1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 16 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/LowLevelType.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetLowering.h" 28 #include "llvm/CodeGen/TargetOpcodes.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Target/TargetMachine.h" 31 32 #define DEBUG_TYPE "gi-combiner" 33 34 using namespace llvm; 35 using namespace MIPatternMatch; 36 37 // Option to allow testing of the combiner while no targets know about indexed 38 // addressing. 39 static cl::opt<bool> 40 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 41 cl::desc("Force all indexed operations to be " 42 "legal for the GlobalISel combiner")); 43 44 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 45 MachineIRBuilder &B, GISelKnownBits *KB, 46 MachineDominatorTree *MDT, 47 const LegalizerInfo *LI) 48 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 49 KB(KB), MDT(MDT), LI(LI) { 50 (void)this->KB; 51 } 52 53 const TargetLowering &CombinerHelper::getTargetLowering() const { 54 return *Builder.getMF().getSubtarget().getTargetLowering(); 55 } 56 57 /// \returns The little endian in-memory byte position of byte \p I in a 58 /// \p ByteWidth bytes wide type. 59 /// 60 /// E.g. Given a 4-byte type x, x[0] -> byte 0 61 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 62 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 63 return I; 64 } 65 66 /// \returns The big endian in-memory byte position of byte \p I in a 67 /// \p ByteWidth bytes wide type. 68 /// 69 /// E.g. Given a 4-byte type x, x[0] -> byte 3 70 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 71 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 72 return ByteWidth - I - 1; 73 } 74 75 /// Given a map from byte offsets in memory to indices in a load/store, 76 /// determine if that map corresponds to a little or big endian byte pattern. 77 /// 78 /// \param MemOffset2Idx maps memory offsets to address offsets. 79 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 80 /// 81 /// \returns true if the map corresponds to a big endian byte pattern, false 82 /// if it corresponds to a little endian byte pattern, and None otherwise. 83 /// 84 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 85 /// are as follows: 86 /// 87 /// AddrOffset Little endian Big endian 88 /// 0 0 3 89 /// 1 1 2 90 /// 2 2 1 91 /// 3 3 0 92 static Optional<bool> 93 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 94 int64_t LowestIdx) { 95 // Need at least two byte positions to decide on endianness. 96 unsigned Width = MemOffset2Idx.size(); 97 if (Width < 2) 98 return None; 99 bool BigEndian = true, LittleEndian = true; 100 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 101 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 102 if (MemOffsetAndIdx == MemOffset2Idx.end()) 103 return None; 104 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 105 assert(Idx >= 0 && "Expected non-negative byte offset?"); 106 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 107 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 108 if (!BigEndian && !LittleEndian) 109 return None; 110 } 111 112 assert((BigEndian != LittleEndian) && 113 "Pattern cannot be both big and little endian!"); 114 return BigEndian; 115 } 116 117 bool CombinerHelper::isLegalOrBeforeLegalizer( 118 const LegalityQuery &Query) const { 119 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 120 } 121 122 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 123 Register ToReg) const { 124 Observer.changingAllUsesOfReg(MRI, FromReg); 125 126 if (MRI.constrainRegAttrs(ToReg, FromReg)) 127 MRI.replaceRegWith(FromReg, ToReg); 128 else 129 Builder.buildCopy(ToReg, FromReg); 130 131 Observer.finishedChangingAllUsesOfReg(); 132 } 133 134 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 135 MachineOperand &FromRegOp, 136 Register ToReg) const { 137 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 138 Observer.changingInstr(*FromRegOp.getParent()); 139 140 FromRegOp.setReg(ToReg); 141 142 Observer.changedInstr(*FromRegOp.getParent()); 143 } 144 145 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 146 if (matchCombineCopy(MI)) { 147 applyCombineCopy(MI); 148 return true; 149 } 150 return false; 151 } 152 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 153 if (MI.getOpcode() != TargetOpcode::COPY) 154 return false; 155 Register DstReg = MI.getOperand(0).getReg(); 156 Register SrcReg = MI.getOperand(1).getReg(); 157 return canReplaceReg(DstReg, SrcReg, MRI); 158 } 159 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 160 Register DstReg = MI.getOperand(0).getReg(); 161 Register SrcReg = MI.getOperand(1).getReg(); 162 MI.eraseFromParent(); 163 replaceRegWith(MRI, DstReg, SrcReg); 164 } 165 166 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 167 bool IsUndef = false; 168 SmallVector<Register, 4> Ops; 169 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 170 applyCombineConcatVectors(MI, IsUndef, Ops); 171 return true; 172 } 173 return false; 174 } 175 176 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 177 SmallVectorImpl<Register> &Ops) { 178 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 179 "Invalid instruction"); 180 IsUndef = true; 181 MachineInstr *Undef = nullptr; 182 183 // Walk over all the operands of concat vectors and check if they are 184 // build_vector themselves or undef. 185 // Then collect their operands in Ops. 186 for (const MachineOperand &MO : MI.uses()) { 187 Register Reg = MO.getReg(); 188 MachineInstr *Def = MRI.getVRegDef(Reg); 189 assert(Def && "Operand not defined"); 190 switch (Def->getOpcode()) { 191 case TargetOpcode::G_BUILD_VECTOR: 192 IsUndef = false; 193 // Remember the operands of the build_vector to fold 194 // them into the yet-to-build flattened concat vectors. 195 for (const MachineOperand &BuildVecMO : Def->uses()) 196 Ops.push_back(BuildVecMO.getReg()); 197 break; 198 case TargetOpcode::G_IMPLICIT_DEF: { 199 LLT OpType = MRI.getType(Reg); 200 // Keep one undef value for all the undef operands. 201 if (!Undef) { 202 Builder.setInsertPt(*MI.getParent(), MI); 203 Undef = Builder.buildUndef(OpType.getScalarType()); 204 } 205 assert(MRI.getType(Undef->getOperand(0).getReg()) == 206 OpType.getScalarType() && 207 "All undefs should have the same type"); 208 // Break the undef vector in as many scalar elements as needed 209 // for the flattening. 210 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 211 EltIdx != EltEnd; ++EltIdx) 212 Ops.push_back(Undef->getOperand(0).getReg()); 213 break; 214 } 215 default: 216 return false; 217 } 218 } 219 return true; 220 } 221 void CombinerHelper::applyCombineConcatVectors( 222 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 223 // We determined that the concat_vectors can be flatten. 224 // Generate the flattened build_vector. 225 Register DstReg = MI.getOperand(0).getReg(); 226 Builder.setInsertPt(*MI.getParent(), MI); 227 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 228 229 // Note: IsUndef is sort of redundant. We could have determine it by 230 // checking that at all Ops are undef. Alternatively, we could have 231 // generate a build_vector of undefs and rely on another combine to 232 // clean that up. For now, given we already gather this information 233 // in tryCombineConcatVectors, just save compile time and issue the 234 // right thing. 235 if (IsUndef) 236 Builder.buildUndef(NewDstReg); 237 else 238 Builder.buildBuildVector(NewDstReg, Ops); 239 MI.eraseFromParent(); 240 replaceRegWith(MRI, DstReg, NewDstReg); 241 } 242 243 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 244 SmallVector<Register, 4> Ops; 245 if (matchCombineShuffleVector(MI, Ops)) { 246 applyCombineShuffleVector(MI, Ops); 247 return true; 248 } 249 return false; 250 } 251 252 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 253 SmallVectorImpl<Register> &Ops) { 254 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 255 "Invalid instruction kind"); 256 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 257 Register Src1 = MI.getOperand(1).getReg(); 258 LLT SrcType = MRI.getType(Src1); 259 // As bizarre as it may look, shuffle vector can actually produce 260 // scalar! This is because at the IR level a <1 x ty> shuffle 261 // vector is perfectly valid. 262 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 263 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 264 265 // If the resulting vector is smaller than the size of the source 266 // vectors being concatenated, we won't be able to replace the 267 // shuffle vector into a concat_vectors. 268 // 269 // Note: We may still be able to produce a concat_vectors fed by 270 // extract_vector_elt and so on. It is less clear that would 271 // be better though, so don't bother for now. 272 // 273 // If the destination is a scalar, the size of the sources doesn't 274 // matter. we will lower the shuffle to a plain copy. This will 275 // work only if the source and destination have the same size. But 276 // that's covered by the next condition. 277 // 278 // TODO: If the size between the source and destination don't match 279 // we could still emit an extract vector element in that case. 280 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 281 return false; 282 283 // Check that the shuffle mask can be broken evenly between the 284 // different sources. 285 if (DstNumElts % SrcNumElts != 0) 286 return false; 287 288 // Mask length is a multiple of the source vector length. 289 // Check if the shuffle is some kind of concatenation of the input 290 // vectors. 291 unsigned NumConcat = DstNumElts / SrcNumElts; 292 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 293 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 294 for (unsigned i = 0; i != DstNumElts; ++i) { 295 int Idx = Mask[i]; 296 // Undef value. 297 if (Idx < 0) 298 continue; 299 // Ensure the indices in each SrcType sized piece are sequential and that 300 // the same source is used for the whole piece. 301 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 302 (ConcatSrcs[i / SrcNumElts] >= 0 && 303 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 304 return false; 305 // Remember which source this index came from. 306 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 307 } 308 309 // The shuffle is concatenating multiple vectors together. 310 // Collect the different operands for that. 311 Register UndefReg; 312 Register Src2 = MI.getOperand(2).getReg(); 313 for (auto Src : ConcatSrcs) { 314 if (Src < 0) { 315 if (!UndefReg) { 316 Builder.setInsertPt(*MI.getParent(), MI); 317 UndefReg = Builder.buildUndef(SrcType).getReg(0); 318 } 319 Ops.push_back(UndefReg); 320 } else if (Src == 0) 321 Ops.push_back(Src1); 322 else 323 Ops.push_back(Src2); 324 } 325 return true; 326 } 327 328 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 329 const ArrayRef<Register> Ops) { 330 Register DstReg = MI.getOperand(0).getReg(); 331 Builder.setInsertPt(*MI.getParent(), MI); 332 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 333 334 if (Ops.size() == 1) 335 Builder.buildCopy(NewDstReg, Ops[0]); 336 else 337 Builder.buildMerge(NewDstReg, Ops); 338 339 MI.eraseFromParent(); 340 replaceRegWith(MRI, DstReg, NewDstReg); 341 } 342 343 namespace { 344 345 /// Select a preference between two uses. CurrentUse is the current preference 346 /// while *ForCandidate is attributes of the candidate under consideration. 347 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 348 const LLT TyForCandidate, 349 unsigned OpcodeForCandidate, 350 MachineInstr *MIForCandidate) { 351 if (!CurrentUse.Ty.isValid()) { 352 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 353 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 354 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 355 return CurrentUse; 356 } 357 358 // We permit the extend to hoist through basic blocks but this is only 359 // sensible if the target has extending loads. If you end up lowering back 360 // into a load and extend during the legalizer then the end result is 361 // hoisting the extend up to the load. 362 363 // Prefer defined extensions to undefined extensions as these are more 364 // likely to reduce the number of instructions. 365 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 366 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 367 return CurrentUse; 368 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 369 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 370 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 371 372 // Prefer sign extensions to zero extensions as sign-extensions tend to be 373 // more expensive. 374 if (CurrentUse.Ty == TyForCandidate) { 375 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 376 OpcodeForCandidate == TargetOpcode::G_ZEXT) 377 return CurrentUse; 378 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 379 OpcodeForCandidate == TargetOpcode::G_SEXT) 380 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 381 } 382 383 // This is potentially target specific. We've chosen the largest type 384 // because G_TRUNC is usually free. One potential catch with this is that 385 // some targets have a reduced number of larger registers than smaller 386 // registers and this choice potentially increases the live-range for the 387 // larger value. 388 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 389 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 390 } 391 return CurrentUse; 392 } 393 394 /// Find a suitable place to insert some instructions and insert them. This 395 /// function accounts for special cases like inserting before a PHI node. 396 /// The current strategy for inserting before PHI's is to duplicate the 397 /// instructions for each predecessor. However, while that's ok for G_TRUNC 398 /// on most targets since it generally requires no code, other targets/cases may 399 /// want to try harder to find a dominating block. 400 static void InsertInsnsWithoutSideEffectsBeforeUse( 401 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 402 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 403 MachineOperand &UseMO)> 404 Inserter) { 405 MachineInstr &UseMI = *UseMO.getParent(); 406 407 MachineBasicBlock *InsertBB = UseMI.getParent(); 408 409 // If the use is a PHI then we want the predecessor block instead. 410 if (UseMI.isPHI()) { 411 MachineOperand *PredBB = std::next(&UseMO); 412 InsertBB = PredBB->getMBB(); 413 } 414 415 // If the block is the same block as the def then we want to insert just after 416 // the def instead of at the start of the block. 417 if (InsertBB == DefMI.getParent()) { 418 MachineBasicBlock::iterator InsertPt = &DefMI; 419 Inserter(InsertBB, std::next(InsertPt), UseMO); 420 return; 421 } 422 423 // Otherwise we want the start of the BB 424 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 425 } 426 } // end anonymous namespace 427 428 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 429 PreferredTuple Preferred; 430 if (matchCombineExtendingLoads(MI, Preferred)) { 431 applyCombineExtendingLoads(MI, Preferred); 432 return true; 433 } 434 return false; 435 } 436 437 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 438 PreferredTuple &Preferred) { 439 // We match the loads and follow the uses to the extend instead of matching 440 // the extends and following the def to the load. This is because the load 441 // must remain in the same position for correctness (unless we also add code 442 // to find a safe place to sink it) whereas the extend is freely movable. 443 // It also prevents us from duplicating the load for the volatile case or just 444 // for performance. 445 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 446 if (!LoadMI) 447 return false; 448 449 Register LoadReg = LoadMI->getDstReg(); 450 451 LLT LoadValueTy = MRI.getType(LoadReg); 452 if (!LoadValueTy.isScalar()) 453 return false; 454 455 // Most architectures are going to legalize <s8 loads into at least a 1 byte 456 // load, and the MMOs can only describe memory accesses in multiples of bytes. 457 // If we try to perform extload combining on those, we can end up with 458 // %a(s8) = extload %ptr (load 1 byte from %ptr) 459 // ... which is an illegal extload instruction. 460 if (LoadValueTy.getSizeInBits() < 8) 461 return false; 462 463 // For non power-of-2 types, they will very likely be legalized into multiple 464 // loads. Don't bother trying to match them into extending loads. 465 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 466 return false; 467 468 // Find the preferred type aside from the any-extends (unless it's the only 469 // one) and non-extending ops. We'll emit an extending load to that type and 470 // and emit a variant of (extend (trunc X)) for the others according to the 471 // relative type sizes. At the same time, pick an extend to use based on the 472 // extend involved in the chosen type. 473 unsigned PreferredOpcode = 474 isa<GLoad>(&MI) 475 ? TargetOpcode::G_ANYEXT 476 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 477 Preferred = {LLT(), PreferredOpcode, nullptr}; 478 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 479 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 480 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 481 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 482 const auto &MMO = LoadMI->getMMO(); 483 // For atomics, only form anyextending loads. 484 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 485 continue; 486 // Check for legality. 487 if (LI) { 488 LegalityQuery::MemDesc MMDesc; 489 MMDesc.MemoryTy = MMO.getMemoryType(); 490 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 491 MMDesc.Ordering = MMO.getSuccessOrdering(); 492 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 493 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 494 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 495 .Action != LegalizeActions::Legal) 496 continue; 497 } 498 Preferred = ChoosePreferredUse(Preferred, 499 MRI.getType(UseMI.getOperand(0).getReg()), 500 UseMI.getOpcode(), &UseMI); 501 } 502 } 503 504 // There were no extends 505 if (!Preferred.MI) 506 return false; 507 // It should be impossible to chose an extend without selecting a different 508 // type since by definition the result of an extend is larger. 509 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 510 511 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 512 return true; 513 } 514 515 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 516 PreferredTuple &Preferred) { 517 // Rewrite the load to the chosen extending load. 518 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 519 520 // Inserter to insert a truncate back to the original type at a given point 521 // with some basic CSE to limit truncate duplication to one per BB. 522 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 523 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 524 MachineBasicBlock::iterator InsertBefore, 525 MachineOperand &UseMO) { 526 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 527 if (PreviouslyEmitted) { 528 Observer.changingInstr(*UseMO.getParent()); 529 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 530 Observer.changedInstr(*UseMO.getParent()); 531 return; 532 } 533 534 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 535 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 536 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 537 EmittedInsns[InsertIntoBB] = NewMI; 538 replaceRegOpWith(MRI, UseMO, NewDstReg); 539 }; 540 541 Observer.changingInstr(MI); 542 MI.setDesc( 543 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 544 ? TargetOpcode::G_SEXTLOAD 545 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 546 ? TargetOpcode::G_ZEXTLOAD 547 : TargetOpcode::G_LOAD)); 548 549 // Rewrite all the uses to fix up the types. 550 auto &LoadValue = MI.getOperand(0); 551 SmallVector<MachineOperand *, 4> Uses; 552 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 553 Uses.push_back(&UseMO); 554 555 for (auto *UseMO : Uses) { 556 MachineInstr *UseMI = UseMO->getParent(); 557 558 // If the extend is compatible with the preferred extend then we should fix 559 // up the type and extend so that it uses the preferred use. 560 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 561 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 562 Register UseDstReg = UseMI->getOperand(0).getReg(); 563 MachineOperand &UseSrcMO = UseMI->getOperand(1); 564 const LLT UseDstTy = MRI.getType(UseDstReg); 565 if (UseDstReg != ChosenDstReg) { 566 if (Preferred.Ty == UseDstTy) { 567 // If the use has the same type as the preferred use, then merge 568 // the vregs and erase the extend. For example: 569 // %1:_(s8) = G_LOAD ... 570 // %2:_(s32) = G_SEXT %1(s8) 571 // %3:_(s32) = G_ANYEXT %1(s8) 572 // ... = ... %3(s32) 573 // rewrites to: 574 // %2:_(s32) = G_SEXTLOAD ... 575 // ... = ... %2(s32) 576 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 577 Observer.erasingInstr(*UseMO->getParent()); 578 UseMO->getParent()->eraseFromParent(); 579 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 580 // If the preferred size is smaller, then keep the extend but extend 581 // from the result of the extending load. For example: 582 // %1:_(s8) = G_LOAD ... 583 // %2:_(s32) = G_SEXT %1(s8) 584 // %3:_(s64) = G_ANYEXT %1(s8) 585 // ... = ... %3(s64) 586 /// rewrites to: 587 // %2:_(s32) = G_SEXTLOAD ... 588 // %3:_(s64) = G_ANYEXT %2:_(s32) 589 // ... = ... %3(s64) 590 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 591 } else { 592 // If the preferred size is large, then insert a truncate. For 593 // example: 594 // %1:_(s8) = G_LOAD ... 595 // %2:_(s64) = G_SEXT %1(s8) 596 // %3:_(s32) = G_ZEXT %1(s8) 597 // ... = ... %3(s32) 598 /// rewrites to: 599 // %2:_(s64) = G_SEXTLOAD ... 600 // %4:_(s8) = G_TRUNC %2:_(s32) 601 // %3:_(s64) = G_ZEXT %2:_(s8) 602 // ... = ... %3(s64) 603 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 604 InsertTruncAt); 605 } 606 continue; 607 } 608 // The use is (one of) the uses of the preferred use we chose earlier. 609 // We're going to update the load to def this value later so just erase 610 // the old extend. 611 Observer.erasingInstr(*UseMO->getParent()); 612 UseMO->getParent()->eraseFromParent(); 613 continue; 614 } 615 616 // The use isn't an extend. Truncate back to the type we originally loaded. 617 // This is free on many targets. 618 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 619 } 620 621 MI.getOperand(0).setReg(ChosenDstReg); 622 Observer.changedInstr(MI); 623 } 624 625 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 626 const MachineInstr &UseMI) { 627 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 628 "shouldn't consider debug uses"); 629 assert(DefMI.getParent() == UseMI.getParent()); 630 if (&DefMI == &UseMI) 631 return false; 632 const MachineBasicBlock &MBB = *DefMI.getParent(); 633 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 634 return &MI == &DefMI || &MI == &UseMI; 635 }); 636 if (DefOrUse == MBB.end()) 637 llvm_unreachable("Block must contain both DefMI and UseMI!"); 638 return &*DefOrUse == &DefMI; 639 } 640 641 bool CombinerHelper::dominates(const MachineInstr &DefMI, 642 const MachineInstr &UseMI) { 643 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 644 "shouldn't consider debug uses"); 645 if (MDT) 646 return MDT->dominates(&DefMI, &UseMI); 647 else if (DefMI.getParent() != UseMI.getParent()) 648 return false; 649 650 return isPredecessor(DefMI, UseMI); 651 } 652 653 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 654 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 655 Register SrcReg = MI.getOperand(1).getReg(); 656 Register LoadUser = SrcReg; 657 658 if (MRI.getType(SrcReg).isVector()) 659 return false; 660 661 Register TruncSrc; 662 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 663 LoadUser = TruncSrc; 664 665 uint64_t SizeInBits = MI.getOperand(2).getImm(); 666 // If the source is a G_SEXTLOAD from the same bit width, then we don't 667 // need any extend at all, just a truncate. 668 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 669 // If truncating more than the original extended value, abort. 670 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 671 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 672 return false; 673 if (LoadSizeBits == SizeInBits) 674 return true; 675 } 676 return false; 677 } 678 679 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 680 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 681 Builder.setInstrAndDebugLoc(MI); 682 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 683 MI.eraseFromParent(); 684 } 685 686 bool CombinerHelper::matchSextInRegOfLoad( 687 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 688 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 689 690 // Only supports scalars for now. 691 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 692 return false; 693 694 Register SrcReg = MI.getOperand(1).getReg(); 695 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 696 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || 697 !LoadDef->isSimple()) 698 return false; 699 700 // If the sign extend extends from a narrower width than the load's width, 701 // then we can narrow the load width when we combine to a G_SEXTLOAD. 702 // Avoid widening the load at all. 703 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), 704 LoadDef->getMemSizeInBits()); 705 706 // Don't generate G_SEXTLOADs with a < 1 byte width. 707 if (NewSizeBits < 8) 708 return false; 709 // Don't bother creating a non-power-2 sextload, it will likely be broken up 710 // anyway for most targets. 711 if (!isPowerOf2_32(NewSizeBits)) 712 return false; 713 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 714 return true; 715 } 716 717 void CombinerHelper::applySextInRegOfLoad( 718 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 719 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 720 Register LoadReg; 721 unsigned ScalarSizeBits; 722 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 723 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 724 725 // If we have the following: 726 // %ld = G_LOAD %ptr, (load 2) 727 // %ext = G_SEXT_INREG %ld, 8 728 // ==> 729 // %ld = G_SEXTLOAD %ptr (load 1) 730 731 auto &MMO = LoadDef->getMMO(); 732 Builder.setInstrAndDebugLoc(*LoadDef); 733 auto &MF = Builder.getMF(); 734 auto PtrInfo = MMO.getPointerInfo(); 735 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 736 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 737 LoadDef->getPointerReg(), *NewMMO); 738 MI.eraseFromParent(); 739 } 740 741 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 742 Register &Base, Register &Offset) { 743 auto &MF = *MI.getParent()->getParent(); 744 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 745 746 #ifndef NDEBUG 747 unsigned Opcode = MI.getOpcode(); 748 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 749 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 750 #endif 751 752 Base = MI.getOperand(1).getReg(); 753 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 754 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 755 return false; 756 757 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 758 // FIXME: The following use traversal needs a bail out for patholigical cases. 759 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 760 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 761 continue; 762 763 Offset = Use.getOperand(2).getReg(); 764 if (!ForceLegalIndexing && 765 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 766 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 767 << Use); 768 continue; 769 } 770 771 // Make sure the offset calculation is before the potentially indexed op. 772 // FIXME: we really care about dependency here. The offset calculation might 773 // be movable. 774 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 775 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 776 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 777 << Use); 778 continue; 779 } 780 781 // FIXME: check whether all uses of Base are load/store with foldable 782 // addressing modes. If so, using the normal addr-modes is better than 783 // forming an indexed one. 784 785 bool MemOpDominatesAddrUses = true; 786 for (auto &PtrAddUse : 787 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 788 if (!dominates(MI, PtrAddUse)) { 789 MemOpDominatesAddrUses = false; 790 break; 791 } 792 } 793 794 if (!MemOpDominatesAddrUses) { 795 LLVM_DEBUG( 796 dbgs() << " Ignoring candidate as memop does not dominate uses: " 797 << Use); 798 continue; 799 } 800 801 LLVM_DEBUG(dbgs() << " Found match: " << Use); 802 Addr = Use.getOperand(0).getReg(); 803 return true; 804 } 805 806 return false; 807 } 808 809 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 810 Register &Base, Register &Offset) { 811 auto &MF = *MI.getParent()->getParent(); 812 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 813 814 #ifndef NDEBUG 815 unsigned Opcode = MI.getOpcode(); 816 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 817 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 818 #endif 819 820 Addr = MI.getOperand(1).getReg(); 821 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 822 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 823 return false; 824 825 Base = AddrDef->getOperand(1).getReg(); 826 Offset = AddrDef->getOperand(2).getReg(); 827 828 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 829 830 if (!ForceLegalIndexing && 831 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 832 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 833 return false; 834 } 835 836 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 837 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 838 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 839 return false; 840 } 841 842 if (MI.getOpcode() == TargetOpcode::G_STORE) { 843 // Would require a copy. 844 if (Base == MI.getOperand(0).getReg()) { 845 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 846 return false; 847 } 848 849 // We're expecting one use of Addr in MI, but it could also be the 850 // value stored, which isn't actually dominated by the instruction. 851 if (MI.getOperand(0).getReg() == Addr) { 852 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 853 return false; 854 } 855 } 856 857 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 858 // That might allow us to end base's liveness here by adjusting the constant. 859 860 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 861 if (!dominates(MI, UseMI)) { 862 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 863 return false; 864 } 865 } 866 867 return true; 868 } 869 870 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 871 IndexedLoadStoreMatchInfo MatchInfo; 872 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 873 applyCombineIndexedLoadStore(MI, MatchInfo); 874 return true; 875 } 876 return false; 877 } 878 879 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 880 unsigned Opcode = MI.getOpcode(); 881 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 882 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 883 return false; 884 885 // For now, no targets actually support these opcodes so don't waste time 886 // running these unless we're forced to for testing. 887 if (!ForceLegalIndexing) 888 return false; 889 890 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 891 MatchInfo.Offset); 892 if (!MatchInfo.IsPre && 893 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 894 MatchInfo.Offset)) 895 return false; 896 897 return true; 898 } 899 900 void CombinerHelper::applyCombineIndexedLoadStore( 901 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 902 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 903 MachineIRBuilder MIRBuilder(MI); 904 unsigned Opcode = MI.getOpcode(); 905 bool IsStore = Opcode == TargetOpcode::G_STORE; 906 unsigned NewOpcode; 907 switch (Opcode) { 908 case TargetOpcode::G_LOAD: 909 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 910 break; 911 case TargetOpcode::G_SEXTLOAD: 912 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 913 break; 914 case TargetOpcode::G_ZEXTLOAD: 915 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 916 break; 917 case TargetOpcode::G_STORE: 918 NewOpcode = TargetOpcode::G_INDEXED_STORE; 919 break; 920 default: 921 llvm_unreachable("Unknown load/store opcode"); 922 } 923 924 auto MIB = MIRBuilder.buildInstr(NewOpcode); 925 if (IsStore) { 926 MIB.addDef(MatchInfo.Addr); 927 MIB.addUse(MI.getOperand(0).getReg()); 928 } else { 929 MIB.addDef(MI.getOperand(0).getReg()); 930 MIB.addDef(MatchInfo.Addr); 931 } 932 933 MIB.addUse(MatchInfo.Base); 934 MIB.addUse(MatchInfo.Offset); 935 MIB.addImm(MatchInfo.IsPre); 936 MI.eraseFromParent(); 937 AddrDef.eraseFromParent(); 938 939 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 940 } 941 942 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 943 MachineInstr *&OtherMI) { 944 unsigned Opcode = MI.getOpcode(); 945 bool IsDiv, IsSigned; 946 947 switch (Opcode) { 948 default: 949 llvm_unreachable("Unexpected opcode!"); 950 case TargetOpcode::G_SDIV: 951 case TargetOpcode::G_UDIV: { 952 IsDiv = true; 953 IsSigned = Opcode == TargetOpcode::G_SDIV; 954 break; 955 } 956 case TargetOpcode::G_SREM: 957 case TargetOpcode::G_UREM: { 958 IsDiv = false; 959 IsSigned = Opcode == TargetOpcode::G_SREM; 960 break; 961 } 962 } 963 964 Register Src1 = MI.getOperand(1).getReg(); 965 unsigned DivOpcode, RemOpcode, DivremOpcode; 966 if (IsSigned) { 967 DivOpcode = TargetOpcode::G_SDIV; 968 RemOpcode = TargetOpcode::G_SREM; 969 DivremOpcode = TargetOpcode::G_SDIVREM; 970 } else { 971 DivOpcode = TargetOpcode::G_UDIV; 972 RemOpcode = TargetOpcode::G_UREM; 973 DivremOpcode = TargetOpcode::G_UDIVREM; 974 } 975 976 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 977 return false; 978 979 // Combine: 980 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 981 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 982 // into: 983 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 984 985 // Combine: 986 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 987 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 988 // into: 989 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 990 991 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 992 if (MI.getParent() == UseMI.getParent() && 993 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 994 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 995 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 996 OtherMI = &UseMI; 997 return true; 998 } 999 } 1000 1001 return false; 1002 } 1003 1004 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1005 MachineInstr *&OtherMI) { 1006 unsigned Opcode = MI.getOpcode(); 1007 assert(OtherMI && "OtherMI shouldn't be empty."); 1008 1009 Register DestDivReg, DestRemReg; 1010 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1011 DestDivReg = MI.getOperand(0).getReg(); 1012 DestRemReg = OtherMI->getOperand(0).getReg(); 1013 } else { 1014 DestDivReg = OtherMI->getOperand(0).getReg(); 1015 DestRemReg = MI.getOperand(0).getReg(); 1016 } 1017 1018 bool IsSigned = 1019 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1020 1021 // Check which instruction is first in the block so we don't break def-use 1022 // deps by "moving" the instruction incorrectly. 1023 if (dominates(MI, *OtherMI)) 1024 Builder.setInstrAndDebugLoc(MI); 1025 else 1026 Builder.setInstrAndDebugLoc(*OtherMI); 1027 1028 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1029 : TargetOpcode::G_UDIVREM, 1030 {DestDivReg, DestRemReg}, 1031 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1032 MI.eraseFromParent(); 1033 OtherMI->eraseFromParent(); 1034 } 1035 1036 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1037 MachineInstr *&BrCond) { 1038 assert(MI.getOpcode() == TargetOpcode::G_BR); 1039 1040 // Try to match the following: 1041 // bb1: 1042 // G_BRCOND %c1, %bb2 1043 // G_BR %bb3 1044 // bb2: 1045 // ... 1046 // bb3: 1047 1048 // The above pattern does not have a fall through to the successor bb2, always 1049 // resulting in a branch no matter which path is taken. Here we try to find 1050 // and replace that pattern with conditional branch to bb3 and otherwise 1051 // fallthrough to bb2. This is generally better for branch predictors. 1052 1053 MachineBasicBlock *MBB = MI.getParent(); 1054 MachineBasicBlock::iterator BrIt(MI); 1055 if (BrIt == MBB->begin()) 1056 return false; 1057 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1058 1059 BrCond = &*std::prev(BrIt); 1060 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1061 return false; 1062 1063 // Check that the next block is the conditional branch target. Also make sure 1064 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1065 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1066 return BrCondTarget != MI.getOperand(0).getMBB() && 1067 MBB->isLayoutSuccessor(BrCondTarget); 1068 } 1069 1070 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1071 MachineInstr *&BrCond) { 1072 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1073 Builder.setInstrAndDebugLoc(*BrCond); 1074 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1075 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1076 // this to i1 only since we might not know for sure what kind of 1077 // compare generated the condition value. 1078 auto True = Builder.buildConstant( 1079 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1080 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1081 1082 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1083 Observer.changingInstr(MI); 1084 MI.getOperand(0).setMBB(FallthroughBB); 1085 Observer.changedInstr(MI); 1086 1087 // Change the conditional branch to use the inverted condition and 1088 // new target block. 1089 Observer.changingInstr(*BrCond); 1090 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1091 BrCond->getOperand(1).setMBB(BrTarget); 1092 Observer.changedInstr(*BrCond); 1093 } 1094 1095 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 1096 // On Darwin, -Os means optimize for size without hurting performance, so 1097 // only really optimize for size when -Oz (MinSize) is used. 1098 if (MF.getTarget().getTargetTriple().isOSDarwin()) 1099 return MF.getFunction().hasMinSize(); 1100 return MF.getFunction().hasOptSize(); 1101 } 1102 1103 // Returns a list of types to use for memory op lowering in MemOps. A partial 1104 // port of findOptimalMemOpLowering in TargetLowering. 1105 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 1106 unsigned Limit, const MemOp &Op, 1107 unsigned DstAS, unsigned SrcAS, 1108 const AttributeList &FuncAttributes, 1109 const TargetLowering &TLI) { 1110 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 1111 return false; 1112 1113 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 1114 1115 if (Ty == LLT()) { 1116 // Use the largest scalar type whose alignment constraints are satisfied. 1117 // We only need to check DstAlign here as SrcAlign is always greater or 1118 // equal to DstAlign (or zero). 1119 Ty = LLT::scalar(64); 1120 if (Op.isFixedDstAlign()) 1121 while (Op.getDstAlign() < Ty.getSizeInBytes() && 1122 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 1123 Ty = LLT::scalar(Ty.getSizeInBytes()); 1124 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 1125 // FIXME: check for the largest legal type we can load/store to. 1126 } 1127 1128 unsigned NumMemOps = 0; 1129 uint64_t Size = Op.size(); 1130 while (Size) { 1131 unsigned TySize = Ty.getSizeInBytes(); 1132 while (TySize > Size) { 1133 // For now, only use non-vector load / store's for the left-over pieces. 1134 LLT NewTy = Ty; 1135 // FIXME: check for mem op safety and legality of the types. Not all of 1136 // SDAGisms map cleanly to GISel concepts. 1137 if (NewTy.isVector()) 1138 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 1139 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 1140 unsigned NewTySize = NewTy.getSizeInBytes(); 1141 assert(NewTySize > 0 && "Could not find appropriate type"); 1142 1143 // If the new LLT cannot cover all of the remaining bits, then consider 1144 // issuing a (or a pair of) unaligned and overlapping load / store. 1145 bool Fast; 1146 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 1147 MVT VT = getMVTForLLT(Ty); 1148 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 1149 TLI.allowsMisalignedMemoryAccesses( 1150 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 1151 MachineMemOperand::MONone, &Fast) && 1152 Fast) 1153 TySize = Size; 1154 else { 1155 Ty = NewTy; 1156 TySize = NewTySize; 1157 } 1158 } 1159 1160 if (++NumMemOps > Limit) 1161 return false; 1162 1163 MemOps.push_back(Ty); 1164 Size -= TySize; 1165 } 1166 1167 return true; 1168 } 1169 1170 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1171 if (Ty.isVector()) 1172 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1173 Ty.getNumElements()); 1174 return IntegerType::get(C, Ty.getSizeInBits()); 1175 } 1176 1177 // Get a vectorized representation of the memset value operand, GISel edition. 1178 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 1179 MachineRegisterInfo &MRI = *MIB.getMRI(); 1180 unsigned NumBits = Ty.getScalarSizeInBits(); 1181 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1182 if (!Ty.isVector() && ValVRegAndVal) { 1183 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 1184 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 1185 return MIB.buildConstant(Ty, SplatVal).getReg(0); 1186 } 1187 1188 // Extend the byte value to the larger type, and then multiply by a magic 1189 // value 0x010101... in order to replicate it across every byte. 1190 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 1191 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 1192 return MIB.buildConstant(Ty, 0).getReg(0); 1193 } 1194 1195 LLT ExtType = Ty.getScalarType(); 1196 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 1197 if (NumBits > 8) { 1198 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 1199 auto MagicMI = MIB.buildConstant(ExtType, Magic); 1200 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 1201 } 1202 1203 // For vector types create a G_BUILD_VECTOR. 1204 if (Ty.isVector()) 1205 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 1206 1207 return Val; 1208 } 1209 1210 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 1211 Register Val, uint64_t KnownLen, 1212 Align Alignment, bool IsVolatile) { 1213 auto &MF = *MI.getParent()->getParent(); 1214 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1215 auto &DL = MF.getDataLayout(); 1216 LLVMContext &C = MF.getFunction().getContext(); 1217 1218 assert(KnownLen != 0 && "Have a zero length memset length!"); 1219 1220 bool DstAlignCanChange = false; 1221 MachineFrameInfo &MFI = MF.getFrameInfo(); 1222 bool OptSize = shouldLowerMemFuncForSize(MF); 1223 1224 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1225 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1226 DstAlignCanChange = true; 1227 1228 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1229 std::vector<LLT> MemOps; 1230 1231 const auto &DstMMO = **MI.memoperands_begin(); 1232 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1233 1234 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1235 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1236 1237 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1238 MemOp::Set(KnownLen, DstAlignCanChange, 1239 Alignment, 1240 /*IsZeroMemset=*/IsZeroVal, 1241 /*IsVolatile=*/IsVolatile), 1242 DstPtrInfo.getAddrSpace(), ~0u, 1243 MF.getFunction().getAttributes(), TLI)) 1244 return false; 1245 1246 if (DstAlignCanChange) { 1247 // Get an estimate of the type from the LLT. 1248 Type *IRTy = getTypeForLLT(MemOps[0], C); 1249 Align NewAlign = DL.getABITypeAlign(IRTy); 1250 if (NewAlign > Alignment) { 1251 Alignment = NewAlign; 1252 unsigned FI = FIDef->getOperand(1).getIndex(); 1253 // Give the stack frame object a larger alignment if needed. 1254 if (MFI.getObjectAlign(FI) < Alignment) 1255 MFI.setObjectAlignment(FI, Alignment); 1256 } 1257 } 1258 1259 MachineIRBuilder MIB(MI); 1260 // Find the largest store and generate the bit pattern for it. 1261 LLT LargestTy = MemOps[0]; 1262 for (unsigned i = 1; i < MemOps.size(); i++) 1263 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1264 LargestTy = MemOps[i]; 1265 1266 // The memset stored value is always defined as an s8, so in order to make it 1267 // work with larger store types we need to repeat the bit pattern across the 1268 // wider type. 1269 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1270 1271 if (!MemSetValue) 1272 return false; 1273 1274 // Generate the stores. For each store type in the list, we generate the 1275 // matching store of that type to the destination address. 1276 LLT PtrTy = MRI.getType(Dst); 1277 unsigned DstOff = 0; 1278 unsigned Size = KnownLen; 1279 for (unsigned I = 0; I < MemOps.size(); I++) { 1280 LLT Ty = MemOps[I]; 1281 unsigned TySize = Ty.getSizeInBytes(); 1282 if (TySize > Size) { 1283 // Issuing an unaligned load / store pair that overlaps with the previous 1284 // pair. Adjust the offset accordingly. 1285 assert(I == MemOps.size() - 1 && I != 0); 1286 DstOff -= TySize - Size; 1287 } 1288 1289 // If this store is smaller than the largest store see whether we can get 1290 // the smaller value for free with a truncate. 1291 Register Value = MemSetValue; 1292 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1293 MVT VT = getMVTForLLT(Ty); 1294 MVT LargestVT = getMVTForLLT(LargestTy); 1295 if (!LargestTy.isVector() && !Ty.isVector() && 1296 TLI.isTruncateFree(LargestVT, VT)) 1297 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1298 else 1299 Value = getMemsetValue(Val, Ty, MIB); 1300 if (!Value) 1301 return false; 1302 } 1303 1304 auto *StoreMMO = 1305 MF.getMachineMemOperand(&DstMMO, DstOff, Ty); 1306 1307 Register Ptr = Dst; 1308 if (DstOff != 0) { 1309 auto Offset = 1310 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1311 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1312 } 1313 1314 MIB.buildStore(Value, Ptr, *StoreMMO); 1315 DstOff += Ty.getSizeInBytes(); 1316 Size -= TySize; 1317 } 1318 1319 MI.eraseFromParent(); 1320 return true; 1321 } 1322 1323 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1324 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 1325 1326 Register Dst = MI.getOperand(0).getReg(); 1327 Register Src = MI.getOperand(1).getReg(); 1328 Register Len = MI.getOperand(2).getReg(); 1329 1330 const auto *MMOIt = MI.memoperands_begin(); 1331 const MachineMemOperand *MemOp = *MMOIt; 1332 bool IsVolatile = MemOp->isVolatile(); 1333 1334 // See if this is a constant length copy 1335 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1336 // FIXME: support dynamically sized G_MEMCPY_INLINE 1337 assert(LenVRegAndVal.hasValue() && 1338 "inline memcpy with dynamic size is not yet supported"); 1339 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 1340 if (KnownLen == 0) { 1341 MI.eraseFromParent(); 1342 return true; 1343 } 1344 1345 const auto &DstMMO = **MI.memoperands_begin(); 1346 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1347 Align DstAlign = DstMMO.getBaseAlign(); 1348 Align SrcAlign = SrcMMO.getBaseAlign(); 1349 1350 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 1351 IsVolatile); 1352 } 1353 1354 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI, Register Dst, 1355 Register Src, uint64_t KnownLen, 1356 Align DstAlign, Align SrcAlign, 1357 bool IsVolatile) { 1358 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 1359 return optimizeMemcpy(MI, Dst, Src, KnownLen, 1360 std::numeric_limits<uint64_t>::max(), DstAlign, 1361 SrcAlign, IsVolatile); 1362 } 1363 1364 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1365 Register Src, uint64_t KnownLen, 1366 uint64_t Limit, Align DstAlign, 1367 Align SrcAlign, bool IsVolatile) { 1368 auto &MF = *MI.getParent()->getParent(); 1369 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1370 auto &DL = MF.getDataLayout(); 1371 LLVMContext &C = MF.getFunction().getContext(); 1372 1373 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1374 1375 bool DstAlignCanChange = false; 1376 MachineFrameInfo &MFI = MF.getFrameInfo(); 1377 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1378 1379 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1380 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1381 DstAlignCanChange = true; 1382 1383 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1384 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1385 // if the memcpy is in a tail call position. 1386 1387 std::vector<LLT> MemOps; 1388 1389 const auto &DstMMO = **MI.memoperands_begin(); 1390 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1391 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1392 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1393 1394 if (!findGISelOptimalMemOpLowering( 1395 MemOps, Limit, 1396 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1397 IsVolatile), 1398 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1399 MF.getFunction().getAttributes(), TLI)) 1400 return false; 1401 1402 if (DstAlignCanChange) { 1403 // Get an estimate of the type from the LLT. 1404 Type *IRTy = getTypeForLLT(MemOps[0], C); 1405 Align NewAlign = DL.getABITypeAlign(IRTy); 1406 1407 // Don't promote to an alignment that would require dynamic stack 1408 // realignment. 1409 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1410 if (!TRI->hasStackRealignment(MF)) 1411 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1412 NewAlign = NewAlign / 2; 1413 1414 if (NewAlign > Alignment) { 1415 Alignment = NewAlign; 1416 unsigned FI = FIDef->getOperand(1).getIndex(); 1417 // Give the stack frame object a larger alignment if needed. 1418 if (MFI.getObjectAlign(FI) < Alignment) 1419 MFI.setObjectAlignment(FI, Alignment); 1420 } 1421 } 1422 1423 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1424 1425 MachineIRBuilder MIB(MI); 1426 // Now we need to emit a pair of load and stores for each of the types we've 1427 // collected. I.e. for each type, generate a load from the source pointer of 1428 // that type width, and then generate a corresponding store to the dest buffer 1429 // of that value loaded. This can result in a sequence of loads and stores 1430 // mixed types, depending on what the target specifies as good types to use. 1431 unsigned CurrOffset = 0; 1432 LLT PtrTy = MRI.getType(Src); 1433 unsigned Size = KnownLen; 1434 for (auto CopyTy : MemOps) { 1435 // Issuing an unaligned load / store pair that overlaps with the previous 1436 // pair. Adjust the offset accordingly. 1437 if (CopyTy.getSizeInBytes() > Size) 1438 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1439 1440 // Construct MMOs for the accesses. 1441 auto *LoadMMO = 1442 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1443 auto *StoreMMO = 1444 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1445 1446 // Create the load. 1447 Register LoadPtr = Src; 1448 Register Offset; 1449 if (CurrOffset != 0) { 1450 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1451 .getReg(0); 1452 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1453 } 1454 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1455 1456 // Create the store. 1457 Register StorePtr = 1458 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1459 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1460 CurrOffset += CopyTy.getSizeInBytes(); 1461 Size -= CopyTy.getSizeInBytes(); 1462 } 1463 1464 MI.eraseFromParent(); 1465 return true; 1466 } 1467 1468 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1469 Register Src, uint64_t KnownLen, 1470 Align DstAlign, Align SrcAlign, 1471 bool IsVolatile) { 1472 auto &MF = *MI.getParent()->getParent(); 1473 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1474 auto &DL = MF.getDataLayout(); 1475 LLVMContext &C = MF.getFunction().getContext(); 1476 1477 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1478 1479 bool DstAlignCanChange = false; 1480 MachineFrameInfo &MFI = MF.getFrameInfo(); 1481 bool OptSize = shouldLowerMemFuncForSize(MF); 1482 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1483 1484 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1485 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1486 DstAlignCanChange = true; 1487 1488 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1489 std::vector<LLT> MemOps; 1490 1491 const auto &DstMMO = **MI.memoperands_begin(); 1492 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1493 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1494 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1495 1496 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1497 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1498 // same thing here. 1499 if (!findGISelOptimalMemOpLowering( 1500 MemOps, Limit, 1501 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1502 /*IsVolatile*/ true), 1503 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1504 MF.getFunction().getAttributes(), TLI)) 1505 return false; 1506 1507 if (DstAlignCanChange) { 1508 // Get an estimate of the type from the LLT. 1509 Type *IRTy = getTypeForLLT(MemOps[0], C); 1510 Align NewAlign = DL.getABITypeAlign(IRTy); 1511 1512 // Don't promote to an alignment that would require dynamic stack 1513 // realignment. 1514 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1515 if (!TRI->hasStackRealignment(MF)) 1516 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1517 NewAlign = NewAlign / 2; 1518 1519 if (NewAlign > Alignment) { 1520 Alignment = NewAlign; 1521 unsigned FI = FIDef->getOperand(1).getIndex(); 1522 // Give the stack frame object a larger alignment if needed. 1523 if (MFI.getObjectAlign(FI) < Alignment) 1524 MFI.setObjectAlignment(FI, Alignment); 1525 } 1526 } 1527 1528 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1529 1530 MachineIRBuilder MIB(MI); 1531 // Memmove requires that we perform the loads first before issuing the stores. 1532 // Apart from that, this loop is pretty much doing the same thing as the 1533 // memcpy codegen function. 1534 unsigned CurrOffset = 0; 1535 LLT PtrTy = MRI.getType(Src); 1536 SmallVector<Register, 16> LoadVals; 1537 for (auto CopyTy : MemOps) { 1538 // Construct MMO for the load. 1539 auto *LoadMMO = 1540 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1541 1542 // Create the load. 1543 Register LoadPtr = Src; 1544 if (CurrOffset != 0) { 1545 auto Offset = 1546 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1547 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1548 } 1549 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1550 CurrOffset += CopyTy.getSizeInBytes(); 1551 } 1552 1553 CurrOffset = 0; 1554 for (unsigned I = 0; I < MemOps.size(); ++I) { 1555 LLT CopyTy = MemOps[I]; 1556 // Now store the values loaded. 1557 auto *StoreMMO = 1558 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1559 1560 Register StorePtr = Dst; 1561 if (CurrOffset != 0) { 1562 auto Offset = 1563 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1564 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1565 } 1566 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1567 CurrOffset += CopyTy.getSizeInBytes(); 1568 } 1569 MI.eraseFromParent(); 1570 return true; 1571 } 1572 1573 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1574 const unsigned Opc = MI.getOpcode(); 1575 // This combine is fairly complex so it's not written with a separate 1576 // matcher function. 1577 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 1578 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); 1579 1580 auto MMOIt = MI.memoperands_begin(); 1581 const MachineMemOperand *MemOp = *MMOIt; 1582 1583 Align DstAlign = MemOp->getBaseAlign(); 1584 Align SrcAlign; 1585 Register Dst = MI.getOperand(0).getReg(); 1586 Register Src = MI.getOperand(1).getReg(); 1587 Register Len = MI.getOperand(2).getReg(); 1588 1589 if (Opc != TargetOpcode::G_MEMSET) { 1590 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1591 MemOp = *(++MMOIt); 1592 SrcAlign = MemOp->getBaseAlign(); 1593 } 1594 1595 // See if this is a constant length copy 1596 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1597 if (!LenVRegAndVal) 1598 return false; // Leave it to the legalizer to lower it to a libcall. 1599 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 1600 1601 if (KnownLen == 0) { 1602 MI.eraseFromParent(); 1603 return true; 1604 } 1605 1606 bool IsVolatile = MemOp->isVolatile(); 1607 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 1608 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 1609 IsVolatile); 1610 1611 // Don't try to optimize volatile. 1612 if (IsVolatile) 1613 return false; 1614 1615 if (MaxLen && KnownLen > MaxLen) 1616 return false; 1617 1618 if (Opc == TargetOpcode::G_MEMCPY) { 1619 auto &MF = *MI.getParent()->getParent(); 1620 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1621 bool OptSize = shouldLowerMemFuncForSize(MF); 1622 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1623 return optimizeMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 1624 IsVolatile); 1625 } 1626 if (Opc == TargetOpcode::G_MEMMOVE) 1627 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1628 if (Opc == TargetOpcode::G_MEMSET) 1629 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1630 return false; 1631 } 1632 1633 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1634 const Register Op, 1635 const MachineRegisterInfo &MRI) { 1636 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1637 if (!MaybeCst) 1638 return None; 1639 1640 APFloat V = MaybeCst->getValueAPF(); 1641 switch (Opcode) { 1642 default: 1643 llvm_unreachable("Unexpected opcode!"); 1644 case TargetOpcode::G_FNEG: { 1645 V.changeSign(); 1646 return V; 1647 } 1648 case TargetOpcode::G_FABS: { 1649 V.clearSign(); 1650 return V; 1651 } 1652 case TargetOpcode::G_FPTRUNC: 1653 break; 1654 case TargetOpcode::G_FSQRT: { 1655 bool Unused; 1656 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1657 V = APFloat(sqrt(V.convertToDouble())); 1658 break; 1659 } 1660 case TargetOpcode::G_FLOG2: { 1661 bool Unused; 1662 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1663 V = APFloat(log2(V.convertToDouble())); 1664 break; 1665 } 1666 } 1667 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1668 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1669 // and `G_FLOG2` reach here. 1670 bool Unused; 1671 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1672 return V; 1673 } 1674 1675 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1676 Optional<APFloat> &Cst) { 1677 Register DstReg = MI.getOperand(0).getReg(); 1678 Register SrcReg = MI.getOperand(1).getReg(); 1679 LLT DstTy = MRI.getType(DstReg); 1680 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1681 return Cst.hasValue(); 1682 } 1683 1684 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1685 Optional<APFloat> &Cst) { 1686 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1687 Builder.setInstrAndDebugLoc(MI); 1688 MachineFunction &MF = Builder.getMF(); 1689 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1690 Register DstReg = MI.getOperand(0).getReg(); 1691 Builder.buildFConstant(DstReg, *FPVal); 1692 MI.eraseFromParent(); 1693 } 1694 1695 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1696 PtrAddChain &MatchInfo) { 1697 // We're trying to match the following pattern: 1698 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1699 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1700 // --> 1701 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1702 1703 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1704 return false; 1705 1706 Register Add2 = MI.getOperand(1).getReg(); 1707 Register Imm1 = MI.getOperand(2).getReg(); 1708 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1709 if (!MaybeImmVal) 1710 return false; 1711 1712 // Don't do this combine if there multiple uses of the first PTR_ADD, 1713 // since we may be able to compute the second PTR_ADD as an immediate 1714 // offset anyway. Folding the first offset into the second may cause us 1715 // to go beyond the bounds of our legal addressing modes. 1716 if (!MRI.hasOneNonDBGUse(Add2)) 1717 return false; 1718 1719 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1720 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1721 return false; 1722 1723 Register Base = Add2Def->getOperand(1).getReg(); 1724 Register Imm2 = Add2Def->getOperand(2).getReg(); 1725 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1726 if (!MaybeImm2Val) 1727 return false; 1728 1729 // Pass the combined immediate to the apply function. 1730 MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue(); 1731 MatchInfo.Base = Base; 1732 return true; 1733 } 1734 1735 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1736 PtrAddChain &MatchInfo) { 1737 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1738 MachineIRBuilder MIB(MI); 1739 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1740 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1741 Observer.changingInstr(MI); 1742 MI.getOperand(1).setReg(MatchInfo.Base); 1743 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1744 Observer.changedInstr(MI); 1745 } 1746 1747 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1748 RegisterImmPair &MatchInfo) { 1749 // We're trying to match the following pattern with any of 1750 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1751 // %t1 = SHIFT %base, G_CONSTANT imm1 1752 // %root = SHIFT %t1, G_CONSTANT imm2 1753 // --> 1754 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1755 1756 unsigned Opcode = MI.getOpcode(); 1757 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1758 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1759 Opcode == TargetOpcode::G_USHLSAT) && 1760 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1761 1762 Register Shl2 = MI.getOperand(1).getReg(); 1763 Register Imm1 = MI.getOperand(2).getReg(); 1764 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1765 if (!MaybeImmVal) 1766 return false; 1767 1768 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1769 if (Shl2Def->getOpcode() != Opcode) 1770 return false; 1771 1772 Register Base = Shl2Def->getOperand(1).getReg(); 1773 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1774 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1775 if (!MaybeImm2Val) 1776 return false; 1777 1778 // Pass the combined immediate to the apply function. 1779 MatchInfo.Imm = 1780 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1781 MatchInfo.Reg = Base; 1782 1783 // There is no simple replacement for a saturating unsigned left shift that 1784 // exceeds the scalar size. 1785 if (Opcode == TargetOpcode::G_USHLSAT && 1786 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1787 return false; 1788 1789 return true; 1790 } 1791 1792 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1793 RegisterImmPair &MatchInfo) { 1794 unsigned Opcode = MI.getOpcode(); 1795 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1796 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1797 Opcode == TargetOpcode::G_USHLSAT) && 1798 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1799 1800 Builder.setInstrAndDebugLoc(MI); 1801 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1802 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1803 auto Imm = MatchInfo.Imm; 1804 1805 if (Imm >= ScalarSizeInBits) { 1806 // Any logical shift that exceeds scalar size will produce zero. 1807 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1808 Builder.buildConstant(MI.getOperand(0), 0); 1809 MI.eraseFromParent(); 1810 return; 1811 } 1812 // Arithmetic shift and saturating signed left shift have no effect beyond 1813 // scalar size. 1814 Imm = ScalarSizeInBits - 1; 1815 } 1816 1817 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1818 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1819 Observer.changingInstr(MI); 1820 MI.getOperand(1).setReg(MatchInfo.Reg); 1821 MI.getOperand(2).setReg(NewImm); 1822 Observer.changedInstr(MI); 1823 } 1824 1825 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1826 ShiftOfShiftedLogic &MatchInfo) { 1827 // We're trying to match the following pattern with any of 1828 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1829 // with any of G_AND/G_OR/G_XOR logic instructions. 1830 // %t1 = SHIFT %X, G_CONSTANT C0 1831 // %t2 = LOGIC %t1, %Y 1832 // %root = SHIFT %t2, G_CONSTANT C1 1833 // --> 1834 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1835 // %t4 = SHIFT %Y, G_CONSTANT C1 1836 // %root = LOGIC %t3, %t4 1837 unsigned ShiftOpcode = MI.getOpcode(); 1838 assert((ShiftOpcode == TargetOpcode::G_SHL || 1839 ShiftOpcode == TargetOpcode::G_ASHR || 1840 ShiftOpcode == TargetOpcode::G_LSHR || 1841 ShiftOpcode == TargetOpcode::G_USHLSAT || 1842 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1843 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1844 1845 // Match a one-use bitwise logic op. 1846 Register LogicDest = MI.getOperand(1).getReg(); 1847 if (!MRI.hasOneNonDBGUse(LogicDest)) 1848 return false; 1849 1850 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1851 unsigned LogicOpcode = LogicMI->getOpcode(); 1852 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1853 LogicOpcode != TargetOpcode::G_XOR) 1854 return false; 1855 1856 // Find a matching one-use shift by constant. 1857 const Register C1 = MI.getOperand(2).getReg(); 1858 auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); 1859 if (!MaybeImmVal) 1860 return false; 1861 1862 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1863 1864 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1865 // Shift should match previous one and should be a one-use. 1866 if (MI->getOpcode() != ShiftOpcode || 1867 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1868 return false; 1869 1870 // Must be a constant. 1871 auto MaybeImmVal = 1872 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1873 if (!MaybeImmVal) 1874 return false; 1875 1876 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1877 return true; 1878 }; 1879 1880 // Logic ops are commutative, so check each operand for a match. 1881 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1882 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1883 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1884 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1885 uint64_t C0Val; 1886 1887 if (matchFirstShift(LogicMIOp1, C0Val)) { 1888 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1889 MatchInfo.Shift2 = LogicMIOp1; 1890 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1891 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1892 MatchInfo.Shift2 = LogicMIOp2; 1893 } else 1894 return false; 1895 1896 MatchInfo.ValSum = C0Val + C1Val; 1897 1898 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1899 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1900 return false; 1901 1902 MatchInfo.Logic = LogicMI; 1903 return true; 1904 } 1905 1906 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1907 ShiftOfShiftedLogic &MatchInfo) { 1908 unsigned Opcode = MI.getOpcode(); 1909 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1910 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1911 Opcode == TargetOpcode::G_SSHLSAT) && 1912 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1913 1914 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1915 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1916 Builder.setInstrAndDebugLoc(MI); 1917 1918 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1919 1920 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1921 Register Shift1 = 1922 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1923 1924 Register Shift2Const = MI.getOperand(2).getReg(); 1925 Register Shift2 = Builder 1926 .buildInstr(Opcode, {DestType}, 1927 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1928 .getReg(0); 1929 1930 Register Dest = MI.getOperand(0).getReg(); 1931 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1932 1933 // These were one use so it's safe to remove them. 1934 MatchInfo.Shift2->eraseFromParent(); 1935 MatchInfo.Logic->eraseFromParent(); 1936 1937 MI.eraseFromParent(); 1938 } 1939 1940 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1941 unsigned &ShiftVal) { 1942 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1943 auto MaybeImmVal = 1944 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1945 if (!MaybeImmVal) 1946 return false; 1947 1948 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1949 return (static_cast<int32_t>(ShiftVal) != -1); 1950 } 1951 1952 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1953 unsigned &ShiftVal) { 1954 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1955 MachineIRBuilder MIB(MI); 1956 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1957 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1958 Observer.changingInstr(MI); 1959 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1960 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1961 Observer.changedInstr(MI); 1962 } 1963 1964 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1965 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1966 RegisterImmPair &MatchData) { 1967 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1968 1969 Register LHS = MI.getOperand(1).getReg(); 1970 1971 Register ExtSrc; 1972 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1973 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1974 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1975 return false; 1976 1977 // TODO: Should handle vector splat. 1978 Register RHS = MI.getOperand(2).getReg(); 1979 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 1980 if (!MaybeShiftAmtVal) 1981 return false; 1982 1983 if (LI) { 1984 LLT SrcTy = MRI.getType(ExtSrc); 1985 1986 // We only really care about the legality with the shifted value. We can 1987 // pick any type the constant shift amount, so ask the target what to 1988 // use. Otherwise we would have to guess and hope it is reported as legal. 1989 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1990 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1991 return false; 1992 } 1993 1994 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1995 MatchData.Reg = ExtSrc; 1996 MatchData.Imm = ShiftAmt; 1997 1998 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1999 return MinLeadingZeros >= ShiftAmt; 2000 } 2001 2002 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 2003 const RegisterImmPair &MatchData) { 2004 Register ExtSrcReg = MatchData.Reg; 2005 int64_t ShiftAmtVal = MatchData.Imm; 2006 2007 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 2008 Builder.setInstrAndDebugLoc(MI); 2009 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 2010 auto NarrowShift = 2011 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 2012 Builder.buildZExt(MI.getOperand(0), NarrowShift); 2013 MI.eraseFromParent(); 2014 } 2015 2016 static Register peekThroughBitcast(Register Reg, 2017 const MachineRegisterInfo &MRI) { 2018 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 2019 ; 2020 2021 return Reg; 2022 } 2023 2024 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 2025 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2026 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2027 "Expected an unmerge"); 2028 Register SrcReg = 2029 peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI); 2030 2031 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 2032 if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES && 2033 SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR && 2034 SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS) 2035 return false; 2036 2037 // Check the source type of the merge. 2038 LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg()); 2039 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 2040 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 2041 if (SrcMergeTy != Dst0Ty && !SameSize) 2042 return false; 2043 // They are the same now (modulo a bitcast). 2044 // We can collect all the src registers. 2045 for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx; 2046 ++Idx) 2047 Operands.push_back(SrcInstr->getOperand(Idx).getReg()); 2048 return true; 2049 } 2050 2051 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 2052 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2053 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2054 "Expected an unmerge"); 2055 assert((MI.getNumOperands() - 1 == Operands.size()) && 2056 "Not enough operands to replace all defs"); 2057 unsigned NumElems = MI.getNumOperands() - 1; 2058 2059 LLT SrcTy = MRI.getType(Operands[0]); 2060 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2061 bool CanReuseInputDirectly = DstTy == SrcTy; 2062 Builder.setInstrAndDebugLoc(MI); 2063 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2064 Register DstReg = MI.getOperand(Idx).getReg(); 2065 Register SrcReg = Operands[Idx]; 2066 if (CanReuseInputDirectly) 2067 replaceRegWith(MRI, DstReg, SrcReg); 2068 else 2069 Builder.buildCast(DstReg, SrcReg); 2070 } 2071 MI.eraseFromParent(); 2072 } 2073 2074 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 2075 SmallVectorImpl<APInt> &Csts) { 2076 unsigned SrcIdx = MI.getNumOperands() - 1; 2077 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 2078 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 2079 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 2080 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 2081 return false; 2082 // Break down the big constant in smaller ones. 2083 const MachineOperand &CstVal = SrcInstr->getOperand(1); 2084 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 2085 ? CstVal.getCImm()->getValue() 2086 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 2087 2088 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 2089 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 2090 // Unmerge a constant. 2091 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 2092 Csts.emplace_back(Val.trunc(ShiftAmt)); 2093 Val = Val.lshr(ShiftAmt); 2094 } 2095 2096 return true; 2097 } 2098 2099 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 2100 SmallVectorImpl<APInt> &Csts) { 2101 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2102 "Expected an unmerge"); 2103 assert((MI.getNumOperands() - 1 == Csts.size()) && 2104 "Not enough operands to replace all defs"); 2105 unsigned NumElems = MI.getNumOperands() - 1; 2106 Builder.setInstrAndDebugLoc(MI); 2107 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2108 Register DstReg = MI.getOperand(Idx).getReg(); 2109 Builder.buildConstant(DstReg, Csts[Idx]); 2110 } 2111 2112 MI.eraseFromParent(); 2113 } 2114 2115 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2116 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2117 "Expected an unmerge"); 2118 // Check that all the lanes are dead except the first one. 2119 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2120 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 2121 return false; 2122 } 2123 return true; 2124 } 2125 2126 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2127 Builder.setInstrAndDebugLoc(MI); 2128 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2129 // Truncating a vector is going to truncate every single lane, 2130 // whereas we want the full lowbits. 2131 // Do the operation on a scalar instead. 2132 LLT SrcTy = MRI.getType(SrcReg); 2133 if (SrcTy.isVector()) 2134 SrcReg = 2135 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 2136 2137 Register Dst0Reg = MI.getOperand(0).getReg(); 2138 LLT Dst0Ty = MRI.getType(Dst0Reg); 2139 if (Dst0Ty.isVector()) { 2140 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 2141 Builder.buildCast(Dst0Reg, MIB); 2142 } else 2143 Builder.buildTrunc(Dst0Reg, SrcReg); 2144 MI.eraseFromParent(); 2145 } 2146 2147 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 2148 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2149 "Expected an unmerge"); 2150 Register Dst0Reg = MI.getOperand(0).getReg(); 2151 LLT Dst0Ty = MRI.getType(Dst0Reg); 2152 // G_ZEXT on vector applies to each lane, so it will 2153 // affect all destinations. Therefore we won't be able 2154 // to simplify the unmerge to just the first definition. 2155 if (Dst0Ty.isVector()) 2156 return false; 2157 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2158 LLT SrcTy = MRI.getType(SrcReg); 2159 if (SrcTy.isVector()) 2160 return false; 2161 2162 Register ZExtSrcReg; 2163 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 2164 return false; 2165 2166 // Finally we can replace the first definition with 2167 // a zext of the source if the definition is big enough to hold 2168 // all of ZExtSrc bits. 2169 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2170 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 2171 } 2172 2173 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 2174 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2175 "Expected an unmerge"); 2176 2177 Register Dst0Reg = MI.getOperand(0).getReg(); 2178 2179 MachineInstr *ZExtInstr = 2180 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 2181 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 2182 "Expecting a G_ZEXT"); 2183 2184 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 2185 LLT Dst0Ty = MRI.getType(Dst0Reg); 2186 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2187 2188 Builder.setInstrAndDebugLoc(MI); 2189 2190 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 2191 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 2192 } else { 2193 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 2194 "ZExt src doesn't fit in destination"); 2195 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 2196 } 2197 2198 Register ZeroReg; 2199 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2200 if (!ZeroReg) 2201 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 2202 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 2203 } 2204 MI.eraseFromParent(); 2205 } 2206 2207 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 2208 unsigned TargetShiftSize, 2209 unsigned &ShiftVal) { 2210 assert((MI.getOpcode() == TargetOpcode::G_SHL || 2211 MI.getOpcode() == TargetOpcode::G_LSHR || 2212 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 2213 2214 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2215 if (Ty.isVector()) // TODO: 2216 return false; 2217 2218 // Don't narrow further than the requested size. 2219 unsigned Size = Ty.getSizeInBits(); 2220 if (Size <= TargetShiftSize) 2221 return false; 2222 2223 auto MaybeImmVal = 2224 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 2225 if (!MaybeImmVal) 2226 return false; 2227 2228 ShiftVal = MaybeImmVal->Value.getSExtValue(); 2229 return ShiftVal >= Size / 2 && ShiftVal < Size; 2230 } 2231 2232 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 2233 const unsigned &ShiftVal) { 2234 Register DstReg = MI.getOperand(0).getReg(); 2235 Register SrcReg = MI.getOperand(1).getReg(); 2236 LLT Ty = MRI.getType(SrcReg); 2237 unsigned Size = Ty.getSizeInBits(); 2238 unsigned HalfSize = Size / 2; 2239 assert(ShiftVal >= HalfSize); 2240 2241 LLT HalfTy = LLT::scalar(HalfSize); 2242 2243 Builder.setInstr(MI); 2244 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 2245 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 2246 2247 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2248 Register Narrowed = Unmerge.getReg(1); 2249 2250 // dst = G_LSHR s64:x, C for C >= 32 2251 // => 2252 // lo, hi = G_UNMERGE_VALUES x 2253 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 2254 2255 if (NarrowShiftAmt != 0) { 2256 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 2257 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2258 } 2259 2260 auto Zero = Builder.buildConstant(HalfTy, 0); 2261 Builder.buildMerge(DstReg, { Narrowed, Zero }); 2262 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 2263 Register Narrowed = Unmerge.getReg(0); 2264 // dst = G_SHL s64:x, C for C >= 32 2265 // => 2266 // lo, hi = G_UNMERGE_VALUES x 2267 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 2268 if (NarrowShiftAmt != 0) { 2269 Narrowed = Builder.buildShl(HalfTy, Narrowed, 2270 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2271 } 2272 2273 auto Zero = Builder.buildConstant(HalfTy, 0); 2274 Builder.buildMerge(DstReg, { Zero, Narrowed }); 2275 } else { 2276 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2277 auto Hi = Builder.buildAShr( 2278 HalfTy, Unmerge.getReg(1), 2279 Builder.buildConstant(HalfTy, HalfSize - 1)); 2280 2281 if (ShiftVal == HalfSize) { 2282 // (G_ASHR i64:x, 32) -> 2283 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 2284 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 2285 } else if (ShiftVal == Size - 1) { 2286 // Don't need a second shift. 2287 // (G_ASHR i64:x, 63) -> 2288 // %narrowed = (G_ASHR hi_32(x), 31) 2289 // G_MERGE_VALUES %narrowed, %narrowed 2290 Builder.buildMerge(DstReg, { Hi, Hi }); 2291 } else { 2292 auto Lo = Builder.buildAShr( 2293 HalfTy, Unmerge.getReg(1), 2294 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 2295 2296 // (G_ASHR i64:x, C) ->, for C >= 32 2297 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 2298 Builder.buildMerge(DstReg, { Lo, Hi }); 2299 } 2300 } 2301 2302 MI.eraseFromParent(); 2303 } 2304 2305 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 2306 unsigned TargetShiftAmount) { 2307 unsigned ShiftAmt; 2308 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 2309 applyCombineShiftToUnmerge(MI, ShiftAmt); 2310 return true; 2311 } 2312 2313 return false; 2314 } 2315 2316 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2317 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2318 Register DstReg = MI.getOperand(0).getReg(); 2319 LLT DstTy = MRI.getType(DstReg); 2320 Register SrcReg = MI.getOperand(1).getReg(); 2321 return mi_match(SrcReg, MRI, 2322 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2323 } 2324 2325 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2326 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2327 Register DstReg = MI.getOperand(0).getReg(); 2328 Builder.setInstr(MI); 2329 Builder.buildCopy(DstReg, Reg); 2330 MI.eraseFromParent(); 2331 } 2332 2333 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2334 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2335 Register SrcReg = MI.getOperand(1).getReg(); 2336 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2337 } 2338 2339 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2340 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2341 Register DstReg = MI.getOperand(0).getReg(); 2342 Builder.setInstr(MI); 2343 Builder.buildZExtOrTrunc(DstReg, Reg); 2344 MI.eraseFromParent(); 2345 } 2346 2347 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2348 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2349 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2350 Register LHS = MI.getOperand(1).getReg(); 2351 Register RHS = MI.getOperand(2).getReg(); 2352 LLT IntTy = MRI.getType(LHS); 2353 2354 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2355 // instruction. 2356 PtrReg.second = false; 2357 for (Register SrcReg : {LHS, RHS}) { 2358 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2359 // Don't handle cases where the integer is implicitly converted to the 2360 // pointer width. 2361 LLT PtrTy = MRI.getType(PtrReg.first); 2362 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2363 return true; 2364 } 2365 2366 PtrReg.second = true; 2367 } 2368 2369 return false; 2370 } 2371 2372 void CombinerHelper::applyCombineAddP2IToPtrAdd( 2373 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2374 Register Dst = MI.getOperand(0).getReg(); 2375 Register LHS = MI.getOperand(1).getReg(); 2376 Register RHS = MI.getOperand(2).getReg(); 2377 2378 const bool DoCommute = PtrReg.second; 2379 if (DoCommute) 2380 std::swap(LHS, RHS); 2381 LHS = PtrReg.first; 2382 2383 LLT PtrTy = MRI.getType(LHS); 2384 2385 Builder.setInstrAndDebugLoc(MI); 2386 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2387 Builder.buildPtrToInt(Dst, PtrAdd); 2388 MI.eraseFromParent(); 2389 } 2390 2391 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2392 int64_t &NewCst) { 2393 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2394 Register LHS = MI.getOperand(1).getReg(); 2395 Register RHS = MI.getOperand(2).getReg(); 2396 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2397 2398 if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { 2399 int64_t Cst; 2400 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2401 NewCst = Cst + *RHSCst; 2402 return true; 2403 } 2404 } 2405 2406 return false; 2407 } 2408 2409 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2410 int64_t &NewCst) { 2411 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2412 Register Dst = MI.getOperand(0).getReg(); 2413 2414 Builder.setInstrAndDebugLoc(MI); 2415 Builder.buildConstant(Dst, NewCst); 2416 MI.eraseFromParent(); 2417 } 2418 2419 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2420 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2421 Register DstReg = MI.getOperand(0).getReg(); 2422 Register SrcReg = MI.getOperand(1).getReg(); 2423 LLT DstTy = MRI.getType(DstReg); 2424 return mi_match(SrcReg, MRI, 2425 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2426 } 2427 2428 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2429 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2430 Register DstReg = MI.getOperand(0).getReg(); 2431 Register SrcReg = MI.getOperand(1).getReg(); 2432 LLT DstTy = MRI.getType(DstReg); 2433 if (mi_match(SrcReg, MRI, 2434 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2435 unsigned DstSize = DstTy.getScalarSizeInBits(); 2436 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2437 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2438 } 2439 return false; 2440 } 2441 2442 bool CombinerHelper::matchCombineExtOfExt( 2443 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2444 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2445 MI.getOpcode() == TargetOpcode::G_SEXT || 2446 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2447 "Expected a G_[ASZ]EXT"); 2448 Register SrcReg = MI.getOperand(1).getReg(); 2449 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2450 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2451 unsigned Opc = MI.getOpcode(); 2452 unsigned SrcOpc = SrcMI->getOpcode(); 2453 if (Opc == SrcOpc || 2454 (Opc == TargetOpcode::G_ANYEXT && 2455 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2456 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2457 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2458 return true; 2459 } 2460 return false; 2461 } 2462 2463 void CombinerHelper::applyCombineExtOfExt( 2464 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2465 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2466 MI.getOpcode() == TargetOpcode::G_SEXT || 2467 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2468 "Expected a G_[ASZ]EXT"); 2469 2470 Register Reg = std::get<0>(MatchInfo); 2471 unsigned SrcExtOp = std::get<1>(MatchInfo); 2472 2473 // Combine exts with the same opcode. 2474 if (MI.getOpcode() == SrcExtOp) { 2475 Observer.changingInstr(MI); 2476 MI.getOperand(1).setReg(Reg); 2477 Observer.changedInstr(MI); 2478 return; 2479 } 2480 2481 // Combine: 2482 // - anyext([sz]ext x) to [sz]ext x 2483 // - sext(zext x) to zext x 2484 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2485 (MI.getOpcode() == TargetOpcode::G_SEXT && 2486 SrcExtOp == TargetOpcode::G_ZEXT)) { 2487 Register DstReg = MI.getOperand(0).getReg(); 2488 Builder.setInstrAndDebugLoc(MI); 2489 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2490 MI.eraseFromParent(); 2491 } 2492 } 2493 2494 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2495 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2496 Register DstReg = MI.getOperand(0).getReg(); 2497 Register SrcReg = MI.getOperand(1).getReg(); 2498 LLT DstTy = MRI.getType(DstReg); 2499 2500 Builder.setInstrAndDebugLoc(MI); 2501 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2502 MI.getFlags()); 2503 MI.eraseFromParent(); 2504 } 2505 2506 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2507 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2508 Register SrcReg = MI.getOperand(1).getReg(); 2509 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2510 } 2511 2512 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2513 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2514 Src = MI.getOperand(1).getReg(); 2515 Register AbsSrc; 2516 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2517 } 2518 2519 bool CombinerHelper::matchCombineTruncOfExt( 2520 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2521 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2522 Register SrcReg = MI.getOperand(1).getReg(); 2523 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2524 unsigned SrcOpc = SrcMI->getOpcode(); 2525 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2526 SrcOpc == TargetOpcode::G_ZEXT) { 2527 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2528 return true; 2529 } 2530 return false; 2531 } 2532 2533 void CombinerHelper::applyCombineTruncOfExt( 2534 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2535 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2536 Register SrcReg = MatchInfo.first; 2537 unsigned SrcExtOp = MatchInfo.second; 2538 Register DstReg = MI.getOperand(0).getReg(); 2539 LLT SrcTy = MRI.getType(SrcReg); 2540 LLT DstTy = MRI.getType(DstReg); 2541 if (SrcTy == DstTy) { 2542 MI.eraseFromParent(); 2543 replaceRegWith(MRI, DstReg, SrcReg); 2544 return; 2545 } 2546 Builder.setInstrAndDebugLoc(MI); 2547 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2548 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2549 else 2550 Builder.buildTrunc(DstReg, SrcReg); 2551 MI.eraseFromParent(); 2552 } 2553 2554 bool CombinerHelper::matchCombineTruncOfShl( 2555 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2556 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2557 Register DstReg = MI.getOperand(0).getReg(); 2558 Register SrcReg = MI.getOperand(1).getReg(); 2559 LLT DstTy = MRI.getType(DstReg); 2560 Register ShiftSrc; 2561 Register ShiftAmt; 2562 2563 if (MRI.hasOneNonDBGUse(SrcReg) && 2564 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2565 isLegalOrBeforeLegalizer( 2566 {TargetOpcode::G_SHL, 2567 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2568 KnownBits Known = KB->getKnownBits(ShiftAmt); 2569 unsigned Size = DstTy.getSizeInBits(); 2570 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2571 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2572 return true; 2573 } 2574 } 2575 return false; 2576 } 2577 2578 void CombinerHelper::applyCombineTruncOfShl( 2579 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2580 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2581 Register DstReg = MI.getOperand(0).getReg(); 2582 Register SrcReg = MI.getOperand(1).getReg(); 2583 LLT DstTy = MRI.getType(DstReg); 2584 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2585 2586 Register ShiftSrc = MatchInfo.first; 2587 Register ShiftAmt = MatchInfo.second; 2588 Builder.setInstrAndDebugLoc(MI); 2589 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2590 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2591 MI.eraseFromParent(); 2592 } 2593 2594 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2595 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2596 return MO.isReg() && 2597 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2598 }); 2599 } 2600 2601 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2602 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2603 return !MO.isReg() || 2604 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2605 }); 2606 } 2607 2608 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2609 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2610 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2611 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2612 } 2613 2614 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2615 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2616 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2617 MRI); 2618 } 2619 2620 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2621 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2622 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2623 MRI); 2624 } 2625 2626 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2627 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2628 if (auto MaybeCstCmp = 2629 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2630 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; 2631 return true; 2632 } 2633 return false; 2634 } 2635 2636 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2637 MI.eraseFromParent(); 2638 return true; 2639 } 2640 2641 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2642 const MachineOperand &MOP2) { 2643 if (!MOP1.isReg() || !MOP2.isReg()) 2644 return false; 2645 MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); 2646 if (!I1) 2647 return false; 2648 MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); 2649 if (!I2) 2650 return false; 2651 2652 // Handle a case like this: 2653 // 2654 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2655 // 2656 // Even though %0 and %1 are produced by the same instruction they are not 2657 // the same values. 2658 if (I1 == I2) 2659 return MOP1.getReg() == MOP2.getReg(); 2660 2661 // If we have an instruction which loads or stores, we can't guarantee that 2662 // it is identical. 2663 // 2664 // For example, we may have 2665 // 2666 // %x1 = G_LOAD %addr (load N from @somewhere) 2667 // ... 2668 // call @foo 2669 // ... 2670 // %x2 = G_LOAD %addr (load N from @somewhere) 2671 // ... 2672 // %or = G_OR %x1, %x2 2673 // 2674 // It's possible that @foo will modify whatever lives at the address we're 2675 // loading from. To be safe, let's just assume that all loads and stores 2676 // are different (unless we have something which is guaranteed to not 2677 // change.) 2678 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2679 return false; 2680 2681 // Check for physical registers on the instructions first to avoid cases 2682 // like this: 2683 // 2684 // %a = COPY $physreg 2685 // ... 2686 // SOMETHING implicit-def $physreg 2687 // ... 2688 // %b = COPY $physreg 2689 // 2690 // These copies are not equivalent. 2691 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2692 return MO.isReg() && MO.getReg().isPhysical(); 2693 })) { 2694 // Check if we have a case like this: 2695 // 2696 // %a = COPY $physreg 2697 // %b = COPY %a 2698 // 2699 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2700 // From that, we know that they must have the same value, since they must 2701 // have come from the same COPY. 2702 return I1->isIdenticalTo(*I2); 2703 } 2704 2705 // We don't have any physical registers, so we don't necessarily need the 2706 // same vreg defs. 2707 // 2708 // On the off-chance that there's some target instruction feeding into the 2709 // instruction, let's use produceSameValue instead of isIdenticalTo. 2710 return Builder.getTII().produceSameValue(*I1, *I2, &MRI); 2711 } 2712 2713 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2714 if (!MOP.isReg()) 2715 return false; 2716 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2717 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2718 return ValAndVReg && ValAndVReg->Value == C; 2719 } 2720 2721 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2722 unsigned OpIdx) { 2723 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2724 Register OldReg = MI.getOperand(0).getReg(); 2725 Register Replacement = MI.getOperand(OpIdx).getReg(); 2726 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2727 MI.eraseFromParent(); 2728 replaceRegWith(MRI, OldReg, Replacement); 2729 return true; 2730 } 2731 2732 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2733 Register Replacement) { 2734 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2735 Register OldReg = MI.getOperand(0).getReg(); 2736 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2737 MI.eraseFromParent(); 2738 replaceRegWith(MRI, OldReg, Replacement); 2739 return true; 2740 } 2741 2742 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2743 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2744 // Match (cond ? x : x) 2745 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2746 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2747 MRI); 2748 } 2749 2750 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2751 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2752 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2753 MRI); 2754 } 2755 2756 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2757 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2758 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2759 MRI); 2760 } 2761 2762 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2763 MachineOperand &MO = MI.getOperand(OpIdx); 2764 return MO.isReg() && 2765 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2766 } 2767 2768 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2769 unsigned OpIdx) { 2770 MachineOperand &MO = MI.getOperand(OpIdx); 2771 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2772 } 2773 2774 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2775 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2776 Builder.setInstr(MI); 2777 Builder.buildFConstant(MI.getOperand(0), C); 2778 MI.eraseFromParent(); 2779 return true; 2780 } 2781 2782 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2783 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2784 Builder.setInstr(MI); 2785 Builder.buildConstant(MI.getOperand(0), C); 2786 MI.eraseFromParent(); 2787 return true; 2788 } 2789 2790 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2791 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2792 Builder.setInstr(MI); 2793 Builder.buildUndef(MI.getOperand(0)); 2794 MI.eraseFromParent(); 2795 return true; 2796 } 2797 2798 bool CombinerHelper::matchSimplifyAddToSub( 2799 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2800 Register LHS = MI.getOperand(1).getReg(); 2801 Register RHS = MI.getOperand(2).getReg(); 2802 Register &NewLHS = std::get<0>(MatchInfo); 2803 Register &NewRHS = std::get<1>(MatchInfo); 2804 2805 // Helper lambda to check for opportunities for 2806 // ((0-A) + B) -> B - A 2807 // (A + (0-B)) -> A - B 2808 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2809 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2810 return false; 2811 NewLHS = MaybeNewLHS; 2812 return true; 2813 }; 2814 2815 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2816 } 2817 2818 bool CombinerHelper::matchCombineInsertVecElts( 2819 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2820 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2821 "Invalid opcode"); 2822 Register DstReg = MI.getOperand(0).getReg(); 2823 LLT DstTy = MRI.getType(DstReg); 2824 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2825 unsigned NumElts = DstTy.getNumElements(); 2826 // If this MI is part of a sequence of insert_vec_elts, then 2827 // don't do the combine in the middle of the sequence. 2828 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2829 TargetOpcode::G_INSERT_VECTOR_ELT) 2830 return false; 2831 MachineInstr *CurrInst = &MI; 2832 MachineInstr *TmpInst; 2833 int64_t IntImm; 2834 Register TmpReg; 2835 MatchInfo.resize(NumElts); 2836 while (mi_match( 2837 CurrInst->getOperand(0).getReg(), MRI, 2838 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2839 if (IntImm >= NumElts) 2840 return false; 2841 if (!MatchInfo[IntImm]) 2842 MatchInfo[IntImm] = TmpReg; 2843 CurrInst = TmpInst; 2844 } 2845 // Variable index. 2846 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2847 return false; 2848 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2849 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2850 if (!MatchInfo[I - 1].isValid()) 2851 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2852 } 2853 return true; 2854 } 2855 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2856 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2857 } 2858 2859 void CombinerHelper::applyCombineInsertVecElts( 2860 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2861 Builder.setInstr(MI); 2862 Register UndefReg; 2863 auto GetUndef = [&]() { 2864 if (UndefReg) 2865 return UndefReg; 2866 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2867 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2868 return UndefReg; 2869 }; 2870 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2871 if (!MatchInfo[I]) 2872 MatchInfo[I] = GetUndef(); 2873 } 2874 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2875 MI.eraseFromParent(); 2876 } 2877 2878 void CombinerHelper::applySimplifyAddToSub( 2879 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2880 Builder.setInstr(MI); 2881 Register SubLHS, SubRHS; 2882 std::tie(SubLHS, SubRHS) = MatchInfo; 2883 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2884 MI.eraseFromParent(); 2885 } 2886 2887 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2888 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2889 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2890 // 2891 // Creates the new hand + logic instruction (but does not insert them.) 2892 // 2893 // On success, MatchInfo is populated with the new instructions. These are 2894 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2895 unsigned LogicOpcode = MI.getOpcode(); 2896 assert(LogicOpcode == TargetOpcode::G_AND || 2897 LogicOpcode == TargetOpcode::G_OR || 2898 LogicOpcode == TargetOpcode::G_XOR); 2899 MachineIRBuilder MIB(MI); 2900 Register Dst = MI.getOperand(0).getReg(); 2901 Register LHSReg = MI.getOperand(1).getReg(); 2902 Register RHSReg = MI.getOperand(2).getReg(); 2903 2904 // Don't recompute anything. 2905 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2906 return false; 2907 2908 // Make sure we have (hand x, ...), (hand y, ...) 2909 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2910 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2911 if (!LeftHandInst || !RightHandInst) 2912 return false; 2913 unsigned HandOpcode = LeftHandInst->getOpcode(); 2914 if (HandOpcode != RightHandInst->getOpcode()) 2915 return false; 2916 if (!LeftHandInst->getOperand(1).isReg() || 2917 !RightHandInst->getOperand(1).isReg()) 2918 return false; 2919 2920 // Make sure the types match up, and if we're doing this post-legalization, 2921 // we end up with legal types. 2922 Register X = LeftHandInst->getOperand(1).getReg(); 2923 Register Y = RightHandInst->getOperand(1).getReg(); 2924 LLT XTy = MRI.getType(X); 2925 LLT YTy = MRI.getType(Y); 2926 if (XTy != YTy) 2927 return false; 2928 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2929 return false; 2930 2931 // Optional extra source register. 2932 Register ExtraHandOpSrcReg; 2933 switch (HandOpcode) { 2934 default: 2935 return false; 2936 case TargetOpcode::G_ANYEXT: 2937 case TargetOpcode::G_SEXT: 2938 case TargetOpcode::G_ZEXT: { 2939 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2940 break; 2941 } 2942 case TargetOpcode::G_AND: 2943 case TargetOpcode::G_ASHR: 2944 case TargetOpcode::G_LSHR: 2945 case TargetOpcode::G_SHL: { 2946 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2947 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2948 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2949 return false; 2950 ExtraHandOpSrcReg = ZOp.getReg(); 2951 break; 2952 } 2953 } 2954 2955 // Record the steps to build the new instructions. 2956 // 2957 // Steps to build (logic x, y) 2958 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2959 OperandBuildSteps LogicBuildSteps = { 2960 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2961 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2962 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2963 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2964 2965 // Steps to build hand (logic x, y), ...z 2966 OperandBuildSteps HandBuildSteps = { 2967 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2968 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2969 if (ExtraHandOpSrcReg.isValid()) 2970 HandBuildSteps.push_back( 2971 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2972 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2973 2974 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2975 return true; 2976 } 2977 2978 void CombinerHelper::applyBuildInstructionSteps( 2979 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2980 assert(MatchInfo.InstrsToBuild.size() && 2981 "Expected at least one instr to build?"); 2982 Builder.setInstr(MI); 2983 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2984 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2985 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2986 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2987 for (auto &OperandFn : InstrToBuild.OperandFns) 2988 OperandFn(Instr); 2989 } 2990 MI.eraseFromParent(); 2991 } 2992 2993 bool CombinerHelper::matchAshrShlToSextInreg( 2994 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2995 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2996 int64_t ShlCst, AshrCst; 2997 Register Src; 2998 // FIXME: detect splat constant vectors. 2999 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3000 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 3001 return false; 3002 if (ShlCst != AshrCst) 3003 return false; 3004 if (!isLegalOrBeforeLegalizer( 3005 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 3006 return false; 3007 MatchInfo = std::make_tuple(Src, ShlCst); 3008 return true; 3009 } 3010 3011 void CombinerHelper::applyAshShlToSextInreg( 3012 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 3013 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 3014 Register Src; 3015 int64_t ShiftAmt; 3016 std::tie(Src, ShiftAmt) = MatchInfo; 3017 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 3018 Builder.setInstrAndDebugLoc(MI); 3019 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 3020 MI.eraseFromParent(); 3021 } 3022 3023 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 3024 bool CombinerHelper::matchOverlappingAnd( 3025 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3026 assert(MI.getOpcode() == TargetOpcode::G_AND); 3027 3028 Register Dst = MI.getOperand(0).getReg(); 3029 LLT Ty = MRI.getType(Dst); 3030 3031 Register R; 3032 int64_t C1; 3033 int64_t C2; 3034 if (!mi_match( 3035 Dst, MRI, 3036 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 3037 return false; 3038 3039 MatchInfo = [=](MachineIRBuilder &B) { 3040 if (C1 & C2) { 3041 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 3042 return; 3043 } 3044 auto Zero = B.buildConstant(Ty, 0); 3045 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 3046 }; 3047 return true; 3048 } 3049 3050 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 3051 Register &Replacement) { 3052 // Given 3053 // 3054 // %y:_(sN) = G_SOMETHING 3055 // %x:_(sN) = G_SOMETHING 3056 // %res:_(sN) = G_AND %x, %y 3057 // 3058 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 3059 // 3060 // Patterns like this can appear as a result of legalization. E.g. 3061 // 3062 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 3063 // %one:_(s32) = G_CONSTANT i32 1 3064 // %and:_(s32) = G_AND %cmp, %one 3065 // 3066 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 3067 assert(MI.getOpcode() == TargetOpcode::G_AND); 3068 if (!KB) 3069 return false; 3070 3071 Register AndDst = MI.getOperand(0).getReg(); 3072 LLT DstTy = MRI.getType(AndDst); 3073 3074 // FIXME: This should be removed once GISelKnownBits supports vectors. 3075 if (DstTy.isVector()) 3076 return false; 3077 3078 Register LHS = MI.getOperand(1).getReg(); 3079 Register RHS = MI.getOperand(2).getReg(); 3080 KnownBits LHSBits = KB->getKnownBits(LHS); 3081 KnownBits RHSBits = KB->getKnownBits(RHS); 3082 3083 // Check that x & Mask == x. 3084 // x & 1 == x, always 3085 // x & 0 == x, only if x is also 0 3086 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 3087 // 3088 // Check if we can replace AndDst with the LHS of the G_AND 3089 if (canReplaceReg(AndDst, LHS, MRI) && 3090 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3091 Replacement = LHS; 3092 return true; 3093 } 3094 3095 // Check if we can replace AndDst with the RHS of the G_AND 3096 if (canReplaceReg(AndDst, RHS, MRI) && 3097 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3098 Replacement = RHS; 3099 return true; 3100 } 3101 3102 return false; 3103 } 3104 3105 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 3106 // Given 3107 // 3108 // %y:_(sN) = G_SOMETHING 3109 // %x:_(sN) = G_SOMETHING 3110 // %res:_(sN) = G_OR %x, %y 3111 // 3112 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 3113 assert(MI.getOpcode() == TargetOpcode::G_OR); 3114 if (!KB) 3115 return false; 3116 3117 Register OrDst = MI.getOperand(0).getReg(); 3118 LLT DstTy = MRI.getType(OrDst); 3119 3120 // FIXME: This should be removed once GISelKnownBits supports vectors. 3121 if (DstTy.isVector()) 3122 return false; 3123 3124 Register LHS = MI.getOperand(1).getReg(); 3125 Register RHS = MI.getOperand(2).getReg(); 3126 KnownBits LHSBits = KB->getKnownBits(LHS); 3127 KnownBits RHSBits = KB->getKnownBits(RHS); 3128 3129 // Check that x | Mask == x. 3130 // x | 0 == x, always 3131 // x | 1 == x, only if x is also 1 3132 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 3133 // 3134 // Check if we can replace OrDst with the LHS of the G_OR 3135 if (canReplaceReg(OrDst, LHS, MRI) && 3136 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3137 Replacement = LHS; 3138 return true; 3139 } 3140 3141 // Check if we can replace OrDst with the RHS of the G_OR 3142 if (canReplaceReg(OrDst, RHS, MRI) && 3143 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3144 Replacement = RHS; 3145 return true; 3146 } 3147 3148 return false; 3149 } 3150 3151 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 3152 // If the input is already sign extended, just drop the extension. 3153 Register Src = MI.getOperand(1).getReg(); 3154 unsigned ExtBits = MI.getOperand(2).getImm(); 3155 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 3156 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 3157 } 3158 3159 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 3160 int64_t Cst, bool IsVector, bool IsFP) { 3161 // For i1, Cst will always be -1 regardless of boolean contents. 3162 return (ScalarSizeBits == 1 && Cst == -1) || 3163 isConstTrueVal(TLI, Cst, IsVector, IsFP); 3164 } 3165 3166 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 3167 SmallVectorImpl<Register> &RegsToNegate) { 3168 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3169 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3170 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 3171 Register XorSrc; 3172 Register CstReg; 3173 // We match xor(src, true) here. 3174 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3175 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 3176 return false; 3177 3178 if (!MRI.hasOneNonDBGUse(XorSrc)) 3179 return false; 3180 3181 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 3182 // and ORs. The suffix of RegsToNegate starting from index I is used a work 3183 // list of tree nodes to visit. 3184 RegsToNegate.push_back(XorSrc); 3185 // Remember whether the comparisons are all integer or all floating point. 3186 bool IsInt = false; 3187 bool IsFP = false; 3188 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 3189 Register Reg = RegsToNegate[I]; 3190 if (!MRI.hasOneNonDBGUse(Reg)) 3191 return false; 3192 MachineInstr *Def = MRI.getVRegDef(Reg); 3193 switch (Def->getOpcode()) { 3194 default: 3195 // Don't match if the tree contains anything other than ANDs, ORs and 3196 // comparisons. 3197 return false; 3198 case TargetOpcode::G_ICMP: 3199 if (IsFP) 3200 return false; 3201 IsInt = true; 3202 // When we apply the combine we will invert the predicate. 3203 break; 3204 case TargetOpcode::G_FCMP: 3205 if (IsInt) 3206 return false; 3207 IsFP = true; 3208 // When we apply the combine we will invert the predicate. 3209 break; 3210 case TargetOpcode::G_AND: 3211 case TargetOpcode::G_OR: 3212 // Implement De Morgan's laws: 3213 // ~(x & y) -> ~x | ~y 3214 // ~(x | y) -> ~x & ~y 3215 // When we apply the combine we will change the opcode and recursively 3216 // negate the operands. 3217 RegsToNegate.push_back(Def->getOperand(1).getReg()); 3218 RegsToNegate.push_back(Def->getOperand(2).getReg()); 3219 break; 3220 } 3221 } 3222 3223 // Now we know whether the comparisons are integer or floating point, check 3224 // the constant in the xor. 3225 int64_t Cst; 3226 if (Ty.isVector()) { 3227 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 3228 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 3229 if (!MaybeCst) 3230 return false; 3231 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 3232 return false; 3233 } else { 3234 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 3235 return false; 3236 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 3237 return false; 3238 } 3239 3240 return true; 3241 } 3242 3243 void CombinerHelper::applyNotCmp(MachineInstr &MI, 3244 SmallVectorImpl<Register> &RegsToNegate) { 3245 for (Register Reg : RegsToNegate) { 3246 MachineInstr *Def = MRI.getVRegDef(Reg); 3247 Observer.changingInstr(*Def); 3248 // For each comparison, invert the opcode. For each AND and OR, change the 3249 // opcode. 3250 switch (Def->getOpcode()) { 3251 default: 3252 llvm_unreachable("Unexpected opcode"); 3253 case TargetOpcode::G_ICMP: 3254 case TargetOpcode::G_FCMP: { 3255 MachineOperand &PredOp = Def->getOperand(1); 3256 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 3257 (CmpInst::Predicate)PredOp.getPredicate()); 3258 PredOp.setPredicate(NewP); 3259 break; 3260 } 3261 case TargetOpcode::G_AND: 3262 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3263 break; 3264 case TargetOpcode::G_OR: 3265 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3266 break; 3267 } 3268 Observer.changedInstr(*Def); 3269 } 3270 3271 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3272 MI.eraseFromParent(); 3273 } 3274 3275 bool CombinerHelper::matchXorOfAndWithSameReg( 3276 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3277 // Match (xor (and x, y), y) (or any of its commuted cases) 3278 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3279 Register &X = MatchInfo.first; 3280 Register &Y = MatchInfo.second; 3281 Register AndReg = MI.getOperand(1).getReg(); 3282 Register SharedReg = MI.getOperand(2).getReg(); 3283 3284 // Find a G_AND on either side of the G_XOR. 3285 // Look for one of 3286 // 3287 // (xor (and x, y), SharedReg) 3288 // (xor SharedReg, (and x, y)) 3289 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3290 std::swap(AndReg, SharedReg); 3291 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3292 return false; 3293 } 3294 3295 // Only do this if we'll eliminate the G_AND. 3296 if (!MRI.hasOneNonDBGUse(AndReg)) 3297 return false; 3298 3299 // We can combine if SharedReg is the same as either the LHS or RHS of the 3300 // G_AND. 3301 if (Y != SharedReg) 3302 std::swap(X, Y); 3303 return Y == SharedReg; 3304 } 3305 3306 void CombinerHelper::applyXorOfAndWithSameReg( 3307 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3308 // Fold (xor (and x, y), y) -> (and (not x), y) 3309 Builder.setInstrAndDebugLoc(MI); 3310 Register X, Y; 3311 std::tie(X, Y) = MatchInfo; 3312 auto Not = Builder.buildNot(MRI.getType(X), X); 3313 Observer.changingInstr(MI); 3314 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3315 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3316 MI.getOperand(2).setReg(Y); 3317 Observer.changedInstr(MI); 3318 } 3319 3320 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3321 Register DstReg = MI.getOperand(0).getReg(); 3322 LLT Ty = MRI.getType(DstReg); 3323 const DataLayout &DL = Builder.getMF().getDataLayout(); 3324 3325 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3326 return false; 3327 3328 if (Ty.isPointer()) { 3329 auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI); 3330 return ConstVal && *ConstVal == 0; 3331 } 3332 3333 assert(Ty.isVector() && "Expecting a vector type"); 3334 const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg()); 3335 return isBuildVectorAllZeros(*VecMI, MRI); 3336 } 3337 3338 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3339 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 3340 Builder.setInstrAndDebugLoc(MI); 3341 Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2)); 3342 MI.eraseFromParent(); 3343 } 3344 3345 /// The second source operand is known to be a power of 2. 3346 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3347 Register DstReg = MI.getOperand(0).getReg(); 3348 Register Src0 = MI.getOperand(1).getReg(); 3349 Register Pow2Src1 = MI.getOperand(2).getReg(); 3350 LLT Ty = MRI.getType(DstReg); 3351 Builder.setInstrAndDebugLoc(MI); 3352 3353 // Fold (urem x, pow2) -> (and x, pow2-1) 3354 auto NegOne = Builder.buildConstant(Ty, -1); 3355 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3356 Builder.buildAnd(DstReg, Src0, Add); 3357 MI.eraseFromParent(); 3358 } 3359 3360 Optional<SmallVector<Register, 8>> 3361 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3362 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3363 // We want to detect if Root is part of a tree which represents a bunch 3364 // of loads being merged into a larger load. We'll try to recognize patterns 3365 // like, for example: 3366 // 3367 // Reg Reg 3368 // \ / 3369 // OR_1 Reg 3370 // \ / 3371 // OR_2 3372 // \ Reg 3373 // .. / 3374 // Root 3375 // 3376 // Reg Reg Reg Reg 3377 // \ / \ / 3378 // OR_1 OR_2 3379 // \ / 3380 // \ / 3381 // ... 3382 // Root 3383 // 3384 // Each "Reg" may have been produced by a load + some arithmetic. This 3385 // function will save each of them. 3386 SmallVector<Register, 8> RegsToVisit; 3387 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3388 3389 // In the "worst" case, we're dealing with a load for each byte. So, there 3390 // are at most #bytes - 1 ORs. 3391 const unsigned MaxIter = 3392 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3393 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3394 if (Ors.empty()) 3395 break; 3396 const MachineInstr *Curr = Ors.pop_back_val(); 3397 Register OrLHS = Curr->getOperand(1).getReg(); 3398 Register OrRHS = Curr->getOperand(2).getReg(); 3399 3400 // In the combine, we want to elimate the entire tree. 3401 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3402 return None; 3403 3404 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3405 // something that may be a load + arithmetic. 3406 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3407 Ors.push_back(Or); 3408 else 3409 RegsToVisit.push_back(OrLHS); 3410 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3411 Ors.push_back(Or); 3412 else 3413 RegsToVisit.push_back(OrRHS); 3414 } 3415 3416 // We're going to try and merge each register into a wider power-of-2 type, 3417 // so we ought to have an even number of registers. 3418 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3419 return None; 3420 return RegsToVisit; 3421 } 3422 3423 /// Helper function for findLoadOffsetsForLoadOrCombine. 3424 /// 3425 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3426 /// and then moving that value into a specific byte offset. 3427 /// 3428 /// e.g. x[i] << 24 3429 /// 3430 /// \returns The load instruction and the byte offset it is moved into. 3431 static Optional<std::pair<GZExtLoad *, int64_t>> 3432 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3433 const MachineRegisterInfo &MRI) { 3434 assert(MRI.hasOneNonDBGUse(Reg) && 3435 "Expected Reg to only have one non-debug use?"); 3436 Register MaybeLoad; 3437 int64_t Shift; 3438 if (!mi_match(Reg, MRI, 3439 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3440 Shift = 0; 3441 MaybeLoad = Reg; 3442 } 3443 3444 if (Shift % MemSizeInBits != 0) 3445 return None; 3446 3447 // TODO: Handle other types of loads. 3448 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3449 if (!Load) 3450 return None; 3451 3452 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3453 return None; 3454 3455 return std::make_pair(Load, Shift / MemSizeInBits); 3456 } 3457 3458 Optional<std::pair<GZExtLoad *, int64_t>> 3459 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3460 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3461 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3462 3463 // Each load found for the pattern. There should be one for each RegsToVisit. 3464 SmallSetVector<const MachineInstr *, 8> Loads; 3465 3466 // The lowest index used in any load. (The lowest "i" for each x[i].) 3467 int64_t LowestIdx = INT64_MAX; 3468 3469 // The load which uses the lowest index. 3470 GZExtLoad *LowestIdxLoad = nullptr; 3471 3472 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3473 SmallSet<int64_t, 8> SeenIdx; 3474 3475 // Ensure each load is in the same MBB. 3476 // TODO: Support multiple MachineBasicBlocks. 3477 MachineBasicBlock *MBB = nullptr; 3478 const MachineMemOperand *MMO = nullptr; 3479 3480 // Earliest instruction-order load in the pattern. 3481 MachineInstr *EarliestLoad = nullptr; 3482 3483 // Latest instruction-order load in the pattern. 3484 MachineInstr *LatestLoad = nullptr; 3485 3486 // Base pointer which every load should share. 3487 Register BasePtr; 3488 3489 // We want to find a load for each register. Each load should have some 3490 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3491 // track of the load which uses the lowest index. Later, we will check if we 3492 // can use its pointer in the final, combined load. 3493 for (auto Reg : RegsToVisit) { 3494 // Find the load, and find the position that it will end up in (e.g. a 3495 // shifted) value. 3496 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3497 if (!LoadAndPos) 3498 return None; 3499 GZExtLoad *Load; 3500 int64_t DstPos; 3501 std::tie(Load, DstPos) = *LoadAndPos; 3502 3503 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3504 // it is difficult to check for stores/calls/etc between loads. 3505 MachineBasicBlock *LoadMBB = Load->getParent(); 3506 if (!MBB) 3507 MBB = LoadMBB; 3508 if (LoadMBB != MBB) 3509 return None; 3510 3511 // Make sure that the MachineMemOperands of every seen load are compatible. 3512 auto &LoadMMO = Load->getMMO(); 3513 if (!MMO) 3514 MMO = &LoadMMO; 3515 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3516 return None; 3517 3518 // Find out what the base pointer and index for the load is. 3519 Register LoadPtr; 3520 int64_t Idx; 3521 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3522 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3523 LoadPtr = Load->getOperand(1).getReg(); 3524 Idx = 0; 3525 } 3526 3527 // Don't combine things like a[i], a[i] -> a bigger load. 3528 if (!SeenIdx.insert(Idx).second) 3529 return None; 3530 3531 // Every load must share the same base pointer; don't combine things like: 3532 // 3533 // a[i], b[i + 1] -> a bigger load. 3534 if (!BasePtr.isValid()) 3535 BasePtr = LoadPtr; 3536 if (BasePtr != LoadPtr) 3537 return None; 3538 3539 if (Idx < LowestIdx) { 3540 LowestIdx = Idx; 3541 LowestIdxLoad = Load; 3542 } 3543 3544 // Keep track of the byte offset that this load ends up at. If we have seen 3545 // the byte offset, then stop here. We do not want to combine: 3546 // 3547 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3548 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3549 return None; 3550 Loads.insert(Load); 3551 3552 // Keep track of the position of the earliest/latest loads in the pattern. 3553 // We will check that there are no load fold barriers between them later 3554 // on. 3555 // 3556 // FIXME: Is there a better way to check for load fold barriers? 3557 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3558 EarliestLoad = Load; 3559 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3560 LatestLoad = Load; 3561 } 3562 3563 // We found a load for each register. Let's check if each load satisfies the 3564 // pattern. 3565 assert(Loads.size() == RegsToVisit.size() && 3566 "Expected to find a load for each register?"); 3567 assert(EarliestLoad != LatestLoad && EarliestLoad && 3568 LatestLoad && "Expected at least two loads?"); 3569 3570 // Check if there are any stores, calls, etc. between any of the loads. If 3571 // there are, then we can't safely perform the combine. 3572 // 3573 // MaxIter is chosen based off the (worst case) number of iterations it 3574 // typically takes to succeed in the LLVM test suite plus some padding. 3575 // 3576 // FIXME: Is there a better way to check for load fold barriers? 3577 const unsigned MaxIter = 20; 3578 unsigned Iter = 0; 3579 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3580 LatestLoad->getIterator())) { 3581 if (Loads.count(&MI)) 3582 continue; 3583 if (MI.isLoadFoldBarrier()) 3584 return None; 3585 if (Iter++ == MaxIter) 3586 return None; 3587 } 3588 3589 return std::make_pair(LowestIdxLoad, LowestIdx); 3590 } 3591 3592 bool CombinerHelper::matchLoadOrCombine( 3593 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3594 assert(MI.getOpcode() == TargetOpcode::G_OR); 3595 MachineFunction &MF = *MI.getMF(); 3596 // Assuming a little-endian target, transform: 3597 // s8 *a = ... 3598 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3599 // => 3600 // s32 val = *((i32)a) 3601 // 3602 // s8 *a = ... 3603 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3604 // => 3605 // s32 val = BSWAP(*((s32)a)) 3606 Register Dst = MI.getOperand(0).getReg(); 3607 LLT Ty = MRI.getType(Dst); 3608 if (Ty.isVector()) 3609 return false; 3610 3611 // We need to combine at least two loads into this type. Since the smallest 3612 // possible load is into a byte, we need at least a 16-bit wide type. 3613 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3614 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3615 return false; 3616 3617 // Match a collection of non-OR instructions in the pattern. 3618 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3619 if (!RegsToVisit) 3620 return false; 3621 3622 // We have a collection of non-OR instructions. Figure out how wide each of 3623 // the small loads should be based off of the number of potential loads we 3624 // found. 3625 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3626 if (NarrowMemSizeInBits % 8 != 0) 3627 return false; 3628 3629 // Check if each register feeding into each OR is a load from the same 3630 // base pointer + some arithmetic. 3631 // 3632 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3633 // 3634 // Also verify that each of these ends up putting a[i] into the same memory 3635 // offset as a load into a wide type would. 3636 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3637 GZExtLoad *LowestIdxLoad; 3638 int64_t LowestIdx; 3639 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3640 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3641 if (!MaybeLoadInfo) 3642 return false; 3643 std::tie(LowestIdxLoad, LowestIdx) = *MaybeLoadInfo; 3644 3645 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3646 // we found before, check if this corresponds to a big or little endian byte 3647 // pattern. If it does, then we can represent it using a load + possibly a 3648 // BSWAP. 3649 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3650 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3651 if (!IsBigEndian.hasValue()) 3652 return false; 3653 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3654 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3655 return false; 3656 3657 // Make sure that the load from the lowest index produces offset 0 in the 3658 // final value. 3659 // 3660 // This ensures that we won't combine something like this: 3661 // 3662 // load x[i] -> byte 2 3663 // load x[i+1] -> byte 0 ---> wide_load x[i] 3664 // load x[i+2] -> byte 1 3665 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3666 const unsigned ZeroByteOffset = 3667 *IsBigEndian 3668 ? bigEndianByteAt(NumLoadsInTy, 0) 3669 : littleEndianByteAt(NumLoadsInTy, 0); 3670 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3671 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3672 ZeroOffsetIdx->second != LowestIdx) 3673 return false; 3674 3675 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3676 // may not use index 0. 3677 Register Ptr = LowestIdxLoad->getPointerReg(); 3678 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3679 LegalityQuery::MemDesc MMDesc; 3680 MMDesc.MemoryTy = Ty; 3681 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 3682 MMDesc.Ordering = MMO.getSuccessOrdering(); 3683 if (!isLegalOrBeforeLegalizer( 3684 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3685 return false; 3686 auto PtrInfo = MMO.getPointerInfo(); 3687 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3688 3689 // Load must be allowed and fast on the target. 3690 LLVMContext &C = MF.getFunction().getContext(); 3691 auto &DL = MF.getDataLayout(); 3692 bool Fast = false; 3693 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3694 !Fast) 3695 return false; 3696 3697 MatchInfo = [=](MachineIRBuilder &MIB) { 3698 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3699 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3700 if (NeedsBSwap) 3701 MIB.buildBSwap(Dst, LoadDst); 3702 }; 3703 return true; 3704 } 3705 3706 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3707 MachineInstr *&ExtMI) { 3708 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3709 3710 Register DstReg = MI.getOperand(0).getReg(); 3711 3712 // TODO: Extending a vector may be expensive, don't do this until heuristics 3713 // are better. 3714 if (MRI.getType(DstReg).isVector()) 3715 return false; 3716 3717 // Try to match a phi, whose only use is an extend. 3718 if (!MRI.hasOneNonDBGUse(DstReg)) 3719 return false; 3720 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3721 switch (ExtMI->getOpcode()) { 3722 case TargetOpcode::G_ANYEXT: 3723 return true; // G_ANYEXT is usually free. 3724 case TargetOpcode::G_ZEXT: 3725 case TargetOpcode::G_SEXT: 3726 break; 3727 default: 3728 return false; 3729 } 3730 3731 // If the target is likely to fold this extend away, don't propagate. 3732 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3733 return false; 3734 3735 // We don't want to propagate the extends unless there's a good chance that 3736 // they'll be optimized in some way. 3737 // Collect the unique incoming values. 3738 SmallPtrSet<MachineInstr *, 4> InSrcs; 3739 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3740 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3741 switch (DefMI->getOpcode()) { 3742 case TargetOpcode::G_LOAD: 3743 case TargetOpcode::G_TRUNC: 3744 case TargetOpcode::G_SEXT: 3745 case TargetOpcode::G_ZEXT: 3746 case TargetOpcode::G_ANYEXT: 3747 case TargetOpcode::G_CONSTANT: 3748 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3749 // Don't try to propagate if there are too many places to create new 3750 // extends, chances are it'll increase code size. 3751 if (InSrcs.size() > 2) 3752 return false; 3753 break; 3754 default: 3755 return false; 3756 } 3757 } 3758 return true; 3759 } 3760 3761 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3762 MachineInstr *&ExtMI) { 3763 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3764 Register DstReg = ExtMI->getOperand(0).getReg(); 3765 LLT ExtTy = MRI.getType(DstReg); 3766 3767 // Propagate the extension into the block of each incoming reg's block. 3768 // Use a SetVector here because PHIs can have duplicate edges, and we want 3769 // deterministic iteration order. 3770 SmallSetVector<MachineInstr *, 8> SrcMIs; 3771 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3772 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3773 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3774 if (!SrcMIs.insert(SrcMI)) 3775 continue; 3776 3777 // Build an extend after each src inst. 3778 auto *MBB = SrcMI->getParent(); 3779 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3780 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3781 InsertPt = MBB->getFirstNonPHI(); 3782 3783 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3784 Builder.setDebugLoc(MI.getDebugLoc()); 3785 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3786 SrcMI->getOperand(0).getReg()); 3787 OldToNewSrcMap[SrcMI] = NewExt; 3788 } 3789 3790 // Create a new phi with the extended inputs. 3791 Builder.setInstrAndDebugLoc(MI); 3792 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3793 NewPhi.addDef(DstReg); 3794 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3795 auto &MO = MI.getOperand(SrcIdx); 3796 if (!MO.isReg()) { 3797 NewPhi.addMBB(MO.getMBB()); 3798 continue; 3799 } 3800 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3801 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3802 } 3803 Builder.insertInstr(NewPhi); 3804 ExtMI->eraseFromParent(); 3805 } 3806 3807 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3808 Register &Reg) { 3809 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3810 // If we have a constant index, look for a G_BUILD_VECTOR source 3811 // and find the source register that the index maps to. 3812 Register SrcVec = MI.getOperand(1).getReg(); 3813 LLT SrcTy = MRI.getType(SrcVec); 3814 if (!isLegalOrBeforeLegalizer( 3815 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3816 return false; 3817 3818 auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3819 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3820 return false; 3821 3822 unsigned VecIdx = Cst->Value.getZExtValue(); 3823 MachineInstr *BuildVecMI = 3824 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3825 if (!BuildVecMI) { 3826 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3827 if (!BuildVecMI) 3828 return false; 3829 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3830 if (!isLegalOrBeforeLegalizer( 3831 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3832 return false; 3833 } 3834 3835 EVT Ty(getMVTForLLT(SrcTy)); 3836 if (!MRI.hasOneNonDBGUse(SrcVec) && 3837 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3838 return false; 3839 3840 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3841 return true; 3842 } 3843 3844 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3845 Register &Reg) { 3846 // Check the type of the register, since it may have come from a 3847 // G_BUILD_VECTOR_TRUNC. 3848 LLT ScalarTy = MRI.getType(Reg); 3849 Register DstReg = MI.getOperand(0).getReg(); 3850 LLT DstTy = MRI.getType(DstReg); 3851 3852 Builder.setInstrAndDebugLoc(MI); 3853 if (ScalarTy != DstTy) { 3854 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3855 Builder.buildTrunc(DstReg, Reg); 3856 MI.eraseFromParent(); 3857 return; 3858 } 3859 replaceSingleDefInstWithReg(MI, Reg); 3860 } 3861 3862 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3863 MachineInstr &MI, 3864 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3865 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3866 // This combine tries to find build_vector's which have every source element 3867 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3868 // the masked load scalarization is run late in the pipeline. There's already 3869 // a combine for a similar pattern starting from the extract, but that 3870 // doesn't attempt to do it if there are multiple uses of the build_vector, 3871 // which in this case is true. Starting the combine from the build_vector 3872 // feels more natural than trying to find sibling nodes of extracts. 3873 // E.g. 3874 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3875 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3876 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3877 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3878 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3879 // ==> 3880 // replace ext{1,2,3,4} with %s{1,2,3,4} 3881 3882 Register DstReg = MI.getOperand(0).getReg(); 3883 LLT DstTy = MRI.getType(DstReg); 3884 unsigned NumElts = DstTy.getNumElements(); 3885 3886 SmallBitVector ExtractedElts(NumElts); 3887 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), 3888 MRI.use_instr_nodbg_end())) { 3889 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3890 return false; 3891 auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI); 3892 if (!Cst) 3893 return false; 3894 unsigned Idx = Cst.getValue().getZExtValue(); 3895 if (Idx >= NumElts) 3896 return false; // Out of range. 3897 ExtractedElts.set(Idx); 3898 SrcDstPairs.emplace_back( 3899 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3900 } 3901 // Match if every element was extracted. 3902 return ExtractedElts.all(); 3903 } 3904 3905 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3906 MachineInstr &MI, 3907 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3908 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3909 for (auto &Pair : SrcDstPairs) { 3910 auto *ExtMI = Pair.second; 3911 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3912 ExtMI->eraseFromParent(); 3913 } 3914 MI.eraseFromParent(); 3915 } 3916 3917 void CombinerHelper::applyBuildFn( 3918 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3919 Builder.setInstrAndDebugLoc(MI); 3920 MatchInfo(Builder); 3921 MI.eraseFromParent(); 3922 } 3923 3924 void CombinerHelper::applyBuildFnNoErase( 3925 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3926 Builder.setInstrAndDebugLoc(MI); 3927 MatchInfo(Builder); 3928 } 3929 3930 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3931 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3932 unsigned Opc = MI.getOpcode(); 3933 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3934 Register X = MI.getOperand(1).getReg(); 3935 Register Y = MI.getOperand(2).getReg(); 3936 if (X != Y) 3937 return false; 3938 unsigned RotateOpc = 3939 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3940 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3941 } 3942 3943 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3944 unsigned Opc = MI.getOpcode(); 3945 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3946 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3947 Observer.changingInstr(MI); 3948 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3949 : TargetOpcode::G_ROTR)); 3950 MI.RemoveOperand(2); 3951 Observer.changedInstr(MI); 3952 } 3953 3954 // Fold (rot x, c) -> (rot x, c % BitSize) 3955 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3956 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3957 MI.getOpcode() == TargetOpcode::G_ROTR); 3958 unsigned Bitsize = 3959 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3960 Register AmtReg = MI.getOperand(2).getReg(); 3961 bool OutOfRange = false; 3962 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 3963 if (auto *CI = dyn_cast<ConstantInt>(C)) 3964 OutOfRange |= CI->getValue().uge(Bitsize); 3965 return true; 3966 }; 3967 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 3968 } 3969 3970 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 3971 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3972 MI.getOpcode() == TargetOpcode::G_ROTR); 3973 unsigned Bitsize = 3974 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3975 Builder.setInstrAndDebugLoc(MI); 3976 Register Amt = MI.getOperand(2).getReg(); 3977 LLT AmtTy = MRI.getType(Amt); 3978 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 3979 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 3980 Observer.changingInstr(MI); 3981 MI.getOperand(2).setReg(Amt); 3982 Observer.changedInstr(MI); 3983 } 3984 3985 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 3986 int64_t &MatchInfo) { 3987 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3988 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3989 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 3990 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 3991 Optional<bool> KnownVal; 3992 switch (Pred) { 3993 default: 3994 llvm_unreachable("Unexpected G_ICMP predicate?"); 3995 case CmpInst::ICMP_EQ: 3996 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 3997 break; 3998 case CmpInst::ICMP_NE: 3999 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 4000 break; 4001 case CmpInst::ICMP_SGE: 4002 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 4003 break; 4004 case CmpInst::ICMP_SGT: 4005 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 4006 break; 4007 case CmpInst::ICMP_SLE: 4008 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 4009 break; 4010 case CmpInst::ICMP_SLT: 4011 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 4012 break; 4013 case CmpInst::ICMP_UGE: 4014 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 4015 break; 4016 case CmpInst::ICMP_UGT: 4017 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 4018 break; 4019 case CmpInst::ICMP_ULE: 4020 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 4021 break; 4022 case CmpInst::ICMP_ULT: 4023 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 4024 break; 4025 } 4026 if (!KnownVal) 4027 return false; 4028 MatchInfo = 4029 *KnownVal 4030 ? getICmpTrueVal(getTargetLowering(), 4031 /*IsVector = */ 4032 MRI.getType(MI.getOperand(0).getReg()).isVector(), 4033 /* IsFP = */ false) 4034 : 0; 4035 return true; 4036 } 4037 4038 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4039 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4040 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4041 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4042 Register Dst = MI.getOperand(0).getReg(); 4043 Register Src = MI.getOperand(1).getReg(); 4044 LLT Ty = MRI.getType(Src); 4045 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4046 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4047 return false; 4048 int64_t Width = MI.getOperand(2).getImm(); 4049 Register ShiftSrc; 4050 int64_t ShiftImm; 4051 if (!mi_match( 4052 Src, MRI, 4053 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4054 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4055 return false; 4056 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4057 return false; 4058 4059 MatchInfo = [=](MachineIRBuilder &B) { 4060 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4061 auto Cst2 = B.buildConstant(ExtractTy, Width); 4062 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4063 }; 4064 return true; 4065 } 4066 4067 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4068 bool CombinerHelper::matchBitfieldExtractFromAnd( 4069 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4070 assert(MI.getOpcode() == TargetOpcode::G_AND); 4071 Register Dst = MI.getOperand(0).getReg(); 4072 LLT Ty = MRI.getType(Dst); 4073 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 4074 TargetOpcode::G_UBFX, Ty, Ty)) 4075 return false; 4076 4077 int64_t AndImm, LSBImm; 4078 Register ShiftSrc; 4079 const unsigned Size = Ty.getScalarSizeInBits(); 4080 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4081 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4082 m_ICst(AndImm)))) 4083 return false; 4084 4085 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4086 auto MaybeMask = static_cast<uint64_t>(AndImm); 4087 if (MaybeMask & (MaybeMask + 1)) 4088 return false; 4089 4090 // LSB must fit within the register. 4091 if (static_cast<uint64_t>(LSBImm) >= Size) 4092 return false; 4093 4094 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4095 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4096 MatchInfo = [=](MachineIRBuilder &B) { 4097 auto WidthCst = B.buildConstant(ExtractTy, Width); 4098 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4099 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4100 }; 4101 return true; 4102 } 4103 4104 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4105 MachineInstr &PtrAdd) { 4106 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4107 4108 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4109 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4110 if (!Src1Def) 4111 return false; 4112 4113 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4114 4115 if (MRI.hasOneNonDBGUse(Src1Reg)) 4116 return false; 4117 4118 auto C1 = getConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4119 if (!C1) 4120 return false; 4121 auto C2 = getConstantVRegVal(Src2Reg, MRI); 4122 if (!C2) 4123 return false; 4124 4125 const APInt &C1APIntVal = *C1; 4126 const APInt &C2APIntVal = *C2; 4127 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4128 4129 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4130 // This combine may end up running before ptrtoint/inttoptr combines 4131 // manage to eliminate redundant conversions, so try to look through them. 4132 MachineInstr *ConvUseMI = &UseMI; 4133 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4134 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4135 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4136 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4137 if (!MRI.hasOneNonDBGUse(DefReg)) 4138 break; 4139 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4140 ConvUseOpc = ConvUseMI->getOpcode(); 4141 } 4142 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4143 ConvUseOpc == TargetOpcode::G_STORE; 4144 if (!LoadStore) 4145 continue; 4146 // Is x[offset2] already not a legal addressing mode? If so then 4147 // reassociating the constants breaks nothing (we test offset2 because 4148 // that's the one we hope to fold into the load or store). 4149 TargetLoweringBase::AddrMode AM; 4150 AM.HasBaseReg = true; 4151 AM.BaseOffs = C2APIntVal.getSExtValue(); 4152 unsigned AS = 4153 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4154 Type *AccessTy = 4155 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4156 PtrAdd.getMF()->getFunction().getContext()); 4157 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4158 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4159 AccessTy, AS)) 4160 continue; 4161 4162 // Would x[offset1+offset2] still be a legal addressing mode? 4163 AM.BaseOffs = CombinedValue; 4164 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4165 AccessTy, AS)) 4166 return true; 4167 } 4168 4169 return false; 4170 } 4171 4172 bool CombinerHelper::matchReassocPtrAdd( 4173 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4174 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 4175 // We're trying to match a few pointer computation patterns here for 4176 // re-association opportunities. 4177 // 1) Isolating a constant operand to be on the RHS, e.g.: 4178 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4179 // 4180 // 2) Folding two constants in each sub-tree as long as such folding 4181 // doesn't break a legal addressing mode. 4182 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4183 Register Src1Reg = MI.getOperand(1).getReg(); 4184 Register Src2Reg = MI.getOperand(2).getReg(); 4185 MachineInstr *LHS = MRI.getVRegDef(Src1Reg); 4186 MachineInstr *RHS = MRI.getVRegDef(Src2Reg); 4187 4188 if (LHS->getOpcode() != TargetOpcode::G_PTR_ADD) { 4189 // Try to match example 1). 4190 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4191 return false; 4192 auto C2 = getConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4193 if (!C2) 4194 return false; 4195 4196 MatchInfo = [=,&MI](MachineIRBuilder &B) { 4197 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4198 4199 auto NewBase = 4200 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4201 Observer.changingInstr(MI); 4202 MI.getOperand(1).setReg(NewBase.getReg(0)); 4203 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4204 Observer.changedInstr(MI); 4205 }; 4206 } else { 4207 // Try to match example 2. 4208 Register LHSSrc1 = LHS->getOperand(1).getReg(); 4209 Register LHSSrc2 = LHS->getOperand(2).getReg(); 4210 auto C1 = getConstantVRegVal(LHSSrc2, MRI); 4211 if (!C1) 4212 return false; 4213 auto C2 = getConstantVRegVal(Src2Reg, MRI); 4214 if (!C2) 4215 return false; 4216 4217 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4218 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4219 Observer.changingInstr(MI); 4220 MI.getOperand(1).setReg(LHSSrc1); 4221 MI.getOperand(2).setReg(NewCst.getReg(0)); 4222 Observer.changedInstr(MI); 4223 }; 4224 } 4225 return !reassociationCanBreakAddressingModePattern(MI); 4226 } 4227 4228 bool CombinerHelper::tryCombine(MachineInstr &MI) { 4229 if (tryCombineCopy(MI)) 4230 return true; 4231 if (tryCombineExtendingLoads(MI)) 4232 return true; 4233 if (tryCombineIndexedLoadStore(MI)) 4234 return true; 4235 return false; 4236 } 4237