1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 17 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 20 #include "llvm/CodeGen/GlobalISel/Utils.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetOpcodes.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/DivisionByConstantInfo.h" 34 #include "llvm/Support/MathExtras.h" 35 #include <tuple> 36 37 #define DEBUG_TYPE "gi-combiner" 38 39 using namespace llvm; 40 using namespace MIPatternMatch; 41 42 // Option to allow testing of the combiner while no targets know about indexed 43 // addressing. 44 static cl::opt<bool> 45 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 46 cl::desc("Force all indexed operations to be " 47 "legal for the GlobalISel combiner")); 48 49 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 50 MachineIRBuilder &B, GISelKnownBits *KB, 51 MachineDominatorTree *MDT, 52 const LegalizerInfo *LI) 53 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 54 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 55 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 56 (void)this->KB; 57 } 58 59 const TargetLowering &CombinerHelper::getTargetLowering() const { 60 return *Builder.getMF().getSubtarget().getTargetLowering(); 61 } 62 63 /// \returns The little endian in-memory byte position of byte \p I in a 64 /// \p ByteWidth bytes wide type. 65 /// 66 /// E.g. Given a 4-byte type x, x[0] -> byte 0 67 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 68 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 69 return I; 70 } 71 72 /// Determines the LogBase2 value for a non-null input value using the 73 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 74 static Register buildLogBase2(Register V, MachineIRBuilder &MIB) { 75 auto &MRI = *MIB.getMRI(); 76 LLT Ty = MRI.getType(V); 77 auto Ctlz = MIB.buildCTLZ(Ty, V); 78 auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1); 79 return MIB.buildSub(Ty, Base, Ctlz).getReg(0); 80 } 81 82 /// \returns The big endian in-memory byte position of byte \p I in a 83 /// \p ByteWidth bytes wide type. 84 /// 85 /// E.g. Given a 4-byte type x, x[0] -> byte 3 86 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 87 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 88 return ByteWidth - I - 1; 89 } 90 91 /// Given a map from byte offsets in memory to indices in a load/store, 92 /// determine if that map corresponds to a little or big endian byte pattern. 93 /// 94 /// \param MemOffset2Idx maps memory offsets to address offsets. 95 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 96 /// 97 /// \returns true if the map corresponds to a big endian byte pattern, false 98 /// if it corresponds to a little endian byte pattern, and None otherwise. 99 /// 100 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 101 /// are as follows: 102 /// 103 /// AddrOffset Little endian Big endian 104 /// 0 0 3 105 /// 1 1 2 106 /// 2 2 1 107 /// 3 3 0 108 static Optional<bool> 109 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 110 int64_t LowestIdx) { 111 // Need at least two byte positions to decide on endianness. 112 unsigned Width = MemOffset2Idx.size(); 113 if (Width < 2) 114 return None; 115 bool BigEndian = true, LittleEndian = true; 116 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 117 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 118 if (MemOffsetAndIdx == MemOffset2Idx.end()) 119 return None; 120 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 121 assert(Idx >= 0 && "Expected non-negative byte offset?"); 122 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 123 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 124 if (!BigEndian && !LittleEndian) 125 return None; 126 } 127 128 assert((BigEndian != LittleEndian) && 129 "Pattern cannot be both big and little endian!"); 130 return BigEndian; 131 } 132 133 bool CombinerHelper::isLegalOrBeforeLegalizer( 134 const LegalityQuery &Query) const { 135 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 136 } 137 138 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 139 Register ToReg) const { 140 Observer.changingAllUsesOfReg(MRI, FromReg); 141 142 if (MRI.constrainRegAttrs(ToReg, FromReg)) 143 MRI.replaceRegWith(FromReg, ToReg); 144 else 145 Builder.buildCopy(ToReg, FromReg); 146 147 Observer.finishedChangingAllUsesOfReg(); 148 } 149 150 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 151 MachineOperand &FromRegOp, 152 Register ToReg) const { 153 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 154 Observer.changingInstr(*FromRegOp.getParent()); 155 156 FromRegOp.setReg(ToReg); 157 158 Observer.changedInstr(*FromRegOp.getParent()); 159 } 160 161 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 162 return RBI->getRegBank(Reg, MRI, *TRI); 163 } 164 165 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 166 if (RegBank) 167 MRI.setRegBank(Reg, *RegBank); 168 } 169 170 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 171 if (matchCombineCopy(MI)) { 172 applyCombineCopy(MI); 173 return true; 174 } 175 return false; 176 } 177 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 178 if (MI.getOpcode() != TargetOpcode::COPY) 179 return false; 180 Register DstReg = MI.getOperand(0).getReg(); 181 Register SrcReg = MI.getOperand(1).getReg(); 182 return canReplaceReg(DstReg, SrcReg, MRI); 183 } 184 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 185 Register DstReg = MI.getOperand(0).getReg(); 186 Register SrcReg = MI.getOperand(1).getReg(); 187 MI.eraseFromParent(); 188 replaceRegWith(MRI, DstReg, SrcReg); 189 } 190 191 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 192 bool IsUndef = false; 193 SmallVector<Register, 4> Ops; 194 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 195 applyCombineConcatVectors(MI, IsUndef, Ops); 196 return true; 197 } 198 return false; 199 } 200 201 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 202 SmallVectorImpl<Register> &Ops) { 203 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 204 "Invalid instruction"); 205 IsUndef = true; 206 MachineInstr *Undef = nullptr; 207 208 // Walk over all the operands of concat vectors and check if they are 209 // build_vector themselves or undef. 210 // Then collect their operands in Ops. 211 for (const MachineOperand &MO : MI.uses()) { 212 Register Reg = MO.getReg(); 213 MachineInstr *Def = MRI.getVRegDef(Reg); 214 assert(Def && "Operand not defined"); 215 switch (Def->getOpcode()) { 216 case TargetOpcode::G_BUILD_VECTOR: 217 IsUndef = false; 218 // Remember the operands of the build_vector to fold 219 // them into the yet-to-build flattened concat vectors. 220 for (const MachineOperand &BuildVecMO : Def->uses()) 221 Ops.push_back(BuildVecMO.getReg()); 222 break; 223 case TargetOpcode::G_IMPLICIT_DEF: { 224 LLT OpType = MRI.getType(Reg); 225 // Keep one undef value for all the undef operands. 226 if (!Undef) { 227 Builder.setInsertPt(*MI.getParent(), MI); 228 Undef = Builder.buildUndef(OpType.getScalarType()); 229 } 230 assert(MRI.getType(Undef->getOperand(0).getReg()) == 231 OpType.getScalarType() && 232 "All undefs should have the same type"); 233 // Break the undef vector in as many scalar elements as needed 234 // for the flattening. 235 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 236 EltIdx != EltEnd; ++EltIdx) 237 Ops.push_back(Undef->getOperand(0).getReg()); 238 break; 239 } 240 default: 241 return false; 242 } 243 } 244 return true; 245 } 246 void CombinerHelper::applyCombineConcatVectors( 247 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 248 // We determined that the concat_vectors can be flatten. 249 // Generate the flattened build_vector. 250 Register DstReg = MI.getOperand(0).getReg(); 251 Builder.setInsertPt(*MI.getParent(), MI); 252 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 253 254 // Note: IsUndef is sort of redundant. We could have determine it by 255 // checking that at all Ops are undef. Alternatively, we could have 256 // generate a build_vector of undefs and rely on another combine to 257 // clean that up. For now, given we already gather this information 258 // in tryCombineConcatVectors, just save compile time and issue the 259 // right thing. 260 if (IsUndef) 261 Builder.buildUndef(NewDstReg); 262 else 263 Builder.buildBuildVector(NewDstReg, Ops); 264 MI.eraseFromParent(); 265 replaceRegWith(MRI, DstReg, NewDstReg); 266 } 267 268 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 269 SmallVector<Register, 4> Ops; 270 if (matchCombineShuffleVector(MI, Ops)) { 271 applyCombineShuffleVector(MI, Ops); 272 return true; 273 } 274 return false; 275 } 276 277 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 278 SmallVectorImpl<Register> &Ops) { 279 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 280 "Invalid instruction kind"); 281 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 282 Register Src1 = MI.getOperand(1).getReg(); 283 LLT SrcType = MRI.getType(Src1); 284 // As bizarre as it may look, shuffle vector can actually produce 285 // scalar! This is because at the IR level a <1 x ty> shuffle 286 // vector is perfectly valid. 287 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 288 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 289 290 // If the resulting vector is smaller than the size of the source 291 // vectors being concatenated, we won't be able to replace the 292 // shuffle vector into a concat_vectors. 293 // 294 // Note: We may still be able to produce a concat_vectors fed by 295 // extract_vector_elt and so on. It is less clear that would 296 // be better though, so don't bother for now. 297 // 298 // If the destination is a scalar, the size of the sources doesn't 299 // matter. we will lower the shuffle to a plain copy. This will 300 // work only if the source and destination have the same size. But 301 // that's covered by the next condition. 302 // 303 // TODO: If the size between the source and destination don't match 304 // we could still emit an extract vector element in that case. 305 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 306 return false; 307 308 // Check that the shuffle mask can be broken evenly between the 309 // different sources. 310 if (DstNumElts % SrcNumElts != 0) 311 return false; 312 313 // Mask length is a multiple of the source vector length. 314 // Check if the shuffle is some kind of concatenation of the input 315 // vectors. 316 unsigned NumConcat = DstNumElts / SrcNumElts; 317 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 318 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 319 for (unsigned i = 0; i != DstNumElts; ++i) { 320 int Idx = Mask[i]; 321 // Undef value. 322 if (Idx < 0) 323 continue; 324 // Ensure the indices in each SrcType sized piece are sequential and that 325 // the same source is used for the whole piece. 326 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 327 (ConcatSrcs[i / SrcNumElts] >= 0 && 328 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 329 return false; 330 // Remember which source this index came from. 331 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 332 } 333 334 // The shuffle is concatenating multiple vectors together. 335 // Collect the different operands for that. 336 Register UndefReg; 337 Register Src2 = MI.getOperand(2).getReg(); 338 for (auto Src : ConcatSrcs) { 339 if (Src < 0) { 340 if (!UndefReg) { 341 Builder.setInsertPt(*MI.getParent(), MI); 342 UndefReg = Builder.buildUndef(SrcType).getReg(0); 343 } 344 Ops.push_back(UndefReg); 345 } else if (Src == 0) 346 Ops.push_back(Src1); 347 else 348 Ops.push_back(Src2); 349 } 350 return true; 351 } 352 353 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 354 const ArrayRef<Register> Ops) { 355 Register DstReg = MI.getOperand(0).getReg(); 356 Builder.setInsertPt(*MI.getParent(), MI); 357 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 358 359 if (Ops.size() == 1) 360 Builder.buildCopy(NewDstReg, Ops[0]); 361 else 362 Builder.buildMerge(NewDstReg, Ops); 363 364 MI.eraseFromParent(); 365 replaceRegWith(MRI, DstReg, NewDstReg); 366 } 367 368 namespace { 369 370 /// Select a preference between two uses. CurrentUse is the current preference 371 /// while *ForCandidate is attributes of the candidate under consideration. 372 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 373 const LLT TyForCandidate, 374 unsigned OpcodeForCandidate, 375 MachineInstr *MIForCandidate) { 376 if (!CurrentUse.Ty.isValid()) { 377 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 378 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 379 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 380 return CurrentUse; 381 } 382 383 // We permit the extend to hoist through basic blocks but this is only 384 // sensible if the target has extending loads. If you end up lowering back 385 // into a load and extend during the legalizer then the end result is 386 // hoisting the extend up to the load. 387 388 // Prefer defined extensions to undefined extensions as these are more 389 // likely to reduce the number of instructions. 390 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 391 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 392 return CurrentUse; 393 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 394 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 395 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 396 397 // Prefer sign extensions to zero extensions as sign-extensions tend to be 398 // more expensive. 399 if (CurrentUse.Ty == TyForCandidate) { 400 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 401 OpcodeForCandidate == TargetOpcode::G_ZEXT) 402 return CurrentUse; 403 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 404 OpcodeForCandidate == TargetOpcode::G_SEXT) 405 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 406 } 407 408 // This is potentially target specific. We've chosen the largest type 409 // because G_TRUNC is usually free. One potential catch with this is that 410 // some targets have a reduced number of larger registers than smaller 411 // registers and this choice potentially increases the live-range for the 412 // larger value. 413 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 414 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 415 } 416 return CurrentUse; 417 } 418 419 /// Find a suitable place to insert some instructions and insert them. This 420 /// function accounts for special cases like inserting before a PHI node. 421 /// The current strategy for inserting before PHI's is to duplicate the 422 /// instructions for each predecessor. However, while that's ok for G_TRUNC 423 /// on most targets since it generally requires no code, other targets/cases may 424 /// want to try harder to find a dominating block. 425 static void InsertInsnsWithoutSideEffectsBeforeUse( 426 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 427 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 428 MachineOperand &UseMO)> 429 Inserter) { 430 MachineInstr &UseMI = *UseMO.getParent(); 431 432 MachineBasicBlock *InsertBB = UseMI.getParent(); 433 434 // If the use is a PHI then we want the predecessor block instead. 435 if (UseMI.isPHI()) { 436 MachineOperand *PredBB = std::next(&UseMO); 437 InsertBB = PredBB->getMBB(); 438 } 439 440 // If the block is the same block as the def then we want to insert just after 441 // the def instead of at the start of the block. 442 if (InsertBB == DefMI.getParent()) { 443 MachineBasicBlock::iterator InsertPt = &DefMI; 444 Inserter(InsertBB, std::next(InsertPt), UseMO); 445 return; 446 } 447 448 // Otherwise we want the start of the BB 449 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 450 } 451 } // end anonymous namespace 452 453 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 454 PreferredTuple Preferred; 455 if (matchCombineExtendingLoads(MI, Preferred)) { 456 applyCombineExtendingLoads(MI, Preferred); 457 return true; 458 } 459 return false; 460 } 461 462 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 463 PreferredTuple &Preferred) { 464 // We match the loads and follow the uses to the extend instead of matching 465 // the extends and following the def to the load. This is because the load 466 // must remain in the same position for correctness (unless we also add code 467 // to find a safe place to sink it) whereas the extend is freely movable. 468 // It also prevents us from duplicating the load for the volatile case or just 469 // for performance. 470 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 471 if (!LoadMI) 472 return false; 473 474 Register LoadReg = LoadMI->getDstReg(); 475 476 LLT LoadValueTy = MRI.getType(LoadReg); 477 if (!LoadValueTy.isScalar()) 478 return false; 479 480 // Most architectures are going to legalize <s8 loads into at least a 1 byte 481 // load, and the MMOs can only describe memory accesses in multiples of bytes. 482 // If we try to perform extload combining on those, we can end up with 483 // %a(s8) = extload %ptr (load 1 byte from %ptr) 484 // ... which is an illegal extload instruction. 485 if (LoadValueTy.getSizeInBits() < 8) 486 return false; 487 488 // For non power-of-2 types, they will very likely be legalized into multiple 489 // loads. Don't bother trying to match them into extending loads. 490 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 491 return false; 492 493 // Find the preferred type aside from the any-extends (unless it's the only 494 // one) and non-extending ops. We'll emit an extending load to that type and 495 // and emit a variant of (extend (trunc X)) for the others according to the 496 // relative type sizes. At the same time, pick an extend to use based on the 497 // extend involved in the chosen type. 498 unsigned PreferredOpcode = 499 isa<GLoad>(&MI) 500 ? TargetOpcode::G_ANYEXT 501 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 502 Preferred = {LLT(), PreferredOpcode, nullptr}; 503 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 504 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 505 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 506 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 507 const auto &MMO = LoadMI->getMMO(); 508 // For atomics, only form anyextending loads. 509 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 510 continue; 511 // Check for legality. 512 if (LI) { 513 LegalityQuery::MemDesc MMDesc(MMO); 514 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 515 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 516 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 517 .Action != LegalizeActions::Legal) 518 continue; 519 } 520 Preferred = ChoosePreferredUse(Preferred, 521 MRI.getType(UseMI.getOperand(0).getReg()), 522 UseMI.getOpcode(), &UseMI); 523 } 524 } 525 526 // There were no extends 527 if (!Preferred.MI) 528 return false; 529 // It should be impossible to chose an extend without selecting a different 530 // type since by definition the result of an extend is larger. 531 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 532 533 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 534 return true; 535 } 536 537 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 538 PreferredTuple &Preferred) { 539 // Rewrite the load to the chosen extending load. 540 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 541 542 // Inserter to insert a truncate back to the original type at a given point 543 // with some basic CSE to limit truncate duplication to one per BB. 544 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 545 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 546 MachineBasicBlock::iterator InsertBefore, 547 MachineOperand &UseMO) { 548 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 549 if (PreviouslyEmitted) { 550 Observer.changingInstr(*UseMO.getParent()); 551 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 552 Observer.changedInstr(*UseMO.getParent()); 553 return; 554 } 555 556 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 557 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 558 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 559 EmittedInsns[InsertIntoBB] = NewMI; 560 replaceRegOpWith(MRI, UseMO, NewDstReg); 561 }; 562 563 Observer.changingInstr(MI); 564 MI.setDesc( 565 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 566 ? TargetOpcode::G_SEXTLOAD 567 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 568 ? TargetOpcode::G_ZEXTLOAD 569 : TargetOpcode::G_LOAD)); 570 571 // Rewrite all the uses to fix up the types. 572 auto &LoadValue = MI.getOperand(0); 573 SmallVector<MachineOperand *, 4> Uses; 574 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 575 Uses.push_back(&UseMO); 576 577 for (auto *UseMO : Uses) { 578 MachineInstr *UseMI = UseMO->getParent(); 579 580 // If the extend is compatible with the preferred extend then we should fix 581 // up the type and extend so that it uses the preferred use. 582 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 583 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 584 Register UseDstReg = UseMI->getOperand(0).getReg(); 585 MachineOperand &UseSrcMO = UseMI->getOperand(1); 586 const LLT UseDstTy = MRI.getType(UseDstReg); 587 if (UseDstReg != ChosenDstReg) { 588 if (Preferred.Ty == UseDstTy) { 589 // If the use has the same type as the preferred use, then merge 590 // the vregs and erase the extend. For example: 591 // %1:_(s8) = G_LOAD ... 592 // %2:_(s32) = G_SEXT %1(s8) 593 // %3:_(s32) = G_ANYEXT %1(s8) 594 // ... = ... %3(s32) 595 // rewrites to: 596 // %2:_(s32) = G_SEXTLOAD ... 597 // ... = ... %2(s32) 598 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 599 Observer.erasingInstr(*UseMO->getParent()); 600 UseMO->getParent()->eraseFromParent(); 601 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 602 // If the preferred size is smaller, then keep the extend but extend 603 // from the result of the extending load. For example: 604 // %1:_(s8) = G_LOAD ... 605 // %2:_(s32) = G_SEXT %1(s8) 606 // %3:_(s64) = G_ANYEXT %1(s8) 607 // ... = ... %3(s64) 608 /// rewrites to: 609 // %2:_(s32) = G_SEXTLOAD ... 610 // %3:_(s64) = G_ANYEXT %2:_(s32) 611 // ... = ... %3(s64) 612 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 613 } else { 614 // If the preferred size is large, then insert a truncate. For 615 // example: 616 // %1:_(s8) = G_LOAD ... 617 // %2:_(s64) = G_SEXT %1(s8) 618 // %3:_(s32) = G_ZEXT %1(s8) 619 // ... = ... %3(s32) 620 /// rewrites to: 621 // %2:_(s64) = G_SEXTLOAD ... 622 // %4:_(s8) = G_TRUNC %2:_(s32) 623 // %3:_(s64) = G_ZEXT %2:_(s8) 624 // ... = ... %3(s64) 625 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 626 InsertTruncAt); 627 } 628 continue; 629 } 630 // The use is (one of) the uses of the preferred use we chose earlier. 631 // We're going to update the load to def this value later so just erase 632 // the old extend. 633 Observer.erasingInstr(*UseMO->getParent()); 634 UseMO->getParent()->eraseFromParent(); 635 continue; 636 } 637 638 // The use isn't an extend. Truncate back to the type we originally loaded. 639 // This is free on many targets. 640 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 641 } 642 643 MI.getOperand(0).setReg(ChosenDstReg); 644 Observer.changedInstr(MI); 645 } 646 647 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI, 648 BuildFnTy &MatchInfo) { 649 assert(MI.getOpcode() == TargetOpcode::G_AND); 650 651 // If we have the following code: 652 // %mask = G_CONSTANT 255 653 // %ld = G_LOAD %ptr, (load s16) 654 // %and = G_AND %ld, %mask 655 // 656 // Try to fold it into 657 // %ld = G_ZEXTLOAD %ptr, (load s8) 658 659 Register Dst = MI.getOperand(0).getReg(); 660 if (MRI.getType(Dst).isVector()) 661 return false; 662 663 auto MaybeMask = 664 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 665 if (!MaybeMask) 666 return false; 667 668 APInt MaskVal = MaybeMask->Value; 669 670 if (!MaskVal.isMask()) 671 return false; 672 673 Register SrcReg = MI.getOperand(1).getReg(); 674 GAnyLoad *LoadMI = getOpcodeDef<GAnyLoad>(SrcReg, MRI); 675 if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()) || 676 !LoadMI->isSimple()) 677 return false; 678 679 Register LoadReg = LoadMI->getDstReg(); 680 LLT LoadTy = MRI.getType(LoadReg); 681 Register PtrReg = LoadMI->getPointerReg(); 682 uint64_t LoadSizeBits = LoadMI->getMemSizeInBits(); 683 unsigned MaskSizeBits = MaskVal.countTrailingOnes(); 684 685 // The mask may not be larger than the in-memory type, as it might cover sign 686 // extended bits 687 if (MaskSizeBits > LoadSizeBits) 688 return false; 689 690 // If the mask covers the whole destination register, there's nothing to 691 // extend 692 if (MaskSizeBits >= LoadTy.getSizeInBits()) 693 return false; 694 695 // Most targets cannot deal with loads of size < 8 and need to re-legalize to 696 // at least byte loads. Avoid creating such loads here 697 if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits)) 698 return false; 699 700 const MachineMemOperand &MMO = LoadMI->getMMO(); 701 LegalityQuery::MemDesc MemDesc(MMO); 702 MemDesc.MemoryTy = LLT::scalar(MaskSizeBits); 703 if (!isLegalOrBeforeLegalizer( 704 {TargetOpcode::G_ZEXTLOAD, {LoadTy, MRI.getType(PtrReg)}, {MemDesc}})) 705 return false; 706 707 MatchInfo = [=](MachineIRBuilder &B) { 708 B.setInstrAndDebugLoc(*LoadMI); 709 auto &MF = B.getMF(); 710 auto PtrInfo = MMO.getPointerInfo(); 711 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MaskSizeBits / 8); 712 B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO); 713 }; 714 return true; 715 } 716 717 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 718 const MachineInstr &UseMI) { 719 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 720 "shouldn't consider debug uses"); 721 assert(DefMI.getParent() == UseMI.getParent()); 722 if (&DefMI == &UseMI) 723 return true; 724 const MachineBasicBlock &MBB = *DefMI.getParent(); 725 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 726 return &MI == &DefMI || &MI == &UseMI; 727 }); 728 if (DefOrUse == MBB.end()) 729 llvm_unreachable("Block must contain both DefMI and UseMI!"); 730 return &*DefOrUse == &DefMI; 731 } 732 733 bool CombinerHelper::dominates(const MachineInstr &DefMI, 734 const MachineInstr &UseMI) { 735 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 736 "shouldn't consider debug uses"); 737 if (MDT) 738 return MDT->dominates(&DefMI, &UseMI); 739 else if (DefMI.getParent() != UseMI.getParent()) 740 return false; 741 742 return isPredecessor(DefMI, UseMI); 743 } 744 745 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 746 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 747 Register SrcReg = MI.getOperand(1).getReg(); 748 Register LoadUser = SrcReg; 749 750 if (MRI.getType(SrcReg).isVector()) 751 return false; 752 753 Register TruncSrc; 754 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 755 LoadUser = TruncSrc; 756 757 uint64_t SizeInBits = MI.getOperand(2).getImm(); 758 // If the source is a G_SEXTLOAD from the same bit width, then we don't 759 // need any extend at all, just a truncate. 760 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 761 // If truncating more than the original extended value, abort. 762 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 763 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 764 return false; 765 if (LoadSizeBits == SizeInBits) 766 return true; 767 } 768 return false; 769 } 770 771 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 772 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 773 Builder.setInstrAndDebugLoc(MI); 774 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 775 MI.eraseFromParent(); 776 } 777 778 bool CombinerHelper::matchSextInRegOfLoad( 779 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 780 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 781 782 // Only supports scalars for now. 783 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 784 return false; 785 786 Register SrcReg = MI.getOperand(1).getReg(); 787 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 788 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || 789 !LoadDef->isSimple()) 790 return false; 791 792 // If the sign extend extends from a narrower width than the load's width, 793 // then we can narrow the load width when we combine to a G_SEXTLOAD. 794 // Avoid widening the load at all. 795 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), 796 LoadDef->getMemSizeInBits()); 797 798 // Don't generate G_SEXTLOADs with a < 1 byte width. 799 if (NewSizeBits < 8) 800 return false; 801 // Don't bother creating a non-power-2 sextload, it will likely be broken up 802 // anyway for most targets. 803 if (!isPowerOf2_32(NewSizeBits)) 804 return false; 805 806 const MachineMemOperand &MMO = LoadDef->getMMO(); 807 LegalityQuery::MemDesc MMDesc(MMO); 808 MMDesc.MemoryTy = LLT::scalar(NewSizeBits); 809 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, 810 {MRI.getType(LoadDef->getDstReg()), 811 MRI.getType(LoadDef->getPointerReg())}, 812 {MMDesc}})) 813 return false; 814 815 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 816 return true; 817 } 818 819 void CombinerHelper::applySextInRegOfLoad( 820 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 821 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 822 Register LoadReg; 823 unsigned ScalarSizeBits; 824 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 825 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 826 827 // If we have the following: 828 // %ld = G_LOAD %ptr, (load 2) 829 // %ext = G_SEXT_INREG %ld, 8 830 // ==> 831 // %ld = G_SEXTLOAD %ptr (load 1) 832 833 auto &MMO = LoadDef->getMMO(); 834 Builder.setInstrAndDebugLoc(*LoadDef); 835 auto &MF = Builder.getMF(); 836 auto PtrInfo = MMO.getPointerInfo(); 837 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 838 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 839 LoadDef->getPointerReg(), *NewMMO); 840 MI.eraseFromParent(); 841 } 842 843 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 844 Register &Base, Register &Offset) { 845 auto &MF = *MI.getParent()->getParent(); 846 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 847 848 #ifndef NDEBUG 849 unsigned Opcode = MI.getOpcode(); 850 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 851 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 852 #endif 853 854 Base = MI.getOperand(1).getReg(); 855 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 856 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 857 return false; 858 859 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 860 // FIXME: The following use traversal needs a bail out for patholigical cases. 861 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 862 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 863 continue; 864 865 Offset = Use.getOperand(2).getReg(); 866 if (!ForceLegalIndexing && 867 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 868 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 869 << Use); 870 continue; 871 } 872 873 // Make sure the offset calculation is before the potentially indexed op. 874 // FIXME: we really care about dependency here. The offset calculation might 875 // be movable. 876 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 877 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 878 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 879 << Use); 880 continue; 881 } 882 883 // FIXME: check whether all uses of Base are load/store with foldable 884 // addressing modes. If so, using the normal addr-modes is better than 885 // forming an indexed one. 886 887 bool MemOpDominatesAddrUses = true; 888 for (auto &PtrAddUse : 889 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 890 if (!dominates(MI, PtrAddUse)) { 891 MemOpDominatesAddrUses = false; 892 break; 893 } 894 } 895 896 if (!MemOpDominatesAddrUses) { 897 LLVM_DEBUG( 898 dbgs() << " Ignoring candidate as memop does not dominate uses: " 899 << Use); 900 continue; 901 } 902 903 LLVM_DEBUG(dbgs() << " Found match: " << Use); 904 Addr = Use.getOperand(0).getReg(); 905 return true; 906 } 907 908 return false; 909 } 910 911 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 912 Register &Base, Register &Offset) { 913 auto &MF = *MI.getParent()->getParent(); 914 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 915 916 #ifndef NDEBUG 917 unsigned Opcode = MI.getOpcode(); 918 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 919 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 920 #endif 921 922 Addr = MI.getOperand(1).getReg(); 923 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 924 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 925 return false; 926 927 Base = AddrDef->getOperand(1).getReg(); 928 Offset = AddrDef->getOperand(2).getReg(); 929 930 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 931 932 if (!ForceLegalIndexing && 933 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 934 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 935 return false; 936 } 937 938 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 939 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 940 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 941 return false; 942 } 943 944 if (MI.getOpcode() == TargetOpcode::G_STORE) { 945 // Would require a copy. 946 if (Base == MI.getOperand(0).getReg()) { 947 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 948 return false; 949 } 950 951 // We're expecting one use of Addr in MI, but it could also be the 952 // value stored, which isn't actually dominated by the instruction. 953 if (MI.getOperand(0).getReg() == Addr) { 954 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 955 return false; 956 } 957 } 958 959 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 960 // That might allow us to end base's liveness here by adjusting the constant. 961 962 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 963 if (!dominates(MI, UseMI)) { 964 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 965 return false; 966 } 967 } 968 969 return true; 970 } 971 972 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 973 IndexedLoadStoreMatchInfo MatchInfo; 974 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 975 applyCombineIndexedLoadStore(MI, MatchInfo); 976 return true; 977 } 978 return false; 979 } 980 981 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 982 unsigned Opcode = MI.getOpcode(); 983 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 984 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 985 return false; 986 987 // For now, no targets actually support these opcodes so don't waste time 988 // running these unless we're forced to for testing. 989 if (!ForceLegalIndexing) 990 return false; 991 992 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 993 MatchInfo.Offset); 994 if (!MatchInfo.IsPre && 995 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 996 MatchInfo.Offset)) 997 return false; 998 999 return true; 1000 } 1001 1002 void CombinerHelper::applyCombineIndexedLoadStore( 1003 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 1004 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 1005 MachineIRBuilder MIRBuilder(MI); 1006 unsigned Opcode = MI.getOpcode(); 1007 bool IsStore = Opcode == TargetOpcode::G_STORE; 1008 unsigned NewOpcode; 1009 switch (Opcode) { 1010 case TargetOpcode::G_LOAD: 1011 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 1012 break; 1013 case TargetOpcode::G_SEXTLOAD: 1014 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 1015 break; 1016 case TargetOpcode::G_ZEXTLOAD: 1017 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 1018 break; 1019 case TargetOpcode::G_STORE: 1020 NewOpcode = TargetOpcode::G_INDEXED_STORE; 1021 break; 1022 default: 1023 llvm_unreachable("Unknown load/store opcode"); 1024 } 1025 1026 auto MIB = MIRBuilder.buildInstr(NewOpcode); 1027 if (IsStore) { 1028 MIB.addDef(MatchInfo.Addr); 1029 MIB.addUse(MI.getOperand(0).getReg()); 1030 } else { 1031 MIB.addDef(MI.getOperand(0).getReg()); 1032 MIB.addDef(MatchInfo.Addr); 1033 } 1034 1035 MIB.addUse(MatchInfo.Base); 1036 MIB.addUse(MatchInfo.Offset); 1037 MIB.addImm(MatchInfo.IsPre); 1038 MI.eraseFromParent(); 1039 AddrDef.eraseFromParent(); 1040 1041 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 1042 } 1043 1044 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 1045 MachineInstr *&OtherMI) { 1046 unsigned Opcode = MI.getOpcode(); 1047 bool IsDiv, IsSigned; 1048 1049 switch (Opcode) { 1050 default: 1051 llvm_unreachable("Unexpected opcode!"); 1052 case TargetOpcode::G_SDIV: 1053 case TargetOpcode::G_UDIV: { 1054 IsDiv = true; 1055 IsSigned = Opcode == TargetOpcode::G_SDIV; 1056 break; 1057 } 1058 case TargetOpcode::G_SREM: 1059 case TargetOpcode::G_UREM: { 1060 IsDiv = false; 1061 IsSigned = Opcode == TargetOpcode::G_SREM; 1062 break; 1063 } 1064 } 1065 1066 Register Src1 = MI.getOperand(1).getReg(); 1067 unsigned DivOpcode, RemOpcode, DivremOpcode; 1068 if (IsSigned) { 1069 DivOpcode = TargetOpcode::G_SDIV; 1070 RemOpcode = TargetOpcode::G_SREM; 1071 DivremOpcode = TargetOpcode::G_SDIVREM; 1072 } else { 1073 DivOpcode = TargetOpcode::G_UDIV; 1074 RemOpcode = TargetOpcode::G_UREM; 1075 DivremOpcode = TargetOpcode::G_UDIVREM; 1076 } 1077 1078 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 1079 return false; 1080 1081 // Combine: 1082 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1083 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1084 // into: 1085 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1086 1087 // Combine: 1088 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1089 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1090 // into: 1091 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1092 1093 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1094 if (MI.getParent() == UseMI.getParent() && 1095 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1096 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1097 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1098 OtherMI = &UseMI; 1099 return true; 1100 } 1101 } 1102 1103 return false; 1104 } 1105 1106 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1107 MachineInstr *&OtherMI) { 1108 unsigned Opcode = MI.getOpcode(); 1109 assert(OtherMI && "OtherMI shouldn't be empty."); 1110 1111 Register DestDivReg, DestRemReg; 1112 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1113 DestDivReg = MI.getOperand(0).getReg(); 1114 DestRemReg = OtherMI->getOperand(0).getReg(); 1115 } else { 1116 DestDivReg = OtherMI->getOperand(0).getReg(); 1117 DestRemReg = MI.getOperand(0).getReg(); 1118 } 1119 1120 bool IsSigned = 1121 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1122 1123 // Check which instruction is first in the block so we don't break def-use 1124 // deps by "moving" the instruction incorrectly. 1125 if (dominates(MI, *OtherMI)) 1126 Builder.setInstrAndDebugLoc(MI); 1127 else 1128 Builder.setInstrAndDebugLoc(*OtherMI); 1129 1130 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1131 : TargetOpcode::G_UDIVREM, 1132 {DestDivReg, DestRemReg}, 1133 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1134 MI.eraseFromParent(); 1135 OtherMI->eraseFromParent(); 1136 } 1137 1138 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1139 MachineInstr *&BrCond) { 1140 assert(MI.getOpcode() == TargetOpcode::G_BR); 1141 1142 // Try to match the following: 1143 // bb1: 1144 // G_BRCOND %c1, %bb2 1145 // G_BR %bb3 1146 // bb2: 1147 // ... 1148 // bb3: 1149 1150 // The above pattern does not have a fall through to the successor bb2, always 1151 // resulting in a branch no matter which path is taken. Here we try to find 1152 // and replace that pattern with conditional branch to bb3 and otherwise 1153 // fallthrough to bb2. This is generally better for branch predictors. 1154 1155 MachineBasicBlock *MBB = MI.getParent(); 1156 MachineBasicBlock::iterator BrIt(MI); 1157 if (BrIt == MBB->begin()) 1158 return false; 1159 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1160 1161 BrCond = &*std::prev(BrIt); 1162 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1163 return false; 1164 1165 // Check that the next block is the conditional branch target. Also make sure 1166 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1167 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1168 return BrCondTarget != MI.getOperand(0).getMBB() && 1169 MBB->isLayoutSuccessor(BrCondTarget); 1170 } 1171 1172 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1173 MachineInstr *&BrCond) { 1174 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1175 Builder.setInstrAndDebugLoc(*BrCond); 1176 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1177 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1178 // this to i1 only since we might not know for sure what kind of 1179 // compare generated the condition value. 1180 auto True = Builder.buildConstant( 1181 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1182 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1183 1184 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1185 Observer.changingInstr(MI); 1186 MI.getOperand(0).setMBB(FallthroughBB); 1187 Observer.changedInstr(MI); 1188 1189 // Change the conditional branch to use the inverted condition and 1190 // new target block. 1191 Observer.changingInstr(*BrCond); 1192 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1193 BrCond->getOperand(1).setMBB(BrTarget); 1194 Observer.changedInstr(*BrCond); 1195 } 1196 1197 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1198 if (Ty.isVector()) 1199 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1200 Ty.getNumElements()); 1201 return IntegerType::get(C, Ty.getSizeInBits()); 1202 } 1203 1204 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1205 MachineIRBuilder HelperBuilder(MI); 1206 GISelObserverWrapper DummyObserver; 1207 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1208 return Helper.lowerMemcpyInline(MI) == 1209 LegalizerHelper::LegalizeResult::Legalized; 1210 } 1211 1212 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1213 MachineIRBuilder HelperBuilder(MI); 1214 GISelObserverWrapper DummyObserver; 1215 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1216 return Helper.lowerMemCpyFamily(MI, MaxLen) == 1217 LegalizerHelper::LegalizeResult::Legalized; 1218 } 1219 1220 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1221 const Register Op, 1222 const MachineRegisterInfo &MRI) { 1223 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1224 if (!MaybeCst) 1225 return None; 1226 1227 APFloat V = MaybeCst->getValueAPF(); 1228 switch (Opcode) { 1229 default: 1230 llvm_unreachable("Unexpected opcode!"); 1231 case TargetOpcode::G_FNEG: { 1232 V.changeSign(); 1233 return V; 1234 } 1235 case TargetOpcode::G_FABS: { 1236 V.clearSign(); 1237 return V; 1238 } 1239 case TargetOpcode::G_FPTRUNC: 1240 break; 1241 case TargetOpcode::G_FSQRT: { 1242 bool Unused; 1243 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1244 V = APFloat(sqrt(V.convertToDouble())); 1245 break; 1246 } 1247 case TargetOpcode::G_FLOG2: { 1248 bool Unused; 1249 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1250 V = APFloat(log2(V.convertToDouble())); 1251 break; 1252 } 1253 } 1254 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1255 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1256 // and `G_FLOG2` reach here. 1257 bool Unused; 1258 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1259 return V; 1260 } 1261 1262 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1263 Optional<APFloat> &Cst) { 1264 Register DstReg = MI.getOperand(0).getReg(); 1265 Register SrcReg = MI.getOperand(1).getReg(); 1266 LLT DstTy = MRI.getType(DstReg); 1267 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1268 return Cst.hasValue(); 1269 } 1270 1271 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1272 Optional<APFloat> &Cst) { 1273 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1274 Builder.setInstrAndDebugLoc(MI); 1275 MachineFunction &MF = Builder.getMF(); 1276 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1277 Register DstReg = MI.getOperand(0).getReg(); 1278 Builder.buildFConstant(DstReg, *FPVal); 1279 MI.eraseFromParent(); 1280 } 1281 1282 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1283 PtrAddChain &MatchInfo) { 1284 // We're trying to match the following pattern: 1285 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1286 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1287 // --> 1288 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1289 1290 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1291 return false; 1292 1293 Register Add2 = MI.getOperand(1).getReg(); 1294 Register Imm1 = MI.getOperand(2).getReg(); 1295 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1296 if (!MaybeImmVal) 1297 return false; 1298 1299 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1300 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1301 return false; 1302 1303 Register Base = Add2Def->getOperand(1).getReg(); 1304 Register Imm2 = Add2Def->getOperand(2).getReg(); 1305 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1306 if (!MaybeImm2Val) 1307 return false; 1308 1309 // Check if the new combined immediate forms an illegal addressing mode. 1310 // Do not combine if it was legal before but would get illegal. 1311 // To do so, we need to find a load/store user of the pointer to get 1312 // the access type. 1313 Type *AccessTy = nullptr; 1314 auto &MF = *MI.getMF(); 1315 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1316 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1317 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1318 MF.getFunction().getContext()); 1319 break; 1320 } 1321 } 1322 TargetLoweringBase::AddrMode AMNew; 1323 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1324 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1325 if (AccessTy) { 1326 AMNew.HasBaseReg = true; 1327 TargetLoweringBase::AddrMode AMOld; 1328 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); 1329 AMOld.HasBaseReg = true; 1330 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1331 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1332 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1333 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1334 return false; 1335 } 1336 1337 // Pass the combined immediate to the apply function. 1338 MatchInfo.Imm = AMNew.BaseOffs; 1339 MatchInfo.Base = Base; 1340 MatchInfo.Bank = getRegBank(Imm2); 1341 return true; 1342 } 1343 1344 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1345 PtrAddChain &MatchInfo) { 1346 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1347 MachineIRBuilder MIB(MI); 1348 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1349 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1350 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1351 Observer.changingInstr(MI); 1352 MI.getOperand(1).setReg(MatchInfo.Base); 1353 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1354 Observer.changedInstr(MI); 1355 } 1356 1357 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1358 RegisterImmPair &MatchInfo) { 1359 // We're trying to match the following pattern with any of 1360 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1361 // %t1 = SHIFT %base, G_CONSTANT imm1 1362 // %root = SHIFT %t1, G_CONSTANT imm2 1363 // --> 1364 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1365 1366 unsigned Opcode = MI.getOpcode(); 1367 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1368 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1369 Opcode == TargetOpcode::G_USHLSAT) && 1370 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1371 1372 Register Shl2 = MI.getOperand(1).getReg(); 1373 Register Imm1 = MI.getOperand(2).getReg(); 1374 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1375 if (!MaybeImmVal) 1376 return false; 1377 1378 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1379 if (Shl2Def->getOpcode() != Opcode) 1380 return false; 1381 1382 Register Base = Shl2Def->getOperand(1).getReg(); 1383 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1384 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1385 if (!MaybeImm2Val) 1386 return false; 1387 1388 // Pass the combined immediate to the apply function. 1389 MatchInfo.Imm = 1390 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1391 MatchInfo.Reg = Base; 1392 1393 // There is no simple replacement for a saturating unsigned left shift that 1394 // exceeds the scalar size. 1395 if (Opcode == TargetOpcode::G_USHLSAT && 1396 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1397 return false; 1398 1399 return true; 1400 } 1401 1402 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1403 RegisterImmPair &MatchInfo) { 1404 unsigned Opcode = MI.getOpcode(); 1405 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1406 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1407 Opcode == TargetOpcode::G_USHLSAT) && 1408 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1409 1410 Builder.setInstrAndDebugLoc(MI); 1411 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1412 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1413 auto Imm = MatchInfo.Imm; 1414 1415 if (Imm >= ScalarSizeInBits) { 1416 // Any logical shift that exceeds scalar size will produce zero. 1417 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1418 Builder.buildConstant(MI.getOperand(0), 0); 1419 MI.eraseFromParent(); 1420 return; 1421 } 1422 // Arithmetic shift and saturating signed left shift have no effect beyond 1423 // scalar size. 1424 Imm = ScalarSizeInBits - 1; 1425 } 1426 1427 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1428 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1429 Observer.changingInstr(MI); 1430 MI.getOperand(1).setReg(MatchInfo.Reg); 1431 MI.getOperand(2).setReg(NewImm); 1432 Observer.changedInstr(MI); 1433 } 1434 1435 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1436 ShiftOfShiftedLogic &MatchInfo) { 1437 // We're trying to match the following pattern with any of 1438 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1439 // with any of G_AND/G_OR/G_XOR logic instructions. 1440 // %t1 = SHIFT %X, G_CONSTANT C0 1441 // %t2 = LOGIC %t1, %Y 1442 // %root = SHIFT %t2, G_CONSTANT C1 1443 // --> 1444 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1445 // %t4 = SHIFT %Y, G_CONSTANT C1 1446 // %root = LOGIC %t3, %t4 1447 unsigned ShiftOpcode = MI.getOpcode(); 1448 assert((ShiftOpcode == TargetOpcode::G_SHL || 1449 ShiftOpcode == TargetOpcode::G_ASHR || 1450 ShiftOpcode == TargetOpcode::G_LSHR || 1451 ShiftOpcode == TargetOpcode::G_USHLSAT || 1452 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1453 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1454 1455 // Match a one-use bitwise logic op. 1456 Register LogicDest = MI.getOperand(1).getReg(); 1457 if (!MRI.hasOneNonDBGUse(LogicDest)) 1458 return false; 1459 1460 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1461 unsigned LogicOpcode = LogicMI->getOpcode(); 1462 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1463 LogicOpcode != TargetOpcode::G_XOR) 1464 return false; 1465 1466 // Find a matching one-use shift by constant. 1467 const Register C1 = MI.getOperand(2).getReg(); 1468 auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI); 1469 if (!MaybeImmVal) 1470 return false; 1471 1472 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1473 1474 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1475 // Shift should match previous one and should be a one-use. 1476 if (MI->getOpcode() != ShiftOpcode || 1477 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1478 return false; 1479 1480 // Must be a constant. 1481 auto MaybeImmVal = 1482 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1483 if (!MaybeImmVal) 1484 return false; 1485 1486 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1487 return true; 1488 }; 1489 1490 // Logic ops are commutative, so check each operand for a match. 1491 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1492 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1493 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1494 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1495 uint64_t C0Val; 1496 1497 if (matchFirstShift(LogicMIOp1, C0Val)) { 1498 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1499 MatchInfo.Shift2 = LogicMIOp1; 1500 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1501 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1502 MatchInfo.Shift2 = LogicMIOp2; 1503 } else 1504 return false; 1505 1506 MatchInfo.ValSum = C0Val + C1Val; 1507 1508 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1509 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1510 return false; 1511 1512 MatchInfo.Logic = LogicMI; 1513 return true; 1514 } 1515 1516 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1517 ShiftOfShiftedLogic &MatchInfo) { 1518 unsigned Opcode = MI.getOpcode(); 1519 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1520 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1521 Opcode == TargetOpcode::G_SSHLSAT) && 1522 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1523 1524 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1525 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1526 Builder.setInstrAndDebugLoc(MI); 1527 1528 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1529 1530 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1531 Register Shift1 = 1532 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1533 1534 Register Shift2Const = MI.getOperand(2).getReg(); 1535 Register Shift2 = Builder 1536 .buildInstr(Opcode, {DestType}, 1537 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1538 .getReg(0); 1539 1540 Register Dest = MI.getOperand(0).getReg(); 1541 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1542 1543 // These were one use so it's safe to remove them. 1544 MatchInfo.Shift2->eraseFromParentAndMarkDBGValuesForRemoval(); 1545 MatchInfo.Logic->eraseFromParentAndMarkDBGValuesForRemoval(); 1546 1547 MI.eraseFromParent(); 1548 } 1549 1550 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1551 unsigned &ShiftVal) { 1552 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1553 auto MaybeImmVal = 1554 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1555 if (!MaybeImmVal) 1556 return false; 1557 1558 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1559 return (static_cast<int32_t>(ShiftVal) != -1); 1560 } 1561 1562 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1563 unsigned &ShiftVal) { 1564 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1565 MachineIRBuilder MIB(MI); 1566 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1567 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1568 Observer.changingInstr(MI); 1569 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1570 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1571 Observer.changedInstr(MI); 1572 } 1573 1574 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1575 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1576 RegisterImmPair &MatchData) { 1577 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1578 1579 Register LHS = MI.getOperand(1).getReg(); 1580 1581 Register ExtSrc; 1582 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1583 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1584 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1585 return false; 1586 1587 // TODO: Should handle vector splat. 1588 Register RHS = MI.getOperand(2).getReg(); 1589 auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI); 1590 if (!MaybeShiftAmtVal) 1591 return false; 1592 1593 if (LI) { 1594 LLT SrcTy = MRI.getType(ExtSrc); 1595 1596 // We only really care about the legality with the shifted value. We can 1597 // pick any type the constant shift amount, so ask the target what to 1598 // use. Otherwise we would have to guess and hope it is reported as legal. 1599 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1600 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1601 return false; 1602 } 1603 1604 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1605 MatchData.Reg = ExtSrc; 1606 MatchData.Imm = ShiftAmt; 1607 1608 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1609 return MinLeadingZeros >= ShiftAmt; 1610 } 1611 1612 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1613 const RegisterImmPair &MatchData) { 1614 Register ExtSrcReg = MatchData.Reg; 1615 int64_t ShiftAmtVal = MatchData.Imm; 1616 1617 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1618 Builder.setInstrAndDebugLoc(MI); 1619 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1620 auto NarrowShift = 1621 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1622 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1623 MI.eraseFromParent(); 1624 } 1625 1626 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 1627 Register &MatchInfo) { 1628 GMerge &Merge = cast<GMerge>(MI); 1629 SmallVector<Register, 16> MergedValues; 1630 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 1631 MergedValues.emplace_back(Merge.getSourceReg(I)); 1632 1633 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 1634 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 1635 return false; 1636 1637 for (unsigned I = 0; I < MergedValues.size(); ++I) 1638 if (MergedValues[I] != Unmerge->getReg(I)) 1639 return false; 1640 1641 MatchInfo = Unmerge->getSourceReg(); 1642 return true; 1643 } 1644 1645 static Register peekThroughBitcast(Register Reg, 1646 const MachineRegisterInfo &MRI) { 1647 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1648 ; 1649 1650 return Reg; 1651 } 1652 1653 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1654 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1655 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1656 "Expected an unmerge"); 1657 auto &Unmerge = cast<GUnmerge>(MI); 1658 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 1659 1660 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI); 1661 if (!SrcInstr) 1662 return false; 1663 1664 // Check the source type of the merge. 1665 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 1666 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 1667 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1668 if (SrcMergeTy != Dst0Ty && !SameSize) 1669 return false; 1670 // They are the same now (modulo a bitcast). 1671 // We can collect all the src registers. 1672 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 1673 Operands.push_back(SrcInstr->getSourceReg(Idx)); 1674 return true; 1675 } 1676 1677 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1678 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1679 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1680 "Expected an unmerge"); 1681 assert((MI.getNumOperands() - 1 == Operands.size()) && 1682 "Not enough operands to replace all defs"); 1683 unsigned NumElems = MI.getNumOperands() - 1; 1684 1685 LLT SrcTy = MRI.getType(Operands[0]); 1686 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1687 bool CanReuseInputDirectly = DstTy == SrcTy; 1688 Builder.setInstrAndDebugLoc(MI); 1689 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1690 Register DstReg = MI.getOperand(Idx).getReg(); 1691 Register SrcReg = Operands[Idx]; 1692 if (CanReuseInputDirectly) 1693 replaceRegWith(MRI, DstReg, SrcReg); 1694 else 1695 Builder.buildCast(DstReg, SrcReg); 1696 } 1697 MI.eraseFromParent(); 1698 } 1699 1700 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1701 SmallVectorImpl<APInt> &Csts) { 1702 unsigned SrcIdx = MI.getNumOperands() - 1; 1703 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1704 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1705 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1706 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1707 return false; 1708 // Break down the big constant in smaller ones. 1709 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1710 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1711 ? CstVal.getCImm()->getValue() 1712 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1713 1714 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1715 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1716 // Unmerge a constant. 1717 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1718 Csts.emplace_back(Val.trunc(ShiftAmt)); 1719 Val = Val.lshr(ShiftAmt); 1720 } 1721 1722 return true; 1723 } 1724 1725 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1726 SmallVectorImpl<APInt> &Csts) { 1727 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1728 "Expected an unmerge"); 1729 assert((MI.getNumOperands() - 1 == Csts.size()) && 1730 "Not enough operands to replace all defs"); 1731 unsigned NumElems = MI.getNumOperands() - 1; 1732 Builder.setInstrAndDebugLoc(MI); 1733 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1734 Register DstReg = MI.getOperand(Idx).getReg(); 1735 Builder.buildConstant(DstReg, Csts[Idx]); 1736 } 1737 1738 MI.eraseFromParent(); 1739 } 1740 1741 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1742 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1743 "Expected an unmerge"); 1744 // Check that all the lanes are dead except the first one. 1745 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1746 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1747 return false; 1748 } 1749 return true; 1750 } 1751 1752 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1753 Builder.setInstrAndDebugLoc(MI); 1754 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1755 // Truncating a vector is going to truncate every single lane, 1756 // whereas we want the full lowbits. 1757 // Do the operation on a scalar instead. 1758 LLT SrcTy = MRI.getType(SrcReg); 1759 if (SrcTy.isVector()) 1760 SrcReg = 1761 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1762 1763 Register Dst0Reg = MI.getOperand(0).getReg(); 1764 LLT Dst0Ty = MRI.getType(Dst0Reg); 1765 if (Dst0Ty.isVector()) { 1766 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 1767 Builder.buildCast(Dst0Reg, MIB); 1768 } else 1769 Builder.buildTrunc(Dst0Reg, SrcReg); 1770 MI.eraseFromParent(); 1771 } 1772 1773 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 1774 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1775 "Expected an unmerge"); 1776 Register Dst0Reg = MI.getOperand(0).getReg(); 1777 LLT Dst0Ty = MRI.getType(Dst0Reg); 1778 // G_ZEXT on vector applies to each lane, so it will 1779 // affect all destinations. Therefore we won't be able 1780 // to simplify the unmerge to just the first definition. 1781 if (Dst0Ty.isVector()) 1782 return false; 1783 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1784 LLT SrcTy = MRI.getType(SrcReg); 1785 if (SrcTy.isVector()) 1786 return false; 1787 1788 Register ZExtSrcReg; 1789 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 1790 return false; 1791 1792 // Finally we can replace the first definition with 1793 // a zext of the source if the definition is big enough to hold 1794 // all of ZExtSrc bits. 1795 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1796 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 1797 } 1798 1799 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 1800 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1801 "Expected an unmerge"); 1802 1803 Register Dst0Reg = MI.getOperand(0).getReg(); 1804 1805 MachineInstr *ZExtInstr = 1806 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 1807 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 1808 "Expecting a G_ZEXT"); 1809 1810 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 1811 LLT Dst0Ty = MRI.getType(Dst0Reg); 1812 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1813 1814 Builder.setInstrAndDebugLoc(MI); 1815 1816 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 1817 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 1818 } else { 1819 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 1820 "ZExt src doesn't fit in destination"); 1821 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 1822 } 1823 1824 Register ZeroReg; 1825 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1826 if (!ZeroReg) 1827 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 1828 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 1829 } 1830 MI.eraseFromParent(); 1831 } 1832 1833 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1834 unsigned TargetShiftSize, 1835 unsigned &ShiftVal) { 1836 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1837 MI.getOpcode() == TargetOpcode::G_LSHR || 1838 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1839 1840 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1841 if (Ty.isVector()) // TODO: 1842 return false; 1843 1844 // Don't narrow further than the requested size. 1845 unsigned Size = Ty.getSizeInBits(); 1846 if (Size <= TargetShiftSize) 1847 return false; 1848 1849 auto MaybeImmVal = 1850 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1851 if (!MaybeImmVal) 1852 return false; 1853 1854 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1855 return ShiftVal >= Size / 2 && ShiftVal < Size; 1856 } 1857 1858 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1859 const unsigned &ShiftVal) { 1860 Register DstReg = MI.getOperand(0).getReg(); 1861 Register SrcReg = MI.getOperand(1).getReg(); 1862 LLT Ty = MRI.getType(SrcReg); 1863 unsigned Size = Ty.getSizeInBits(); 1864 unsigned HalfSize = Size / 2; 1865 assert(ShiftVal >= HalfSize); 1866 1867 LLT HalfTy = LLT::scalar(HalfSize); 1868 1869 Builder.setInstr(MI); 1870 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1871 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1872 1873 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1874 Register Narrowed = Unmerge.getReg(1); 1875 1876 // dst = G_LSHR s64:x, C for C >= 32 1877 // => 1878 // lo, hi = G_UNMERGE_VALUES x 1879 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1880 1881 if (NarrowShiftAmt != 0) { 1882 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1883 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1884 } 1885 1886 auto Zero = Builder.buildConstant(HalfTy, 0); 1887 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1888 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1889 Register Narrowed = Unmerge.getReg(0); 1890 // dst = G_SHL s64:x, C for C >= 32 1891 // => 1892 // lo, hi = G_UNMERGE_VALUES x 1893 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1894 if (NarrowShiftAmt != 0) { 1895 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1896 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1897 } 1898 1899 auto Zero = Builder.buildConstant(HalfTy, 0); 1900 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1901 } else { 1902 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1903 auto Hi = Builder.buildAShr( 1904 HalfTy, Unmerge.getReg(1), 1905 Builder.buildConstant(HalfTy, HalfSize - 1)); 1906 1907 if (ShiftVal == HalfSize) { 1908 // (G_ASHR i64:x, 32) -> 1909 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1910 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1911 } else if (ShiftVal == Size - 1) { 1912 // Don't need a second shift. 1913 // (G_ASHR i64:x, 63) -> 1914 // %narrowed = (G_ASHR hi_32(x), 31) 1915 // G_MERGE_VALUES %narrowed, %narrowed 1916 Builder.buildMerge(DstReg, { Hi, Hi }); 1917 } else { 1918 auto Lo = Builder.buildAShr( 1919 HalfTy, Unmerge.getReg(1), 1920 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1921 1922 // (G_ASHR i64:x, C) ->, for C >= 32 1923 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1924 Builder.buildMerge(DstReg, { Lo, Hi }); 1925 } 1926 } 1927 1928 MI.eraseFromParent(); 1929 } 1930 1931 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1932 unsigned TargetShiftAmount) { 1933 unsigned ShiftAmt; 1934 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1935 applyCombineShiftToUnmerge(MI, ShiftAmt); 1936 return true; 1937 } 1938 1939 return false; 1940 } 1941 1942 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1943 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1944 Register DstReg = MI.getOperand(0).getReg(); 1945 LLT DstTy = MRI.getType(DstReg); 1946 Register SrcReg = MI.getOperand(1).getReg(); 1947 return mi_match(SrcReg, MRI, 1948 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 1949 } 1950 1951 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1952 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1953 Register DstReg = MI.getOperand(0).getReg(); 1954 Builder.setInstr(MI); 1955 Builder.buildCopy(DstReg, Reg); 1956 MI.eraseFromParent(); 1957 } 1958 1959 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1960 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1961 Register SrcReg = MI.getOperand(1).getReg(); 1962 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 1963 } 1964 1965 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1966 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1967 Register DstReg = MI.getOperand(0).getReg(); 1968 Builder.setInstr(MI); 1969 Builder.buildZExtOrTrunc(DstReg, Reg); 1970 MI.eraseFromParent(); 1971 } 1972 1973 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 1974 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1975 assert(MI.getOpcode() == TargetOpcode::G_ADD); 1976 Register LHS = MI.getOperand(1).getReg(); 1977 Register RHS = MI.getOperand(2).getReg(); 1978 LLT IntTy = MRI.getType(LHS); 1979 1980 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 1981 // instruction. 1982 PtrReg.second = false; 1983 for (Register SrcReg : {LHS, RHS}) { 1984 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 1985 // Don't handle cases where the integer is implicitly converted to the 1986 // pointer width. 1987 LLT PtrTy = MRI.getType(PtrReg.first); 1988 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 1989 return true; 1990 } 1991 1992 PtrReg.second = true; 1993 } 1994 1995 return false; 1996 } 1997 1998 void CombinerHelper::applyCombineAddP2IToPtrAdd( 1999 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2000 Register Dst = MI.getOperand(0).getReg(); 2001 Register LHS = MI.getOperand(1).getReg(); 2002 Register RHS = MI.getOperand(2).getReg(); 2003 2004 const bool DoCommute = PtrReg.second; 2005 if (DoCommute) 2006 std::swap(LHS, RHS); 2007 LHS = PtrReg.first; 2008 2009 LLT PtrTy = MRI.getType(LHS); 2010 2011 Builder.setInstrAndDebugLoc(MI); 2012 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2013 Builder.buildPtrToInt(Dst, PtrAdd); 2014 MI.eraseFromParent(); 2015 } 2016 2017 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2018 int64_t &NewCst) { 2019 auto &PtrAdd = cast<GPtrAdd>(MI); 2020 Register LHS = PtrAdd.getBaseReg(); 2021 Register RHS = PtrAdd.getOffsetReg(); 2022 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2023 2024 if (auto RHSCst = getIConstantVRegSExtVal(RHS, MRI)) { 2025 int64_t Cst; 2026 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2027 NewCst = Cst + *RHSCst; 2028 return true; 2029 } 2030 } 2031 2032 return false; 2033 } 2034 2035 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2036 int64_t &NewCst) { 2037 auto &PtrAdd = cast<GPtrAdd>(MI); 2038 Register Dst = PtrAdd.getReg(0); 2039 2040 Builder.setInstrAndDebugLoc(MI); 2041 Builder.buildConstant(Dst, NewCst); 2042 PtrAdd.eraseFromParent(); 2043 } 2044 2045 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2046 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2047 Register DstReg = MI.getOperand(0).getReg(); 2048 Register SrcReg = MI.getOperand(1).getReg(); 2049 LLT DstTy = MRI.getType(DstReg); 2050 return mi_match(SrcReg, MRI, 2051 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2052 } 2053 2054 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2055 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2056 Register DstReg = MI.getOperand(0).getReg(); 2057 Register SrcReg = MI.getOperand(1).getReg(); 2058 LLT DstTy = MRI.getType(DstReg); 2059 if (mi_match(SrcReg, MRI, 2060 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2061 unsigned DstSize = DstTy.getScalarSizeInBits(); 2062 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2063 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2064 } 2065 return false; 2066 } 2067 2068 bool CombinerHelper::matchCombineExtOfExt( 2069 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2070 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2071 MI.getOpcode() == TargetOpcode::G_SEXT || 2072 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2073 "Expected a G_[ASZ]EXT"); 2074 Register SrcReg = MI.getOperand(1).getReg(); 2075 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2076 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2077 unsigned Opc = MI.getOpcode(); 2078 unsigned SrcOpc = SrcMI->getOpcode(); 2079 if (Opc == SrcOpc || 2080 (Opc == TargetOpcode::G_ANYEXT && 2081 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2082 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2083 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2084 return true; 2085 } 2086 return false; 2087 } 2088 2089 void CombinerHelper::applyCombineExtOfExt( 2090 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2091 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2092 MI.getOpcode() == TargetOpcode::G_SEXT || 2093 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2094 "Expected a G_[ASZ]EXT"); 2095 2096 Register Reg = std::get<0>(MatchInfo); 2097 unsigned SrcExtOp = std::get<1>(MatchInfo); 2098 2099 // Combine exts with the same opcode. 2100 if (MI.getOpcode() == SrcExtOp) { 2101 Observer.changingInstr(MI); 2102 MI.getOperand(1).setReg(Reg); 2103 Observer.changedInstr(MI); 2104 return; 2105 } 2106 2107 // Combine: 2108 // - anyext([sz]ext x) to [sz]ext x 2109 // - sext(zext x) to zext x 2110 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2111 (MI.getOpcode() == TargetOpcode::G_SEXT && 2112 SrcExtOp == TargetOpcode::G_ZEXT)) { 2113 Register DstReg = MI.getOperand(0).getReg(); 2114 Builder.setInstrAndDebugLoc(MI); 2115 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2116 MI.eraseFromParent(); 2117 } 2118 } 2119 2120 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2121 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2122 Register DstReg = MI.getOperand(0).getReg(); 2123 Register SrcReg = MI.getOperand(1).getReg(); 2124 LLT DstTy = MRI.getType(DstReg); 2125 2126 Builder.setInstrAndDebugLoc(MI); 2127 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2128 MI.getFlags()); 2129 MI.eraseFromParent(); 2130 } 2131 2132 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2133 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2134 Register SrcReg = MI.getOperand(1).getReg(); 2135 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2136 } 2137 2138 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2139 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2140 Src = MI.getOperand(1).getReg(); 2141 Register AbsSrc; 2142 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2143 } 2144 2145 bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI, 2146 BuildFnTy &MatchInfo) { 2147 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2148 Register Src = MI.getOperand(1).getReg(); 2149 Register NegSrc; 2150 2151 if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc)))) 2152 return false; 2153 2154 MatchInfo = [=, &MI](MachineIRBuilder &B) { 2155 Observer.changingInstr(MI); 2156 MI.getOperand(1).setReg(NegSrc); 2157 Observer.changedInstr(MI); 2158 }; 2159 return true; 2160 } 2161 2162 bool CombinerHelper::matchCombineTruncOfExt( 2163 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2164 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2165 Register SrcReg = MI.getOperand(1).getReg(); 2166 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2167 unsigned SrcOpc = SrcMI->getOpcode(); 2168 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2169 SrcOpc == TargetOpcode::G_ZEXT) { 2170 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2171 return true; 2172 } 2173 return false; 2174 } 2175 2176 void CombinerHelper::applyCombineTruncOfExt( 2177 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2178 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2179 Register SrcReg = MatchInfo.first; 2180 unsigned SrcExtOp = MatchInfo.second; 2181 Register DstReg = MI.getOperand(0).getReg(); 2182 LLT SrcTy = MRI.getType(SrcReg); 2183 LLT DstTy = MRI.getType(DstReg); 2184 if (SrcTy == DstTy) { 2185 MI.eraseFromParent(); 2186 replaceRegWith(MRI, DstReg, SrcReg); 2187 return; 2188 } 2189 Builder.setInstrAndDebugLoc(MI); 2190 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2191 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2192 else 2193 Builder.buildTrunc(DstReg, SrcReg); 2194 MI.eraseFromParent(); 2195 } 2196 2197 bool CombinerHelper::matchCombineTruncOfShl( 2198 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2199 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2200 Register DstReg = MI.getOperand(0).getReg(); 2201 Register SrcReg = MI.getOperand(1).getReg(); 2202 LLT DstTy = MRI.getType(DstReg); 2203 Register ShiftSrc; 2204 Register ShiftAmt; 2205 2206 if (MRI.hasOneNonDBGUse(SrcReg) && 2207 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2208 isLegalOrBeforeLegalizer( 2209 {TargetOpcode::G_SHL, 2210 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2211 KnownBits Known = KB->getKnownBits(ShiftAmt); 2212 unsigned Size = DstTy.getSizeInBits(); 2213 if (Known.countMaxActiveBits() <= Log2_32(Size)) { 2214 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2215 return true; 2216 } 2217 } 2218 return false; 2219 } 2220 2221 void CombinerHelper::applyCombineTruncOfShl( 2222 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2223 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2224 Register DstReg = MI.getOperand(0).getReg(); 2225 Register SrcReg = MI.getOperand(1).getReg(); 2226 LLT DstTy = MRI.getType(DstReg); 2227 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2228 2229 Register ShiftSrc = MatchInfo.first; 2230 Register ShiftAmt = MatchInfo.second; 2231 Builder.setInstrAndDebugLoc(MI); 2232 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2233 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2234 MI.eraseFromParent(); 2235 } 2236 2237 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2238 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2239 return MO.isReg() && 2240 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2241 }); 2242 } 2243 2244 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2245 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2246 return !MO.isReg() || 2247 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2248 }); 2249 } 2250 2251 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2252 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2253 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2254 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2255 } 2256 2257 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2258 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2259 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2260 MRI); 2261 } 2262 2263 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2264 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2265 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2266 MRI); 2267 } 2268 2269 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2270 GSelect &SelMI = cast<GSelect>(MI); 2271 auto Cst = 2272 isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI); 2273 if (!Cst) 2274 return false; 2275 OpIdx = Cst->isZero() ? 3 : 2; 2276 return true; 2277 } 2278 2279 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2280 MI.eraseFromParent(); 2281 return true; 2282 } 2283 2284 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2285 const MachineOperand &MOP2) { 2286 if (!MOP1.isReg() || !MOP2.isReg()) 2287 return false; 2288 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2289 if (!InstAndDef1) 2290 return false; 2291 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2292 if (!InstAndDef2) 2293 return false; 2294 MachineInstr *I1 = InstAndDef1->MI; 2295 MachineInstr *I2 = InstAndDef2->MI; 2296 2297 // Handle a case like this: 2298 // 2299 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2300 // 2301 // Even though %0 and %1 are produced by the same instruction they are not 2302 // the same values. 2303 if (I1 == I2) 2304 return MOP1.getReg() == MOP2.getReg(); 2305 2306 // If we have an instruction which loads or stores, we can't guarantee that 2307 // it is identical. 2308 // 2309 // For example, we may have 2310 // 2311 // %x1 = G_LOAD %addr (load N from @somewhere) 2312 // ... 2313 // call @foo 2314 // ... 2315 // %x2 = G_LOAD %addr (load N from @somewhere) 2316 // ... 2317 // %or = G_OR %x1, %x2 2318 // 2319 // It's possible that @foo will modify whatever lives at the address we're 2320 // loading from. To be safe, let's just assume that all loads and stores 2321 // are different (unless we have something which is guaranteed to not 2322 // change.) 2323 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2324 return false; 2325 2326 // Check for physical registers on the instructions first to avoid cases 2327 // like this: 2328 // 2329 // %a = COPY $physreg 2330 // ... 2331 // SOMETHING implicit-def $physreg 2332 // ... 2333 // %b = COPY $physreg 2334 // 2335 // These copies are not equivalent. 2336 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2337 return MO.isReg() && MO.getReg().isPhysical(); 2338 })) { 2339 // Check if we have a case like this: 2340 // 2341 // %a = COPY $physreg 2342 // %b = COPY %a 2343 // 2344 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2345 // From that, we know that they must have the same value, since they must 2346 // have come from the same COPY. 2347 return I1->isIdenticalTo(*I2); 2348 } 2349 2350 // We don't have any physical registers, so we don't necessarily need the 2351 // same vreg defs. 2352 // 2353 // On the off-chance that there's some target instruction feeding into the 2354 // instruction, let's use produceSameValue instead of isIdenticalTo. 2355 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2356 // Handle instructions with multiple defs that produce same values. Values 2357 // are same for operands with same index. 2358 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2359 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2360 // I1 and I2 are different instructions but produce same values, 2361 // %1 and %6 are same, %1 and %7 are not the same value. 2362 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2363 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2364 } 2365 return false; 2366 } 2367 2368 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2369 if (!MOP.isReg()) 2370 return false; 2371 auto *MI = MRI.getVRegDef(MOP.getReg()); 2372 auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI); 2373 return MaybeCst.hasValue() && MaybeCst->getBitWidth() <= 64 && 2374 MaybeCst->getSExtValue() == C; 2375 } 2376 2377 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2378 unsigned OpIdx) { 2379 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2380 Register OldReg = MI.getOperand(0).getReg(); 2381 Register Replacement = MI.getOperand(OpIdx).getReg(); 2382 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2383 MI.eraseFromParent(); 2384 replaceRegWith(MRI, OldReg, Replacement); 2385 return true; 2386 } 2387 2388 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2389 Register Replacement) { 2390 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2391 Register OldReg = MI.getOperand(0).getReg(); 2392 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2393 MI.eraseFromParent(); 2394 replaceRegWith(MRI, OldReg, Replacement); 2395 return true; 2396 } 2397 2398 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2399 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2400 // Match (cond ? x : x) 2401 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2402 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2403 MRI); 2404 } 2405 2406 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2407 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2408 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2409 MRI); 2410 } 2411 2412 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2413 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2414 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2415 MRI); 2416 } 2417 2418 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2419 MachineOperand &MO = MI.getOperand(OpIdx); 2420 return MO.isReg() && 2421 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2422 } 2423 2424 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2425 unsigned OpIdx) { 2426 MachineOperand &MO = MI.getOperand(OpIdx); 2427 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2428 } 2429 2430 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2431 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2432 Builder.setInstr(MI); 2433 Builder.buildFConstant(MI.getOperand(0), C); 2434 MI.eraseFromParent(); 2435 return true; 2436 } 2437 2438 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2439 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2440 Builder.setInstr(MI); 2441 Builder.buildConstant(MI.getOperand(0), C); 2442 MI.eraseFromParent(); 2443 return true; 2444 } 2445 2446 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2447 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2448 Builder.setInstr(MI); 2449 Builder.buildConstant(MI.getOperand(0), C); 2450 MI.eraseFromParent(); 2451 return true; 2452 } 2453 2454 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2455 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2456 Builder.setInstr(MI); 2457 Builder.buildUndef(MI.getOperand(0)); 2458 MI.eraseFromParent(); 2459 return true; 2460 } 2461 2462 bool CombinerHelper::matchSimplifyAddToSub( 2463 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2464 Register LHS = MI.getOperand(1).getReg(); 2465 Register RHS = MI.getOperand(2).getReg(); 2466 Register &NewLHS = std::get<0>(MatchInfo); 2467 Register &NewRHS = std::get<1>(MatchInfo); 2468 2469 // Helper lambda to check for opportunities for 2470 // ((0-A) + B) -> B - A 2471 // (A + (0-B)) -> A - B 2472 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2473 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2474 return false; 2475 NewLHS = MaybeNewLHS; 2476 return true; 2477 }; 2478 2479 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2480 } 2481 2482 bool CombinerHelper::matchCombineInsertVecElts( 2483 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2484 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2485 "Invalid opcode"); 2486 Register DstReg = MI.getOperand(0).getReg(); 2487 LLT DstTy = MRI.getType(DstReg); 2488 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2489 unsigned NumElts = DstTy.getNumElements(); 2490 // If this MI is part of a sequence of insert_vec_elts, then 2491 // don't do the combine in the middle of the sequence. 2492 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2493 TargetOpcode::G_INSERT_VECTOR_ELT) 2494 return false; 2495 MachineInstr *CurrInst = &MI; 2496 MachineInstr *TmpInst; 2497 int64_t IntImm; 2498 Register TmpReg; 2499 MatchInfo.resize(NumElts); 2500 while (mi_match( 2501 CurrInst->getOperand(0).getReg(), MRI, 2502 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2503 if (IntImm >= NumElts) 2504 return false; 2505 if (!MatchInfo[IntImm]) 2506 MatchInfo[IntImm] = TmpReg; 2507 CurrInst = TmpInst; 2508 } 2509 // Variable index. 2510 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2511 return false; 2512 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2513 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2514 if (!MatchInfo[I - 1].isValid()) 2515 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2516 } 2517 return true; 2518 } 2519 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2520 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2521 } 2522 2523 void CombinerHelper::applyCombineInsertVecElts( 2524 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2525 Builder.setInstr(MI); 2526 Register UndefReg; 2527 auto GetUndef = [&]() { 2528 if (UndefReg) 2529 return UndefReg; 2530 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2531 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2532 return UndefReg; 2533 }; 2534 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2535 if (!MatchInfo[I]) 2536 MatchInfo[I] = GetUndef(); 2537 } 2538 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2539 MI.eraseFromParent(); 2540 } 2541 2542 void CombinerHelper::applySimplifyAddToSub( 2543 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2544 Builder.setInstr(MI); 2545 Register SubLHS, SubRHS; 2546 std::tie(SubLHS, SubRHS) = MatchInfo; 2547 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2548 MI.eraseFromParent(); 2549 } 2550 2551 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2552 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2553 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2554 // 2555 // Creates the new hand + logic instruction (but does not insert them.) 2556 // 2557 // On success, MatchInfo is populated with the new instructions. These are 2558 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2559 unsigned LogicOpcode = MI.getOpcode(); 2560 assert(LogicOpcode == TargetOpcode::G_AND || 2561 LogicOpcode == TargetOpcode::G_OR || 2562 LogicOpcode == TargetOpcode::G_XOR); 2563 MachineIRBuilder MIB(MI); 2564 Register Dst = MI.getOperand(0).getReg(); 2565 Register LHSReg = MI.getOperand(1).getReg(); 2566 Register RHSReg = MI.getOperand(2).getReg(); 2567 2568 // Don't recompute anything. 2569 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2570 return false; 2571 2572 // Make sure we have (hand x, ...), (hand y, ...) 2573 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2574 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2575 if (!LeftHandInst || !RightHandInst) 2576 return false; 2577 unsigned HandOpcode = LeftHandInst->getOpcode(); 2578 if (HandOpcode != RightHandInst->getOpcode()) 2579 return false; 2580 if (!LeftHandInst->getOperand(1).isReg() || 2581 !RightHandInst->getOperand(1).isReg()) 2582 return false; 2583 2584 // Make sure the types match up, and if we're doing this post-legalization, 2585 // we end up with legal types. 2586 Register X = LeftHandInst->getOperand(1).getReg(); 2587 Register Y = RightHandInst->getOperand(1).getReg(); 2588 LLT XTy = MRI.getType(X); 2589 LLT YTy = MRI.getType(Y); 2590 if (XTy != YTy) 2591 return false; 2592 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2593 return false; 2594 2595 // Optional extra source register. 2596 Register ExtraHandOpSrcReg; 2597 switch (HandOpcode) { 2598 default: 2599 return false; 2600 case TargetOpcode::G_ANYEXT: 2601 case TargetOpcode::G_SEXT: 2602 case TargetOpcode::G_ZEXT: { 2603 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2604 break; 2605 } 2606 case TargetOpcode::G_AND: 2607 case TargetOpcode::G_ASHR: 2608 case TargetOpcode::G_LSHR: 2609 case TargetOpcode::G_SHL: { 2610 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2611 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2612 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2613 return false; 2614 ExtraHandOpSrcReg = ZOp.getReg(); 2615 break; 2616 } 2617 } 2618 2619 // Record the steps to build the new instructions. 2620 // 2621 // Steps to build (logic x, y) 2622 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2623 OperandBuildSteps LogicBuildSteps = { 2624 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2625 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2626 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2627 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2628 2629 // Steps to build hand (logic x, y), ...z 2630 OperandBuildSteps HandBuildSteps = { 2631 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2632 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2633 if (ExtraHandOpSrcReg.isValid()) 2634 HandBuildSteps.push_back( 2635 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2636 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2637 2638 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2639 return true; 2640 } 2641 2642 void CombinerHelper::applyBuildInstructionSteps( 2643 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2644 assert(MatchInfo.InstrsToBuild.size() && 2645 "Expected at least one instr to build?"); 2646 Builder.setInstr(MI); 2647 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2648 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2649 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2650 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2651 for (auto &OperandFn : InstrToBuild.OperandFns) 2652 OperandFn(Instr); 2653 } 2654 MI.eraseFromParent(); 2655 } 2656 2657 bool CombinerHelper::matchAshrShlToSextInreg( 2658 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2659 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2660 int64_t ShlCst, AshrCst; 2661 Register Src; 2662 // FIXME: detect splat constant vectors. 2663 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2664 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2665 return false; 2666 if (ShlCst != AshrCst) 2667 return false; 2668 if (!isLegalOrBeforeLegalizer( 2669 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2670 return false; 2671 MatchInfo = std::make_tuple(Src, ShlCst); 2672 return true; 2673 } 2674 2675 void CombinerHelper::applyAshShlToSextInreg( 2676 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2677 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2678 Register Src; 2679 int64_t ShiftAmt; 2680 std::tie(Src, ShiftAmt) = MatchInfo; 2681 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2682 Builder.setInstrAndDebugLoc(MI); 2683 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2684 MI.eraseFromParent(); 2685 } 2686 2687 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 2688 bool CombinerHelper::matchOverlappingAnd( 2689 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 2690 assert(MI.getOpcode() == TargetOpcode::G_AND); 2691 2692 Register Dst = MI.getOperand(0).getReg(); 2693 LLT Ty = MRI.getType(Dst); 2694 2695 Register R; 2696 int64_t C1; 2697 int64_t C2; 2698 if (!mi_match( 2699 Dst, MRI, 2700 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 2701 return false; 2702 2703 MatchInfo = [=](MachineIRBuilder &B) { 2704 if (C1 & C2) { 2705 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 2706 return; 2707 } 2708 auto Zero = B.buildConstant(Ty, 0); 2709 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 2710 }; 2711 return true; 2712 } 2713 2714 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2715 Register &Replacement) { 2716 // Given 2717 // 2718 // %y:_(sN) = G_SOMETHING 2719 // %x:_(sN) = G_SOMETHING 2720 // %res:_(sN) = G_AND %x, %y 2721 // 2722 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 2723 // 2724 // Patterns like this can appear as a result of legalization. E.g. 2725 // 2726 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2727 // %one:_(s32) = G_CONSTANT i32 1 2728 // %and:_(s32) = G_AND %cmp, %one 2729 // 2730 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2731 assert(MI.getOpcode() == TargetOpcode::G_AND); 2732 if (!KB) 2733 return false; 2734 2735 Register AndDst = MI.getOperand(0).getReg(); 2736 LLT DstTy = MRI.getType(AndDst); 2737 2738 // FIXME: This should be removed once GISelKnownBits supports vectors. 2739 if (DstTy.isVector()) 2740 return false; 2741 2742 Register LHS = MI.getOperand(1).getReg(); 2743 Register RHS = MI.getOperand(2).getReg(); 2744 KnownBits LHSBits = KB->getKnownBits(LHS); 2745 KnownBits RHSBits = KB->getKnownBits(RHS); 2746 2747 // Check that x & Mask == x. 2748 // x & 1 == x, always 2749 // x & 0 == x, only if x is also 0 2750 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 2751 // 2752 // Check if we can replace AndDst with the LHS of the G_AND 2753 if (canReplaceReg(AndDst, LHS, MRI) && 2754 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2755 Replacement = LHS; 2756 return true; 2757 } 2758 2759 // Check if we can replace AndDst with the RHS of the G_AND 2760 if (canReplaceReg(AndDst, RHS, MRI) && 2761 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2762 Replacement = RHS; 2763 return true; 2764 } 2765 2766 return false; 2767 } 2768 2769 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 2770 // Given 2771 // 2772 // %y:_(sN) = G_SOMETHING 2773 // %x:_(sN) = G_SOMETHING 2774 // %res:_(sN) = G_OR %x, %y 2775 // 2776 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 2777 assert(MI.getOpcode() == TargetOpcode::G_OR); 2778 if (!KB) 2779 return false; 2780 2781 Register OrDst = MI.getOperand(0).getReg(); 2782 LLT DstTy = MRI.getType(OrDst); 2783 2784 // FIXME: This should be removed once GISelKnownBits supports vectors. 2785 if (DstTy.isVector()) 2786 return false; 2787 2788 Register LHS = MI.getOperand(1).getReg(); 2789 Register RHS = MI.getOperand(2).getReg(); 2790 KnownBits LHSBits = KB->getKnownBits(LHS); 2791 KnownBits RHSBits = KB->getKnownBits(RHS); 2792 2793 // Check that x | Mask == x. 2794 // x | 0 == x, always 2795 // x | 1 == x, only if x is also 1 2796 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 2797 // 2798 // Check if we can replace OrDst with the LHS of the G_OR 2799 if (canReplaceReg(OrDst, LHS, MRI) && 2800 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2801 Replacement = LHS; 2802 return true; 2803 } 2804 2805 // Check if we can replace OrDst with the RHS of the G_OR 2806 if (canReplaceReg(OrDst, RHS, MRI) && 2807 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2808 Replacement = RHS; 2809 return true; 2810 } 2811 2812 return false; 2813 } 2814 2815 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 2816 // If the input is already sign extended, just drop the extension. 2817 Register Src = MI.getOperand(1).getReg(); 2818 unsigned ExtBits = MI.getOperand(2).getImm(); 2819 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 2820 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 2821 } 2822 2823 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 2824 int64_t Cst, bool IsVector, bool IsFP) { 2825 // For i1, Cst will always be -1 regardless of boolean contents. 2826 return (ScalarSizeBits == 1 && Cst == -1) || 2827 isConstTrueVal(TLI, Cst, IsVector, IsFP); 2828 } 2829 2830 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 2831 SmallVectorImpl<Register> &RegsToNegate) { 2832 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2833 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2834 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 2835 Register XorSrc; 2836 Register CstReg; 2837 // We match xor(src, true) here. 2838 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2839 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 2840 return false; 2841 2842 if (!MRI.hasOneNonDBGUse(XorSrc)) 2843 return false; 2844 2845 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 2846 // and ORs. The suffix of RegsToNegate starting from index I is used a work 2847 // list of tree nodes to visit. 2848 RegsToNegate.push_back(XorSrc); 2849 // Remember whether the comparisons are all integer or all floating point. 2850 bool IsInt = false; 2851 bool IsFP = false; 2852 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 2853 Register Reg = RegsToNegate[I]; 2854 if (!MRI.hasOneNonDBGUse(Reg)) 2855 return false; 2856 MachineInstr *Def = MRI.getVRegDef(Reg); 2857 switch (Def->getOpcode()) { 2858 default: 2859 // Don't match if the tree contains anything other than ANDs, ORs and 2860 // comparisons. 2861 return false; 2862 case TargetOpcode::G_ICMP: 2863 if (IsFP) 2864 return false; 2865 IsInt = true; 2866 // When we apply the combine we will invert the predicate. 2867 break; 2868 case TargetOpcode::G_FCMP: 2869 if (IsInt) 2870 return false; 2871 IsFP = true; 2872 // When we apply the combine we will invert the predicate. 2873 break; 2874 case TargetOpcode::G_AND: 2875 case TargetOpcode::G_OR: 2876 // Implement De Morgan's laws: 2877 // ~(x & y) -> ~x | ~y 2878 // ~(x | y) -> ~x & ~y 2879 // When we apply the combine we will change the opcode and recursively 2880 // negate the operands. 2881 RegsToNegate.push_back(Def->getOperand(1).getReg()); 2882 RegsToNegate.push_back(Def->getOperand(2).getReg()); 2883 break; 2884 } 2885 } 2886 2887 // Now we know whether the comparisons are integer or floating point, check 2888 // the constant in the xor. 2889 int64_t Cst; 2890 if (Ty.isVector()) { 2891 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 2892 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 2893 if (!MaybeCst) 2894 return false; 2895 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 2896 return false; 2897 } else { 2898 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 2899 return false; 2900 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 2901 return false; 2902 } 2903 2904 return true; 2905 } 2906 2907 void CombinerHelper::applyNotCmp(MachineInstr &MI, 2908 SmallVectorImpl<Register> &RegsToNegate) { 2909 for (Register Reg : RegsToNegate) { 2910 MachineInstr *Def = MRI.getVRegDef(Reg); 2911 Observer.changingInstr(*Def); 2912 // For each comparison, invert the opcode. For each AND and OR, change the 2913 // opcode. 2914 switch (Def->getOpcode()) { 2915 default: 2916 llvm_unreachable("Unexpected opcode"); 2917 case TargetOpcode::G_ICMP: 2918 case TargetOpcode::G_FCMP: { 2919 MachineOperand &PredOp = Def->getOperand(1); 2920 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 2921 (CmpInst::Predicate)PredOp.getPredicate()); 2922 PredOp.setPredicate(NewP); 2923 break; 2924 } 2925 case TargetOpcode::G_AND: 2926 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 2927 break; 2928 case TargetOpcode::G_OR: 2929 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2930 break; 2931 } 2932 Observer.changedInstr(*Def); 2933 } 2934 2935 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 2936 MI.eraseFromParent(); 2937 } 2938 2939 bool CombinerHelper::matchXorOfAndWithSameReg( 2940 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2941 // Match (xor (and x, y), y) (or any of its commuted cases) 2942 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2943 Register &X = MatchInfo.first; 2944 Register &Y = MatchInfo.second; 2945 Register AndReg = MI.getOperand(1).getReg(); 2946 Register SharedReg = MI.getOperand(2).getReg(); 2947 2948 // Find a G_AND on either side of the G_XOR. 2949 // Look for one of 2950 // 2951 // (xor (and x, y), SharedReg) 2952 // (xor SharedReg, (and x, y)) 2953 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 2954 std::swap(AndReg, SharedReg); 2955 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 2956 return false; 2957 } 2958 2959 // Only do this if we'll eliminate the G_AND. 2960 if (!MRI.hasOneNonDBGUse(AndReg)) 2961 return false; 2962 2963 // We can combine if SharedReg is the same as either the LHS or RHS of the 2964 // G_AND. 2965 if (Y != SharedReg) 2966 std::swap(X, Y); 2967 return Y == SharedReg; 2968 } 2969 2970 void CombinerHelper::applyXorOfAndWithSameReg( 2971 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2972 // Fold (xor (and x, y), y) -> (and (not x), y) 2973 Builder.setInstrAndDebugLoc(MI); 2974 Register X, Y; 2975 std::tie(X, Y) = MatchInfo; 2976 auto Not = Builder.buildNot(MRI.getType(X), X); 2977 Observer.changingInstr(MI); 2978 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2979 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 2980 MI.getOperand(2).setReg(Y); 2981 Observer.changedInstr(MI); 2982 } 2983 2984 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 2985 auto &PtrAdd = cast<GPtrAdd>(MI); 2986 Register DstReg = PtrAdd.getReg(0); 2987 LLT Ty = MRI.getType(DstReg); 2988 const DataLayout &DL = Builder.getMF().getDataLayout(); 2989 2990 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 2991 return false; 2992 2993 if (Ty.isPointer()) { 2994 auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI); 2995 return ConstVal && *ConstVal == 0; 2996 } 2997 2998 assert(Ty.isVector() && "Expecting a vector type"); 2999 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 3000 return isBuildVectorAllZeros(*VecMI, MRI); 3001 } 3002 3003 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3004 auto &PtrAdd = cast<GPtrAdd>(MI); 3005 Builder.setInstrAndDebugLoc(PtrAdd); 3006 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 3007 PtrAdd.eraseFromParent(); 3008 } 3009 3010 /// The second source operand is known to be a power of 2. 3011 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3012 Register DstReg = MI.getOperand(0).getReg(); 3013 Register Src0 = MI.getOperand(1).getReg(); 3014 Register Pow2Src1 = MI.getOperand(2).getReg(); 3015 LLT Ty = MRI.getType(DstReg); 3016 Builder.setInstrAndDebugLoc(MI); 3017 3018 // Fold (urem x, pow2) -> (and x, pow2-1) 3019 auto NegOne = Builder.buildConstant(Ty, -1); 3020 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3021 Builder.buildAnd(DstReg, Src0, Add); 3022 MI.eraseFromParent(); 3023 } 3024 3025 Optional<SmallVector<Register, 8>> 3026 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3027 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3028 // We want to detect if Root is part of a tree which represents a bunch 3029 // of loads being merged into a larger load. We'll try to recognize patterns 3030 // like, for example: 3031 // 3032 // Reg Reg 3033 // \ / 3034 // OR_1 Reg 3035 // \ / 3036 // OR_2 3037 // \ Reg 3038 // .. / 3039 // Root 3040 // 3041 // Reg Reg Reg Reg 3042 // \ / \ / 3043 // OR_1 OR_2 3044 // \ / 3045 // \ / 3046 // ... 3047 // Root 3048 // 3049 // Each "Reg" may have been produced by a load + some arithmetic. This 3050 // function will save each of them. 3051 SmallVector<Register, 8> RegsToVisit; 3052 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3053 3054 // In the "worst" case, we're dealing with a load for each byte. So, there 3055 // are at most #bytes - 1 ORs. 3056 const unsigned MaxIter = 3057 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3058 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3059 if (Ors.empty()) 3060 break; 3061 const MachineInstr *Curr = Ors.pop_back_val(); 3062 Register OrLHS = Curr->getOperand(1).getReg(); 3063 Register OrRHS = Curr->getOperand(2).getReg(); 3064 3065 // In the combine, we want to elimate the entire tree. 3066 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3067 return None; 3068 3069 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3070 // something that may be a load + arithmetic. 3071 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3072 Ors.push_back(Or); 3073 else 3074 RegsToVisit.push_back(OrLHS); 3075 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3076 Ors.push_back(Or); 3077 else 3078 RegsToVisit.push_back(OrRHS); 3079 } 3080 3081 // We're going to try and merge each register into a wider power-of-2 type, 3082 // so we ought to have an even number of registers. 3083 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3084 return None; 3085 return RegsToVisit; 3086 } 3087 3088 /// Helper function for findLoadOffsetsForLoadOrCombine. 3089 /// 3090 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3091 /// and then moving that value into a specific byte offset. 3092 /// 3093 /// e.g. x[i] << 24 3094 /// 3095 /// \returns The load instruction and the byte offset it is moved into. 3096 static Optional<std::pair<GZExtLoad *, int64_t>> 3097 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3098 const MachineRegisterInfo &MRI) { 3099 assert(MRI.hasOneNonDBGUse(Reg) && 3100 "Expected Reg to only have one non-debug use?"); 3101 Register MaybeLoad; 3102 int64_t Shift; 3103 if (!mi_match(Reg, MRI, 3104 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3105 Shift = 0; 3106 MaybeLoad = Reg; 3107 } 3108 3109 if (Shift % MemSizeInBits != 0) 3110 return None; 3111 3112 // TODO: Handle other types of loads. 3113 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3114 if (!Load) 3115 return None; 3116 3117 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3118 return None; 3119 3120 return std::make_pair(Load, Shift / MemSizeInBits); 3121 } 3122 3123 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3124 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3125 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3126 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3127 3128 // Each load found for the pattern. There should be one for each RegsToVisit. 3129 SmallSetVector<const MachineInstr *, 8> Loads; 3130 3131 // The lowest index used in any load. (The lowest "i" for each x[i].) 3132 int64_t LowestIdx = INT64_MAX; 3133 3134 // The load which uses the lowest index. 3135 GZExtLoad *LowestIdxLoad = nullptr; 3136 3137 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3138 SmallSet<int64_t, 8> SeenIdx; 3139 3140 // Ensure each load is in the same MBB. 3141 // TODO: Support multiple MachineBasicBlocks. 3142 MachineBasicBlock *MBB = nullptr; 3143 const MachineMemOperand *MMO = nullptr; 3144 3145 // Earliest instruction-order load in the pattern. 3146 GZExtLoad *EarliestLoad = nullptr; 3147 3148 // Latest instruction-order load in the pattern. 3149 GZExtLoad *LatestLoad = nullptr; 3150 3151 // Base pointer which every load should share. 3152 Register BasePtr; 3153 3154 // We want to find a load for each register. Each load should have some 3155 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3156 // track of the load which uses the lowest index. Later, we will check if we 3157 // can use its pointer in the final, combined load. 3158 for (auto Reg : RegsToVisit) { 3159 // Find the load, and find the position that it will end up in (e.g. a 3160 // shifted) value. 3161 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3162 if (!LoadAndPos) 3163 return None; 3164 GZExtLoad *Load; 3165 int64_t DstPos; 3166 std::tie(Load, DstPos) = *LoadAndPos; 3167 3168 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3169 // it is difficult to check for stores/calls/etc between loads. 3170 MachineBasicBlock *LoadMBB = Load->getParent(); 3171 if (!MBB) 3172 MBB = LoadMBB; 3173 if (LoadMBB != MBB) 3174 return None; 3175 3176 // Make sure that the MachineMemOperands of every seen load are compatible. 3177 auto &LoadMMO = Load->getMMO(); 3178 if (!MMO) 3179 MMO = &LoadMMO; 3180 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3181 return None; 3182 3183 // Find out what the base pointer and index for the load is. 3184 Register LoadPtr; 3185 int64_t Idx; 3186 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3187 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3188 LoadPtr = Load->getOperand(1).getReg(); 3189 Idx = 0; 3190 } 3191 3192 // Don't combine things like a[i], a[i] -> a bigger load. 3193 if (!SeenIdx.insert(Idx).second) 3194 return None; 3195 3196 // Every load must share the same base pointer; don't combine things like: 3197 // 3198 // a[i], b[i + 1] -> a bigger load. 3199 if (!BasePtr.isValid()) 3200 BasePtr = LoadPtr; 3201 if (BasePtr != LoadPtr) 3202 return None; 3203 3204 if (Idx < LowestIdx) { 3205 LowestIdx = Idx; 3206 LowestIdxLoad = Load; 3207 } 3208 3209 // Keep track of the byte offset that this load ends up at. If we have seen 3210 // the byte offset, then stop here. We do not want to combine: 3211 // 3212 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3213 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3214 return None; 3215 Loads.insert(Load); 3216 3217 // Keep track of the position of the earliest/latest loads in the pattern. 3218 // We will check that there are no load fold barriers between them later 3219 // on. 3220 // 3221 // FIXME: Is there a better way to check for load fold barriers? 3222 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3223 EarliestLoad = Load; 3224 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3225 LatestLoad = Load; 3226 } 3227 3228 // We found a load for each register. Let's check if each load satisfies the 3229 // pattern. 3230 assert(Loads.size() == RegsToVisit.size() && 3231 "Expected to find a load for each register?"); 3232 assert(EarliestLoad != LatestLoad && EarliestLoad && 3233 LatestLoad && "Expected at least two loads?"); 3234 3235 // Check if there are any stores, calls, etc. between any of the loads. If 3236 // there are, then we can't safely perform the combine. 3237 // 3238 // MaxIter is chosen based off the (worst case) number of iterations it 3239 // typically takes to succeed in the LLVM test suite plus some padding. 3240 // 3241 // FIXME: Is there a better way to check for load fold barriers? 3242 const unsigned MaxIter = 20; 3243 unsigned Iter = 0; 3244 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3245 LatestLoad->getIterator())) { 3246 if (Loads.count(&MI)) 3247 continue; 3248 if (MI.isLoadFoldBarrier()) 3249 return None; 3250 if (Iter++ == MaxIter) 3251 return None; 3252 } 3253 3254 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3255 } 3256 3257 bool CombinerHelper::matchLoadOrCombine( 3258 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3259 assert(MI.getOpcode() == TargetOpcode::G_OR); 3260 MachineFunction &MF = *MI.getMF(); 3261 // Assuming a little-endian target, transform: 3262 // s8 *a = ... 3263 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3264 // => 3265 // s32 val = *((i32)a) 3266 // 3267 // s8 *a = ... 3268 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3269 // => 3270 // s32 val = BSWAP(*((s32)a)) 3271 Register Dst = MI.getOperand(0).getReg(); 3272 LLT Ty = MRI.getType(Dst); 3273 if (Ty.isVector()) 3274 return false; 3275 3276 // We need to combine at least two loads into this type. Since the smallest 3277 // possible load is into a byte, we need at least a 16-bit wide type. 3278 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3279 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3280 return false; 3281 3282 // Match a collection of non-OR instructions in the pattern. 3283 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3284 if (!RegsToVisit) 3285 return false; 3286 3287 // We have a collection of non-OR instructions. Figure out how wide each of 3288 // the small loads should be based off of the number of potential loads we 3289 // found. 3290 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3291 if (NarrowMemSizeInBits % 8 != 0) 3292 return false; 3293 3294 // Check if each register feeding into each OR is a load from the same 3295 // base pointer + some arithmetic. 3296 // 3297 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3298 // 3299 // Also verify that each of these ends up putting a[i] into the same memory 3300 // offset as a load into a wide type would. 3301 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3302 GZExtLoad *LowestIdxLoad, *LatestLoad; 3303 int64_t LowestIdx; 3304 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3305 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3306 if (!MaybeLoadInfo) 3307 return false; 3308 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3309 3310 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3311 // we found before, check if this corresponds to a big or little endian byte 3312 // pattern. If it does, then we can represent it using a load + possibly a 3313 // BSWAP. 3314 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3315 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3316 if (!IsBigEndian.hasValue()) 3317 return false; 3318 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3319 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3320 return false; 3321 3322 // Make sure that the load from the lowest index produces offset 0 in the 3323 // final value. 3324 // 3325 // This ensures that we won't combine something like this: 3326 // 3327 // load x[i] -> byte 2 3328 // load x[i+1] -> byte 0 ---> wide_load x[i] 3329 // load x[i+2] -> byte 1 3330 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3331 const unsigned ZeroByteOffset = 3332 *IsBigEndian 3333 ? bigEndianByteAt(NumLoadsInTy, 0) 3334 : littleEndianByteAt(NumLoadsInTy, 0); 3335 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3336 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3337 ZeroOffsetIdx->second != LowestIdx) 3338 return false; 3339 3340 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3341 // may not use index 0. 3342 Register Ptr = LowestIdxLoad->getPointerReg(); 3343 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3344 LegalityQuery::MemDesc MMDesc(MMO); 3345 MMDesc.MemoryTy = Ty; 3346 if (!isLegalOrBeforeLegalizer( 3347 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3348 return false; 3349 auto PtrInfo = MMO.getPointerInfo(); 3350 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3351 3352 // Load must be allowed and fast on the target. 3353 LLVMContext &C = MF.getFunction().getContext(); 3354 auto &DL = MF.getDataLayout(); 3355 bool Fast = false; 3356 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3357 !Fast) 3358 return false; 3359 3360 MatchInfo = [=](MachineIRBuilder &MIB) { 3361 MIB.setInstrAndDebugLoc(*LatestLoad); 3362 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3363 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3364 if (NeedsBSwap) 3365 MIB.buildBSwap(Dst, LoadDst); 3366 }; 3367 return true; 3368 } 3369 3370 /// Check if the store \p Store is a truncstore that can be merged. That is, 3371 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty 3372 /// Register then it does not need to match and SrcVal is set to the source 3373 /// value found. 3374 /// On match, returns the start byte offset of the \p SrcVal that is being 3375 /// stored. 3376 static Optional<int64_t> getTruncStoreByteOffset(GStore &Store, Register &SrcVal, 3377 MachineRegisterInfo &MRI) { 3378 Register TruncVal; 3379 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) 3380 return None; 3381 3382 // The shift amount must be a constant multiple of the narrow type. 3383 // It is translated to the offset address in the wide source value "y". 3384 // 3385 // x = G_LSHR y, ShiftAmtC 3386 // s8 z = G_TRUNC x 3387 // store z, ... 3388 Register FoundSrcVal; 3389 int64_t ShiftAmt; 3390 if (!mi_match(TruncVal, MRI, 3391 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), 3392 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { 3393 if (!SrcVal.isValid() || TruncVal == SrcVal) { 3394 if (!SrcVal.isValid()) 3395 SrcVal = TruncVal; 3396 return 0; // If it's the lowest index store. 3397 } 3398 return None; 3399 } 3400 3401 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); 3402 if (ShiftAmt % NarrowBits!= 0) 3403 return None; 3404 const unsigned Offset = ShiftAmt / NarrowBits; 3405 3406 if (SrcVal.isValid() && FoundSrcVal != SrcVal) 3407 return None; 3408 3409 if (!SrcVal.isValid()) 3410 SrcVal = FoundSrcVal; 3411 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) 3412 return None; 3413 return Offset; 3414 } 3415 3416 /// Match a pattern where a wide type scalar value is stored by several narrow 3417 /// stores. Fold it into a single store or a BSWAP and a store if the targets 3418 /// supports it. 3419 /// 3420 /// Assuming little endian target: 3421 /// i8 *p = ... 3422 /// i32 val = ... 3423 /// p[0] = (val >> 0) & 0xFF; 3424 /// p[1] = (val >> 8) & 0xFF; 3425 /// p[2] = (val >> 16) & 0xFF; 3426 /// p[3] = (val >> 24) & 0xFF; 3427 /// => 3428 /// *((i32)p) = val; 3429 /// 3430 /// i8 *p = ... 3431 /// i32 val = ... 3432 /// p[0] = (val >> 24) & 0xFF; 3433 /// p[1] = (val >> 16) & 0xFF; 3434 /// p[2] = (val >> 8) & 0xFF; 3435 /// p[3] = (val >> 0) & 0xFF; 3436 /// => 3437 /// *((i32)p) = BSWAP(val); 3438 bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI, 3439 MergeTruncStoresInfo &MatchInfo) { 3440 auto &StoreMI = cast<GStore>(MI); 3441 LLT MemTy = StoreMI.getMMO().getMemoryType(); 3442 3443 // We only handle merging simple stores of 1-4 bytes. 3444 if (!MemTy.isScalar()) 3445 return false; 3446 switch (MemTy.getSizeInBits()) { 3447 case 8: 3448 case 16: 3449 case 32: 3450 break; 3451 default: 3452 return false; 3453 } 3454 if (!StoreMI.isSimple()) 3455 return false; 3456 3457 // We do a simple search for mergeable stores prior to this one. 3458 // Any potential alias hazard along the way terminates the search. 3459 SmallVector<GStore *> FoundStores; 3460 3461 // We're looking for: 3462 // 1) a (store(trunc(...))) 3463 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get 3464 // the partial value stored. 3465 // 3) where the offsets form either a little or big-endian sequence. 3466 3467 auto &LastStore = StoreMI; 3468 3469 // The single base pointer that all stores must use. 3470 Register BaseReg; 3471 int64_t LastOffset; 3472 if (!mi_match(LastStore.getPointerReg(), MRI, 3473 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { 3474 BaseReg = LastStore.getPointerReg(); 3475 LastOffset = 0; 3476 } 3477 3478 GStore *LowestIdxStore = &LastStore; 3479 int64_t LowestIdxOffset = LastOffset; 3480 3481 Register WideSrcVal; 3482 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI); 3483 if (!LowestShiftAmt) 3484 return false; // Didn't match a trunc. 3485 assert(WideSrcVal.isValid()); 3486 3487 LLT WideStoreTy = MRI.getType(WideSrcVal); 3488 // The wide type might not be a multiple of the memory type, e.g. s48 and s32. 3489 if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0) 3490 return false; 3491 const unsigned NumStoresRequired = 3492 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); 3493 3494 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); 3495 OffsetMap[*LowestShiftAmt] = LastOffset; 3496 FoundStores.emplace_back(&LastStore); 3497 3498 // Search the block up for more stores. 3499 // We use a search threshold of 10 instructions here because the combiner 3500 // works top-down within a block, and we don't want to search an unbounded 3501 // number of predecessor instructions trying to find matching stores. 3502 // If we moved this optimization into a separate pass then we could probably 3503 // use a more efficient search without having a hard-coded threshold. 3504 const int MaxInstsToCheck = 10; 3505 int NumInstsChecked = 0; 3506 for (auto II = ++LastStore.getReverseIterator(); 3507 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; 3508 ++II) { 3509 NumInstsChecked++; 3510 GStore *NewStore; 3511 if ((NewStore = dyn_cast<GStore>(&*II))) { 3512 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) 3513 break; 3514 } else if (II->isLoadFoldBarrier() || II->mayLoad()) { 3515 break; 3516 } else { 3517 continue; // This is a safe instruction we can look past. 3518 } 3519 3520 Register NewBaseReg; 3521 int64_t MemOffset; 3522 // Check we're storing to the same base + some offset. 3523 if (!mi_match(NewStore->getPointerReg(), MRI, 3524 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { 3525 NewBaseReg = NewStore->getPointerReg(); 3526 MemOffset = 0; 3527 } 3528 if (BaseReg != NewBaseReg) 3529 break; 3530 3531 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI); 3532 if (!ShiftByteOffset) 3533 break; 3534 if (MemOffset < LowestIdxOffset) { 3535 LowestIdxOffset = MemOffset; 3536 LowestIdxStore = NewStore; 3537 } 3538 3539 // Map the offset in the store and the offset in the combined value, and 3540 // early return if it has been set before. 3541 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || 3542 OffsetMap[*ShiftByteOffset] != INT64_MAX) 3543 break; 3544 OffsetMap[*ShiftByteOffset] = MemOffset; 3545 3546 FoundStores.emplace_back(NewStore); 3547 // Reset counter since we've found a matching inst. 3548 NumInstsChecked = 0; 3549 if (FoundStores.size() == NumStoresRequired) 3550 break; 3551 } 3552 3553 if (FoundStores.size() != NumStoresRequired) { 3554 return false; 3555 } 3556 3557 const auto &DL = LastStore.getMF()->getDataLayout(); 3558 auto &C = LastStore.getMF()->getFunction().getContext(); 3559 // Check that a store of the wide type is both allowed and fast on the target 3560 bool Fast = false; 3561 bool Allowed = getTargetLowering().allowsMemoryAccess( 3562 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); 3563 if (!Allowed || !Fast) 3564 return false; 3565 3566 // Check if the pieces of the value are going to the expected places in memory 3567 // to merge the stores. 3568 unsigned NarrowBits = MemTy.getScalarSizeInBits(); 3569 auto checkOffsets = [&](bool MatchLittleEndian) { 3570 if (MatchLittleEndian) { 3571 for (unsigned i = 0; i != NumStoresRequired; ++i) 3572 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) 3573 return false; 3574 } else { // MatchBigEndian by reversing loop counter. 3575 for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired; 3576 ++i, --j) 3577 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) 3578 return false; 3579 } 3580 return true; 3581 }; 3582 3583 // Check if the offsets line up for the native data layout of this target. 3584 bool NeedBswap = false; 3585 bool NeedRotate = false; 3586 if (!checkOffsets(DL.isLittleEndian())) { 3587 // Special-case: check if byte offsets line up for the opposite endian. 3588 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) 3589 NeedBswap = true; 3590 else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian())) 3591 NeedRotate = true; 3592 else 3593 return false; 3594 } 3595 3596 if (NeedBswap && 3597 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}})) 3598 return false; 3599 if (NeedRotate && 3600 !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}})) 3601 return false; 3602 3603 MatchInfo.NeedBSwap = NeedBswap; 3604 MatchInfo.NeedRotate = NeedRotate; 3605 MatchInfo.LowestIdxStore = LowestIdxStore; 3606 MatchInfo.WideSrcVal = WideSrcVal; 3607 MatchInfo.FoundStores = std::move(FoundStores); 3608 return true; 3609 } 3610 3611 void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI, 3612 MergeTruncStoresInfo &MatchInfo) { 3613 3614 Builder.setInstrAndDebugLoc(MI); 3615 Register WideSrcVal = MatchInfo.WideSrcVal; 3616 LLT WideStoreTy = MRI.getType(WideSrcVal); 3617 3618 if (MatchInfo.NeedBSwap) { 3619 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); 3620 } else if (MatchInfo.NeedRotate) { 3621 assert(WideStoreTy.getSizeInBits() % 2 == 0 && 3622 "Unexpected type for rotate"); 3623 auto RotAmt = 3624 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); 3625 WideSrcVal = 3626 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); 3627 } 3628 3629 Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(), 3630 MatchInfo.LowestIdxStore->getMMO().getPointerInfo(), 3631 MatchInfo.LowestIdxStore->getMMO().getAlign()); 3632 3633 // Erase the old stores. 3634 for (auto *ST : MatchInfo.FoundStores) 3635 ST->eraseFromParent(); 3636 } 3637 3638 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3639 MachineInstr *&ExtMI) { 3640 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3641 3642 Register DstReg = MI.getOperand(0).getReg(); 3643 3644 // TODO: Extending a vector may be expensive, don't do this until heuristics 3645 // are better. 3646 if (MRI.getType(DstReg).isVector()) 3647 return false; 3648 3649 // Try to match a phi, whose only use is an extend. 3650 if (!MRI.hasOneNonDBGUse(DstReg)) 3651 return false; 3652 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3653 switch (ExtMI->getOpcode()) { 3654 case TargetOpcode::G_ANYEXT: 3655 return true; // G_ANYEXT is usually free. 3656 case TargetOpcode::G_ZEXT: 3657 case TargetOpcode::G_SEXT: 3658 break; 3659 default: 3660 return false; 3661 } 3662 3663 // If the target is likely to fold this extend away, don't propagate. 3664 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3665 return false; 3666 3667 // We don't want to propagate the extends unless there's a good chance that 3668 // they'll be optimized in some way. 3669 // Collect the unique incoming values. 3670 SmallPtrSet<MachineInstr *, 4> InSrcs; 3671 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3672 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3673 switch (DefMI->getOpcode()) { 3674 case TargetOpcode::G_LOAD: 3675 case TargetOpcode::G_TRUNC: 3676 case TargetOpcode::G_SEXT: 3677 case TargetOpcode::G_ZEXT: 3678 case TargetOpcode::G_ANYEXT: 3679 case TargetOpcode::G_CONSTANT: 3680 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3681 // Don't try to propagate if there are too many places to create new 3682 // extends, chances are it'll increase code size. 3683 if (InSrcs.size() > 2) 3684 return false; 3685 break; 3686 default: 3687 return false; 3688 } 3689 } 3690 return true; 3691 } 3692 3693 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3694 MachineInstr *&ExtMI) { 3695 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3696 Register DstReg = ExtMI->getOperand(0).getReg(); 3697 LLT ExtTy = MRI.getType(DstReg); 3698 3699 // Propagate the extension into the block of each incoming reg's block. 3700 // Use a SetVector here because PHIs can have duplicate edges, and we want 3701 // deterministic iteration order. 3702 SmallSetVector<MachineInstr *, 8> SrcMIs; 3703 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3704 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3705 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3706 if (!SrcMIs.insert(SrcMI)) 3707 continue; 3708 3709 // Build an extend after each src inst. 3710 auto *MBB = SrcMI->getParent(); 3711 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3712 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3713 InsertPt = MBB->getFirstNonPHI(); 3714 3715 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3716 Builder.setDebugLoc(MI.getDebugLoc()); 3717 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3718 SrcMI->getOperand(0).getReg()); 3719 OldToNewSrcMap[SrcMI] = NewExt; 3720 } 3721 3722 // Create a new phi with the extended inputs. 3723 Builder.setInstrAndDebugLoc(MI); 3724 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3725 NewPhi.addDef(DstReg); 3726 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3727 auto &MO = MI.getOperand(SrcIdx); 3728 if (!MO.isReg()) { 3729 NewPhi.addMBB(MO.getMBB()); 3730 continue; 3731 } 3732 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3733 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3734 } 3735 Builder.insertInstr(NewPhi); 3736 ExtMI->eraseFromParent(); 3737 } 3738 3739 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3740 Register &Reg) { 3741 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3742 // If we have a constant index, look for a G_BUILD_VECTOR source 3743 // and find the source register that the index maps to. 3744 Register SrcVec = MI.getOperand(1).getReg(); 3745 LLT SrcTy = MRI.getType(SrcVec); 3746 if (!isLegalOrBeforeLegalizer( 3747 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3748 return false; 3749 3750 auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3751 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3752 return false; 3753 3754 unsigned VecIdx = Cst->Value.getZExtValue(); 3755 MachineInstr *BuildVecMI = 3756 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3757 if (!BuildVecMI) { 3758 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3759 if (!BuildVecMI) 3760 return false; 3761 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3762 if (!isLegalOrBeforeLegalizer( 3763 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3764 return false; 3765 } 3766 3767 EVT Ty(getMVTForLLT(SrcTy)); 3768 if (!MRI.hasOneNonDBGUse(SrcVec) && 3769 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3770 return false; 3771 3772 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3773 return true; 3774 } 3775 3776 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3777 Register &Reg) { 3778 // Check the type of the register, since it may have come from a 3779 // G_BUILD_VECTOR_TRUNC. 3780 LLT ScalarTy = MRI.getType(Reg); 3781 Register DstReg = MI.getOperand(0).getReg(); 3782 LLT DstTy = MRI.getType(DstReg); 3783 3784 Builder.setInstrAndDebugLoc(MI); 3785 if (ScalarTy != DstTy) { 3786 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3787 Builder.buildTrunc(DstReg, Reg); 3788 MI.eraseFromParent(); 3789 return; 3790 } 3791 replaceSingleDefInstWithReg(MI, Reg); 3792 } 3793 3794 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3795 MachineInstr &MI, 3796 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3797 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3798 // This combine tries to find build_vector's which have every source element 3799 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3800 // the masked load scalarization is run late in the pipeline. There's already 3801 // a combine for a similar pattern starting from the extract, but that 3802 // doesn't attempt to do it if there are multiple uses of the build_vector, 3803 // which in this case is true. Starting the combine from the build_vector 3804 // feels more natural than trying to find sibling nodes of extracts. 3805 // E.g. 3806 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3807 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3808 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3809 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3810 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3811 // ==> 3812 // replace ext{1,2,3,4} with %s{1,2,3,4} 3813 3814 Register DstReg = MI.getOperand(0).getReg(); 3815 LLT DstTy = MRI.getType(DstReg); 3816 unsigned NumElts = DstTy.getNumElements(); 3817 3818 SmallBitVector ExtractedElts(NumElts); 3819 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), 3820 MRI.use_instr_nodbg_end())) { 3821 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3822 return false; 3823 auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI); 3824 if (!Cst) 3825 return false; 3826 unsigned Idx = Cst.getValue().getZExtValue(); 3827 if (Idx >= NumElts) 3828 return false; // Out of range. 3829 ExtractedElts.set(Idx); 3830 SrcDstPairs.emplace_back( 3831 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3832 } 3833 // Match if every element was extracted. 3834 return ExtractedElts.all(); 3835 } 3836 3837 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3838 MachineInstr &MI, 3839 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3840 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3841 for (auto &Pair : SrcDstPairs) { 3842 auto *ExtMI = Pair.second; 3843 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3844 ExtMI->eraseFromParent(); 3845 } 3846 MI.eraseFromParent(); 3847 } 3848 3849 void CombinerHelper::applyBuildFn( 3850 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3851 Builder.setInstrAndDebugLoc(MI); 3852 MatchInfo(Builder); 3853 MI.eraseFromParent(); 3854 } 3855 3856 void CombinerHelper::applyBuildFnNoErase( 3857 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3858 Builder.setInstrAndDebugLoc(MI); 3859 MatchInfo(Builder); 3860 } 3861 3862 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3863 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3864 unsigned Opc = MI.getOpcode(); 3865 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3866 Register X = MI.getOperand(1).getReg(); 3867 Register Y = MI.getOperand(2).getReg(); 3868 if (X != Y) 3869 return false; 3870 unsigned RotateOpc = 3871 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3872 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3873 } 3874 3875 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3876 unsigned Opc = MI.getOpcode(); 3877 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3878 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3879 Observer.changingInstr(MI); 3880 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3881 : TargetOpcode::G_ROTR)); 3882 MI.RemoveOperand(2); 3883 Observer.changedInstr(MI); 3884 } 3885 3886 // Fold (rot x, c) -> (rot x, c % BitSize) 3887 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3888 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3889 MI.getOpcode() == TargetOpcode::G_ROTR); 3890 unsigned Bitsize = 3891 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3892 Register AmtReg = MI.getOperand(2).getReg(); 3893 bool OutOfRange = false; 3894 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 3895 if (auto *CI = dyn_cast<ConstantInt>(C)) 3896 OutOfRange |= CI->getValue().uge(Bitsize); 3897 return true; 3898 }; 3899 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 3900 } 3901 3902 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 3903 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3904 MI.getOpcode() == TargetOpcode::G_ROTR); 3905 unsigned Bitsize = 3906 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3907 Builder.setInstrAndDebugLoc(MI); 3908 Register Amt = MI.getOperand(2).getReg(); 3909 LLT AmtTy = MRI.getType(Amt); 3910 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 3911 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 3912 Observer.changingInstr(MI); 3913 MI.getOperand(2).setReg(Amt); 3914 Observer.changedInstr(MI); 3915 } 3916 3917 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 3918 int64_t &MatchInfo) { 3919 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3920 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3921 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 3922 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 3923 Optional<bool> KnownVal; 3924 switch (Pred) { 3925 default: 3926 llvm_unreachable("Unexpected G_ICMP predicate?"); 3927 case CmpInst::ICMP_EQ: 3928 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 3929 break; 3930 case CmpInst::ICMP_NE: 3931 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 3932 break; 3933 case CmpInst::ICMP_SGE: 3934 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 3935 break; 3936 case CmpInst::ICMP_SGT: 3937 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 3938 break; 3939 case CmpInst::ICMP_SLE: 3940 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 3941 break; 3942 case CmpInst::ICMP_SLT: 3943 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 3944 break; 3945 case CmpInst::ICMP_UGE: 3946 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 3947 break; 3948 case CmpInst::ICMP_UGT: 3949 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 3950 break; 3951 case CmpInst::ICMP_ULE: 3952 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 3953 break; 3954 case CmpInst::ICMP_ULT: 3955 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 3956 break; 3957 } 3958 if (!KnownVal) 3959 return false; 3960 MatchInfo = 3961 *KnownVal 3962 ? getICmpTrueVal(getTargetLowering(), 3963 /*IsVector = */ 3964 MRI.getType(MI.getOperand(0).getReg()).isVector(), 3965 /* IsFP = */ false) 3966 : 0; 3967 return true; 3968 } 3969 3970 bool CombinerHelper::matchICmpToLHSKnownBits( 3971 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3972 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3973 // Given: 3974 // 3975 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 3976 // %cmp = G_ICMP ne %x, 0 3977 // 3978 // Or: 3979 // 3980 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 3981 // %cmp = G_ICMP eq %x, 1 3982 // 3983 // We can replace %cmp with %x assuming true is 1 on the target. 3984 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3985 if (!CmpInst::isEquality(Pred)) 3986 return false; 3987 Register Dst = MI.getOperand(0).getReg(); 3988 LLT DstTy = MRI.getType(Dst); 3989 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), 3990 /* IsFP = */ false) != 1) 3991 return false; 3992 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; 3993 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) 3994 return false; 3995 Register LHS = MI.getOperand(2).getReg(); 3996 auto KnownLHS = KB->getKnownBits(LHS); 3997 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) 3998 return false; 3999 // Make sure replacing Dst with the LHS is a legal operation. 4000 LLT LHSTy = MRI.getType(LHS); 4001 unsigned LHSSize = LHSTy.getSizeInBits(); 4002 unsigned DstSize = DstTy.getSizeInBits(); 4003 unsigned Op = TargetOpcode::COPY; 4004 if (DstSize != LHSSize) 4005 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; 4006 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) 4007 return false; 4008 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; 4009 return true; 4010 } 4011 4012 // Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0 4013 bool CombinerHelper::matchAndOrDisjointMask( 4014 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4015 assert(MI.getOpcode() == TargetOpcode::G_AND); 4016 4017 // Ignore vector types to simplify matching the two constants. 4018 // TODO: do this for vectors and scalars via a demanded bits analysis. 4019 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 4020 if (Ty.isVector()) 4021 return false; 4022 4023 Register Src; 4024 int64_t MaskAnd; 4025 int64_t MaskOr; 4026 if (!mi_match(MI, MRI, 4027 m_GAnd(m_GOr(m_Reg(Src), m_ICst(MaskOr)), m_ICst(MaskAnd)))) 4028 return false; 4029 4030 // Check if MaskOr could turn on any bits in Src. 4031 if (MaskAnd & MaskOr) 4032 return false; 4033 4034 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4035 Observer.changingInstr(MI); 4036 MI.getOperand(1).setReg(Src); 4037 Observer.changedInstr(MI); 4038 }; 4039 return true; 4040 } 4041 4042 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4043 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4044 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4045 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4046 Register Dst = MI.getOperand(0).getReg(); 4047 Register Src = MI.getOperand(1).getReg(); 4048 LLT Ty = MRI.getType(Src); 4049 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4050 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4051 return false; 4052 int64_t Width = MI.getOperand(2).getImm(); 4053 Register ShiftSrc; 4054 int64_t ShiftImm; 4055 if (!mi_match( 4056 Src, MRI, 4057 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4058 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4059 return false; 4060 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4061 return false; 4062 4063 MatchInfo = [=](MachineIRBuilder &B) { 4064 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4065 auto Cst2 = B.buildConstant(ExtractTy, Width); 4066 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4067 }; 4068 return true; 4069 } 4070 4071 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4072 bool CombinerHelper::matchBitfieldExtractFromAnd( 4073 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4074 assert(MI.getOpcode() == TargetOpcode::G_AND); 4075 Register Dst = MI.getOperand(0).getReg(); 4076 LLT Ty = MRI.getType(Dst); 4077 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 4078 TargetOpcode::G_UBFX, Ty, Ty)) 4079 return false; 4080 4081 int64_t AndImm, LSBImm; 4082 Register ShiftSrc; 4083 const unsigned Size = Ty.getScalarSizeInBits(); 4084 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4085 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4086 m_ICst(AndImm)))) 4087 return false; 4088 4089 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4090 auto MaybeMask = static_cast<uint64_t>(AndImm); 4091 if (MaybeMask & (MaybeMask + 1)) 4092 return false; 4093 4094 // LSB must fit within the register. 4095 if (static_cast<uint64_t>(LSBImm) >= Size) 4096 return false; 4097 4098 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4099 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4100 MatchInfo = [=](MachineIRBuilder &B) { 4101 auto WidthCst = B.buildConstant(ExtractTy, Width); 4102 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4103 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4104 }; 4105 return true; 4106 } 4107 4108 bool CombinerHelper::matchBitfieldExtractFromShr( 4109 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4110 const unsigned Opcode = MI.getOpcode(); 4111 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 4112 4113 const Register Dst = MI.getOperand(0).getReg(); 4114 4115 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 4116 ? TargetOpcode::G_SBFX 4117 : TargetOpcode::G_UBFX; 4118 4119 // Check if the type we would use for the extract is legal 4120 LLT Ty = MRI.getType(Dst); 4121 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4122 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 4123 return false; 4124 4125 Register ShlSrc; 4126 int64_t ShrAmt; 4127 int64_t ShlAmt; 4128 const unsigned Size = Ty.getScalarSizeInBits(); 4129 4130 // Try to match shr (shl x, c1), c2 4131 if (!mi_match(Dst, MRI, 4132 m_BinOp(Opcode, 4133 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4134 m_ICst(ShrAmt)))) 4135 return false; 4136 4137 // Make sure that the shift sizes can fit a bitfield extract 4138 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4139 return false; 4140 4141 // Skip this combine if the G_SEXT_INREG combine could handle it 4142 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4143 return false; 4144 4145 // Calculate start position and width of the extract 4146 const int64_t Pos = ShrAmt - ShlAmt; 4147 const int64_t Width = Size - ShrAmt; 4148 4149 MatchInfo = [=](MachineIRBuilder &B) { 4150 auto WidthCst = B.buildConstant(ExtractTy, Width); 4151 auto PosCst = B.buildConstant(ExtractTy, Pos); 4152 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4153 }; 4154 return true; 4155 } 4156 4157 bool CombinerHelper::matchBitfieldExtractFromShrAnd( 4158 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4159 const unsigned Opcode = MI.getOpcode(); 4160 assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR); 4161 4162 const Register Dst = MI.getOperand(0).getReg(); 4163 LLT Ty = MRI.getType(Dst); 4164 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 4165 TargetOpcode::G_UBFX, Ty, Ty)) 4166 return false; 4167 4168 // Try to match shr (and x, c1), c2 4169 Register AndSrc; 4170 int64_t ShrAmt; 4171 int64_t SMask; 4172 if (!mi_match(Dst, MRI, 4173 m_BinOp(Opcode, 4174 m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))), 4175 m_ICst(ShrAmt)))) 4176 return false; 4177 4178 const unsigned Size = Ty.getScalarSizeInBits(); 4179 if (ShrAmt < 0 || ShrAmt >= Size) 4180 return false; 4181 4182 // Check that ubfx can do the extraction, with no holes in the mask. 4183 uint64_t UMask = SMask; 4184 UMask |= maskTrailingOnes<uint64_t>(ShrAmt); 4185 UMask &= maskTrailingOnes<uint64_t>(Size); 4186 if (!isMask_64(UMask)) 4187 return false; 4188 4189 // Calculate start position and width of the extract. 4190 const int64_t Pos = ShrAmt; 4191 const int64_t Width = countTrailingOnes(UMask) - ShrAmt; 4192 4193 // It's preferable to keep the shift, rather than form G_SBFX. 4194 // TODO: remove the G_AND via demanded bits analysis. 4195 if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size) 4196 return false; 4197 4198 MatchInfo = [=](MachineIRBuilder &B) { 4199 auto WidthCst = B.buildConstant(Ty, Width); 4200 auto PosCst = B.buildConstant(Ty, Pos); 4201 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst}); 4202 }; 4203 return true; 4204 } 4205 4206 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4207 MachineInstr &PtrAdd) { 4208 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4209 4210 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4211 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4212 if (!Src1Def) 4213 return false; 4214 4215 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4216 4217 if (MRI.hasOneNonDBGUse(Src1Reg)) 4218 return false; 4219 4220 auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4221 if (!C1) 4222 return false; 4223 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4224 if (!C2) 4225 return false; 4226 4227 const APInt &C1APIntVal = *C1; 4228 const APInt &C2APIntVal = *C2; 4229 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4230 4231 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4232 // This combine may end up running before ptrtoint/inttoptr combines 4233 // manage to eliminate redundant conversions, so try to look through them. 4234 MachineInstr *ConvUseMI = &UseMI; 4235 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4236 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4237 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4238 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4239 if (!MRI.hasOneNonDBGUse(DefReg)) 4240 break; 4241 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4242 ConvUseOpc = ConvUseMI->getOpcode(); 4243 } 4244 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4245 ConvUseOpc == TargetOpcode::G_STORE; 4246 if (!LoadStore) 4247 continue; 4248 // Is x[offset2] already not a legal addressing mode? If so then 4249 // reassociating the constants breaks nothing (we test offset2 because 4250 // that's the one we hope to fold into the load or store). 4251 TargetLoweringBase::AddrMode AM; 4252 AM.HasBaseReg = true; 4253 AM.BaseOffs = C2APIntVal.getSExtValue(); 4254 unsigned AS = 4255 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4256 Type *AccessTy = 4257 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4258 PtrAdd.getMF()->getFunction().getContext()); 4259 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4260 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4261 AccessTy, AS)) 4262 continue; 4263 4264 // Would x[offset1+offset2] still be a legal addressing mode? 4265 AM.BaseOffs = CombinedValue; 4266 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4267 AccessTy, AS)) 4268 return true; 4269 } 4270 4271 return false; 4272 } 4273 4274 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI, 4275 MachineInstr *RHS, 4276 BuildFnTy &MatchInfo) { 4277 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4278 Register Src1Reg = MI.getOperand(1).getReg(); 4279 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4280 return false; 4281 auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4282 if (!C2) 4283 return false; 4284 4285 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4286 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4287 4288 auto NewBase = 4289 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4290 Observer.changingInstr(MI); 4291 MI.getOperand(1).setReg(NewBase.getReg(0)); 4292 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4293 Observer.changedInstr(MI); 4294 }; 4295 return !reassociationCanBreakAddressingModePattern(MI); 4296 } 4297 4298 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI, 4299 MachineInstr *LHS, 4300 MachineInstr *RHS, 4301 BuildFnTy &MatchInfo) { 4302 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C) 4303 // if and only if (G_PTR_ADD X, C) has one use. 4304 Register LHSBase; 4305 Optional<ValueAndVReg> LHSCstOff; 4306 if (!mi_match(MI.getBaseReg(), MRI, 4307 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff))))) 4308 return false; 4309 4310 auto *LHSPtrAdd = cast<GPtrAdd>(LHS); 4311 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4312 // When we change LHSPtrAdd's offset register we might cause it to use a reg 4313 // before its def. Sink the instruction so the outer PTR_ADD to ensure this 4314 // doesn't happen. 4315 LHSPtrAdd->moveBefore(&MI); 4316 Register RHSReg = MI.getOffsetReg(); 4317 Observer.changingInstr(MI); 4318 MI.getOperand(2).setReg(LHSCstOff->VReg); 4319 Observer.changedInstr(MI); 4320 Observer.changingInstr(*LHSPtrAdd); 4321 LHSPtrAdd->getOperand(2).setReg(RHSReg); 4322 Observer.changedInstr(*LHSPtrAdd); 4323 }; 4324 return !reassociationCanBreakAddressingModePattern(MI); 4325 } 4326 4327 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI, 4328 MachineInstr *LHS, 4329 MachineInstr *RHS, 4330 BuildFnTy &MatchInfo) { 4331 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4332 auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS); 4333 if (!LHSPtrAdd) 4334 return false; 4335 4336 Register Src2Reg = MI.getOperand(2).getReg(); 4337 Register LHSSrc1 = LHSPtrAdd->getBaseReg(); 4338 Register LHSSrc2 = LHSPtrAdd->getOffsetReg(); 4339 auto C1 = getIConstantVRegVal(LHSSrc2, MRI); 4340 if (!C1) 4341 return false; 4342 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4343 if (!C2) 4344 return false; 4345 4346 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4347 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4348 Observer.changingInstr(MI); 4349 MI.getOperand(1).setReg(LHSSrc1); 4350 MI.getOperand(2).setReg(NewCst.getReg(0)); 4351 Observer.changedInstr(MI); 4352 }; 4353 return !reassociationCanBreakAddressingModePattern(MI); 4354 } 4355 4356 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI, 4357 BuildFnTy &MatchInfo) { 4358 auto &PtrAdd = cast<GPtrAdd>(MI); 4359 // We're trying to match a few pointer computation patterns here for 4360 // re-association opportunities. 4361 // 1) Isolating a constant operand to be on the RHS, e.g.: 4362 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4363 // 4364 // 2) Folding two constants in each sub-tree as long as such folding 4365 // doesn't break a legal addressing mode. 4366 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4367 // 4368 // 3) Move a constant from the LHS of an inner op to the RHS of the outer. 4369 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C) 4370 // iif (G_PTR_ADD X, C) has one use. 4371 MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg()); 4372 MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg()); 4373 4374 // Try to match example 2. 4375 if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo)) 4376 return true; 4377 4378 // Try to match example 3. 4379 if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo)) 4380 return true; 4381 4382 // Try to match example 1. 4383 if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo)) 4384 return true; 4385 4386 return false; 4387 } 4388 4389 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4390 Register Op1 = MI.getOperand(1).getReg(); 4391 Register Op2 = MI.getOperand(2).getReg(); 4392 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4393 if (!MaybeCst) 4394 return false; 4395 MatchInfo = *MaybeCst; 4396 return true; 4397 } 4398 4399 bool CombinerHelper::matchNarrowBinopFeedingAnd( 4400 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4401 // Look for a binop feeding into an AND with a mask: 4402 // 4403 // %add = G_ADD %lhs, %rhs 4404 // %and = G_AND %add, 000...11111111 4405 // 4406 // Check if it's possible to perform the binop at a narrower width and zext 4407 // back to the original width like so: 4408 // 4409 // %narrow_lhs = G_TRUNC %lhs 4410 // %narrow_rhs = G_TRUNC %rhs 4411 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 4412 // %new_add = G_ZEXT %narrow_add 4413 // %and = G_AND %new_add, 000...11111111 4414 // 4415 // This can allow later combines to eliminate the G_AND if it turns out 4416 // that the mask is irrelevant. 4417 assert(MI.getOpcode() == TargetOpcode::G_AND); 4418 Register Dst = MI.getOperand(0).getReg(); 4419 Register AndLHS = MI.getOperand(1).getReg(); 4420 Register AndRHS = MI.getOperand(2).getReg(); 4421 LLT WideTy = MRI.getType(Dst); 4422 4423 // If the potential binop has more than one use, then it's possible that one 4424 // of those uses will need its full width. 4425 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 4426 return false; 4427 4428 // Check if the LHS feeding the AND is impacted by the high bits that we're 4429 // masking out. 4430 // 4431 // e.g. for 64-bit x, y: 4432 // 4433 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 4434 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 4435 if (!LHSInst) 4436 return false; 4437 unsigned LHSOpc = LHSInst->getOpcode(); 4438 switch (LHSOpc) { 4439 default: 4440 return false; 4441 case TargetOpcode::G_ADD: 4442 case TargetOpcode::G_SUB: 4443 case TargetOpcode::G_MUL: 4444 case TargetOpcode::G_AND: 4445 case TargetOpcode::G_OR: 4446 case TargetOpcode::G_XOR: 4447 break; 4448 } 4449 4450 // Find the mask on the RHS. 4451 auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI); 4452 if (!Cst) 4453 return false; 4454 auto Mask = Cst->Value; 4455 if (!Mask.isMask()) 4456 return false; 4457 4458 // No point in combining if there's nothing to truncate. 4459 unsigned NarrowWidth = Mask.countTrailingOnes(); 4460 if (NarrowWidth == WideTy.getSizeInBits()) 4461 return false; 4462 LLT NarrowTy = LLT::scalar(NarrowWidth); 4463 4464 // Check if adding the zext + truncates could be harmful. 4465 auto &MF = *MI.getMF(); 4466 const auto &TLI = getTargetLowering(); 4467 LLVMContext &Ctx = MF.getFunction().getContext(); 4468 auto &DL = MF.getDataLayout(); 4469 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 4470 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 4471 return false; 4472 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 4473 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 4474 return false; 4475 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 4476 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 4477 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4478 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 4479 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 4480 auto NarrowBinOp = 4481 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 4482 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 4483 Observer.changingInstr(MI); 4484 MI.getOperand(1).setReg(Ext.getReg(0)); 4485 Observer.changedInstr(MI); 4486 }; 4487 return true; 4488 } 4489 4490 bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) { 4491 unsigned Opc = MI.getOpcode(); 4492 assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO); 4493 // Check for a constant 2 or a splat of 2 on the RHS. 4494 auto RHS = MI.getOperand(3).getReg(); 4495 bool IsVector = MRI.getType(RHS).isVector(); 4496 if (!IsVector && !mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(2))) 4497 return false; 4498 if (IsVector) { 4499 // FIXME: There's no mi_match pattern for this yet. 4500 auto *RHSDef = getDefIgnoringCopies(RHS, MRI); 4501 if (!RHSDef) 4502 return false; 4503 auto Splat = getBuildVectorConstantSplat(*RHSDef, MRI); 4504 if (!Splat || *Splat != 2) 4505 return false; 4506 } 4507 4508 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4509 Observer.changingInstr(MI); 4510 unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO 4511 : TargetOpcode::G_SADDO; 4512 MI.setDesc(Builder.getTII().get(NewOpc)); 4513 MI.getOperand(3).setReg(MI.getOperand(2).getReg()); 4514 Observer.changedInstr(MI); 4515 }; 4516 return true; 4517 } 4518 4519 MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) { 4520 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4521 auto &UDiv = cast<GenericMachineInstr>(MI); 4522 Register Dst = UDiv.getReg(0); 4523 Register LHS = UDiv.getReg(1); 4524 Register RHS = UDiv.getReg(2); 4525 LLT Ty = MRI.getType(Dst); 4526 LLT ScalarTy = Ty.getScalarType(); 4527 const unsigned EltBits = ScalarTy.getScalarSizeInBits(); 4528 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4529 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); 4530 auto &MIB = Builder; 4531 MIB.setInstrAndDebugLoc(MI); 4532 4533 bool UseNPQ = false; 4534 SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4535 4536 auto BuildUDIVPattern = [&](const Constant *C) { 4537 auto *CI = cast<ConstantInt>(C); 4538 const APInt &Divisor = CI->getValue(); 4539 UnsignedDivisonByConstantInfo magics = 4540 UnsignedDivisonByConstantInfo::get(Divisor); 4541 unsigned PreShift = 0, PostShift = 0; 4542 4543 // If the divisor is even, we can avoid using the expensive fixup by 4544 // shifting the divided value upfront. 4545 if (magics.IsAdd != 0 && !Divisor[0]) { 4546 PreShift = Divisor.countTrailingZeros(); 4547 // Get magic number for the shifted divisor. 4548 magics = 4549 UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 4550 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 4551 } 4552 4553 APInt Magic = magics.Magic; 4554 4555 unsigned SelNPQ; 4556 if (magics.IsAdd == 0 || Divisor.isOneValue()) { 4557 assert(magics.ShiftAmount < Divisor.getBitWidth() && 4558 "We shouldn't generate an undefined shift!"); 4559 PostShift = magics.ShiftAmount; 4560 SelNPQ = false; 4561 } else { 4562 PostShift = magics.ShiftAmount - 1; 4563 SelNPQ = true; 4564 } 4565 4566 PreShifts.push_back( 4567 MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0)); 4568 MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0)); 4569 NPQFactors.push_back( 4570 MIB.buildConstant(ScalarTy, 4571 SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4572 : APInt::getZero(EltBits)) 4573 .getReg(0)); 4574 PostShifts.push_back( 4575 MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0)); 4576 UseNPQ |= SelNPQ; 4577 return true; 4578 }; 4579 4580 // Collect the shifts/magic values from each element. 4581 bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern); 4582 (void)Matched; 4583 assert(Matched && "Expected unary predicate match to succeed"); 4584 4585 Register PreShift, PostShift, MagicFactor, NPQFactor; 4586 auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI); 4587 if (RHSDef) { 4588 PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0); 4589 MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0); 4590 NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0); 4591 PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0); 4592 } else { 4593 assert(MRI.getType(RHS).isScalar() && 4594 "Non-build_vector operation should have been a scalar"); 4595 PreShift = PreShifts[0]; 4596 MagicFactor = MagicFactors[0]; 4597 PostShift = PostShifts[0]; 4598 } 4599 4600 Register Q = LHS; 4601 Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0); 4602 4603 // Multiply the numerator (operand 0) by the magic value. 4604 Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0); 4605 4606 if (UseNPQ) { 4607 Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0); 4608 4609 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4610 // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero. 4611 if (Ty.isVector()) 4612 NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0); 4613 else 4614 NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0); 4615 4616 Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0); 4617 } 4618 4619 Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0); 4620 auto One = MIB.buildConstant(Ty, 1); 4621 auto IsOne = MIB.buildICmp( 4622 CmpInst::Predicate::ICMP_EQ, 4623 Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One); 4624 return MIB.buildSelect(Ty, IsOne, LHS, Q); 4625 } 4626 4627 bool CombinerHelper::matchUDivByConst(MachineInstr &MI) { 4628 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4629 Register Dst = MI.getOperand(0).getReg(); 4630 Register RHS = MI.getOperand(2).getReg(); 4631 LLT DstTy = MRI.getType(Dst); 4632 auto *RHSDef = MRI.getVRegDef(RHS); 4633 if (!isConstantOrConstantVector(*RHSDef, MRI)) 4634 return false; 4635 4636 auto &MF = *MI.getMF(); 4637 AttributeList Attr = MF.getFunction().getAttributes(); 4638 const auto &TLI = getTargetLowering(); 4639 LLVMContext &Ctx = MF.getFunction().getContext(); 4640 auto &DL = MF.getDataLayout(); 4641 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) 4642 return false; 4643 4644 // Don't do this for minsize because the instruction sequence is usually 4645 // larger. 4646 if (MF.getFunction().hasMinSize()) 4647 return false; 4648 4649 // Don't do this if the types are not going to be legal. 4650 if (LI) { 4651 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}})) 4652 return false; 4653 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}})) 4654 return false; 4655 if (!isLegalOrBeforeLegalizer( 4656 {TargetOpcode::G_ICMP, 4657 {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1), 4658 DstTy}})) 4659 return false; 4660 } 4661 4662 auto CheckEltValue = [&](const Constant *C) { 4663 if (auto *CI = dyn_cast_or_null<ConstantInt>(C)) 4664 return !CI->isZero(); 4665 return false; 4666 }; 4667 return matchUnaryPredicate(MRI, RHS, CheckEltValue); 4668 } 4669 4670 void CombinerHelper::applyUDivByConst(MachineInstr &MI) { 4671 auto *NewMI = buildUDivUsingMul(MI); 4672 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); 4673 } 4674 4675 bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) { 4676 assert(MI.getOpcode() == TargetOpcode::G_UMULH); 4677 Register RHS = MI.getOperand(2).getReg(); 4678 Register Dst = MI.getOperand(0).getReg(); 4679 LLT Ty = MRI.getType(Dst); 4680 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4681 auto MatchPow2ExceptOne = [&](const Constant *C) { 4682 if (auto *CI = dyn_cast<ConstantInt>(C)) 4683 return CI->getValue().isPowerOf2() && !CI->getValue().isOne(); 4684 return false; 4685 }; 4686 if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false)) 4687 return false; 4688 return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}}); 4689 } 4690 4691 void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) { 4692 Register LHS = MI.getOperand(1).getReg(); 4693 Register RHS = MI.getOperand(2).getReg(); 4694 Register Dst = MI.getOperand(0).getReg(); 4695 LLT Ty = MRI.getType(Dst); 4696 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4697 unsigned NumEltBits = Ty.getScalarSizeInBits(); 4698 4699 Builder.setInstrAndDebugLoc(MI); 4700 auto LogBase2 = buildLogBase2(RHS, Builder); 4701 auto ShiftAmt = 4702 Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2); 4703 auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt); 4704 Builder.buildLShr(Dst, LHS, Trunc); 4705 MI.eraseFromParent(); 4706 } 4707 4708 bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI, 4709 BuildFnTy &MatchInfo) { 4710 unsigned Opc = MI.getOpcode(); 4711 assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB || 4712 Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 4713 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA); 4714 4715 Register Dst = MI.getOperand(0).getReg(); 4716 Register X = MI.getOperand(1).getReg(); 4717 Register Y = MI.getOperand(2).getReg(); 4718 LLT Type = MRI.getType(Dst); 4719 4720 // fold (fadd x, fneg(y)) -> (fsub x, y) 4721 // fold (fadd fneg(y), x) -> (fsub x, y) 4722 // G_ADD is commutative so both cases are checked by m_GFAdd 4723 if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 4724 isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) { 4725 Opc = TargetOpcode::G_FSUB; 4726 } 4727 /// fold (fsub x, fneg(y)) -> (fadd x, y) 4728 else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 4729 isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) { 4730 Opc = TargetOpcode::G_FADD; 4731 } 4732 // fold (fmul fneg(x), fneg(y)) -> (fmul x, y) 4733 // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y) 4734 // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z) 4735 // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z) 4736 else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 4737 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) && 4738 mi_match(X, MRI, m_GFNeg(m_Reg(X))) && 4739 mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) { 4740 // no opcode change 4741 } else 4742 return false; 4743 4744 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4745 Observer.changingInstr(MI); 4746 MI.setDesc(B.getTII().get(Opc)); 4747 MI.getOperand(1).setReg(X); 4748 MI.getOperand(2).setReg(Y); 4749 Observer.changedInstr(MI); 4750 }; 4751 return true; 4752 } 4753 4754 bool CombinerHelper::tryCombine(MachineInstr &MI) { 4755 if (tryCombineCopy(MI)) 4756 return true; 4757 if (tryCombineExtendingLoads(MI)) 4758 return true; 4759 if (tryCombineIndexedLoadStore(MI)) 4760 return true; 4761 return false; 4762 } 4763