1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/CodeGen/GlobalISel/Combiner.h" 10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 12 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 13 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 14 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 15 #include "llvm/CodeGen/GlobalISel/Utils.h" 16 #include "llvm/CodeGen/MachineDominators.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineInstr.h" 19 #include "llvm/CodeGen/MachineMemOperand.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/Support/MathExtras.h" 24 #include "llvm/Target/TargetMachine.h" 25 26 #define DEBUG_TYPE "gi-combiner" 27 28 using namespace llvm; 29 using namespace MIPatternMatch; 30 31 // Option to allow testing of the combiner while no targets know about indexed 32 // addressing. 33 static cl::opt<bool> 34 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 35 cl::desc("Force all indexed operations to be " 36 "legal for the GlobalISel combiner")); 37 38 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 39 MachineIRBuilder &B, GISelKnownBits *KB, 40 MachineDominatorTree *MDT, 41 const LegalizerInfo *LI) 42 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 43 KB(KB), MDT(MDT), LI(LI) { 44 (void)this->KB; 45 } 46 47 const TargetLowering &CombinerHelper::getTargetLowering() const { 48 return *Builder.getMF().getSubtarget().getTargetLowering(); 49 } 50 51 bool CombinerHelper::isLegalOrBeforeLegalizer( 52 const LegalityQuery &Query) const { 53 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 54 } 55 56 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 57 Register ToReg) const { 58 Observer.changingAllUsesOfReg(MRI, FromReg); 59 60 if (MRI.constrainRegAttrs(ToReg, FromReg)) 61 MRI.replaceRegWith(FromReg, ToReg); 62 else 63 Builder.buildCopy(ToReg, FromReg); 64 65 Observer.finishedChangingAllUsesOfReg(); 66 } 67 68 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 69 MachineOperand &FromRegOp, 70 Register ToReg) const { 71 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 72 Observer.changingInstr(*FromRegOp.getParent()); 73 74 FromRegOp.setReg(ToReg); 75 76 Observer.changedInstr(*FromRegOp.getParent()); 77 } 78 79 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 80 if (matchCombineCopy(MI)) { 81 applyCombineCopy(MI); 82 return true; 83 } 84 return false; 85 } 86 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 87 if (MI.getOpcode() != TargetOpcode::COPY) 88 return false; 89 Register DstReg = MI.getOperand(0).getReg(); 90 Register SrcReg = MI.getOperand(1).getReg(); 91 return canReplaceReg(DstReg, SrcReg, MRI); 92 } 93 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 94 Register DstReg = MI.getOperand(0).getReg(); 95 Register SrcReg = MI.getOperand(1).getReg(); 96 MI.eraseFromParent(); 97 replaceRegWith(MRI, DstReg, SrcReg); 98 } 99 100 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 101 bool IsUndef = false; 102 SmallVector<Register, 4> Ops; 103 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 104 applyCombineConcatVectors(MI, IsUndef, Ops); 105 return true; 106 } 107 return false; 108 } 109 110 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 111 SmallVectorImpl<Register> &Ops) { 112 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 113 "Invalid instruction"); 114 IsUndef = true; 115 MachineInstr *Undef = nullptr; 116 117 // Walk over all the operands of concat vectors and check if they are 118 // build_vector themselves or undef. 119 // Then collect their operands in Ops. 120 for (const MachineOperand &MO : MI.uses()) { 121 Register Reg = MO.getReg(); 122 MachineInstr *Def = MRI.getVRegDef(Reg); 123 assert(Def && "Operand not defined"); 124 switch (Def->getOpcode()) { 125 case TargetOpcode::G_BUILD_VECTOR: 126 IsUndef = false; 127 // Remember the operands of the build_vector to fold 128 // them into the yet-to-build flattened concat vectors. 129 for (const MachineOperand &BuildVecMO : Def->uses()) 130 Ops.push_back(BuildVecMO.getReg()); 131 break; 132 case TargetOpcode::G_IMPLICIT_DEF: { 133 LLT OpType = MRI.getType(Reg); 134 // Keep one undef value for all the undef operands. 135 if (!Undef) { 136 Builder.setInsertPt(*MI.getParent(), MI); 137 Undef = Builder.buildUndef(OpType.getScalarType()); 138 } 139 assert(MRI.getType(Undef->getOperand(0).getReg()) == 140 OpType.getScalarType() && 141 "All undefs should have the same type"); 142 // Break the undef vector in as many scalar elements as needed 143 // for the flattening. 144 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 145 EltIdx != EltEnd; ++EltIdx) 146 Ops.push_back(Undef->getOperand(0).getReg()); 147 break; 148 } 149 default: 150 return false; 151 } 152 } 153 return true; 154 } 155 void CombinerHelper::applyCombineConcatVectors( 156 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 157 // We determined that the concat_vectors can be flatten. 158 // Generate the flattened build_vector. 159 Register DstReg = MI.getOperand(0).getReg(); 160 Builder.setInsertPt(*MI.getParent(), MI); 161 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 162 163 // Note: IsUndef is sort of redundant. We could have determine it by 164 // checking that at all Ops are undef. Alternatively, we could have 165 // generate a build_vector of undefs and rely on another combine to 166 // clean that up. For now, given we already gather this information 167 // in tryCombineConcatVectors, just save compile time and issue the 168 // right thing. 169 if (IsUndef) 170 Builder.buildUndef(NewDstReg); 171 else 172 Builder.buildBuildVector(NewDstReg, Ops); 173 MI.eraseFromParent(); 174 replaceRegWith(MRI, DstReg, NewDstReg); 175 } 176 177 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 178 SmallVector<Register, 4> Ops; 179 if (matchCombineShuffleVector(MI, Ops)) { 180 applyCombineShuffleVector(MI, Ops); 181 return true; 182 } 183 return false; 184 } 185 186 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 187 SmallVectorImpl<Register> &Ops) { 188 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 189 "Invalid instruction kind"); 190 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 191 Register Src1 = MI.getOperand(1).getReg(); 192 LLT SrcType = MRI.getType(Src1); 193 // As bizarre as it may look, shuffle vector can actually produce 194 // scalar! This is because at the IR level a <1 x ty> shuffle 195 // vector is perfectly valid. 196 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 197 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 198 199 // If the resulting vector is smaller than the size of the source 200 // vectors being concatenated, we won't be able to replace the 201 // shuffle vector into a concat_vectors. 202 // 203 // Note: We may still be able to produce a concat_vectors fed by 204 // extract_vector_elt and so on. It is less clear that would 205 // be better though, so don't bother for now. 206 // 207 // If the destination is a scalar, the size of the sources doesn't 208 // matter. we will lower the shuffle to a plain copy. This will 209 // work only if the source and destination have the same size. But 210 // that's covered by the next condition. 211 // 212 // TODO: If the size between the source and destination don't match 213 // we could still emit an extract vector element in that case. 214 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 215 return false; 216 217 // Check that the shuffle mask can be broken evenly between the 218 // different sources. 219 if (DstNumElts % SrcNumElts != 0) 220 return false; 221 222 // Mask length is a multiple of the source vector length. 223 // Check if the shuffle is some kind of concatenation of the input 224 // vectors. 225 unsigned NumConcat = DstNumElts / SrcNumElts; 226 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 227 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 228 for (unsigned i = 0; i != DstNumElts; ++i) { 229 int Idx = Mask[i]; 230 // Undef value. 231 if (Idx < 0) 232 continue; 233 // Ensure the indices in each SrcType sized piece are sequential and that 234 // the same source is used for the whole piece. 235 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 236 (ConcatSrcs[i / SrcNumElts] >= 0 && 237 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 238 return false; 239 // Remember which source this index came from. 240 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 241 } 242 243 // The shuffle is concatenating multiple vectors together. 244 // Collect the different operands for that. 245 Register UndefReg; 246 Register Src2 = MI.getOperand(2).getReg(); 247 for (auto Src : ConcatSrcs) { 248 if (Src < 0) { 249 if (!UndefReg) { 250 Builder.setInsertPt(*MI.getParent(), MI); 251 UndefReg = Builder.buildUndef(SrcType).getReg(0); 252 } 253 Ops.push_back(UndefReg); 254 } else if (Src == 0) 255 Ops.push_back(Src1); 256 else 257 Ops.push_back(Src2); 258 } 259 return true; 260 } 261 262 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 263 const ArrayRef<Register> Ops) { 264 Register DstReg = MI.getOperand(0).getReg(); 265 Builder.setInsertPt(*MI.getParent(), MI); 266 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 267 268 if (Ops.size() == 1) 269 Builder.buildCopy(NewDstReg, Ops[0]); 270 else 271 Builder.buildMerge(NewDstReg, Ops); 272 273 MI.eraseFromParent(); 274 replaceRegWith(MRI, DstReg, NewDstReg); 275 } 276 277 namespace { 278 279 /// Select a preference between two uses. CurrentUse is the current preference 280 /// while *ForCandidate is attributes of the candidate under consideration. 281 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 282 const LLT TyForCandidate, 283 unsigned OpcodeForCandidate, 284 MachineInstr *MIForCandidate) { 285 if (!CurrentUse.Ty.isValid()) { 286 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 287 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 288 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 289 return CurrentUse; 290 } 291 292 // We permit the extend to hoist through basic blocks but this is only 293 // sensible if the target has extending loads. If you end up lowering back 294 // into a load and extend during the legalizer then the end result is 295 // hoisting the extend up to the load. 296 297 // Prefer defined extensions to undefined extensions as these are more 298 // likely to reduce the number of instructions. 299 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 300 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 301 return CurrentUse; 302 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 303 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 304 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 305 306 // Prefer sign extensions to zero extensions as sign-extensions tend to be 307 // more expensive. 308 if (CurrentUse.Ty == TyForCandidate) { 309 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 310 OpcodeForCandidate == TargetOpcode::G_ZEXT) 311 return CurrentUse; 312 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 313 OpcodeForCandidate == TargetOpcode::G_SEXT) 314 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 315 } 316 317 // This is potentially target specific. We've chosen the largest type 318 // because G_TRUNC is usually free. One potential catch with this is that 319 // some targets have a reduced number of larger registers than smaller 320 // registers and this choice potentially increases the live-range for the 321 // larger value. 322 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 323 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 324 } 325 return CurrentUse; 326 } 327 328 /// Find a suitable place to insert some instructions and insert them. This 329 /// function accounts for special cases like inserting before a PHI node. 330 /// The current strategy for inserting before PHI's is to duplicate the 331 /// instructions for each predecessor. However, while that's ok for G_TRUNC 332 /// on most targets since it generally requires no code, other targets/cases may 333 /// want to try harder to find a dominating block. 334 static void InsertInsnsWithoutSideEffectsBeforeUse( 335 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 336 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 337 MachineOperand &UseMO)> 338 Inserter) { 339 MachineInstr &UseMI = *UseMO.getParent(); 340 341 MachineBasicBlock *InsertBB = UseMI.getParent(); 342 343 // If the use is a PHI then we want the predecessor block instead. 344 if (UseMI.isPHI()) { 345 MachineOperand *PredBB = std::next(&UseMO); 346 InsertBB = PredBB->getMBB(); 347 } 348 349 // If the block is the same block as the def then we want to insert just after 350 // the def instead of at the start of the block. 351 if (InsertBB == DefMI.getParent()) { 352 MachineBasicBlock::iterator InsertPt = &DefMI; 353 Inserter(InsertBB, std::next(InsertPt), UseMO); 354 return; 355 } 356 357 // Otherwise we want the start of the BB 358 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 359 } 360 } // end anonymous namespace 361 362 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 363 PreferredTuple Preferred; 364 if (matchCombineExtendingLoads(MI, Preferred)) { 365 applyCombineExtendingLoads(MI, Preferred); 366 return true; 367 } 368 return false; 369 } 370 371 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 372 PreferredTuple &Preferred) { 373 // We match the loads and follow the uses to the extend instead of matching 374 // the extends and following the def to the load. This is because the load 375 // must remain in the same position for correctness (unless we also add code 376 // to find a safe place to sink it) whereas the extend is freely movable. 377 // It also prevents us from duplicating the load for the volatile case or just 378 // for performance. 379 380 if (MI.getOpcode() != TargetOpcode::G_LOAD && 381 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 382 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 383 return false; 384 385 auto &LoadValue = MI.getOperand(0); 386 assert(LoadValue.isReg() && "Result wasn't a register?"); 387 388 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 389 if (!LoadValueTy.isScalar()) 390 return false; 391 392 // Most architectures are going to legalize <s8 loads into at least a 1 byte 393 // load, and the MMOs can only describe memory accesses in multiples of bytes. 394 // If we try to perform extload combining on those, we can end up with 395 // %a(s8) = extload %ptr (load 1 byte from %ptr) 396 // ... which is an illegal extload instruction. 397 if (LoadValueTy.getSizeInBits() < 8) 398 return false; 399 400 // For non power-of-2 types, they will very likely be legalized into multiple 401 // loads. Don't bother trying to match them into extending loads. 402 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 403 return false; 404 405 // Find the preferred type aside from the any-extends (unless it's the only 406 // one) and non-extending ops. We'll emit an extending load to that type and 407 // and emit a variant of (extend (trunc X)) for the others according to the 408 // relative type sizes. At the same time, pick an extend to use based on the 409 // extend involved in the chosen type. 410 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 411 ? TargetOpcode::G_ANYEXT 412 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 413 ? TargetOpcode::G_SEXT 414 : TargetOpcode::G_ZEXT; 415 Preferred = {LLT(), PreferredOpcode, nullptr}; 416 for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) { 417 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 418 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 419 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 420 // Check for legality. 421 if (LI) { 422 LegalityQuery::MemDesc MMDesc; 423 const auto &MMO = **MI.memoperands_begin(); 424 MMDesc.SizeInBits = MMO.getSizeInBits(); 425 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 426 MMDesc.Ordering = MMO.getOrdering(); 427 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 428 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 429 if (LI->getAction({MI.getOpcode(), {UseTy, SrcTy}, {MMDesc}}).Action != 430 LegalizeActions::Legal) 431 continue; 432 } 433 Preferred = ChoosePreferredUse(Preferred, 434 MRI.getType(UseMI.getOperand(0).getReg()), 435 UseMI.getOpcode(), &UseMI); 436 } 437 } 438 439 // There were no extends 440 if (!Preferred.MI) 441 return false; 442 // It should be impossible to chose an extend without selecting a different 443 // type since by definition the result of an extend is larger. 444 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 445 446 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 447 return true; 448 } 449 450 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 451 PreferredTuple &Preferred) { 452 // Rewrite the load to the chosen extending load. 453 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 454 455 // Inserter to insert a truncate back to the original type at a given point 456 // with some basic CSE to limit truncate duplication to one per BB. 457 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 458 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 459 MachineBasicBlock::iterator InsertBefore, 460 MachineOperand &UseMO) { 461 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 462 if (PreviouslyEmitted) { 463 Observer.changingInstr(*UseMO.getParent()); 464 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 465 Observer.changedInstr(*UseMO.getParent()); 466 return; 467 } 468 469 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 470 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 471 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 472 EmittedInsns[InsertIntoBB] = NewMI; 473 replaceRegOpWith(MRI, UseMO, NewDstReg); 474 }; 475 476 Observer.changingInstr(MI); 477 MI.setDesc( 478 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 479 ? TargetOpcode::G_SEXTLOAD 480 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 481 ? TargetOpcode::G_ZEXTLOAD 482 : TargetOpcode::G_LOAD)); 483 484 // Rewrite all the uses to fix up the types. 485 auto &LoadValue = MI.getOperand(0); 486 SmallVector<MachineOperand *, 4> Uses; 487 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 488 Uses.push_back(&UseMO); 489 490 for (auto *UseMO : Uses) { 491 MachineInstr *UseMI = UseMO->getParent(); 492 493 // If the extend is compatible with the preferred extend then we should fix 494 // up the type and extend so that it uses the preferred use. 495 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 496 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 497 Register UseDstReg = UseMI->getOperand(0).getReg(); 498 MachineOperand &UseSrcMO = UseMI->getOperand(1); 499 const LLT UseDstTy = MRI.getType(UseDstReg); 500 if (UseDstReg != ChosenDstReg) { 501 if (Preferred.Ty == UseDstTy) { 502 // If the use has the same type as the preferred use, then merge 503 // the vregs and erase the extend. For example: 504 // %1:_(s8) = G_LOAD ... 505 // %2:_(s32) = G_SEXT %1(s8) 506 // %3:_(s32) = G_ANYEXT %1(s8) 507 // ... = ... %3(s32) 508 // rewrites to: 509 // %2:_(s32) = G_SEXTLOAD ... 510 // ... = ... %2(s32) 511 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 512 Observer.erasingInstr(*UseMO->getParent()); 513 UseMO->getParent()->eraseFromParent(); 514 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 515 // If the preferred size is smaller, then keep the extend but extend 516 // from the result of the extending load. For example: 517 // %1:_(s8) = G_LOAD ... 518 // %2:_(s32) = G_SEXT %1(s8) 519 // %3:_(s64) = G_ANYEXT %1(s8) 520 // ... = ... %3(s64) 521 /// rewrites to: 522 // %2:_(s32) = G_SEXTLOAD ... 523 // %3:_(s64) = G_ANYEXT %2:_(s32) 524 // ... = ... %3(s64) 525 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 526 } else { 527 // If the preferred size is large, then insert a truncate. For 528 // example: 529 // %1:_(s8) = G_LOAD ... 530 // %2:_(s64) = G_SEXT %1(s8) 531 // %3:_(s32) = G_ZEXT %1(s8) 532 // ... = ... %3(s32) 533 /// rewrites to: 534 // %2:_(s64) = G_SEXTLOAD ... 535 // %4:_(s8) = G_TRUNC %2:_(s32) 536 // %3:_(s64) = G_ZEXT %2:_(s8) 537 // ... = ... %3(s64) 538 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 539 InsertTruncAt); 540 } 541 continue; 542 } 543 // The use is (one of) the uses of the preferred use we chose earlier. 544 // We're going to update the load to def this value later so just erase 545 // the old extend. 546 Observer.erasingInstr(*UseMO->getParent()); 547 UseMO->getParent()->eraseFromParent(); 548 continue; 549 } 550 551 // The use isn't an extend. Truncate back to the type we originally loaded. 552 // This is free on many targets. 553 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 554 } 555 556 MI.getOperand(0).setReg(ChosenDstReg); 557 Observer.changedInstr(MI); 558 } 559 560 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 561 const MachineInstr &UseMI) { 562 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 563 "shouldn't consider debug uses"); 564 assert(DefMI.getParent() == UseMI.getParent()); 565 if (&DefMI == &UseMI) 566 return false; 567 568 // Loop through the basic block until we find one of the instructions. 569 MachineBasicBlock::const_iterator I = DefMI.getParent()->begin(); 570 for (; &*I != &DefMI && &*I != &UseMI; ++I) 571 return &*I == &DefMI; 572 573 llvm_unreachable("Block must contain instructions"); 574 } 575 576 bool CombinerHelper::dominates(const MachineInstr &DefMI, 577 const MachineInstr &UseMI) { 578 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 579 "shouldn't consider debug uses"); 580 if (MDT) 581 return MDT->dominates(&DefMI, &UseMI); 582 else if (DefMI.getParent() != UseMI.getParent()) 583 return false; 584 585 return isPredecessor(DefMI, UseMI); 586 } 587 588 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 589 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 590 Register SrcReg = MI.getOperand(1).getReg(); 591 Register LoadUser = SrcReg; 592 593 if (MRI.getType(SrcReg).isVector()) 594 return false; 595 596 Register TruncSrc; 597 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 598 LoadUser = TruncSrc; 599 600 uint64_t SizeInBits = MI.getOperand(2).getImm(); 601 // If the source is a G_SEXTLOAD from the same bit width, then we don't 602 // need any extend at all, just a truncate. 603 if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) { 604 const auto &MMO = **LoadMI->memoperands_begin(); 605 // If truncating more than the original extended value, abort. 606 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits()) 607 return false; 608 if (MMO.getSizeInBits() == SizeInBits) 609 return true; 610 } 611 return false; 612 } 613 614 bool CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 615 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 616 Builder.setInstrAndDebugLoc(MI); 617 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 618 MI.eraseFromParent(); 619 return true; 620 } 621 622 bool CombinerHelper::matchSextInRegOfLoad( 623 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 624 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 625 626 // Only supports scalars for now. 627 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 628 return false; 629 630 Register SrcReg = MI.getOperand(1).getReg(); 631 MachineInstr *LoadDef = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI); 632 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg())) 633 return false; 634 635 // If the sign extend extends from a narrower width than the load's width, 636 // then we can narrow the load width when we combine to a G_SEXTLOAD. 637 auto &MMO = **LoadDef->memoperands_begin(); 638 // Don't do this for non-simple loads. 639 if (MMO.isAtomic() || MMO.isVolatile()) 640 return false; 641 642 // Avoid widening the load at all. 643 unsigned NewSizeBits = 644 std::min((uint64_t)MI.getOperand(2).getImm(), MMO.getSizeInBits()); 645 646 // Don't generate G_SEXTLOADs with a < 1 byte width. 647 if (NewSizeBits < 8) 648 return false; 649 // Don't bother creating a non-power-2 sextload, it will likely be broken up 650 // anyway for most targets. 651 if (!isPowerOf2_32(NewSizeBits)) 652 return false; 653 MatchInfo = std::make_tuple(LoadDef->getOperand(0).getReg(), NewSizeBits); 654 return true; 655 } 656 657 bool CombinerHelper::applySextInRegOfLoad( 658 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 659 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 660 Register LoadReg; 661 unsigned ScalarSizeBits; 662 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 663 auto *LoadDef = MRI.getVRegDef(LoadReg); 664 assert(LoadDef && "Expected a load reg"); 665 666 // If we have the following: 667 // %ld = G_LOAD %ptr, (load 2) 668 // %ext = G_SEXT_INREG %ld, 8 669 // ==> 670 // %ld = G_SEXTLOAD %ptr (load 1) 671 672 auto &MMO = **LoadDef->memoperands_begin(); 673 Builder.setInstrAndDebugLoc(MI); 674 auto &MF = Builder.getMF(); 675 auto PtrInfo = MMO.getPointerInfo(); 676 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 677 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 678 LoadDef->getOperand(1).getReg(), *NewMMO); 679 MI.eraseFromParent(); 680 return true; 681 } 682 683 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 684 Register &Base, Register &Offset) { 685 auto &MF = *MI.getParent()->getParent(); 686 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 687 688 #ifndef NDEBUG 689 unsigned Opcode = MI.getOpcode(); 690 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 691 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 692 #endif 693 694 Base = MI.getOperand(1).getReg(); 695 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 696 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 697 return false; 698 699 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 700 // FIXME: The following use traversal needs a bail out for patholigical cases. 701 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 702 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 703 continue; 704 705 Offset = Use.getOperand(2).getReg(); 706 if (!ForceLegalIndexing && 707 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 708 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 709 << Use); 710 continue; 711 } 712 713 // Make sure the offset calculation is before the potentially indexed op. 714 // FIXME: we really care about dependency here. The offset calculation might 715 // be movable. 716 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 717 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 718 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 719 << Use); 720 continue; 721 } 722 723 // FIXME: check whether all uses of Base are load/store with foldable 724 // addressing modes. If so, using the normal addr-modes is better than 725 // forming an indexed one. 726 727 bool MemOpDominatesAddrUses = true; 728 for (auto &PtrAddUse : 729 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 730 if (!dominates(MI, PtrAddUse)) { 731 MemOpDominatesAddrUses = false; 732 break; 733 } 734 } 735 736 if (!MemOpDominatesAddrUses) { 737 LLVM_DEBUG( 738 dbgs() << " Ignoring candidate as memop does not dominate uses: " 739 << Use); 740 continue; 741 } 742 743 LLVM_DEBUG(dbgs() << " Found match: " << Use); 744 Addr = Use.getOperand(0).getReg(); 745 return true; 746 } 747 748 return false; 749 } 750 751 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 752 Register &Base, Register &Offset) { 753 auto &MF = *MI.getParent()->getParent(); 754 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 755 756 #ifndef NDEBUG 757 unsigned Opcode = MI.getOpcode(); 758 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 759 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 760 #endif 761 762 Addr = MI.getOperand(1).getReg(); 763 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 764 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 765 return false; 766 767 Base = AddrDef->getOperand(1).getReg(); 768 Offset = AddrDef->getOperand(2).getReg(); 769 770 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 771 772 if (!ForceLegalIndexing && 773 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 774 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 775 return false; 776 } 777 778 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 779 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 780 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 781 return false; 782 } 783 784 if (MI.getOpcode() == TargetOpcode::G_STORE) { 785 // Would require a copy. 786 if (Base == MI.getOperand(0).getReg()) { 787 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 788 return false; 789 } 790 791 // We're expecting one use of Addr in MI, but it could also be the 792 // value stored, which isn't actually dominated by the instruction. 793 if (MI.getOperand(0).getReg() == Addr) { 794 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 795 return false; 796 } 797 } 798 799 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 800 // That might allow us to end base's liveness here by adjusting the constant. 801 802 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 803 if (!dominates(MI, UseMI)) { 804 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 805 return false; 806 } 807 } 808 809 return true; 810 } 811 812 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 813 IndexedLoadStoreMatchInfo MatchInfo; 814 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 815 applyCombineIndexedLoadStore(MI, MatchInfo); 816 return true; 817 } 818 return false; 819 } 820 821 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 822 unsigned Opcode = MI.getOpcode(); 823 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 824 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 825 return false; 826 827 // For now, no targets actually support these opcodes so don't waste time 828 // running these unless we're forced to for testing. 829 if (!ForceLegalIndexing) 830 return false; 831 832 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 833 MatchInfo.Offset); 834 if (!MatchInfo.IsPre && 835 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 836 MatchInfo.Offset)) 837 return false; 838 839 return true; 840 } 841 842 void CombinerHelper::applyCombineIndexedLoadStore( 843 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 844 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 845 MachineIRBuilder MIRBuilder(MI); 846 unsigned Opcode = MI.getOpcode(); 847 bool IsStore = Opcode == TargetOpcode::G_STORE; 848 unsigned NewOpcode; 849 switch (Opcode) { 850 case TargetOpcode::G_LOAD: 851 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 852 break; 853 case TargetOpcode::G_SEXTLOAD: 854 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 855 break; 856 case TargetOpcode::G_ZEXTLOAD: 857 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 858 break; 859 case TargetOpcode::G_STORE: 860 NewOpcode = TargetOpcode::G_INDEXED_STORE; 861 break; 862 default: 863 llvm_unreachable("Unknown load/store opcode"); 864 } 865 866 auto MIB = MIRBuilder.buildInstr(NewOpcode); 867 if (IsStore) { 868 MIB.addDef(MatchInfo.Addr); 869 MIB.addUse(MI.getOperand(0).getReg()); 870 } else { 871 MIB.addDef(MI.getOperand(0).getReg()); 872 MIB.addDef(MatchInfo.Addr); 873 } 874 875 MIB.addUse(MatchInfo.Base); 876 MIB.addUse(MatchInfo.Offset); 877 MIB.addImm(MatchInfo.IsPre); 878 MI.eraseFromParent(); 879 AddrDef.eraseFromParent(); 880 881 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 882 } 883 884 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI) { 885 if (MI.getOpcode() != TargetOpcode::G_BR) 886 return false; 887 888 // Try to match the following: 889 // bb1: 890 // G_BRCOND %c1, %bb2 891 // G_BR %bb3 892 // bb2: 893 // ... 894 // bb3: 895 896 // The above pattern does not have a fall through to the successor bb2, always 897 // resulting in a branch no matter which path is taken. Here we try to find 898 // and replace that pattern with conditional branch to bb3 and otherwise 899 // fallthrough to bb2. This is generally better for branch predictors. 900 901 MachineBasicBlock *MBB = MI.getParent(); 902 MachineBasicBlock::iterator BrIt(MI); 903 if (BrIt == MBB->begin()) 904 return false; 905 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 906 907 MachineInstr *BrCond = &*std::prev(BrIt); 908 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 909 return false; 910 911 // Check that the next block is the conditional branch target. 912 if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB())) 913 return false; 914 return true; 915 } 916 917 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI) { 918 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 919 MachineBasicBlock::iterator BrIt(MI); 920 MachineInstr *BrCond = &*std::prev(BrIt); 921 922 Builder.setInstrAndDebugLoc(*BrCond); 923 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 924 // FIXME: Does int/fp matter for this? If so, we might need to restrict 925 // this to i1 only since we might not know for sure what kind of 926 // compare generated the condition value. 927 auto True = Builder.buildConstant( 928 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 929 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 930 931 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 932 Observer.changingInstr(MI); 933 MI.getOperand(0).setMBB(FallthroughBB); 934 Observer.changedInstr(MI); 935 936 // Change the conditional branch to use the inverted condition and 937 // new target block. 938 Observer.changingInstr(*BrCond); 939 BrCond->getOperand(0).setReg(Xor.getReg(0)); 940 BrCond->getOperand(1).setMBB(BrTarget); 941 Observer.changedInstr(*BrCond); 942 } 943 944 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 945 // On Darwin, -Os means optimize for size without hurting performance, so 946 // only really optimize for size when -Oz (MinSize) is used. 947 if (MF.getTarget().getTargetTriple().isOSDarwin()) 948 return MF.getFunction().hasMinSize(); 949 return MF.getFunction().hasOptSize(); 950 } 951 952 // Returns a list of types to use for memory op lowering in MemOps. A partial 953 // port of findOptimalMemOpLowering in TargetLowering. 954 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 955 unsigned Limit, const MemOp &Op, 956 unsigned DstAS, unsigned SrcAS, 957 const AttributeList &FuncAttributes, 958 const TargetLowering &TLI) { 959 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 960 return false; 961 962 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 963 964 if (Ty == LLT()) { 965 // Use the largest scalar type whose alignment constraints are satisfied. 966 // We only need to check DstAlign here as SrcAlign is always greater or 967 // equal to DstAlign (or zero). 968 Ty = LLT::scalar(64); 969 if (Op.isFixedDstAlign()) 970 while (Op.getDstAlign() < Ty.getSizeInBytes() && 971 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 972 Ty = LLT::scalar(Ty.getSizeInBytes()); 973 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 974 // FIXME: check for the largest legal type we can load/store to. 975 } 976 977 unsigned NumMemOps = 0; 978 uint64_t Size = Op.size(); 979 while (Size) { 980 unsigned TySize = Ty.getSizeInBytes(); 981 while (TySize > Size) { 982 // For now, only use non-vector load / store's for the left-over pieces. 983 LLT NewTy = Ty; 984 // FIXME: check for mem op safety and legality of the types. Not all of 985 // SDAGisms map cleanly to GISel concepts. 986 if (NewTy.isVector()) 987 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 988 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 989 unsigned NewTySize = NewTy.getSizeInBytes(); 990 assert(NewTySize > 0 && "Could not find appropriate type"); 991 992 // If the new LLT cannot cover all of the remaining bits, then consider 993 // issuing a (or a pair of) unaligned and overlapping load / store. 994 bool Fast; 995 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 996 MVT VT = getMVTForLLT(Ty); 997 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 998 TLI.allowsMisalignedMemoryAccesses( 999 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 1000 MachineMemOperand::MONone, &Fast) && 1001 Fast) 1002 TySize = Size; 1003 else { 1004 Ty = NewTy; 1005 TySize = NewTySize; 1006 } 1007 } 1008 1009 if (++NumMemOps > Limit) 1010 return false; 1011 1012 MemOps.push_back(Ty); 1013 Size -= TySize; 1014 } 1015 1016 return true; 1017 } 1018 1019 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1020 if (Ty.isVector()) 1021 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1022 Ty.getNumElements()); 1023 return IntegerType::get(C, Ty.getSizeInBits()); 1024 } 1025 1026 // Get a vectorized representation of the memset value operand, GISel edition. 1027 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 1028 MachineRegisterInfo &MRI = *MIB.getMRI(); 1029 unsigned NumBits = Ty.getScalarSizeInBits(); 1030 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1031 if (!Ty.isVector() && ValVRegAndVal) { 1032 unsigned KnownVal = ValVRegAndVal->Value; 1033 APInt Scalar = APInt(8, KnownVal); 1034 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 1035 return MIB.buildConstant(Ty, SplatVal).getReg(0); 1036 } 1037 1038 // Extend the byte value to the larger type, and then multiply by a magic 1039 // value 0x010101... in order to replicate it across every byte. 1040 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 1041 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 1042 return MIB.buildConstant(Ty, 0).getReg(0); 1043 } 1044 1045 LLT ExtType = Ty.getScalarType(); 1046 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 1047 if (NumBits > 8) { 1048 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 1049 auto MagicMI = MIB.buildConstant(ExtType, Magic); 1050 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 1051 } 1052 1053 // For vector types create a G_BUILD_VECTOR. 1054 if (Ty.isVector()) 1055 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 1056 1057 return Val; 1058 } 1059 1060 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 1061 Register Val, unsigned KnownLen, 1062 Align Alignment, bool IsVolatile) { 1063 auto &MF = *MI.getParent()->getParent(); 1064 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1065 auto &DL = MF.getDataLayout(); 1066 LLVMContext &C = MF.getFunction().getContext(); 1067 1068 assert(KnownLen != 0 && "Have a zero length memset length!"); 1069 1070 bool DstAlignCanChange = false; 1071 MachineFrameInfo &MFI = MF.getFrameInfo(); 1072 bool OptSize = shouldLowerMemFuncForSize(MF); 1073 1074 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1075 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1076 DstAlignCanChange = true; 1077 1078 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1079 std::vector<LLT> MemOps; 1080 1081 const auto &DstMMO = **MI.memoperands_begin(); 1082 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1083 1084 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1085 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1086 1087 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1088 MemOp::Set(KnownLen, DstAlignCanChange, 1089 Alignment, 1090 /*IsZeroMemset=*/IsZeroVal, 1091 /*IsVolatile=*/IsVolatile), 1092 DstPtrInfo.getAddrSpace(), ~0u, 1093 MF.getFunction().getAttributes(), TLI)) 1094 return false; 1095 1096 if (DstAlignCanChange) { 1097 // Get an estimate of the type from the LLT. 1098 Type *IRTy = getTypeForLLT(MemOps[0], C); 1099 Align NewAlign = DL.getABITypeAlign(IRTy); 1100 if (NewAlign > Alignment) { 1101 Alignment = NewAlign; 1102 unsigned FI = FIDef->getOperand(1).getIndex(); 1103 // Give the stack frame object a larger alignment if needed. 1104 if (MFI.getObjectAlign(FI) < Alignment) 1105 MFI.setObjectAlignment(FI, Alignment); 1106 } 1107 } 1108 1109 MachineIRBuilder MIB(MI); 1110 // Find the largest store and generate the bit pattern for it. 1111 LLT LargestTy = MemOps[0]; 1112 for (unsigned i = 1; i < MemOps.size(); i++) 1113 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1114 LargestTy = MemOps[i]; 1115 1116 // The memset stored value is always defined as an s8, so in order to make it 1117 // work with larger store types we need to repeat the bit pattern across the 1118 // wider type. 1119 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1120 1121 if (!MemSetValue) 1122 return false; 1123 1124 // Generate the stores. For each store type in the list, we generate the 1125 // matching store of that type to the destination address. 1126 LLT PtrTy = MRI.getType(Dst); 1127 unsigned DstOff = 0; 1128 unsigned Size = KnownLen; 1129 for (unsigned I = 0; I < MemOps.size(); I++) { 1130 LLT Ty = MemOps[I]; 1131 unsigned TySize = Ty.getSizeInBytes(); 1132 if (TySize > Size) { 1133 // Issuing an unaligned load / store pair that overlaps with the previous 1134 // pair. Adjust the offset accordingly. 1135 assert(I == MemOps.size() - 1 && I != 0); 1136 DstOff -= TySize - Size; 1137 } 1138 1139 // If this store is smaller than the largest store see whether we can get 1140 // the smaller value for free with a truncate. 1141 Register Value = MemSetValue; 1142 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1143 MVT VT = getMVTForLLT(Ty); 1144 MVT LargestVT = getMVTForLLT(LargestTy); 1145 if (!LargestTy.isVector() && !Ty.isVector() && 1146 TLI.isTruncateFree(LargestVT, VT)) 1147 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1148 else 1149 Value = getMemsetValue(Val, Ty, MIB); 1150 if (!Value) 1151 return false; 1152 } 1153 1154 auto *StoreMMO = 1155 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1156 1157 Register Ptr = Dst; 1158 if (DstOff != 0) { 1159 auto Offset = 1160 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1161 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1162 } 1163 1164 MIB.buildStore(Value, Ptr, *StoreMMO); 1165 DstOff += Ty.getSizeInBytes(); 1166 Size -= TySize; 1167 } 1168 1169 MI.eraseFromParent(); 1170 return true; 1171 } 1172 1173 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1174 Register Src, unsigned KnownLen, 1175 Align DstAlign, Align SrcAlign, 1176 bool IsVolatile) { 1177 auto &MF = *MI.getParent()->getParent(); 1178 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1179 auto &DL = MF.getDataLayout(); 1180 LLVMContext &C = MF.getFunction().getContext(); 1181 1182 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1183 1184 bool DstAlignCanChange = false; 1185 MachineFrameInfo &MFI = MF.getFrameInfo(); 1186 bool OptSize = shouldLowerMemFuncForSize(MF); 1187 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1188 1189 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1190 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1191 DstAlignCanChange = true; 1192 1193 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1194 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1195 // if the memcpy is in a tail call position. 1196 1197 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1198 std::vector<LLT> MemOps; 1199 1200 const auto &DstMMO = **MI.memoperands_begin(); 1201 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1202 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1203 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1204 1205 if (!findGISelOptimalMemOpLowering( 1206 MemOps, Limit, 1207 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1208 IsVolatile), 1209 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1210 MF.getFunction().getAttributes(), TLI)) 1211 return false; 1212 1213 if (DstAlignCanChange) { 1214 // Get an estimate of the type from the LLT. 1215 Type *IRTy = getTypeForLLT(MemOps[0], C); 1216 Align NewAlign = DL.getABITypeAlign(IRTy); 1217 1218 // Don't promote to an alignment that would require dynamic stack 1219 // realignment. 1220 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1221 if (!TRI->needsStackRealignment(MF)) 1222 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1223 NewAlign = NewAlign / 2; 1224 1225 if (NewAlign > Alignment) { 1226 Alignment = NewAlign; 1227 unsigned FI = FIDef->getOperand(1).getIndex(); 1228 // Give the stack frame object a larger alignment if needed. 1229 if (MFI.getObjectAlign(FI) < Alignment) 1230 MFI.setObjectAlignment(FI, Alignment); 1231 } 1232 } 1233 1234 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1235 1236 MachineIRBuilder MIB(MI); 1237 // Now we need to emit a pair of load and stores for each of the types we've 1238 // collected. I.e. for each type, generate a load from the source pointer of 1239 // that type width, and then generate a corresponding store to the dest buffer 1240 // of that value loaded. This can result in a sequence of loads and stores 1241 // mixed types, depending on what the target specifies as good types to use. 1242 unsigned CurrOffset = 0; 1243 LLT PtrTy = MRI.getType(Src); 1244 unsigned Size = KnownLen; 1245 for (auto CopyTy : MemOps) { 1246 // Issuing an unaligned load / store pair that overlaps with the previous 1247 // pair. Adjust the offset accordingly. 1248 if (CopyTy.getSizeInBytes() > Size) 1249 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1250 1251 // Construct MMOs for the accesses. 1252 auto *LoadMMO = 1253 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1254 auto *StoreMMO = 1255 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1256 1257 // Create the load. 1258 Register LoadPtr = Src; 1259 Register Offset; 1260 if (CurrOffset != 0) { 1261 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1262 .getReg(0); 1263 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1264 } 1265 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1266 1267 // Create the store. 1268 Register StorePtr = 1269 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1270 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1271 CurrOffset += CopyTy.getSizeInBytes(); 1272 Size -= CopyTy.getSizeInBytes(); 1273 } 1274 1275 MI.eraseFromParent(); 1276 return true; 1277 } 1278 1279 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1280 Register Src, unsigned KnownLen, 1281 Align DstAlign, Align SrcAlign, 1282 bool IsVolatile) { 1283 auto &MF = *MI.getParent()->getParent(); 1284 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1285 auto &DL = MF.getDataLayout(); 1286 LLVMContext &C = MF.getFunction().getContext(); 1287 1288 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1289 1290 bool DstAlignCanChange = false; 1291 MachineFrameInfo &MFI = MF.getFrameInfo(); 1292 bool OptSize = shouldLowerMemFuncForSize(MF); 1293 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1294 1295 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1296 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1297 DstAlignCanChange = true; 1298 1299 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1300 std::vector<LLT> MemOps; 1301 1302 const auto &DstMMO = **MI.memoperands_begin(); 1303 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1304 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1305 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1306 1307 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1308 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1309 // same thing here. 1310 if (!findGISelOptimalMemOpLowering( 1311 MemOps, Limit, 1312 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1313 /*IsVolatile*/ true), 1314 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1315 MF.getFunction().getAttributes(), TLI)) 1316 return false; 1317 1318 if (DstAlignCanChange) { 1319 // Get an estimate of the type from the LLT. 1320 Type *IRTy = getTypeForLLT(MemOps[0], C); 1321 Align NewAlign = DL.getABITypeAlign(IRTy); 1322 1323 // Don't promote to an alignment that would require dynamic stack 1324 // realignment. 1325 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1326 if (!TRI->needsStackRealignment(MF)) 1327 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1328 NewAlign = NewAlign / 2; 1329 1330 if (NewAlign > Alignment) { 1331 Alignment = NewAlign; 1332 unsigned FI = FIDef->getOperand(1).getIndex(); 1333 // Give the stack frame object a larger alignment if needed. 1334 if (MFI.getObjectAlign(FI) < Alignment) 1335 MFI.setObjectAlignment(FI, Alignment); 1336 } 1337 } 1338 1339 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1340 1341 MachineIRBuilder MIB(MI); 1342 // Memmove requires that we perform the loads first before issuing the stores. 1343 // Apart from that, this loop is pretty much doing the same thing as the 1344 // memcpy codegen function. 1345 unsigned CurrOffset = 0; 1346 LLT PtrTy = MRI.getType(Src); 1347 SmallVector<Register, 16> LoadVals; 1348 for (auto CopyTy : MemOps) { 1349 // Construct MMO for the load. 1350 auto *LoadMMO = 1351 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1352 1353 // Create the load. 1354 Register LoadPtr = Src; 1355 if (CurrOffset != 0) { 1356 auto Offset = 1357 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1358 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1359 } 1360 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1361 CurrOffset += CopyTy.getSizeInBytes(); 1362 } 1363 1364 CurrOffset = 0; 1365 for (unsigned I = 0; I < MemOps.size(); ++I) { 1366 LLT CopyTy = MemOps[I]; 1367 // Now store the values loaded. 1368 auto *StoreMMO = 1369 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1370 1371 Register StorePtr = Dst; 1372 if (CurrOffset != 0) { 1373 auto Offset = 1374 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1375 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1376 } 1377 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1378 CurrOffset += CopyTy.getSizeInBytes(); 1379 } 1380 MI.eraseFromParent(); 1381 return true; 1382 } 1383 1384 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1385 const unsigned Opc = MI.getOpcode(); 1386 // This combine is fairly complex so it's not written with a separate 1387 // matcher function. 1388 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 1389 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); 1390 1391 auto MMOIt = MI.memoperands_begin(); 1392 const MachineMemOperand *MemOp = *MMOIt; 1393 bool IsVolatile = MemOp->isVolatile(); 1394 // Don't try to optimize volatile. 1395 if (IsVolatile) 1396 return false; 1397 1398 Align DstAlign = MemOp->getBaseAlign(); 1399 Align SrcAlign; 1400 Register Dst = MI.getOperand(0).getReg(); 1401 Register Src = MI.getOperand(1).getReg(); 1402 Register Len = MI.getOperand(2).getReg(); 1403 1404 if (Opc != TargetOpcode::G_MEMSET) { 1405 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1406 MemOp = *(++MMOIt); 1407 SrcAlign = MemOp->getBaseAlign(); 1408 } 1409 1410 // See if this is a constant length copy 1411 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1412 if (!LenVRegAndVal) 1413 return false; // Leave it to the legalizer to lower it to a libcall. 1414 unsigned KnownLen = LenVRegAndVal->Value; 1415 1416 if (KnownLen == 0) { 1417 MI.eraseFromParent(); 1418 return true; 1419 } 1420 1421 if (MaxLen && KnownLen > MaxLen) 1422 return false; 1423 1424 if (Opc == TargetOpcode::G_MEMCPY) 1425 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1426 if (Opc == TargetOpcode::G_MEMMOVE) 1427 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1428 if (Opc == TargetOpcode::G_MEMSET) 1429 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1430 return false; 1431 } 1432 1433 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1434 const Register Op, 1435 const MachineRegisterInfo &MRI) { 1436 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1437 if (!MaybeCst) 1438 return None; 1439 1440 APFloat V = MaybeCst->getValueAPF(); 1441 switch (Opcode) { 1442 default: 1443 llvm_unreachable("Unexpected opcode!"); 1444 case TargetOpcode::G_FNEG: { 1445 V.changeSign(); 1446 return V; 1447 } 1448 case TargetOpcode::G_FABS: { 1449 V.clearSign(); 1450 return V; 1451 } 1452 case TargetOpcode::G_FPTRUNC: 1453 break; 1454 case TargetOpcode::G_FSQRT: { 1455 bool Unused; 1456 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1457 V = APFloat(sqrt(V.convertToDouble())); 1458 break; 1459 } 1460 case TargetOpcode::G_FLOG2: { 1461 bool Unused; 1462 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1463 V = APFloat(log2(V.convertToDouble())); 1464 break; 1465 } 1466 } 1467 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1468 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1469 // and `G_FLOG2` reach here. 1470 bool Unused; 1471 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1472 return V; 1473 } 1474 1475 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1476 Optional<APFloat> &Cst) { 1477 Register DstReg = MI.getOperand(0).getReg(); 1478 Register SrcReg = MI.getOperand(1).getReg(); 1479 LLT DstTy = MRI.getType(DstReg); 1480 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1481 return Cst.hasValue(); 1482 } 1483 1484 bool CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1485 Optional<APFloat> &Cst) { 1486 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1487 Builder.setInstrAndDebugLoc(MI); 1488 MachineFunction &MF = Builder.getMF(); 1489 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1490 Register DstReg = MI.getOperand(0).getReg(); 1491 Builder.buildFConstant(DstReg, *FPVal); 1492 MI.eraseFromParent(); 1493 return true; 1494 } 1495 1496 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1497 PtrAddChain &MatchInfo) { 1498 // We're trying to match the following pattern: 1499 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1500 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1501 // --> 1502 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1503 1504 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1505 return false; 1506 1507 Register Add2 = MI.getOperand(1).getReg(); 1508 Register Imm1 = MI.getOperand(2).getReg(); 1509 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1510 if (!MaybeImmVal) 1511 return false; 1512 1513 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1514 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1515 return false; 1516 1517 Register Base = Add2Def->getOperand(1).getReg(); 1518 Register Imm2 = Add2Def->getOperand(2).getReg(); 1519 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1520 if (!MaybeImm2Val) 1521 return false; 1522 1523 // Pass the combined immediate to the apply function. 1524 MatchInfo.Imm = MaybeImmVal->Value + MaybeImm2Val->Value; 1525 MatchInfo.Base = Base; 1526 return true; 1527 } 1528 1529 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1530 PtrAddChain &MatchInfo) { 1531 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1532 MachineIRBuilder MIB(MI); 1533 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1534 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1535 Observer.changingInstr(MI); 1536 MI.getOperand(1).setReg(MatchInfo.Base); 1537 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1538 Observer.changedInstr(MI); 1539 return true; 1540 } 1541 1542 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1543 unsigned &ShiftVal) { 1544 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1545 auto MaybeImmVal = 1546 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1547 if (!MaybeImmVal || !isPowerOf2_64(MaybeImmVal->Value)) 1548 return false; 1549 ShiftVal = Log2_64(MaybeImmVal->Value); 1550 return true; 1551 } 1552 1553 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1554 unsigned &ShiftVal) { 1555 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1556 MachineIRBuilder MIB(MI); 1557 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1558 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1559 Observer.changingInstr(MI); 1560 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1561 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1562 Observer.changedInstr(MI); 1563 return true; 1564 } 1565 1566 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1567 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1568 RegisterImmPair &MatchData) { 1569 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1570 1571 Register LHS = MI.getOperand(1).getReg(); 1572 1573 Register ExtSrc; 1574 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1575 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1576 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1577 return false; 1578 1579 // TODO: Should handle vector splat. 1580 Register RHS = MI.getOperand(2).getReg(); 1581 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 1582 if (!MaybeShiftAmtVal) 1583 return false; 1584 1585 if (LI) { 1586 LLT SrcTy = MRI.getType(ExtSrc); 1587 1588 // We only really care about the legality with the shifted value. We can 1589 // pick any type the constant shift amount, so ask the target what to 1590 // use. Otherwise we would have to guess and hope it is reported as legal. 1591 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1592 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1593 return false; 1594 } 1595 1596 int64_t ShiftAmt = MaybeShiftAmtVal->Value; 1597 MatchData.Reg = ExtSrc; 1598 MatchData.Imm = ShiftAmt; 1599 1600 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1601 return MinLeadingZeros >= ShiftAmt; 1602 } 1603 1604 bool CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1605 const RegisterImmPair &MatchData) { 1606 Register ExtSrcReg = MatchData.Reg; 1607 int64_t ShiftAmtVal = MatchData.Imm; 1608 1609 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1610 Builder.setInstrAndDebugLoc(MI); 1611 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1612 auto NarrowShift = 1613 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1614 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1615 MI.eraseFromParent(); 1616 return true; 1617 } 1618 1619 static Register peekThroughBitcast(Register Reg, 1620 const MachineRegisterInfo &MRI) { 1621 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1622 ; 1623 1624 return Reg; 1625 } 1626 1627 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1628 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1629 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1630 "Expected an unmerge"); 1631 Register SrcReg = 1632 peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI); 1633 1634 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1635 if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES && 1636 SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR && 1637 SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS) 1638 return false; 1639 1640 // Check the source type of the merge. 1641 LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg()); 1642 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1643 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1644 if (SrcMergeTy != Dst0Ty && !SameSize) 1645 return false; 1646 // They are the same now (modulo a bitcast). 1647 // We can collect all the src registers. 1648 for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx; 1649 ++Idx) 1650 Operands.push_back(SrcInstr->getOperand(Idx).getReg()); 1651 return true; 1652 } 1653 1654 bool CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1655 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1656 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1657 "Expected an unmerge"); 1658 assert((MI.getNumOperands() - 1 == Operands.size()) && 1659 "Not enough operands to replace all defs"); 1660 unsigned NumElems = MI.getNumOperands() - 1; 1661 1662 LLT SrcTy = MRI.getType(Operands[0]); 1663 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1664 bool CanReuseInputDirectly = DstTy == SrcTy; 1665 Builder.setInstrAndDebugLoc(MI); 1666 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1667 Register DstReg = MI.getOperand(Idx).getReg(); 1668 Register SrcReg = Operands[Idx]; 1669 if (CanReuseInputDirectly) 1670 replaceRegWith(MRI, DstReg, SrcReg); 1671 else 1672 Builder.buildCast(DstReg, SrcReg); 1673 } 1674 MI.eraseFromParent(); 1675 return true; 1676 } 1677 1678 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1679 SmallVectorImpl<APInt> &Csts) { 1680 unsigned SrcIdx = MI.getNumOperands() - 1; 1681 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1682 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1683 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1684 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1685 return false; 1686 // Break down the big constant in smaller ones. 1687 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1688 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1689 ? CstVal.getCImm()->getValue() 1690 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1691 1692 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1693 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1694 // Unmerge a constant. 1695 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1696 Csts.emplace_back(Val.trunc(ShiftAmt)); 1697 Val = Val.lshr(ShiftAmt); 1698 } 1699 1700 return true; 1701 } 1702 1703 bool CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1704 SmallVectorImpl<APInt> &Csts) { 1705 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1706 "Expected an unmerge"); 1707 assert((MI.getNumOperands() - 1 == Csts.size()) && 1708 "Not enough operands to replace all defs"); 1709 unsigned NumElems = MI.getNumOperands() - 1; 1710 Builder.setInstrAndDebugLoc(MI); 1711 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1712 Register DstReg = MI.getOperand(Idx).getReg(); 1713 Builder.buildConstant(DstReg, Csts[Idx]); 1714 } 1715 1716 MI.eraseFromParent(); 1717 return true; 1718 } 1719 1720 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1721 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1722 "Expected an unmerge"); 1723 // Check that all the lanes are dead except the first one. 1724 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1725 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1726 return false; 1727 } 1728 return true; 1729 } 1730 1731 bool CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1732 Builder.setInstrAndDebugLoc(MI); 1733 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1734 // Truncating a vector is going to truncate every single lane, 1735 // whereas we want the full lowbits. 1736 // Do the operation on a scalar instead. 1737 LLT SrcTy = MRI.getType(SrcReg); 1738 if (SrcTy.isVector()) 1739 SrcReg = 1740 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1741 1742 Register Dst0Reg = MI.getOperand(0).getReg(); 1743 LLT Dst0Ty = MRI.getType(Dst0Reg); 1744 if (Dst0Ty.isVector()) { 1745 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 1746 Builder.buildCast(Dst0Reg, MIB); 1747 } else 1748 Builder.buildTrunc(Dst0Reg, SrcReg); 1749 MI.eraseFromParent(); 1750 return true; 1751 } 1752 1753 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 1754 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1755 "Expected an unmerge"); 1756 Register Dst0Reg = MI.getOperand(0).getReg(); 1757 LLT Dst0Ty = MRI.getType(Dst0Reg); 1758 // G_ZEXT on vector applies to each lane, so it will 1759 // affect all destinations. Therefore we won't be able 1760 // to simplify the unmerge to just the first definition. 1761 if (Dst0Ty.isVector()) 1762 return false; 1763 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1764 LLT SrcTy = MRI.getType(SrcReg); 1765 if (SrcTy.isVector()) 1766 return false; 1767 1768 Register ZExtSrcReg; 1769 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 1770 return false; 1771 1772 // Finally we can replace the first definition with 1773 // a zext of the source if the definition is big enough to hold 1774 // all of ZExtSrc bits. 1775 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1776 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 1777 } 1778 1779 bool CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 1780 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1781 "Expected an unmerge"); 1782 1783 Register Dst0Reg = MI.getOperand(0).getReg(); 1784 1785 MachineInstr *ZExtInstr = 1786 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 1787 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 1788 "Expecting a G_ZEXT"); 1789 1790 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 1791 LLT Dst0Ty = MRI.getType(Dst0Reg); 1792 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1793 1794 Builder.setInstrAndDebugLoc(MI); 1795 1796 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 1797 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 1798 } else { 1799 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 1800 "ZExt src doesn't fit in destination"); 1801 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 1802 } 1803 1804 Register ZeroReg; 1805 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1806 if (!ZeroReg) 1807 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 1808 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 1809 } 1810 MI.eraseFromParent(); 1811 return true; 1812 } 1813 1814 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1815 unsigned TargetShiftSize, 1816 unsigned &ShiftVal) { 1817 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1818 MI.getOpcode() == TargetOpcode::G_LSHR || 1819 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1820 1821 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1822 if (Ty.isVector()) // TODO: 1823 return false; 1824 1825 // Don't narrow further than the requested size. 1826 unsigned Size = Ty.getSizeInBits(); 1827 if (Size <= TargetShiftSize) 1828 return false; 1829 1830 auto MaybeImmVal = 1831 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1832 if (!MaybeImmVal) 1833 return false; 1834 1835 ShiftVal = MaybeImmVal->Value; 1836 return ShiftVal >= Size / 2 && ShiftVal < Size; 1837 } 1838 1839 bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1840 const unsigned &ShiftVal) { 1841 Register DstReg = MI.getOperand(0).getReg(); 1842 Register SrcReg = MI.getOperand(1).getReg(); 1843 LLT Ty = MRI.getType(SrcReg); 1844 unsigned Size = Ty.getSizeInBits(); 1845 unsigned HalfSize = Size / 2; 1846 assert(ShiftVal >= HalfSize); 1847 1848 LLT HalfTy = LLT::scalar(HalfSize); 1849 1850 Builder.setInstr(MI); 1851 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1852 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1853 1854 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1855 Register Narrowed = Unmerge.getReg(1); 1856 1857 // dst = G_LSHR s64:x, C for C >= 32 1858 // => 1859 // lo, hi = G_UNMERGE_VALUES x 1860 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1861 1862 if (NarrowShiftAmt != 0) { 1863 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1864 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1865 } 1866 1867 auto Zero = Builder.buildConstant(HalfTy, 0); 1868 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1869 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1870 Register Narrowed = Unmerge.getReg(0); 1871 // dst = G_SHL s64:x, C for C >= 32 1872 // => 1873 // lo, hi = G_UNMERGE_VALUES x 1874 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1875 if (NarrowShiftAmt != 0) { 1876 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1877 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1878 } 1879 1880 auto Zero = Builder.buildConstant(HalfTy, 0); 1881 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1882 } else { 1883 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1884 auto Hi = Builder.buildAShr( 1885 HalfTy, Unmerge.getReg(1), 1886 Builder.buildConstant(HalfTy, HalfSize - 1)); 1887 1888 if (ShiftVal == HalfSize) { 1889 // (G_ASHR i64:x, 32) -> 1890 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1891 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1892 } else if (ShiftVal == Size - 1) { 1893 // Don't need a second shift. 1894 // (G_ASHR i64:x, 63) -> 1895 // %narrowed = (G_ASHR hi_32(x), 31) 1896 // G_MERGE_VALUES %narrowed, %narrowed 1897 Builder.buildMerge(DstReg, { Hi, Hi }); 1898 } else { 1899 auto Lo = Builder.buildAShr( 1900 HalfTy, Unmerge.getReg(1), 1901 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1902 1903 // (G_ASHR i64:x, C) ->, for C >= 32 1904 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1905 Builder.buildMerge(DstReg, { Lo, Hi }); 1906 } 1907 } 1908 1909 MI.eraseFromParent(); 1910 return true; 1911 } 1912 1913 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1914 unsigned TargetShiftAmount) { 1915 unsigned ShiftAmt; 1916 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1917 applyCombineShiftToUnmerge(MI, ShiftAmt); 1918 return true; 1919 } 1920 1921 return false; 1922 } 1923 1924 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1925 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1926 Register DstReg = MI.getOperand(0).getReg(); 1927 LLT DstTy = MRI.getType(DstReg); 1928 Register SrcReg = MI.getOperand(1).getReg(); 1929 return mi_match(SrcReg, MRI, 1930 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 1931 } 1932 1933 bool CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1934 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1935 Register DstReg = MI.getOperand(0).getReg(); 1936 Builder.setInstr(MI); 1937 Builder.buildCopy(DstReg, Reg); 1938 MI.eraseFromParent(); 1939 return true; 1940 } 1941 1942 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1943 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1944 Register SrcReg = MI.getOperand(1).getReg(); 1945 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 1946 } 1947 1948 bool CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1949 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1950 Register DstReg = MI.getOperand(0).getReg(); 1951 Builder.setInstr(MI); 1952 Builder.buildZExtOrTrunc(DstReg, Reg); 1953 MI.eraseFromParent(); 1954 return true; 1955 } 1956 1957 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 1958 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1959 assert(MI.getOpcode() == TargetOpcode::G_ADD); 1960 Register LHS = MI.getOperand(1).getReg(); 1961 Register RHS = MI.getOperand(2).getReg(); 1962 LLT IntTy = MRI.getType(LHS); 1963 1964 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 1965 // instruction. 1966 PtrReg.second = false; 1967 for (Register SrcReg : {LHS, RHS}) { 1968 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 1969 // Don't handle cases where the integer is implicitly converted to the 1970 // pointer width. 1971 LLT PtrTy = MRI.getType(PtrReg.first); 1972 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 1973 return true; 1974 } 1975 1976 PtrReg.second = true; 1977 } 1978 1979 return false; 1980 } 1981 1982 bool CombinerHelper::applyCombineAddP2IToPtrAdd( 1983 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1984 Register Dst = MI.getOperand(0).getReg(); 1985 Register LHS = MI.getOperand(1).getReg(); 1986 Register RHS = MI.getOperand(2).getReg(); 1987 1988 const bool DoCommute = PtrReg.second; 1989 if (DoCommute) 1990 std::swap(LHS, RHS); 1991 LHS = PtrReg.first; 1992 1993 LLT PtrTy = MRI.getType(LHS); 1994 1995 Builder.setInstrAndDebugLoc(MI); 1996 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 1997 Builder.buildPtrToInt(Dst, PtrAdd); 1998 MI.eraseFromParent(); 1999 return true; 2000 } 2001 2002 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2003 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2004 Register DstReg = MI.getOperand(0).getReg(); 2005 Register SrcReg = MI.getOperand(1).getReg(); 2006 LLT DstTy = MRI.getType(DstReg); 2007 return mi_match(SrcReg, MRI, 2008 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2009 } 2010 2011 bool CombinerHelper::applyCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2012 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2013 Register DstReg = MI.getOperand(0).getReg(); 2014 MI.eraseFromParent(); 2015 replaceRegWith(MRI, DstReg, Reg); 2016 return true; 2017 } 2018 2019 bool CombinerHelper::matchCombineExtOfExt( 2020 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2021 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2022 MI.getOpcode() == TargetOpcode::G_SEXT || 2023 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2024 "Expected a G_[ASZ]EXT"); 2025 Register SrcReg = MI.getOperand(1).getReg(); 2026 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2027 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2028 unsigned Opc = MI.getOpcode(); 2029 unsigned SrcOpc = SrcMI->getOpcode(); 2030 if (Opc == SrcOpc || 2031 (Opc == TargetOpcode::G_ANYEXT && 2032 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2033 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2034 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2035 return true; 2036 } 2037 return false; 2038 } 2039 2040 bool CombinerHelper::applyCombineExtOfExt( 2041 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2042 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2043 MI.getOpcode() == TargetOpcode::G_SEXT || 2044 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2045 "Expected a G_[ASZ]EXT"); 2046 2047 Register Reg = std::get<0>(MatchInfo); 2048 unsigned SrcExtOp = std::get<1>(MatchInfo); 2049 2050 // Combine exts with the same opcode. 2051 if (MI.getOpcode() == SrcExtOp) { 2052 Observer.changingInstr(MI); 2053 MI.getOperand(1).setReg(Reg); 2054 Observer.changedInstr(MI); 2055 return true; 2056 } 2057 2058 // Combine: 2059 // - anyext([sz]ext x) to [sz]ext x 2060 // - sext(zext x) to zext x 2061 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2062 (MI.getOpcode() == TargetOpcode::G_SEXT && 2063 SrcExtOp == TargetOpcode::G_ZEXT)) { 2064 Register DstReg = MI.getOperand(0).getReg(); 2065 Builder.setInstrAndDebugLoc(MI); 2066 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2067 MI.eraseFromParent(); 2068 return true; 2069 } 2070 2071 return false; 2072 } 2073 2074 bool CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2075 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2076 Register DstReg = MI.getOperand(0).getReg(); 2077 Register SrcReg = MI.getOperand(1).getReg(); 2078 LLT DstTy = MRI.getType(DstReg); 2079 2080 Builder.setInstrAndDebugLoc(MI); 2081 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2082 MI.getFlags()); 2083 MI.eraseFromParent(); 2084 return true; 2085 } 2086 2087 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2088 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2089 Register SrcReg = MI.getOperand(1).getReg(); 2090 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2091 } 2092 2093 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2094 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2095 Src = MI.getOperand(1).getReg(); 2096 Register AbsSrc; 2097 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2098 } 2099 2100 bool CombinerHelper::applyCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2101 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2102 Register Dst = MI.getOperand(0).getReg(); 2103 MI.eraseFromParent(); 2104 replaceRegWith(MRI, Dst, Src); 2105 return true; 2106 } 2107 2108 bool CombinerHelper::matchCombineTruncOfExt( 2109 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2110 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2111 Register SrcReg = MI.getOperand(1).getReg(); 2112 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2113 unsigned SrcOpc = SrcMI->getOpcode(); 2114 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2115 SrcOpc == TargetOpcode::G_ZEXT) { 2116 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2117 return true; 2118 } 2119 return false; 2120 } 2121 2122 bool CombinerHelper::applyCombineTruncOfExt( 2123 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2124 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2125 Register SrcReg = MatchInfo.first; 2126 unsigned SrcExtOp = MatchInfo.second; 2127 Register DstReg = MI.getOperand(0).getReg(); 2128 LLT SrcTy = MRI.getType(SrcReg); 2129 LLT DstTy = MRI.getType(DstReg); 2130 if (SrcTy == DstTy) { 2131 MI.eraseFromParent(); 2132 replaceRegWith(MRI, DstReg, SrcReg); 2133 return true; 2134 } 2135 Builder.setInstrAndDebugLoc(MI); 2136 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2137 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2138 else 2139 Builder.buildTrunc(DstReg, SrcReg); 2140 MI.eraseFromParent(); 2141 return true; 2142 } 2143 2144 bool CombinerHelper::matchCombineTruncOfShl( 2145 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2146 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2147 Register DstReg = MI.getOperand(0).getReg(); 2148 Register SrcReg = MI.getOperand(1).getReg(); 2149 LLT DstTy = MRI.getType(DstReg); 2150 Register ShiftSrc; 2151 Register ShiftAmt; 2152 2153 if (MRI.hasOneNonDBGUse(SrcReg) && 2154 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2155 isLegalOrBeforeLegalizer( 2156 {TargetOpcode::G_SHL, 2157 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2158 KnownBits Known = KB->getKnownBits(ShiftAmt); 2159 unsigned Size = DstTy.getSizeInBits(); 2160 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2161 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2162 return true; 2163 } 2164 } 2165 return false; 2166 } 2167 2168 bool CombinerHelper::applyCombineTruncOfShl( 2169 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2170 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2171 Register DstReg = MI.getOperand(0).getReg(); 2172 Register SrcReg = MI.getOperand(1).getReg(); 2173 LLT DstTy = MRI.getType(DstReg); 2174 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2175 2176 Register ShiftSrc = MatchInfo.first; 2177 Register ShiftAmt = MatchInfo.second; 2178 Builder.setInstrAndDebugLoc(MI); 2179 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2180 auto TruncShiftAmt = Builder.buildTrunc(DstTy, ShiftAmt); 2181 Builder.buildShl(DstReg, TruncShiftSrc, TruncShiftAmt, SrcMI->getFlags()); 2182 MI.eraseFromParent(); 2183 return true; 2184 } 2185 2186 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2187 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2188 return MO.isReg() && 2189 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2190 }); 2191 } 2192 2193 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2194 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2195 return !MO.isReg() || 2196 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2197 }); 2198 } 2199 2200 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2201 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2202 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2203 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2204 } 2205 2206 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2207 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2208 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2209 MRI); 2210 } 2211 2212 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2213 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2214 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2215 MRI); 2216 } 2217 2218 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2219 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2220 if (auto MaybeCstCmp = 2221 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2222 OpIdx = MaybeCstCmp->Value ? 2 : 3; 2223 return true; 2224 } 2225 return false; 2226 } 2227 2228 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2229 MI.eraseFromParent(); 2230 return true; 2231 } 2232 2233 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2234 const MachineOperand &MOP2) { 2235 if (!MOP1.isReg() || !MOP2.isReg()) 2236 return false; 2237 MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); 2238 if (!I1) 2239 return false; 2240 MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); 2241 if (!I2) 2242 return false; 2243 2244 // Handle a case like this: 2245 // 2246 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2247 // 2248 // Even though %0 and %1 are produced by the same instruction they are not 2249 // the same values. 2250 if (I1 == I2) 2251 return MOP1.getReg() == MOP2.getReg(); 2252 2253 // If we have an instruction which loads or stores, we can't guarantee that 2254 // it is identical. 2255 // 2256 // For example, we may have 2257 // 2258 // %x1 = G_LOAD %addr (load N from @somewhere) 2259 // ... 2260 // call @foo 2261 // ... 2262 // %x2 = G_LOAD %addr (load N from @somewhere) 2263 // ... 2264 // %or = G_OR %x1, %x2 2265 // 2266 // It's possible that @foo will modify whatever lives at the address we're 2267 // loading from. To be safe, let's just assume that all loads and stores 2268 // are different (unless we have something which is guaranteed to not 2269 // change.) 2270 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2271 return false; 2272 2273 // Check for physical registers on the instructions first to avoid cases 2274 // like this: 2275 // 2276 // %a = COPY $physreg 2277 // ... 2278 // SOMETHING implicit-def $physreg 2279 // ... 2280 // %b = COPY $physreg 2281 // 2282 // These copies are not equivalent. 2283 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2284 return MO.isReg() && MO.getReg().isPhysical(); 2285 })) { 2286 // Check if we have a case like this: 2287 // 2288 // %a = COPY $physreg 2289 // %b = COPY %a 2290 // 2291 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2292 // From that, we know that they must have the same value, since they must 2293 // have come from the same COPY. 2294 return I1->isIdenticalTo(*I2); 2295 } 2296 2297 // We don't have any physical registers, so we don't necessarily need the 2298 // same vreg defs. 2299 // 2300 // On the off-chance that there's some target instruction feeding into the 2301 // instruction, let's use produceSameValue instead of isIdenticalTo. 2302 return Builder.getTII().produceSameValue(*I1, *I2, &MRI); 2303 } 2304 2305 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2306 if (!MOP.isReg()) 2307 return false; 2308 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2309 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2310 return ValAndVReg && ValAndVReg->Value == C; 2311 } 2312 2313 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2314 unsigned OpIdx) { 2315 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2316 Register OldReg = MI.getOperand(0).getReg(); 2317 Register Replacement = MI.getOperand(OpIdx).getReg(); 2318 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2319 MI.eraseFromParent(); 2320 replaceRegWith(MRI, OldReg, Replacement); 2321 return true; 2322 } 2323 2324 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2325 Register Replacement) { 2326 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2327 Register OldReg = MI.getOperand(0).getReg(); 2328 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2329 MI.eraseFromParent(); 2330 replaceRegWith(MRI, OldReg, Replacement); 2331 return true; 2332 } 2333 2334 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2335 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2336 // Match (cond ? x : x) 2337 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2338 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2339 MRI); 2340 } 2341 2342 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2343 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2344 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2345 MRI); 2346 } 2347 2348 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2349 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2350 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2351 MRI); 2352 } 2353 2354 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2355 MachineOperand &MO = MI.getOperand(OpIdx); 2356 return MO.isReg() && 2357 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2358 } 2359 2360 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2361 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2362 Builder.setInstr(MI); 2363 Builder.buildFConstant(MI.getOperand(0), C); 2364 MI.eraseFromParent(); 2365 return true; 2366 } 2367 2368 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2369 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2370 Builder.setInstr(MI); 2371 Builder.buildConstant(MI.getOperand(0), C); 2372 MI.eraseFromParent(); 2373 return true; 2374 } 2375 2376 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2377 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2378 Builder.setInstr(MI); 2379 Builder.buildUndef(MI.getOperand(0)); 2380 MI.eraseFromParent(); 2381 return true; 2382 } 2383 2384 bool CombinerHelper::matchSimplifyAddToSub( 2385 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2386 Register LHS = MI.getOperand(1).getReg(); 2387 Register RHS = MI.getOperand(2).getReg(); 2388 Register &NewLHS = std::get<0>(MatchInfo); 2389 Register &NewRHS = std::get<1>(MatchInfo); 2390 2391 // Helper lambda to check for opportunities for 2392 // ((0-A) + B) -> B - A 2393 // (A + (0-B)) -> A - B 2394 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2395 int64_t Cst; 2396 if (!mi_match(MaybeSub, MRI, m_GSub(m_ICst(Cst), m_Reg(NewRHS))) || 2397 Cst != 0) 2398 return false; 2399 NewLHS = MaybeNewLHS; 2400 return true; 2401 }; 2402 2403 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2404 } 2405 2406 bool CombinerHelper::applySimplifyAddToSub( 2407 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2408 Builder.setInstr(MI); 2409 Register SubLHS, SubRHS; 2410 std::tie(SubLHS, SubRHS) = MatchInfo; 2411 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2412 MI.eraseFromParent(); 2413 return true; 2414 } 2415 2416 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2417 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2418 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2419 // 2420 // Creates the new hand + logic instruction (but does not insert them.) 2421 // 2422 // On success, MatchInfo is populated with the new instructions. These are 2423 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2424 unsigned LogicOpcode = MI.getOpcode(); 2425 assert(LogicOpcode == TargetOpcode::G_AND || 2426 LogicOpcode == TargetOpcode::G_OR || 2427 LogicOpcode == TargetOpcode::G_XOR); 2428 MachineIRBuilder MIB(MI); 2429 Register Dst = MI.getOperand(0).getReg(); 2430 Register LHSReg = MI.getOperand(1).getReg(); 2431 Register RHSReg = MI.getOperand(2).getReg(); 2432 2433 // Don't recompute anything. 2434 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2435 return false; 2436 2437 // Make sure we have (hand x, ...), (hand y, ...) 2438 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2439 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2440 if (!LeftHandInst || !RightHandInst) 2441 return false; 2442 unsigned HandOpcode = LeftHandInst->getOpcode(); 2443 if (HandOpcode != RightHandInst->getOpcode()) 2444 return false; 2445 if (!LeftHandInst->getOperand(1).isReg() || 2446 !RightHandInst->getOperand(1).isReg()) 2447 return false; 2448 2449 // Make sure the types match up, and if we're doing this post-legalization, 2450 // we end up with legal types. 2451 Register X = LeftHandInst->getOperand(1).getReg(); 2452 Register Y = RightHandInst->getOperand(1).getReg(); 2453 LLT XTy = MRI.getType(X); 2454 LLT YTy = MRI.getType(Y); 2455 if (XTy != YTy) 2456 return false; 2457 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2458 return false; 2459 2460 // Optional extra source register. 2461 Register ExtraHandOpSrcReg; 2462 switch (HandOpcode) { 2463 default: 2464 return false; 2465 case TargetOpcode::G_ANYEXT: 2466 case TargetOpcode::G_SEXT: 2467 case TargetOpcode::G_ZEXT: { 2468 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2469 break; 2470 } 2471 case TargetOpcode::G_AND: 2472 case TargetOpcode::G_ASHR: 2473 case TargetOpcode::G_LSHR: 2474 case TargetOpcode::G_SHL: { 2475 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2476 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2477 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2478 return false; 2479 ExtraHandOpSrcReg = ZOp.getReg(); 2480 break; 2481 } 2482 } 2483 2484 // Record the steps to build the new instructions. 2485 // 2486 // Steps to build (logic x, y) 2487 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2488 OperandBuildSteps LogicBuildSteps = { 2489 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2490 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2491 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2492 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2493 2494 // Steps to build hand (logic x, y), ...z 2495 OperandBuildSteps HandBuildSteps = { 2496 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2497 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2498 if (ExtraHandOpSrcReg.isValid()) 2499 HandBuildSteps.push_back( 2500 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2501 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2502 2503 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2504 return true; 2505 } 2506 2507 bool CombinerHelper::applyBuildInstructionSteps( 2508 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2509 assert(MatchInfo.InstrsToBuild.size() && 2510 "Expected at least one instr to build?"); 2511 Builder.setInstr(MI); 2512 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2513 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2514 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2515 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2516 for (auto &OperandFn : InstrToBuild.OperandFns) 2517 OperandFn(Instr); 2518 } 2519 MI.eraseFromParent(); 2520 return true; 2521 } 2522 2523 bool CombinerHelper::matchAshrShlToSextInreg( 2524 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2525 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2526 int64_t ShlCst, AshrCst; 2527 Register Src; 2528 // FIXME: detect splat constant vectors. 2529 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2530 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2531 return false; 2532 if (ShlCst != AshrCst) 2533 return false; 2534 if (!isLegalOrBeforeLegalizer( 2535 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2536 return false; 2537 MatchInfo = std::make_tuple(Src, ShlCst); 2538 return true; 2539 } 2540 bool CombinerHelper::applyAshShlToSextInreg( 2541 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2542 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2543 Register Src; 2544 int64_t ShiftAmt; 2545 std::tie(Src, ShiftAmt) = MatchInfo; 2546 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2547 Builder.setInstrAndDebugLoc(MI); 2548 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2549 MI.eraseFromParent(); 2550 return true; 2551 } 2552 2553 bool CombinerHelper::matchAndWithTrivialMask(MachineInstr &MI, 2554 Register &Replacement) { 2555 // Given 2556 // 2557 // %mask:_(sN) = G_CONSTANT iN 000...0111...1 2558 // %x:_(sN) = G_SOMETHING 2559 // %y:_(sN) = G_AND %x, %mask 2560 // 2561 // Eliminate the G_AND when it is known that x & mask == x. 2562 // 2563 // Patterns like this can appear as a result of legalization. E.g. 2564 // 2565 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2566 // %one:_(s32) = G_CONSTANT i32 1 2567 // %and:_(s32) = G_AND %cmp, %one 2568 // 2569 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2570 assert(MI.getOpcode() == TargetOpcode::G_AND); 2571 if (!KB) 2572 return false; 2573 2574 // Replacement = %x, AndDst = %y. Check that we can replace AndDst with the 2575 // LHS of the G_AND. 2576 Replacement = MI.getOperand(1).getReg(); 2577 Register AndDst = MI.getOperand(0).getReg(); 2578 LLT DstTy = MRI.getType(AndDst); 2579 2580 // FIXME: This should be removed once GISelKnownBits supports vectors. 2581 if (DstTy.isVector()) 2582 return false; 2583 if (!canReplaceReg(AndDst, Replacement, MRI)) 2584 return false; 2585 2586 // Check that we have a constant on the RHS of the G_AND, which is of the form 2587 // 000...0111...1. 2588 int64_t Cst; 2589 if (!mi_match(MI.getOperand(2).getReg(), MRI, m_ICst(Cst))) 2590 return false; 2591 APInt Mask(DstTy.getSizeInBits(), Cst); 2592 if (!Mask.isMask()) 2593 return false; 2594 2595 // Now, let's check that x & Mask == x. If this is true, then x & ~Mask == 0. 2596 return KB->maskedValueIsZero(Replacement, ~Mask); 2597 } 2598 2599 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 2600 // If the input is already sign extended, just drop the extension. 2601 Register Src = MI.getOperand(1).getReg(); 2602 unsigned ExtBits = MI.getOperand(2).getImm(); 2603 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 2604 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 2605 } 2606 2607 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 2608 int64_t Cst, bool IsVector, bool IsFP) { 2609 // For i1, Cst will always be -1 regardless of boolean contents. 2610 return (ScalarSizeBits == 1 && Cst == -1) || 2611 isConstTrueVal(TLI, Cst, IsVector, IsFP); 2612 } 2613 2614 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 2615 SmallVectorImpl<Register> &RegsToNegate) { 2616 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2617 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2618 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 2619 Register XorSrc; 2620 Register CstReg; 2621 // We match xor(src, true) here. 2622 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2623 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 2624 return false; 2625 2626 if (!MRI.hasOneNonDBGUse(XorSrc)) 2627 return false; 2628 2629 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 2630 // and ORs. The suffix of RegsToNegate starting from index I is used a work 2631 // list of tree nodes to visit. 2632 RegsToNegate.push_back(XorSrc); 2633 // Remember whether the comparisons are all integer or all floating point. 2634 bool IsInt = false; 2635 bool IsFP = false; 2636 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 2637 Register Reg = RegsToNegate[I]; 2638 if (!MRI.hasOneNonDBGUse(Reg)) 2639 return false; 2640 MachineInstr *Def = MRI.getVRegDef(Reg); 2641 switch (Def->getOpcode()) { 2642 default: 2643 // Don't match if the tree contains anything other than ANDs, ORs and 2644 // comparisons. 2645 return false; 2646 case TargetOpcode::G_ICMP: 2647 if (IsFP) 2648 return false; 2649 IsInt = true; 2650 // When we apply the combine we will invert the predicate. 2651 break; 2652 case TargetOpcode::G_FCMP: 2653 if (IsInt) 2654 return false; 2655 IsFP = true; 2656 // When we apply the combine we will invert the predicate. 2657 break; 2658 case TargetOpcode::G_AND: 2659 case TargetOpcode::G_OR: 2660 // Implement De Morgan's laws: 2661 // ~(x & y) -> ~x | ~y 2662 // ~(x | y) -> ~x & ~y 2663 // When we apply the combine we will change the opcode and recursively 2664 // negate the operands. 2665 RegsToNegate.push_back(Def->getOperand(1).getReg()); 2666 RegsToNegate.push_back(Def->getOperand(2).getReg()); 2667 break; 2668 } 2669 } 2670 2671 // Now we know whether the comparisons are integer or floating point, check 2672 // the constant in the xor. 2673 int64_t Cst; 2674 if (Ty.isVector()) { 2675 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 2676 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 2677 if (!MaybeCst) 2678 return false; 2679 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 2680 return false; 2681 } else { 2682 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 2683 return false; 2684 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 2685 return false; 2686 } 2687 2688 return true; 2689 } 2690 2691 bool CombinerHelper::applyNotCmp(MachineInstr &MI, 2692 SmallVectorImpl<Register> &RegsToNegate) { 2693 for (Register Reg : RegsToNegate) { 2694 MachineInstr *Def = MRI.getVRegDef(Reg); 2695 Observer.changingInstr(*Def); 2696 // For each comparison, invert the opcode. For each AND and OR, change the 2697 // opcode. 2698 switch (Def->getOpcode()) { 2699 default: 2700 llvm_unreachable("Unexpected opcode"); 2701 case TargetOpcode::G_ICMP: 2702 case TargetOpcode::G_FCMP: { 2703 MachineOperand &PredOp = Def->getOperand(1); 2704 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 2705 (CmpInst::Predicate)PredOp.getPredicate()); 2706 PredOp.setPredicate(NewP); 2707 break; 2708 } 2709 case TargetOpcode::G_AND: 2710 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 2711 break; 2712 case TargetOpcode::G_OR: 2713 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2714 break; 2715 } 2716 Observer.changedInstr(*Def); 2717 } 2718 2719 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 2720 MI.eraseFromParent(); 2721 return true; 2722 } 2723 2724 bool CombinerHelper::tryCombine(MachineInstr &MI) { 2725 if (tryCombineCopy(MI)) 2726 return true; 2727 if (tryCombineExtendingLoads(MI)) 2728 return true; 2729 if (tryCombineIndexedLoadStore(MI)) 2730 return true; 2731 return false; 2732 } 2733