1140 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1141 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1142 CurrOffset += CopyTy.getSizeInBytes(); 1143 Size -= CopyTy.getSizeInBytes(); 1144 } 1145 1146 MI.eraseFromParent(); 1147 return true; 1148 } 1149 1150 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1151 Register Src, unsigned KnownLen, 1152 Align DstAlign, Align SrcAlign, 1153 bool IsVolatile) { 1154 auto &MF = *MI.getParent()->getParent(); 1155 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1156 auto &DL = MF.getDataLayout(); 1157 LLVMContext &C = MF.getFunction().getContext(); 1158 1159 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1160 1161 bool DstAlignCanChange = false; 1162 MachineFrameInfo &MFI = MF.getFrameInfo(); 1163 bool OptSize = shouldLowerMemFuncForSize(MF); 1164 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1165 1166 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1167 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1168 DstAlignCanChange = true; 1169 1170 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1171 std::vector<LLT> MemOps; 1172 1173 const auto &DstMMO = **MI.memoperands_begin(); 1174 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1175 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1176 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1177 1178 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1179 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1180 // same thing here. 1181 if (!findGISelOptimalMemOpLowering( 1182 MemOps, Limit, 1183 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1184 /*IsVolatile*/ true), 1185 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1186 MF.getFunction().getAttributes(), TLI)) 1187 return false; 1188 1189 if (DstAlignCanChange) { 1190 // Get an estimate of the type from the LLT. 1191 Type *IRTy = getTypeForLLT(MemOps[0], C); 1192 Align NewAlign = DL.getABITypeAlign(IRTy); 1193 1194 // Don't promote to an alignment that would require dynamic stack 1195 // realignment. 1196 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1197 if (!TRI->needsStackRealignment(MF)) 1198 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1199 NewAlign = NewAlign / 2; 1200 1201 if (NewAlign > Alignment) { 1202 Alignment = NewAlign; 1203 unsigned FI = FIDef->getOperand(1).getIndex(); 1204 // Give the stack frame object a larger alignment if needed. 1205 if (MFI.getObjectAlign(FI) < Alignment) 1206 MFI.setObjectAlignment(FI, Alignment); 1207 } 1208 } 1209 1210 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1211 1212 MachineIRBuilder MIB(MI); 1213 // Memmove requires that we perform the loads first before issuing the stores. 1214 // Apart from that, this loop is pretty much doing the same thing as the 1215 // memcpy codegen function. 1216 unsigned CurrOffset = 0; 1217 LLT PtrTy = MRI.getType(Src); 1218 SmallVector<Register, 16> LoadVals; 1219 for (auto CopyTy : MemOps) { 1220 // Construct MMO for the load. 1221 auto *LoadMMO = 1222 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1223 1224 // Create the load. 1225 Register LoadPtr = Src; 1226 if (CurrOffset != 0) { 1227 auto Offset = 1228 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1229 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1230 } 1231 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1232 CurrOffset += CopyTy.getSizeInBytes(); 1233 } 1234 1235 CurrOffset = 0; 1236 for (unsigned I = 0; I < MemOps.size(); ++I) { 1237 LLT CopyTy = MemOps[I]; 1238 // Now store the values loaded. 1239 auto *StoreMMO = 1240 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1241 1242 Register StorePtr = Dst; 1243 if (CurrOffset != 0) { 1244 auto Offset = 1245 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1246 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1247 } 1248 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1249 CurrOffset += CopyTy.getSizeInBytes(); 1250 } 1251 MI.eraseFromParent(); 1252 return true; 1253 } 1254 1255 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1256 // This combine is fairly complex so it's not written with a separate 1257 // matcher function. 1258 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 1259 Intrinsic::ID ID = (Intrinsic::ID)MI.getIntrinsicID(); 1260 assert((ID == Intrinsic::memcpy || ID == Intrinsic::memmove || 1261 ID == Intrinsic::memset) && 1262 "Expected a memcpy like intrinsic"); 1263 1264 auto MMOIt = MI.memoperands_begin(); 1265 const MachineMemOperand *MemOp = *MMOIt; 1266 bool IsVolatile = MemOp->isVolatile(); 1267 // Don't try to optimize volatile. 1268 if (IsVolatile) 1269 return false; 1270 1271 Align DstAlign(MemOp->getBaseAlignment()); 1272 Align SrcAlign; 1273 Register Dst = MI.getOperand(1).getReg(); 1274 Register Src = MI.getOperand(2).getReg(); 1275 Register Len = MI.getOperand(3).getReg(); 1276 1277 if (ID != Intrinsic::memset) { 1278 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1279 MemOp = *(++MMOIt); 1280 SrcAlign = Align(MemOp->getBaseAlignment()); 1281 } 1282 1283 // See if this is a constant length copy 1284 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1285 if (!LenVRegAndVal) 1286 return false; // Leave it to the legalizer to lower it to a libcall. 1287 unsigned KnownLen = LenVRegAndVal->Value; 1288 1289 if (KnownLen == 0) { 1290 MI.eraseFromParent(); 1291 return true; 1292 } 1293 1294 if (MaxLen && KnownLen > MaxLen) 1295 return false; 1296 1297 if (ID == Intrinsic::memcpy) 1298 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1299 if (ID == Intrinsic::memmove) 1300 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1301 if (ID == Intrinsic::memset) 1302 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1303 return false; 1304 } 1305 1306 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1307 PtrAddChain &MatchInfo) { 1308 // We're trying to match the following pattern: 1309 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1310 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1311 // --> 1312 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1313 1314 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1315 return false; 1316 1317 Register Add2 = MI.getOperand(1).getReg(); 1318 Register Imm1 = MI.getOperand(2).getReg(); 1319 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1320 if (!MaybeImmVal) 1321 return false; 1322 1323 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1324 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1325 return false; 1326 1327 Register Base = Add2Def->getOperand(1).getReg(); 1328 Register Imm2 = Add2Def->getOperand(2).getReg(); 1329 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1330 if (!MaybeImm2Val) 1331 return false; 1332 1333 // Pass the combined immediate to the apply function. 1334 MatchInfo.Imm = MaybeImmVal->Value + MaybeImm2Val->Value; 1335 MatchInfo.Base = Base; 1336 return true; 1337 } 1338 1339 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1340 PtrAddChain &MatchInfo) { 1341 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1342 MachineIRBuilder MIB(MI); 1343 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1344 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1345 Observer.changingInstr(MI); 1346 MI.getOperand(1).setReg(MatchInfo.Base); 1347 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1348 Observer.changedInstr(MI); 1349 return true; 1350 } 1351 1352 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1353 unsigned &ShiftVal) { 1354 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1355 auto MaybeImmVal = 1356 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1357 if (!MaybeImmVal || !isPowerOf2_64(MaybeImmVal->Value)) 1358 return false; 1359 ShiftVal = Log2_64(MaybeImmVal->Value); 1360 return true; 1361 } 1362 1363 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1364 unsigned &ShiftVal) { 1365 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1366 MachineIRBuilder MIB(MI); 1367 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1368 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1369 Observer.changingInstr(MI); 1370 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1371 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1372 Observer.changedInstr(MI); 1373 return true; 1374 } 1375 1376 bool CombinerHelper::tryCombine(MachineInstr &MI) { 1377 if (tryCombineCopy(MI)) 1378 return true; 1379 if (tryCombineExtendingLoads(MI)) 1380 return true; 1381 if (tryCombineIndexedLoadStore(MI)) 1382 return true; 1383 return false; 1384 } 1385