1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 15 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 16 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 17 #include "llvm/CodeGen/GlobalISel/Utils.h" 18 #include "llvm/CodeGen/LowLevelType.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineDominators.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineMemOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/TargetInstrInfo.h" 26 #include "llvm/CodeGen/TargetLowering.h" 27 #include "llvm/CodeGen/TargetOpcodes.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Target/TargetMachine.h" 30 31 #define DEBUG_TYPE "gi-combiner" 32 33 using namespace llvm; 34 using namespace MIPatternMatch; 35 36 // Option to allow testing of the combiner while no targets know about indexed 37 // addressing. 38 static cl::opt<bool> 39 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 40 cl::desc("Force all indexed operations to be " 41 "legal for the GlobalISel combiner")); 42 43 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 44 MachineIRBuilder &B, GISelKnownBits *KB, 45 MachineDominatorTree *MDT, 46 const LegalizerInfo *LI) 47 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 48 KB(KB), MDT(MDT), LI(LI) { 49 (void)this->KB; 50 } 51 52 const TargetLowering &CombinerHelper::getTargetLowering() const { 53 return *Builder.getMF().getSubtarget().getTargetLowering(); 54 } 55 56 /// \returns The little endian in-memory byte position of byte \p I in a 57 /// \p ByteWidth bytes wide type. 58 /// 59 /// E.g. Given a 4-byte type x, x[0] -> byte 0 60 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 61 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 62 return I; 63 } 64 65 /// \returns The big endian in-memory byte position of byte \p I in a 66 /// \p ByteWidth bytes wide type. 67 /// 68 /// E.g. Given a 4-byte type x, x[0] -> byte 3 69 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 70 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 71 return ByteWidth - I - 1; 72 } 73 74 /// Given a map from byte offsets in memory to indices in a load/store, 75 /// determine if that map corresponds to a little or big endian byte pattern. 76 /// 77 /// \param MemOffset2Idx maps memory offsets to address offsets. 78 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 79 /// 80 /// \returns true if the map corresponds to a big endian byte pattern, false 81 /// if it corresponds to a little endian byte pattern, and None otherwise. 82 /// 83 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 84 /// are as follows: 85 /// 86 /// AddrOffset Little endian Big endian 87 /// 0 0 3 88 /// 1 1 2 89 /// 2 2 1 90 /// 3 3 0 91 static Optional<bool> 92 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 93 int64_t LowestIdx) { 94 // Need at least two byte positions to decide on endianness. 95 unsigned Width = MemOffset2Idx.size(); 96 if (Width < 2) 97 return None; 98 bool BigEndian = true, LittleEndian = true; 99 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 100 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 101 if (MemOffsetAndIdx == MemOffset2Idx.end()) 102 return None; 103 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 104 assert(Idx >= 0 && "Expected non-negative byte offset?"); 105 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 106 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 107 if (!BigEndian && !LittleEndian) 108 return None; 109 } 110 111 assert((BigEndian != LittleEndian) && 112 "Pattern cannot be both big and little endian!"); 113 return BigEndian; 114 } 115 116 bool CombinerHelper::isLegalOrBeforeLegalizer( 117 const LegalityQuery &Query) const { 118 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 119 } 120 121 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 122 Register ToReg) const { 123 Observer.changingAllUsesOfReg(MRI, FromReg); 124 125 if (MRI.constrainRegAttrs(ToReg, FromReg)) 126 MRI.replaceRegWith(FromReg, ToReg); 127 else 128 Builder.buildCopy(ToReg, FromReg); 129 130 Observer.finishedChangingAllUsesOfReg(); 131 } 132 133 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 134 MachineOperand &FromRegOp, 135 Register ToReg) const { 136 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 137 Observer.changingInstr(*FromRegOp.getParent()); 138 139 FromRegOp.setReg(ToReg); 140 141 Observer.changedInstr(*FromRegOp.getParent()); 142 } 143 144 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 145 if (matchCombineCopy(MI)) { 146 applyCombineCopy(MI); 147 return true; 148 } 149 return false; 150 } 151 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 152 if (MI.getOpcode() != TargetOpcode::COPY) 153 return false; 154 Register DstReg = MI.getOperand(0).getReg(); 155 Register SrcReg = MI.getOperand(1).getReg(); 156 return canReplaceReg(DstReg, SrcReg, MRI); 157 } 158 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 159 Register DstReg = MI.getOperand(0).getReg(); 160 Register SrcReg = MI.getOperand(1).getReg(); 161 MI.eraseFromParent(); 162 replaceRegWith(MRI, DstReg, SrcReg); 163 } 164 165 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 166 bool IsUndef = false; 167 SmallVector<Register, 4> Ops; 168 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 169 applyCombineConcatVectors(MI, IsUndef, Ops); 170 return true; 171 } 172 return false; 173 } 174 175 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 176 SmallVectorImpl<Register> &Ops) { 177 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 178 "Invalid instruction"); 179 IsUndef = true; 180 MachineInstr *Undef = nullptr; 181 182 // Walk over all the operands of concat vectors and check if they are 183 // build_vector themselves or undef. 184 // Then collect their operands in Ops. 185 for (const MachineOperand &MO : MI.uses()) { 186 Register Reg = MO.getReg(); 187 MachineInstr *Def = MRI.getVRegDef(Reg); 188 assert(Def && "Operand not defined"); 189 switch (Def->getOpcode()) { 190 case TargetOpcode::G_BUILD_VECTOR: 191 IsUndef = false; 192 // Remember the operands of the build_vector to fold 193 // them into the yet-to-build flattened concat vectors. 194 for (const MachineOperand &BuildVecMO : Def->uses()) 195 Ops.push_back(BuildVecMO.getReg()); 196 break; 197 case TargetOpcode::G_IMPLICIT_DEF: { 198 LLT OpType = MRI.getType(Reg); 199 // Keep one undef value for all the undef operands. 200 if (!Undef) { 201 Builder.setInsertPt(*MI.getParent(), MI); 202 Undef = Builder.buildUndef(OpType.getScalarType()); 203 } 204 assert(MRI.getType(Undef->getOperand(0).getReg()) == 205 OpType.getScalarType() && 206 "All undefs should have the same type"); 207 // Break the undef vector in as many scalar elements as needed 208 // for the flattening. 209 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 210 EltIdx != EltEnd; ++EltIdx) 211 Ops.push_back(Undef->getOperand(0).getReg()); 212 break; 213 } 214 default: 215 return false; 216 } 217 } 218 return true; 219 } 220 void CombinerHelper::applyCombineConcatVectors( 221 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 222 // We determined that the concat_vectors can be flatten. 223 // Generate the flattened build_vector. 224 Register DstReg = MI.getOperand(0).getReg(); 225 Builder.setInsertPt(*MI.getParent(), MI); 226 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 227 228 // Note: IsUndef is sort of redundant. We could have determine it by 229 // checking that at all Ops are undef. Alternatively, we could have 230 // generate a build_vector of undefs and rely on another combine to 231 // clean that up. For now, given we already gather this information 232 // in tryCombineConcatVectors, just save compile time and issue the 233 // right thing. 234 if (IsUndef) 235 Builder.buildUndef(NewDstReg); 236 else 237 Builder.buildBuildVector(NewDstReg, Ops); 238 MI.eraseFromParent(); 239 replaceRegWith(MRI, DstReg, NewDstReg); 240 } 241 242 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 243 SmallVector<Register, 4> Ops; 244 if (matchCombineShuffleVector(MI, Ops)) { 245 applyCombineShuffleVector(MI, Ops); 246 return true; 247 } 248 return false; 249 } 250 251 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 252 SmallVectorImpl<Register> &Ops) { 253 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 254 "Invalid instruction kind"); 255 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 256 Register Src1 = MI.getOperand(1).getReg(); 257 LLT SrcType = MRI.getType(Src1); 258 // As bizarre as it may look, shuffle vector can actually produce 259 // scalar! This is because at the IR level a <1 x ty> shuffle 260 // vector is perfectly valid. 261 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 262 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 263 264 // If the resulting vector is smaller than the size of the source 265 // vectors being concatenated, we won't be able to replace the 266 // shuffle vector into a concat_vectors. 267 // 268 // Note: We may still be able to produce a concat_vectors fed by 269 // extract_vector_elt and so on. It is less clear that would 270 // be better though, so don't bother for now. 271 // 272 // If the destination is a scalar, the size of the sources doesn't 273 // matter. we will lower the shuffle to a plain copy. This will 274 // work only if the source and destination have the same size. But 275 // that's covered by the next condition. 276 // 277 // TODO: If the size between the source and destination don't match 278 // we could still emit an extract vector element in that case. 279 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 280 return false; 281 282 // Check that the shuffle mask can be broken evenly between the 283 // different sources. 284 if (DstNumElts % SrcNumElts != 0) 285 return false; 286 287 // Mask length is a multiple of the source vector length. 288 // Check if the shuffle is some kind of concatenation of the input 289 // vectors. 290 unsigned NumConcat = DstNumElts / SrcNumElts; 291 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 292 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 293 for (unsigned i = 0; i != DstNumElts; ++i) { 294 int Idx = Mask[i]; 295 // Undef value. 296 if (Idx < 0) 297 continue; 298 // Ensure the indices in each SrcType sized piece are sequential and that 299 // the same source is used for the whole piece. 300 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 301 (ConcatSrcs[i / SrcNumElts] >= 0 && 302 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 303 return false; 304 // Remember which source this index came from. 305 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 306 } 307 308 // The shuffle is concatenating multiple vectors together. 309 // Collect the different operands for that. 310 Register UndefReg; 311 Register Src2 = MI.getOperand(2).getReg(); 312 for (auto Src : ConcatSrcs) { 313 if (Src < 0) { 314 if (!UndefReg) { 315 Builder.setInsertPt(*MI.getParent(), MI); 316 UndefReg = Builder.buildUndef(SrcType).getReg(0); 317 } 318 Ops.push_back(UndefReg); 319 } else if (Src == 0) 320 Ops.push_back(Src1); 321 else 322 Ops.push_back(Src2); 323 } 324 return true; 325 } 326 327 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 328 const ArrayRef<Register> Ops) { 329 Register DstReg = MI.getOperand(0).getReg(); 330 Builder.setInsertPt(*MI.getParent(), MI); 331 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 332 333 if (Ops.size() == 1) 334 Builder.buildCopy(NewDstReg, Ops[0]); 335 else 336 Builder.buildMerge(NewDstReg, Ops); 337 338 MI.eraseFromParent(); 339 replaceRegWith(MRI, DstReg, NewDstReg); 340 } 341 342 namespace { 343 344 /// Select a preference between two uses. CurrentUse is the current preference 345 /// while *ForCandidate is attributes of the candidate under consideration. 346 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 347 const LLT TyForCandidate, 348 unsigned OpcodeForCandidate, 349 MachineInstr *MIForCandidate) { 350 if (!CurrentUse.Ty.isValid()) { 351 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 352 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 353 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 354 return CurrentUse; 355 } 356 357 // We permit the extend to hoist through basic blocks but this is only 358 // sensible if the target has extending loads. If you end up lowering back 359 // into a load and extend during the legalizer then the end result is 360 // hoisting the extend up to the load. 361 362 // Prefer defined extensions to undefined extensions as these are more 363 // likely to reduce the number of instructions. 364 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 365 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 366 return CurrentUse; 367 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 368 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 369 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 370 371 // Prefer sign extensions to zero extensions as sign-extensions tend to be 372 // more expensive. 373 if (CurrentUse.Ty == TyForCandidate) { 374 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 375 OpcodeForCandidate == TargetOpcode::G_ZEXT) 376 return CurrentUse; 377 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 378 OpcodeForCandidate == TargetOpcode::G_SEXT) 379 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 380 } 381 382 // This is potentially target specific. We've chosen the largest type 383 // because G_TRUNC is usually free. One potential catch with this is that 384 // some targets have a reduced number of larger registers than smaller 385 // registers and this choice potentially increases the live-range for the 386 // larger value. 387 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 388 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 389 } 390 return CurrentUse; 391 } 392 393 /// Find a suitable place to insert some instructions and insert them. This 394 /// function accounts for special cases like inserting before a PHI node. 395 /// The current strategy for inserting before PHI's is to duplicate the 396 /// instructions for each predecessor. However, while that's ok for G_TRUNC 397 /// on most targets since it generally requires no code, other targets/cases may 398 /// want to try harder to find a dominating block. 399 static void InsertInsnsWithoutSideEffectsBeforeUse( 400 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 401 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 402 MachineOperand &UseMO)> 403 Inserter) { 404 MachineInstr &UseMI = *UseMO.getParent(); 405 406 MachineBasicBlock *InsertBB = UseMI.getParent(); 407 408 // If the use is a PHI then we want the predecessor block instead. 409 if (UseMI.isPHI()) { 410 MachineOperand *PredBB = std::next(&UseMO); 411 InsertBB = PredBB->getMBB(); 412 } 413 414 // If the block is the same block as the def then we want to insert just after 415 // the def instead of at the start of the block. 416 if (InsertBB == DefMI.getParent()) { 417 MachineBasicBlock::iterator InsertPt = &DefMI; 418 Inserter(InsertBB, std::next(InsertPt), UseMO); 419 return; 420 } 421 422 // Otherwise we want the start of the BB 423 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 424 } 425 } // end anonymous namespace 426 427 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 428 PreferredTuple Preferred; 429 if (matchCombineExtendingLoads(MI, Preferred)) { 430 applyCombineExtendingLoads(MI, Preferred); 431 return true; 432 } 433 return false; 434 } 435 436 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 437 PreferredTuple &Preferred) { 438 // We match the loads and follow the uses to the extend instead of matching 439 // the extends and following the def to the load. This is because the load 440 // must remain in the same position for correctness (unless we also add code 441 // to find a safe place to sink it) whereas the extend is freely movable. 442 // It also prevents us from duplicating the load for the volatile case or just 443 // for performance. 444 445 if (MI.getOpcode() != TargetOpcode::G_LOAD && 446 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 447 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 448 return false; 449 450 auto &LoadValue = MI.getOperand(0); 451 assert(LoadValue.isReg() && "Result wasn't a register?"); 452 453 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 454 if (!LoadValueTy.isScalar()) 455 return false; 456 457 // Most architectures are going to legalize <s8 loads into at least a 1 byte 458 // load, and the MMOs can only describe memory accesses in multiples of bytes. 459 // If we try to perform extload combining on those, we can end up with 460 // %a(s8) = extload %ptr (load 1 byte from %ptr) 461 // ... which is an illegal extload instruction. 462 if (LoadValueTy.getSizeInBits() < 8) 463 return false; 464 465 // For non power-of-2 types, they will very likely be legalized into multiple 466 // loads. Don't bother trying to match them into extending loads. 467 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 468 return false; 469 470 // Find the preferred type aside from the any-extends (unless it's the only 471 // one) and non-extending ops. We'll emit an extending load to that type and 472 // and emit a variant of (extend (trunc X)) for the others according to the 473 // relative type sizes. At the same time, pick an extend to use based on the 474 // extend involved in the chosen type. 475 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 476 ? TargetOpcode::G_ANYEXT 477 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 478 ? TargetOpcode::G_SEXT 479 : TargetOpcode::G_ZEXT; 480 Preferred = {LLT(), PreferredOpcode, nullptr}; 481 for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) { 482 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 483 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 484 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 485 const auto &MMO = **MI.memoperands_begin(); 486 // For atomics, only form anyextending loads. 487 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 488 continue; 489 // Check for legality. 490 if (LI) { 491 LegalityQuery::MemDesc MMDesc; 492 MMDesc.MemoryTy = MMO.getMemoryType(); 493 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 494 MMDesc.Ordering = MMO.getSuccessOrdering(); 495 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 496 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 497 if (LI->getAction({MI.getOpcode(), {UseTy, SrcTy}, {MMDesc}}).Action != 498 LegalizeActions::Legal) 499 continue; 500 } 501 Preferred = ChoosePreferredUse(Preferred, 502 MRI.getType(UseMI.getOperand(0).getReg()), 503 UseMI.getOpcode(), &UseMI); 504 } 505 } 506 507 // There were no extends 508 if (!Preferred.MI) 509 return false; 510 // It should be impossible to chose an extend without selecting a different 511 // type since by definition the result of an extend is larger. 512 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 513 514 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 515 return true; 516 } 517 518 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 519 PreferredTuple &Preferred) { 520 // Rewrite the load to the chosen extending load. 521 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 522 523 // Inserter to insert a truncate back to the original type at a given point 524 // with some basic CSE to limit truncate duplication to one per BB. 525 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 526 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 527 MachineBasicBlock::iterator InsertBefore, 528 MachineOperand &UseMO) { 529 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 530 if (PreviouslyEmitted) { 531 Observer.changingInstr(*UseMO.getParent()); 532 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 533 Observer.changedInstr(*UseMO.getParent()); 534 return; 535 } 536 537 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 538 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 539 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 540 EmittedInsns[InsertIntoBB] = NewMI; 541 replaceRegOpWith(MRI, UseMO, NewDstReg); 542 }; 543 544 Observer.changingInstr(MI); 545 MI.setDesc( 546 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 547 ? TargetOpcode::G_SEXTLOAD 548 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 549 ? TargetOpcode::G_ZEXTLOAD 550 : TargetOpcode::G_LOAD)); 551 552 // Rewrite all the uses to fix up the types. 553 auto &LoadValue = MI.getOperand(0); 554 SmallVector<MachineOperand *, 4> Uses; 555 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 556 Uses.push_back(&UseMO); 557 558 for (auto *UseMO : Uses) { 559 MachineInstr *UseMI = UseMO->getParent(); 560 561 // If the extend is compatible with the preferred extend then we should fix 562 // up the type and extend so that it uses the preferred use. 563 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 564 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 565 Register UseDstReg = UseMI->getOperand(0).getReg(); 566 MachineOperand &UseSrcMO = UseMI->getOperand(1); 567 const LLT UseDstTy = MRI.getType(UseDstReg); 568 if (UseDstReg != ChosenDstReg) { 569 if (Preferred.Ty == UseDstTy) { 570 // If the use has the same type as the preferred use, then merge 571 // the vregs and erase the extend. For example: 572 // %1:_(s8) = G_LOAD ... 573 // %2:_(s32) = G_SEXT %1(s8) 574 // %3:_(s32) = G_ANYEXT %1(s8) 575 // ... = ... %3(s32) 576 // rewrites to: 577 // %2:_(s32) = G_SEXTLOAD ... 578 // ... = ... %2(s32) 579 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 580 Observer.erasingInstr(*UseMO->getParent()); 581 UseMO->getParent()->eraseFromParent(); 582 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 583 // If the preferred size is smaller, then keep the extend but extend 584 // from the result of the extending load. For example: 585 // %1:_(s8) = G_LOAD ... 586 // %2:_(s32) = G_SEXT %1(s8) 587 // %3:_(s64) = G_ANYEXT %1(s8) 588 // ... = ... %3(s64) 589 /// rewrites to: 590 // %2:_(s32) = G_SEXTLOAD ... 591 // %3:_(s64) = G_ANYEXT %2:_(s32) 592 // ... = ... %3(s64) 593 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 594 } else { 595 // If the preferred size is large, then insert a truncate. For 596 // example: 597 // %1:_(s8) = G_LOAD ... 598 // %2:_(s64) = G_SEXT %1(s8) 599 // %3:_(s32) = G_ZEXT %1(s8) 600 // ... = ... %3(s32) 601 /// rewrites to: 602 // %2:_(s64) = G_SEXTLOAD ... 603 // %4:_(s8) = G_TRUNC %2:_(s32) 604 // %3:_(s64) = G_ZEXT %2:_(s8) 605 // ... = ... %3(s64) 606 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 607 InsertTruncAt); 608 } 609 continue; 610 } 611 // The use is (one of) the uses of the preferred use we chose earlier. 612 // We're going to update the load to def this value later so just erase 613 // the old extend. 614 Observer.erasingInstr(*UseMO->getParent()); 615 UseMO->getParent()->eraseFromParent(); 616 continue; 617 } 618 619 // The use isn't an extend. Truncate back to the type we originally loaded. 620 // This is free on many targets. 621 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 622 } 623 624 MI.getOperand(0).setReg(ChosenDstReg); 625 Observer.changedInstr(MI); 626 } 627 628 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 629 const MachineInstr &UseMI) { 630 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 631 "shouldn't consider debug uses"); 632 assert(DefMI.getParent() == UseMI.getParent()); 633 if (&DefMI == &UseMI) 634 return false; 635 const MachineBasicBlock &MBB = *DefMI.getParent(); 636 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 637 return &MI == &DefMI || &MI == &UseMI; 638 }); 639 if (DefOrUse == MBB.end()) 640 llvm_unreachable("Block must contain both DefMI and UseMI!"); 641 return &*DefOrUse == &DefMI; 642 } 643 644 bool CombinerHelper::dominates(const MachineInstr &DefMI, 645 const MachineInstr &UseMI) { 646 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 647 "shouldn't consider debug uses"); 648 if (MDT) 649 return MDT->dominates(&DefMI, &UseMI); 650 else if (DefMI.getParent() != UseMI.getParent()) 651 return false; 652 653 return isPredecessor(DefMI, UseMI); 654 } 655 656 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 657 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 658 Register SrcReg = MI.getOperand(1).getReg(); 659 Register LoadUser = SrcReg; 660 661 if (MRI.getType(SrcReg).isVector()) 662 return false; 663 664 Register TruncSrc; 665 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 666 LoadUser = TruncSrc; 667 668 uint64_t SizeInBits = MI.getOperand(2).getImm(); 669 // If the source is a G_SEXTLOAD from the same bit width, then we don't 670 // need any extend at all, just a truncate. 671 if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) { 672 const auto &MMO = **LoadMI->memoperands_begin(); 673 // If truncating more than the original extended value, abort. 674 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits()) 675 return false; 676 if (MMO.getSizeInBits() == SizeInBits) 677 return true; 678 } 679 return false; 680 } 681 682 bool CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 683 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 684 Builder.setInstrAndDebugLoc(MI); 685 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 686 MI.eraseFromParent(); 687 return true; 688 } 689 690 bool CombinerHelper::matchSextInRegOfLoad( 691 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 692 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 693 694 // Only supports scalars for now. 695 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 696 return false; 697 698 Register SrcReg = MI.getOperand(1).getReg(); 699 MachineInstr *LoadDef = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI); 700 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg())) 701 return false; 702 703 // If the sign extend extends from a narrower width than the load's width, 704 // then we can narrow the load width when we combine to a G_SEXTLOAD. 705 auto &MMO = **LoadDef->memoperands_begin(); 706 // Don't do this for non-simple loads. 707 if (MMO.isAtomic() || MMO.isVolatile()) 708 return false; 709 710 // Avoid widening the load at all. 711 unsigned NewSizeBits = 712 std::min((uint64_t)MI.getOperand(2).getImm(), MMO.getSizeInBits()); 713 714 // Don't generate G_SEXTLOADs with a < 1 byte width. 715 if (NewSizeBits < 8) 716 return false; 717 // Don't bother creating a non-power-2 sextload, it will likely be broken up 718 // anyway for most targets. 719 if (!isPowerOf2_32(NewSizeBits)) 720 return false; 721 MatchInfo = std::make_tuple(LoadDef->getOperand(0).getReg(), NewSizeBits); 722 return true; 723 } 724 725 bool CombinerHelper::applySextInRegOfLoad( 726 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 727 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 728 Register LoadReg; 729 unsigned ScalarSizeBits; 730 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 731 auto *LoadDef = MRI.getVRegDef(LoadReg); 732 assert(LoadDef && "Expected a load reg"); 733 734 // If we have the following: 735 // %ld = G_LOAD %ptr, (load 2) 736 // %ext = G_SEXT_INREG %ld, 8 737 // ==> 738 // %ld = G_SEXTLOAD %ptr (load 1) 739 740 auto &MMO = **LoadDef->memoperands_begin(); 741 Builder.setInstrAndDebugLoc(*LoadDef); 742 auto &MF = Builder.getMF(); 743 auto PtrInfo = MMO.getPointerInfo(); 744 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 745 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 746 LoadDef->getOperand(1).getReg(), *NewMMO); 747 MI.eraseFromParent(); 748 return true; 749 } 750 751 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 752 Register &Base, Register &Offset) { 753 auto &MF = *MI.getParent()->getParent(); 754 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 755 756 #ifndef NDEBUG 757 unsigned Opcode = MI.getOpcode(); 758 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 759 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 760 #endif 761 762 Base = MI.getOperand(1).getReg(); 763 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 764 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 765 return false; 766 767 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 768 // FIXME: The following use traversal needs a bail out for patholigical cases. 769 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 770 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 771 continue; 772 773 Offset = Use.getOperand(2).getReg(); 774 if (!ForceLegalIndexing && 775 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 776 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 777 << Use); 778 continue; 779 } 780 781 // Make sure the offset calculation is before the potentially indexed op. 782 // FIXME: we really care about dependency here. The offset calculation might 783 // be movable. 784 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 785 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 786 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 787 << Use); 788 continue; 789 } 790 791 // FIXME: check whether all uses of Base are load/store with foldable 792 // addressing modes. If so, using the normal addr-modes is better than 793 // forming an indexed one. 794 795 bool MemOpDominatesAddrUses = true; 796 for (auto &PtrAddUse : 797 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 798 if (!dominates(MI, PtrAddUse)) { 799 MemOpDominatesAddrUses = false; 800 break; 801 } 802 } 803 804 if (!MemOpDominatesAddrUses) { 805 LLVM_DEBUG( 806 dbgs() << " Ignoring candidate as memop does not dominate uses: " 807 << Use); 808 continue; 809 } 810 811 LLVM_DEBUG(dbgs() << " Found match: " << Use); 812 Addr = Use.getOperand(0).getReg(); 813 return true; 814 } 815 816 return false; 817 } 818 819 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 820 Register &Base, Register &Offset) { 821 auto &MF = *MI.getParent()->getParent(); 822 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 823 824 #ifndef NDEBUG 825 unsigned Opcode = MI.getOpcode(); 826 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 827 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 828 #endif 829 830 Addr = MI.getOperand(1).getReg(); 831 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 832 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 833 return false; 834 835 Base = AddrDef->getOperand(1).getReg(); 836 Offset = AddrDef->getOperand(2).getReg(); 837 838 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 839 840 if (!ForceLegalIndexing && 841 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 842 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 843 return false; 844 } 845 846 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 847 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 848 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 849 return false; 850 } 851 852 if (MI.getOpcode() == TargetOpcode::G_STORE) { 853 // Would require a copy. 854 if (Base == MI.getOperand(0).getReg()) { 855 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 856 return false; 857 } 858 859 // We're expecting one use of Addr in MI, but it could also be the 860 // value stored, which isn't actually dominated by the instruction. 861 if (MI.getOperand(0).getReg() == Addr) { 862 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 863 return false; 864 } 865 } 866 867 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 868 // That might allow us to end base's liveness here by adjusting the constant. 869 870 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 871 if (!dominates(MI, UseMI)) { 872 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 873 return false; 874 } 875 } 876 877 return true; 878 } 879 880 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 881 IndexedLoadStoreMatchInfo MatchInfo; 882 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 883 applyCombineIndexedLoadStore(MI, MatchInfo); 884 return true; 885 } 886 return false; 887 } 888 889 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 890 unsigned Opcode = MI.getOpcode(); 891 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 892 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 893 return false; 894 895 // For now, no targets actually support these opcodes so don't waste time 896 // running these unless we're forced to for testing. 897 if (!ForceLegalIndexing) 898 return false; 899 900 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 901 MatchInfo.Offset); 902 if (!MatchInfo.IsPre && 903 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 904 MatchInfo.Offset)) 905 return false; 906 907 return true; 908 } 909 910 void CombinerHelper::applyCombineIndexedLoadStore( 911 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 912 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 913 MachineIRBuilder MIRBuilder(MI); 914 unsigned Opcode = MI.getOpcode(); 915 bool IsStore = Opcode == TargetOpcode::G_STORE; 916 unsigned NewOpcode; 917 switch (Opcode) { 918 case TargetOpcode::G_LOAD: 919 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 920 break; 921 case TargetOpcode::G_SEXTLOAD: 922 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 923 break; 924 case TargetOpcode::G_ZEXTLOAD: 925 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 926 break; 927 case TargetOpcode::G_STORE: 928 NewOpcode = TargetOpcode::G_INDEXED_STORE; 929 break; 930 default: 931 llvm_unreachable("Unknown load/store opcode"); 932 } 933 934 auto MIB = MIRBuilder.buildInstr(NewOpcode); 935 if (IsStore) { 936 MIB.addDef(MatchInfo.Addr); 937 MIB.addUse(MI.getOperand(0).getReg()); 938 } else { 939 MIB.addDef(MI.getOperand(0).getReg()); 940 MIB.addDef(MatchInfo.Addr); 941 } 942 943 MIB.addUse(MatchInfo.Base); 944 MIB.addUse(MatchInfo.Offset); 945 MIB.addImm(MatchInfo.IsPre); 946 MI.eraseFromParent(); 947 AddrDef.eraseFromParent(); 948 949 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 950 } 951 952 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 953 MachineInstr *&OtherMI) { 954 unsigned Opcode = MI.getOpcode(); 955 bool IsDiv, IsSigned; 956 957 switch (Opcode) { 958 default: 959 llvm_unreachable("Unexpected opcode!"); 960 case TargetOpcode::G_SDIV: 961 case TargetOpcode::G_UDIV: { 962 IsDiv = true; 963 IsSigned = Opcode == TargetOpcode::G_SDIV; 964 break; 965 } 966 case TargetOpcode::G_SREM: 967 case TargetOpcode::G_UREM: { 968 IsDiv = false; 969 IsSigned = Opcode == TargetOpcode::G_SREM; 970 break; 971 } 972 } 973 974 Register Src1 = MI.getOperand(1).getReg(); 975 unsigned DivOpcode, RemOpcode, DivremOpcode; 976 if (IsSigned) { 977 DivOpcode = TargetOpcode::G_SDIV; 978 RemOpcode = TargetOpcode::G_SREM; 979 DivremOpcode = TargetOpcode::G_SDIVREM; 980 } else { 981 DivOpcode = TargetOpcode::G_UDIV; 982 RemOpcode = TargetOpcode::G_UREM; 983 DivremOpcode = TargetOpcode::G_UDIVREM; 984 } 985 986 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 987 return false; 988 989 // Combine: 990 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 991 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 992 // into: 993 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 994 995 // Combine: 996 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 997 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 998 // into: 999 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1000 1001 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1002 if (MI.getParent() == UseMI.getParent() && 1003 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1004 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1005 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1006 OtherMI = &UseMI; 1007 return true; 1008 } 1009 } 1010 1011 return false; 1012 } 1013 1014 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1015 MachineInstr *&OtherMI) { 1016 unsigned Opcode = MI.getOpcode(); 1017 assert(OtherMI && "OtherMI shouldn't be empty."); 1018 1019 Register DestDivReg, DestRemReg; 1020 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1021 DestDivReg = MI.getOperand(0).getReg(); 1022 DestRemReg = OtherMI->getOperand(0).getReg(); 1023 } else { 1024 DestDivReg = OtherMI->getOperand(0).getReg(); 1025 DestRemReg = MI.getOperand(0).getReg(); 1026 } 1027 1028 bool IsSigned = 1029 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1030 1031 // Check which instruction is first in the block so we don't break def-use 1032 // deps by "moving" the instruction incorrectly. 1033 if (dominates(MI, *OtherMI)) 1034 Builder.setInstrAndDebugLoc(MI); 1035 else 1036 Builder.setInstrAndDebugLoc(*OtherMI); 1037 1038 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1039 : TargetOpcode::G_UDIVREM, 1040 {DestDivReg, DestRemReg}, 1041 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1042 MI.eraseFromParent(); 1043 OtherMI->eraseFromParent(); 1044 } 1045 1046 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1047 MachineInstr *&BrCond) { 1048 assert(MI.getOpcode() == TargetOpcode::G_BR); 1049 1050 // Try to match the following: 1051 // bb1: 1052 // G_BRCOND %c1, %bb2 1053 // G_BR %bb3 1054 // bb2: 1055 // ... 1056 // bb3: 1057 1058 // The above pattern does not have a fall through to the successor bb2, always 1059 // resulting in a branch no matter which path is taken. Here we try to find 1060 // and replace that pattern with conditional branch to bb3 and otherwise 1061 // fallthrough to bb2. This is generally better for branch predictors. 1062 1063 MachineBasicBlock *MBB = MI.getParent(); 1064 MachineBasicBlock::iterator BrIt(MI); 1065 if (BrIt == MBB->begin()) 1066 return false; 1067 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1068 1069 BrCond = &*std::prev(BrIt); 1070 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1071 return false; 1072 1073 // Check that the next block is the conditional branch target. Also make sure 1074 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1075 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1076 return BrCondTarget != MI.getOperand(0).getMBB() && 1077 MBB->isLayoutSuccessor(BrCondTarget); 1078 } 1079 1080 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1081 MachineInstr *&BrCond) { 1082 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1083 Builder.setInstrAndDebugLoc(*BrCond); 1084 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1085 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1086 // this to i1 only since we might not know for sure what kind of 1087 // compare generated the condition value. 1088 auto True = Builder.buildConstant( 1089 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1090 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1091 1092 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1093 Observer.changingInstr(MI); 1094 MI.getOperand(0).setMBB(FallthroughBB); 1095 Observer.changedInstr(MI); 1096 1097 // Change the conditional branch to use the inverted condition and 1098 // new target block. 1099 Observer.changingInstr(*BrCond); 1100 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1101 BrCond->getOperand(1).setMBB(BrTarget); 1102 Observer.changedInstr(*BrCond); 1103 } 1104 1105 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 1106 // On Darwin, -Os means optimize for size without hurting performance, so 1107 // only really optimize for size when -Oz (MinSize) is used. 1108 if (MF.getTarget().getTargetTriple().isOSDarwin()) 1109 return MF.getFunction().hasMinSize(); 1110 return MF.getFunction().hasOptSize(); 1111 } 1112 1113 // Returns a list of types to use for memory op lowering in MemOps. A partial 1114 // port of findOptimalMemOpLowering in TargetLowering. 1115 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 1116 unsigned Limit, const MemOp &Op, 1117 unsigned DstAS, unsigned SrcAS, 1118 const AttributeList &FuncAttributes, 1119 const TargetLowering &TLI) { 1120 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 1121 return false; 1122 1123 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 1124 1125 if (Ty == LLT()) { 1126 // Use the largest scalar type whose alignment constraints are satisfied. 1127 // We only need to check DstAlign here as SrcAlign is always greater or 1128 // equal to DstAlign (or zero). 1129 Ty = LLT::scalar(64); 1130 if (Op.isFixedDstAlign()) 1131 while (Op.getDstAlign() < Ty.getSizeInBytes() && 1132 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 1133 Ty = LLT::scalar(Ty.getSizeInBytes()); 1134 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 1135 // FIXME: check for the largest legal type we can load/store to. 1136 } 1137 1138 unsigned NumMemOps = 0; 1139 uint64_t Size = Op.size(); 1140 while (Size) { 1141 unsigned TySize = Ty.getSizeInBytes(); 1142 while (TySize > Size) { 1143 // For now, only use non-vector load / store's for the left-over pieces. 1144 LLT NewTy = Ty; 1145 // FIXME: check for mem op safety and legality of the types. Not all of 1146 // SDAGisms map cleanly to GISel concepts. 1147 if (NewTy.isVector()) 1148 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 1149 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 1150 unsigned NewTySize = NewTy.getSizeInBytes(); 1151 assert(NewTySize > 0 && "Could not find appropriate type"); 1152 1153 // If the new LLT cannot cover all of the remaining bits, then consider 1154 // issuing a (or a pair of) unaligned and overlapping load / store. 1155 bool Fast; 1156 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 1157 MVT VT = getMVTForLLT(Ty); 1158 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 1159 TLI.allowsMisalignedMemoryAccesses( 1160 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 1161 MachineMemOperand::MONone, &Fast) && 1162 Fast) 1163 TySize = Size; 1164 else { 1165 Ty = NewTy; 1166 TySize = NewTySize; 1167 } 1168 } 1169 1170 if (++NumMemOps > Limit) 1171 return false; 1172 1173 MemOps.push_back(Ty); 1174 Size -= TySize; 1175 } 1176 1177 return true; 1178 } 1179 1180 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1181 if (Ty.isVector()) 1182 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1183 Ty.getNumElements()); 1184 return IntegerType::get(C, Ty.getSizeInBits()); 1185 } 1186 1187 // Get a vectorized representation of the memset value operand, GISel edition. 1188 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 1189 MachineRegisterInfo &MRI = *MIB.getMRI(); 1190 unsigned NumBits = Ty.getScalarSizeInBits(); 1191 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1192 if (!Ty.isVector() && ValVRegAndVal) { 1193 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 1194 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 1195 return MIB.buildConstant(Ty, SplatVal).getReg(0); 1196 } 1197 1198 // Extend the byte value to the larger type, and then multiply by a magic 1199 // value 0x010101... in order to replicate it across every byte. 1200 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 1201 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 1202 return MIB.buildConstant(Ty, 0).getReg(0); 1203 } 1204 1205 LLT ExtType = Ty.getScalarType(); 1206 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 1207 if (NumBits > 8) { 1208 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 1209 auto MagicMI = MIB.buildConstant(ExtType, Magic); 1210 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 1211 } 1212 1213 // For vector types create a G_BUILD_VECTOR. 1214 if (Ty.isVector()) 1215 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 1216 1217 return Val; 1218 } 1219 1220 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 1221 Register Val, uint64_t KnownLen, 1222 Align Alignment, bool IsVolatile) { 1223 auto &MF = *MI.getParent()->getParent(); 1224 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1225 auto &DL = MF.getDataLayout(); 1226 LLVMContext &C = MF.getFunction().getContext(); 1227 1228 assert(KnownLen != 0 && "Have a zero length memset length!"); 1229 1230 bool DstAlignCanChange = false; 1231 MachineFrameInfo &MFI = MF.getFrameInfo(); 1232 bool OptSize = shouldLowerMemFuncForSize(MF); 1233 1234 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1235 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1236 DstAlignCanChange = true; 1237 1238 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1239 std::vector<LLT> MemOps; 1240 1241 const auto &DstMMO = **MI.memoperands_begin(); 1242 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1243 1244 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1245 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1246 1247 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1248 MemOp::Set(KnownLen, DstAlignCanChange, 1249 Alignment, 1250 /*IsZeroMemset=*/IsZeroVal, 1251 /*IsVolatile=*/IsVolatile), 1252 DstPtrInfo.getAddrSpace(), ~0u, 1253 MF.getFunction().getAttributes(), TLI)) 1254 return false; 1255 1256 if (DstAlignCanChange) { 1257 // Get an estimate of the type from the LLT. 1258 Type *IRTy = getTypeForLLT(MemOps[0], C); 1259 Align NewAlign = DL.getABITypeAlign(IRTy); 1260 if (NewAlign > Alignment) { 1261 Alignment = NewAlign; 1262 unsigned FI = FIDef->getOperand(1).getIndex(); 1263 // Give the stack frame object a larger alignment if needed. 1264 if (MFI.getObjectAlign(FI) < Alignment) 1265 MFI.setObjectAlignment(FI, Alignment); 1266 } 1267 } 1268 1269 MachineIRBuilder MIB(MI); 1270 // Find the largest store and generate the bit pattern for it. 1271 LLT LargestTy = MemOps[0]; 1272 for (unsigned i = 1; i < MemOps.size(); i++) 1273 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1274 LargestTy = MemOps[i]; 1275 1276 // The memset stored value is always defined as an s8, so in order to make it 1277 // work with larger store types we need to repeat the bit pattern across the 1278 // wider type. 1279 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1280 1281 if (!MemSetValue) 1282 return false; 1283 1284 // Generate the stores. For each store type in the list, we generate the 1285 // matching store of that type to the destination address. 1286 LLT PtrTy = MRI.getType(Dst); 1287 unsigned DstOff = 0; 1288 unsigned Size = KnownLen; 1289 for (unsigned I = 0; I < MemOps.size(); I++) { 1290 LLT Ty = MemOps[I]; 1291 unsigned TySize = Ty.getSizeInBytes(); 1292 if (TySize > Size) { 1293 // Issuing an unaligned load / store pair that overlaps with the previous 1294 // pair. Adjust the offset accordingly. 1295 assert(I == MemOps.size() - 1 && I != 0); 1296 DstOff -= TySize - Size; 1297 } 1298 1299 // If this store is smaller than the largest store see whether we can get 1300 // the smaller value for free with a truncate. 1301 Register Value = MemSetValue; 1302 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1303 MVT VT = getMVTForLLT(Ty); 1304 MVT LargestVT = getMVTForLLT(LargestTy); 1305 if (!LargestTy.isVector() && !Ty.isVector() && 1306 TLI.isTruncateFree(LargestVT, VT)) 1307 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1308 else 1309 Value = getMemsetValue(Val, Ty, MIB); 1310 if (!Value) 1311 return false; 1312 } 1313 1314 auto *StoreMMO = 1315 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1316 1317 Register Ptr = Dst; 1318 if (DstOff != 0) { 1319 auto Offset = 1320 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1321 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1322 } 1323 1324 MIB.buildStore(Value, Ptr, *StoreMMO); 1325 DstOff += Ty.getSizeInBytes(); 1326 Size -= TySize; 1327 } 1328 1329 MI.eraseFromParent(); 1330 return true; 1331 } 1332 1333 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1334 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 1335 1336 Register Dst = MI.getOperand(0).getReg(); 1337 Register Src = MI.getOperand(1).getReg(); 1338 Register Len = MI.getOperand(2).getReg(); 1339 1340 const auto *MMOIt = MI.memoperands_begin(); 1341 const MachineMemOperand *MemOp = *MMOIt; 1342 bool IsVolatile = MemOp->isVolatile(); 1343 1344 // See if this is a constant length copy 1345 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1346 // FIXME: support dynamically sized G_MEMCPY_INLINE 1347 assert(LenVRegAndVal.hasValue() && 1348 "inline memcpy with dynamic size is not yet supported"); 1349 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 1350 if (KnownLen == 0) { 1351 MI.eraseFromParent(); 1352 return true; 1353 } 1354 1355 const auto &DstMMO = **MI.memoperands_begin(); 1356 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1357 Align DstAlign = DstMMO.getBaseAlign(); 1358 Align SrcAlign = SrcMMO.getBaseAlign(); 1359 1360 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 1361 IsVolatile); 1362 } 1363 1364 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI, Register Dst, 1365 Register Src, uint64_t KnownLen, 1366 Align DstAlign, Align SrcAlign, 1367 bool IsVolatile) { 1368 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 1369 return optimizeMemcpy(MI, Dst, Src, KnownLen, 1370 std::numeric_limits<uint64_t>::max(), DstAlign, 1371 SrcAlign, IsVolatile); 1372 } 1373 1374 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1375 Register Src, uint64_t KnownLen, 1376 uint64_t Limit, Align DstAlign, 1377 Align SrcAlign, bool IsVolatile) { 1378 auto &MF = *MI.getParent()->getParent(); 1379 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1380 auto &DL = MF.getDataLayout(); 1381 LLVMContext &C = MF.getFunction().getContext(); 1382 1383 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1384 1385 bool DstAlignCanChange = false; 1386 MachineFrameInfo &MFI = MF.getFrameInfo(); 1387 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1388 1389 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1390 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1391 DstAlignCanChange = true; 1392 1393 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1394 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1395 // if the memcpy is in a tail call position. 1396 1397 std::vector<LLT> MemOps; 1398 1399 const auto &DstMMO = **MI.memoperands_begin(); 1400 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1401 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1402 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1403 1404 if (!findGISelOptimalMemOpLowering( 1405 MemOps, Limit, 1406 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1407 IsVolatile), 1408 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1409 MF.getFunction().getAttributes(), TLI)) 1410 return false; 1411 1412 if (DstAlignCanChange) { 1413 // Get an estimate of the type from the LLT. 1414 Type *IRTy = getTypeForLLT(MemOps[0], C); 1415 Align NewAlign = DL.getABITypeAlign(IRTy); 1416 1417 // Don't promote to an alignment that would require dynamic stack 1418 // realignment. 1419 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1420 if (!TRI->hasStackRealignment(MF)) 1421 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1422 NewAlign = NewAlign / 2; 1423 1424 if (NewAlign > Alignment) { 1425 Alignment = NewAlign; 1426 unsigned FI = FIDef->getOperand(1).getIndex(); 1427 // Give the stack frame object a larger alignment if needed. 1428 if (MFI.getObjectAlign(FI) < Alignment) 1429 MFI.setObjectAlignment(FI, Alignment); 1430 } 1431 } 1432 1433 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1434 1435 MachineIRBuilder MIB(MI); 1436 // Now we need to emit a pair of load and stores for each of the types we've 1437 // collected. I.e. for each type, generate a load from the source pointer of 1438 // that type width, and then generate a corresponding store to the dest buffer 1439 // of that value loaded. This can result in a sequence of loads and stores 1440 // mixed types, depending on what the target specifies as good types to use. 1441 unsigned CurrOffset = 0; 1442 LLT PtrTy = MRI.getType(Src); 1443 unsigned Size = KnownLen; 1444 for (auto CopyTy : MemOps) { 1445 // Issuing an unaligned load / store pair that overlaps with the previous 1446 // pair. Adjust the offset accordingly. 1447 if (CopyTy.getSizeInBytes() > Size) 1448 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1449 1450 // Construct MMOs for the accesses. 1451 auto *LoadMMO = 1452 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1453 auto *StoreMMO = 1454 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1455 1456 // Create the load. 1457 Register LoadPtr = Src; 1458 Register Offset; 1459 if (CurrOffset != 0) { 1460 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1461 .getReg(0); 1462 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1463 } 1464 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1465 1466 // Create the store. 1467 Register StorePtr = 1468 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1469 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1470 CurrOffset += CopyTy.getSizeInBytes(); 1471 Size -= CopyTy.getSizeInBytes(); 1472 } 1473 1474 MI.eraseFromParent(); 1475 return true; 1476 } 1477 1478 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1479 Register Src, uint64_t KnownLen, 1480 Align DstAlign, Align SrcAlign, 1481 bool IsVolatile) { 1482 auto &MF = *MI.getParent()->getParent(); 1483 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1484 auto &DL = MF.getDataLayout(); 1485 LLVMContext &C = MF.getFunction().getContext(); 1486 1487 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1488 1489 bool DstAlignCanChange = false; 1490 MachineFrameInfo &MFI = MF.getFrameInfo(); 1491 bool OptSize = shouldLowerMemFuncForSize(MF); 1492 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1493 1494 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1495 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1496 DstAlignCanChange = true; 1497 1498 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1499 std::vector<LLT> MemOps; 1500 1501 const auto &DstMMO = **MI.memoperands_begin(); 1502 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1503 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1504 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1505 1506 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1507 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1508 // same thing here. 1509 if (!findGISelOptimalMemOpLowering( 1510 MemOps, Limit, 1511 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1512 /*IsVolatile*/ true), 1513 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1514 MF.getFunction().getAttributes(), TLI)) 1515 return false; 1516 1517 if (DstAlignCanChange) { 1518 // Get an estimate of the type from the LLT. 1519 Type *IRTy = getTypeForLLT(MemOps[0], C); 1520 Align NewAlign = DL.getABITypeAlign(IRTy); 1521 1522 // Don't promote to an alignment that would require dynamic stack 1523 // realignment. 1524 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1525 if (!TRI->hasStackRealignment(MF)) 1526 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1527 NewAlign = NewAlign / 2; 1528 1529 if (NewAlign > Alignment) { 1530 Alignment = NewAlign; 1531 unsigned FI = FIDef->getOperand(1).getIndex(); 1532 // Give the stack frame object a larger alignment if needed. 1533 if (MFI.getObjectAlign(FI) < Alignment) 1534 MFI.setObjectAlignment(FI, Alignment); 1535 } 1536 } 1537 1538 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1539 1540 MachineIRBuilder MIB(MI); 1541 // Memmove requires that we perform the loads first before issuing the stores. 1542 // Apart from that, this loop is pretty much doing the same thing as the 1543 // memcpy codegen function. 1544 unsigned CurrOffset = 0; 1545 LLT PtrTy = MRI.getType(Src); 1546 SmallVector<Register, 16> LoadVals; 1547 for (auto CopyTy : MemOps) { 1548 // Construct MMO for the load. 1549 auto *LoadMMO = 1550 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1551 1552 // Create the load. 1553 Register LoadPtr = Src; 1554 if (CurrOffset != 0) { 1555 auto Offset = 1556 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1557 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1558 } 1559 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1560 CurrOffset += CopyTy.getSizeInBytes(); 1561 } 1562 1563 CurrOffset = 0; 1564 for (unsigned I = 0; I < MemOps.size(); ++I) { 1565 LLT CopyTy = MemOps[I]; 1566 // Now store the values loaded. 1567 auto *StoreMMO = 1568 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1569 1570 Register StorePtr = Dst; 1571 if (CurrOffset != 0) { 1572 auto Offset = 1573 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1574 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1575 } 1576 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1577 CurrOffset += CopyTy.getSizeInBytes(); 1578 } 1579 MI.eraseFromParent(); 1580 return true; 1581 } 1582 1583 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1584 const unsigned Opc = MI.getOpcode(); 1585 // This combine is fairly complex so it's not written with a separate 1586 // matcher function. 1587 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 1588 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); 1589 1590 auto MMOIt = MI.memoperands_begin(); 1591 const MachineMemOperand *MemOp = *MMOIt; 1592 1593 Align DstAlign = MemOp->getBaseAlign(); 1594 Align SrcAlign; 1595 Register Dst = MI.getOperand(0).getReg(); 1596 Register Src = MI.getOperand(1).getReg(); 1597 Register Len = MI.getOperand(2).getReg(); 1598 1599 if (Opc != TargetOpcode::G_MEMSET) { 1600 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1601 MemOp = *(++MMOIt); 1602 SrcAlign = MemOp->getBaseAlign(); 1603 } 1604 1605 // See if this is a constant length copy 1606 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1607 if (!LenVRegAndVal) 1608 return false; // Leave it to the legalizer to lower it to a libcall. 1609 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 1610 1611 if (KnownLen == 0) { 1612 MI.eraseFromParent(); 1613 return true; 1614 } 1615 1616 bool IsVolatile = MemOp->isVolatile(); 1617 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 1618 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 1619 IsVolatile); 1620 1621 // Don't try to optimize volatile. 1622 if (IsVolatile) 1623 return false; 1624 1625 if (MaxLen && KnownLen > MaxLen) 1626 return false; 1627 1628 if (Opc == TargetOpcode::G_MEMCPY) { 1629 auto &MF = *MI.getParent()->getParent(); 1630 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1631 bool OptSize = shouldLowerMemFuncForSize(MF); 1632 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1633 return optimizeMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 1634 IsVolatile); 1635 } 1636 if (Opc == TargetOpcode::G_MEMMOVE) 1637 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1638 if (Opc == TargetOpcode::G_MEMSET) 1639 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1640 return false; 1641 } 1642 1643 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1644 const Register Op, 1645 const MachineRegisterInfo &MRI) { 1646 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1647 if (!MaybeCst) 1648 return None; 1649 1650 APFloat V = MaybeCst->getValueAPF(); 1651 switch (Opcode) { 1652 default: 1653 llvm_unreachable("Unexpected opcode!"); 1654 case TargetOpcode::G_FNEG: { 1655 V.changeSign(); 1656 return V; 1657 } 1658 case TargetOpcode::G_FABS: { 1659 V.clearSign(); 1660 return V; 1661 } 1662 case TargetOpcode::G_FPTRUNC: 1663 break; 1664 case TargetOpcode::G_FSQRT: { 1665 bool Unused; 1666 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1667 V = APFloat(sqrt(V.convertToDouble())); 1668 break; 1669 } 1670 case TargetOpcode::G_FLOG2: { 1671 bool Unused; 1672 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1673 V = APFloat(log2(V.convertToDouble())); 1674 break; 1675 } 1676 } 1677 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1678 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1679 // and `G_FLOG2` reach here. 1680 bool Unused; 1681 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1682 return V; 1683 } 1684 1685 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1686 Optional<APFloat> &Cst) { 1687 Register DstReg = MI.getOperand(0).getReg(); 1688 Register SrcReg = MI.getOperand(1).getReg(); 1689 LLT DstTy = MRI.getType(DstReg); 1690 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1691 return Cst.hasValue(); 1692 } 1693 1694 bool CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1695 Optional<APFloat> &Cst) { 1696 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1697 Builder.setInstrAndDebugLoc(MI); 1698 MachineFunction &MF = Builder.getMF(); 1699 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1700 Register DstReg = MI.getOperand(0).getReg(); 1701 Builder.buildFConstant(DstReg, *FPVal); 1702 MI.eraseFromParent(); 1703 return true; 1704 } 1705 1706 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1707 PtrAddChain &MatchInfo) { 1708 // We're trying to match the following pattern: 1709 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1710 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1711 // --> 1712 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1713 1714 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1715 return false; 1716 1717 Register Add2 = MI.getOperand(1).getReg(); 1718 Register Imm1 = MI.getOperand(2).getReg(); 1719 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1720 if (!MaybeImmVal) 1721 return false; 1722 1723 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1724 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1725 return false; 1726 1727 Register Base = Add2Def->getOperand(1).getReg(); 1728 Register Imm2 = Add2Def->getOperand(2).getReg(); 1729 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1730 if (!MaybeImm2Val) 1731 return false; 1732 1733 // Pass the combined immediate to the apply function. 1734 MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue(); 1735 MatchInfo.Base = Base; 1736 return true; 1737 } 1738 1739 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1740 PtrAddChain &MatchInfo) { 1741 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1742 MachineIRBuilder MIB(MI); 1743 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1744 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1745 Observer.changingInstr(MI); 1746 MI.getOperand(1).setReg(MatchInfo.Base); 1747 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1748 Observer.changedInstr(MI); 1749 return true; 1750 } 1751 1752 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1753 RegisterImmPair &MatchInfo) { 1754 // We're trying to match the following pattern with any of 1755 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1756 // %t1 = SHIFT %base, G_CONSTANT imm1 1757 // %root = SHIFT %t1, G_CONSTANT imm2 1758 // --> 1759 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1760 1761 unsigned Opcode = MI.getOpcode(); 1762 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1763 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1764 Opcode == TargetOpcode::G_USHLSAT) && 1765 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1766 1767 Register Shl2 = MI.getOperand(1).getReg(); 1768 Register Imm1 = MI.getOperand(2).getReg(); 1769 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1770 if (!MaybeImmVal) 1771 return false; 1772 1773 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1774 if (Shl2Def->getOpcode() != Opcode) 1775 return false; 1776 1777 Register Base = Shl2Def->getOperand(1).getReg(); 1778 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1779 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1780 if (!MaybeImm2Val) 1781 return false; 1782 1783 // Pass the combined immediate to the apply function. 1784 MatchInfo.Imm = 1785 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1786 MatchInfo.Reg = Base; 1787 1788 // There is no simple replacement for a saturating unsigned left shift that 1789 // exceeds the scalar size. 1790 if (Opcode == TargetOpcode::G_USHLSAT && 1791 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1792 return false; 1793 1794 return true; 1795 } 1796 1797 bool CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1798 RegisterImmPair &MatchInfo) { 1799 unsigned Opcode = MI.getOpcode(); 1800 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1801 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1802 Opcode == TargetOpcode::G_USHLSAT) && 1803 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1804 1805 Builder.setInstrAndDebugLoc(MI); 1806 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1807 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1808 auto Imm = MatchInfo.Imm; 1809 1810 if (Imm >= ScalarSizeInBits) { 1811 // Any logical shift that exceeds scalar size will produce zero. 1812 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1813 Builder.buildConstant(MI.getOperand(0), 0); 1814 MI.eraseFromParent(); 1815 return true; 1816 } 1817 // Arithmetic shift and saturating signed left shift have no effect beyond 1818 // scalar size. 1819 Imm = ScalarSizeInBits - 1; 1820 } 1821 1822 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1823 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1824 Observer.changingInstr(MI); 1825 MI.getOperand(1).setReg(MatchInfo.Reg); 1826 MI.getOperand(2).setReg(NewImm); 1827 Observer.changedInstr(MI); 1828 return true; 1829 } 1830 1831 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1832 ShiftOfShiftedLogic &MatchInfo) { 1833 // We're trying to match the following pattern with any of 1834 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1835 // with any of G_AND/G_OR/G_XOR logic instructions. 1836 // %t1 = SHIFT %X, G_CONSTANT C0 1837 // %t2 = LOGIC %t1, %Y 1838 // %root = SHIFT %t2, G_CONSTANT C1 1839 // --> 1840 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1841 // %t4 = SHIFT %Y, G_CONSTANT C1 1842 // %root = LOGIC %t3, %t4 1843 unsigned ShiftOpcode = MI.getOpcode(); 1844 assert((ShiftOpcode == TargetOpcode::G_SHL || 1845 ShiftOpcode == TargetOpcode::G_ASHR || 1846 ShiftOpcode == TargetOpcode::G_LSHR || 1847 ShiftOpcode == TargetOpcode::G_USHLSAT || 1848 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1849 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1850 1851 // Match a one-use bitwise logic op. 1852 Register LogicDest = MI.getOperand(1).getReg(); 1853 if (!MRI.hasOneNonDBGUse(LogicDest)) 1854 return false; 1855 1856 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1857 unsigned LogicOpcode = LogicMI->getOpcode(); 1858 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1859 LogicOpcode != TargetOpcode::G_XOR) 1860 return false; 1861 1862 // Find a matching one-use shift by constant. 1863 const Register C1 = MI.getOperand(2).getReg(); 1864 auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); 1865 if (!MaybeImmVal) 1866 return false; 1867 1868 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1869 1870 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1871 // Shift should match previous one and should be a one-use. 1872 if (MI->getOpcode() != ShiftOpcode || 1873 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1874 return false; 1875 1876 // Must be a constant. 1877 auto MaybeImmVal = 1878 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1879 if (!MaybeImmVal) 1880 return false; 1881 1882 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1883 return true; 1884 }; 1885 1886 // Logic ops are commutative, so check each operand for a match. 1887 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1888 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1889 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1890 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1891 uint64_t C0Val; 1892 1893 if (matchFirstShift(LogicMIOp1, C0Val)) { 1894 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1895 MatchInfo.Shift2 = LogicMIOp1; 1896 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1897 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1898 MatchInfo.Shift2 = LogicMIOp2; 1899 } else 1900 return false; 1901 1902 MatchInfo.ValSum = C0Val + C1Val; 1903 1904 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1905 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1906 return false; 1907 1908 MatchInfo.Logic = LogicMI; 1909 return true; 1910 } 1911 1912 bool CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1913 ShiftOfShiftedLogic &MatchInfo) { 1914 unsigned Opcode = MI.getOpcode(); 1915 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1916 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1917 Opcode == TargetOpcode::G_SSHLSAT) && 1918 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1919 1920 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1921 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1922 Builder.setInstrAndDebugLoc(MI); 1923 1924 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1925 1926 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1927 Register Shift1 = 1928 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1929 1930 Register Shift2Const = MI.getOperand(2).getReg(); 1931 Register Shift2 = Builder 1932 .buildInstr(Opcode, {DestType}, 1933 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1934 .getReg(0); 1935 1936 Register Dest = MI.getOperand(0).getReg(); 1937 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1938 1939 // These were one use so it's safe to remove them. 1940 MatchInfo.Shift2->eraseFromParent(); 1941 MatchInfo.Logic->eraseFromParent(); 1942 1943 MI.eraseFromParent(); 1944 return true; 1945 } 1946 1947 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1948 unsigned &ShiftVal) { 1949 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1950 auto MaybeImmVal = 1951 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1952 if (!MaybeImmVal) 1953 return false; 1954 1955 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1956 return (static_cast<int32_t>(ShiftVal) != -1); 1957 } 1958 1959 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1960 unsigned &ShiftVal) { 1961 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1962 MachineIRBuilder MIB(MI); 1963 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1964 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1965 Observer.changingInstr(MI); 1966 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1967 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1968 Observer.changedInstr(MI); 1969 return true; 1970 } 1971 1972 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1973 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1974 RegisterImmPair &MatchData) { 1975 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1976 1977 Register LHS = MI.getOperand(1).getReg(); 1978 1979 Register ExtSrc; 1980 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1981 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1982 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1983 return false; 1984 1985 // TODO: Should handle vector splat. 1986 Register RHS = MI.getOperand(2).getReg(); 1987 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 1988 if (!MaybeShiftAmtVal) 1989 return false; 1990 1991 if (LI) { 1992 LLT SrcTy = MRI.getType(ExtSrc); 1993 1994 // We only really care about the legality with the shifted value. We can 1995 // pick any type the constant shift amount, so ask the target what to 1996 // use. Otherwise we would have to guess and hope it is reported as legal. 1997 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1998 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1999 return false; 2000 } 2001 2002 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 2003 MatchData.Reg = ExtSrc; 2004 MatchData.Imm = ShiftAmt; 2005 2006 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 2007 return MinLeadingZeros >= ShiftAmt; 2008 } 2009 2010 bool CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 2011 const RegisterImmPair &MatchData) { 2012 Register ExtSrcReg = MatchData.Reg; 2013 int64_t ShiftAmtVal = MatchData.Imm; 2014 2015 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 2016 Builder.setInstrAndDebugLoc(MI); 2017 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 2018 auto NarrowShift = 2019 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 2020 Builder.buildZExt(MI.getOperand(0), NarrowShift); 2021 MI.eraseFromParent(); 2022 return true; 2023 } 2024 2025 static Register peekThroughBitcast(Register Reg, 2026 const MachineRegisterInfo &MRI) { 2027 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 2028 ; 2029 2030 return Reg; 2031 } 2032 2033 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 2034 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2035 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2036 "Expected an unmerge"); 2037 Register SrcReg = 2038 peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI); 2039 2040 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 2041 if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES && 2042 SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR && 2043 SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS) 2044 return false; 2045 2046 // Check the source type of the merge. 2047 LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg()); 2048 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 2049 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 2050 if (SrcMergeTy != Dst0Ty && !SameSize) 2051 return false; 2052 // They are the same now (modulo a bitcast). 2053 // We can collect all the src registers. 2054 for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx; 2055 ++Idx) 2056 Operands.push_back(SrcInstr->getOperand(Idx).getReg()); 2057 return true; 2058 } 2059 2060 bool CombinerHelper::applyCombineUnmergeMergeToPlainValues( 2061 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2062 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2063 "Expected an unmerge"); 2064 assert((MI.getNumOperands() - 1 == Operands.size()) && 2065 "Not enough operands to replace all defs"); 2066 unsigned NumElems = MI.getNumOperands() - 1; 2067 2068 LLT SrcTy = MRI.getType(Operands[0]); 2069 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2070 bool CanReuseInputDirectly = DstTy == SrcTy; 2071 Builder.setInstrAndDebugLoc(MI); 2072 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2073 Register DstReg = MI.getOperand(Idx).getReg(); 2074 Register SrcReg = Operands[Idx]; 2075 if (CanReuseInputDirectly) 2076 replaceRegWith(MRI, DstReg, SrcReg); 2077 else 2078 Builder.buildCast(DstReg, SrcReg); 2079 } 2080 MI.eraseFromParent(); 2081 return true; 2082 } 2083 2084 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 2085 SmallVectorImpl<APInt> &Csts) { 2086 unsigned SrcIdx = MI.getNumOperands() - 1; 2087 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 2088 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 2089 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 2090 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 2091 return false; 2092 // Break down the big constant in smaller ones. 2093 const MachineOperand &CstVal = SrcInstr->getOperand(1); 2094 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 2095 ? CstVal.getCImm()->getValue() 2096 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 2097 2098 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 2099 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 2100 // Unmerge a constant. 2101 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 2102 Csts.emplace_back(Val.trunc(ShiftAmt)); 2103 Val = Val.lshr(ShiftAmt); 2104 } 2105 2106 return true; 2107 } 2108 2109 bool CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 2110 SmallVectorImpl<APInt> &Csts) { 2111 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2112 "Expected an unmerge"); 2113 assert((MI.getNumOperands() - 1 == Csts.size()) && 2114 "Not enough operands to replace all defs"); 2115 unsigned NumElems = MI.getNumOperands() - 1; 2116 Builder.setInstrAndDebugLoc(MI); 2117 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2118 Register DstReg = MI.getOperand(Idx).getReg(); 2119 Builder.buildConstant(DstReg, Csts[Idx]); 2120 } 2121 2122 MI.eraseFromParent(); 2123 return true; 2124 } 2125 2126 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2127 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2128 "Expected an unmerge"); 2129 // Check that all the lanes are dead except the first one. 2130 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2131 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 2132 return false; 2133 } 2134 return true; 2135 } 2136 2137 bool CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2138 Builder.setInstrAndDebugLoc(MI); 2139 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2140 // Truncating a vector is going to truncate every single lane, 2141 // whereas we want the full lowbits. 2142 // Do the operation on a scalar instead. 2143 LLT SrcTy = MRI.getType(SrcReg); 2144 if (SrcTy.isVector()) 2145 SrcReg = 2146 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 2147 2148 Register Dst0Reg = MI.getOperand(0).getReg(); 2149 LLT Dst0Ty = MRI.getType(Dst0Reg); 2150 if (Dst0Ty.isVector()) { 2151 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 2152 Builder.buildCast(Dst0Reg, MIB); 2153 } else 2154 Builder.buildTrunc(Dst0Reg, SrcReg); 2155 MI.eraseFromParent(); 2156 return true; 2157 } 2158 2159 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 2160 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2161 "Expected an unmerge"); 2162 Register Dst0Reg = MI.getOperand(0).getReg(); 2163 LLT Dst0Ty = MRI.getType(Dst0Reg); 2164 // G_ZEXT on vector applies to each lane, so it will 2165 // affect all destinations. Therefore we won't be able 2166 // to simplify the unmerge to just the first definition. 2167 if (Dst0Ty.isVector()) 2168 return false; 2169 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2170 LLT SrcTy = MRI.getType(SrcReg); 2171 if (SrcTy.isVector()) 2172 return false; 2173 2174 Register ZExtSrcReg; 2175 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 2176 return false; 2177 2178 // Finally we can replace the first definition with 2179 // a zext of the source if the definition is big enough to hold 2180 // all of ZExtSrc bits. 2181 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2182 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 2183 } 2184 2185 bool CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 2186 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2187 "Expected an unmerge"); 2188 2189 Register Dst0Reg = MI.getOperand(0).getReg(); 2190 2191 MachineInstr *ZExtInstr = 2192 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 2193 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 2194 "Expecting a G_ZEXT"); 2195 2196 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 2197 LLT Dst0Ty = MRI.getType(Dst0Reg); 2198 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2199 2200 Builder.setInstrAndDebugLoc(MI); 2201 2202 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 2203 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 2204 } else { 2205 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 2206 "ZExt src doesn't fit in destination"); 2207 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 2208 } 2209 2210 Register ZeroReg; 2211 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2212 if (!ZeroReg) 2213 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 2214 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 2215 } 2216 MI.eraseFromParent(); 2217 return true; 2218 } 2219 2220 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 2221 unsigned TargetShiftSize, 2222 unsigned &ShiftVal) { 2223 assert((MI.getOpcode() == TargetOpcode::G_SHL || 2224 MI.getOpcode() == TargetOpcode::G_LSHR || 2225 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 2226 2227 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2228 if (Ty.isVector()) // TODO: 2229 return false; 2230 2231 // Don't narrow further than the requested size. 2232 unsigned Size = Ty.getSizeInBits(); 2233 if (Size <= TargetShiftSize) 2234 return false; 2235 2236 auto MaybeImmVal = 2237 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 2238 if (!MaybeImmVal) 2239 return false; 2240 2241 ShiftVal = MaybeImmVal->Value.getSExtValue(); 2242 return ShiftVal >= Size / 2 && ShiftVal < Size; 2243 } 2244 2245 bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 2246 const unsigned &ShiftVal) { 2247 Register DstReg = MI.getOperand(0).getReg(); 2248 Register SrcReg = MI.getOperand(1).getReg(); 2249 LLT Ty = MRI.getType(SrcReg); 2250 unsigned Size = Ty.getSizeInBits(); 2251 unsigned HalfSize = Size / 2; 2252 assert(ShiftVal >= HalfSize); 2253 2254 LLT HalfTy = LLT::scalar(HalfSize); 2255 2256 Builder.setInstr(MI); 2257 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 2258 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 2259 2260 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2261 Register Narrowed = Unmerge.getReg(1); 2262 2263 // dst = G_LSHR s64:x, C for C >= 32 2264 // => 2265 // lo, hi = G_UNMERGE_VALUES x 2266 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 2267 2268 if (NarrowShiftAmt != 0) { 2269 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 2270 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2271 } 2272 2273 auto Zero = Builder.buildConstant(HalfTy, 0); 2274 Builder.buildMerge(DstReg, { Narrowed, Zero }); 2275 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 2276 Register Narrowed = Unmerge.getReg(0); 2277 // dst = G_SHL s64:x, C for C >= 32 2278 // => 2279 // lo, hi = G_UNMERGE_VALUES x 2280 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 2281 if (NarrowShiftAmt != 0) { 2282 Narrowed = Builder.buildShl(HalfTy, Narrowed, 2283 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2284 } 2285 2286 auto Zero = Builder.buildConstant(HalfTy, 0); 2287 Builder.buildMerge(DstReg, { Zero, Narrowed }); 2288 } else { 2289 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2290 auto Hi = Builder.buildAShr( 2291 HalfTy, Unmerge.getReg(1), 2292 Builder.buildConstant(HalfTy, HalfSize - 1)); 2293 2294 if (ShiftVal == HalfSize) { 2295 // (G_ASHR i64:x, 32) -> 2296 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 2297 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 2298 } else if (ShiftVal == Size - 1) { 2299 // Don't need a second shift. 2300 // (G_ASHR i64:x, 63) -> 2301 // %narrowed = (G_ASHR hi_32(x), 31) 2302 // G_MERGE_VALUES %narrowed, %narrowed 2303 Builder.buildMerge(DstReg, { Hi, Hi }); 2304 } else { 2305 auto Lo = Builder.buildAShr( 2306 HalfTy, Unmerge.getReg(1), 2307 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 2308 2309 // (G_ASHR i64:x, C) ->, for C >= 32 2310 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 2311 Builder.buildMerge(DstReg, { Lo, Hi }); 2312 } 2313 } 2314 2315 MI.eraseFromParent(); 2316 return true; 2317 } 2318 2319 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 2320 unsigned TargetShiftAmount) { 2321 unsigned ShiftAmt; 2322 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 2323 applyCombineShiftToUnmerge(MI, ShiftAmt); 2324 return true; 2325 } 2326 2327 return false; 2328 } 2329 2330 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2331 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2332 Register DstReg = MI.getOperand(0).getReg(); 2333 LLT DstTy = MRI.getType(DstReg); 2334 Register SrcReg = MI.getOperand(1).getReg(); 2335 return mi_match(SrcReg, MRI, 2336 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2337 } 2338 2339 bool CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2340 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2341 Register DstReg = MI.getOperand(0).getReg(); 2342 Builder.setInstr(MI); 2343 Builder.buildCopy(DstReg, Reg); 2344 MI.eraseFromParent(); 2345 return true; 2346 } 2347 2348 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2349 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2350 Register SrcReg = MI.getOperand(1).getReg(); 2351 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2352 } 2353 2354 bool CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2355 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2356 Register DstReg = MI.getOperand(0).getReg(); 2357 Builder.setInstr(MI); 2358 Builder.buildZExtOrTrunc(DstReg, Reg); 2359 MI.eraseFromParent(); 2360 return true; 2361 } 2362 2363 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2364 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2365 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2366 Register LHS = MI.getOperand(1).getReg(); 2367 Register RHS = MI.getOperand(2).getReg(); 2368 LLT IntTy = MRI.getType(LHS); 2369 2370 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2371 // instruction. 2372 PtrReg.second = false; 2373 for (Register SrcReg : {LHS, RHS}) { 2374 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2375 // Don't handle cases where the integer is implicitly converted to the 2376 // pointer width. 2377 LLT PtrTy = MRI.getType(PtrReg.first); 2378 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2379 return true; 2380 } 2381 2382 PtrReg.second = true; 2383 } 2384 2385 return false; 2386 } 2387 2388 bool CombinerHelper::applyCombineAddP2IToPtrAdd( 2389 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2390 Register Dst = MI.getOperand(0).getReg(); 2391 Register LHS = MI.getOperand(1).getReg(); 2392 Register RHS = MI.getOperand(2).getReg(); 2393 2394 const bool DoCommute = PtrReg.second; 2395 if (DoCommute) 2396 std::swap(LHS, RHS); 2397 LHS = PtrReg.first; 2398 2399 LLT PtrTy = MRI.getType(LHS); 2400 2401 Builder.setInstrAndDebugLoc(MI); 2402 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2403 Builder.buildPtrToInt(Dst, PtrAdd); 2404 MI.eraseFromParent(); 2405 return true; 2406 } 2407 2408 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2409 int64_t &NewCst) { 2410 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2411 Register LHS = MI.getOperand(1).getReg(); 2412 Register RHS = MI.getOperand(2).getReg(); 2413 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2414 2415 if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { 2416 int64_t Cst; 2417 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2418 NewCst = Cst + *RHSCst; 2419 return true; 2420 } 2421 } 2422 2423 return false; 2424 } 2425 2426 bool CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2427 int64_t &NewCst) { 2428 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2429 Register Dst = MI.getOperand(0).getReg(); 2430 2431 Builder.setInstrAndDebugLoc(MI); 2432 Builder.buildConstant(Dst, NewCst); 2433 MI.eraseFromParent(); 2434 return true; 2435 } 2436 2437 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2438 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2439 Register DstReg = MI.getOperand(0).getReg(); 2440 Register SrcReg = MI.getOperand(1).getReg(); 2441 LLT DstTy = MRI.getType(DstReg); 2442 return mi_match(SrcReg, MRI, 2443 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2444 } 2445 2446 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2447 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2448 Register DstReg = MI.getOperand(0).getReg(); 2449 Register SrcReg = MI.getOperand(1).getReg(); 2450 LLT DstTy = MRI.getType(DstReg); 2451 if (mi_match(SrcReg, MRI, 2452 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2453 unsigned DstSize = DstTy.getScalarSizeInBits(); 2454 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2455 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2456 } 2457 return false; 2458 } 2459 2460 bool CombinerHelper::matchCombineExtOfExt( 2461 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2462 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2463 MI.getOpcode() == TargetOpcode::G_SEXT || 2464 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2465 "Expected a G_[ASZ]EXT"); 2466 Register SrcReg = MI.getOperand(1).getReg(); 2467 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2468 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2469 unsigned Opc = MI.getOpcode(); 2470 unsigned SrcOpc = SrcMI->getOpcode(); 2471 if (Opc == SrcOpc || 2472 (Opc == TargetOpcode::G_ANYEXT && 2473 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2474 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2475 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2476 return true; 2477 } 2478 return false; 2479 } 2480 2481 bool CombinerHelper::applyCombineExtOfExt( 2482 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2483 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2484 MI.getOpcode() == TargetOpcode::G_SEXT || 2485 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2486 "Expected a G_[ASZ]EXT"); 2487 2488 Register Reg = std::get<0>(MatchInfo); 2489 unsigned SrcExtOp = std::get<1>(MatchInfo); 2490 2491 // Combine exts with the same opcode. 2492 if (MI.getOpcode() == SrcExtOp) { 2493 Observer.changingInstr(MI); 2494 MI.getOperand(1).setReg(Reg); 2495 Observer.changedInstr(MI); 2496 return true; 2497 } 2498 2499 // Combine: 2500 // - anyext([sz]ext x) to [sz]ext x 2501 // - sext(zext x) to zext x 2502 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2503 (MI.getOpcode() == TargetOpcode::G_SEXT && 2504 SrcExtOp == TargetOpcode::G_ZEXT)) { 2505 Register DstReg = MI.getOperand(0).getReg(); 2506 Builder.setInstrAndDebugLoc(MI); 2507 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2508 MI.eraseFromParent(); 2509 return true; 2510 } 2511 2512 return false; 2513 } 2514 2515 bool CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2516 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2517 Register DstReg = MI.getOperand(0).getReg(); 2518 Register SrcReg = MI.getOperand(1).getReg(); 2519 LLT DstTy = MRI.getType(DstReg); 2520 2521 Builder.setInstrAndDebugLoc(MI); 2522 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2523 MI.getFlags()); 2524 MI.eraseFromParent(); 2525 return true; 2526 } 2527 2528 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2529 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2530 Register SrcReg = MI.getOperand(1).getReg(); 2531 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2532 } 2533 2534 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2535 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2536 Src = MI.getOperand(1).getReg(); 2537 Register AbsSrc; 2538 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2539 } 2540 2541 bool CombinerHelper::matchCombineTruncOfExt( 2542 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2543 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2544 Register SrcReg = MI.getOperand(1).getReg(); 2545 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2546 unsigned SrcOpc = SrcMI->getOpcode(); 2547 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2548 SrcOpc == TargetOpcode::G_ZEXT) { 2549 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2550 return true; 2551 } 2552 return false; 2553 } 2554 2555 bool CombinerHelper::applyCombineTruncOfExt( 2556 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2557 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2558 Register SrcReg = MatchInfo.first; 2559 unsigned SrcExtOp = MatchInfo.second; 2560 Register DstReg = MI.getOperand(0).getReg(); 2561 LLT SrcTy = MRI.getType(SrcReg); 2562 LLT DstTy = MRI.getType(DstReg); 2563 if (SrcTy == DstTy) { 2564 MI.eraseFromParent(); 2565 replaceRegWith(MRI, DstReg, SrcReg); 2566 return true; 2567 } 2568 Builder.setInstrAndDebugLoc(MI); 2569 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2570 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2571 else 2572 Builder.buildTrunc(DstReg, SrcReg); 2573 MI.eraseFromParent(); 2574 return true; 2575 } 2576 2577 bool CombinerHelper::matchCombineTruncOfShl( 2578 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2579 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2580 Register DstReg = MI.getOperand(0).getReg(); 2581 Register SrcReg = MI.getOperand(1).getReg(); 2582 LLT DstTy = MRI.getType(DstReg); 2583 Register ShiftSrc; 2584 Register ShiftAmt; 2585 2586 if (MRI.hasOneNonDBGUse(SrcReg) && 2587 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2588 isLegalOrBeforeLegalizer( 2589 {TargetOpcode::G_SHL, 2590 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2591 KnownBits Known = KB->getKnownBits(ShiftAmt); 2592 unsigned Size = DstTy.getSizeInBits(); 2593 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2594 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2595 return true; 2596 } 2597 } 2598 return false; 2599 } 2600 2601 bool CombinerHelper::applyCombineTruncOfShl( 2602 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2603 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2604 Register DstReg = MI.getOperand(0).getReg(); 2605 Register SrcReg = MI.getOperand(1).getReg(); 2606 LLT DstTy = MRI.getType(DstReg); 2607 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2608 2609 Register ShiftSrc = MatchInfo.first; 2610 Register ShiftAmt = MatchInfo.second; 2611 Builder.setInstrAndDebugLoc(MI); 2612 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2613 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2614 MI.eraseFromParent(); 2615 return true; 2616 } 2617 2618 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2619 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2620 return MO.isReg() && 2621 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2622 }); 2623 } 2624 2625 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2626 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2627 return !MO.isReg() || 2628 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2629 }); 2630 } 2631 2632 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2633 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2634 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2635 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2636 } 2637 2638 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2639 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2640 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2641 MRI); 2642 } 2643 2644 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2645 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2646 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2647 MRI); 2648 } 2649 2650 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2651 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2652 if (auto MaybeCstCmp = 2653 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2654 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; 2655 return true; 2656 } 2657 return false; 2658 } 2659 2660 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2661 MI.eraseFromParent(); 2662 return true; 2663 } 2664 2665 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2666 const MachineOperand &MOP2) { 2667 if (!MOP1.isReg() || !MOP2.isReg()) 2668 return false; 2669 MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); 2670 if (!I1) 2671 return false; 2672 MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); 2673 if (!I2) 2674 return false; 2675 2676 // Handle a case like this: 2677 // 2678 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2679 // 2680 // Even though %0 and %1 are produced by the same instruction they are not 2681 // the same values. 2682 if (I1 == I2) 2683 return MOP1.getReg() == MOP2.getReg(); 2684 2685 // If we have an instruction which loads or stores, we can't guarantee that 2686 // it is identical. 2687 // 2688 // For example, we may have 2689 // 2690 // %x1 = G_LOAD %addr (load N from @somewhere) 2691 // ... 2692 // call @foo 2693 // ... 2694 // %x2 = G_LOAD %addr (load N from @somewhere) 2695 // ... 2696 // %or = G_OR %x1, %x2 2697 // 2698 // It's possible that @foo will modify whatever lives at the address we're 2699 // loading from. To be safe, let's just assume that all loads and stores 2700 // are different (unless we have something which is guaranteed to not 2701 // change.) 2702 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2703 return false; 2704 2705 // Check for physical registers on the instructions first to avoid cases 2706 // like this: 2707 // 2708 // %a = COPY $physreg 2709 // ... 2710 // SOMETHING implicit-def $physreg 2711 // ... 2712 // %b = COPY $physreg 2713 // 2714 // These copies are not equivalent. 2715 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2716 return MO.isReg() && MO.getReg().isPhysical(); 2717 })) { 2718 // Check if we have a case like this: 2719 // 2720 // %a = COPY $physreg 2721 // %b = COPY %a 2722 // 2723 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2724 // From that, we know that they must have the same value, since they must 2725 // have come from the same COPY. 2726 return I1->isIdenticalTo(*I2); 2727 } 2728 2729 // We don't have any physical registers, so we don't necessarily need the 2730 // same vreg defs. 2731 // 2732 // On the off-chance that there's some target instruction feeding into the 2733 // instruction, let's use produceSameValue instead of isIdenticalTo. 2734 return Builder.getTII().produceSameValue(*I1, *I2, &MRI); 2735 } 2736 2737 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2738 if (!MOP.isReg()) 2739 return false; 2740 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2741 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2742 return ValAndVReg && ValAndVReg->Value == C; 2743 } 2744 2745 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2746 unsigned OpIdx) { 2747 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2748 Register OldReg = MI.getOperand(0).getReg(); 2749 Register Replacement = MI.getOperand(OpIdx).getReg(); 2750 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2751 MI.eraseFromParent(); 2752 replaceRegWith(MRI, OldReg, Replacement); 2753 return true; 2754 } 2755 2756 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2757 Register Replacement) { 2758 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2759 Register OldReg = MI.getOperand(0).getReg(); 2760 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2761 MI.eraseFromParent(); 2762 replaceRegWith(MRI, OldReg, Replacement); 2763 return true; 2764 } 2765 2766 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2767 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2768 // Match (cond ? x : x) 2769 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2770 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2771 MRI); 2772 } 2773 2774 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2775 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2776 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2777 MRI); 2778 } 2779 2780 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2781 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2782 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2783 MRI); 2784 } 2785 2786 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2787 MachineOperand &MO = MI.getOperand(OpIdx); 2788 return MO.isReg() && 2789 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2790 } 2791 2792 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2793 unsigned OpIdx) { 2794 MachineOperand &MO = MI.getOperand(OpIdx); 2795 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2796 } 2797 2798 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2799 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2800 Builder.setInstr(MI); 2801 Builder.buildFConstant(MI.getOperand(0), C); 2802 MI.eraseFromParent(); 2803 return true; 2804 } 2805 2806 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2807 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2808 Builder.setInstr(MI); 2809 Builder.buildConstant(MI.getOperand(0), C); 2810 MI.eraseFromParent(); 2811 return true; 2812 } 2813 2814 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2815 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2816 Builder.setInstr(MI); 2817 Builder.buildUndef(MI.getOperand(0)); 2818 MI.eraseFromParent(); 2819 return true; 2820 } 2821 2822 bool CombinerHelper::matchSimplifyAddToSub( 2823 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2824 Register LHS = MI.getOperand(1).getReg(); 2825 Register RHS = MI.getOperand(2).getReg(); 2826 Register &NewLHS = std::get<0>(MatchInfo); 2827 Register &NewRHS = std::get<1>(MatchInfo); 2828 2829 // Helper lambda to check for opportunities for 2830 // ((0-A) + B) -> B - A 2831 // (A + (0-B)) -> A - B 2832 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2833 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2834 return false; 2835 NewLHS = MaybeNewLHS; 2836 return true; 2837 }; 2838 2839 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2840 } 2841 2842 bool CombinerHelper::matchCombineInsertVecElts( 2843 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2844 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2845 "Invalid opcode"); 2846 Register DstReg = MI.getOperand(0).getReg(); 2847 LLT DstTy = MRI.getType(DstReg); 2848 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2849 unsigned NumElts = DstTy.getNumElements(); 2850 // If this MI is part of a sequence of insert_vec_elts, then 2851 // don't do the combine in the middle of the sequence. 2852 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2853 TargetOpcode::G_INSERT_VECTOR_ELT) 2854 return false; 2855 MachineInstr *CurrInst = &MI; 2856 MachineInstr *TmpInst; 2857 int64_t IntImm; 2858 Register TmpReg; 2859 MatchInfo.resize(NumElts); 2860 while (mi_match( 2861 CurrInst->getOperand(0).getReg(), MRI, 2862 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2863 if (IntImm >= NumElts) 2864 return false; 2865 if (!MatchInfo[IntImm]) 2866 MatchInfo[IntImm] = TmpReg; 2867 CurrInst = TmpInst; 2868 } 2869 // Variable index. 2870 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2871 return false; 2872 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2873 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2874 if (!MatchInfo[I - 1].isValid()) 2875 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2876 } 2877 return true; 2878 } 2879 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2880 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2881 } 2882 2883 bool CombinerHelper::applyCombineInsertVecElts( 2884 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2885 Builder.setInstr(MI); 2886 Register UndefReg; 2887 auto GetUndef = [&]() { 2888 if (UndefReg) 2889 return UndefReg; 2890 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2891 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2892 return UndefReg; 2893 }; 2894 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2895 if (!MatchInfo[I]) 2896 MatchInfo[I] = GetUndef(); 2897 } 2898 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2899 MI.eraseFromParent(); 2900 return true; 2901 } 2902 2903 bool CombinerHelper::applySimplifyAddToSub( 2904 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2905 Builder.setInstr(MI); 2906 Register SubLHS, SubRHS; 2907 std::tie(SubLHS, SubRHS) = MatchInfo; 2908 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2909 MI.eraseFromParent(); 2910 return true; 2911 } 2912 2913 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2914 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2915 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2916 // 2917 // Creates the new hand + logic instruction (but does not insert them.) 2918 // 2919 // On success, MatchInfo is populated with the new instructions. These are 2920 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2921 unsigned LogicOpcode = MI.getOpcode(); 2922 assert(LogicOpcode == TargetOpcode::G_AND || 2923 LogicOpcode == TargetOpcode::G_OR || 2924 LogicOpcode == TargetOpcode::G_XOR); 2925 MachineIRBuilder MIB(MI); 2926 Register Dst = MI.getOperand(0).getReg(); 2927 Register LHSReg = MI.getOperand(1).getReg(); 2928 Register RHSReg = MI.getOperand(2).getReg(); 2929 2930 // Don't recompute anything. 2931 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2932 return false; 2933 2934 // Make sure we have (hand x, ...), (hand y, ...) 2935 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2936 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2937 if (!LeftHandInst || !RightHandInst) 2938 return false; 2939 unsigned HandOpcode = LeftHandInst->getOpcode(); 2940 if (HandOpcode != RightHandInst->getOpcode()) 2941 return false; 2942 if (!LeftHandInst->getOperand(1).isReg() || 2943 !RightHandInst->getOperand(1).isReg()) 2944 return false; 2945 2946 // Make sure the types match up, and if we're doing this post-legalization, 2947 // we end up with legal types. 2948 Register X = LeftHandInst->getOperand(1).getReg(); 2949 Register Y = RightHandInst->getOperand(1).getReg(); 2950 LLT XTy = MRI.getType(X); 2951 LLT YTy = MRI.getType(Y); 2952 if (XTy != YTy) 2953 return false; 2954 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2955 return false; 2956 2957 // Optional extra source register. 2958 Register ExtraHandOpSrcReg; 2959 switch (HandOpcode) { 2960 default: 2961 return false; 2962 case TargetOpcode::G_ANYEXT: 2963 case TargetOpcode::G_SEXT: 2964 case TargetOpcode::G_ZEXT: { 2965 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2966 break; 2967 } 2968 case TargetOpcode::G_AND: 2969 case TargetOpcode::G_ASHR: 2970 case TargetOpcode::G_LSHR: 2971 case TargetOpcode::G_SHL: { 2972 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2973 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2974 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2975 return false; 2976 ExtraHandOpSrcReg = ZOp.getReg(); 2977 break; 2978 } 2979 } 2980 2981 // Record the steps to build the new instructions. 2982 // 2983 // Steps to build (logic x, y) 2984 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2985 OperandBuildSteps LogicBuildSteps = { 2986 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2987 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2988 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2989 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2990 2991 // Steps to build hand (logic x, y), ...z 2992 OperandBuildSteps HandBuildSteps = { 2993 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2994 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2995 if (ExtraHandOpSrcReg.isValid()) 2996 HandBuildSteps.push_back( 2997 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2998 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2999 3000 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 3001 return true; 3002 } 3003 3004 bool CombinerHelper::applyBuildInstructionSteps( 3005 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 3006 assert(MatchInfo.InstrsToBuild.size() && 3007 "Expected at least one instr to build?"); 3008 Builder.setInstr(MI); 3009 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 3010 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 3011 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 3012 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 3013 for (auto &OperandFn : InstrToBuild.OperandFns) 3014 OperandFn(Instr); 3015 } 3016 MI.eraseFromParent(); 3017 return true; 3018 } 3019 3020 bool CombinerHelper::matchAshrShlToSextInreg( 3021 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 3022 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 3023 int64_t ShlCst, AshrCst; 3024 Register Src; 3025 // FIXME: detect splat constant vectors. 3026 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3027 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 3028 return false; 3029 if (ShlCst != AshrCst) 3030 return false; 3031 if (!isLegalOrBeforeLegalizer( 3032 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 3033 return false; 3034 MatchInfo = std::make_tuple(Src, ShlCst); 3035 return true; 3036 } 3037 bool CombinerHelper::applyAshShlToSextInreg( 3038 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 3039 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 3040 Register Src; 3041 int64_t ShiftAmt; 3042 std::tie(Src, ShiftAmt) = MatchInfo; 3043 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 3044 Builder.setInstrAndDebugLoc(MI); 3045 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 3046 MI.eraseFromParent(); 3047 return true; 3048 } 3049 3050 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 3051 bool CombinerHelper::matchOverlappingAnd( 3052 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3053 assert(MI.getOpcode() == TargetOpcode::G_AND); 3054 3055 Register Dst = MI.getOperand(0).getReg(); 3056 LLT Ty = MRI.getType(Dst); 3057 3058 Register R; 3059 int64_t C1; 3060 int64_t C2; 3061 if (!mi_match( 3062 Dst, MRI, 3063 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 3064 return false; 3065 3066 MatchInfo = [=](MachineIRBuilder &B) { 3067 if (C1 & C2) { 3068 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 3069 return; 3070 } 3071 auto Zero = B.buildConstant(Ty, 0); 3072 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 3073 }; 3074 return true; 3075 } 3076 3077 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 3078 Register &Replacement) { 3079 // Given 3080 // 3081 // %y:_(sN) = G_SOMETHING 3082 // %x:_(sN) = G_SOMETHING 3083 // %res:_(sN) = G_AND %x, %y 3084 // 3085 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 3086 // 3087 // Patterns like this can appear as a result of legalization. E.g. 3088 // 3089 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 3090 // %one:_(s32) = G_CONSTANT i32 1 3091 // %and:_(s32) = G_AND %cmp, %one 3092 // 3093 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 3094 assert(MI.getOpcode() == TargetOpcode::G_AND); 3095 if (!KB) 3096 return false; 3097 3098 Register AndDst = MI.getOperand(0).getReg(); 3099 LLT DstTy = MRI.getType(AndDst); 3100 3101 // FIXME: This should be removed once GISelKnownBits supports vectors. 3102 if (DstTy.isVector()) 3103 return false; 3104 3105 Register LHS = MI.getOperand(1).getReg(); 3106 Register RHS = MI.getOperand(2).getReg(); 3107 KnownBits LHSBits = KB->getKnownBits(LHS); 3108 KnownBits RHSBits = KB->getKnownBits(RHS); 3109 3110 // Check that x & Mask == x. 3111 // x & 1 == x, always 3112 // x & 0 == x, only if x is also 0 3113 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 3114 // 3115 // Check if we can replace AndDst with the LHS of the G_AND 3116 if (canReplaceReg(AndDst, LHS, MRI) && 3117 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3118 Replacement = LHS; 3119 return true; 3120 } 3121 3122 // Check if we can replace AndDst with the RHS of the G_AND 3123 if (canReplaceReg(AndDst, RHS, MRI) && 3124 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3125 Replacement = RHS; 3126 return true; 3127 } 3128 3129 return false; 3130 } 3131 3132 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 3133 // Given 3134 // 3135 // %y:_(sN) = G_SOMETHING 3136 // %x:_(sN) = G_SOMETHING 3137 // %res:_(sN) = G_OR %x, %y 3138 // 3139 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 3140 assert(MI.getOpcode() == TargetOpcode::G_OR); 3141 if (!KB) 3142 return false; 3143 3144 Register OrDst = MI.getOperand(0).getReg(); 3145 LLT DstTy = MRI.getType(OrDst); 3146 3147 // FIXME: This should be removed once GISelKnownBits supports vectors. 3148 if (DstTy.isVector()) 3149 return false; 3150 3151 Register LHS = MI.getOperand(1).getReg(); 3152 Register RHS = MI.getOperand(2).getReg(); 3153 KnownBits LHSBits = KB->getKnownBits(LHS); 3154 KnownBits RHSBits = KB->getKnownBits(RHS); 3155 3156 // Check that x | Mask == x. 3157 // x | 0 == x, always 3158 // x | 1 == x, only if x is also 1 3159 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 3160 // 3161 // Check if we can replace OrDst with the LHS of the G_OR 3162 if (canReplaceReg(OrDst, LHS, MRI) && 3163 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3164 Replacement = LHS; 3165 return true; 3166 } 3167 3168 // Check if we can replace OrDst with the RHS of the G_OR 3169 if (canReplaceReg(OrDst, RHS, MRI) && 3170 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3171 Replacement = RHS; 3172 return true; 3173 } 3174 3175 return false; 3176 } 3177 3178 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 3179 // If the input is already sign extended, just drop the extension. 3180 Register Src = MI.getOperand(1).getReg(); 3181 unsigned ExtBits = MI.getOperand(2).getImm(); 3182 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 3183 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 3184 } 3185 3186 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 3187 int64_t Cst, bool IsVector, bool IsFP) { 3188 // For i1, Cst will always be -1 regardless of boolean contents. 3189 return (ScalarSizeBits == 1 && Cst == -1) || 3190 isConstTrueVal(TLI, Cst, IsVector, IsFP); 3191 } 3192 3193 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 3194 SmallVectorImpl<Register> &RegsToNegate) { 3195 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3196 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3197 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 3198 Register XorSrc; 3199 Register CstReg; 3200 // We match xor(src, true) here. 3201 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3202 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 3203 return false; 3204 3205 if (!MRI.hasOneNonDBGUse(XorSrc)) 3206 return false; 3207 3208 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 3209 // and ORs. The suffix of RegsToNegate starting from index I is used a work 3210 // list of tree nodes to visit. 3211 RegsToNegate.push_back(XorSrc); 3212 // Remember whether the comparisons are all integer or all floating point. 3213 bool IsInt = false; 3214 bool IsFP = false; 3215 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 3216 Register Reg = RegsToNegate[I]; 3217 if (!MRI.hasOneNonDBGUse(Reg)) 3218 return false; 3219 MachineInstr *Def = MRI.getVRegDef(Reg); 3220 switch (Def->getOpcode()) { 3221 default: 3222 // Don't match if the tree contains anything other than ANDs, ORs and 3223 // comparisons. 3224 return false; 3225 case TargetOpcode::G_ICMP: 3226 if (IsFP) 3227 return false; 3228 IsInt = true; 3229 // When we apply the combine we will invert the predicate. 3230 break; 3231 case TargetOpcode::G_FCMP: 3232 if (IsInt) 3233 return false; 3234 IsFP = true; 3235 // When we apply the combine we will invert the predicate. 3236 break; 3237 case TargetOpcode::G_AND: 3238 case TargetOpcode::G_OR: 3239 // Implement De Morgan's laws: 3240 // ~(x & y) -> ~x | ~y 3241 // ~(x | y) -> ~x & ~y 3242 // When we apply the combine we will change the opcode and recursively 3243 // negate the operands. 3244 RegsToNegate.push_back(Def->getOperand(1).getReg()); 3245 RegsToNegate.push_back(Def->getOperand(2).getReg()); 3246 break; 3247 } 3248 } 3249 3250 // Now we know whether the comparisons are integer or floating point, check 3251 // the constant in the xor. 3252 int64_t Cst; 3253 if (Ty.isVector()) { 3254 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 3255 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 3256 if (!MaybeCst) 3257 return false; 3258 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 3259 return false; 3260 } else { 3261 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 3262 return false; 3263 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 3264 return false; 3265 } 3266 3267 return true; 3268 } 3269 3270 bool CombinerHelper::applyNotCmp(MachineInstr &MI, 3271 SmallVectorImpl<Register> &RegsToNegate) { 3272 for (Register Reg : RegsToNegate) { 3273 MachineInstr *Def = MRI.getVRegDef(Reg); 3274 Observer.changingInstr(*Def); 3275 // For each comparison, invert the opcode. For each AND and OR, change the 3276 // opcode. 3277 switch (Def->getOpcode()) { 3278 default: 3279 llvm_unreachable("Unexpected opcode"); 3280 case TargetOpcode::G_ICMP: 3281 case TargetOpcode::G_FCMP: { 3282 MachineOperand &PredOp = Def->getOperand(1); 3283 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 3284 (CmpInst::Predicate)PredOp.getPredicate()); 3285 PredOp.setPredicate(NewP); 3286 break; 3287 } 3288 case TargetOpcode::G_AND: 3289 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3290 break; 3291 case TargetOpcode::G_OR: 3292 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3293 break; 3294 } 3295 Observer.changedInstr(*Def); 3296 } 3297 3298 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3299 MI.eraseFromParent(); 3300 return true; 3301 } 3302 3303 bool CombinerHelper::matchXorOfAndWithSameReg( 3304 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3305 // Match (xor (and x, y), y) (or any of its commuted cases) 3306 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3307 Register &X = MatchInfo.first; 3308 Register &Y = MatchInfo.second; 3309 Register AndReg = MI.getOperand(1).getReg(); 3310 Register SharedReg = MI.getOperand(2).getReg(); 3311 3312 // Find a G_AND on either side of the G_XOR. 3313 // Look for one of 3314 // 3315 // (xor (and x, y), SharedReg) 3316 // (xor SharedReg, (and x, y)) 3317 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3318 std::swap(AndReg, SharedReg); 3319 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3320 return false; 3321 } 3322 3323 // Only do this if we'll eliminate the G_AND. 3324 if (!MRI.hasOneNonDBGUse(AndReg)) 3325 return false; 3326 3327 // We can combine if SharedReg is the same as either the LHS or RHS of the 3328 // G_AND. 3329 if (Y != SharedReg) 3330 std::swap(X, Y); 3331 return Y == SharedReg; 3332 } 3333 3334 bool CombinerHelper::applyXorOfAndWithSameReg( 3335 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3336 // Fold (xor (and x, y), y) -> (and (not x), y) 3337 Builder.setInstrAndDebugLoc(MI); 3338 Register X, Y; 3339 std::tie(X, Y) = MatchInfo; 3340 auto Not = Builder.buildNot(MRI.getType(X), X); 3341 Observer.changingInstr(MI); 3342 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3343 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3344 MI.getOperand(2).setReg(Y); 3345 Observer.changedInstr(MI); 3346 return true; 3347 } 3348 3349 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3350 Register DstReg = MI.getOperand(0).getReg(); 3351 LLT Ty = MRI.getType(DstReg); 3352 const DataLayout &DL = Builder.getMF().getDataLayout(); 3353 3354 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3355 return false; 3356 3357 if (Ty.isPointer()) { 3358 auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI); 3359 return ConstVal && *ConstVal == 0; 3360 } 3361 3362 assert(Ty.isVector() && "Expecting a vector type"); 3363 const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg()); 3364 return isBuildVectorAllZeros(*VecMI, MRI); 3365 } 3366 3367 bool CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3368 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 3369 Builder.setInstrAndDebugLoc(MI); 3370 Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2)); 3371 MI.eraseFromParent(); 3372 return true; 3373 } 3374 3375 /// The second source operand is known to be a power of 2. 3376 bool CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3377 Register DstReg = MI.getOperand(0).getReg(); 3378 Register Src0 = MI.getOperand(1).getReg(); 3379 Register Pow2Src1 = MI.getOperand(2).getReg(); 3380 LLT Ty = MRI.getType(DstReg); 3381 Builder.setInstrAndDebugLoc(MI); 3382 3383 // Fold (urem x, pow2) -> (and x, pow2-1) 3384 auto NegOne = Builder.buildConstant(Ty, -1); 3385 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3386 Builder.buildAnd(DstReg, Src0, Add); 3387 MI.eraseFromParent(); 3388 return true; 3389 } 3390 3391 Optional<SmallVector<Register, 8>> 3392 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3393 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3394 // We want to detect if Root is part of a tree which represents a bunch 3395 // of loads being merged into a larger load. We'll try to recognize patterns 3396 // like, for example: 3397 // 3398 // Reg Reg 3399 // \ / 3400 // OR_1 Reg 3401 // \ / 3402 // OR_2 3403 // \ Reg 3404 // .. / 3405 // Root 3406 // 3407 // Reg Reg Reg Reg 3408 // \ / \ / 3409 // OR_1 OR_2 3410 // \ / 3411 // \ / 3412 // ... 3413 // Root 3414 // 3415 // Each "Reg" may have been produced by a load + some arithmetic. This 3416 // function will save each of them. 3417 SmallVector<Register, 8> RegsToVisit; 3418 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3419 3420 // In the "worst" case, we're dealing with a load for each byte. So, there 3421 // are at most #bytes - 1 ORs. 3422 const unsigned MaxIter = 3423 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3424 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3425 if (Ors.empty()) 3426 break; 3427 const MachineInstr *Curr = Ors.pop_back_val(); 3428 Register OrLHS = Curr->getOperand(1).getReg(); 3429 Register OrRHS = Curr->getOperand(2).getReg(); 3430 3431 // In the combine, we want to elimate the entire tree. 3432 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3433 return None; 3434 3435 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3436 // something that may be a load + arithmetic. 3437 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3438 Ors.push_back(Or); 3439 else 3440 RegsToVisit.push_back(OrLHS); 3441 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3442 Ors.push_back(Or); 3443 else 3444 RegsToVisit.push_back(OrRHS); 3445 } 3446 3447 // We're going to try and merge each register into a wider power-of-2 type, 3448 // so we ought to have an even number of registers. 3449 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3450 return None; 3451 return RegsToVisit; 3452 } 3453 3454 /// Helper function for findLoadOffsetsForLoadOrCombine. 3455 /// 3456 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3457 /// and then moving that value into a specific byte offset. 3458 /// 3459 /// e.g. x[i] << 24 3460 /// 3461 /// \returns The load instruction and the byte offset it is moved into. 3462 static Optional<std::pair<MachineInstr *, int64_t>> 3463 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3464 const MachineRegisterInfo &MRI) { 3465 assert(MRI.hasOneNonDBGUse(Reg) && 3466 "Expected Reg to only have one non-debug use?"); 3467 Register MaybeLoad; 3468 int64_t Shift; 3469 if (!mi_match(Reg, MRI, 3470 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3471 Shift = 0; 3472 MaybeLoad = Reg; 3473 } 3474 3475 if (Shift % MemSizeInBits != 0) 3476 return None; 3477 3478 // TODO: Handle other types of loads. 3479 auto *Load = getOpcodeDef(TargetOpcode::G_ZEXTLOAD, MaybeLoad, MRI); 3480 if (!Load) 3481 return None; 3482 3483 const auto &MMO = **Load->memoperands_begin(); 3484 if (!MMO.isUnordered() || MMO.getSizeInBits() != MemSizeInBits) 3485 return None; 3486 3487 return std::make_pair(Load, Shift / MemSizeInBits); 3488 } 3489 3490 Optional<std::pair<MachineInstr *, int64_t>> 3491 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3492 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3493 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3494 3495 // Each load found for the pattern. There should be one for each RegsToVisit. 3496 SmallSetVector<const MachineInstr *, 8> Loads; 3497 3498 // The lowest index used in any load. (The lowest "i" for each x[i].) 3499 int64_t LowestIdx = INT64_MAX; 3500 3501 // The load which uses the lowest index. 3502 MachineInstr *LowestIdxLoad = nullptr; 3503 3504 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3505 SmallSet<int64_t, 8> SeenIdx; 3506 3507 // Ensure each load is in the same MBB. 3508 // TODO: Support multiple MachineBasicBlocks. 3509 MachineBasicBlock *MBB = nullptr; 3510 const MachineMemOperand *MMO = nullptr; 3511 3512 // Earliest instruction-order load in the pattern. 3513 MachineInstr *EarliestLoad = nullptr; 3514 3515 // Latest instruction-order load in the pattern. 3516 MachineInstr *LatestLoad = nullptr; 3517 3518 // Base pointer which every load should share. 3519 Register BasePtr; 3520 3521 // We want to find a load for each register. Each load should have some 3522 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3523 // track of the load which uses the lowest index. Later, we will check if we 3524 // can use its pointer in the final, combined load. 3525 for (auto Reg : RegsToVisit) { 3526 // Find the load, and find the position that it will end up in (e.g. a 3527 // shifted) value. 3528 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3529 if (!LoadAndPos) 3530 return None; 3531 MachineInstr *Load; 3532 int64_t DstPos; 3533 std::tie(Load, DstPos) = *LoadAndPos; 3534 3535 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3536 // it is difficult to check for stores/calls/etc between loads. 3537 MachineBasicBlock *LoadMBB = Load->getParent(); 3538 if (!MBB) 3539 MBB = LoadMBB; 3540 if (LoadMBB != MBB) 3541 return None; 3542 3543 // Make sure that the MachineMemOperands of every seen load are compatible. 3544 const MachineMemOperand *LoadMMO = *Load->memoperands_begin(); 3545 if (!MMO) 3546 MMO = LoadMMO; 3547 if (MMO->getAddrSpace() != LoadMMO->getAddrSpace()) 3548 return None; 3549 3550 // Find out what the base pointer and index for the load is. 3551 Register LoadPtr; 3552 int64_t Idx; 3553 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3554 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3555 LoadPtr = Load->getOperand(1).getReg(); 3556 Idx = 0; 3557 } 3558 3559 // Don't combine things like a[i], a[i] -> a bigger load. 3560 if (!SeenIdx.insert(Idx).second) 3561 return None; 3562 3563 // Every load must share the same base pointer; don't combine things like: 3564 // 3565 // a[i], b[i + 1] -> a bigger load. 3566 if (!BasePtr.isValid()) 3567 BasePtr = LoadPtr; 3568 if (BasePtr != LoadPtr) 3569 return None; 3570 3571 if (Idx < LowestIdx) { 3572 LowestIdx = Idx; 3573 LowestIdxLoad = Load; 3574 } 3575 3576 // Keep track of the byte offset that this load ends up at. If we have seen 3577 // the byte offset, then stop here. We do not want to combine: 3578 // 3579 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3580 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3581 return None; 3582 Loads.insert(Load); 3583 3584 // Keep track of the position of the earliest/latest loads in the pattern. 3585 // We will check that there are no load fold barriers between them later 3586 // on. 3587 // 3588 // FIXME: Is there a better way to check for load fold barriers? 3589 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3590 EarliestLoad = Load; 3591 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3592 LatestLoad = Load; 3593 } 3594 3595 // We found a load for each register. Let's check if each load satisfies the 3596 // pattern. 3597 assert(Loads.size() == RegsToVisit.size() && 3598 "Expected to find a load for each register?"); 3599 assert(EarliestLoad != LatestLoad && EarliestLoad && 3600 LatestLoad && "Expected at least two loads?"); 3601 3602 // Check if there are any stores, calls, etc. between any of the loads. If 3603 // there are, then we can't safely perform the combine. 3604 // 3605 // MaxIter is chosen based off the (worst case) number of iterations it 3606 // typically takes to succeed in the LLVM test suite plus some padding. 3607 // 3608 // FIXME: Is there a better way to check for load fold barriers? 3609 const unsigned MaxIter = 20; 3610 unsigned Iter = 0; 3611 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3612 LatestLoad->getIterator())) { 3613 if (Loads.count(&MI)) 3614 continue; 3615 if (MI.isLoadFoldBarrier()) 3616 return None; 3617 if (Iter++ == MaxIter) 3618 return None; 3619 } 3620 3621 return std::make_pair(LowestIdxLoad, LowestIdx); 3622 } 3623 3624 bool CombinerHelper::matchLoadOrCombine( 3625 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3626 assert(MI.getOpcode() == TargetOpcode::G_OR); 3627 MachineFunction &MF = *MI.getMF(); 3628 // Assuming a little-endian target, transform: 3629 // s8 *a = ... 3630 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3631 // => 3632 // s32 val = *((i32)a) 3633 // 3634 // s8 *a = ... 3635 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3636 // => 3637 // s32 val = BSWAP(*((s32)a)) 3638 Register Dst = MI.getOperand(0).getReg(); 3639 LLT Ty = MRI.getType(Dst); 3640 if (Ty.isVector()) 3641 return false; 3642 3643 // We need to combine at least two loads into this type. Since the smallest 3644 // possible load is into a byte, we need at least a 16-bit wide type. 3645 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3646 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3647 return false; 3648 3649 // Match a collection of non-OR instructions in the pattern. 3650 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3651 if (!RegsToVisit) 3652 return false; 3653 3654 // We have a collection of non-OR instructions. Figure out how wide each of 3655 // the small loads should be based off of the number of potential loads we 3656 // found. 3657 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3658 if (NarrowMemSizeInBits % 8 != 0) 3659 return false; 3660 3661 // Check if each register feeding into each OR is a load from the same 3662 // base pointer + some arithmetic. 3663 // 3664 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3665 // 3666 // Also verify that each of these ends up putting a[i] into the same memory 3667 // offset as a load into a wide type would. 3668 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3669 MachineInstr *LowestIdxLoad; 3670 int64_t LowestIdx; 3671 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3672 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3673 if (!MaybeLoadInfo) 3674 return false; 3675 std::tie(LowestIdxLoad, LowestIdx) = *MaybeLoadInfo; 3676 3677 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3678 // we found before, check if this corresponds to a big or little endian byte 3679 // pattern. If it does, then we can represent it using a load + possibly a 3680 // BSWAP. 3681 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3682 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3683 if (!IsBigEndian.hasValue()) 3684 return false; 3685 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3686 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3687 return false; 3688 3689 // Make sure that the load from the lowest index produces offset 0 in the 3690 // final value. 3691 // 3692 // This ensures that we won't combine something like this: 3693 // 3694 // load x[i] -> byte 2 3695 // load x[i+1] -> byte 0 ---> wide_load x[i] 3696 // load x[i+2] -> byte 1 3697 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3698 const unsigned ZeroByteOffset = 3699 *IsBigEndian 3700 ? bigEndianByteAt(NumLoadsInTy, 0) 3701 : littleEndianByteAt(NumLoadsInTy, 0); 3702 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3703 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3704 ZeroOffsetIdx->second != LowestIdx) 3705 return false; 3706 3707 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3708 // may not use index 0. 3709 Register Ptr = LowestIdxLoad->getOperand(1).getReg(); 3710 const MachineMemOperand &MMO = **LowestIdxLoad->memoperands_begin(); 3711 LegalityQuery::MemDesc MMDesc; 3712 MMDesc.MemoryTy = Ty; 3713 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 3714 MMDesc.Ordering = MMO.getSuccessOrdering(); 3715 if (!isLegalOrBeforeLegalizer( 3716 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3717 return false; 3718 auto PtrInfo = MMO.getPointerInfo(); 3719 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3720 3721 // Load must be allowed and fast on the target. 3722 LLVMContext &C = MF.getFunction().getContext(); 3723 auto &DL = MF.getDataLayout(); 3724 bool Fast = false; 3725 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3726 !Fast) 3727 return false; 3728 3729 MatchInfo = [=](MachineIRBuilder &MIB) { 3730 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3731 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3732 if (NeedsBSwap) 3733 MIB.buildBSwap(Dst, LoadDst); 3734 }; 3735 return true; 3736 } 3737 3738 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3739 MachineInstr *&ExtMI) { 3740 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3741 3742 Register DstReg = MI.getOperand(0).getReg(); 3743 3744 // TODO: Extending a vector may be expensive, don't do this until heuristics 3745 // are better. 3746 if (MRI.getType(DstReg).isVector()) 3747 return false; 3748 3749 // Try to match a phi, whose only use is an extend. 3750 if (!MRI.hasOneNonDBGUse(DstReg)) 3751 return false; 3752 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3753 switch (ExtMI->getOpcode()) { 3754 case TargetOpcode::G_ANYEXT: 3755 return true; // G_ANYEXT is usually free. 3756 case TargetOpcode::G_ZEXT: 3757 case TargetOpcode::G_SEXT: 3758 break; 3759 default: 3760 return false; 3761 } 3762 3763 // If the target is likely to fold this extend away, don't propagate. 3764 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3765 return false; 3766 3767 // We don't want to propagate the extends unless there's a good chance that 3768 // they'll be optimized in some way. 3769 // Collect the unique incoming values. 3770 SmallPtrSet<MachineInstr *, 4> InSrcs; 3771 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3772 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3773 switch (DefMI->getOpcode()) { 3774 case TargetOpcode::G_LOAD: 3775 case TargetOpcode::G_TRUNC: 3776 case TargetOpcode::G_SEXT: 3777 case TargetOpcode::G_ZEXT: 3778 case TargetOpcode::G_ANYEXT: 3779 case TargetOpcode::G_CONSTANT: 3780 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3781 // Don't try to propagate if there are too many places to create new 3782 // extends, chances are it'll increase code size. 3783 if (InSrcs.size() > 2) 3784 return false; 3785 break; 3786 default: 3787 return false; 3788 } 3789 } 3790 return true; 3791 } 3792 3793 bool CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3794 MachineInstr *&ExtMI) { 3795 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3796 Register DstReg = ExtMI->getOperand(0).getReg(); 3797 LLT ExtTy = MRI.getType(DstReg); 3798 3799 // Propagate the extension into the block of each incoming reg's block. 3800 // Use a SetVector here because PHIs can have duplicate edges, and we want 3801 // deterministic iteration order. 3802 SmallSetVector<MachineInstr *, 8> SrcMIs; 3803 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3804 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3805 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3806 if (!SrcMIs.insert(SrcMI)) 3807 continue; 3808 3809 // Build an extend after each src inst. 3810 auto *MBB = SrcMI->getParent(); 3811 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3812 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3813 InsertPt = MBB->getFirstNonPHI(); 3814 3815 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3816 Builder.setDebugLoc(MI.getDebugLoc()); 3817 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3818 SrcMI->getOperand(0).getReg()); 3819 OldToNewSrcMap[SrcMI] = NewExt; 3820 } 3821 3822 // Create a new phi with the extended inputs. 3823 Builder.setInstrAndDebugLoc(MI); 3824 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3825 NewPhi.addDef(DstReg); 3826 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3827 auto &MO = MI.getOperand(SrcIdx); 3828 if (!MO.isReg()) { 3829 NewPhi.addMBB(MO.getMBB()); 3830 continue; 3831 } 3832 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3833 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3834 } 3835 Builder.insertInstr(NewPhi); 3836 ExtMI->eraseFromParent(); 3837 return true; 3838 } 3839 3840 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3841 Register &Reg) { 3842 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3843 // If we have a constant index, look for a G_BUILD_VECTOR source 3844 // and find the source register that the index maps to. 3845 Register SrcVec = MI.getOperand(1).getReg(); 3846 LLT SrcTy = MRI.getType(SrcVec); 3847 if (!isLegalOrBeforeLegalizer( 3848 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3849 return false; 3850 3851 auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3852 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3853 return false; 3854 3855 unsigned VecIdx = Cst->Value.getZExtValue(); 3856 MachineInstr *BuildVecMI = 3857 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3858 if (!BuildVecMI) { 3859 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3860 if (!BuildVecMI) 3861 return false; 3862 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3863 if (!isLegalOrBeforeLegalizer( 3864 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3865 return false; 3866 } 3867 3868 EVT Ty(getMVTForLLT(SrcTy)); 3869 if (!MRI.hasOneNonDBGUse(SrcVec) && 3870 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3871 return false; 3872 3873 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3874 return true; 3875 } 3876 3877 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3878 Register &Reg) { 3879 // Check the type of the register, since it may have come from a 3880 // G_BUILD_VECTOR_TRUNC. 3881 LLT ScalarTy = MRI.getType(Reg); 3882 Register DstReg = MI.getOperand(0).getReg(); 3883 LLT DstTy = MRI.getType(DstReg); 3884 3885 Builder.setInstrAndDebugLoc(MI); 3886 if (ScalarTy != DstTy) { 3887 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3888 Builder.buildTrunc(DstReg, Reg); 3889 MI.eraseFromParent(); 3890 return; 3891 } 3892 replaceSingleDefInstWithReg(MI, Reg); 3893 } 3894 3895 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3896 MachineInstr &MI, 3897 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3898 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3899 // This combine tries to find build_vector's which have every source element 3900 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3901 // the masked load scalarization is run late in the pipeline. There's already 3902 // a combine for a similar pattern starting from the extract, but that 3903 // doesn't attempt to do it if there are multiple uses of the build_vector, 3904 // which in this case is true. Starting the combine from the build_vector 3905 // feels more natural than trying to find sibling nodes of extracts. 3906 // E.g. 3907 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3908 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3909 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3910 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3911 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3912 // ==> 3913 // replace ext{1,2,3,4} with %s{1,2,3,4} 3914 3915 Register DstReg = MI.getOperand(0).getReg(); 3916 LLT DstTy = MRI.getType(DstReg); 3917 unsigned NumElts = DstTy.getNumElements(); 3918 3919 SmallBitVector ExtractedElts(NumElts); 3920 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), 3921 MRI.use_instr_nodbg_end())) { 3922 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3923 return false; 3924 auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI); 3925 if (!Cst) 3926 return false; 3927 unsigned Idx = Cst.getValue().getZExtValue(); 3928 if (Idx >= NumElts) 3929 return false; // Out of range. 3930 ExtractedElts.set(Idx); 3931 SrcDstPairs.emplace_back( 3932 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3933 } 3934 // Match if every element was extracted. 3935 return ExtractedElts.all(); 3936 } 3937 3938 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3939 MachineInstr &MI, 3940 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3941 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3942 for (auto &Pair : SrcDstPairs) { 3943 auto *ExtMI = Pair.second; 3944 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3945 ExtMI->eraseFromParent(); 3946 } 3947 MI.eraseFromParent(); 3948 } 3949 3950 bool CombinerHelper::applyBuildFn( 3951 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3952 Builder.setInstrAndDebugLoc(MI); 3953 MatchInfo(Builder); 3954 MI.eraseFromParent(); 3955 return true; 3956 } 3957 3958 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3959 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3960 unsigned Opc = MI.getOpcode(); 3961 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3962 Register X = MI.getOperand(1).getReg(); 3963 Register Y = MI.getOperand(2).getReg(); 3964 if (X != Y) 3965 return false; 3966 unsigned RotateOpc = 3967 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3968 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3969 } 3970 3971 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3972 unsigned Opc = MI.getOpcode(); 3973 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3974 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3975 Observer.changingInstr(MI); 3976 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3977 : TargetOpcode::G_ROTR)); 3978 MI.RemoveOperand(2); 3979 Observer.changedInstr(MI); 3980 } 3981 3982 // Fold (rot x, c) -> (rot x, c % BitSize) 3983 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3984 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3985 MI.getOpcode() == TargetOpcode::G_ROTR); 3986 unsigned Bitsize = 3987 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3988 Register AmtReg = MI.getOperand(2).getReg(); 3989 bool OutOfRange = false; 3990 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 3991 if (auto *CI = dyn_cast<ConstantInt>(C)) 3992 OutOfRange |= CI->getValue().uge(Bitsize); 3993 return true; 3994 }; 3995 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 3996 } 3997 3998 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 3999 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4000 MI.getOpcode() == TargetOpcode::G_ROTR); 4001 unsigned Bitsize = 4002 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4003 Builder.setInstrAndDebugLoc(MI); 4004 Register Amt = MI.getOperand(2).getReg(); 4005 LLT AmtTy = MRI.getType(Amt); 4006 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 4007 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 4008 Observer.changingInstr(MI); 4009 MI.getOperand(2).setReg(Amt); 4010 Observer.changedInstr(MI); 4011 } 4012 4013 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 4014 int64_t &MatchInfo) { 4015 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4016 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4017 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 4018 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 4019 Optional<bool> KnownVal; 4020 switch (Pred) { 4021 default: 4022 llvm_unreachable("Unexpected G_ICMP predicate?"); 4023 case CmpInst::ICMP_EQ: 4024 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 4025 break; 4026 case CmpInst::ICMP_NE: 4027 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 4028 break; 4029 case CmpInst::ICMP_SGE: 4030 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 4031 break; 4032 case CmpInst::ICMP_SGT: 4033 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 4034 break; 4035 case CmpInst::ICMP_SLE: 4036 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 4037 break; 4038 case CmpInst::ICMP_SLT: 4039 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 4040 break; 4041 case CmpInst::ICMP_UGE: 4042 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 4043 break; 4044 case CmpInst::ICMP_UGT: 4045 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 4046 break; 4047 case CmpInst::ICMP_ULE: 4048 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 4049 break; 4050 case CmpInst::ICMP_ULT: 4051 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 4052 break; 4053 } 4054 if (!KnownVal) 4055 return false; 4056 MatchInfo = 4057 *KnownVal 4058 ? getICmpTrueVal(getTargetLowering(), 4059 /*IsVector = */ 4060 MRI.getType(MI.getOperand(0).getReg()).isVector(), 4061 /* IsFP = */ false) 4062 : 0; 4063 return true; 4064 } 4065 4066 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4067 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4068 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4069 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4070 Register Dst = MI.getOperand(0).getReg(); 4071 Register Src = MI.getOperand(1).getReg(); 4072 LLT Ty = MRI.getType(Src); 4073 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4074 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4075 return false; 4076 int64_t Width = MI.getOperand(2).getImm(); 4077 Register ShiftSrc; 4078 int64_t ShiftImm; 4079 if (!mi_match( 4080 Src, MRI, 4081 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4082 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4083 return false; 4084 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4085 return false; 4086 4087 MatchInfo = [=](MachineIRBuilder &B) { 4088 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4089 auto Cst2 = B.buildConstant(ExtractTy, Width); 4090 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4091 }; 4092 return true; 4093 } 4094 4095 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4096 bool CombinerHelper::matchBitfieldExtractFromAnd( 4097 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4098 assert(MI.getOpcode() == TargetOpcode::G_AND); 4099 Register Dst = MI.getOperand(0).getReg(); 4100 LLT Ty = MRI.getType(Dst); 4101 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 4102 TargetOpcode::G_UBFX, Ty, Ty)) 4103 return false; 4104 4105 int64_t AndImm, LSBImm; 4106 Register ShiftSrc; 4107 const unsigned Size = Ty.getScalarSizeInBits(); 4108 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4109 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4110 m_ICst(AndImm)))) 4111 return false; 4112 4113 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4114 auto MaybeMask = static_cast<uint64_t>(AndImm); 4115 if (MaybeMask & (MaybeMask + 1)) 4116 return false; 4117 4118 // LSB must fit within the register. 4119 if (static_cast<uint64_t>(LSBImm) >= Size) 4120 return false; 4121 4122 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4123 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4124 MatchInfo = [=](MachineIRBuilder &B) { 4125 auto WidthCst = B.buildConstant(ExtractTy, Width); 4126 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4127 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4128 }; 4129 return true; 4130 } 4131 4132 bool CombinerHelper::tryCombine(MachineInstr &MI) { 4133 if (tryCombineCopy(MI)) 4134 return true; 4135 if (tryCombineExtendingLoads(MI)) 4136 return true; 4137 if (tryCombineIndexedLoadStore(MI)) 4138 return true; 4139 return false; 4140 } 4141