1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 17 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 20 #include "llvm/CodeGen/GlobalISel/Utils.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/CodeGen/TargetOpcodes.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/DivisionByConstantInfo.h" 35 #include "llvm/Support/MathExtras.h" 36 #include <tuple> 37 38 #define DEBUG_TYPE "gi-combiner" 39 40 using namespace llvm; 41 using namespace MIPatternMatch; 42 43 // Option to allow testing of the combiner while no targets know about indexed 44 // addressing. 45 static cl::opt<bool> 46 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 47 cl::desc("Force all indexed operations to be " 48 "legal for the GlobalISel combiner")); 49 50 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 51 MachineIRBuilder &B, GISelKnownBits *KB, 52 MachineDominatorTree *MDT, 53 const LegalizerInfo *LI) 54 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 55 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 56 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 57 (void)this->KB; 58 } 59 60 const TargetLowering &CombinerHelper::getTargetLowering() const { 61 return *Builder.getMF().getSubtarget().getTargetLowering(); 62 } 63 64 /// \returns The little endian in-memory byte position of byte \p I in a 65 /// \p ByteWidth bytes wide type. 66 /// 67 /// E.g. Given a 4-byte type x, x[0] -> byte 0 68 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 69 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 70 return I; 71 } 72 73 /// Determines the LogBase2 value for a non-null input value using the 74 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 75 static Register buildLogBase2(Register V, MachineIRBuilder &MIB) { 76 auto &MRI = *MIB.getMRI(); 77 LLT Ty = MRI.getType(V); 78 auto Ctlz = MIB.buildCTLZ(Ty, V); 79 auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1); 80 return MIB.buildSub(Ty, Base, Ctlz).getReg(0); 81 } 82 83 /// \returns The big endian in-memory byte position of byte \p I in a 84 /// \p ByteWidth bytes wide type. 85 /// 86 /// E.g. Given a 4-byte type x, x[0] -> byte 3 87 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 88 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 89 return ByteWidth - I - 1; 90 } 91 92 /// Given a map from byte offsets in memory to indices in a load/store, 93 /// determine if that map corresponds to a little or big endian byte pattern. 94 /// 95 /// \param MemOffset2Idx maps memory offsets to address offsets. 96 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 97 /// 98 /// \returns true if the map corresponds to a big endian byte pattern, false 99 /// if it corresponds to a little endian byte pattern, and None otherwise. 100 /// 101 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 102 /// are as follows: 103 /// 104 /// AddrOffset Little endian Big endian 105 /// 0 0 3 106 /// 1 1 2 107 /// 2 2 1 108 /// 3 3 0 109 static Optional<bool> 110 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 111 int64_t LowestIdx) { 112 // Need at least two byte positions to decide on endianness. 113 unsigned Width = MemOffset2Idx.size(); 114 if (Width < 2) 115 return None; 116 bool BigEndian = true, LittleEndian = true; 117 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 118 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 119 if (MemOffsetAndIdx == MemOffset2Idx.end()) 120 return None; 121 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 122 assert(Idx >= 0 && "Expected non-negative byte offset?"); 123 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 124 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 125 if (!BigEndian && !LittleEndian) 126 return None; 127 } 128 129 assert((BigEndian != LittleEndian) && 130 "Pattern cannot be both big and little endian!"); 131 return BigEndian; 132 } 133 134 bool CombinerHelper::isLegalOrBeforeLegalizer( 135 const LegalityQuery &Query) const { 136 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 137 } 138 139 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 140 Register ToReg) const { 141 Observer.changingAllUsesOfReg(MRI, FromReg); 142 143 if (MRI.constrainRegAttrs(ToReg, FromReg)) 144 MRI.replaceRegWith(FromReg, ToReg); 145 else 146 Builder.buildCopy(ToReg, FromReg); 147 148 Observer.finishedChangingAllUsesOfReg(); 149 } 150 151 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 152 MachineOperand &FromRegOp, 153 Register ToReg) const { 154 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 155 Observer.changingInstr(*FromRegOp.getParent()); 156 157 FromRegOp.setReg(ToReg); 158 159 Observer.changedInstr(*FromRegOp.getParent()); 160 } 161 162 void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI, 163 unsigned ToOpcode) const { 164 Observer.changingInstr(FromMI); 165 166 FromMI.setDesc(Builder.getTII().get(ToOpcode)); 167 168 Observer.changedInstr(FromMI); 169 } 170 171 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 172 return RBI->getRegBank(Reg, MRI, *TRI); 173 } 174 175 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 176 if (RegBank) 177 MRI.setRegBank(Reg, *RegBank); 178 } 179 180 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 181 if (matchCombineCopy(MI)) { 182 applyCombineCopy(MI); 183 return true; 184 } 185 return false; 186 } 187 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 188 if (MI.getOpcode() != TargetOpcode::COPY) 189 return false; 190 Register DstReg = MI.getOperand(0).getReg(); 191 Register SrcReg = MI.getOperand(1).getReg(); 192 return canReplaceReg(DstReg, SrcReg, MRI); 193 } 194 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 195 Register DstReg = MI.getOperand(0).getReg(); 196 Register SrcReg = MI.getOperand(1).getReg(); 197 MI.eraseFromParent(); 198 replaceRegWith(MRI, DstReg, SrcReg); 199 } 200 201 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 202 bool IsUndef = false; 203 SmallVector<Register, 4> Ops; 204 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 205 applyCombineConcatVectors(MI, IsUndef, Ops); 206 return true; 207 } 208 return false; 209 } 210 211 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 212 SmallVectorImpl<Register> &Ops) { 213 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 214 "Invalid instruction"); 215 IsUndef = true; 216 MachineInstr *Undef = nullptr; 217 218 // Walk over all the operands of concat vectors and check if they are 219 // build_vector themselves or undef. 220 // Then collect their operands in Ops. 221 for (const MachineOperand &MO : MI.uses()) { 222 Register Reg = MO.getReg(); 223 MachineInstr *Def = MRI.getVRegDef(Reg); 224 assert(Def && "Operand not defined"); 225 switch (Def->getOpcode()) { 226 case TargetOpcode::G_BUILD_VECTOR: 227 IsUndef = false; 228 // Remember the operands of the build_vector to fold 229 // them into the yet-to-build flattened concat vectors. 230 for (const MachineOperand &BuildVecMO : Def->uses()) 231 Ops.push_back(BuildVecMO.getReg()); 232 break; 233 case TargetOpcode::G_IMPLICIT_DEF: { 234 LLT OpType = MRI.getType(Reg); 235 // Keep one undef value for all the undef operands. 236 if (!Undef) { 237 Builder.setInsertPt(*MI.getParent(), MI); 238 Undef = Builder.buildUndef(OpType.getScalarType()); 239 } 240 assert(MRI.getType(Undef->getOperand(0).getReg()) == 241 OpType.getScalarType() && 242 "All undefs should have the same type"); 243 // Break the undef vector in as many scalar elements as needed 244 // for the flattening. 245 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 246 EltIdx != EltEnd; ++EltIdx) 247 Ops.push_back(Undef->getOperand(0).getReg()); 248 break; 249 } 250 default: 251 return false; 252 } 253 } 254 return true; 255 } 256 void CombinerHelper::applyCombineConcatVectors( 257 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 258 // We determined that the concat_vectors can be flatten. 259 // Generate the flattened build_vector. 260 Register DstReg = MI.getOperand(0).getReg(); 261 Builder.setInsertPt(*MI.getParent(), MI); 262 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 263 264 // Note: IsUndef is sort of redundant. We could have determine it by 265 // checking that at all Ops are undef. Alternatively, we could have 266 // generate a build_vector of undefs and rely on another combine to 267 // clean that up. For now, given we already gather this information 268 // in tryCombineConcatVectors, just save compile time and issue the 269 // right thing. 270 if (IsUndef) 271 Builder.buildUndef(NewDstReg); 272 else 273 Builder.buildBuildVector(NewDstReg, Ops); 274 MI.eraseFromParent(); 275 replaceRegWith(MRI, DstReg, NewDstReg); 276 } 277 278 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 279 SmallVector<Register, 4> Ops; 280 if (matchCombineShuffleVector(MI, Ops)) { 281 applyCombineShuffleVector(MI, Ops); 282 return true; 283 } 284 return false; 285 } 286 287 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 288 SmallVectorImpl<Register> &Ops) { 289 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 290 "Invalid instruction kind"); 291 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 292 Register Src1 = MI.getOperand(1).getReg(); 293 LLT SrcType = MRI.getType(Src1); 294 // As bizarre as it may look, shuffle vector can actually produce 295 // scalar! This is because at the IR level a <1 x ty> shuffle 296 // vector is perfectly valid. 297 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 298 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 299 300 // If the resulting vector is smaller than the size of the source 301 // vectors being concatenated, we won't be able to replace the 302 // shuffle vector into a concat_vectors. 303 // 304 // Note: We may still be able to produce a concat_vectors fed by 305 // extract_vector_elt and so on. It is less clear that would 306 // be better though, so don't bother for now. 307 // 308 // If the destination is a scalar, the size of the sources doesn't 309 // matter. we will lower the shuffle to a plain copy. This will 310 // work only if the source and destination have the same size. But 311 // that's covered by the next condition. 312 // 313 // TODO: If the size between the source and destination don't match 314 // we could still emit an extract vector element in that case. 315 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 316 return false; 317 318 // Check that the shuffle mask can be broken evenly between the 319 // different sources. 320 if (DstNumElts % SrcNumElts != 0) 321 return false; 322 323 // Mask length is a multiple of the source vector length. 324 // Check if the shuffle is some kind of concatenation of the input 325 // vectors. 326 unsigned NumConcat = DstNumElts / SrcNumElts; 327 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 328 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 329 for (unsigned i = 0; i != DstNumElts; ++i) { 330 int Idx = Mask[i]; 331 // Undef value. 332 if (Idx < 0) 333 continue; 334 // Ensure the indices in each SrcType sized piece are sequential and that 335 // the same source is used for the whole piece. 336 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 337 (ConcatSrcs[i / SrcNumElts] >= 0 && 338 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 339 return false; 340 // Remember which source this index came from. 341 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 342 } 343 344 // The shuffle is concatenating multiple vectors together. 345 // Collect the different operands for that. 346 Register UndefReg; 347 Register Src2 = MI.getOperand(2).getReg(); 348 for (auto Src : ConcatSrcs) { 349 if (Src < 0) { 350 if (!UndefReg) { 351 Builder.setInsertPt(*MI.getParent(), MI); 352 UndefReg = Builder.buildUndef(SrcType).getReg(0); 353 } 354 Ops.push_back(UndefReg); 355 } else if (Src == 0) 356 Ops.push_back(Src1); 357 else 358 Ops.push_back(Src2); 359 } 360 return true; 361 } 362 363 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 364 const ArrayRef<Register> Ops) { 365 Register DstReg = MI.getOperand(0).getReg(); 366 Builder.setInsertPt(*MI.getParent(), MI); 367 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 368 369 if (Ops.size() == 1) 370 Builder.buildCopy(NewDstReg, Ops[0]); 371 else 372 Builder.buildMerge(NewDstReg, Ops); 373 374 MI.eraseFromParent(); 375 replaceRegWith(MRI, DstReg, NewDstReg); 376 } 377 378 namespace { 379 380 /// Select a preference between two uses. CurrentUse is the current preference 381 /// while *ForCandidate is attributes of the candidate under consideration. 382 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 383 const LLT TyForCandidate, 384 unsigned OpcodeForCandidate, 385 MachineInstr *MIForCandidate) { 386 if (!CurrentUse.Ty.isValid()) { 387 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 388 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 389 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 390 return CurrentUse; 391 } 392 393 // We permit the extend to hoist through basic blocks but this is only 394 // sensible if the target has extending loads. If you end up lowering back 395 // into a load and extend during the legalizer then the end result is 396 // hoisting the extend up to the load. 397 398 // Prefer defined extensions to undefined extensions as these are more 399 // likely to reduce the number of instructions. 400 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 401 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 402 return CurrentUse; 403 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 404 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 405 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 406 407 // Prefer sign extensions to zero extensions as sign-extensions tend to be 408 // more expensive. 409 if (CurrentUse.Ty == TyForCandidate) { 410 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 411 OpcodeForCandidate == TargetOpcode::G_ZEXT) 412 return CurrentUse; 413 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 414 OpcodeForCandidate == TargetOpcode::G_SEXT) 415 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 416 } 417 418 // This is potentially target specific. We've chosen the largest type 419 // because G_TRUNC is usually free. One potential catch with this is that 420 // some targets have a reduced number of larger registers than smaller 421 // registers and this choice potentially increases the live-range for the 422 // larger value. 423 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 424 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 425 } 426 return CurrentUse; 427 } 428 429 /// Find a suitable place to insert some instructions and insert them. This 430 /// function accounts for special cases like inserting before a PHI node. 431 /// The current strategy for inserting before PHI's is to duplicate the 432 /// instructions for each predecessor. However, while that's ok for G_TRUNC 433 /// on most targets since it generally requires no code, other targets/cases may 434 /// want to try harder to find a dominating block. 435 static void InsertInsnsWithoutSideEffectsBeforeUse( 436 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 437 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 438 MachineOperand &UseMO)> 439 Inserter) { 440 MachineInstr &UseMI = *UseMO.getParent(); 441 442 MachineBasicBlock *InsertBB = UseMI.getParent(); 443 444 // If the use is a PHI then we want the predecessor block instead. 445 if (UseMI.isPHI()) { 446 MachineOperand *PredBB = std::next(&UseMO); 447 InsertBB = PredBB->getMBB(); 448 } 449 450 // If the block is the same block as the def then we want to insert just after 451 // the def instead of at the start of the block. 452 if (InsertBB == DefMI.getParent()) { 453 MachineBasicBlock::iterator InsertPt = &DefMI; 454 Inserter(InsertBB, std::next(InsertPt), UseMO); 455 return; 456 } 457 458 // Otherwise we want the start of the BB 459 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 460 } 461 } // end anonymous namespace 462 463 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 464 PreferredTuple Preferred; 465 if (matchCombineExtendingLoads(MI, Preferred)) { 466 applyCombineExtendingLoads(MI, Preferred); 467 return true; 468 } 469 return false; 470 } 471 472 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 473 PreferredTuple &Preferred) { 474 // We match the loads and follow the uses to the extend instead of matching 475 // the extends and following the def to the load. This is because the load 476 // must remain in the same position for correctness (unless we also add code 477 // to find a safe place to sink it) whereas the extend is freely movable. 478 // It also prevents us from duplicating the load for the volatile case or just 479 // for performance. 480 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 481 if (!LoadMI) 482 return false; 483 484 Register LoadReg = LoadMI->getDstReg(); 485 486 LLT LoadValueTy = MRI.getType(LoadReg); 487 if (!LoadValueTy.isScalar()) 488 return false; 489 490 // Most architectures are going to legalize <s8 loads into at least a 1 byte 491 // load, and the MMOs can only describe memory accesses in multiples of bytes. 492 // If we try to perform extload combining on those, we can end up with 493 // %a(s8) = extload %ptr (load 1 byte from %ptr) 494 // ... which is an illegal extload instruction. 495 if (LoadValueTy.getSizeInBits() < 8) 496 return false; 497 498 // For non power-of-2 types, they will very likely be legalized into multiple 499 // loads. Don't bother trying to match them into extending loads. 500 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 501 return false; 502 503 // Find the preferred type aside from the any-extends (unless it's the only 504 // one) and non-extending ops. We'll emit an extending load to that type and 505 // and emit a variant of (extend (trunc X)) for the others according to the 506 // relative type sizes. At the same time, pick an extend to use based on the 507 // extend involved in the chosen type. 508 unsigned PreferredOpcode = 509 isa<GLoad>(&MI) 510 ? TargetOpcode::G_ANYEXT 511 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 512 Preferred = {LLT(), PreferredOpcode, nullptr}; 513 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 514 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 515 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 516 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 517 const auto &MMO = LoadMI->getMMO(); 518 // For atomics, only form anyextending loads. 519 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 520 continue; 521 // Check for legality. 522 if (LI) { 523 LegalityQuery::MemDesc MMDesc(MMO); 524 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 525 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 526 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 527 .Action != LegalizeActions::Legal) 528 continue; 529 } 530 Preferred = ChoosePreferredUse(Preferred, 531 MRI.getType(UseMI.getOperand(0).getReg()), 532 UseMI.getOpcode(), &UseMI); 533 } 534 } 535 536 // There were no extends 537 if (!Preferred.MI) 538 return false; 539 // It should be impossible to chose an extend without selecting a different 540 // type since by definition the result of an extend is larger. 541 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 542 543 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 544 return true; 545 } 546 547 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 548 PreferredTuple &Preferred) { 549 // Rewrite the load to the chosen extending load. 550 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 551 552 // Inserter to insert a truncate back to the original type at a given point 553 // with some basic CSE to limit truncate duplication to one per BB. 554 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 555 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 556 MachineBasicBlock::iterator InsertBefore, 557 MachineOperand &UseMO) { 558 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 559 if (PreviouslyEmitted) { 560 Observer.changingInstr(*UseMO.getParent()); 561 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 562 Observer.changedInstr(*UseMO.getParent()); 563 return; 564 } 565 566 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 567 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 568 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 569 EmittedInsns[InsertIntoBB] = NewMI; 570 replaceRegOpWith(MRI, UseMO, NewDstReg); 571 }; 572 573 Observer.changingInstr(MI); 574 MI.setDesc( 575 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 576 ? TargetOpcode::G_SEXTLOAD 577 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 578 ? TargetOpcode::G_ZEXTLOAD 579 : TargetOpcode::G_LOAD)); 580 581 // Rewrite all the uses to fix up the types. 582 auto &LoadValue = MI.getOperand(0); 583 SmallVector<MachineOperand *, 4> Uses; 584 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 585 Uses.push_back(&UseMO); 586 587 for (auto *UseMO : Uses) { 588 MachineInstr *UseMI = UseMO->getParent(); 589 590 // If the extend is compatible with the preferred extend then we should fix 591 // up the type and extend so that it uses the preferred use. 592 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 593 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 594 Register UseDstReg = UseMI->getOperand(0).getReg(); 595 MachineOperand &UseSrcMO = UseMI->getOperand(1); 596 const LLT UseDstTy = MRI.getType(UseDstReg); 597 if (UseDstReg != ChosenDstReg) { 598 if (Preferred.Ty == UseDstTy) { 599 // If the use has the same type as the preferred use, then merge 600 // the vregs and erase the extend. For example: 601 // %1:_(s8) = G_LOAD ... 602 // %2:_(s32) = G_SEXT %1(s8) 603 // %3:_(s32) = G_ANYEXT %1(s8) 604 // ... = ... %3(s32) 605 // rewrites to: 606 // %2:_(s32) = G_SEXTLOAD ... 607 // ... = ... %2(s32) 608 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 609 Observer.erasingInstr(*UseMO->getParent()); 610 UseMO->getParent()->eraseFromParent(); 611 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 612 // If the preferred size is smaller, then keep the extend but extend 613 // from the result of the extending load. For example: 614 // %1:_(s8) = G_LOAD ... 615 // %2:_(s32) = G_SEXT %1(s8) 616 // %3:_(s64) = G_ANYEXT %1(s8) 617 // ... = ... %3(s64) 618 /// rewrites to: 619 // %2:_(s32) = G_SEXTLOAD ... 620 // %3:_(s64) = G_ANYEXT %2:_(s32) 621 // ... = ... %3(s64) 622 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 623 } else { 624 // If the preferred size is large, then insert a truncate. For 625 // example: 626 // %1:_(s8) = G_LOAD ... 627 // %2:_(s64) = G_SEXT %1(s8) 628 // %3:_(s32) = G_ZEXT %1(s8) 629 // ... = ... %3(s32) 630 /// rewrites to: 631 // %2:_(s64) = G_SEXTLOAD ... 632 // %4:_(s8) = G_TRUNC %2:_(s32) 633 // %3:_(s64) = G_ZEXT %2:_(s8) 634 // ... = ... %3(s64) 635 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 636 InsertTruncAt); 637 } 638 continue; 639 } 640 // The use is (one of) the uses of the preferred use we chose earlier. 641 // We're going to update the load to def this value later so just erase 642 // the old extend. 643 Observer.erasingInstr(*UseMO->getParent()); 644 UseMO->getParent()->eraseFromParent(); 645 continue; 646 } 647 648 // The use isn't an extend. Truncate back to the type we originally loaded. 649 // This is free on many targets. 650 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 651 } 652 653 MI.getOperand(0).setReg(ChosenDstReg); 654 Observer.changedInstr(MI); 655 } 656 657 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI, 658 BuildFnTy &MatchInfo) { 659 assert(MI.getOpcode() == TargetOpcode::G_AND); 660 661 // If we have the following code: 662 // %mask = G_CONSTANT 255 663 // %ld = G_LOAD %ptr, (load s16) 664 // %and = G_AND %ld, %mask 665 // 666 // Try to fold it into 667 // %ld = G_ZEXTLOAD %ptr, (load s8) 668 669 Register Dst = MI.getOperand(0).getReg(); 670 if (MRI.getType(Dst).isVector()) 671 return false; 672 673 auto MaybeMask = 674 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 675 if (!MaybeMask) 676 return false; 677 678 APInt MaskVal = MaybeMask->Value; 679 680 if (!MaskVal.isMask()) 681 return false; 682 683 Register SrcReg = MI.getOperand(1).getReg(); 684 GAnyLoad *LoadMI = getOpcodeDef<GAnyLoad>(SrcReg, MRI); 685 if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()) || 686 !LoadMI->isSimple()) 687 return false; 688 689 Register LoadReg = LoadMI->getDstReg(); 690 LLT LoadTy = MRI.getType(LoadReg); 691 Register PtrReg = LoadMI->getPointerReg(); 692 uint64_t LoadSizeBits = LoadMI->getMemSizeInBits(); 693 unsigned MaskSizeBits = MaskVal.countTrailingOnes(); 694 695 // The mask may not be larger than the in-memory type, as it might cover sign 696 // extended bits 697 if (MaskSizeBits > LoadSizeBits) 698 return false; 699 700 // If the mask covers the whole destination register, there's nothing to 701 // extend 702 if (MaskSizeBits >= LoadTy.getSizeInBits()) 703 return false; 704 705 // Most targets cannot deal with loads of size < 8 and need to re-legalize to 706 // at least byte loads. Avoid creating such loads here 707 if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits)) 708 return false; 709 710 const MachineMemOperand &MMO = LoadMI->getMMO(); 711 LegalityQuery::MemDesc MemDesc(MMO); 712 MemDesc.MemoryTy = LLT::scalar(MaskSizeBits); 713 if (!isLegalOrBeforeLegalizer( 714 {TargetOpcode::G_ZEXTLOAD, {LoadTy, MRI.getType(PtrReg)}, {MemDesc}})) 715 return false; 716 717 MatchInfo = [=](MachineIRBuilder &B) { 718 B.setInstrAndDebugLoc(*LoadMI); 719 auto &MF = B.getMF(); 720 auto PtrInfo = MMO.getPointerInfo(); 721 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MaskSizeBits / 8); 722 B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO); 723 }; 724 return true; 725 } 726 727 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 728 const MachineInstr &UseMI) { 729 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 730 "shouldn't consider debug uses"); 731 assert(DefMI.getParent() == UseMI.getParent()); 732 if (&DefMI == &UseMI) 733 return true; 734 const MachineBasicBlock &MBB = *DefMI.getParent(); 735 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 736 return &MI == &DefMI || &MI == &UseMI; 737 }); 738 if (DefOrUse == MBB.end()) 739 llvm_unreachable("Block must contain both DefMI and UseMI!"); 740 return &*DefOrUse == &DefMI; 741 } 742 743 bool CombinerHelper::dominates(const MachineInstr &DefMI, 744 const MachineInstr &UseMI) { 745 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 746 "shouldn't consider debug uses"); 747 if (MDT) 748 return MDT->dominates(&DefMI, &UseMI); 749 else if (DefMI.getParent() != UseMI.getParent()) 750 return false; 751 752 return isPredecessor(DefMI, UseMI); 753 } 754 755 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 756 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 757 Register SrcReg = MI.getOperand(1).getReg(); 758 Register LoadUser = SrcReg; 759 760 if (MRI.getType(SrcReg).isVector()) 761 return false; 762 763 Register TruncSrc; 764 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 765 LoadUser = TruncSrc; 766 767 uint64_t SizeInBits = MI.getOperand(2).getImm(); 768 // If the source is a G_SEXTLOAD from the same bit width, then we don't 769 // need any extend at all, just a truncate. 770 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 771 // If truncating more than the original extended value, abort. 772 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 773 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 774 return false; 775 if (LoadSizeBits == SizeInBits) 776 return true; 777 } 778 return false; 779 } 780 781 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 782 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 783 Builder.setInstrAndDebugLoc(MI); 784 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 785 MI.eraseFromParent(); 786 } 787 788 bool CombinerHelper::matchSextInRegOfLoad( 789 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 790 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 791 792 // Only supports scalars for now. 793 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 794 return false; 795 796 Register SrcReg = MI.getOperand(1).getReg(); 797 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 798 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || 799 !LoadDef->isSimple()) 800 return false; 801 802 // If the sign extend extends from a narrower width than the load's width, 803 // then we can narrow the load width when we combine to a G_SEXTLOAD. 804 // Avoid widening the load at all. 805 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), 806 LoadDef->getMemSizeInBits()); 807 808 // Don't generate G_SEXTLOADs with a < 1 byte width. 809 if (NewSizeBits < 8) 810 return false; 811 // Don't bother creating a non-power-2 sextload, it will likely be broken up 812 // anyway for most targets. 813 if (!isPowerOf2_32(NewSizeBits)) 814 return false; 815 816 const MachineMemOperand &MMO = LoadDef->getMMO(); 817 LegalityQuery::MemDesc MMDesc(MMO); 818 MMDesc.MemoryTy = LLT::scalar(NewSizeBits); 819 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, 820 {MRI.getType(LoadDef->getDstReg()), 821 MRI.getType(LoadDef->getPointerReg())}, 822 {MMDesc}})) 823 return false; 824 825 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 826 return true; 827 } 828 829 void CombinerHelper::applySextInRegOfLoad( 830 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 831 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 832 Register LoadReg; 833 unsigned ScalarSizeBits; 834 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 835 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 836 837 // If we have the following: 838 // %ld = G_LOAD %ptr, (load 2) 839 // %ext = G_SEXT_INREG %ld, 8 840 // ==> 841 // %ld = G_SEXTLOAD %ptr (load 1) 842 843 auto &MMO = LoadDef->getMMO(); 844 Builder.setInstrAndDebugLoc(*LoadDef); 845 auto &MF = Builder.getMF(); 846 auto PtrInfo = MMO.getPointerInfo(); 847 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 848 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 849 LoadDef->getPointerReg(), *NewMMO); 850 MI.eraseFromParent(); 851 } 852 853 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 854 Register &Base, Register &Offset) { 855 auto &MF = *MI.getParent()->getParent(); 856 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 857 858 #ifndef NDEBUG 859 unsigned Opcode = MI.getOpcode(); 860 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 861 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 862 #endif 863 864 Base = MI.getOperand(1).getReg(); 865 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 866 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 867 return false; 868 869 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 870 // FIXME: The following use traversal needs a bail out for patholigical cases. 871 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 872 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 873 continue; 874 875 Offset = Use.getOperand(2).getReg(); 876 if (!ForceLegalIndexing && 877 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 878 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 879 << Use); 880 continue; 881 } 882 883 // Make sure the offset calculation is before the potentially indexed op. 884 // FIXME: we really care about dependency here. The offset calculation might 885 // be movable. 886 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 887 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 888 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 889 << Use); 890 continue; 891 } 892 893 // FIXME: check whether all uses of Base are load/store with foldable 894 // addressing modes. If so, using the normal addr-modes is better than 895 // forming an indexed one. 896 897 bool MemOpDominatesAddrUses = true; 898 for (auto &PtrAddUse : 899 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 900 if (!dominates(MI, PtrAddUse)) { 901 MemOpDominatesAddrUses = false; 902 break; 903 } 904 } 905 906 if (!MemOpDominatesAddrUses) { 907 LLVM_DEBUG( 908 dbgs() << " Ignoring candidate as memop does not dominate uses: " 909 << Use); 910 continue; 911 } 912 913 LLVM_DEBUG(dbgs() << " Found match: " << Use); 914 Addr = Use.getOperand(0).getReg(); 915 return true; 916 } 917 918 return false; 919 } 920 921 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 922 Register &Base, Register &Offset) { 923 auto &MF = *MI.getParent()->getParent(); 924 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 925 926 #ifndef NDEBUG 927 unsigned Opcode = MI.getOpcode(); 928 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 929 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 930 #endif 931 932 Addr = MI.getOperand(1).getReg(); 933 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 934 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 935 return false; 936 937 Base = AddrDef->getOperand(1).getReg(); 938 Offset = AddrDef->getOperand(2).getReg(); 939 940 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 941 942 if (!ForceLegalIndexing && 943 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 944 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 945 return false; 946 } 947 948 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 949 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 950 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 951 return false; 952 } 953 954 if (MI.getOpcode() == TargetOpcode::G_STORE) { 955 // Would require a copy. 956 if (Base == MI.getOperand(0).getReg()) { 957 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 958 return false; 959 } 960 961 // We're expecting one use of Addr in MI, but it could also be the 962 // value stored, which isn't actually dominated by the instruction. 963 if (MI.getOperand(0).getReg() == Addr) { 964 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 965 return false; 966 } 967 } 968 969 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 970 // That might allow us to end base's liveness here by adjusting the constant. 971 972 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 973 if (!dominates(MI, UseMI)) { 974 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 975 return false; 976 } 977 } 978 979 return true; 980 } 981 982 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 983 IndexedLoadStoreMatchInfo MatchInfo; 984 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 985 applyCombineIndexedLoadStore(MI, MatchInfo); 986 return true; 987 } 988 return false; 989 } 990 991 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 992 unsigned Opcode = MI.getOpcode(); 993 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 994 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 995 return false; 996 997 // For now, no targets actually support these opcodes so don't waste time 998 // running these unless we're forced to for testing. 999 if (!ForceLegalIndexing) 1000 return false; 1001 1002 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 1003 MatchInfo.Offset); 1004 if (!MatchInfo.IsPre && 1005 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 1006 MatchInfo.Offset)) 1007 return false; 1008 1009 return true; 1010 } 1011 1012 void CombinerHelper::applyCombineIndexedLoadStore( 1013 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 1014 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 1015 MachineIRBuilder MIRBuilder(MI); 1016 unsigned Opcode = MI.getOpcode(); 1017 bool IsStore = Opcode == TargetOpcode::G_STORE; 1018 unsigned NewOpcode; 1019 switch (Opcode) { 1020 case TargetOpcode::G_LOAD: 1021 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 1022 break; 1023 case TargetOpcode::G_SEXTLOAD: 1024 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 1025 break; 1026 case TargetOpcode::G_ZEXTLOAD: 1027 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 1028 break; 1029 case TargetOpcode::G_STORE: 1030 NewOpcode = TargetOpcode::G_INDEXED_STORE; 1031 break; 1032 default: 1033 llvm_unreachable("Unknown load/store opcode"); 1034 } 1035 1036 auto MIB = MIRBuilder.buildInstr(NewOpcode); 1037 if (IsStore) { 1038 MIB.addDef(MatchInfo.Addr); 1039 MIB.addUse(MI.getOperand(0).getReg()); 1040 } else { 1041 MIB.addDef(MI.getOperand(0).getReg()); 1042 MIB.addDef(MatchInfo.Addr); 1043 } 1044 1045 MIB.addUse(MatchInfo.Base); 1046 MIB.addUse(MatchInfo.Offset); 1047 MIB.addImm(MatchInfo.IsPre); 1048 MI.eraseFromParent(); 1049 AddrDef.eraseFromParent(); 1050 1051 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 1052 } 1053 1054 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 1055 MachineInstr *&OtherMI) { 1056 unsigned Opcode = MI.getOpcode(); 1057 bool IsDiv, IsSigned; 1058 1059 switch (Opcode) { 1060 default: 1061 llvm_unreachable("Unexpected opcode!"); 1062 case TargetOpcode::G_SDIV: 1063 case TargetOpcode::G_UDIV: { 1064 IsDiv = true; 1065 IsSigned = Opcode == TargetOpcode::G_SDIV; 1066 break; 1067 } 1068 case TargetOpcode::G_SREM: 1069 case TargetOpcode::G_UREM: { 1070 IsDiv = false; 1071 IsSigned = Opcode == TargetOpcode::G_SREM; 1072 break; 1073 } 1074 } 1075 1076 Register Src1 = MI.getOperand(1).getReg(); 1077 unsigned DivOpcode, RemOpcode, DivremOpcode; 1078 if (IsSigned) { 1079 DivOpcode = TargetOpcode::G_SDIV; 1080 RemOpcode = TargetOpcode::G_SREM; 1081 DivremOpcode = TargetOpcode::G_SDIVREM; 1082 } else { 1083 DivOpcode = TargetOpcode::G_UDIV; 1084 RemOpcode = TargetOpcode::G_UREM; 1085 DivremOpcode = TargetOpcode::G_UDIVREM; 1086 } 1087 1088 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 1089 return false; 1090 1091 // Combine: 1092 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1093 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1094 // into: 1095 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1096 1097 // Combine: 1098 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1099 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1100 // into: 1101 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1102 1103 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1104 if (MI.getParent() == UseMI.getParent() && 1105 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1106 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1107 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1108 OtherMI = &UseMI; 1109 return true; 1110 } 1111 } 1112 1113 return false; 1114 } 1115 1116 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1117 MachineInstr *&OtherMI) { 1118 unsigned Opcode = MI.getOpcode(); 1119 assert(OtherMI && "OtherMI shouldn't be empty."); 1120 1121 Register DestDivReg, DestRemReg; 1122 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1123 DestDivReg = MI.getOperand(0).getReg(); 1124 DestRemReg = OtherMI->getOperand(0).getReg(); 1125 } else { 1126 DestDivReg = OtherMI->getOperand(0).getReg(); 1127 DestRemReg = MI.getOperand(0).getReg(); 1128 } 1129 1130 bool IsSigned = 1131 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1132 1133 // Check which instruction is first in the block so we don't break def-use 1134 // deps by "moving" the instruction incorrectly. 1135 if (dominates(MI, *OtherMI)) 1136 Builder.setInstrAndDebugLoc(MI); 1137 else 1138 Builder.setInstrAndDebugLoc(*OtherMI); 1139 1140 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1141 : TargetOpcode::G_UDIVREM, 1142 {DestDivReg, DestRemReg}, 1143 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1144 MI.eraseFromParent(); 1145 OtherMI->eraseFromParent(); 1146 } 1147 1148 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1149 MachineInstr *&BrCond) { 1150 assert(MI.getOpcode() == TargetOpcode::G_BR); 1151 1152 // Try to match the following: 1153 // bb1: 1154 // G_BRCOND %c1, %bb2 1155 // G_BR %bb3 1156 // bb2: 1157 // ... 1158 // bb3: 1159 1160 // The above pattern does not have a fall through to the successor bb2, always 1161 // resulting in a branch no matter which path is taken. Here we try to find 1162 // and replace that pattern with conditional branch to bb3 and otherwise 1163 // fallthrough to bb2. This is generally better for branch predictors. 1164 1165 MachineBasicBlock *MBB = MI.getParent(); 1166 MachineBasicBlock::iterator BrIt(MI); 1167 if (BrIt == MBB->begin()) 1168 return false; 1169 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1170 1171 BrCond = &*std::prev(BrIt); 1172 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1173 return false; 1174 1175 // Check that the next block is the conditional branch target. Also make sure 1176 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1177 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1178 return BrCondTarget != MI.getOperand(0).getMBB() && 1179 MBB->isLayoutSuccessor(BrCondTarget); 1180 } 1181 1182 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1183 MachineInstr *&BrCond) { 1184 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1185 Builder.setInstrAndDebugLoc(*BrCond); 1186 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1187 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1188 // this to i1 only since we might not know for sure what kind of 1189 // compare generated the condition value. 1190 auto True = Builder.buildConstant( 1191 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1192 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1193 1194 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1195 Observer.changingInstr(MI); 1196 MI.getOperand(0).setMBB(FallthroughBB); 1197 Observer.changedInstr(MI); 1198 1199 // Change the conditional branch to use the inverted condition and 1200 // new target block. 1201 Observer.changingInstr(*BrCond); 1202 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1203 BrCond->getOperand(1).setMBB(BrTarget); 1204 Observer.changedInstr(*BrCond); 1205 } 1206 1207 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1208 if (Ty.isVector()) 1209 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1210 Ty.getNumElements()); 1211 return IntegerType::get(C, Ty.getSizeInBits()); 1212 } 1213 1214 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1215 MachineIRBuilder HelperBuilder(MI); 1216 GISelObserverWrapper DummyObserver; 1217 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1218 return Helper.lowerMemcpyInline(MI) == 1219 LegalizerHelper::LegalizeResult::Legalized; 1220 } 1221 1222 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1223 MachineIRBuilder HelperBuilder(MI); 1224 GISelObserverWrapper DummyObserver; 1225 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1226 return Helper.lowerMemCpyFamily(MI, MaxLen) == 1227 LegalizerHelper::LegalizeResult::Legalized; 1228 } 1229 1230 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1231 const Register Op, 1232 const MachineRegisterInfo &MRI) { 1233 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1234 if (!MaybeCst) 1235 return None; 1236 1237 APFloat V = MaybeCst->getValueAPF(); 1238 switch (Opcode) { 1239 default: 1240 llvm_unreachable("Unexpected opcode!"); 1241 case TargetOpcode::G_FNEG: { 1242 V.changeSign(); 1243 return V; 1244 } 1245 case TargetOpcode::G_FABS: { 1246 V.clearSign(); 1247 return V; 1248 } 1249 case TargetOpcode::G_FPTRUNC: 1250 break; 1251 case TargetOpcode::G_FSQRT: { 1252 bool Unused; 1253 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1254 V = APFloat(sqrt(V.convertToDouble())); 1255 break; 1256 } 1257 case TargetOpcode::G_FLOG2: { 1258 bool Unused; 1259 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1260 V = APFloat(log2(V.convertToDouble())); 1261 break; 1262 } 1263 } 1264 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1265 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1266 // and `G_FLOG2` reach here. 1267 bool Unused; 1268 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1269 return V; 1270 } 1271 1272 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1273 Optional<APFloat> &Cst) { 1274 Register DstReg = MI.getOperand(0).getReg(); 1275 Register SrcReg = MI.getOperand(1).getReg(); 1276 LLT DstTy = MRI.getType(DstReg); 1277 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1278 return Cst.hasValue(); 1279 } 1280 1281 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1282 Optional<APFloat> &Cst) { 1283 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1284 Builder.setInstrAndDebugLoc(MI); 1285 MachineFunction &MF = Builder.getMF(); 1286 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1287 Register DstReg = MI.getOperand(0).getReg(); 1288 Builder.buildFConstant(DstReg, *FPVal); 1289 MI.eraseFromParent(); 1290 } 1291 1292 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1293 PtrAddChain &MatchInfo) { 1294 // We're trying to match the following pattern: 1295 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1296 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1297 // --> 1298 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1299 1300 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1301 return false; 1302 1303 Register Add2 = MI.getOperand(1).getReg(); 1304 Register Imm1 = MI.getOperand(2).getReg(); 1305 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1306 if (!MaybeImmVal) 1307 return false; 1308 1309 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1310 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1311 return false; 1312 1313 Register Base = Add2Def->getOperand(1).getReg(); 1314 Register Imm2 = Add2Def->getOperand(2).getReg(); 1315 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1316 if (!MaybeImm2Val) 1317 return false; 1318 1319 // Check if the new combined immediate forms an illegal addressing mode. 1320 // Do not combine if it was legal before but would get illegal. 1321 // To do so, we need to find a load/store user of the pointer to get 1322 // the access type. 1323 Type *AccessTy = nullptr; 1324 auto &MF = *MI.getMF(); 1325 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1326 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1327 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1328 MF.getFunction().getContext()); 1329 break; 1330 } 1331 } 1332 TargetLoweringBase::AddrMode AMNew; 1333 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1334 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1335 if (AccessTy) { 1336 AMNew.HasBaseReg = true; 1337 TargetLoweringBase::AddrMode AMOld; 1338 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); 1339 AMOld.HasBaseReg = true; 1340 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1341 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1342 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1343 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1344 return false; 1345 } 1346 1347 // Pass the combined immediate to the apply function. 1348 MatchInfo.Imm = AMNew.BaseOffs; 1349 MatchInfo.Base = Base; 1350 MatchInfo.Bank = getRegBank(Imm2); 1351 return true; 1352 } 1353 1354 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1355 PtrAddChain &MatchInfo) { 1356 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1357 MachineIRBuilder MIB(MI); 1358 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1359 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1360 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1361 Observer.changingInstr(MI); 1362 MI.getOperand(1).setReg(MatchInfo.Base); 1363 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1364 Observer.changedInstr(MI); 1365 } 1366 1367 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1368 RegisterImmPair &MatchInfo) { 1369 // We're trying to match the following pattern with any of 1370 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1371 // %t1 = SHIFT %base, G_CONSTANT imm1 1372 // %root = SHIFT %t1, G_CONSTANT imm2 1373 // --> 1374 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1375 1376 unsigned Opcode = MI.getOpcode(); 1377 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1378 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1379 Opcode == TargetOpcode::G_USHLSAT) && 1380 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1381 1382 Register Shl2 = MI.getOperand(1).getReg(); 1383 Register Imm1 = MI.getOperand(2).getReg(); 1384 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1385 if (!MaybeImmVal) 1386 return false; 1387 1388 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1389 if (Shl2Def->getOpcode() != Opcode) 1390 return false; 1391 1392 Register Base = Shl2Def->getOperand(1).getReg(); 1393 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1394 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1395 if (!MaybeImm2Val) 1396 return false; 1397 1398 // Pass the combined immediate to the apply function. 1399 MatchInfo.Imm = 1400 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1401 MatchInfo.Reg = Base; 1402 1403 // There is no simple replacement for a saturating unsigned left shift that 1404 // exceeds the scalar size. 1405 if (Opcode == TargetOpcode::G_USHLSAT && 1406 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1407 return false; 1408 1409 return true; 1410 } 1411 1412 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1413 RegisterImmPair &MatchInfo) { 1414 unsigned Opcode = MI.getOpcode(); 1415 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1416 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1417 Opcode == TargetOpcode::G_USHLSAT) && 1418 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1419 1420 Builder.setInstrAndDebugLoc(MI); 1421 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1422 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1423 auto Imm = MatchInfo.Imm; 1424 1425 if (Imm >= ScalarSizeInBits) { 1426 // Any logical shift that exceeds scalar size will produce zero. 1427 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1428 Builder.buildConstant(MI.getOperand(0), 0); 1429 MI.eraseFromParent(); 1430 return; 1431 } 1432 // Arithmetic shift and saturating signed left shift have no effect beyond 1433 // scalar size. 1434 Imm = ScalarSizeInBits - 1; 1435 } 1436 1437 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1438 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1439 Observer.changingInstr(MI); 1440 MI.getOperand(1).setReg(MatchInfo.Reg); 1441 MI.getOperand(2).setReg(NewImm); 1442 Observer.changedInstr(MI); 1443 } 1444 1445 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1446 ShiftOfShiftedLogic &MatchInfo) { 1447 // We're trying to match the following pattern with any of 1448 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1449 // with any of G_AND/G_OR/G_XOR logic instructions. 1450 // %t1 = SHIFT %X, G_CONSTANT C0 1451 // %t2 = LOGIC %t1, %Y 1452 // %root = SHIFT %t2, G_CONSTANT C1 1453 // --> 1454 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1455 // %t4 = SHIFT %Y, G_CONSTANT C1 1456 // %root = LOGIC %t3, %t4 1457 unsigned ShiftOpcode = MI.getOpcode(); 1458 assert((ShiftOpcode == TargetOpcode::G_SHL || 1459 ShiftOpcode == TargetOpcode::G_ASHR || 1460 ShiftOpcode == TargetOpcode::G_LSHR || 1461 ShiftOpcode == TargetOpcode::G_USHLSAT || 1462 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1463 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1464 1465 // Match a one-use bitwise logic op. 1466 Register LogicDest = MI.getOperand(1).getReg(); 1467 if (!MRI.hasOneNonDBGUse(LogicDest)) 1468 return false; 1469 1470 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1471 unsigned LogicOpcode = LogicMI->getOpcode(); 1472 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1473 LogicOpcode != TargetOpcode::G_XOR) 1474 return false; 1475 1476 // Find a matching one-use shift by constant. 1477 const Register C1 = MI.getOperand(2).getReg(); 1478 auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI); 1479 if (!MaybeImmVal) 1480 return false; 1481 1482 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1483 1484 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1485 // Shift should match previous one and should be a one-use. 1486 if (MI->getOpcode() != ShiftOpcode || 1487 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1488 return false; 1489 1490 // Must be a constant. 1491 auto MaybeImmVal = 1492 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1493 if (!MaybeImmVal) 1494 return false; 1495 1496 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1497 return true; 1498 }; 1499 1500 // Logic ops are commutative, so check each operand for a match. 1501 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1502 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1503 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1504 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1505 uint64_t C0Val; 1506 1507 if (matchFirstShift(LogicMIOp1, C0Val)) { 1508 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1509 MatchInfo.Shift2 = LogicMIOp1; 1510 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1511 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1512 MatchInfo.Shift2 = LogicMIOp2; 1513 } else 1514 return false; 1515 1516 MatchInfo.ValSum = C0Val + C1Val; 1517 1518 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1519 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1520 return false; 1521 1522 MatchInfo.Logic = LogicMI; 1523 return true; 1524 } 1525 1526 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1527 ShiftOfShiftedLogic &MatchInfo) { 1528 unsigned Opcode = MI.getOpcode(); 1529 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1530 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1531 Opcode == TargetOpcode::G_SSHLSAT) && 1532 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1533 1534 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1535 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1536 Builder.setInstrAndDebugLoc(MI); 1537 1538 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1539 1540 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1541 Register Shift1 = 1542 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1543 1544 Register Shift2Const = MI.getOperand(2).getReg(); 1545 Register Shift2 = Builder 1546 .buildInstr(Opcode, {DestType}, 1547 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1548 .getReg(0); 1549 1550 Register Dest = MI.getOperand(0).getReg(); 1551 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1552 1553 // These were one use so it's safe to remove them. 1554 MatchInfo.Shift2->eraseFromParent(); 1555 MatchInfo.Logic->eraseFromParent(); 1556 1557 MI.eraseFromParent(); 1558 } 1559 1560 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1561 unsigned &ShiftVal) { 1562 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1563 auto MaybeImmVal = 1564 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1565 if (!MaybeImmVal) 1566 return false; 1567 1568 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1569 return (static_cast<int32_t>(ShiftVal) != -1); 1570 } 1571 1572 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1573 unsigned &ShiftVal) { 1574 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1575 MachineIRBuilder MIB(MI); 1576 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1577 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1578 Observer.changingInstr(MI); 1579 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1580 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1581 Observer.changedInstr(MI); 1582 } 1583 1584 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1585 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1586 RegisterImmPair &MatchData) { 1587 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1588 1589 Register LHS = MI.getOperand(1).getReg(); 1590 1591 Register ExtSrc; 1592 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1593 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1594 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1595 return false; 1596 1597 // TODO: Should handle vector splat. 1598 Register RHS = MI.getOperand(2).getReg(); 1599 auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI); 1600 if (!MaybeShiftAmtVal) 1601 return false; 1602 1603 if (LI) { 1604 LLT SrcTy = MRI.getType(ExtSrc); 1605 1606 // We only really care about the legality with the shifted value. We can 1607 // pick any type the constant shift amount, so ask the target what to 1608 // use. Otherwise we would have to guess and hope it is reported as legal. 1609 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1610 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1611 return false; 1612 } 1613 1614 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1615 MatchData.Reg = ExtSrc; 1616 MatchData.Imm = ShiftAmt; 1617 1618 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1619 return MinLeadingZeros >= ShiftAmt; 1620 } 1621 1622 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1623 const RegisterImmPair &MatchData) { 1624 Register ExtSrcReg = MatchData.Reg; 1625 int64_t ShiftAmtVal = MatchData.Imm; 1626 1627 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1628 Builder.setInstrAndDebugLoc(MI); 1629 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1630 auto NarrowShift = 1631 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1632 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1633 MI.eraseFromParent(); 1634 } 1635 1636 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 1637 Register &MatchInfo) { 1638 GMerge &Merge = cast<GMerge>(MI); 1639 SmallVector<Register, 16> MergedValues; 1640 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 1641 MergedValues.emplace_back(Merge.getSourceReg(I)); 1642 1643 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 1644 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 1645 return false; 1646 1647 for (unsigned I = 0; I < MergedValues.size(); ++I) 1648 if (MergedValues[I] != Unmerge->getReg(I)) 1649 return false; 1650 1651 MatchInfo = Unmerge->getSourceReg(); 1652 return true; 1653 } 1654 1655 static Register peekThroughBitcast(Register Reg, 1656 const MachineRegisterInfo &MRI) { 1657 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1658 ; 1659 1660 return Reg; 1661 } 1662 1663 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1664 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1665 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1666 "Expected an unmerge"); 1667 auto &Unmerge = cast<GUnmerge>(MI); 1668 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 1669 1670 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI); 1671 if (!SrcInstr) 1672 return false; 1673 1674 // Check the source type of the merge. 1675 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 1676 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 1677 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1678 if (SrcMergeTy != Dst0Ty && !SameSize) 1679 return false; 1680 // They are the same now (modulo a bitcast). 1681 // We can collect all the src registers. 1682 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 1683 Operands.push_back(SrcInstr->getSourceReg(Idx)); 1684 return true; 1685 } 1686 1687 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1688 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1689 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1690 "Expected an unmerge"); 1691 assert((MI.getNumOperands() - 1 == Operands.size()) && 1692 "Not enough operands to replace all defs"); 1693 unsigned NumElems = MI.getNumOperands() - 1; 1694 1695 LLT SrcTy = MRI.getType(Operands[0]); 1696 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1697 bool CanReuseInputDirectly = DstTy == SrcTy; 1698 Builder.setInstrAndDebugLoc(MI); 1699 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1700 Register DstReg = MI.getOperand(Idx).getReg(); 1701 Register SrcReg = Operands[Idx]; 1702 if (CanReuseInputDirectly) 1703 replaceRegWith(MRI, DstReg, SrcReg); 1704 else 1705 Builder.buildCast(DstReg, SrcReg); 1706 } 1707 MI.eraseFromParent(); 1708 } 1709 1710 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1711 SmallVectorImpl<APInt> &Csts) { 1712 unsigned SrcIdx = MI.getNumOperands() - 1; 1713 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1714 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1715 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1716 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1717 return false; 1718 // Break down the big constant in smaller ones. 1719 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1720 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1721 ? CstVal.getCImm()->getValue() 1722 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1723 1724 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1725 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1726 // Unmerge a constant. 1727 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1728 Csts.emplace_back(Val.trunc(ShiftAmt)); 1729 Val = Val.lshr(ShiftAmt); 1730 } 1731 1732 return true; 1733 } 1734 1735 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1736 SmallVectorImpl<APInt> &Csts) { 1737 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1738 "Expected an unmerge"); 1739 assert((MI.getNumOperands() - 1 == Csts.size()) && 1740 "Not enough operands to replace all defs"); 1741 unsigned NumElems = MI.getNumOperands() - 1; 1742 Builder.setInstrAndDebugLoc(MI); 1743 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1744 Register DstReg = MI.getOperand(Idx).getReg(); 1745 Builder.buildConstant(DstReg, Csts[Idx]); 1746 } 1747 1748 MI.eraseFromParent(); 1749 } 1750 1751 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1752 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1753 "Expected an unmerge"); 1754 // Check that all the lanes are dead except the first one. 1755 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1756 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1757 return false; 1758 } 1759 return true; 1760 } 1761 1762 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1763 Builder.setInstrAndDebugLoc(MI); 1764 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1765 // Truncating a vector is going to truncate every single lane, 1766 // whereas we want the full lowbits. 1767 // Do the operation on a scalar instead. 1768 LLT SrcTy = MRI.getType(SrcReg); 1769 if (SrcTy.isVector()) 1770 SrcReg = 1771 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1772 1773 Register Dst0Reg = MI.getOperand(0).getReg(); 1774 LLT Dst0Ty = MRI.getType(Dst0Reg); 1775 if (Dst0Ty.isVector()) { 1776 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 1777 Builder.buildCast(Dst0Reg, MIB); 1778 } else 1779 Builder.buildTrunc(Dst0Reg, SrcReg); 1780 MI.eraseFromParent(); 1781 } 1782 1783 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 1784 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1785 "Expected an unmerge"); 1786 Register Dst0Reg = MI.getOperand(0).getReg(); 1787 LLT Dst0Ty = MRI.getType(Dst0Reg); 1788 // G_ZEXT on vector applies to each lane, so it will 1789 // affect all destinations. Therefore we won't be able 1790 // to simplify the unmerge to just the first definition. 1791 if (Dst0Ty.isVector()) 1792 return false; 1793 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1794 LLT SrcTy = MRI.getType(SrcReg); 1795 if (SrcTy.isVector()) 1796 return false; 1797 1798 Register ZExtSrcReg; 1799 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 1800 return false; 1801 1802 // Finally we can replace the first definition with 1803 // a zext of the source if the definition is big enough to hold 1804 // all of ZExtSrc bits. 1805 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1806 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 1807 } 1808 1809 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 1810 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1811 "Expected an unmerge"); 1812 1813 Register Dst0Reg = MI.getOperand(0).getReg(); 1814 1815 MachineInstr *ZExtInstr = 1816 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 1817 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 1818 "Expecting a G_ZEXT"); 1819 1820 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 1821 LLT Dst0Ty = MRI.getType(Dst0Reg); 1822 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1823 1824 Builder.setInstrAndDebugLoc(MI); 1825 1826 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 1827 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 1828 } else { 1829 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 1830 "ZExt src doesn't fit in destination"); 1831 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 1832 } 1833 1834 Register ZeroReg; 1835 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1836 if (!ZeroReg) 1837 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 1838 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 1839 } 1840 MI.eraseFromParent(); 1841 } 1842 1843 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1844 unsigned TargetShiftSize, 1845 unsigned &ShiftVal) { 1846 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1847 MI.getOpcode() == TargetOpcode::G_LSHR || 1848 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1849 1850 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1851 if (Ty.isVector()) // TODO: 1852 return false; 1853 1854 // Don't narrow further than the requested size. 1855 unsigned Size = Ty.getSizeInBits(); 1856 if (Size <= TargetShiftSize) 1857 return false; 1858 1859 auto MaybeImmVal = 1860 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1861 if (!MaybeImmVal) 1862 return false; 1863 1864 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1865 return ShiftVal >= Size / 2 && ShiftVal < Size; 1866 } 1867 1868 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1869 const unsigned &ShiftVal) { 1870 Register DstReg = MI.getOperand(0).getReg(); 1871 Register SrcReg = MI.getOperand(1).getReg(); 1872 LLT Ty = MRI.getType(SrcReg); 1873 unsigned Size = Ty.getSizeInBits(); 1874 unsigned HalfSize = Size / 2; 1875 assert(ShiftVal >= HalfSize); 1876 1877 LLT HalfTy = LLT::scalar(HalfSize); 1878 1879 Builder.setInstr(MI); 1880 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1881 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1882 1883 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1884 Register Narrowed = Unmerge.getReg(1); 1885 1886 // dst = G_LSHR s64:x, C for C >= 32 1887 // => 1888 // lo, hi = G_UNMERGE_VALUES x 1889 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1890 1891 if (NarrowShiftAmt != 0) { 1892 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1893 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1894 } 1895 1896 auto Zero = Builder.buildConstant(HalfTy, 0); 1897 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1898 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1899 Register Narrowed = Unmerge.getReg(0); 1900 // dst = G_SHL s64:x, C for C >= 32 1901 // => 1902 // lo, hi = G_UNMERGE_VALUES x 1903 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1904 if (NarrowShiftAmt != 0) { 1905 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1906 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1907 } 1908 1909 auto Zero = Builder.buildConstant(HalfTy, 0); 1910 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1911 } else { 1912 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1913 auto Hi = Builder.buildAShr( 1914 HalfTy, Unmerge.getReg(1), 1915 Builder.buildConstant(HalfTy, HalfSize - 1)); 1916 1917 if (ShiftVal == HalfSize) { 1918 // (G_ASHR i64:x, 32) -> 1919 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1920 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1921 } else if (ShiftVal == Size - 1) { 1922 // Don't need a second shift. 1923 // (G_ASHR i64:x, 63) -> 1924 // %narrowed = (G_ASHR hi_32(x), 31) 1925 // G_MERGE_VALUES %narrowed, %narrowed 1926 Builder.buildMerge(DstReg, { Hi, Hi }); 1927 } else { 1928 auto Lo = Builder.buildAShr( 1929 HalfTy, Unmerge.getReg(1), 1930 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1931 1932 // (G_ASHR i64:x, C) ->, for C >= 32 1933 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1934 Builder.buildMerge(DstReg, { Lo, Hi }); 1935 } 1936 } 1937 1938 MI.eraseFromParent(); 1939 } 1940 1941 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1942 unsigned TargetShiftAmount) { 1943 unsigned ShiftAmt; 1944 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1945 applyCombineShiftToUnmerge(MI, ShiftAmt); 1946 return true; 1947 } 1948 1949 return false; 1950 } 1951 1952 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1953 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1954 Register DstReg = MI.getOperand(0).getReg(); 1955 LLT DstTy = MRI.getType(DstReg); 1956 Register SrcReg = MI.getOperand(1).getReg(); 1957 return mi_match(SrcReg, MRI, 1958 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 1959 } 1960 1961 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1962 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1963 Register DstReg = MI.getOperand(0).getReg(); 1964 Builder.setInstr(MI); 1965 Builder.buildCopy(DstReg, Reg); 1966 MI.eraseFromParent(); 1967 } 1968 1969 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1970 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1971 Register SrcReg = MI.getOperand(1).getReg(); 1972 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 1973 } 1974 1975 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1976 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1977 Register DstReg = MI.getOperand(0).getReg(); 1978 Builder.setInstr(MI); 1979 Builder.buildZExtOrTrunc(DstReg, Reg); 1980 MI.eraseFromParent(); 1981 } 1982 1983 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 1984 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1985 assert(MI.getOpcode() == TargetOpcode::G_ADD); 1986 Register LHS = MI.getOperand(1).getReg(); 1987 Register RHS = MI.getOperand(2).getReg(); 1988 LLT IntTy = MRI.getType(LHS); 1989 1990 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 1991 // instruction. 1992 PtrReg.second = false; 1993 for (Register SrcReg : {LHS, RHS}) { 1994 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 1995 // Don't handle cases where the integer is implicitly converted to the 1996 // pointer width. 1997 LLT PtrTy = MRI.getType(PtrReg.first); 1998 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 1999 return true; 2000 } 2001 2002 PtrReg.second = true; 2003 } 2004 2005 return false; 2006 } 2007 2008 void CombinerHelper::applyCombineAddP2IToPtrAdd( 2009 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2010 Register Dst = MI.getOperand(0).getReg(); 2011 Register LHS = MI.getOperand(1).getReg(); 2012 Register RHS = MI.getOperand(2).getReg(); 2013 2014 const bool DoCommute = PtrReg.second; 2015 if (DoCommute) 2016 std::swap(LHS, RHS); 2017 LHS = PtrReg.first; 2018 2019 LLT PtrTy = MRI.getType(LHS); 2020 2021 Builder.setInstrAndDebugLoc(MI); 2022 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2023 Builder.buildPtrToInt(Dst, PtrAdd); 2024 MI.eraseFromParent(); 2025 } 2026 2027 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2028 APInt &NewCst) { 2029 auto &PtrAdd = cast<GPtrAdd>(MI); 2030 Register LHS = PtrAdd.getBaseReg(); 2031 Register RHS = PtrAdd.getOffsetReg(); 2032 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2033 2034 if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) { 2035 APInt Cst; 2036 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2037 auto DstTy = MRI.getType(PtrAdd.getReg(0)); 2038 // G_INTTOPTR uses zero-extension 2039 NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits()); 2040 NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits()); 2041 return true; 2042 } 2043 } 2044 2045 return false; 2046 } 2047 2048 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2049 APInt &NewCst) { 2050 auto &PtrAdd = cast<GPtrAdd>(MI); 2051 Register Dst = PtrAdd.getReg(0); 2052 2053 Builder.setInstrAndDebugLoc(MI); 2054 Builder.buildConstant(Dst, NewCst); 2055 PtrAdd.eraseFromParent(); 2056 } 2057 2058 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2059 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2060 Register DstReg = MI.getOperand(0).getReg(); 2061 Register SrcReg = MI.getOperand(1).getReg(); 2062 LLT DstTy = MRI.getType(DstReg); 2063 return mi_match(SrcReg, MRI, 2064 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2065 } 2066 2067 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2068 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2069 Register DstReg = MI.getOperand(0).getReg(); 2070 Register SrcReg = MI.getOperand(1).getReg(); 2071 LLT DstTy = MRI.getType(DstReg); 2072 if (mi_match(SrcReg, MRI, 2073 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2074 unsigned DstSize = DstTy.getScalarSizeInBits(); 2075 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2076 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2077 } 2078 return false; 2079 } 2080 2081 bool CombinerHelper::matchCombineExtOfExt( 2082 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2083 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2084 MI.getOpcode() == TargetOpcode::G_SEXT || 2085 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2086 "Expected a G_[ASZ]EXT"); 2087 Register SrcReg = MI.getOperand(1).getReg(); 2088 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2089 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2090 unsigned Opc = MI.getOpcode(); 2091 unsigned SrcOpc = SrcMI->getOpcode(); 2092 if (Opc == SrcOpc || 2093 (Opc == TargetOpcode::G_ANYEXT && 2094 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2095 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2096 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2097 return true; 2098 } 2099 return false; 2100 } 2101 2102 void CombinerHelper::applyCombineExtOfExt( 2103 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2104 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2105 MI.getOpcode() == TargetOpcode::G_SEXT || 2106 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2107 "Expected a G_[ASZ]EXT"); 2108 2109 Register Reg = std::get<0>(MatchInfo); 2110 unsigned SrcExtOp = std::get<1>(MatchInfo); 2111 2112 // Combine exts with the same opcode. 2113 if (MI.getOpcode() == SrcExtOp) { 2114 Observer.changingInstr(MI); 2115 MI.getOperand(1).setReg(Reg); 2116 Observer.changedInstr(MI); 2117 return; 2118 } 2119 2120 // Combine: 2121 // - anyext([sz]ext x) to [sz]ext x 2122 // - sext(zext x) to zext x 2123 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2124 (MI.getOpcode() == TargetOpcode::G_SEXT && 2125 SrcExtOp == TargetOpcode::G_ZEXT)) { 2126 Register DstReg = MI.getOperand(0).getReg(); 2127 Builder.setInstrAndDebugLoc(MI); 2128 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2129 MI.eraseFromParent(); 2130 } 2131 } 2132 2133 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2134 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2135 Register DstReg = MI.getOperand(0).getReg(); 2136 Register SrcReg = MI.getOperand(1).getReg(); 2137 LLT DstTy = MRI.getType(DstReg); 2138 2139 Builder.setInstrAndDebugLoc(MI); 2140 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2141 MI.getFlags()); 2142 MI.eraseFromParent(); 2143 } 2144 2145 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2146 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2147 Register SrcReg = MI.getOperand(1).getReg(); 2148 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2149 } 2150 2151 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2152 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2153 Src = MI.getOperand(1).getReg(); 2154 Register AbsSrc; 2155 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2156 } 2157 2158 bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI, 2159 BuildFnTy &MatchInfo) { 2160 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2161 Register Src = MI.getOperand(1).getReg(); 2162 Register NegSrc; 2163 2164 if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc)))) 2165 return false; 2166 2167 MatchInfo = [=, &MI](MachineIRBuilder &B) { 2168 Observer.changingInstr(MI); 2169 MI.getOperand(1).setReg(NegSrc); 2170 Observer.changedInstr(MI); 2171 }; 2172 return true; 2173 } 2174 2175 bool CombinerHelper::matchCombineTruncOfExt( 2176 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2177 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2178 Register SrcReg = MI.getOperand(1).getReg(); 2179 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2180 unsigned SrcOpc = SrcMI->getOpcode(); 2181 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2182 SrcOpc == TargetOpcode::G_ZEXT) { 2183 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2184 return true; 2185 } 2186 return false; 2187 } 2188 2189 void CombinerHelper::applyCombineTruncOfExt( 2190 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2191 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2192 Register SrcReg = MatchInfo.first; 2193 unsigned SrcExtOp = MatchInfo.second; 2194 Register DstReg = MI.getOperand(0).getReg(); 2195 LLT SrcTy = MRI.getType(SrcReg); 2196 LLT DstTy = MRI.getType(DstReg); 2197 if (SrcTy == DstTy) { 2198 MI.eraseFromParent(); 2199 replaceRegWith(MRI, DstReg, SrcReg); 2200 return; 2201 } 2202 Builder.setInstrAndDebugLoc(MI); 2203 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2204 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2205 else 2206 Builder.buildTrunc(DstReg, SrcReg); 2207 MI.eraseFromParent(); 2208 } 2209 2210 bool CombinerHelper::matchCombineTruncOfShl( 2211 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2212 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2213 Register DstReg = MI.getOperand(0).getReg(); 2214 Register SrcReg = MI.getOperand(1).getReg(); 2215 LLT DstTy = MRI.getType(DstReg); 2216 Register ShiftSrc; 2217 Register ShiftAmt; 2218 2219 if (MRI.hasOneNonDBGUse(SrcReg) && 2220 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2221 isLegalOrBeforeLegalizer( 2222 {TargetOpcode::G_SHL, 2223 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2224 KnownBits Known = KB->getKnownBits(ShiftAmt); 2225 unsigned Size = DstTy.getSizeInBits(); 2226 if (Known.countMaxActiveBits() <= Log2_32(Size)) { 2227 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2228 return true; 2229 } 2230 } 2231 return false; 2232 } 2233 2234 void CombinerHelper::applyCombineTruncOfShl( 2235 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2236 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2237 Register DstReg = MI.getOperand(0).getReg(); 2238 Register SrcReg = MI.getOperand(1).getReg(); 2239 LLT DstTy = MRI.getType(DstReg); 2240 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2241 2242 Register ShiftSrc = MatchInfo.first; 2243 Register ShiftAmt = MatchInfo.second; 2244 Builder.setInstrAndDebugLoc(MI); 2245 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2246 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2247 MI.eraseFromParent(); 2248 } 2249 2250 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2251 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2252 return MO.isReg() && 2253 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2254 }); 2255 } 2256 2257 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2258 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2259 return !MO.isReg() || 2260 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2261 }); 2262 } 2263 2264 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2265 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2266 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2267 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2268 } 2269 2270 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2271 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2272 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2273 MRI); 2274 } 2275 2276 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2277 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2278 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2279 MRI); 2280 } 2281 2282 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2283 GSelect &SelMI = cast<GSelect>(MI); 2284 auto Cst = 2285 isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI); 2286 if (!Cst) 2287 return false; 2288 OpIdx = Cst->isZero() ? 3 : 2; 2289 return true; 2290 } 2291 2292 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2293 MI.eraseFromParent(); 2294 return true; 2295 } 2296 2297 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2298 const MachineOperand &MOP2) { 2299 if (!MOP1.isReg() || !MOP2.isReg()) 2300 return false; 2301 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2302 if (!InstAndDef1) 2303 return false; 2304 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2305 if (!InstAndDef2) 2306 return false; 2307 MachineInstr *I1 = InstAndDef1->MI; 2308 MachineInstr *I2 = InstAndDef2->MI; 2309 2310 // Handle a case like this: 2311 // 2312 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2313 // 2314 // Even though %0 and %1 are produced by the same instruction they are not 2315 // the same values. 2316 if (I1 == I2) 2317 return MOP1.getReg() == MOP2.getReg(); 2318 2319 // If we have an instruction which loads or stores, we can't guarantee that 2320 // it is identical. 2321 // 2322 // For example, we may have 2323 // 2324 // %x1 = G_LOAD %addr (load N from @somewhere) 2325 // ... 2326 // call @foo 2327 // ... 2328 // %x2 = G_LOAD %addr (load N from @somewhere) 2329 // ... 2330 // %or = G_OR %x1, %x2 2331 // 2332 // It's possible that @foo will modify whatever lives at the address we're 2333 // loading from. To be safe, let's just assume that all loads and stores 2334 // are different (unless we have something which is guaranteed to not 2335 // change.) 2336 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2337 return false; 2338 2339 // Check for physical registers on the instructions first to avoid cases 2340 // like this: 2341 // 2342 // %a = COPY $physreg 2343 // ... 2344 // SOMETHING implicit-def $physreg 2345 // ... 2346 // %b = COPY $physreg 2347 // 2348 // These copies are not equivalent. 2349 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2350 return MO.isReg() && MO.getReg().isPhysical(); 2351 })) { 2352 // Check if we have a case like this: 2353 // 2354 // %a = COPY $physreg 2355 // %b = COPY %a 2356 // 2357 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2358 // From that, we know that they must have the same value, since they must 2359 // have come from the same COPY. 2360 return I1->isIdenticalTo(*I2); 2361 } 2362 2363 // We don't have any physical registers, so we don't necessarily need the 2364 // same vreg defs. 2365 // 2366 // On the off-chance that there's some target instruction feeding into the 2367 // instruction, let's use produceSameValue instead of isIdenticalTo. 2368 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2369 // Handle instructions with multiple defs that produce same values. Values 2370 // are same for operands with same index. 2371 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2372 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2373 // I1 and I2 are different instructions but produce same values, 2374 // %1 and %6 are same, %1 and %7 are not the same value. 2375 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2376 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2377 } 2378 return false; 2379 } 2380 2381 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2382 if (!MOP.isReg()) 2383 return false; 2384 auto *MI = MRI.getVRegDef(MOP.getReg()); 2385 auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI); 2386 return MaybeCst.hasValue() && MaybeCst->getBitWidth() <= 64 && 2387 MaybeCst->getSExtValue() == C; 2388 } 2389 2390 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2391 unsigned OpIdx) { 2392 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2393 Register OldReg = MI.getOperand(0).getReg(); 2394 Register Replacement = MI.getOperand(OpIdx).getReg(); 2395 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2396 MI.eraseFromParent(); 2397 replaceRegWith(MRI, OldReg, Replacement); 2398 return true; 2399 } 2400 2401 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2402 Register Replacement) { 2403 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2404 Register OldReg = MI.getOperand(0).getReg(); 2405 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2406 MI.eraseFromParent(); 2407 replaceRegWith(MRI, OldReg, Replacement); 2408 return true; 2409 } 2410 2411 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2412 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2413 // Match (cond ? x : x) 2414 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2415 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2416 MRI); 2417 } 2418 2419 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2420 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2421 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2422 MRI); 2423 } 2424 2425 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2426 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2427 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2428 MRI); 2429 } 2430 2431 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2432 MachineOperand &MO = MI.getOperand(OpIdx); 2433 return MO.isReg() && 2434 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2435 } 2436 2437 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2438 unsigned OpIdx) { 2439 MachineOperand &MO = MI.getOperand(OpIdx); 2440 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2441 } 2442 2443 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2444 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2445 Builder.setInstr(MI); 2446 Builder.buildFConstant(MI.getOperand(0), C); 2447 MI.eraseFromParent(); 2448 return true; 2449 } 2450 2451 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2452 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2453 Builder.setInstr(MI); 2454 Builder.buildConstant(MI.getOperand(0), C); 2455 MI.eraseFromParent(); 2456 return true; 2457 } 2458 2459 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2460 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2461 Builder.setInstr(MI); 2462 Builder.buildConstant(MI.getOperand(0), C); 2463 MI.eraseFromParent(); 2464 return true; 2465 } 2466 2467 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2468 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2469 Builder.setInstr(MI); 2470 Builder.buildUndef(MI.getOperand(0)); 2471 MI.eraseFromParent(); 2472 return true; 2473 } 2474 2475 bool CombinerHelper::matchSimplifyAddToSub( 2476 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2477 Register LHS = MI.getOperand(1).getReg(); 2478 Register RHS = MI.getOperand(2).getReg(); 2479 Register &NewLHS = std::get<0>(MatchInfo); 2480 Register &NewRHS = std::get<1>(MatchInfo); 2481 2482 // Helper lambda to check for opportunities for 2483 // ((0-A) + B) -> B - A 2484 // (A + (0-B)) -> A - B 2485 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2486 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2487 return false; 2488 NewLHS = MaybeNewLHS; 2489 return true; 2490 }; 2491 2492 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2493 } 2494 2495 bool CombinerHelper::matchCombineInsertVecElts( 2496 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2497 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2498 "Invalid opcode"); 2499 Register DstReg = MI.getOperand(0).getReg(); 2500 LLT DstTy = MRI.getType(DstReg); 2501 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2502 unsigned NumElts = DstTy.getNumElements(); 2503 // If this MI is part of a sequence of insert_vec_elts, then 2504 // don't do the combine in the middle of the sequence. 2505 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2506 TargetOpcode::G_INSERT_VECTOR_ELT) 2507 return false; 2508 MachineInstr *CurrInst = &MI; 2509 MachineInstr *TmpInst; 2510 int64_t IntImm; 2511 Register TmpReg; 2512 MatchInfo.resize(NumElts); 2513 while (mi_match( 2514 CurrInst->getOperand(0).getReg(), MRI, 2515 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2516 if (IntImm >= NumElts) 2517 return false; 2518 if (!MatchInfo[IntImm]) 2519 MatchInfo[IntImm] = TmpReg; 2520 CurrInst = TmpInst; 2521 } 2522 // Variable index. 2523 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2524 return false; 2525 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2526 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2527 if (!MatchInfo[I - 1].isValid()) 2528 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2529 } 2530 return true; 2531 } 2532 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2533 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2534 } 2535 2536 void CombinerHelper::applyCombineInsertVecElts( 2537 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2538 Builder.setInstr(MI); 2539 Register UndefReg; 2540 auto GetUndef = [&]() { 2541 if (UndefReg) 2542 return UndefReg; 2543 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2544 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2545 return UndefReg; 2546 }; 2547 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2548 if (!MatchInfo[I]) 2549 MatchInfo[I] = GetUndef(); 2550 } 2551 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2552 MI.eraseFromParent(); 2553 } 2554 2555 void CombinerHelper::applySimplifyAddToSub( 2556 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2557 Builder.setInstr(MI); 2558 Register SubLHS, SubRHS; 2559 std::tie(SubLHS, SubRHS) = MatchInfo; 2560 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2561 MI.eraseFromParent(); 2562 } 2563 2564 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2565 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2566 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2567 // 2568 // Creates the new hand + logic instruction (but does not insert them.) 2569 // 2570 // On success, MatchInfo is populated with the new instructions. These are 2571 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2572 unsigned LogicOpcode = MI.getOpcode(); 2573 assert(LogicOpcode == TargetOpcode::G_AND || 2574 LogicOpcode == TargetOpcode::G_OR || 2575 LogicOpcode == TargetOpcode::G_XOR); 2576 MachineIRBuilder MIB(MI); 2577 Register Dst = MI.getOperand(0).getReg(); 2578 Register LHSReg = MI.getOperand(1).getReg(); 2579 Register RHSReg = MI.getOperand(2).getReg(); 2580 2581 // Don't recompute anything. 2582 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2583 return false; 2584 2585 // Make sure we have (hand x, ...), (hand y, ...) 2586 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2587 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2588 if (!LeftHandInst || !RightHandInst) 2589 return false; 2590 unsigned HandOpcode = LeftHandInst->getOpcode(); 2591 if (HandOpcode != RightHandInst->getOpcode()) 2592 return false; 2593 if (!LeftHandInst->getOperand(1).isReg() || 2594 !RightHandInst->getOperand(1).isReg()) 2595 return false; 2596 2597 // Make sure the types match up, and if we're doing this post-legalization, 2598 // we end up with legal types. 2599 Register X = LeftHandInst->getOperand(1).getReg(); 2600 Register Y = RightHandInst->getOperand(1).getReg(); 2601 LLT XTy = MRI.getType(X); 2602 LLT YTy = MRI.getType(Y); 2603 if (XTy != YTy) 2604 return false; 2605 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2606 return false; 2607 2608 // Optional extra source register. 2609 Register ExtraHandOpSrcReg; 2610 switch (HandOpcode) { 2611 default: 2612 return false; 2613 case TargetOpcode::G_ANYEXT: 2614 case TargetOpcode::G_SEXT: 2615 case TargetOpcode::G_ZEXT: { 2616 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2617 break; 2618 } 2619 case TargetOpcode::G_AND: 2620 case TargetOpcode::G_ASHR: 2621 case TargetOpcode::G_LSHR: 2622 case TargetOpcode::G_SHL: { 2623 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2624 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2625 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2626 return false; 2627 ExtraHandOpSrcReg = ZOp.getReg(); 2628 break; 2629 } 2630 } 2631 2632 // Record the steps to build the new instructions. 2633 // 2634 // Steps to build (logic x, y) 2635 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2636 OperandBuildSteps LogicBuildSteps = { 2637 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2638 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2639 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2640 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2641 2642 // Steps to build hand (logic x, y), ...z 2643 OperandBuildSteps HandBuildSteps = { 2644 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2645 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2646 if (ExtraHandOpSrcReg.isValid()) 2647 HandBuildSteps.push_back( 2648 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2649 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2650 2651 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2652 return true; 2653 } 2654 2655 void CombinerHelper::applyBuildInstructionSteps( 2656 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2657 assert(MatchInfo.InstrsToBuild.size() && 2658 "Expected at least one instr to build?"); 2659 Builder.setInstr(MI); 2660 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2661 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2662 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2663 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2664 for (auto &OperandFn : InstrToBuild.OperandFns) 2665 OperandFn(Instr); 2666 } 2667 MI.eraseFromParent(); 2668 } 2669 2670 bool CombinerHelper::matchAshrShlToSextInreg( 2671 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2672 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2673 int64_t ShlCst, AshrCst; 2674 Register Src; 2675 // FIXME: detect splat constant vectors. 2676 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2677 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2678 return false; 2679 if (ShlCst != AshrCst) 2680 return false; 2681 if (!isLegalOrBeforeLegalizer( 2682 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2683 return false; 2684 MatchInfo = std::make_tuple(Src, ShlCst); 2685 return true; 2686 } 2687 2688 void CombinerHelper::applyAshShlToSextInreg( 2689 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2690 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2691 Register Src; 2692 int64_t ShiftAmt; 2693 std::tie(Src, ShiftAmt) = MatchInfo; 2694 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2695 Builder.setInstrAndDebugLoc(MI); 2696 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2697 MI.eraseFromParent(); 2698 } 2699 2700 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 2701 bool CombinerHelper::matchOverlappingAnd( 2702 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 2703 assert(MI.getOpcode() == TargetOpcode::G_AND); 2704 2705 Register Dst = MI.getOperand(0).getReg(); 2706 LLT Ty = MRI.getType(Dst); 2707 2708 Register R; 2709 int64_t C1; 2710 int64_t C2; 2711 if (!mi_match( 2712 Dst, MRI, 2713 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 2714 return false; 2715 2716 MatchInfo = [=](MachineIRBuilder &B) { 2717 if (C1 & C2) { 2718 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 2719 return; 2720 } 2721 auto Zero = B.buildConstant(Ty, 0); 2722 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 2723 }; 2724 return true; 2725 } 2726 2727 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2728 Register &Replacement) { 2729 // Given 2730 // 2731 // %y:_(sN) = G_SOMETHING 2732 // %x:_(sN) = G_SOMETHING 2733 // %res:_(sN) = G_AND %x, %y 2734 // 2735 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 2736 // 2737 // Patterns like this can appear as a result of legalization. E.g. 2738 // 2739 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2740 // %one:_(s32) = G_CONSTANT i32 1 2741 // %and:_(s32) = G_AND %cmp, %one 2742 // 2743 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2744 assert(MI.getOpcode() == TargetOpcode::G_AND); 2745 if (!KB) 2746 return false; 2747 2748 Register AndDst = MI.getOperand(0).getReg(); 2749 LLT DstTy = MRI.getType(AndDst); 2750 2751 // FIXME: This should be removed once GISelKnownBits supports vectors. 2752 if (DstTy.isVector()) 2753 return false; 2754 2755 Register LHS = MI.getOperand(1).getReg(); 2756 Register RHS = MI.getOperand(2).getReg(); 2757 KnownBits LHSBits = KB->getKnownBits(LHS); 2758 KnownBits RHSBits = KB->getKnownBits(RHS); 2759 2760 // Check that x & Mask == x. 2761 // x & 1 == x, always 2762 // x & 0 == x, only if x is also 0 2763 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 2764 // 2765 // Check if we can replace AndDst with the LHS of the G_AND 2766 if (canReplaceReg(AndDst, LHS, MRI) && 2767 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2768 Replacement = LHS; 2769 return true; 2770 } 2771 2772 // Check if we can replace AndDst with the RHS of the G_AND 2773 if (canReplaceReg(AndDst, RHS, MRI) && 2774 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2775 Replacement = RHS; 2776 return true; 2777 } 2778 2779 return false; 2780 } 2781 2782 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 2783 // Given 2784 // 2785 // %y:_(sN) = G_SOMETHING 2786 // %x:_(sN) = G_SOMETHING 2787 // %res:_(sN) = G_OR %x, %y 2788 // 2789 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 2790 assert(MI.getOpcode() == TargetOpcode::G_OR); 2791 if (!KB) 2792 return false; 2793 2794 Register OrDst = MI.getOperand(0).getReg(); 2795 LLT DstTy = MRI.getType(OrDst); 2796 2797 // FIXME: This should be removed once GISelKnownBits supports vectors. 2798 if (DstTy.isVector()) 2799 return false; 2800 2801 Register LHS = MI.getOperand(1).getReg(); 2802 Register RHS = MI.getOperand(2).getReg(); 2803 KnownBits LHSBits = KB->getKnownBits(LHS); 2804 KnownBits RHSBits = KB->getKnownBits(RHS); 2805 2806 // Check that x | Mask == x. 2807 // x | 0 == x, always 2808 // x | 1 == x, only if x is also 1 2809 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 2810 // 2811 // Check if we can replace OrDst with the LHS of the G_OR 2812 if (canReplaceReg(OrDst, LHS, MRI) && 2813 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2814 Replacement = LHS; 2815 return true; 2816 } 2817 2818 // Check if we can replace OrDst with the RHS of the G_OR 2819 if (canReplaceReg(OrDst, RHS, MRI) && 2820 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2821 Replacement = RHS; 2822 return true; 2823 } 2824 2825 return false; 2826 } 2827 2828 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 2829 // If the input is already sign extended, just drop the extension. 2830 Register Src = MI.getOperand(1).getReg(); 2831 unsigned ExtBits = MI.getOperand(2).getImm(); 2832 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 2833 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 2834 } 2835 2836 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 2837 int64_t Cst, bool IsVector, bool IsFP) { 2838 // For i1, Cst will always be -1 regardless of boolean contents. 2839 return (ScalarSizeBits == 1 && Cst == -1) || 2840 isConstTrueVal(TLI, Cst, IsVector, IsFP); 2841 } 2842 2843 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 2844 SmallVectorImpl<Register> &RegsToNegate) { 2845 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2846 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2847 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 2848 Register XorSrc; 2849 Register CstReg; 2850 // We match xor(src, true) here. 2851 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2852 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 2853 return false; 2854 2855 if (!MRI.hasOneNonDBGUse(XorSrc)) 2856 return false; 2857 2858 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 2859 // and ORs. The suffix of RegsToNegate starting from index I is used a work 2860 // list of tree nodes to visit. 2861 RegsToNegate.push_back(XorSrc); 2862 // Remember whether the comparisons are all integer or all floating point. 2863 bool IsInt = false; 2864 bool IsFP = false; 2865 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 2866 Register Reg = RegsToNegate[I]; 2867 if (!MRI.hasOneNonDBGUse(Reg)) 2868 return false; 2869 MachineInstr *Def = MRI.getVRegDef(Reg); 2870 switch (Def->getOpcode()) { 2871 default: 2872 // Don't match if the tree contains anything other than ANDs, ORs and 2873 // comparisons. 2874 return false; 2875 case TargetOpcode::G_ICMP: 2876 if (IsFP) 2877 return false; 2878 IsInt = true; 2879 // When we apply the combine we will invert the predicate. 2880 break; 2881 case TargetOpcode::G_FCMP: 2882 if (IsInt) 2883 return false; 2884 IsFP = true; 2885 // When we apply the combine we will invert the predicate. 2886 break; 2887 case TargetOpcode::G_AND: 2888 case TargetOpcode::G_OR: 2889 // Implement De Morgan's laws: 2890 // ~(x & y) -> ~x | ~y 2891 // ~(x | y) -> ~x & ~y 2892 // When we apply the combine we will change the opcode and recursively 2893 // negate the operands. 2894 RegsToNegate.push_back(Def->getOperand(1).getReg()); 2895 RegsToNegate.push_back(Def->getOperand(2).getReg()); 2896 break; 2897 } 2898 } 2899 2900 // Now we know whether the comparisons are integer or floating point, check 2901 // the constant in the xor. 2902 int64_t Cst; 2903 if (Ty.isVector()) { 2904 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 2905 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 2906 if (!MaybeCst) 2907 return false; 2908 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 2909 return false; 2910 } else { 2911 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 2912 return false; 2913 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 2914 return false; 2915 } 2916 2917 return true; 2918 } 2919 2920 void CombinerHelper::applyNotCmp(MachineInstr &MI, 2921 SmallVectorImpl<Register> &RegsToNegate) { 2922 for (Register Reg : RegsToNegate) { 2923 MachineInstr *Def = MRI.getVRegDef(Reg); 2924 Observer.changingInstr(*Def); 2925 // For each comparison, invert the opcode. For each AND and OR, change the 2926 // opcode. 2927 switch (Def->getOpcode()) { 2928 default: 2929 llvm_unreachable("Unexpected opcode"); 2930 case TargetOpcode::G_ICMP: 2931 case TargetOpcode::G_FCMP: { 2932 MachineOperand &PredOp = Def->getOperand(1); 2933 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 2934 (CmpInst::Predicate)PredOp.getPredicate()); 2935 PredOp.setPredicate(NewP); 2936 break; 2937 } 2938 case TargetOpcode::G_AND: 2939 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 2940 break; 2941 case TargetOpcode::G_OR: 2942 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2943 break; 2944 } 2945 Observer.changedInstr(*Def); 2946 } 2947 2948 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 2949 MI.eraseFromParent(); 2950 } 2951 2952 bool CombinerHelper::matchXorOfAndWithSameReg( 2953 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2954 // Match (xor (and x, y), y) (or any of its commuted cases) 2955 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2956 Register &X = MatchInfo.first; 2957 Register &Y = MatchInfo.second; 2958 Register AndReg = MI.getOperand(1).getReg(); 2959 Register SharedReg = MI.getOperand(2).getReg(); 2960 2961 // Find a G_AND on either side of the G_XOR. 2962 // Look for one of 2963 // 2964 // (xor (and x, y), SharedReg) 2965 // (xor SharedReg, (and x, y)) 2966 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 2967 std::swap(AndReg, SharedReg); 2968 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 2969 return false; 2970 } 2971 2972 // Only do this if we'll eliminate the G_AND. 2973 if (!MRI.hasOneNonDBGUse(AndReg)) 2974 return false; 2975 2976 // We can combine if SharedReg is the same as either the LHS or RHS of the 2977 // G_AND. 2978 if (Y != SharedReg) 2979 std::swap(X, Y); 2980 return Y == SharedReg; 2981 } 2982 2983 void CombinerHelper::applyXorOfAndWithSameReg( 2984 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2985 // Fold (xor (and x, y), y) -> (and (not x), y) 2986 Builder.setInstrAndDebugLoc(MI); 2987 Register X, Y; 2988 std::tie(X, Y) = MatchInfo; 2989 auto Not = Builder.buildNot(MRI.getType(X), X); 2990 Observer.changingInstr(MI); 2991 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2992 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 2993 MI.getOperand(2).setReg(Y); 2994 Observer.changedInstr(MI); 2995 } 2996 2997 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 2998 auto &PtrAdd = cast<GPtrAdd>(MI); 2999 Register DstReg = PtrAdd.getReg(0); 3000 LLT Ty = MRI.getType(DstReg); 3001 const DataLayout &DL = Builder.getMF().getDataLayout(); 3002 3003 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3004 return false; 3005 3006 if (Ty.isPointer()) { 3007 auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI); 3008 return ConstVal && *ConstVal == 0; 3009 } 3010 3011 assert(Ty.isVector() && "Expecting a vector type"); 3012 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 3013 return isBuildVectorAllZeros(*VecMI, MRI); 3014 } 3015 3016 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3017 auto &PtrAdd = cast<GPtrAdd>(MI); 3018 Builder.setInstrAndDebugLoc(PtrAdd); 3019 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 3020 PtrAdd.eraseFromParent(); 3021 } 3022 3023 /// The second source operand is known to be a power of 2. 3024 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3025 Register DstReg = MI.getOperand(0).getReg(); 3026 Register Src0 = MI.getOperand(1).getReg(); 3027 Register Pow2Src1 = MI.getOperand(2).getReg(); 3028 LLT Ty = MRI.getType(DstReg); 3029 Builder.setInstrAndDebugLoc(MI); 3030 3031 // Fold (urem x, pow2) -> (and x, pow2-1) 3032 auto NegOne = Builder.buildConstant(Ty, -1); 3033 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3034 Builder.buildAnd(DstReg, Src0, Add); 3035 MI.eraseFromParent(); 3036 } 3037 3038 Optional<SmallVector<Register, 8>> 3039 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3040 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3041 // We want to detect if Root is part of a tree which represents a bunch 3042 // of loads being merged into a larger load. We'll try to recognize patterns 3043 // like, for example: 3044 // 3045 // Reg Reg 3046 // \ / 3047 // OR_1 Reg 3048 // \ / 3049 // OR_2 3050 // \ Reg 3051 // .. / 3052 // Root 3053 // 3054 // Reg Reg Reg Reg 3055 // \ / \ / 3056 // OR_1 OR_2 3057 // \ / 3058 // \ / 3059 // ... 3060 // Root 3061 // 3062 // Each "Reg" may have been produced by a load + some arithmetic. This 3063 // function will save each of them. 3064 SmallVector<Register, 8> RegsToVisit; 3065 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3066 3067 // In the "worst" case, we're dealing with a load for each byte. So, there 3068 // are at most #bytes - 1 ORs. 3069 const unsigned MaxIter = 3070 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3071 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3072 if (Ors.empty()) 3073 break; 3074 const MachineInstr *Curr = Ors.pop_back_val(); 3075 Register OrLHS = Curr->getOperand(1).getReg(); 3076 Register OrRHS = Curr->getOperand(2).getReg(); 3077 3078 // In the combine, we want to elimate the entire tree. 3079 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3080 return None; 3081 3082 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3083 // something that may be a load + arithmetic. 3084 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3085 Ors.push_back(Or); 3086 else 3087 RegsToVisit.push_back(OrLHS); 3088 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3089 Ors.push_back(Or); 3090 else 3091 RegsToVisit.push_back(OrRHS); 3092 } 3093 3094 // We're going to try and merge each register into a wider power-of-2 type, 3095 // so we ought to have an even number of registers. 3096 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3097 return None; 3098 return RegsToVisit; 3099 } 3100 3101 /// Helper function for findLoadOffsetsForLoadOrCombine. 3102 /// 3103 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3104 /// and then moving that value into a specific byte offset. 3105 /// 3106 /// e.g. x[i] << 24 3107 /// 3108 /// \returns The load instruction and the byte offset it is moved into. 3109 static Optional<std::pair<GZExtLoad *, int64_t>> 3110 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3111 const MachineRegisterInfo &MRI) { 3112 assert(MRI.hasOneNonDBGUse(Reg) && 3113 "Expected Reg to only have one non-debug use?"); 3114 Register MaybeLoad; 3115 int64_t Shift; 3116 if (!mi_match(Reg, MRI, 3117 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3118 Shift = 0; 3119 MaybeLoad = Reg; 3120 } 3121 3122 if (Shift % MemSizeInBits != 0) 3123 return None; 3124 3125 // TODO: Handle other types of loads. 3126 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3127 if (!Load) 3128 return None; 3129 3130 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3131 return None; 3132 3133 return std::make_pair(Load, Shift / MemSizeInBits); 3134 } 3135 3136 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3137 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3138 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3139 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3140 3141 // Each load found for the pattern. There should be one for each RegsToVisit. 3142 SmallSetVector<const MachineInstr *, 8> Loads; 3143 3144 // The lowest index used in any load. (The lowest "i" for each x[i].) 3145 int64_t LowestIdx = INT64_MAX; 3146 3147 // The load which uses the lowest index. 3148 GZExtLoad *LowestIdxLoad = nullptr; 3149 3150 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3151 SmallSet<int64_t, 8> SeenIdx; 3152 3153 // Ensure each load is in the same MBB. 3154 // TODO: Support multiple MachineBasicBlocks. 3155 MachineBasicBlock *MBB = nullptr; 3156 const MachineMemOperand *MMO = nullptr; 3157 3158 // Earliest instruction-order load in the pattern. 3159 GZExtLoad *EarliestLoad = nullptr; 3160 3161 // Latest instruction-order load in the pattern. 3162 GZExtLoad *LatestLoad = nullptr; 3163 3164 // Base pointer which every load should share. 3165 Register BasePtr; 3166 3167 // We want to find a load for each register. Each load should have some 3168 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3169 // track of the load which uses the lowest index. Later, we will check if we 3170 // can use its pointer in the final, combined load. 3171 for (auto Reg : RegsToVisit) { 3172 // Find the load, and find the position that it will end up in (e.g. a 3173 // shifted) value. 3174 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3175 if (!LoadAndPos) 3176 return None; 3177 GZExtLoad *Load; 3178 int64_t DstPos; 3179 std::tie(Load, DstPos) = *LoadAndPos; 3180 3181 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3182 // it is difficult to check for stores/calls/etc between loads. 3183 MachineBasicBlock *LoadMBB = Load->getParent(); 3184 if (!MBB) 3185 MBB = LoadMBB; 3186 if (LoadMBB != MBB) 3187 return None; 3188 3189 // Make sure that the MachineMemOperands of every seen load are compatible. 3190 auto &LoadMMO = Load->getMMO(); 3191 if (!MMO) 3192 MMO = &LoadMMO; 3193 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3194 return None; 3195 3196 // Find out what the base pointer and index for the load is. 3197 Register LoadPtr; 3198 int64_t Idx; 3199 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3200 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3201 LoadPtr = Load->getOperand(1).getReg(); 3202 Idx = 0; 3203 } 3204 3205 // Don't combine things like a[i], a[i] -> a bigger load. 3206 if (!SeenIdx.insert(Idx).second) 3207 return None; 3208 3209 // Every load must share the same base pointer; don't combine things like: 3210 // 3211 // a[i], b[i + 1] -> a bigger load. 3212 if (!BasePtr.isValid()) 3213 BasePtr = LoadPtr; 3214 if (BasePtr != LoadPtr) 3215 return None; 3216 3217 if (Idx < LowestIdx) { 3218 LowestIdx = Idx; 3219 LowestIdxLoad = Load; 3220 } 3221 3222 // Keep track of the byte offset that this load ends up at. If we have seen 3223 // the byte offset, then stop here. We do not want to combine: 3224 // 3225 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3226 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3227 return None; 3228 Loads.insert(Load); 3229 3230 // Keep track of the position of the earliest/latest loads in the pattern. 3231 // We will check that there are no load fold barriers between them later 3232 // on. 3233 // 3234 // FIXME: Is there a better way to check for load fold barriers? 3235 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3236 EarliestLoad = Load; 3237 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3238 LatestLoad = Load; 3239 } 3240 3241 // We found a load for each register. Let's check if each load satisfies the 3242 // pattern. 3243 assert(Loads.size() == RegsToVisit.size() && 3244 "Expected to find a load for each register?"); 3245 assert(EarliestLoad != LatestLoad && EarliestLoad && 3246 LatestLoad && "Expected at least two loads?"); 3247 3248 // Check if there are any stores, calls, etc. between any of the loads. If 3249 // there are, then we can't safely perform the combine. 3250 // 3251 // MaxIter is chosen based off the (worst case) number of iterations it 3252 // typically takes to succeed in the LLVM test suite plus some padding. 3253 // 3254 // FIXME: Is there a better way to check for load fold barriers? 3255 const unsigned MaxIter = 20; 3256 unsigned Iter = 0; 3257 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3258 LatestLoad->getIterator())) { 3259 if (Loads.count(&MI)) 3260 continue; 3261 if (MI.isLoadFoldBarrier()) 3262 return None; 3263 if (Iter++ == MaxIter) 3264 return None; 3265 } 3266 3267 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3268 } 3269 3270 bool CombinerHelper::matchLoadOrCombine( 3271 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3272 assert(MI.getOpcode() == TargetOpcode::G_OR); 3273 MachineFunction &MF = *MI.getMF(); 3274 // Assuming a little-endian target, transform: 3275 // s8 *a = ... 3276 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3277 // => 3278 // s32 val = *((i32)a) 3279 // 3280 // s8 *a = ... 3281 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3282 // => 3283 // s32 val = BSWAP(*((s32)a)) 3284 Register Dst = MI.getOperand(0).getReg(); 3285 LLT Ty = MRI.getType(Dst); 3286 if (Ty.isVector()) 3287 return false; 3288 3289 // We need to combine at least two loads into this type. Since the smallest 3290 // possible load is into a byte, we need at least a 16-bit wide type. 3291 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3292 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3293 return false; 3294 3295 // Match a collection of non-OR instructions in the pattern. 3296 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3297 if (!RegsToVisit) 3298 return false; 3299 3300 // We have a collection of non-OR instructions. Figure out how wide each of 3301 // the small loads should be based off of the number of potential loads we 3302 // found. 3303 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3304 if (NarrowMemSizeInBits % 8 != 0) 3305 return false; 3306 3307 // Check if each register feeding into each OR is a load from the same 3308 // base pointer + some arithmetic. 3309 // 3310 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3311 // 3312 // Also verify that each of these ends up putting a[i] into the same memory 3313 // offset as a load into a wide type would. 3314 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3315 GZExtLoad *LowestIdxLoad, *LatestLoad; 3316 int64_t LowestIdx; 3317 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3318 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3319 if (!MaybeLoadInfo) 3320 return false; 3321 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3322 3323 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3324 // we found before, check if this corresponds to a big or little endian byte 3325 // pattern. If it does, then we can represent it using a load + possibly a 3326 // BSWAP. 3327 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3328 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3329 if (!IsBigEndian.hasValue()) 3330 return false; 3331 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3332 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3333 return false; 3334 3335 // Make sure that the load from the lowest index produces offset 0 in the 3336 // final value. 3337 // 3338 // This ensures that we won't combine something like this: 3339 // 3340 // load x[i] -> byte 2 3341 // load x[i+1] -> byte 0 ---> wide_load x[i] 3342 // load x[i+2] -> byte 1 3343 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3344 const unsigned ZeroByteOffset = 3345 *IsBigEndian 3346 ? bigEndianByteAt(NumLoadsInTy, 0) 3347 : littleEndianByteAt(NumLoadsInTy, 0); 3348 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3349 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3350 ZeroOffsetIdx->second != LowestIdx) 3351 return false; 3352 3353 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3354 // may not use index 0. 3355 Register Ptr = LowestIdxLoad->getPointerReg(); 3356 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3357 LegalityQuery::MemDesc MMDesc(MMO); 3358 MMDesc.MemoryTy = Ty; 3359 if (!isLegalOrBeforeLegalizer( 3360 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3361 return false; 3362 auto PtrInfo = MMO.getPointerInfo(); 3363 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3364 3365 // Load must be allowed and fast on the target. 3366 LLVMContext &C = MF.getFunction().getContext(); 3367 auto &DL = MF.getDataLayout(); 3368 bool Fast = false; 3369 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3370 !Fast) 3371 return false; 3372 3373 MatchInfo = [=](MachineIRBuilder &MIB) { 3374 MIB.setInstrAndDebugLoc(*LatestLoad); 3375 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3376 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3377 if (NeedsBSwap) 3378 MIB.buildBSwap(Dst, LoadDst); 3379 }; 3380 return true; 3381 } 3382 3383 /// Check if the store \p Store is a truncstore that can be merged. That is, 3384 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty 3385 /// Register then it does not need to match and SrcVal is set to the source 3386 /// value found. 3387 /// On match, returns the start byte offset of the \p SrcVal that is being 3388 /// stored. 3389 static Optional<int64_t> getTruncStoreByteOffset(GStore &Store, Register &SrcVal, 3390 MachineRegisterInfo &MRI) { 3391 Register TruncVal; 3392 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) 3393 return None; 3394 3395 // The shift amount must be a constant multiple of the narrow type. 3396 // It is translated to the offset address in the wide source value "y". 3397 // 3398 // x = G_LSHR y, ShiftAmtC 3399 // s8 z = G_TRUNC x 3400 // store z, ... 3401 Register FoundSrcVal; 3402 int64_t ShiftAmt; 3403 if (!mi_match(TruncVal, MRI, 3404 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), 3405 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { 3406 if (!SrcVal.isValid() || TruncVal == SrcVal) { 3407 if (!SrcVal.isValid()) 3408 SrcVal = TruncVal; 3409 return 0; // If it's the lowest index store. 3410 } 3411 return None; 3412 } 3413 3414 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); 3415 if (ShiftAmt % NarrowBits!= 0) 3416 return None; 3417 const unsigned Offset = ShiftAmt / NarrowBits; 3418 3419 if (SrcVal.isValid() && FoundSrcVal != SrcVal) 3420 return None; 3421 3422 if (!SrcVal.isValid()) 3423 SrcVal = FoundSrcVal; 3424 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) 3425 return None; 3426 return Offset; 3427 } 3428 3429 /// Match a pattern where a wide type scalar value is stored by several narrow 3430 /// stores. Fold it into a single store or a BSWAP and a store if the targets 3431 /// supports it. 3432 /// 3433 /// Assuming little endian target: 3434 /// i8 *p = ... 3435 /// i32 val = ... 3436 /// p[0] = (val >> 0) & 0xFF; 3437 /// p[1] = (val >> 8) & 0xFF; 3438 /// p[2] = (val >> 16) & 0xFF; 3439 /// p[3] = (val >> 24) & 0xFF; 3440 /// => 3441 /// *((i32)p) = val; 3442 /// 3443 /// i8 *p = ... 3444 /// i32 val = ... 3445 /// p[0] = (val >> 24) & 0xFF; 3446 /// p[1] = (val >> 16) & 0xFF; 3447 /// p[2] = (val >> 8) & 0xFF; 3448 /// p[3] = (val >> 0) & 0xFF; 3449 /// => 3450 /// *((i32)p) = BSWAP(val); 3451 bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI, 3452 MergeTruncStoresInfo &MatchInfo) { 3453 auto &StoreMI = cast<GStore>(MI); 3454 LLT MemTy = StoreMI.getMMO().getMemoryType(); 3455 3456 // We only handle merging simple stores of 1-4 bytes. 3457 if (!MemTy.isScalar()) 3458 return false; 3459 switch (MemTy.getSizeInBits()) { 3460 case 8: 3461 case 16: 3462 case 32: 3463 break; 3464 default: 3465 return false; 3466 } 3467 if (!StoreMI.isSimple()) 3468 return false; 3469 3470 // We do a simple search for mergeable stores prior to this one. 3471 // Any potential alias hazard along the way terminates the search. 3472 SmallVector<GStore *> FoundStores; 3473 3474 // We're looking for: 3475 // 1) a (store(trunc(...))) 3476 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get 3477 // the partial value stored. 3478 // 3) where the offsets form either a little or big-endian sequence. 3479 3480 auto &LastStore = StoreMI; 3481 3482 // The single base pointer that all stores must use. 3483 Register BaseReg; 3484 int64_t LastOffset; 3485 if (!mi_match(LastStore.getPointerReg(), MRI, 3486 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { 3487 BaseReg = LastStore.getPointerReg(); 3488 LastOffset = 0; 3489 } 3490 3491 GStore *LowestIdxStore = &LastStore; 3492 int64_t LowestIdxOffset = LastOffset; 3493 3494 Register WideSrcVal; 3495 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI); 3496 if (!LowestShiftAmt) 3497 return false; // Didn't match a trunc. 3498 assert(WideSrcVal.isValid()); 3499 3500 LLT WideStoreTy = MRI.getType(WideSrcVal); 3501 // The wide type might not be a multiple of the memory type, e.g. s48 and s32. 3502 if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0) 3503 return false; 3504 const unsigned NumStoresRequired = 3505 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); 3506 3507 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); 3508 OffsetMap[*LowestShiftAmt] = LastOffset; 3509 FoundStores.emplace_back(&LastStore); 3510 3511 // Search the block up for more stores. 3512 // We use a search threshold of 10 instructions here because the combiner 3513 // works top-down within a block, and we don't want to search an unbounded 3514 // number of predecessor instructions trying to find matching stores. 3515 // If we moved this optimization into a separate pass then we could probably 3516 // use a more efficient search without having a hard-coded threshold. 3517 const int MaxInstsToCheck = 10; 3518 int NumInstsChecked = 0; 3519 for (auto II = ++LastStore.getReverseIterator(); 3520 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; 3521 ++II) { 3522 NumInstsChecked++; 3523 GStore *NewStore; 3524 if ((NewStore = dyn_cast<GStore>(&*II))) { 3525 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) 3526 break; 3527 } else if (II->isLoadFoldBarrier() || II->mayLoad()) { 3528 break; 3529 } else { 3530 continue; // This is a safe instruction we can look past. 3531 } 3532 3533 Register NewBaseReg; 3534 int64_t MemOffset; 3535 // Check we're storing to the same base + some offset. 3536 if (!mi_match(NewStore->getPointerReg(), MRI, 3537 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { 3538 NewBaseReg = NewStore->getPointerReg(); 3539 MemOffset = 0; 3540 } 3541 if (BaseReg != NewBaseReg) 3542 break; 3543 3544 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI); 3545 if (!ShiftByteOffset) 3546 break; 3547 if (MemOffset < LowestIdxOffset) { 3548 LowestIdxOffset = MemOffset; 3549 LowestIdxStore = NewStore; 3550 } 3551 3552 // Map the offset in the store and the offset in the combined value, and 3553 // early return if it has been set before. 3554 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || 3555 OffsetMap[*ShiftByteOffset] != INT64_MAX) 3556 break; 3557 OffsetMap[*ShiftByteOffset] = MemOffset; 3558 3559 FoundStores.emplace_back(NewStore); 3560 // Reset counter since we've found a matching inst. 3561 NumInstsChecked = 0; 3562 if (FoundStores.size() == NumStoresRequired) 3563 break; 3564 } 3565 3566 if (FoundStores.size() != NumStoresRequired) { 3567 return false; 3568 } 3569 3570 const auto &DL = LastStore.getMF()->getDataLayout(); 3571 auto &C = LastStore.getMF()->getFunction().getContext(); 3572 // Check that a store of the wide type is both allowed and fast on the target 3573 bool Fast = false; 3574 bool Allowed = getTargetLowering().allowsMemoryAccess( 3575 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); 3576 if (!Allowed || !Fast) 3577 return false; 3578 3579 // Check if the pieces of the value are going to the expected places in memory 3580 // to merge the stores. 3581 unsigned NarrowBits = MemTy.getScalarSizeInBits(); 3582 auto checkOffsets = [&](bool MatchLittleEndian) { 3583 if (MatchLittleEndian) { 3584 for (unsigned i = 0; i != NumStoresRequired; ++i) 3585 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) 3586 return false; 3587 } else { // MatchBigEndian by reversing loop counter. 3588 for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired; 3589 ++i, --j) 3590 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) 3591 return false; 3592 } 3593 return true; 3594 }; 3595 3596 // Check if the offsets line up for the native data layout of this target. 3597 bool NeedBswap = false; 3598 bool NeedRotate = false; 3599 if (!checkOffsets(DL.isLittleEndian())) { 3600 // Special-case: check if byte offsets line up for the opposite endian. 3601 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) 3602 NeedBswap = true; 3603 else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian())) 3604 NeedRotate = true; 3605 else 3606 return false; 3607 } 3608 3609 if (NeedBswap && 3610 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}})) 3611 return false; 3612 if (NeedRotate && 3613 !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}})) 3614 return false; 3615 3616 MatchInfo.NeedBSwap = NeedBswap; 3617 MatchInfo.NeedRotate = NeedRotate; 3618 MatchInfo.LowestIdxStore = LowestIdxStore; 3619 MatchInfo.WideSrcVal = WideSrcVal; 3620 MatchInfo.FoundStores = std::move(FoundStores); 3621 return true; 3622 } 3623 3624 void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI, 3625 MergeTruncStoresInfo &MatchInfo) { 3626 3627 Builder.setInstrAndDebugLoc(MI); 3628 Register WideSrcVal = MatchInfo.WideSrcVal; 3629 LLT WideStoreTy = MRI.getType(WideSrcVal); 3630 3631 if (MatchInfo.NeedBSwap) { 3632 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); 3633 } else if (MatchInfo.NeedRotate) { 3634 assert(WideStoreTy.getSizeInBits() % 2 == 0 && 3635 "Unexpected type for rotate"); 3636 auto RotAmt = 3637 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); 3638 WideSrcVal = 3639 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); 3640 } 3641 3642 Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(), 3643 MatchInfo.LowestIdxStore->getMMO().getPointerInfo(), 3644 MatchInfo.LowestIdxStore->getMMO().getAlign()); 3645 3646 // Erase the old stores. 3647 for (auto *ST : MatchInfo.FoundStores) 3648 ST->eraseFromParent(); 3649 } 3650 3651 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3652 MachineInstr *&ExtMI) { 3653 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3654 3655 Register DstReg = MI.getOperand(0).getReg(); 3656 3657 // TODO: Extending a vector may be expensive, don't do this until heuristics 3658 // are better. 3659 if (MRI.getType(DstReg).isVector()) 3660 return false; 3661 3662 // Try to match a phi, whose only use is an extend. 3663 if (!MRI.hasOneNonDBGUse(DstReg)) 3664 return false; 3665 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3666 switch (ExtMI->getOpcode()) { 3667 case TargetOpcode::G_ANYEXT: 3668 return true; // G_ANYEXT is usually free. 3669 case TargetOpcode::G_ZEXT: 3670 case TargetOpcode::G_SEXT: 3671 break; 3672 default: 3673 return false; 3674 } 3675 3676 // If the target is likely to fold this extend away, don't propagate. 3677 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3678 return false; 3679 3680 // We don't want to propagate the extends unless there's a good chance that 3681 // they'll be optimized in some way. 3682 // Collect the unique incoming values. 3683 SmallPtrSet<MachineInstr *, 4> InSrcs; 3684 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3685 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3686 switch (DefMI->getOpcode()) { 3687 case TargetOpcode::G_LOAD: 3688 case TargetOpcode::G_TRUNC: 3689 case TargetOpcode::G_SEXT: 3690 case TargetOpcode::G_ZEXT: 3691 case TargetOpcode::G_ANYEXT: 3692 case TargetOpcode::G_CONSTANT: 3693 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3694 // Don't try to propagate if there are too many places to create new 3695 // extends, chances are it'll increase code size. 3696 if (InSrcs.size() > 2) 3697 return false; 3698 break; 3699 default: 3700 return false; 3701 } 3702 } 3703 return true; 3704 } 3705 3706 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3707 MachineInstr *&ExtMI) { 3708 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3709 Register DstReg = ExtMI->getOperand(0).getReg(); 3710 LLT ExtTy = MRI.getType(DstReg); 3711 3712 // Propagate the extension into the block of each incoming reg's block. 3713 // Use a SetVector here because PHIs can have duplicate edges, and we want 3714 // deterministic iteration order. 3715 SmallSetVector<MachineInstr *, 8> SrcMIs; 3716 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3717 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3718 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3719 if (!SrcMIs.insert(SrcMI)) 3720 continue; 3721 3722 // Build an extend after each src inst. 3723 auto *MBB = SrcMI->getParent(); 3724 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3725 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3726 InsertPt = MBB->getFirstNonPHI(); 3727 3728 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3729 Builder.setDebugLoc(MI.getDebugLoc()); 3730 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3731 SrcMI->getOperand(0).getReg()); 3732 OldToNewSrcMap[SrcMI] = NewExt; 3733 } 3734 3735 // Create a new phi with the extended inputs. 3736 Builder.setInstrAndDebugLoc(MI); 3737 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3738 NewPhi.addDef(DstReg); 3739 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 3740 if (!MO.isReg()) { 3741 NewPhi.addMBB(MO.getMBB()); 3742 continue; 3743 } 3744 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3745 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3746 } 3747 Builder.insertInstr(NewPhi); 3748 ExtMI->eraseFromParent(); 3749 } 3750 3751 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3752 Register &Reg) { 3753 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3754 // If we have a constant index, look for a G_BUILD_VECTOR source 3755 // and find the source register that the index maps to. 3756 Register SrcVec = MI.getOperand(1).getReg(); 3757 LLT SrcTy = MRI.getType(SrcVec); 3758 if (!isLegalOrBeforeLegalizer( 3759 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3760 return false; 3761 3762 auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3763 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3764 return false; 3765 3766 unsigned VecIdx = Cst->Value.getZExtValue(); 3767 MachineInstr *BuildVecMI = 3768 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3769 if (!BuildVecMI) { 3770 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3771 if (!BuildVecMI) 3772 return false; 3773 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3774 if (!isLegalOrBeforeLegalizer( 3775 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3776 return false; 3777 } 3778 3779 EVT Ty(getMVTForLLT(SrcTy)); 3780 if (!MRI.hasOneNonDBGUse(SrcVec) && 3781 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3782 return false; 3783 3784 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3785 return true; 3786 } 3787 3788 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3789 Register &Reg) { 3790 // Check the type of the register, since it may have come from a 3791 // G_BUILD_VECTOR_TRUNC. 3792 LLT ScalarTy = MRI.getType(Reg); 3793 Register DstReg = MI.getOperand(0).getReg(); 3794 LLT DstTy = MRI.getType(DstReg); 3795 3796 Builder.setInstrAndDebugLoc(MI); 3797 if (ScalarTy != DstTy) { 3798 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3799 Builder.buildTrunc(DstReg, Reg); 3800 MI.eraseFromParent(); 3801 return; 3802 } 3803 replaceSingleDefInstWithReg(MI, Reg); 3804 } 3805 3806 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3807 MachineInstr &MI, 3808 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3809 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3810 // This combine tries to find build_vector's which have every source element 3811 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3812 // the masked load scalarization is run late in the pipeline. There's already 3813 // a combine for a similar pattern starting from the extract, but that 3814 // doesn't attempt to do it if there are multiple uses of the build_vector, 3815 // which in this case is true. Starting the combine from the build_vector 3816 // feels more natural than trying to find sibling nodes of extracts. 3817 // E.g. 3818 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3819 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3820 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3821 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3822 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3823 // ==> 3824 // replace ext{1,2,3,4} with %s{1,2,3,4} 3825 3826 Register DstReg = MI.getOperand(0).getReg(); 3827 LLT DstTy = MRI.getType(DstReg); 3828 unsigned NumElts = DstTy.getNumElements(); 3829 3830 SmallBitVector ExtractedElts(NumElts); 3831 for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) { 3832 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3833 return false; 3834 auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI); 3835 if (!Cst) 3836 return false; 3837 unsigned Idx = Cst.getValue().getZExtValue(); 3838 if (Idx >= NumElts) 3839 return false; // Out of range. 3840 ExtractedElts.set(Idx); 3841 SrcDstPairs.emplace_back( 3842 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3843 } 3844 // Match if every element was extracted. 3845 return ExtractedElts.all(); 3846 } 3847 3848 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3849 MachineInstr &MI, 3850 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3851 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3852 for (auto &Pair : SrcDstPairs) { 3853 auto *ExtMI = Pair.second; 3854 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3855 ExtMI->eraseFromParent(); 3856 } 3857 MI.eraseFromParent(); 3858 } 3859 3860 void CombinerHelper::applyBuildFn( 3861 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3862 Builder.setInstrAndDebugLoc(MI); 3863 MatchInfo(Builder); 3864 MI.eraseFromParent(); 3865 } 3866 3867 void CombinerHelper::applyBuildFnNoErase( 3868 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3869 Builder.setInstrAndDebugLoc(MI); 3870 MatchInfo(Builder); 3871 } 3872 3873 bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI, 3874 BuildFnTy &MatchInfo) { 3875 assert(MI.getOpcode() == TargetOpcode::G_OR); 3876 3877 Register Dst = MI.getOperand(0).getReg(); 3878 LLT Ty = MRI.getType(Dst); 3879 unsigned BitWidth = Ty.getScalarSizeInBits(); 3880 3881 Register ShlSrc, ShlAmt, LShrSrc, LShrAmt; 3882 unsigned FshOpc = 0; 3883 3884 // Match (or (shl x, amt), (lshr y, sub(bw, amt))). 3885 if (mi_match( 3886 Dst, MRI, 3887 // m_GOr() handles the commuted version as well. 3888 m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)), 3889 m_GLShr(m_Reg(LShrSrc), m_GSub(m_SpecificICstOrSplat(BitWidth), 3890 m_Reg(LShrAmt)))))) { 3891 FshOpc = TargetOpcode::G_FSHL; 3892 3893 // Match (or (shl x, sub(bw, amt)), (lshr y, amt)). 3894 } else if (mi_match(Dst, MRI, 3895 m_GOr(m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt)), 3896 m_GShl(m_Reg(ShlSrc), 3897 m_GSub(m_SpecificICstOrSplat(BitWidth), 3898 m_Reg(ShlAmt)))))) { 3899 FshOpc = TargetOpcode::G_FSHR; 3900 3901 } else { 3902 return false; 3903 } 3904 3905 if (ShlAmt != LShrAmt) 3906 return false; 3907 3908 LLT AmtTy = MRI.getType(ShlAmt); 3909 if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}})) 3910 return false; 3911 3912 MatchInfo = [=](MachineIRBuilder &B) { 3913 B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, ShlAmt}); 3914 }; 3915 return true; 3916 } 3917 3918 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3919 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3920 unsigned Opc = MI.getOpcode(); 3921 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3922 Register X = MI.getOperand(1).getReg(); 3923 Register Y = MI.getOperand(2).getReg(); 3924 if (X != Y) 3925 return false; 3926 unsigned RotateOpc = 3927 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3928 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3929 } 3930 3931 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3932 unsigned Opc = MI.getOpcode(); 3933 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3934 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3935 Observer.changingInstr(MI); 3936 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3937 : TargetOpcode::G_ROTR)); 3938 MI.RemoveOperand(2); 3939 Observer.changedInstr(MI); 3940 } 3941 3942 // Fold (rot x, c) -> (rot x, c % BitSize) 3943 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3944 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3945 MI.getOpcode() == TargetOpcode::G_ROTR); 3946 unsigned Bitsize = 3947 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3948 Register AmtReg = MI.getOperand(2).getReg(); 3949 bool OutOfRange = false; 3950 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 3951 if (auto *CI = dyn_cast<ConstantInt>(C)) 3952 OutOfRange |= CI->getValue().uge(Bitsize); 3953 return true; 3954 }; 3955 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 3956 } 3957 3958 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 3959 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3960 MI.getOpcode() == TargetOpcode::G_ROTR); 3961 unsigned Bitsize = 3962 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3963 Builder.setInstrAndDebugLoc(MI); 3964 Register Amt = MI.getOperand(2).getReg(); 3965 LLT AmtTy = MRI.getType(Amt); 3966 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 3967 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 3968 Observer.changingInstr(MI); 3969 MI.getOperand(2).setReg(Amt); 3970 Observer.changedInstr(MI); 3971 } 3972 3973 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 3974 int64_t &MatchInfo) { 3975 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3976 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3977 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 3978 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 3979 Optional<bool> KnownVal; 3980 switch (Pred) { 3981 default: 3982 llvm_unreachable("Unexpected G_ICMP predicate?"); 3983 case CmpInst::ICMP_EQ: 3984 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 3985 break; 3986 case CmpInst::ICMP_NE: 3987 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 3988 break; 3989 case CmpInst::ICMP_SGE: 3990 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 3991 break; 3992 case CmpInst::ICMP_SGT: 3993 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 3994 break; 3995 case CmpInst::ICMP_SLE: 3996 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 3997 break; 3998 case CmpInst::ICMP_SLT: 3999 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 4000 break; 4001 case CmpInst::ICMP_UGE: 4002 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 4003 break; 4004 case CmpInst::ICMP_UGT: 4005 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 4006 break; 4007 case CmpInst::ICMP_ULE: 4008 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 4009 break; 4010 case CmpInst::ICMP_ULT: 4011 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 4012 break; 4013 } 4014 if (!KnownVal) 4015 return false; 4016 MatchInfo = 4017 *KnownVal 4018 ? getICmpTrueVal(getTargetLowering(), 4019 /*IsVector = */ 4020 MRI.getType(MI.getOperand(0).getReg()).isVector(), 4021 /* IsFP = */ false) 4022 : 0; 4023 return true; 4024 } 4025 4026 bool CombinerHelper::matchICmpToLHSKnownBits( 4027 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4028 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4029 // Given: 4030 // 4031 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4032 // %cmp = G_ICMP ne %x, 0 4033 // 4034 // Or: 4035 // 4036 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4037 // %cmp = G_ICMP eq %x, 1 4038 // 4039 // We can replace %cmp with %x assuming true is 1 on the target. 4040 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4041 if (!CmpInst::isEquality(Pred)) 4042 return false; 4043 Register Dst = MI.getOperand(0).getReg(); 4044 LLT DstTy = MRI.getType(Dst); 4045 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), 4046 /* IsFP = */ false) != 1) 4047 return false; 4048 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; 4049 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) 4050 return false; 4051 Register LHS = MI.getOperand(2).getReg(); 4052 auto KnownLHS = KB->getKnownBits(LHS); 4053 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) 4054 return false; 4055 // Make sure replacing Dst with the LHS is a legal operation. 4056 LLT LHSTy = MRI.getType(LHS); 4057 unsigned LHSSize = LHSTy.getSizeInBits(); 4058 unsigned DstSize = DstTy.getSizeInBits(); 4059 unsigned Op = TargetOpcode::COPY; 4060 if (DstSize != LHSSize) 4061 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; 4062 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) 4063 return false; 4064 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; 4065 return true; 4066 } 4067 4068 // Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0 4069 bool CombinerHelper::matchAndOrDisjointMask( 4070 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4071 assert(MI.getOpcode() == TargetOpcode::G_AND); 4072 4073 // Ignore vector types to simplify matching the two constants. 4074 // TODO: do this for vectors and scalars via a demanded bits analysis. 4075 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 4076 if (Ty.isVector()) 4077 return false; 4078 4079 Register Src; 4080 int64_t MaskAnd; 4081 int64_t MaskOr; 4082 if (!mi_match(MI, MRI, 4083 m_GAnd(m_GOr(m_Reg(Src), m_ICst(MaskOr)), m_ICst(MaskAnd)))) 4084 return false; 4085 4086 // Check if MaskOr could turn on any bits in Src. 4087 if (MaskAnd & MaskOr) 4088 return false; 4089 4090 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4091 Observer.changingInstr(MI); 4092 MI.getOperand(1).setReg(Src); 4093 Observer.changedInstr(MI); 4094 }; 4095 return true; 4096 } 4097 4098 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4099 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4100 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4101 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4102 Register Dst = MI.getOperand(0).getReg(); 4103 Register Src = MI.getOperand(1).getReg(); 4104 LLT Ty = MRI.getType(Src); 4105 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4106 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4107 return false; 4108 int64_t Width = MI.getOperand(2).getImm(); 4109 Register ShiftSrc; 4110 int64_t ShiftImm; 4111 if (!mi_match( 4112 Src, MRI, 4113 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4114 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4115 return false; 4116 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4117 return false; 4118 4119 MatchInfo = [=](MachineIRBuilder &B) { 4120 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4121 auto Cst2 = B.buildConstant(ExtractTy, Width); 4122 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4123 }; 4124 return true; 4125 } 4126 4127 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4128 bool CombinerHelper::matchBitfieldExtractFromAnd( 4129 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4130 assert(MI.getOpcode() == TargetOpcode::G_AND); 4131 Register Dst = MI.getOperand(0).getReg(); 4132 LLT Ty = MRI.getType(Dst); 4133 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4134 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( 4135 TargetOpcode::G_UBFX, Ty, ExtractTy)) 4136 return false; 4137 4138 int64_t AndImm, LSBImm; 4139 Register ShiftSrc; 4140 const unsigned Size = Ty.getScalarSizeInBits(); 4141 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4142 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4143 m_ICst(AndImm)))) 4144 return false; 4145 4146 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4147 auto MaybeMask = static_cast<uint64_t>(AndImm); 4148 if (MaybeMask & (MaybeMask + 1)) 4149 return false; 4150 4151 // LSB must fit within the register. 4152 if (static_cast<uint64_t>(LSBImm) >= Size) 4153 return false; 4154 4155 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4156 MatchInfo = [=](MachineIRBuilder &B) { 4157 auto WidthCst = B.buildConstant(ExtractTy, Width); 4158 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4159 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4160 }; 4161 return true; 4162 } 4163 4164 bool CombinerHelper::matchBitfieldExtractFromShr( 4165 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4166 const unsigned Opcode = MI.getOpcode(); 4167 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 4168 4169 const Register Dst = MI.getOperand(0).getReg(); 4170 4171 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 4172 ? TargetOpcode::G_SBFX 4173 : TargetOpcode::G_UBFX; 4174 4175 // Check if the type we would use for the extract is legal 4176 LLT Ty = MRI.getType(Dst); 4177 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4178 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 4179 return false; 4180 4181 Register ShlSrc; 4182 int64_t ShrAmt; 4183 int64_t ShlAmt; 4184 const unsigned Size = Ty.getScalarSizeInBits(); 4185 4186 // Try to match shr (shl x, c1), c2 4187 if (!mi_match(Dst, MRI, 4188 m_BinOp(Opcode, 4189 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4190 m_ICst(ShrAmt)))) 4191 return false; 4192 4193 // Make sure that the shift sizes can fit a bitfield extract 4194 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4195 return false; 4196 4197 // Skip this combine if the G_SEXT_INREG combine could handle it 4198 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4199 return false; 4200 4201 // Calculate start position and width of the extract 4202 const int64_t Pos = ShrAmt - ShlAmt; 4203 const int64_t Width = Size - ShrAmt; 4204 4205 MatchInfo = [=](MachineIRBuilder &B) { 4206 auto WidthCst = B.buildConstant(ExtractTy, Width); 4207 auto PosCst = B.buildConstant(ExtractTy, Pos); 4208 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4209 }; 4210 return true; 4211 } 4212 4213 bool CombinerHelper::matchBitfieldExtractFromShrAnd( 4214 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4215 const unsigned Opcode = MI.getOpcode(); 4216 assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR); 4217 4218 const Register Dst = MI.getOperand(0).getReg(); 4219 LLT Ty = MRI.getType(Dst); 4220 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4221 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( 4222 TargetOpcode::G_UBFX, Ty, ExtractTy)) 4223 return false; 4224 4225 // Try to match shr (and x, c1), c2 4226 Register AndSrc; 4227 int64_t ShrAmt; 4228 int64_t SMask; 4229 if (!mi_match(Dst, MRI, 4230 m_BinOp(Opcode, 4231 m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))), 4232 m_ICst(ShrAmt)))) 4233 return false; 4234 4235 const unsigned Size = Ty.getScalarSizeInBits(); 4236 if (ShrAmt < 0 || ShrAmt >= Size) 4237 return false; 4238 4239 // Check that ubfx can do the extraction, with no holes in the mask. 4240 uint64_t UMask = SMask; 4241 UMask |= maskTrailingOnes<uint64_t>(ShrAmt); 4242 UMask &= maskTrailingOnes<uint64_t>(Size); 4243 if (!isMask_64(UMask)) 4244 return false; 4245 4246 // Calculate start position and width of the extract. 4247 const int64_t Pos = ShrAmt; 4248 const int64_t Width = countTrailingOnes(UMask) - ShrAmt; 4249 4250 // It's preferable to keep the shift, rather than form G_SBFX. 4251 // TODO: remove the G_AND via demanded bits analysis. 4252 if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size) 4253 return false; 4254 4255 MatchInfo = [=](MachineIRBuilder &B) { 4256 auto WidthCst = B.buildConstant(ExtractTy, Width); 4257 auto PosCst = B.buildConstant(ExtractTy, Pos); 4258 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst}); 4259 }; 4260 return true; 4261 } 4262 4263 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4264 MachineInstr &PtrAdd) { 4265 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4266 4267 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4268 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4269 if (!Src1Def) 4270 return false; 4271 4272 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4273 4274 if (MRI.hasOneNonDBGUse(Src1Reg)) 4275 return false; 4276 4277 auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4278 if (!C1) 4279 return false; 4280 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4281 if (!C2) 4282 return false; 4283 4284 const APInt &C1APIntVal = *C1; 4285 const APInt &C2APIntVal = *C2; 4286 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4287 4288 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4289 // This combine may end up running before ptrtoint/inttoptr combines 4290 // manage to eliminate redundant conversions, so try to look through them. 4291 MachineInstr *ConvUseMI = &UseMI; 4292 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4293 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4294 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4295 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4296 if (!MRI.hasOneNonDBGUse(DefReg)) 4297 break; 4298 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4299 ConvUseOpc = ConvUseMI->getOpcode(); 4300 } 4301 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4302 ConvUseOpc == TargetOpcode::G_STORE; 4303 if (!LoadStore) 4304 continue; 4305 // Is x[offset2] already not a legal addressing mode? If so then 4306 // reassociating the constants breaks nothing (we test offset2 because 4307 // that's the one we hope to fold into the load or store). 4308 TargetLoweringBase::AddrMode AM; 4309 AM.HasBaseReg = true; 4310 AM.BaseOffs = C2APIntVal.getSExtValue(); 4311 unsigned AS = 4312 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4313 Type *AccessTy = 4314 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4315 PtrAdd.getMF()->getFunction().getContext()); 4316 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4317 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4318 AccessTy, AS)) 4319 continue; 4320 4321 // Would x[offset1+offset2] still be a legal addressing mode? 4322 AM.BaseOffs = CombinedValue; 4323 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4324 AccessTy, AS)) 4325 return true; 4326 } 4327 4328 return false; 4329 } 4330 4331 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI, 4332 MachineInstr *RHS, 4333 BuildFnTy &MatchInfo) { 4334 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4335 Register Src1Reg = MI.getOperand(1).getReg(); 4336 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4337 return false; 4338 auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4339 if (!C2) 4340 return false; 4341 4342 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4343 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4344 4345 auto NewBase = 4346 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4347 Observer.changingInstr(MI); 4348 MI.getOperand(1).setReg(NewBase.getReg(0)); 4349 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4350 Observer.changedInstr(MI); 4351 }; 4352 return !reassociationCanBreakAddressingModePattern(MI); 4353 } 4354 4355 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI, 4356 MachineInstr *LHS, 4357 MachineInstr *RHS, 4358 BuildFnTy &MatchInfo) { 4359 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C) 4360 // if and only if (G_PTR_ADD X, C) has one use. 4361 Register LHSBase; 4362 Optional<ValueAndVReg> LHSCstOff; 4363 if (!mi_match(MI.getBaseReg(), MRI, 4364 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff))))) 4365 return false; 4366 4367 auto *LHSPtrAdd = cast<GPtrAdd>(LHS); 4368 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4369 // When we change LHSPtrAdd's offset register we might cause it to use a reg 4370 // before its def. Sink the instruction so the outer PTR_ADD to ensure this 4371 // doesn't happen. 4372 LHSPtrAdd->moveBefore(&MI); 4373 Register RHSReg = MI.getOffsetReg(); 4374 Observer.changingInstr(MI); 4375 MI.getOperand(2).setReg(LHSCstOff->VReg); 4376 Observer.changedInstr(MI); 4377 Observer.changingInstr(*LHSPtrAdd); 4378 LHSPtrAdd->getOperand(2).setReg(RHSReg); 4379 Observer.changedInstr(*LHSPtrAdd); 4380 }; 4381 return !reassociationCanBreakAddressingModePattern(MI); 4382 } 4383 4384 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI, 4385 MachineInstr *LHS, 4386 MachineInstr *RHS, 4387 BuildFnTy &MatchInfo) { 4388 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4389 auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS); 4390 if (!LHSPtrAdd) 4391 return false; 4392 4393 Register Src2Reg = MI.getOperand(2).getReg(); 4394 Register LHSSrc1 = LHSPtrAdd->getBaseReg(); 4395 Register LHSSrc2 = LHSPtrAdd->getOffsetReg(); 4396 auto C1 = getIConstantVRegVal(LHSSrc2, MRI); 4397 if (!C1) 4398 return false; 4399 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4400 if (!C2) 4401 return false; 4402 4403 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4404 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4405 Observer.changingInstr(MI); 4406 MI.getOperand(1).setReg(LHSSrc1); 4407 MI.getOperand(2).setReg(NewCst.getReg(0)); 4408 Observer.changedInstr(MI); 4409 }; 4410 return !reassociationCanBreakAddressingModePattern(MI); 4411 } 4412 4413 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI, 4414 BuildFnTy &MatchInfo) { 4415 auto &PtrAdd = cast<GPtrAdd>(MI); 4416 // We're trying to match a few pointer computation patterns here for 4417 // re-association opportunities. 4418 // 1) Isolating a constant operand to be on the RHS, e.g.: 4419 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4420 // 4421 // 2) Folding two constants in each sub-tree as long as such folding 4422 // doesn't break a legal addressing mode. 4423 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4424 // 4425 // 3) Move a constant from the LHS of an inner op to the RHS of the outer. 4426 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C) 4427 // iif (G_PTR_ADD X, C) has one use. 4428 MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg()); 4429 MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg()); 4430 4431 // Try to match example 2. 4432 if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo)) 4433 return true; 4434 4435 // Try to match example 3. 4436 if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo)) 4437 return true; 4438 4439 // Try to match example 1. 4440 if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo)) 4441 return true; 4442 4443 return false; 4444 } 4445 4446 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4447 Register Op1 = MI.getOperand(1).getReg(); 4448 Register Op2 = MI.getOperand(2).getReg(); 4449 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4450 if (!MaybeCst) 4451 return false; 4452 MatchInfo = *MaybeCst; 4453 return true; 4454 } 4455 4456 bool CombinerHelper::matchNarrowBinopFeedingAnd( 4457 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4458 // Look for a binop feeding into an AND with a mask: 4459 // 4460 // %add = G_ADD %lhs, %rhs 4461 // %and = G_AND %add, 000...11111111 4462 // 4463 // Check if it's possible to perform the binop at a narrower width and zext 4464 // back to the original width like so: 4465 // 4466 // %narrow_lhs = G_TRUNC %lhs 4467 // %narrow_rhs = G_TRUNC %rhs 4468 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 4469 // %new_add = G_ZEXT %narrow_add 4470 // %and = G_AND %new_add, 000...11111111 4471 // 4472 // This can allow later combines to eliminate the G_AND if it turns out 4473 // that the mask is irrelevant. 4474 assert(MI.getOpcode() == TargetOpcode::G_AND); 4475 Register Dst = MI.getOperand(0).getReg(); 4476 Register AndLHS = MI.getOperand(1).getReg(); 4477 Register AndRHS = MI.getOperand(2).getReg(); 4478 LLT WideTy = MRI.getType(Dst); 4479 4480 // If the potential binop has more than one use, then it's possible that one 4481 // of those uses will need its full width. 4482 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 4483 return false; 4484 4485 // Check if the LHS feeding the AND is impacted by the high bits that we're 4486 // masking out. 4487 // 4488 // e.g. for 64-bit x, y: 4489 // 4490 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 4491 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 4492 if (!LHSInst) 4493 return false; 4494 unsigned LHSOpc = LHSInst->getOpcode(); 4495 switch (LHSOpc) { 4496 default: 4497 return false; 4498 case TargetOpcode::G_ADD: 4499 case TargetOpcode::G_SUB: 4500 case TargetOpcode::G_MUL: 4501 case TargetOpcode::G_AND: 4502 case TargetOpcode::G_OR: 4503 case TargetOpcode::G_XOR: 4504 break; 4505 } 4506 4507 // Find the mask on the RHS. 4508 auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI); 4509 if (!Cst) 4510 return false; 4511 auto Mask = Cst->Value; 4512 if (!Mask.isMask()) 4513 return false; 4514 4515 // No point in combining if there's nothing to truncate. 4516 unsigned NarrowWidth = Mask.countTrailingOnes(); 4517 if (NarrowWidth == WideTy.getSizeInBits()) 4518 return false; 4519 LLT NarrowTy = LLT::scalar(NarrowWidth); 4520 4521 // Check if adding the zext + truncates could be harmful. 4522 auto &MF = *MI.getMF(); 4523 const auto &TLI = getTargetLowering(); 4524 LLVMContext &Ctx = MF.getFunction().getContext(); 4525 auto &DL = MF.getDataLayout(); 4526 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 4527 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 4528 return false; 4529 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 4530 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 4531 return false; 4532 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 4533 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 4534 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4535 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 4536 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 4537 auto NarrowBinOp = 4538 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 4539 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 4540 Observer.changingInstr(MI); 4541 MI.getOperand(1).setReg(Ext.getReg(0)); 4542 Observer.changedInstr(MI); 4543 }; 4544 return true; 4545 } 4546 4547 bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) { 4548 unsigned Opc = MI.getOpcode(); 4549 assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO); 4550 4551 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2))) 4552 return false; 4553 4554 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4555 Observer.changingInstr(MI); 4556 unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO 4557 : TargetOpcode::G_SADDO; 4558 MI.setDesc(Builder.getTII().get(NewOpc)); 4559 MI.getOperand(3).setReg(MI.getOperand(2).getReg()); 4560 Observer.changedInstr(MI); 4561 }; 4562 return true; 4563 } 4564 4565 MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) { 4566 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4567 auto &UDiv = cast<GenericMachineInstr>(MI); 4568 Register Dst = UDiv.getReg(0); 4569 Register LHS = UDiv.getReg(1); 4570 Register RHS = UDiv.getReg(2); 4571 LLT Ty = MRI.getType(Dst); 4572 LLT ScalarTy = Ty.getScalarType(); 4573 const unsigned EltBits = ScalarTy.getScalarSizeInBits(); 4574 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4575 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); 4576 auto &MIB = Builder; 4577 MIB.setInstrAndDebugLoc(MI); 4578 4579 bool UseNPQ = false; 4580 SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4581 4582 auto BuildUDIVPattern = [&](const Constant *C) { 4583 auto *CI = cast<ConstantInt>(C); 4584 const APInt &Divisor = CI->getValue(); 4585 UnsignedDivisonByConstantInfo magics = 4586 UnsignedDivisonByConstantInfo::get(Divisor); 4587 unsigned PreShift = 0, PostShift = 0; 4588 4589 // If the divisor is even, we can avoid using the expensive fixup by 4590 // shifting the divided value upfront. 4591 if (magics.IsAdd != 0 && !Divisor[0]) { 4592 PreShift = Divisor.countTrailingZeros(); 4593 // Get magic number for the shifted divisor. 4594 magics = 4595 UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 4596 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 4597 } 4598 4599 APInt Magic = magics.Magic; 4600 4601 unsigned SelNPQ; 4602 if (magics.IsAdd == 0 || Divisor.isOneValue()) { 4603 assert(magics.ShiftAmount < Divisor.getBitWidth() && 4604 "We shouldn't generate an undefined shift!"); 4605 PostShift = magics.ShiftAmount; 4606 SelNPQ = false; 4607 } else { 4608 PostShift = magics.ShiftAmount - 1; 4609 SelNPQ = true; 4610 } 4611 4612 PreShifts.push_back( 4613 MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0)); 4614 MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0)); 4615 NPQFactors.push_back( 4616 MIB.buildConstant(ScalarTy, 4617 SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4618 : APInt::getZero(EltBits)) 4619 .getReg(0)); 4620 PostShifts.push_back( 4621 MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0)); 4622 UseNPQ |= SelNPQ; 4623 return true; 4624 }; 4625 4626 // Collect the shifts/magic values from each element. 4627 bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern); 4628 (void)Matched; 4629 assert(Matched && "Expected unary predicate match to succeed"); 4630 4631 Register PreShift, PostShift, MagicFactor, NPQFactor; 4632 auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI); 4633 if (RHSDef) { 4634 PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0); 4635 MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0); 4636 NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0); 4637 PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0); 4638 } else { 4639 assert(MRI.getType(RHS).isScalar() && 4640 "Non-build_vector operation should have been a scalar"); 4641 PreShift = PreShifts[0]; 4642 MagicFactor = MagicFactors[0]; 4643 PostShift = PostShifts[0]; 4644 } 4645 4646 Register Q = LHS; 4647 Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0); 4648 4649 // Multiply the numerator (operand 0) by the magic value. 4650 Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0); 4651 4652 if (UseNPQ) { 4653 Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0); 4654 4655 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4656 // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero. 4657 if (Ty.isVector()) 4658 NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0); 4659 else 4660 NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0); 4661 4662 Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0); 4663 } 4664 4665 Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0); 4666 auto One = MIB.buildConstant(Ty, 1); 4667 auto IsOne = MIB.buildICmp( 4668 CmpInst::Predicate::ICMP_EQ, 4669 Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One); 4670 return MIB.buildSelect(Ty, IsOne, LHS, Q); 4671 } 4672 4673 bool CombinerHelper::matchUDivByConst(MachineInstr &MI) { 4674 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4675 Register Dst = MI.getOperand(0).getReg(); 4676 Register RHS = MI.getOperand(2).getReg(); 4677 LLT DstTy = MRI.getType(Dst); 4678 auto *RHSDef = MRI.getVRegDef(RHS); 4679 if (!isConstantOrConstantVector(*RHSDef, MRI)) 4680 return false; 4681 4682 auto &MF = *MI.getMF(); 4683 AttributeList Attr = MF.getFunction().getAttributes(); 4684 const auto &TLI = getTargetLowering(); 4685 LLVMContext &Ctx = MF.getFunction().getContext(); 4686 auto &DL = MF.getDataLayout(); 4687 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) 4688 return false; 4689 4690 // Don't do this for minsize because the instruction sequence is usually 4691 // larger. 4692 if (MF.getFunction().hasMinSize()) 4693 return false; 4694 4695 // Don't do this if the types are not going to be legal. 4696 if (LI) { 4697 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}})) 4698 return false; 4699 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}})) 4700 return false; 4701 if (!isLegalOrBeforeLegalizer( 4702 {TargetOpcode::G_ICMP, 4703 {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1), 4704 DstTy}})) 4705 return false; 4706 } 4707 4708 auto CheckEltValue = [&](const Constant *C) { 4709 if (auto *CI = dyn_cast_or_null<ConstantInt>(C)) 4710 return !CI->isZero(); 4711 return false; 4712 }; 4713 return matchUnaryPredicate(MRI, RHS, CheckEltValue); 4714 } 4715 4716 void CombinerHelper::applyUDivByConst(MachineInstr &MI) { 4717 auto *NewMI = buildUDivUsingMul(MI); 4718 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); 4719 } 4720 4721 bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) { 4722 assert(MI.getOpcode() == TargetOpcode::G_UMULH); 4723 Register RHS = MI.getOperand(2).getReg(); 4724 Register Dst = MI.getOperand(0).getReg(); 4725 LLT Ty = MRI.getType(Dst); 4726 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4727 auto MatchPow2ExceptOne = [&](const Constant *C) { 4728 if (auto *CI = dyn_cast<ConstantInt>(C)) 4729 return CI->getValue().isPowerOf2() && !CI->getValue().isOne(); 4730 return false; 4731 }; 4732 if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false)) 4733 return false; 4734 return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}}); 4735 } 4736 4737 void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) { 4738 Register LHS = MI.getOperand(1).getReg(); 4739 Register RHS = MI.getOperand(2).getReg(); 4740 Register Dst = MI.getOperand(0).getReg(); 4741 LLT Ty = MRI.getType(Dst); 4742 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4743 unsigned NumEltBits = Ty.getScalarSizeInBits(); 4744 4745 Builder.setInstrAndDebugLoc(MI); 4746 auto LogBase2 = buildLogBase2(RHS, Builder); 4747 auto ShiftAmt = 4748 Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2); 4749 auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt); 4750 Builder.buildLShr(Dst, LHS, Trunc); 4751 MI.eraseFromParent(); 4752 } 4753 4754 bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI, 4755 BuildFnTy &MatchInfo) { 4756 unsigned Opc = MI.getOpcode(); 4757 assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB || 4758 Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 4759 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA); 4760 4761 Register Dst = MI.getOperand(0).getReg(); 4762 Register X = MI.getOperand(1).getReg(); 4763 Register Y = MI.getOperand(2).getReg(); 4764 LLT Type = MRI.getType(Dst); 4765 4766 // fold (fadd x, fneg(y)) -> (fsub x, y) 4767 // fold (fadd fneg(y), x) -> (fsub x, y) 4768 // G_ADD is commutative so both cases are checked by m_GFAdd 4769 if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 4770 isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) { 4771 Opc = TargetOpcode::G_FSUB; 4772 } 4773 /// fold (fsub x, fneg(y)) -> (fadd x, y) 4774 else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 4775 isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) { 4776 Opc = TargetOpcode::G_FADD; 4777 } 4778 // fold (fmul fneg(x), fneg(y)) -> (fmul x, y) 4779 // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y) 4780 // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z) 4781 // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z) 4782 else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 4783 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) && 4784 mi_match(X, MRI, m_GFNeg(m_Reg(X))) && 4785 mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) { 4786 // no opcode change 4787 } else 4788 return false; 4789 4790 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4791 Observer.changingInstr(MI); 4792 MI.setDesc(B.getTII().get(Opc)); 4793 MI.getOperand(1).setReg(X); 4794 MI.getOperand(2).setReg(Y); 4795 Observer.changedInstr(MI); 4796 }; 4797 return true; 4798 } 4799 4800 /// Checks if \p MI is TargetOpcode::G_FMUL and contractable either 4801 /// due to global flags or MachineInstr flags. 4802 static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) { 4803 if (MI.getOpcode() != TargetOpcode::G_FMUL) 4804 return false; 4805 return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract); 4806 } 4807 4808 static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1, 4809 const MachineRegisterInfo &MRI) { 4810 return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()), 4811 MRI.use_instr_nodbg_end()) > 4812 std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()), 4813 MRI.use_instr_nodbg_end()); 4814 } 4815 4816 bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI, 4817 bool &AllowFusionGlobally, 4818 bool &HasFMAD, bool &Aggressive, 4819 bool CanReassociate) { 4820 4821 auto *MF = MI.getMF(); 4822 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 4823 const TargetOptions &Options = MF->getTarget().Options; 4824 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 4825 4826 if (CanReassociate && 4827 !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc))) 4828 return false; 4829 4830 // Floating-point multiply-add with intermediate rounding. 4831 HasFMAD = (LI && TLI.isFMADLegal(MI, DstType)); 4832 // Floating-point multiply-add without intermediate rounding. 4833 bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) && 4834 isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}}); 4835 // No valid opcode, do not combine. 4836 if (!HasFMAD && !HasFMA) 4837 return false; 4838 4839 AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast || 4840 Options.UnsafeFPMath || HasFMAD; 4841 // If the addition is not contractable, do not combine. 4842 if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract)) 4843 return false; 4844 4845 Aggressive = TLI.enableAggressiveFMAFusion(DstType); 4846 return true; 4847 } 4848 4849 bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA( 4850 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4851 assert(MI.getOpcode() == TargetOpcode::G_FADD); 4852 4853 bool AllowFusionGlobally, HasFMAD, Aggressive; 4854 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 4855 return false; 4856 4857 Register Op1 = MI.getOperand(1).getReg(); 4858 Register Op2 = MI.getOperand(2).getReg(); 4859 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 4860 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 4861 unsigned PreferredFusedOpcode = 4862 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 4863 4864 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 4865 // prefer to fold the multiply with fewer uses. 4866 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 4867 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 4868 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 4869 std::swap(LHS, RHS); 4870 } 4871 4872 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 4873 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 4874 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) { 4875 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4876 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 4877 {LHS.MI->getOperand(1).getReg(), 4878 LHS.MI->getOperand(2).getReg(), RHS.Reg}); 4879 }; 4880 return true; 4881 } 4882 4883 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 4884 if (isContractableFMul(*RHS.MI, AllowFusionGlobally) && 4885 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) { 4886 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4887 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 4888 {RHS.MI->getOperand(1).getReg(), 4889 RHS.MI->getOperand(2).getReg(), LHS.Reg}); 4890 }; 4891 return true; 4892 } 4893 4894 return false; 4895 } 4896 4897 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA( 4898 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4899 assert(MI.getOpcode() == TargetOpcode::G_FADD); 4900 4901 bool AllowFusionGlobally, HasFMAD, Aggressive; 4902 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 4903 return false; 4904 4905 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 4906 Register Op1 = MI.getOperand(1).getReg(); 4907 Register Op2 = MI.getOperand(2).getReg(); 4908 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 4909 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 4910 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 4911 4912 unsigned PreferredFusedOpcode = 4913 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 4914 4915 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 4916 // prefer to fold the multiply with fewer uses. 4917 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 4918 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 4919 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 4920 std::swap(LHS, RHS); 4921 } 4922 4923 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 4924 MachineInstr *FpExtSrc; 4925 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && 4926 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 4927 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 4928 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 4929 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4930 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 4931 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 4932 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 4933 {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg}); 4934 }; 4935 return true; 4936 } 4937 4938 // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z) 4939 // Note: Commutes FADD operands. 4940 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && 4941 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 4942 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 4943 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 4944 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4945 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 4946 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 4947 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 4948 {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg}); 4949 }; 4950 return true; 4951 } 4952 4953 return false; 4954 } 4955 4956 bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA( 4957 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4958 assert(MI.getOpcode() == TargetOpcode::G_FADD); 4959 4960 bool AllowFusionGlobally, HasFMAD, Aggressive; 4961 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true)) 4962 return false; 4963 4964 Register Op1 = MI.getOperand(1).getReg(); 4965 Register Op2 = MI.getOperand(2).getReg(); 4966 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 4967 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 4968 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4969 4970 unsigned PreferredFusedOpcode = 4971 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 4972 4973 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 4974 // prefer to fold the multiply with fewer uses. 4975 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 4976 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 4977 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 4978 std::swap(LHS, RHS); 4979 } 4980 4981 MachineInstr *FMA = nullptr; 4982 Register Z; 4983 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z)) 4984 if (LHS.MI->getOpcode() == PreferredFusedOpcode && 4985 (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() == 4986 TargetOpcode::G_FMUL) && 4987 MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) && 4988 MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) { 4989 FMA = LHS.MI; 4990 Z = RHS.Reg; 4991 } 4992 // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z)) 4993 else if (RHS.MI->getOpcode() == PreferredFusedOpcode && 4994 (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() == 4995 TargetOpcode::G_FMUL) && 4996 MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) && 4997 MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) { 4998 Z = LHS.Reg; 4999 FMA = RHS.MI; 5000 } 5001 5002 if (FMA) { 5003 MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg()); 5004 Register X = FMA->getOperand(1).getReg(); 5005 Register Y = FMA->getOperand(2).getReg(); 5006 Register U = FMulMI->getOperand(1).getReg(); 5007 Register V = FMulMI->getOperand(2).getReg(); 5008 5009 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5010 Register InnerFMA = MRI.createGenericVirtualRegister(DstTy); 5011 B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z}); 5012 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5013 {X, Y, InnerFMA}); 5014 }; 5015 return true; 5016 } 5017 5018 return false; 5019 } 5020 5021 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive( 5022 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5023 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5024 5025 bool AllowFusionGlobally, HasFMAD, Aggressive; 5026 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5027 return false; 5028 5029 if (!Aggressive) 5030 return false; 5031 5032 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5033 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5034 Register Op1 = MI.getOperand(1).getReg(); 5035 Register Op2 = MI.getOperand(2).getReg(); 5036 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5037 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5038 5039 unsigned PreferredFusedOpcode = 5040 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5041 5042 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5043 // prefer to fold the multiply with fewer uses. 5044 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5045 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5046 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5047 std::swap(LHS, RHS); 5048 } 5049 5050 // Builds: (fma x, y, (fma (fpext u), (fpext v), z)) 5051 auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X, 5052 Register Y, MachineIRBuilder &B) { 5053 Register FpExtU = B.buildFPExt(DstType, U).getReg(0); 5054 Register FpExtV = B.buildFPExt(DstType, V).getReg(0); 5055 Register InnerFMA = 5056 B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z}) 5057 .getReg(0); 5058 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5059 {X, Y, InnerFMA}); 5060 }; 5061 5062 MachineInstr *FMulMI, *FMAMI; 5063 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 5064 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5065 if (LHS.MI->getOpcode() == PreferredFusedOpcode && 5066 mi_match(LHS.MI->getOperand(3).getReg(), MRI, 5067 m_GFPExt(m_MInstr(FMulMI))) && 5068 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5069 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5070 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5071 MatchInfo = [=](MachineIRBuilder &B) { 5072 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5073 FMulMI->getOperand(2).getReg(), RHS.Reg, 5074 LHS.MI->getOperand(1).getReg(), 5075 LHS.MI->getOperand(2).getReg(), B); 5076 }; 5077 return true; 5078 } 5079 5080 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 5081 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5082 // FIXME: This turns two single-precision and one double-precision 5083 // operation into two double-precision operations, which might not be 5084 // interesting for all targets, especially GPUs. 5085 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && 5086 FMAMI->getOpcode() == PreferredFusedOpcode) { 5087 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 5088 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 5089 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5090 MRI.getType(FMAMI->getOperand(0).getReg()))) { 5091 MatchInfo = [=](MachineIRBuilder &B) { 5092 Register X = FMAMI->getOperand(1).getReg(); 5093 Register Y = FMAMI->getOperand(2).getReg(); 5094 X = B.buildFPExt(DstType, X).getReg(0); 5095 Y = B.buildFPExt(DstType, Y).getReg(0); 5096 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5097 FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B); 5098 }; 5099 5100 return true; 5101 } 5102 } 5103 5104 // fold (fadd z, (fma x, y, (fpext (fmul u, v))) 5105 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5106 if (RHS.MI->getOpcode() == PreferredFusedOpcode && 5107 mi_match(RHS.MI->getOperand(3).getReg(), MRI, 5108 m_GFPExt(m_MInstr(FMulMI))) && 5109 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5110 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5111 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5112 MatchInfo = [=](MachineIRBuilder &B) { 5113 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5114 FMulMI->getOperand(2).getReg(), LHS.Reg, 5115 RHS.MI->getOperand(1).getReg(), 5116 RHS.MI->getOperand(2).getReg(), B); 5117 }; 5118 return true; 5119 } 5120 5121 // fold (fadd z, (fpext (fma x, y, (fmul u, v))) 5122 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5123 // FIXME: This turns two single-precision and one double-precision 5124 // operation into two double-precision operations, which might not be 5125 // interesting for all targets, especially GPUs. 5126 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && 5127 FMAMI->getOpcode() == PreferredFusedOpcode) { 5128 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 5129 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 5130 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5131 MRI.getType(FMAMI->getOperand(0).getReg()))) { 5132 MatchInfo = [=](MachineIRBuilder &B) { 5133 Register X = FMAMI->getOperand(1).getReg(); 5134 Register Y = FMAMI->getOperand(2).getReg(); 5135 X = B.buildFPExt(DstType, X).getReg(0); 5136 Y = B.buildFPExt(DstType, Y).getReg(0); 5137 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5138 FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B); 5139 }; 5140 return true; 5141 } 5142 } 5143 5144 return false; 5145 } 5146 5147 bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA( 5148 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5149 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5150 5151 bool AllowFusionGlobally, HasFMAD, Aggressive; 5152 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5153 return false; 5154 5155 Register Op1 = MI.getOperand(1).getReg(); 5156 Register Op2 = MI.getOperand(2).getReg(); 5157 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5158 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5159 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5160 5161 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5162 // prefer to fold the multiply with fewer uses. 5163 int FirstMulHasFewerUses = true; 5164 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5165 isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5166 hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5167 FirstMulHasFewerUses = false; 5168 5169 unsigned PreferredFusedOpcode = 5170 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5171 5172 // fold (fsub (fmul x, y), z) -> (fma x, y, -z) 5173 if (FirstMulHasFewerUses && 5174 (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5175 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) { 5176 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5177 Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0); 5178 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5179 {LHS.MI->getOperand(1).getReg(), 5180 LHS.MI->getOperand(2).getReg(), NegZ}); 5181 }; 5182 return true; 5183 } 5184 // fold (fsub x, (fmul y, z)) -> (fma -y, z, x) 5185 else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5186 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) { 5187 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5188 Register NegY = 5189 B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0); 5190 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5191 {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg}); 5192 }; 5193 return true; 5194 } 5195 5196 return false; 5197 } 5198 5199 bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA( 5200 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5201 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5202 5203 bool AllowFusionGlobally, HasFMAD, Aggressive; 5204 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5205 return false; 5206 5207 Register LHSReg = MI.getOperand(1).getReg(); 5208 Register RHSReg = MI.getOperand(2).getReg(); 5209 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5210 5211 unsigned PreferredFusedOpcode = 5212 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5213 5214 MachineInstr *FMulMI; 5215 // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z)) 5216 if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 5217 (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) && 5218 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 5219 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 5220 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5221 Register NegX = 5222 B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5223 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 5224 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5225 {NegX, FMulMI->getOperand(2).getReg(), NegZ}); 5226 }; 5227 return true; 5228 } 5229 5230 // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x) 5231 if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 5232 (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) && 5233 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 5234 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 5235 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5236 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5237 {FMulMI->getOperand(1).getReg(), 5238 FMulMI->getOperand(2).getReg(), LHSReg}); 5239 }; 5240 return true; 5241 } 5242 5243 return false; 5244 } 5245 5246 bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA( 5247 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5248 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5249 5250 bool AllowFusionGlobally, HasFMAD, Aggressive; 5251 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5252 return false; 5253 5254 Register LHSReg = MI.getOperand(1).getReg(); 5255 Register RHSReg = MI.getOperand(2).getReg(); 5256 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5257 5258 unsigned PreferredFusedOpcode = 5259 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5260 5261 MachineInstr *FMulMI; 5262 // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z)) 5263 if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 5264 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5265 (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) { 5266 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5267 Register FpExtX = 5268 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5269 Register FpExtY = 5270 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 5271 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 5272 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5273 {FpExtX, FpExtY, NegZ}); 5274 }; 5275 return true; 5276 } 5277 5278 // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x) 5279 if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 5280 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5281 (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) { 5282 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5283 Register FpExtY = 5284 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5285 Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0); 5286 Register FpExtZ = 5287 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 5288 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5289 {NegY, FpExtZ, LHSReg}); 5290 }; 5291 return true; 5292 } 5293 5294 return false; 5295 } 5296 5297 bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA( 5298 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5299 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5300 5301 bool AllowFusionGlobally, HasFMAD, Aggressive; 5302 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5303 return false; 5304 5305 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5306 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5307 Register LHSReg = MI.getOperand(1).getReg(); 5308 Register RHSReg = MI.getOperand(2).getReg(); 5309 5310 unsigned PreferredFusedOpcode = 5311 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5312 5313 auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z, 5314 MachineIRBuilder &B) { 5315 Register FpExtX = B.buildFPExt(DstTy, X).getReg(0); 5316 Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0); 5317 B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z}); 5318 }; 5319 5320 MachineInstr *FMulMI; 5321 // fold (fsub (fpext (fneg (fmul x, y))), z) -> 5322 // (fneg (fma (fpext x), (fpext y), z)) 5323 // fold (fsub (fneg (fpext (fmul x, y))), z) -> 5324 // (fneg (fma (fpext x), (fpext y), z)) 5325 if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 5326 mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 5327 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5328 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 5329 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5330 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5331 Register FMAReg = MRI.createGenericVirtualRegister(DstTy); 5332 buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(), 5333 FMulMI->getOperand(2).getReg(), RHSReg, B); 5334 B.buildFNeg(MI.getOperand(0).getReg(), FMAReg); 5335 }; 5336 return true; 5337 } 5338 5339 // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 5340 // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 5341 if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 5342 mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 5343 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5344 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 5345 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5346 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5347 buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(), 5348 FMulMI->getOperand(2).getReg(), LHSReg, B); 5349 }; 5350 return true; 5351 } 5352 5353 return false; 5354 } 5355 5356 bool CombinerHelper::tryCombine(MachineInstr &MI) { 5357 if (tryCombineCopy(MI)) 5358 return true; 5359 if (tryCombineExtendingLoads(MI)) 5360 return true; 5361 if (tryCombineIndexedLoadStore(MI)) 5362 return true; 5363 return false; 5364 } 5365