1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 12 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 13 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 14 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 16 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/LowLevelType.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineMemOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/RegisterBankInfo.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetLowering.h" 28 #include "llvm/CodeGen/TargetOpcodes.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/DivisionByConstantInfo.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <tuple> 35 36 #define DEBUG_TYPE "gi-combiner" 37 38 using namespace llvm; 39 using namespace MIPatternMatch; 40 41 // Option to allow testing of the combiner while no targets know about indexed 42 // addressing. 43 static cl::opt<bool> 44 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 45 cl::desc("Force all indexed operations to be " 46 "legal for the GlobalISel combiner")); 47 48 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 49 MachineIRBuilder &B, GISelKnownBits *KB, 50 MachineDominatorTree *MDT, 51 const LegalizerInfo *LI) 52 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 53 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 54 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 55 (void)this->KB; 56 } 57 58 const TargetLowering &CombinerHelper::getTargetLowering() const { 59 return *Builder.getMF().getSubtarget().getTargetLowering(); 60 } 61 62 /// \returns The little endian in-memory byte position of byte \p I in a 63 /// \p ByteWidth bytes wide type. 64 /// 65 /// E.g. Given a 4-byte type x, x[0] -> byte 0 66 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 67 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 68 return I; 69 } 70 71 /// Determines the LogBase2 value for a non-null input value using the 72 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 73 static Register buildLogBase2(Register V, MachineIRBuilder &MIB) { 74 auto &MRI = *MIB.getMRI(); 75 LLT Ty = MRI.getType(V); 76 auto Ctlz = MIB.buildCTLZ(Ty, V); 77 auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1); 78 return MIB.buildSub(Ty, Base, Ctlz).getReg(0); 79 } 80 81 /// \returns The big endian in-memory byte position of byte \p I in a 82 /// \p ByteWidth bytes wide type. 83 /// 84 /// E.g. Given a 4-byte type x, x[0] -> byte 3 85 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 86 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 87 return ByteWidth - I - 1; 88 } 89 90 /// Given a map from byte offsets in memory to indices in a load/store, 91 /// determine if that map corresponds to a little or big endian byte pattern. 92 /// 93 /// \param MemOffset2Idx maps memory offsets to address offsets. 94 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 95 /// 96 /// \returns true if the map corresponds to a big endian byte pattern, false 97 /// if it corresponds to a little endian byte pattern, and None otherwise. 98 /// 99 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 100 /// are as follows: 101 /// 102 /// AddrOffset Little endian Big endian 103 /// 0 0 3 104 /// 1 1 2 105 /// 2 2 1 106 /// 3 3 0 107 static Optional<bool> 108 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 109 int64_t LowestIdx) { 110 // Need at least two byte positions to decide on endianness. 111 unsigned Width = MemOffset2Idx.size(); 112 if (Width < 2) 113 return None; 114 bool BigEndian = true, LittleEndian = true; 115 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 116 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 117 if (MemOffsetAndIdx == MemOffset2Idx.end()) 118 return None; 119 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 120 assert(Idx >= 0 && "Expected non-negative byte offset?"); 121 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 122 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 123 if (!BigEndian && !LittleEndian) 124 return None; 125 } 126 127 assert((BigEndian != LittleEndian) && 128 "Pattern cannot be both big and little endian!"); 129 return BigEndian; 130 } 131 132 bool CombinerHelper::isPreLegalize() const { return !LI; } 133 134 bool CombinerHelper::isLegal(const LegalityQuery &Query) const { 135 assert(LI && "Must have LegalizerInfo to query isLegal!"); 136 return LI->getAction(Query).Action == LegalizeActions::Legal; 137 } 138 139 bool CombinerHelper::isLegalOrBeforeLegalizer( 140 const LegalityQuery &Query) const { 141 return isPreLegalize() || isLegal(Query); 142 } 143 144 bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const { 145 if (!Ty.isVector()) 146 return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}}); 147 // Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs. 148 if (isPreLegalize()) 149 return true; 150 LLT EltTy = Ty.getElementType(); 151 return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) && 152 isLegal({TargetOpcode::G_CONSTANT, {EltTy}}); 153 } 154 155 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 156 Register ToReg) const { 157 Observer.changingAllUsesOfReg(MRI, FromReg); 158 159 if (MRI.constrainRegAttrs(ToReg, FromReg)) 160 MRI.replaceRegWith(FromReg, ToReg); 161 else 162 Builder.buildCopy(ToReg, FromReg); 163 164 Observer.finishedChangingAllUsesOfReg(); 165 } 166 167 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 168 MachineOperand &FromRegOp, 169 Register ToReg) const { 170 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 171 Observer.changingInstr(*FromRegOp.getParent()); 172 173 FromRegOp.setReg(ToReg); 174 175 Observer.changedInstr(*FromRegOp.getParent()); 176 } 177 178 void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI, 179 unsigned ToOpcode) const { 180 Observer.changingInstr(FromMI); 181 182 FromMI.setDesc(Builder.getTII().get(ToOpcode)); 183 184 Observer.changedInstr(FromMI); 185 } 186 187 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 188 return RBI->getRegBank(Reg, MRI, *TRI); 189 } 190 191 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 192 if (RegBank) 193 MRI.setRegBank(Reg, *RegBank); 194 } 195 196 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 197 if (matchCombineCopy(MI)) { 198 applyCombineCopy(MI); 199 return true; 200 } 201 return false; 202 } 203 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 204 if (MI.getOpcode() != TargetOpcode::COPY) 205 return false; 206 Register DstReg = MI.getOperand(0).getReg(); 207 Register SrcReg = MI.getOperand(1).getReg(); 208 return canReplaceReg(DstReg, SrcReg, MRI); 209 } 210 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 211 Register DstReg = MI.getOperand(0).getReg(); 212 Register SrcReg = MI.getOperand(1).getReg(); 213 MI.eraseFromParent(); 214 replaceRegWith(MRI, DstReg, SrcReg); 215 } 216 217 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 218 bool IsUndef = false; 219 SmallVector<Register, 4> Ops; 220 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 221 applyCombineConcatVectors(MI, IsUndef, Ops); 222 return true; 223 } 224 return false; 225 } 226 227 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 228 SmallVectorImpl<Register> &Ops) { 229 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 230 "Invalid instruction"); 231 IsUndef = true; 232 MachineInstr *Undef = nullptr; 233 234 // Walk over all the operands of concat vectors and check if they are 235 // build_vector themselves or undef. 236 // Then collect their operands in Ops. 237 for (const MachineOperand &MO : MI.uses()) { 238 Register Reg = MO.getReg(); 239 MachineInstr *Def = MRI.getVRegDef(Reg); 240 assert(Def && "Operand not defined"); 241 switch (Def->getOpcode()) { 242 case TargetOpcode::G_BUILD_VECTOR: 243 IsUndef = false; 244 // Remember the operands of the build_vector to fold 245 // them into the yet-to-build flattened concat vectors. 246 for (const MachineOperand &BuildVecMO : Def->uses()) 247 Ops.push_back(BuildVecMO.getReg()); 248 break; 249 case TargetOpcode::G_IMPLICIT_DEF: { 250 LLT OpType = MRI.getType(Reg); 251 // Keep one undef value for all the undef operands. 252 if (!Undef) { 253 Builder.setInsertPt(*MI.getParent(), MI); 254 Undef = Builder.buildUndef(OpType.getScalarType()); 255 } 256 assert(MRI.getType(Undef->getOperand(0).getReg()) == 257 OpType.getScalarType() && 258 "All undefs should have the same type"); 259 // Break the undef vector in as many scalar elements as needed 260 // for the flattening. 261 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 262 EltIdx != EltEnd; ++EltIdx) 263 Ops.push_back(Undef->getOperand(0).getReg()); 264 break; 265 } 266 default: 267 return false; 268 } 269 } 270 return true; 271 } 272 void CombinerHelper::applyCombineConcatVectors( 273 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 274 // We determined that the concat_vectors can be flatten. 275 // Generate the flattened build_vector. 276 Register DstReg = MI.getOperand(0).getReg(); 277 Builder.setInsertPt(*MI.getParent(), MI); 278 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 279 280 // Note: IsUndef is sort of redundant. We could have determine it by 281 // checking that at all Ops are undef. Alternatively, we could have 282 // generate a build_vector of undefs and rely on another combine to 283 // clean that up. For now, given we already gather this information 284 // in tryCombineConcatVectors, just save compile time and issue the 285 // right thing. 286 if (IsUndef) 287 Builder.buildUndef(NewDstReg); 288 else 289 Builder.buildBuildVector(NewDstReg, Ops); 290 MI.eraseFromParent(); 291 replaceRegWith(MRI, DstReg, NewDstReg); 292 } 293 294 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 295 SmallVector<Register, 4> Ops; 296 if (matchCombineShuffleVector(MI, Ops)) { 297 applyCombineShuffleVector(MI, Ops); 298 return true; 299 } 300 return false; 301 } 302 303 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 304 SmallVectorImpl<Register> &Ops) { 305 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 306 "Invalid instruction kind"); 307 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 308 Register Src1 = MI.getOperand(1).getReg(); 309 LLT SrcType = MRI.getType(Src1); 310 // As bizarre as it may look, shuffle vector can actually produce 311 // scalar! This is because at the IR level a <1 x ty> shuffle 312 // vector is perfectly valid. 313 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 314 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 315 316 // If the resulting vector is smaller than the size of the source 317 // vectors being concatenated, we won't be able to replace the 318 // shuffle vector into a concat_vectors. 319 // 320 // Note: We may still be able to produce a concat_vectors fed by 321 // extract_vector_elt and so on. It is less clear that would 322 // be better though, so don't bother for now. 323 // 324 // If the destination is a scalar, the size of the sources doesn't 325 // matter. we will lower the shuffle to a plain copy. This will 326 // work only if the source and destination have the same size. But 327 // that's covered by the next condition. 328 // 329 // TODO: If the size between the source and destination don't match 330 // we could still emit an extract vector element in that case. 331 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 332 return false; 333 334 // Check that the shuffle mask can be broken evenly between the 335 // different sources. 336 if (DstNumElts % SrcNumElts != 0) 337 return false; 338 339 // Mask length is a multiple of the source vector length. 340 // Check if the shuffle is some kind of concatenation of the input 341 // vectors. 342 unsigned NumConcat = DstNumElts / SrcNumElts; 343 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 344 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 345 for (unsigned i = 0; i != DstNumElts; ++i) { 346 int Idx = Mask[i]; 347 // Undef value. 348 if (Idx < 0) 349 continue; 350 // Ensure the indices in each SrcType sized piece are sequential and that 351 // the same source is used for the whole piece. 352 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 353 (ConcatSrcs[i / SrcNumElts] >= 0 && 354 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 355 return false; 356 // Remember which source this index came from. 357 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 358 } 359 360 // The shuffle is concatenating multiple vectors together. 361 // Collect the different operands for that. 362 Register UndefReg; 363 Register Src2 = MI.getOperand(2).getReg(); 364 for (auto Src : ConcatSrcs) { 365 if (Src < 0) { 366 if (!UndefReg) { 367 Builder.setInsertPt(*MI.getParent(), MI); 368 UndefReg = Builder.buildUndef(SrcType).getReg(0); 369 } 370 Ops.push_back(UndefReg); 371 } else if (Src == 0) 372 Ops.push_back(Src1); 373 else 374 Ops.push_back(Src2); 375 } 376 return true; 377 } 378 379 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 380 const ArrayRef<Register> Ops) { 381 Register DstReg = MI.getOperand(0).getReg(); 382 Builder.setInsertPt(*MI.getParent(), MI); 383 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 384 385 if (Ops.size() == 1) 386 Builder.buildCopy(NewDstReg, Ops[0]); 387 else 388 Builder.buildMerge(NewDstReg, Ops); 389 390 MI.eraseFromParent(); 391 replaceRegWith(MRI, DstReg, NewDstReg); 392 } 393 394 namespace { 395 396 /// Select a preference between two uses. CurrentUse is the current preference 397 /// while *ForCandidate is attributes of the candidate under consideration. 398 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 399 const LLT TyForCandidate, 400 unsigned OpcodeForCandidate, 401 MachineInstr *MIForCandidate) { 402 if (!CurrentUse.Ty.isValid()) { 403 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 404 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 405 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 406 return CurrentUse; 407 } 408 409 // We permit the extend to hoist through basic blocks but this is only 410 // sensible if the target has extending loads. If you end up lowering back 411 // into a load and extend during the legalizer then the end result is 412 // hoisting the extend up to the load. 413 414 // Prefer defined extensions to undefined extensions as these are more 415 // likely to reduce the number of instructions. 416 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 417 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 418 return CurrentUse; 419 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 420 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 421 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 422 423 // Prefer sign extensions to zero extensions as sign-extensions tend to be 424 // more expensive. 425 if (CurrentUse.Ty == TyForCandidate) { 426 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 427 OpcodeForCandidate == TargetOpcode::G_ZEXT) 428 return CurrentUse; 429 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 430 OpcodeForCandidate == TargetOpcode::G_SEXT) 431 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 432 } 433 434 // This is potentially target specific. We've chosen the largest type 435 // because G_TRUNC is usually free. One potential catch with this is that 436 // some targets have a reduced number of larger registers than smaller 437 // registers and this choice potentially increases the live-range for the 438 // larger value. 439 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 440 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 441 } 442 return CurrentUse; 443 } 444 445 /// Find a suitable place to insert some instructions and insert them. This 446 /// function accounts for special cases like inserting before a PHI node. 447 /// The current strategy for inserting before PHI's is to duplicate the 448 /// instructions for each predecessor. However, while that's ok for G_TRUNC 449 /// on most targets since it generally requires no code, other targets/cases may 450 /// want to try harder to find a dominating block. 451 static void InsertInsnsWithoutSideEffectsBeforeUse( 452 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 453 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 454 MachineOperand &UseMO)> 455 Inserter) { 456 MachineInstr &UseMI = *UseMO.getParent(); 457 458 MachineBasicBlock *InsertBB = UseMI.getParent(); 459 460 // If the use is a PHI then we want the predecessor block instead. 461 if (UseMI.isPHI()) { 462 MachineOperand *PredBB = std::next(&UseMO); 463 InsertBB = PredBB->getMBB(); 464 } 465 466 // If the block is the same block as the def then we want to insert just after 467 // the def instead of at the start of the block. 468 if (InsertBB == DefMI.getParent()) { 469 MachineBasicBlock::iterator InsertPt = &DefMI; 470 Inserter(InsertBB, std::next(InsertPt), UseMO); 471 return; 472 } 473 474 // Otherwise we want the start of the BB 475 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 476 } 477 } // end anonymous namespace 478 479 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 480 PreferredTuple Preferred; 481 if (matchCombineExtendingLoads(MI, Preferred)) { 482 applyCombineExtendingLoads(MI, Preferred); 483 return true; 484 } 485 return false; 486 } 487 488 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 489 PreferredTuple &Preferred) { 490 // We match the loads and follow the uses to the extend instead of matching 491 // the extends and following the def to the load. This is because the load 492 // must remain in the same position for correctness (unless we also add code 493 // to find a safe place to sink it) whereas the extend is freely movable. 494 // It also prevents us from duplicating the load for the volatile case or just 495 // for performance. 496 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 497 if (!LoadMI) 498 return false; 499 500 Register LoadReg = LoadMI->getDstReg(); 501 502 LLT LoadValueTy = MRI.getType(LoadReg); 503 if (!LoadValueTy.isScalar()) 504 return false; 505 506 // Most architectures are going to legalize <s8 loads into at least a 1 byte 507 // load, and the MMOs can only describe memory accesses in multiples of bytes. 508 // If we try to perform extload combining on those, we can end up with 509 // %a(s8) = extload %ptr (load 1 byte from %ptr) 510 // ... which is an illegal extload instruction. 511 if (LoadValueTy.getSizeInBits() < 8) 512 return false; 513 514 // For non power-of-2 types, they will very likely be legalized into multiple 515 // loads. Don't bother trying to match them into extending loads. 516 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 517 return false; 518 519 // Find the preferred type aside from the any-extends (unless it's the only 520 // one) and non-extending ops. We'll emit an extending load to that type and 521 // and emit a variant of (extend (trunc X)) for the others according to the 522 // relative type sizes. At the same time, pick an extend to use based on the 523 // extend involved in the chosen type. 524 unsigned PreferredOpcode = 525 isa<GLoad>(&MI) 526 ? TargetOpcode::G_ANYEXT 527 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 528 Preferred = {LLT(), PreferredOpcode, nullptr}; 529 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 530 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 531 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 532 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 533 const auto &MMO = LoadMI->getMMO(); 534 // For atomics, only form anyextending loads. 535 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 536 continue; 537 // Check for legality. 538 if (LI) { 539 LegalityQuery::MemDesc MMDesc(MMO); 540 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 541 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 542 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 543 .Action != LegalizeActions::Legal) 544 continue; 545 } 546 Preferred = ChoosePreferredUse(Preferred, 547 MRI.getType(UseMI.getOperand(0).getReg()), 548 UseMI.getOpcode(), &UseMI); 549 } 550 } 551 552 // There were no extends 553 if (!Preferred.MI) 554 return false; 555 // It should be impossible to chose an extend without selecting a different 556 // type since by definition the result of an extend is larger. 557 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 558 559 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 560 return true; 561 } 562 563 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 564 PreferredTuple &Preferred) { 565 // Rewrite the load to the chosen extending load. 566 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 567 568 // Inserter to insert a truncate back to the original type at a given point 569 // with some basic CSE to limit truncate duplication to one per BB. 570 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 571 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 572 MachineBasicBlock::iterator InsertBefore, 573 MachineOperand &UseMO) { 574 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 575 if (PreviouslyEmitted) { 576 Observer.changingInstr(*UseMO.getParent()); 577 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 578 Observer.changedInstr(*UseMO.getParent()); 579 return; 580 } 581 582 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 583 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 584 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 585 EmittedInsns[InsertIntoBB] = NewMI; 586 replaceRegOpWith(MRI, UseMO, NewDstReg); 587 }; 588 589 Observer.changingInstr(MI); 590 MI.setDesc( 591 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 592 ? TargetOpcode::G_SEXTLOAD 593 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 594 ? TargetOpcode::G_ZEXTLOAD 595 : TargetOpcode::G_LOAD)); 596 597 // Rewrite all the uses to fix up the types. 598 auto &LoadValue = MI.getOperand(0); 599 SmallVector<MachineOperand *, 4> Uses; 600 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 601 Uses.push_back(&UseMO); 602 603 for (auto *UseMO : Uses) { 604 MachineInstr *UseMI = UseMO->getParent(); 605 606 // If the extend is compatible with the preferred extend then we should fix 607 // up the type and extend so that it uses the preferred use. 608 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 609 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 610 Register UseDstReg = UseMI->getOperand(0).getReg(); 611 MachineOperand &UseSrcMO = UseMI->getOperand(1); 612 const LLT UseDstTy = MRI.getType(UseDstReg); 613 if (UseDstReg != ChosenDstReg) { 614 if (Preferred.Ty == UseDstTy) { 615 // If the use has the same type as the preferred use, then merge 616 // the vregs and erase the extend. For example: 617 // %1:_(s8) = G_LOAD ... 618 // %2:_(s32) = G_SEXT %1(s8) 619 // %3:_(s32) = G_ANYEXT %1(s8) 620 // ... = ... %3(s32) 621 // rewrites to: 622 // %2:_(s32) = G_SEXTLOAD ... 623 // ... = ... %2(s32) 624 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 625 Observer.erasingInstr(*UseMO->getParent()); 626 UseMO->getParent()->eraseFromParent(); 627 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 628 // If the preferred size is smaller, then keep the extend but extend 629 // from the result of the extending load. For example: 630 // %1:_(s8) = G_LOAD ... 631 // %2:_(s32) = G_SEXT %1(s8) 632 // %3:_(s64) = G_ANYEXT %1(s8) 633 // ... = ... %3(s64) 634 /// rewrites to: 635 // %2:_(s32) = G_SEXTLOAD ... 636 // %3:_(s64) = G_ANYEXT %2:_(s32) 637 // ... = ... %3(s64) 638 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 639 } else { 640 // If the preferred size is large, then insert a truncate. For 641 // example: 642 // %1:_(s8) = G_LOAD ... 643 // %2:_(s64) = G_SEXT %1(s8) 644 // %3:_(s32) = G_ZEXT %1(s8) 645 // ... = ... %3(s32) 646 /// rewrites to: 647 // %2:_(s64) = G_SEXTLOAD ... 648 // %4:_(s8) = G_TRUNC %2:_(s32) 649 // %3:_(s64) = G_ZEXT %2:_(s8) 650 // ... = ... %3(s64) 651 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 652 InsertTruncAt); 653 } 654 continue; 655 } 656 // The use is (one of) the uses of the preferred use we chose earlier. 657 // We're going to update the load to def this value later so just erase 658 // the old extend. 659 Observer.erasingInstr(*UseMO->getParent()); 660 UseMO->getParent()->eraseFromParent(); 661 continue; 662 } 663 664 // The use isn't an extend. Truncate back to the type we originally loaded. 665 // This is free on many targets. 666 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 667 } 668 669 MI.getOperand(0).setReg(ChosenDstReg); 670 Observer.changedInstr(MI); 671 } 672 673 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI, 674 BuildFnTy &MatchInfo) { 675 assert(MI.getOpcode() == TargetOpcode::G_AND); 676 677 // If we have the following code: 678 // %mask = G_CONSTANT 255 679 // %ld = G_LOAD %ptr, (load s16) 680 // %and = G_AND %ld, %mask 681 // 682 // Try to fold it into 683 // %ld = G_ZEXTLOAD %ptr, (load s8) 684 685 Register Dst = MI.getOperand(0).getReg(); 686 if (MRI.getType(Dst).isVector()) 687 return false; 688 689 auto MaybeMask = 690 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 691 if (!MaybeMask) 692 return false; 693 694 APInt MaskVal = MaybeMask->Value; 695 696 if (!MaskVal.isMask()) 697 return false; 698 699 Register SrcReg = MI.getOperand(1).getReg(); 700 GAnyLoad *LoadMI = getOpcodeDef<GAnyLoad>(SrcReg, MRI); 701 if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg())) 702 return false; 703 704 Register LoadReg = LoadMI->getDstReg(); 705 LLT RegTy = MRI.getType(LoadReg); 706 Register PtrReg = LoadMI->getPointerReg(); 707 unsigned RegSize = RegTy.getSizeInBits(); 708 uint64_t LoadSizeBits = LoadMI->getMemSizeInBits(); 709 unsigned MaskSizeBits = MaskVal.countTrailingOnes(); 710 711 // The mask may not be larger than the in-memory type, as it might cover sign 712 // extended bits 713 if (MaskSizeBits > LoadSizeBits) 714 return false; 715 716 // If the mask covers the whole destination register, there's nothing to 717 // extend 718 if (MaskSizeBits >= RegSize) 719 return false; 720 721 // Most targets cannot deal with loads of size < 8 and need to re-legalize to 722 // at least byte loads. Avoid creating such loads here 723 if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits)) 724 return false; 725 726 const MachineMemOperand &MMO = LoadMI->getMMO(); 727 LegalityQuery::MemDesc MemDesc(MMO); 728 729 // Don't modify the memory access size if this is atomic/volatile, but we can 730 // still adjust the opcode to indicate the high bit behavior. 731 if (LoadMI->isSimple()) 732 MemDesc.MemoryTy = LLT::scalar(MaskSizeBits); 733 else if (LoadSizeBits > MaskSizeBits || LoadSizeBits == RegSize) 734 return false; 735 736 // TODO: Could check if it's legal with the reduced or original memory size. 737 if (!isLegalOrBeforeLegalizer( 738 {TargetOpcode::G_ZEXTLOAD, {RegTy, MRI.getType(PtrReg)}, {MemDesc}})) 739 return false; 740 741 MatchInfo = [=](MachineIRBuilder &B) { 742 B.setInstrAndDebugLoc(*LoadMI); 743 auto &MF = B.getMF(); 744 auto PtrInfo = MMO.getPointerInfo(); 745 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MemDesc.MemoryTy); 746 B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO); 747 LoadMI->eraseFromParent(); 748 }; 749 return true; 750 } 751 752 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 753 const MachineInstr &UseMI) { 754 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 755 "shouldn't consider debug uses"); 756 assert(DefMI.getParent() == UseMI.getParent()); 757 if (&DefMI == &UseMI) 758 return true; 759 const MachineBasicBlock &MBB = *DefMI.getParent(); 760 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 761 return &MI == &DefMI || &MI == &UseMI; 762 }); 763 if (DefOrUse == MBB.end()) 764 llvm_unreachable("Block must contain both DefMI and UseMI!"); 765 return &*DefOrUse == &DefMI; 766 } 767 768 bool CombinerHelper::dominates(const MachineInstr &DefMI, 769 const MachineInstr &UseMI) { 770 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 771 "shouldn't consider debug uses"); 772 if (MDT) 773 return MDT->dominates(&DefMI, &UseMI); 774 else if (DefMI.getParent() != UseMI.getParent()) 775 return false; 776 777 return isPredecessor(DefMI, UseMI); 778 } 779 780 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 781 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 782 Register SrcReg = MI.getOperand(1).getReg(); 783 Register LoadUser = SrcReg; 784 785 if (MRI.getType(SrcReg).isVector()) 786 return false; 787 788 Register TruncSrc; 789 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 790 LoadUser = TruncSrc; 791 792 uint64_t SizeInBits = MI.getOperand(2).getImm(); 793 // If the source is a G_SEXTLOAD from the same bit width, then we don't 794 // need any extend at all, just a truncate. 795 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 796 // If truncating more than the original extended value, abort. 797 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 798 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 799 return false; 800 if (LoadSizeBits == SizeInBits) 801 return true; 802 } 803 return false; 804 } 805 806 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 807 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 808 Builder.setInstrAndDebugLoc(MI); 809 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 810 MI.eraseFromParent(); 811 } 812 813 bool CombinerHelper::matchSextInRegOfLoad( 814 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 815 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 816 817 Register DstReg = MI.getOperand(0).getReg(); 818 LLT RegTy = MRI.getType(DstReg); 819 820 // Only supports scalars for now. 821 if (RegTy.isVector()) 822 return false; 823 824 Register SrcReg = MI.getOperand(1).getReg(); 825 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 826 if (!LoadDef || !MRI.hasOneNonDBGUse(DstReg)) 827 return false; 828 829 uint64_t MemBits = LoadDef->getMemSizeInBits(); 830 831 // If the sign extend extends from a narrower width than the load's width, 832 // then we can narrow the load width when we combine to a G_SEXTLOAD. 833 // Avoid widening the load at all. 834 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), MemBits); 835 836 // Don't generate G_SEXTLOADs with a < 1 byte width. 837 if (NewSizeBits < 8) 838 return false; 839 // Don't bother creating a non-power-2 sextload, it will likely be broken up 840 // anyway for most targets. 841 if (!isPowerOf2_32(NewSizeBits)) 842 return false; 843 844 const MachineMemOperand &MMO = LoadDef->getMMO(); 845 LegalityQuery::MemDesc MMDesc(MMO); 846 847 // Don't modify the memory access size if this is atomic/volatile, but we can 848 // still adjust the opcode to indicate the high bit behavior. 849 if (LoadDef->isSimple()) 850 MMDesc.MemoryTy = LLT::scalar(NewSizeBits); 851 else if (MemBits > NewSizeBits || MemBits == RegTy.getSizeInBits()) 852 return false; 853 854 // TODO: Could check if it's legal with the reduced or original memory size. 855 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, 856 {MRI.getType(LoadDef->getDstReg()), 857 MRI.getType(LoadDef->getPointerReg())}, 858 {MMDesc}})) 859 return false; 860 861 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 862 return true; 863 } 864 865 void CombinerHelper::applySextInRegOfLoad( 866 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 867 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 868 Register LoadReg; 869 unsigned ScalarSizeBits; 870 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 871 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 872 873 // If we have the following: 874 // %ld = G_LOAD %ptr, (load 2) 875 // %ext = G_SEXT_INREG %ld, 8 876 // ==> 877 // %ld = G_SEXTLOAD %ptr (load 1) 878 879 auto &MMO = LoadDef->getMMO(); 880 Builder.setInstrAndDebugLoc(*LoadDef); 881 auto &MF = Builder.getMF(); 882 auto PtrInfo = MMO.getPointerInfo(); 883 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 884 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 885 LoadDef->getPointerReg(), *NewMMO); 886 MI.eraseFromParent(); 887 } 888 889 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 890 Register &Base, Register &Offset) { 891 auto &MF = *MI.getParent()->getParent(); 892 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 893 894 #ifndef NDEBUG 895 unsigned Opcode = MI.getOpcode(); 896 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 897 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 898 #endif 899 900 Base = MI.getOperand(1).getReg(); 901 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 902 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 903 return false; 904 905 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 906 // FIXME: The following use traversal needs a bail out for patholigical cases. 907 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 908 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 909 continue; 910 911 Offset = Use.getOperand(2).getReg(); 912 if (!ForceLegalIndexing && 913 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 914 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 915 << Use); 916 continue; 917 } 918 919 // Make sure the offset calculation is before the potentially indexed op. 920 // FIXME: we really care about dependency here. The offset calculation might 921 // be movable. 922 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 923 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 924 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 925 << Use); 926 continue; 927 } 928 929 // FIXME: check whether all uses of Base are load/store with foldable 930 // addressing modes. If so, using the normal addr-modes is better than 931 // forming an indexed one. 932 933 bool MemOpDominatesAddrUses = true; 934 for (auto &PtrAddUse : 935 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 936 if (!dominates(MI, PtrAddUse)) { 937 MemOpDominatesAddrUses = false; 938 break; 939 } 940 } 941 942 if (!MemOpDominatesAddrUses) { 943 LLVM_DEBUG( 944 dbgs() << " Ignoring candidate as memop does not dominate uses: " 945 << Use); 946 continue; 947 } 948 949 LLVM_DEBUG(dbgs() << " Found match: " << Use); 950 Addr = Use.getOperand(0).getReg(); 951 return true; 952 } 953 954 return false; 955 } 956 957 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 958 Register &Base, Register &Offset) { 959 auto &MF = *MI.getParent()->getParent(); 960 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 961 962 #ifndef NDEBUG 963 unsigned Opcode = MI.getOpcode(); 964 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 965 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 966 #endif 967 968 Addr = MI.getOperand(1).getReg(); 969 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 970 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 971 return false; 972 973 Base = AddrDef->getOperand(1).getReg(); 974 Offset = AddrDef->getOperand(2).getReg(); 975 976 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 977 978 if (!ForceLegalIndexing && 979 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 980 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 981 return false; 982 } 983 984 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 985 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 986 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 987 return false; 988 } 989 990 if (MI.getOpcode() == TargetOpcode::G_STORE) { 991 // Would require a copy. 992 if (Base == MI.getOperand(0).getReg()) { 993 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 994 return false; 995 } 996 997 // We're expecting one use of Addr in MI, but it could also be the 998 // value stored, which isn't actually dominated by the instruction. 999 if (MI.getOperand(0).getReg() == Addr) { 1000 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 1001 return false; 1002 } 1003 } 1004 1005 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 1006 // That might allow us to end base's liveness here by adjusting the constant. 1007 1008 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 1009 if (!dominates(MI, UseMI)) { 1010 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 1011 return false; 1012 } 1013 } 1014 1015 return true; 1016 } 1017 1018 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 1019 IndexedLoadStoreMatchInfo MatchInfo; 1020 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 1021 applyCombineIndexedLoadStore(MI, MatchInfo); 1022 return true; 1023 } 1024 return false; 1025 } 1026 1027 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 1028 unsigned Opcode = MI.getOpcode(); 1029 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 1030 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 1031 return false; 1032 1033 // For now, no targets actually support these opcodes so don't waste time 1034 // running these unless we're forced to for testing. 1035 if (!ForceLegalIndexing) 1036 return false; 1037 1038 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 1039 MatchInfo.Offset); 1040 if (!MatchInfo.IsPre && 1041 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 1042 MatchInfo.Offset)) 1043 return false; 1044 1045 return true; 1046 } 1047 1048 void CombinerHelper::applyCombineIndexedLoadStore( 1049 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 1050 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 1051 MachineIRBuilder MIRBuilder(MI); 1052 unsigned Opcode = MI.getOpcode(); 1053 bool IsStore = Opcode == TargetOpcode::G_STORE; 1054 unsigned NewOpcode; 1055 switch (Opcode) { 1056 case TargetOpcode::G_LOAD: 1057 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 1058 break; 1059 case TargetOpcode::G_SEXTLOAD: 1060 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 1061 break; 1062 case TargetOpcode::G_ZEXTLOAD: 1063 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 1064 break; 1065 case TargetOpcode::G_STORE: 1066 NewOpcode = TargetOpcode::G_INDEXED_STORE; 1067 break; 1068 default: 1069 llvm_unreachable("Unknown load/store opcode"); 1070 } 1071 1072 auto MIB = MIRBuilder.buildInstr(NewOpcode); 1073 if (IsStore) { 1074 MIB.addDef(MatchInfo.Addr); 1075 MIB.addUse(MI.getOperand(0).getReg()); 1076 } else { 1077 MIB.addDef(MI.getOperand(0).getReg()); 1078 MIB.addDef(MatchInfo.Addr); 1079 } 1080 1081 MIB.addUse(MatchInfo.Base); 1082 MIB.addUse(MatchInfo.Offset); 1083 MIB.addImm(MatchInfo.IsPre); 1084 MI.eraseFromParent(); 1085 AddrDef.eraseFromParent(); 1086 1087 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 1088 } 1089 1090 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 1091 MachineInstr *&OtherMI) { 1092 unsigned Opcode = MI.getOpcode(); 1093 bool IsDiv, IsSigned; 1094 1095 switch (Opcode) { 1096 default: 1097 llvm_unreachable("Unexpected opcode!"); 1098 case TargetOpcode::G_SDIV: 1099 case TargetOpcode::G_UDIV: { 1100 IsDiv = true; 1101 IsSigned = Opcode == TargetOpcode::G_SDIV; 1102 break; 1103 } 1104 case TargetOpcode::G_SREM: 1105 case TargetOpcode::G_UREM: { 1106 IsDiv = false; 1107 IsSigned = Opcode == TargetOpcode::G_SREM; 1108 break; 1109 } 1110 } 1111 1112 Register Src1 = MI.getOperand(1).getReg(); 1113 unsigned DivOpcode, RemOpcode, DivremOpcode; 1114 if (IsSigned) { 1115 DivOpcode = TargetOpcode::G_SDIV; 1116 RemOpcode = TargetOpcode::G_SREM; 1117 DivremOpcode = TargetOpcode::G_SDIVREM; 1118 } else { 1119 DivOpcode = TargetOpcode::G_UDIV; 1120 RemOpcode = TargetOpcode::G_UREM; 1121 DivremOpcode = TargetOpcode::G_UDIVREM; 1122 } 1123 1124 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 1125 return false; 1126 1127 // Combine: 1128 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1129 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1130 // into: 1131 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1132 1133 // Combine: 1134 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1135 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1136 // into: 1137 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1138 1139 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1140 if (MI.getParent() == UseMI.getParent() && 1141 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1142 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1143 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1144 OtherMI = &UseMI; 1145 return true; 1146 } 1147 } 1148 1149 return false; 1150 } 1151 1152 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1153 MachineInstr *&OtherMI) { 1154 unsigned Opcode = MI.getOpcode(); 1155 assert(OtherMI && "OtherMI shouldn't be empty."); 1156 1157 Register DestDivReg, DestRemReg; 1158 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1159 DestDivReg = MI.getOperand(0).getReg(); 1160 DestRemReg = OtherMI->getOperand(0).getReg(); 1161 } else { 1162 DestDivReg = OtherMI->getOperand(0).getReg(); 1163 DestRemReg = MI.getOperand(0).getReg(); 1164 } 1165 1166 bool IsSigned = 1167 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1168 1169 // Check which instruction is first in the block so we don't break def-use 1170 // deps by "moving" the instruction incorrectly. 1171 if (dominates(MI, *OtherMI)) 1172 Builder.setInstrAndDebugLoc(MI); 1173 else 1174 Builder.setInstrAndDebugLoc(*OtherMI); 1175 1176 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1177 : TargetOpcode::G_UDIVREM, 1178 {DestDivReg, DestRemReg}, 1179 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1180 MI.eraseFromParent(); 1181 OtherMI->eraseFromParent(); 1182 } 1183 1184 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1185 MachineInstr *&BrCond) { 1186 assert(MI.getOpcode() == TargetOpcode::G_BR); 1187 1188 // Try to match the following: 1189 // bb1: 1190 // G_BRCOND %c1, %bb2 1191 // G_BR %bb3 1192 // bb2: 1193 // ... 1194 // bb3: 1195 1196 // The above pattern does not have a fall through to the successor bb2, always 1197 // resulting in a branch no matter which path is taken. Here we try to find 1198 // and replace that pattern with conditional branch to bb3 and otherwise 1199 // fallthrough to bb2. This is generally better for branch predictors. 1200 1201 MachineBasicBlock *MBB = MI.getParent(); 1202 MachineBasicBlock::iterator BrIt(MI); 1203 if (BrIt == MBB->begin()) 1204 return false; 1205 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1206 1207 BrCond = &*std::prev(BrIt); 1208 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1209 return false; 1210 1211 // Check that the next block is the conditional branch target. Also make sure 1212 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1213 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1214 return BrCondTarget != MI.getOperand(0).getMBB() && 1215 MBB->isLayoutSuccessor(BrCondTarget); 1216 } 1217 1218 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1219 MachineInstr *&BrCond) { 1220 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1221 Builder.setInstrAndDebugLoc(*BrCond); 1222 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1223 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1224 // this to i1 only since we might not know for sure what kind of 1225 // compare generated the condition value. 1226 auto True = Builder.buildConstant( 1227 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1228 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1229 1230 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1231 Observer.changingInstr(MI); 1232 MI.getOperand(0).setMBB(FallthroughBB); 1233 Observer.changedInstr(MI); 1234 1235 // Change the conditional branch to use the inverted condition and 1236 // new target block. 1237 Observer.changingInstr(*BrCond); 1238 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1239 BrCond->getOperand(1).setMBB(BrTarget); 1240 Observer.changedInstr(*BrCond); 1241 } 1242 1243 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1244 if (Ty.isVector()) 1245 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1246 Ty.getNumElements()); 1247 return IntegerType::get(C, Ty.getSizeInBits()); 1248 } 1249 1250 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1251 MachineIRBuilder HelperBuilder(MI); 1252 GISelObserverWrapper DummyObserver; 1253 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1254 return Helper.lowerMemcpyInline(MI) == 1255 LegalizerHelper::LegalizeResult::Legalized; 1256 } 1257 1258 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1259 MachineIRBuilder HelperBuilder(MI); 1260 GISelObserverWrapper DummyObserver; 1261 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1262 return Helper.lowerMemCpyFamily(MI, MaxLen) == 1263 LegalizerHelper::LegalizeResult::Legalized; 1264 } 1265 1266 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1267 const Register Op, 1268 const MachineRegisterInfo &MRI) { 1269 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1270 if (!MaybeCst) 1271 return None; 1272 1273 APFloat V = MaybeCst->getValueAPF(); 1274 switch (Opcode) { 1275 default: 1276 llvm_unreachable("Unexpected opcode!"); 1277 case TargetOpcode::G_FNEG: { 1278 V.changeSign(); 1279 return V; 1280 } 1281 case TargetOpcode::G_FABS: { 1282 V.clearSign(); 1283 return V; 1284 } 1285 case TargetOpcode::G_FPTRUNC: 1286 break; 1287 case TargetOpcode::G_FSQRT: { 1288 bool Unused; 1289 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1290 V = APFloat(sqrt(V.convertToDouble())); 1291 break; 1292 } 1293 case TargetOpcode::G_FLOG2: { 1294 bool Unused; 1295 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1296 V = APFloat(log2(V.convertToDouble())); 1297 break; 1298 } 1299 } 1300 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1301 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1302 // and `G_FLOG2` reach here. 1303 bool Unused; 1304 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1305 return V; 1306 } 1307 1308 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1309 Optional<APFloat> &Cst) { 1310 Register DstReg = MI.getOperand(0).getReg(); 1311 Register SrcReg = MI.getOperand(1).getReg(); 1312 LLT DstTy = MRI.getType(DstReg); 1313 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1314 return Cst.has_value(); 1315 } 1316 1317 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1318 Optional<APFloat> &Cst) { 1319 assert(Cst && "Optional is unexpectedly empty!"); 1320 Builder.setInstrAndDebugLoc(MI); 1321 MachineFunction &MF = Builder.getMF(); 1322 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1323 Register DstReg = MI.getOperand(0).getReg(); 1324 Builder.buildFConstant(DstReg, *FPVal); 1325 MI.eraseFromParent(); 1326 } 1327 1328 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1329 PtrAddChain &MatchInfo) { 1330 // We're trying to match the following pattern: 1331 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1332 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1333 // --> 1334 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1335 1336 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1337 return false; 1338 1339 Register Add2 = MI.getOperand(1).getReg(); 1340 Register Imm1 = MI.getOperand(2).getReg(); 1341 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1342 if (!MaybeImmVal) 1343 return false; 1344 1345 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1346 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1347 return false; 1348 1349 Register Base = Add2Def->getOperand(1).getReg(); 1350 Register Imm2 = Add2Def->getOperand(2).getReg(); 1351 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1352 if (!MaybeImm2Val) 1353 return false; 1354 1355 // Check if the new combined immediate forms an illegal addressing mode. 1356 // Do not combine if it was legal before but would get illegal. 1357 // To do so, we need to find a load/store user of the pointer to get 1358 // the access type. 1359 Type *AccessTy = nullptr; 1360 auto &MF = *MI.getMF(); 1361 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1362 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1363 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1364 MF.getFunction().getContext()); 1365 break; 1366 } 1367 } 1368 TargetLoweringBase::AddrMode AMNew; 1369 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1370 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1371 if (AccessTy) { 1372 AMNew.HasBaseReg = true; 1373 TargetLoweringBase::AddrMode AMOld; 1374 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); 1375 AMOld.HasBaseReg = true; 1376 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1377 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1378 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1379 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1380 return false; 1381 } 1382 1383 // Pass the combined immediate to the apply function. 1384 MatchInfo.Imm = AMNew.BaseOffs; 1385 MatchInfo.Base = Base; 1386 MatchInfo.Bank = getRegBank(Imm2); 1387 return true; 1388 } 1389 1390 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1391 PtrAddChain &MatchInfo) { 1392 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1393 MachineIRBuilder MIB(MI); 1394 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1395 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1396 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1397 Observer.changingInstr(MI); 1398 MI.getOperand(1).setReg(MatchInfo.Base); 1399 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1400 Observer.changedInstr(MI); 1401 } 1402 1403 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1404 RegisterImmPair &MatchInfo) { 1405 // We're trying to match the following pattern with any of 1406 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1407 // %t1 = SHIFT %base, G_CONSTANT imm1 1408 // %root = SHIFT %t1, G_CONSTANT imm2 1409 // --> 1410 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1411 1412 unsigned Opcode = MI.getOpcode(); 1413 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1414 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1415 Opcode == TargetOpcode::G_USHLSAT) && 1416 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1417 1418 Register Shl2 = MI.getOperand(1).getReg(); 1419 Register Imm1 = MI.getOperand(2).getReg(); 1420 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1421 if (!MaybeImmVal) 1422 return false; 1423 1424 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1425 if (Shl2Def->getOpcode() != Opcode) 1426 return false; 1427 1428 Register Base = Shl2Def->getOperand(1).getReg(); 1429 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1430 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1431 if (!MaybeImm2Val) 1432 return false; 1433 1434 // Pass the combined immediate to the apply function. 1435 MatchInfo.Imm = 1436 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1437 MatchInfo.Reg = Base; 1438 1439 // There is no simple replacement for a saturating unsigned left shift that 1440 // exceeds the scalar size. 1441 if (Opcode == TargetOpcode::G_USHLSAT && 1442 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1443 return false; 1444 1445 return true; 1446 } 1447 1448 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1449 RegisterImmPair &MatchInfo) { 1450 unsigned Opcode = MI.getOpcode(); 1451 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1452 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1453 Opcode == TargetOpcode::G_USHLSAT) && 1454 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1455 1456 Builder.setInstrAndDebugLoc(MI); 1457 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1458 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1459 auto Imm = MatchInfo.Imm; 1460 1461 if (Imm >= ScalarSizeInBits) { 1462 // Any logical shift that exceeds scalar size will produce zero. 1463 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1464 Builder.buildConstant(MI.getOperand(0), 0); 1465 MI.eraseFromParent(); 1466 return; 1467 } 1468 // Arithmetic shift and saturating signed left shift have no effect beyond 1469 // scalar size. 1470 Imm = ScalarSizeInBits - 1; 1471 } 1472 1473 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1474 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1475 Observer.changingInstr(MI); 1476 MI.getOperand(1).setReg(MatchInfo.Reg); 1477 MI.getOperand(2).setReg(NewImm); 1478 Observer.changedInstr(MI); 1479 } 1480 1481 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1482 ShiftOfShiftedLogic &MatchInfo) { 1483 // We're trying to match the following pattern with any of 1484 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1485 // with any of G_AND/G_OR/G_XOR logic instructions. 1486 // %t1 = SHIFT %X, G_CONSTANT C0 1487 // %t2 = LOGIC %t1, %Y 1488 // %root = SHIFT %t2, G_CONSTANT C1 1489 // --> 1490 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1491 // %t4 = SHIFT %Y, G_CONSTANT C1 1492 // %root = LOGIC %t3, %t4 1493 unsigned ShiftOpcode = MI.getOpcode(); 1494 assert((ShiftOpcode == TargetOpcode::G_SHL || 1495 ShiftOpcode == TargetOpcode::G_ASHR || 1496 ShiftOpcode == TargetOpcode::G_LSHR || 1497 ShiftOpcode == TargetOpcode::G_USHLSAT || 1498 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1499 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1500 1501 // Match a one-use bitwise logic op. 1502 Register LogicDest = MI.getOperand(1).getReg(); 1503 if (!MRI.hasOneNonDBGUse(LogicDest)) 1504 return false; 1505 1506 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1507 unsigned LogicOpcode = LogicMI->getOpcode(); 1508 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1509 LogicOpcode != TargetOpcode::G_XOR) 1510 return false; 1511 1512 // Find a matching one-use shift by constant. 1513 const Register C1 = MI.getOperand(2).getReg(); 1514 auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI); 1515 if (!MaybeImmVal) 1516 return false; 1517 1518 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1519 1520 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1521 // Shift should match previous one and should be a one-use. 1522 if (MI->getOpcode() != ShiftOpcode || 1523 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1524 return false; 1525 1526 // Must be a constant. 1527 auto MaybeImmVal = 1528 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1529 if (!MaybeImmVal) 1530 return false; 1531 1532 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1533 return true; 1534 }; 1535 1536 // Logic ops are commutative, so check each operand for a match. 1537 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1538 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1539 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1540 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1541 uint64_t C0Val; 1542 1543 if (matchFirstShift(LogicMIOp1, C0Val)) { 1544 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1545 MatchInfo.Shift2 = LogicMIOp1; 1546 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1547 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1548 MatchInfo.Shift2 = LogicMIOp2; 1549 } else 1550 return false; 1551 1552 MatchInfo.ValSum = C0Val + C1Val; 1553 1554 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1555 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1556 return false; 1557 1558 MatchInfo.Logic = LogicMI; 1559 return true; 1560 } 1561 1562 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1563 ShiftOfShiftedLogic &MatchInfo) { 1564 unsigned Opcode = MI.getOpcode(); 1565 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1566 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1567 Opcode == TargetOpcode::G_SSHLSAT) && 1568 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1569 1570 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1571 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1572 Builder.setInstrAndDebugLoc(MI); 1573 1574 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1575 1576 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1577 Register Shift1 = 1578 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1579 1580 Register Shift2Const = MI.getOperand(2).getReg(); 1581 Register Shift2 = Builder 1582 .buildInstr(Opcode, {DestType}, 1583 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1584 .getReg(0); 1585 1586 Register Dest = MI.getOperand(0).getReg(); 1587 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1588 1589 // These were one use so it's safe to remove them. 1590 MatchInfo.Shift2->eraseFromParent(); 1591 MatchInfo.Logic->eraseFromParent(); 1592 1593 MI.eraseFromParent(); 1594 } 1595 1596 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1597 unsigned &ShiftVal) { 1598 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1599 auto MaybeImmVal = 1600 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1601 if (!MaybeImmVal) 1602 return false; 1603 1604 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1605 return (static_cast<int32_t>(ShiftVal) != -1); 1606 } 1607 1608 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1609 unsigned &ShiftVal) { 1610 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1611 MachineIRBuilder MIB(MI); 1612 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1613 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1614 Observer.changingInstr(MI); 1615 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1616 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1617 Observer.changedInstr(MI); 1618 } 1619 1620 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1621 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1622 RegisterImmPair &MatchData) { 1623 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1624 1625 Register LHS = MI.getOperand(1).getReg(); 1626 1627 Register ExtSrc; 1628 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1629 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1630 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1631 return false; 1632 1633 // TODO: Should handle vector splat. 1634 Register RHS = MI.getOperand(2).getReg(); 1635 auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI); 1636 if (!MaybeShiftAmtVal) 1637 return false; 1638 1639 if (LI) { 1640 LLT SrcTy = MRI.getType(ExtSrc); 1641 1642 // We only really care about the legality with the shifted value. We can 1643 // pick any type the constant shift amount, so ask the target what to 1644 // use. Otherwise we would have to guess and hope it is reported as legal. 1645 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1646 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1647 return false; 1648 } 1649 1650 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1651 MatchData.Reg = ExtSrc; 1652 MatchData.Imm = ShiftAmt; 1653 1654 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1655 return MinLeadingZeros >= ShiftAmt; 1656 } 1657 1658 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1659 const RegisterImmPair &MatchData) { 1660 Register ExtSrcReg = MatchData.Reg; 1661 int64_t ShiftAmtVal = MatchData.Imm; 1662 1663 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1664 Builder.setInstrAndDebugLoc(MI); 1665 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1666 auto NarrowShift = 1667 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1668 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1669 MI.eraseFromParent(); 1670 } 1671 1672 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 1673 Register &MatchInfo) { 1674 GMerge &Merge = cast<GMerge>(MI); 1675 SmallVector<Register, 16> MergedValues; 1676 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 1677 MergedValues.emplace_back(Merge.getSourceReg(I)); 1678 1679 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 1680 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 1681 return false; 1682 1683 for (unsigned I = 0; I < MergedValues.size(); ++I) 1684 if (MergedValues[I] != Unmerge->getReg(I)) 1685 return false; 1686 1687 MatchInfo = Unmerge->getSourceReg(); 1688 return true; 1689 } 1690 1691 static Register peekThroughBitcast(Register Reg, 1692 const MachineRegisterInfo &MRI) { 1693 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1694 ; 1695 1696 return Reg; 1697 } 1698 1699 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1700 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1701 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1702 "Expected an unmerge"); 1703 auto &Unmerge = cast<GUnmerge>(MI); 1704 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 1705 1706 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI); 1707 if (!SrcInstr) 1708 return false; 1709 1710 // Check the source type of the merge. 1711 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 1712 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 1713 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1714 if (SrcMergeTy != Dst0Ty && !SameSize) 1715 return false; 1716 // They are the same now (modulo a bitcast). 1717 // We can collect all the src registers. 1718 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 1719 Operands.push_back(SrcInstr->getSourceReg(Idx)); 1720 return true; 1721 } 1722 1723 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1724 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1725 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1726 "Expected an unmerge"); 1727 assert((MI.getNumOperands() - 1 == Operands.size()) && 1728 "Not enough operands to replace all defs"); 1729 unsigned NumElems = MI.getNumOperands() - 1; 1730 1731 LLT SrcTy = MRI.getType(Operands[0]); 1732 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1733 bool CanReuseInputDirectly = DstTy == SrcTy; 1734 Builder.setInstrAndDebugLoc(MI); 1735 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1736 Register DstReg = MI.getOperand(Idx).getReg(); 1737 Register SrcReg = Operands[Idx]; 1738 if (CanReuseInputDirectly) 1739 replaceRegWith(MRI, DstReg, SrcReg); 1740 else 1741 Builder.buildCast(DstReg, SrcReg); 1742 } 1743 MI.eraseFromParent(); 1744 } 1745 1746 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1747 SmallVectorImpl<APInt> &Csts) { 1748 unsigned SrcIdx = MI.getNumOperands() - 1; 1749 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1750 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1751 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1752 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1753 return false; 1754 // Break down the big constant in smaller ones. 1755 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1756 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1757 ? CstVal.getCImm()->getValue() 1758 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1759 1760 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1761 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1762 // Unmerge a constant. 1763 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1764 Csts.emplace_back(Val.trunc(ShiftAmt)); 1765 Val = Val.lshr(ShiftAmt); 1766 } 1767 1768 return true; 1769 } 1770 1771 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1772 SmallVectorImpl<APInt> &Csts) { 1773 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1774 "Expected an unmerge"); 1775 assert((MI.getNumOperands() - 1 == Csts.size()) && 1776 "Not enough operands to replace all defs"); 1777 unsigned NumElems = MI.getNumOperands() - 1; 1778 Builder.setInstrAndDebugLoc(MI); 1779 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1780 Register DstReg = MI.getOperand(Idx).getReg(); 1781 Builder.buildConstant(DstReg, Csts[Idx]); 1782 } 1783 1784 MI.eraseFromParent(); 1785 } 1786 1787 bool CombinerHelper::matchCombineUnmergeUndef( 1788 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 1789 unsigned SrcIdx = MI.getNumOperands() - 1; 1790 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1791 MatchInfo = [&MI](MachineIRBuilder &B) { 1792 unsigned NumElems = MI.getNumOperands() - 1; 1793 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1794 Register DstReg = MI.getOperand(Idx).getReg(); 1795 B.buildUndef(DstReg); 1796 } 1797 }; 1798 return isa<GImplicitDef>(MRI.getVRegDef(SrcReg)); 1799 } 1800 1801 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1802 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1803 "Expected an unmerge"); 1804 // Check that all the lanes are dead except the first one. 1805 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1806 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1807 return false; 1808 } 1809 return true; 1810 } 1811 1812 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1813 Builder.setInstrAndDebugLoc(MI); 1814 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1815 // Truncating a vector is going to truncate every single lane, 1816 // whereas we want the full lowbits. 1817 // Do the operation on a scalar instead. 1818 LLT SrcTy = MRI.getType(SrcReg); 1819 if (SrcTy.isVector()) 1820 SrcReg = 1821 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1822 1823 Register Dst0Reg = MI.getOperand(0).getReg(); 1824 LLT Dst0Ty = MRI.getType(Dst0Reg); 1825 if (Dst0Ty.isVector()) { 1826 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 1827 Builder.buildCast(Dst0Reg, MIB); 1828 } else 1829 Builder.buildTrunc(Dst0Reg, SrcReg); 1830 MI.eraseFromParent(); 1831 } 1832 1833 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 1834 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1835 "Expected an unmerge"); 1836 Register Dst0Reg = MI.getOperand(0).getReg(); 1837 LLT Dst0Ty = MRI.getType(Dst0Reg); 1838 // G_ZEXT on vector applies to each lane, so it will 1839 // affect all destinations. Therefore we won't be able 1840 // to simplify the unmerge to just the first definition. 1841 if (Dst0Ty.isVector()) 1842 return false; 1843 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1844 LLT SrcTy = MRI.getType(SrcReg); 1845 if (SrcTy.isVector()) 1846 return false; 1847 1848 Register ZExtSrcReg; 1849 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 1850 return false; 1851 1852 // Finally we can replace the first definition with 1853 // a zext of the source if the definition is big enough to hold 1854 // all of ZExtSrc bits. 1855 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1856 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 1857 } 1858 1859 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 1860 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1861 "Expected an unmerge"); 1862 1863 Register Dst0Reg = MI.getOperand(0).getReg(); 1864 1865 MachineInstr *ZExtInstr = 1866 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 1867 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 1868 "Expecting a G_ZEXT"); 1869 1870 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 1871 LLT Dst0Ty = MRI.getType(Dst0Reg); 1872 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1873 1874 Builder.setInstrAndDebugLoc(MI); 1875 1876 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 1877 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 1878 } else { 1879 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 1880 "ZExt src doesn't fit in destination"); 1881 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 1882 } 1883 1884 Register ZeroReg; 1885 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1886 if (!ZeroReg) 1887 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 1888 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 1889 } 1890 MI.eraseFromParent(); 1891 } 1892 1893 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1894 unsigned TargetShiftSize, 1895 unsigned &ShiftVal) { 1896 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1897 MI.getOpcode() == TargetOpcode::G_LSHR || 1898 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1899 1900 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1901 if (Ty.isVector()) // TODO: 1902 return false; 1903 1904 // Don't narrow further than the requested size. 1905 unsigned Size = Ty.getSizeInBits(); 1906 if (Size <= TargetShiftSize) 1907 return false; 1908 1909 auto MaybeImmVal = 1910 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1911 if (!MaybeImmVal) 1912 return false; 1913 1914 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1915 return ShiftVal >= Size / 2 && ShiftVal < Size; 1916 } 1917 1918 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1919 const unsigned &ShiftVal) { 1920 Register DstReg = MI.getOperand(0).getReg(); 1921 Register SrcReg = MI.getOperand(1).getReg(); 1922 LLT Ty = MRI.getType(SrcReg); 1923 unsigned Size = Ty.getSizeInBits(); 1924 unsigned HalfSize = Size / 2; 1925 assert(ShiftVal >= HalfSize); 1926 1927 LLT HalfTy = LLT::scalar(HalfSize); 1928 1929 Builder.setInstr(MI); 1930 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1931 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1932 1933 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1934 Register Narrowed = Unmerge.getReg(1); 1935 1936 // dst = G_LSHR s64:x, C for C >= 32 1937 // => 1938 // lo, hi = G_UNMERGE_VALUES x 1939 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1940 1941 if (NarrowShiftAmt != 0) { 1942 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1943 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1944 } 1945 1946 auto Zero = Builder.buildConstant(HalfTy, 0); 1947 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1948 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1949 Register Narrowed = Unmerge.getReg(0); 1950 // dst = G_SHL s64:x, C for C >= 32 1951 // => 1952 // lo, hi = G_UNMERGE_VALUES x 1953 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1954 if (NarrowShiftAmt != 0) { 1955 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1956 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1957 } 1958 1959 auto Zero = Builder.buildConstant(HalfTy, 0); 1960 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1961 } else { 1962 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1963 auto Hi = Builder.buildAShr( 1964 HalfTy, Unmerge.getReg(1), 1965 Builder.buildConstant(HalfTy, HalfSize - 1)); 1966 1967 if (ShiftVal == HalfSize) { 1968 // (G_ASHR i64:x, 32) -> 1969 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1970 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1971 } else if (ShiftVal == Size - 1) { 1972 // Don't need a second shift. 1973 // (G_ASHR i64:x, 63) -> 1974 // %narrowed = (G_ASHR hi_32(x), 31) 1975 // G_MERGE_VALUES %narrowed, %narrowed 1976 Builder.buildMerge(DstReg, { Hi, Hi }); 1977 } else { 1978 auto Lo = Builder.buildAShr( 1979 HalfTy, Unmerge.getReg(1), 1980 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1981 1982 // (G_ASHR i64:x, C) ->, for C >= 32 1983 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1984 Builder.buildMerge(DstReg, { Lo, Hi }); 1985 } 1986 } 1987 1988 MI.eraseFromParent(); 1989 } 1990 1991 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1992 unsigned TargetShiftAmount) { 1993 unsigned ShiftAmt; 1994 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1995 applyCombineShiftToUnmerge(MI, ShiftAmt); 1996 return true; 1997 } 1998 1999 return false; 2000 } 2001 2002 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2003 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2004 Register DstReg = MI.getOperand(0).getReg(); 2005 LLT DstTy = MRI.getType(DstReg); 2006 Register SrcReg = MI.getOperand(1).getReg(); 2007 return mi_match(SrcReg, MRI, 2008 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2009 } 2010 2011 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2012 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2013 Register DstReg = MI.getOperand(0).getReg(); 2014 Builder.setInstr(MI); 2015 Builder.buildCopy(DstReg, Reg); 2016 MI.eraseFromParent(); 2017 } 2018 2019 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2020 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2021 Register SrcReg = MI.getOperand(1).getReg(); 2022 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2023 } 2024 2025 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2026 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2027 Register DstReg = MI.getOperand(0).getReg(); 2028 Builder.setInstr(MI); 2029 Builder.buildZExtOrTrunc(DstReg, Reg); 2030 MI.eraseFromParent(); 2031 } 2032 2033 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2034 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2035 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2036 Register LHS = MI.getOperand(1).getReg(); 2037 Register RHS = MI.getOperand(2).getReg(); 2038 LLT IntTy = MRI.getType(LHS); 2039 2040 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2041 // instruction. 2042 PtrReg.second = false; 2043 for (Register SrcReg : {LHS, RHS}) { 2044 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2045 // Don't handle cases where the integer is implicitly converted to the 2046 // pointer width. 2047 LLT PtrTy = MRI.getType(PtrReg.first); 2048 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2049 return true; 2050 } 2051 2052 PtrReg.second = true; 2053 } 2054 2055 return false; 2056 } 2057 2058 void CombinerHelper::applyCombineAddP2IToPtrAdd( 2059 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2060 Register Dst = MI.getOperand(0).getReg(); 2061 Register LHS = MI.getOperand(1).getReg(); 2062 Register RHS = MI.getOperand(2).getReg(); 2063 2064 const bool DoCommute = PtrReg.second; 2065 if (DoCommute) 2066 std::swap(LHS, RHS); 2067 LHS = PtrReg.first; 2068 2069 LLT PtrTy = MRI.getType(LHS); 2070 2071 Builder.setInstrAndDebugLoc(MI); 2072 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2073 Builder.buildPtrToInt(Dst, PtrAdd); 2074 MI.eraseFromParent(); 2075 } 2076 2077 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2078 APInt &NewCst) { 2079 auto &PtrAdd = cast<GPtrAdd>(MI); 2080 Register LHS = PtrAdd.getBaseReg(); 2081 Register RHS = PtrAdd.getOffsetReg(); 2082 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2083 2084 if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) { 2085 APInt Cst; 2086 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2087 auto DstTy = MRI.getType(PtrAdd.getReg(0)); 2088 // G_INTTOPTR uses zero-extension 2089 NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits()); 2090 NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits()); 2091 return true; 2092 } 2093 } 2094 2095 return false; 2096 } 2097 2098 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2099 APInt &NewCst) { 2100 auto &PtrAdd = cast<GPtrAdd>(MI); 2101 Register Dst = PtrAdd.getReg(0); 2102 2103 Builder.setInstrAndDebugLoc(MI); 2104 Builder.buildConstant(Dst, NewCst); 2105 PtrAdd.eraseFromParent(); 2106 } 2107 2108 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2109 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2110 Register DstReg = MI.getOperand(0).getReg(); 2111 Register SrcReg = MI.getOperand(1).getReg(); 2112 LLT DstTy = MRI.getType(DstReg); 2113 return mi_match(SrcReg, MRI, 2114 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2115 } 2116 2117 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2118 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2119 Register DstReg = MI.getOperand(0).getReg(); 2120 Register SrcReg = MI.getOperand(1).getReg(); 2121 LLT DstTy = MRI.getType(DstReg); 2122 if (mi_match(SrcReg, MRI, 2123 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2124 unsigned DstSize = DstTy.getScalarSizeInBits(); 2125 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2126 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2127 } 2128 return false; 2129 } 2130 2131 bool CombinerHelper::matchCombineExtOfExt( 2132 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2133 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2134 MI.getOpcode() == TargetOpcode::G_SEXT || 2135 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2136 "Expected a G_[ASZ]EXT"); 2137 Register SrcReg = MI.getOperand(1).getReg(); 2138 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2139 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2140 unsigned Opc = MI.getOpcode(); 2141 unsigned SrcOpc = SrcMI->getOpcode(); 2142 if (Opc == SrcOpc || 2143 (Opc == TargetOpcode::G_ANYEXT && 2144 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2145 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2146 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2147 return true; 2148 } 2149 return false; 2150 } 2151 2152 void CombinerHelper::applyCombineExtOfExt( 2153 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2154 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2155 MI.getOpcode() == TargetOpcode::G_SEXT || 2156 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2157 "Expected a G_[ASZ]EXT"); 2158 2159 Register Reg = std::get<0>(MatchInfo); 2160 unsigned SrcExtOp = std::get<1>(MatchInfo); 2161 2162 // Combine exts with the same opcode. 2163 if (MI.getOpcode() == SrcExtOp) { 2164 Observer.changingInstr(MI); 2165 MI.getOperand(1).setReg(Reg); 2166 Observer.changedInstr(MI); 2167 return; 2168 } 2169 2170 // Combine: 2171 // - anyext([sz]ext x) to [sz]ext x 2172 // - sext(zext x) to zext x 2173 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2174 (MI.getOpcode() == TargetOpcode::G_SEXT && 2175 SrcExtOp == TargetOpcode::G_ZEXT)) { 2176 Register DstReg = MI.getOperand(0).getReg(); 2177 Builder.setInstrAndDebugLoc(MI); 2178 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2179 MI.eraseFromParent(); 2180 } 2181 } 2182 2183 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2184 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2185 Register DstReg = MI.getOperand(0).getReg(); 2186 Register SrcReg = MI.getOperand(1).getReg(); 2187 LLT DstTy = MRI.getType(DstReg); 2188 2189 Builder.setInstrAndDebugLoc(MI); 2190 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2191 MI.getFlags()); 2192 MI.eraseFromParent(); 2193 } 2194 2195 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2196 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2197 Register SrcReg = MI.getOperand(1).getReg(); 2198 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2199 } 2200 2201 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2202 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2203 Src = MI.getOperand(1).getReg(); 2204 Register AbsSrc; 2205 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2206 } 2207 2208 bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI, 2209 BuildFnTy &MatchInfo) { 2210 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2211 Register Src = MI.getOperand(1).getReg(); 2212 Register NegSrc; 2213 2214 if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc)))) 2215 return false; 2216 2217 MatchInfo = [=, &MI](MachineIRBuilder &B) { 2218 Observer.changingInstr(MI); 2219 MI.getOperand(1).setReg(NegSrc); 2220 Observer.changedInstr(MI); 2221 }; 2222 return true; 2223 } 2224 2225 bool CombinerHelper::matchCombineTruncOfExt( 2226 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2227 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2228 Register SrcReg = MI.getOperand(1).getReg(); 2229 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2230 unsigned SrcOpc = SrcMI->getOpcode(); 2231 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2232 SrcOpc == TargetOpcode::G_ZEXT) { 2233 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2234 return true; 2235 } 2236 return false; 2237 } 2238 2239 void CombinerHelper::applyCombineTruncOfExt( 2240 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2241 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2242 Register SrcReg = MatchInfo.first; 2243 unsigned SrcExtOp = MatchInfo.second; 2244 Register DstReg = MI.getOperand(0).getReg(); 2245 LLT SrcTy = MRI.getType(SrcReg); 2246 LLT DstTy = MRI.getType(DstReg); 2247 if (SrcTy == DstTy) { 2248 MI.eraseFromParent(); 2249 replaceRegWith(MRI, DstReg, SrcReg); 2250 return; 2251 } 2252 Builder.setInstrAndDebugLoc(MI); 2253 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2254 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2255 else 2256 Builder.buildTrunc(DstReg, SrcReg); 2257 MI.eraseFromParent(); 2258 } 2259 2260 bool CombinerHelper::matchCombineTruncOfShl( 2261 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2262 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2263 Register DstReg = MI.getOperand(0).getReg(); 2264 Register SrcReg = MI.getOperand(1).getReg(); 2265 LLT DstTy = MRI.getType(DstReg); 2266 Register ShiftSrc; 2267 Register ShiftAmt; 2268 2269 if (MRI.hasOneNonDBGUse(SrcReg) && 2270 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2271 isLegalOrBeforeLegalizer( 2272 {TargetOpcode::G_SHL, 2273 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2274 KnownBits Known = KB->getKnownBits(ShiftAmt); 2275 unsigned Size = DstTy.getSizeInBits(); 2276 if (Known.countMaxActiveBits() <= Log2_32(Size)) { 2277 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2278 return true; 2279 } 2280 } 2281 return false; 2282 } 2283 2284 void CombinerHelper::applyCombineTruncOfShl( 2285 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2286 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2287 Register DstReg = MI.getOperand(0).getReg(); 2288 Register SrcReg = MI.getOperand(1).getReg(); 2289 LLT DstTy = MRI.getType(DstReg); 2290 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2291 2292 Register ShiftSrc = MatchInfo.first; 2293 Register ShiftAmt = MatchInfo.second; 2294 Builder.setInstrAndDebugLoc(MI); 2295 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2296 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2297 MI.eraseFromParent(); 2298 } 2299 2300 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2301 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2302 return MO.isReg() && 2303 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2304 }); 2305 } 2306 2307 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2308 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2309 return !MO.isReg() || 2310 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2311 }); 2312 } 2313 2314 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2315 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2316 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2317 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2318 } 2319 2320 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2321 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2322 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2323 MRI); 2324 } 2325 2326 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2327 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2328 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2329 MRI); 2330 } 2331 2332 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2333 GSelect &SelMI = cast<GSelect>(MI); 2334 auto Cst = 2335 isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI); 2336 if (!Cst) 2337 return false; 2338 OpIdx = Cst->isZero() ? 3 : 2; 2339 return true; 2340 } 2341 2342 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2343 MI.eraseFromParent(); 2344 return true; 2345 } 2346 2347 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2348 const MachineOperand &MOP2) { 2349 if (!MOP1.isReg() || !MOP2.isReg()) 2350 return false; 2351 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2352 if (!InstAndDef1) 2353 return false; 2354 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2355 if (!InstAndDef2) 2356 return false; 2357 MachineInstr *I1 = InstAndDef1->MI; 2358 MachineInstr *I2 = InstAndDef2->MI; 2359 2360 // Handle a case like this: 2361 // 2362 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2363 // 2364 // Even though %0 and %1 are produced by the same instruction they are not 2365 // the same values. 2366 if (I1 == I2) 2367 return MOP1.getReg() == MOP2.getReg(); 2368 2369 // If we have an instruction which loads or stores, we can't guarantee that 2370 // it is identical. 2371 // 2372 // For example, we may have 2373 // 2374 // %x1 = G_LOAD %addr (load N from @somewhere) 2375 // ... 2376 // call @foo 2377 // ... 2378 // %x2 = G_LOAD %addr (load N from @somewhere) 2379 // ... 2380 // %or = G_OR %x1, %x2 2381 // 2382 // It's possible that @foo will modify whatever lives at the address we're 2383 // loading from. To be safe, let's just assume that all loads and stores 2384 // are different (unless we have something which is guaranteed to not 2385 // change.) 2386 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2387 return false; 2388 2389 // If both instructions are loads or stores, they are equal only if both 2390 // are dereferenceable invariant loads with the same number of bits. 2391 if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) { 2392 GLoadStore *LS1 = dyn_cast<GLoadStore>(I1); 2393 GLoadStore *LS2 = dyn_cast<GLoadStore>(I2); 2394 if (!LS1 || !LS2) 2395 return false; 2396 2397 if (!I2->isDereferenceableInvariantLoad(nullptr) || 2398 (LS1->getMemSizeInBits() != LS2->getMemSizeInBits())) 2399 return false; 2400 } 2401 2402 // Check for physical registers on the instructions first to avoid cases 2403 // like this: 2404 // 2405 // %a = COPY $physreg 2406 // ... 2407 // SOMETHING implicit-def $physreg 2408 // ... 2409 // %b = COPY $physreg 2410 // 2411 // These copies are not equivalent. 2412 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2413 return MO.isReg() && MO.getReg().isPhysical(); 2414 })) { 2415 // Check if we have a case like this: 2416 // 2417 // %a = COPY $physreg 2418 // %b = COPY %a 2419 // 2420 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2421 // From that, we know that they must have the same value, since they must 2422 // have come from the same COPY. 2423 return I1->isIdenticalTo(*I2); 2424 } 2425 2426 // We don't have any physical registers, so we don't necessarily need the 2427 // same vreg defs. 2428 // 2429 // On the off-chance that there's some target instruction feeding into the 2430 // instruction, let's use produceSameValue instead of isIdenticalTo. 2431 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2432 // Handle instructions with multiple defs that produce same values. Values 2433 // are same for operands with same index. 2434 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2435 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2436 // I1 and I2 are different instructions but produce same values, 2437 // %1 and %6 are same, %1 and %7 are not the same value. 2438 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2439 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2440 } 2441 return false; 2442 } 2443 2444 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2445 if (!MOP.isReg()) 2446 return false; 2447 auto *MI = MRI.getVRegDef(MOP.getReg()); 2448 auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI); 2449 return MaybeCst && MaybeCst->getBitWidth() <= 64 && 2450 MaybeCst->getSExtValue() == C; 2451 } 2452 2453 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2454 unsigned OpIdx) { 2455 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2456 Register OldReg = MI.getOperand(0).getReg(); 2457 Register Replacement = MI.getOperand(OpIdx).getReg(); 2458 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2459 MI.eraseFromParent(); 2460 replaceRegWith(MRI, OldReg, Replacement); 2461 return true; 2462 } 2463 2464 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2465 Register Replacement) { 2466 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2467 Register OldReg = MI.getOperand(0).getReg(); 2468 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2469 MI.eraseFromParent(); 2470 replaceRegWith(MRI, OldReg, Replacement); 2471 return true; 2472 } 2473 2474 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2475 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2476 // Match (cond ? x : x) 2477 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2478 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2479 MRI); 2480 } 2481 2482 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2483 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2484 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2485 MRI); 2486 } 2487 2488 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2489 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2490 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2491 MRI); 2492 } 2493 2494 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2495 MachineOperand &MO = MI.getOperand(OpIdx); 2496 return MO.isReg() && 2497 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2498 } 2499 2500 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2501 unsigned OpIdx) { 2502 MachineOperand &MO = MI.getOperand(OpIdx); 2503 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2504 } 2505 2506 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2507 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2508 Builder.setInstr(MI); 2509 Builder.buildFConstant(MI.getOperand(0), C); 2510 MI.eraseFromParent(); 2511 return true; 2512 } 2513 2514 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2515 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2516 Builder.setInstr(MI); 2517 Builder.buildConstant(MI.getOperand(0), C); 2518 MI.eraseFromParent(); 2519 return true; 2520 } 2521 2522 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2523 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2524 Builder.setInstr(MI); 2525 Builder.buildConstant(MI.getOperand(0), C); 2526 MI.eraseFromParent(); 2527 return true; 2528 } 2529 2530 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2531 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2532 Builder.setInstr(MI); 2533 Builder.buildUndef(MI.getOperand(0)); 2534 MI.eraseFromParent(); 2535 return true; 2536 } 2537 2538 bool CombinerHelper::matchSimplifyAddToSub( 2539 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2540 Register LHS = MI.getOperand(1).getReg(); 2541 Register RHS = MI.getOperand(2).getReg(); 2542 Register &NewLHS = std::get<0>(MatchInfo); 2543 Register &NewRHS = std::get<1>(MatchInfo); 2544 2545 // Helper lambda to check for opportunities for 2546 // ((0-A) + B) -> B - A 2547 // (A + (0-B)) -> A - B 2548 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2549 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2550 return false; 2551 NewLHS = MaybeNewLHS; 2552 return true; 2553 }; 2554 2555 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2556 } 2557 2558 bool CombinerHelper::matchCombineInsertVecElts( 2559 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2560 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2561 "Invalid opcode"); 2562 Register DstReg = MI.getOperand(0).getReg(); 2563 LLT DstTy = MRI.getType(DstReg); 2564 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2565 unsigned NumElts = DstTy.getNumElements(); 2566 // If this MI is part of a sequence of insert_vec_elts, then 2567 // don't do the combine in the middle of the sequence. 2568 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2569 TargetOpcode::G_INSERT_VECTOR_ELT) 2570 return false; 2571 MachineInstr *CurrInst = &MI; 2572 MachineInstr *TmpInst; 2573 int64_t IntImm; 2574 Register TmpReg; 2575 MatchInfo.resize(NumElts); 2576 while (mi_match( 2577 CurrInst->getOperand(0).getReg(), MRI, 2578 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2579 if (IntImm >= NumElts) 2580 return false; 2581 if (!MatchInfo[IntImm]) 2582 MatchInfo[IntImm] = TmpReg; 2583 CurrInst = TmpInst; 2584 } 2585 // Variable index. 2586 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2587 return false; 2588 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2589 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2590 if (!MatchInfo[I - 1].isValid()) 2591 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2592 } 2593 return true; 2594 } 2595 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2596 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2597 } 2598 2599 void CombinerHelper::applyCombineInsertVecElts( 2600 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2601 Builder.setInstr(MI); 2602 Register UndefReg; 2603 auto GetUndef = [&]() { 2604 if (UndefReg) 2605 return UndefReg; 2606 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2607 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2608 return UndefReg; 2609 }; 2610 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2611 if (!MatchInfo[I]) 2612 MatchInfo[I] = GetUndef(); 2613 } 2614 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2615 MI.eraseFromParent(); 2616 } 2617 2618 void CombinerHelper::applySimplifyAddToSub( 2619 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2620 Builder.setInstr(MI); 2621 Register SubLHS, SubRHS; 2622 std::tie(SubLHS, SubRHS) = MatchInfo; 2623 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2624 MI.eraseFromParent(); 2625 } 2626 2627 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2628 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2629 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2630 // 2631 // Creates the new hand + logic instruction (but does not insert them.) 2632 // 2633 // On success, MatchInfo is populated with the new instructions. These are 2634 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2635 unsigned LogicOpcode = MI.getOpcode(); 2636 assert(LogicOpcode == TargetOpcode::G_AND || 2637 LogicOpcode == TargetOpcode::G_OR || 2638 LogicOpcode == TargetOpcode::G_XOR); 2639 MachineIRBuilder MIB(MI); 2640 Register Dst = MI.getOperand(0).getReg(); 2641 Register LHSReg = MI.getOperand(1).getReg(); 2642 Register RHSReg = MI.getOperand(2).getReg(); 2643 2644 // Don't recompute anything. 2645 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2646 return false; 2647 2648 // Make sure we have (hand x, ...), (hand y, ...) 2649 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2650 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2651 if (!LeftHandInst || !RightHandInst) 2652 return false; 2653 unsigned HandOpcode = LeftHandInst->getOpcode(); 2654 if (HandOpcode != RightHandInst->getOpcode()) 2655 return false; 2656 if (!LeftHandInst->getOperand(1).isReg() || 2657 !RightHandInst->getOperand(1).isReg()) 2658 return false; 2659 2660 // Make sure the types match up, and if we're doing this post-legalization, 2661 // we end up with legal types. 2662 Register X = LeftHandInst->getOperand(1).getReg(); 2663 Register Y = RightHandInst->getOperand(1).getReg(); 2664 LLT XTy = MRI.getType(X); 2665 LLT YTy = MRI.getType(Y); 2666 if (XTy != YTy) 2667 return false; 2668 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2669 return false; 2670 2671 // Optional extra source register. 2672 Register ExtraHandOpSrcReg; 2673 switch (HandOpcode) { 2674 default: 2675 return false; 2676 case TargetOpcode::G_ANYEXT: 2677 case TargetOpcode::G_SEXT: 2678 case TargetOpcode::G_ZEXT: { 2679 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2680 break; 2681 } 2682 case TargetOpcode::G_AND: 2683 case TargetOpcode::G_ASHR: 2684 case TargetOpcode::G_LSHR: 2685 case TargetOpcode::G_SHL: { 2686 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2687 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2688 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2689 return false; 2690 ExtraHandOpSrcReg = ZOp.getReg(); 2691 break; 2692 } 2693 } 2694 2695 // Record the steps to build the new instructions. 2696 // 2697 // Steps to build (logic x, y) 2698 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2699 OperandBuildSteps LogicBuildSteps = { 2700 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2701 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2702 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2703 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2704 2705 // Steps to build hand (logic x, y), ...z 2706 OperandBuildSteps HandBuildSteps = { 2707 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2708 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2709 if (ExtraHandOpSrcReg.isValid()) 2710 HandBuildSteps.push_back( 2711 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2712 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2713 2714 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2715 return true; 2716 } 2717 2718 void CombinerHelper::applyBuildInstructionSteps( 2719 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2720 assert(MatchInfo.InstrsToBuild.size() && 2721 "Expected at least one instr to build?"); 2722 Builder.setInstr(MI); 2723 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2724 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2725 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2726 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2727 for (auto &OperandFn : InstrToBuild.OperandFns) 2728 OperandFn(Instr); 2729 } 2730 MI.eraseFromParent(); 2731 } 2732 2733 bool CombinerHelper::matchAshrShlToSextInreg( 2734 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2735 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2736 int64_t ShlCst, AshrCst; 2737 Register Src; 2738 // FIXME: detect splat constant vectors. 2739 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2740 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2741 return false; 2742 if (ShlCst != AshrCst) 2743 return false; 2744 if (!isLegalOrBeforeLegalizer( 2745 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2746 return false; 2747 MatchInfo = std::make_tuple(Src, ShlCst); 2748 return true; 2749 } 2750 2751 void CombinerHelper::applyAshShlToSextInreg( 2752 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2753 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2754 Register Src; 2755 int64_t ShiftAmt; 2756 std::tie(Src, ShiftAmt) = MatchInfo; 2757 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2758 Builder.setInstrAndDebugLoc(MI); 2759 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2760 MI.eraseFromParent(); 2761 } 2762 2763 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 2764 bool CombinerHelper::matchOverlappingAnd( 2765 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 2766 assert(MI.getOpcode() == TargetOpcode::G_AND); 2767 2768 Register Dst = MI.getOperand(0).getReg(); 2769 LLT Ty = MRI.getType(Dst); 2770 2771 Register R; 2772 int64_t C1; 2773 int64_t C2; 2774 if (!mi_match( 2775 Dst, MRI, 2776 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 2777 return false; 2778 2779 MatchInfo = [=](MachineIRBuilder &B) { 2780 if (C1 & C2) { 2781 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 2782 return; 2783 } 2784 auto Zero = B.buildConstant(Ty, 0); 2785 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 2786 }; 2787 return true; 2788 } 2789 2790 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2791 Register &Replacement) { 2792 // Given 2793 // 2794 // %y:_(sN) = G_SOMETHING 2795 // %x:_(sN) = G_SOMETHING 2796 // %res:_(sN) = G_AND %x, %y 2797 // 2798 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 2799 // 2800 // Patterns like this can appear as a result of legalization. E.g. 2801 // 2802 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2803 // %one:_(s32) = G_CONSTANT i32 1 2804 // %and:_(s32) = G_AND %cmp, %one 2805 // 2806 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2807 assert(MI.getOpcode() == TargetOpcode::G_AND); 2808 if (!KB) 2809 return false; 2810 2811 Register AndDst = MI.getOperand(0).getReg(); 2812 LLT DstTy = MRI.getType(AndDst); 2813 2814 // FIXME: This should be removed once GISelKnownBits supports vectors. 2815 if (DstTy.isVector()) 2816 return false; 2817 2818 Register LHS = MI.getOperand(1).getReg(); 2819 Register RHS = MI.getOperand(2).getReg(); 2820 KnownBits LHSBits = KB->getKnownBits(LHS); 2821 KnownBits RHSBits = KB->getKnownBits(RHS); 2822 2823 // Check that x & Mask == x. 2824 // x & 1 == x, always 2825 // x & 0 == x, only if x is also 0 2826 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 2827 // 2828 // Check if we can replace AndDst with the LHS of the G_AND 2829 if (canReplaceReg(AndDst, LHS, MRI) && 2830 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2831 Replacement = LHS; 2832 return true; 2833 } 2834 2835 // Check if we can replace AndDst with the RHS of the G_AND 2836 if (canReplaceReg(AndDst, RHS, MRI) && 2837 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2838 Replacement = RHS; 2839 return true; 2840 } 2841 2842 return false; 2843 } 2844 2845 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 2846 // Given 2847 // 2848 // %y:_(sN) = G_SOMETHING 2849 // %x:_(sN) = G_SOMETHING 2850 // %res:_(sN) = G_OR %x, %y 2851 // 2852 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 2853 assert(MI.getOpcode() == TargetOpcode::G_OR); 2854 if (!KB) 2855 return false; 2856 2857 Register OrDst = MI.getOperand(0).getReg(); 2858 LLT DstTy = MRI.getType(OrDst); 2859 2860 // FIXME: This should be removed once GISelKnownBits supports vectors. 2861 if (DstTy.isVector()) 2862 return false; 2863 2864 Register LHS = MI.getOperand(1).getReg(); 2865 Register RHS = MI.getOperand(2).getReg(); 2866 KnownBits LHSBits = KB->getKnownBits(LHS); 2867 KnownBits RHSBits = KB->getKnownBits(RHS); 2868 2869 // Check that x | Mask == x. 2870 // x | 0 == x, always 2871 // x | 1 == x, only if x is also 1 2872 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 2873 // 2874 // Check if we can replace OrDst with the LHS of the G_OR 2875 if (canReplaceReg(OrDst, LHS, MRI) && 2876 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2877 Replacement = LHS; 2878 return true; 2879 } 2880 2881 // Check if we can replace OrDst with the RHS of the G_OR 2882 if (canReplaceReg(OrDst, RHS, MRI) && 2883 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2884 Replacement = RHS; 2885 return true; 2886 } 2887 2888 return false; 2889 } 2890 2891 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 2892 // If the input is already sign extended, just drop the extension. 2893 Register Src = MI.getOperand(1).getReg(); 2894 unsigned ExtBits = MI.getOperand(2).getImm(); 2895 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 2896 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 2897 } 2898 2899 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 2900 int64_t Cst, bool IsVector, bool IsFP) { 2901 // For i1, Cst will always be -1 regardless of boolean contents. 2902 return (ScalarSizeBits == 1 && Cst == -1) || 2903 isConstTrueVal(TLI, Cst, IsVector, IsFP); 2904 } 2905 2906 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 2907 SmallVectorImpl<Register> &RegsToNegate) { 2908 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2909 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2910 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 2911 Register XorSrc; 2912 Register CstReg; 2913 // We match xor(src, true) here. 2914 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2915 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 2916 return false; 2917 2918 if (!MRI.hasOneNonDBGUse(XorSrc)) 2919 return false; 2920 2921 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 2922 // and ORs. The suffix of RegsToNegate starting from index I is used a work 2923 // list of tree nodes to visit. 2924 RegsToNegate.push_back(XorSrc); 2925 // Remember whether the comparisons are all integer or all floating point. 2926 bool IsInt = false; 2927 bool IsFP = false; 2928 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 2929 Register Reg = RegsToNegate[I]; 2930 if (!MRI.hasOneNonDBGUse(Reg)) 2931 return false; 2932 MachineInstr *Def = MRI.getVRegDef(Reg); 2933 switch (Def->getOpcode()) { 2934 default: 2935 // Don't match if the tree contains anything other than ANDs, ORs and 2936 // comparisons. 2937 return false; 2938 case TargetOpcode::G_ICMP: 2939 if (IsFP) 2940 return false; 2941 IsInt = true; 2942 // When we apply the combine we will invert the predicate. 2943 break; 2944 case TargetOpcode::G_FCMP: 2945 if (IsInt) 2946 return false; 2947 IsFP = true; 2948 // When we apply the combine we will invert the predicate. 2949 break; 2950 case TargetOpcode::G_AND: 2951 case TargetOpcode::G_OR: 2952 // Implement De Morgan's laws: 2953 // ~(x & y) -> ~x | ~y 2954 // ~(x | y) -> ~x & ~y 2955 // When we apply the combine we will change the opcode and recursively 2956 // negate the operands. 2957 RegsToNegate.push_back(Def->getOperand(1).getReg()); 2958 RegsToNegate.push_back(Def->getOperand(2).getReg()); 2959 break; 2960 } 2961 } 2962 2963 // Now we know whether the comparisons are integer or floating point, check 2964 // the constant in the xor. 2965 int64_t Cst; 2966 if (Ty.isVector()) { 2967 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 2968 auto MaybeCst = getIConstantSplatSExtVal(*CstDef, MRI); 2969 if (!MaybeCst) 2970 return false; 2971 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 2972 return false; 2973 } else { 2974 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 2975 return false; 2976 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 2977 return false; 2978 } 2979 2980 return true; 2981 } 2982 2983 void CombinerHelper::applyNotCmp(MachineInstr &MI, 2984 SmallVectorImpl<Register> &RegsToNegate) { 2985 for (Register Reg : RegsToNegate) { 2986 MachineInstr *Def = MRI.getVRegDef(Reg); 2987 Observer.changingInstr(*Def); 2988 // For each comparison, invert the opcode. For each AND and OR, change the 2989 // opcode. 2990 switch (Def->getOpcode()) { 2991 default: 2992 llvm_unreachable("Unexpected opcode"); 2993 case TargetOpcode::G_ICMP: 2994 case TargetOpcode::G_FCMP: { 2995 MachineOperand &PredOp = Def->getOperand(1); 2996 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 2997 (CmpInst::Predicate)PredOp.getPredicate()); 2998 PredOp.setPredicate(NewP); 2999 break; 3000 } 3001 case TargetOpcode::G_AND: 3002 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3003 break; 3004 case TargetOpcode::G_OR: 3005 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3006 break; 3007 } 3008 Observer.changedInstr(*Def); 3009 } 3010 3011 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3012 MI.eraseFromParent(); 3013 } 3014 3015 bool CombinerHelper::matchXorOfAndWithSameReg( 3016 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3017 // Match (xor (and x, y), y) (or any of its commuted cases) 3018 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3019 Register &X = MatchInfo.first; 3020 Register &Y = MatchInfo.second; 3021 Register AndReg = MI.getOperand(1).getReg(); 3022 Register SharedReg = MI.getOperand(2).getReg(); 3023 3024 // Find a G_AND on either side of the G_XOR. 3025 // Look for one of 3026 // 3027 // (xor (and x, y), SharedReg) 3028 // (xor SharedReg, (and x, y)) 3029 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3030 std::swap(AndReg, SharedReg); 3031 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3032 return false; 3033 } 3034 3035 // Only do this if we'll eliminate the G_AND. 3036 if (!MRI.hasOneNonDBGUse(AndReg)) 3037 return false; 3038 3039 // We can combine if SharedReg is the same as either the LHS or RHS of the 3040 // G_AND. 3041 if (Y != SharedReg) 3042 std::swap(X, Y); 3043 return Y == SharedReg; 3044 } 3045 3046 void CombinerHelper::applyXorOfAndWithSameReg( 3047 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3048 // Fold (xor (and x, y), y) -> (and (not x), y) 3049 Builder.setInstrAndDebugLoc(MI); 3050 Register X, Y; 3051 std::tie(X, Y) = MatchInfo; 3052 auto Not = Builder.buildNot(MRI.getType(X), X); 3053 Observer.changingInstr(MI); 3054 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3055 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3056 MI.getOperand(2).setReg(Y); 3057 Observer.changedInstr(MI); 3058 } 3059 3060 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3061 auto &PtrAdd = cast<GPtrAdd>(MI); 3062 Register DstReg = PtrAdd.getReg(0); 3063 LLT Ty = MRI.getType(DstReg); 3064 const DataLayout &DL = Builder.getMF().getDataLayout(); 3065 3066 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3067 return false; 3068 3069 if (Ty.isPointer()) { 3070 auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI); 3071 return ConstVal && *ConstVal == 0; 3072 } 3073 3074 assert(Ty.isVector() && "Expecting a vector type"); 3075 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 3076 return isBuildVectorAllZeros(*VecMI, MRI); 3077 } 3078 3079 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3080 auto &PtrAdd = cast<GPtrAdd>(MI); 3081 Builder.setInstrAndDebugLoc(PtrAdd); 3082 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 3083 PtrAdd.eraseFromParent(); 3084 } 3085 3086 /// The second source operand is known to be a power of 2. 3087 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3088 Register DstReg = MI.getOperand(0).getReg(); 3089 Register Src0 = MI.getOperand(1).getReg(); 3090 Register Pow2Src1 = MI.getOperand(2).getReg(); 3091 LLT Ty = MRI.getType(DstReg); 3092 Builder.setInstrAndDebugLoc(MI); 3093 3094 // Fold (urem x, pow2) -> (and x, pow2-1) 3095 auto NegOne = Builder.buildConstant(Ty, -1); 3096 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3097 Builder.buildAnd(DstReg, Src0, Add); 3098 MI.eraseFromParent(); 3099 } 3100 3101 bool CombinerHelper::matchFoldBinOpIntoSelect(MachineInstr &MI, 3102 unsigned &SelectOpNo) { 3103 Register LHS = MI.getOperand(1).getReg(); 3104 Register RHS = MI.getOperand(2).getReg(); 3105 3106 Register OtherOperandReg = RHS; 3107 SelectOpNo = 1; 3108 MachineInstr *Select = MRI.getVRegDef(LHS); 3109 3110 // Don't do this unless the old select is going away. We want to eliminate the 3111 // binary operator, not replace a binop with a select. 3112 if (Select->getOpcode() != TargetOpcode::G_SELECT || 3113 !MRI.hasOneNonDBGUse(LHS)) { 3114 OtherOperandReg = LHS; 3115 SelectOpNo = 2; 3116 Select = MRI.getVRegDef(RHS); 3117 if (Select->getOpcode() != TargetOpcode::G_SELECT || 3118 !MRI.hasOneNonDBGUse(RHS)) 3119 return false; 3120 } 3121 3122 MachineInstr *SelectLHS = MRI.getVRegDef(Select->getOperand(2).getReg()); 3123 MachineInstr *SelectRHS = MRI.getVRegDef(Select->getOperand(3).getReg()); 3124 3125 if (!isConstantOrConstantVector(*SelectLHS, MRI, 3126 /*AllowFP*/ true, 3127 /*AllowOpaqueConstants*/ false)) 3128 return false; 3129 if (!isConstantOrConstantVector(*SelectRHS, MRI, 3130 /*AllowFP*/ true, 3131 /*AllowOpaqueConstants*/ false)) 3132 return false; 3133 3134 unsigned BinOpcode = MI.getOpcode(); 3135 3136 // We know know one of the operands is a select of constants. Now verify that 3137 // the other binary operator operand is either a constant, or we can handle a 3138 // variable. 3139 bool CanFoldNonConst = 3140 (BinOpcode == TargetOpcode::G_AND || BinOpcode == TargetOpcode::G_OR) && 3141 (isNullOrNullSplat(*SelectLHS, MRI) || 3142 isAllOnesOrAllOnesSplat(*SelectLHS, MRI)) && 3143 (isNullOrNullSplat(*SelectRHS, MRI) || 3144 isAllOnesOrAllOnesSplat(*SelectRHS, MRI)); 3145 if (CanFoldNonConst) 3146 return true; 3147 3148 return isConstantOrConstantVector(*MRI.getVRegDef(OtherOperandReg), MRI, 3149 /*AllowFP*/ true, 3150 /*AllowOpaqueConstants*/ false); 3151 } 3152 3153 /// \p SelectOperand is the operand in binary operator \p MI that is the select 3154 /// to fold. 3155 bool CombinerHelper::applyFoldBinOpIntoSelect(MachineInstr &MI, 3156 const unsigned &SelectOperand) { 3157 Builder.setInstrAndDebugLoc(MI); 3158 3159 Register Dst = MI.getOperand(0).getReg(); 3160 Register LHS = MI.getOperand(1).getReg(); 3161 Register RHS = MI.getOperand(2).getReg(); 3162 MachineInstr *Select = MRI.getVRegDef(MI.getOperand(SelectOperand).getReg()); 3163 3164 Register SelectCond = Select->getOperand(1).getReg(); 3165 Register SelectTrue = Select->getOperand(2).getReg(); 3166 Register SelectFalse = Select->getOperand(3).getReg(); 3167 3168 LLT Ty = MRI.getType(Dst); 3169 unsigned BinOpcode = MI.getOpcode(); 3170 3171 Register FoldTrue, FoldFalse; 3172 3173 // We have a select-of-constants followed by a binary operator with a 3174 // constant. Eliminate the binop by pulling the constant math into the select. 3175 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO 3176 if (SelectOperand == 1) { 3177 // TODO: SelectionDAG verifies this actually constant folds before 3178 // committing to the combine. 3179 3180 FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {SelectTrue, RHS}).getReg(0); 3181 FoldFalse = 3182 Builder.buildInstr(BinOpcode, {Ty}, {SelectFalse, RHS}).getReg(0); 3183 } else { 3184 FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectTrue}).getReg(0); 3185 FoldFalse = 3186 Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectFalse}).getReg(0); 3187 } 3188 3189 Builder.buildSelect(Dst, SelectCond, FoldTrue, FoldFalse, MI.getFlags()); 3190 Observer.erasingInstr(*Select); 3191 Select->eraseFromParent(); 3192 MI.eraseFromParent(); 3193 3194 return true; 3195 } 3196 3197 Optional<SmallVector<Register, 8>> 3198 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3199 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3200 // We want to detect if Root is part of a tree which represents a bunch 3201 // of loads being merged into a larger load. We'll try to recognize patterns 3202 // like, for example: 3203 // 3204 // Reg Reg 3205 // \ / 3206 // OR_1 Reg 3207 // \ / 3208 // OR_2 3209 // \ Reg 3210 // .. / 3211 // Root 3212 // 3213 // Reg Reg Reg Reg 3214 // \ / \ / 3215 // OR_1 OR_2 3216 // \ / 3217 // \ / 3218 // ... 3219 // Root 3220 // 3221 // Each "Reg" may have been produced by a load + some arithmetic. This 3222 // function will save each of them. 3223 SmallVector<Register, 8> RegsToVisit; 3224 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3225 3226 // In the "worst" case, we're dealing with a load for each byte. So, there 3227 // are at most #bytes - 1 ORs. 3228 const unsigned MaxIter = 3229 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3230 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3231 if (Ors.empty()) 3232 break; 3233 const MachineInstr *Curr = Ors.pop_back_val(); 3234 Register OrLHS = Curr->getOperand(1).getReg(); 3235 Register OrRHS = Curr->getOperand(2).getReg(); 3236 3237 // In the combine, we want to elimate the entire tree. 3238 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3239 return None; 3240 3241 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3242 // something that may be a load + arithmetic. 3243 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3244 Ors.push_back(Or); 3245 else 3246 RegsToVisit.push_back(OrLHS); 3247 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3248 Ors.push_back(Or); 3249 else 3250 RegsToVisit.push_back(OrRHS); 3251 } 3252 3253 // We're going to try and merge each register into a wider power-of-2 type, 3254 // so we ought to have an even number of registers. 3255 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3256 return None; 3257 return RegsToVisit; 3258 } 3259 3260 /// Helper function for findLoadOffsetsForLoadOrCombine. 3261 /// 3262 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3263 /// and then moving that value into a specific byte offset. 3264 /// 3265 /// e.g. x[i] << 24 3266 /// 3267 /// \returns The load instruction and the byte offset it is moved into. 3268 static Optional<std::pair<GZExtLoad *, int64_t>> 3269 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3270 const MachineRegisterInfo &MRI) { 3271 assert(MRI.hasOneNonDBGUse(Reg) && 3272 "Expected Reg to only have one non-debug use?"); 3273 Register MaybeLoad; 3274 int64_t Shift; 3275 if (!mi_match(Reg, MRI, 3276 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3277 Shift = 0; 3278 MaybeLoad = Reg; 3279 } 3280 3281 if (Shift % MemSizeInBits != 0) 3282 return None; 3283 3284 // TODO: Handle other types of loads. 3285 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3286 if (!Load) 3287 return None; 3288 3289 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3290 return None; 3291 3292 return std::make_pair(Load, Shift / MemSizeInBits); 3293 } 3294 3295 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3296 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3297 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3298 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3299 3300 // Each load found for the pattern. There should be one for each RegsToVisit. 3301 SmallSetVector<const MachineInstr *, 8> Loads; 3302 3303 // The lowest index used in any load. (The lowest "i" for each x[i].) 3304 int64_t LowestIdx = INT64_MAX; 3305 3306 // The load which uses the lowest index. 3307 GZExtLoad *LowestIdxLoad = nullptr; 3308 3309 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3310 SmallSet<int64_t, 8> SeenIdx; 3311 3312 // Ensure each load is in the same MBB. 3313 // TODO: Support multiple MachineBasicBlocks. 3314 MachineBasicBlock *MBB = nullptr; 3315 const MachineMemOperand *MMO = nullptr; 3316 3317 // Earliest instruction-order load in the pattern. 3318 GZExtLoad *EarliestLoad = nullptr; 3319 3320 // Latest instruction-order load in the pattern. 3321 GZExtLoad *LatestLoad = nullptr; 3322 3323 // Base pointer which every load should share. 3324 Register BasePtr; 3325 3326 // We want to find a load for each register. Each load should have some 3327 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3328 // track of the load which uses the lowest index. Later, we will check if we 3329 // can use its pointer in the final, combined load. 3330 for (auto Reg : RegsToVisit) { 3331 // Find the load, and find the position that it will end up in (e.g. a 3332 // shifted) value. 3333 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3334 if (!LoadAndPos) 3335 return None; 3336 GZExtLoad *Load; 3337 int64_t DstPos; 3338 std::tie(Load, DstPos) = *LoadAndPos; 3339 3340 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3341 // it is difficult to check for stores/calls/etc between loads. 3342 MachineBasicBlock *LoadMBB = Load->getParent(); 3343 if (!MBB) 3344 MBB = LoadMBB; 3345 if (LoadMBB != MBB) 3346 return None; 3347 3348 // Make sure that the MachineMemOperands of every seen load are compatible. 3349 auto &LoadMMO = Load->getMMO(); 3350 if (!MMO) 3351 MMO = &LoadMMO; 3352 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3353 return None; 3354 3355 // Find out what the base pointer and index for the load is. 3356 Register LoadPtr; 3357 int64_t Idx; 3358 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3359 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3360 LoadPtr = Load->getOperand(1).getReg(); 3361 Idx = 0; 3362 } 3363 3364 // Don't combine things like a[i], a[i] -> a bigger load. 3365 if (!SeenIdx.insert(Idx).second) 3366 return None; 3367 3368 // Every load must share the same base pointer; don't combine things like: 3369 // 3370 // a[i], b[i + 1] -> a bigger load. 3371 if (!BasePtr.isValid()) 3372 BasePtr = LoadPtr; 3373 if (BasePtr != LoadPtr) 3374 return None; 3375 3376 if (Idx < LowestIdx) { 3377 LowestIdx = Idx; 3378 LowestIdxLoad = Load; 3379 } 3380 3381 // Keep track of the byte offset that this load ends up at. If we have seen 3382 // the byte offset, then stop here. We do not want to combine: 3383 // 3384 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3385 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3386 return None; 3387 Loads.insert(Load); 3388 3389 // Keep track of the position of the earliest/latest loads in the pattern. 3390 // We will check that there are no load fold barriers between them later 3391 // on. 3392 // 3393 // FIXME: Is there a better way to check for load fold barriers? 3394 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3395 EarliestLoad = Load; 3396 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3397 LatestLoad = Load; 3398 } 3399 3400 // We found a load for each register. Let's check if each load satisfies the 3401 // pattern. 3402 assert(Loads.size() == RegsToVisit.size() && 3403 "Expected to find a load for each register?"); 3404 assert(EarliestLoad != LatestLoad && EarliestLoad && 3405 LatestLoad && "Expected at least two loads?"); 3406 3407 // Check if there are any stores, calls, etc. between any of the loads. If 3408 // there are, then we can't safely perform the combine. 3409 // 3410 // MaxIter is chosen based off the (worst case) number of iterations it 3411 // typically takes to succeed in the LLVM test suite plus some padding. 3412 // 3413 // FIXME: Is there a better way to check for load fold barriers? 3414 const unsigned MaxIter = 20; 3415 unsigned Iter = 0; 3416 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3417 LatestLoad->getIterator())) { 3418 if (Loads.count(&MI)) 3419 continue; 3420 if (MI.isLoadFoldBarrier()) 3421 return None; 3422 if (Iter++ == MaxIter) 3423 return None; 3424 } 3425 3426 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3427 } 3428 3429 bool CombinerHelper::matchLoadOrCombine( 3430 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3431 assert(MI.getOpcode() == TargetOpcode::G_OR); 3432 MachineFunction &MF = *MI.getMF(); 3433 // Assuming a little-endian target, transform: 3434 // s8 *a = ... 3435 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3436 // => 3437 // s32 val = *((i32)a) 3438 // 3439 // s8 *a = ... 3440 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3441 // => 3442 // s32 val = BSWAP(*((s32)a)) 3443 Register Dst = MI.getOperand(0).getReg(); 3444 LLT Ty = MRI.getType(Dst); 3445 if (Ty.isVector()) 3446 return false; 3447 3448 // We need to combine at least two loads into this type. Since the smallest 3449 // possible load is into a byte, we need at least a 16-bit wide type. 3450 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3451 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3452 return false; 3453 3454 // Match a collection of non-OR instructions in the pattern. 3455 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3456 if (!RegsToVisit) 3457 return false; 3458 3459 // We have a collection of non-OR instructions. Figure out how wide each of 3460 // the small loads should be based off of the number of potential loads we 3461 // found. 3462 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3463 if (NarrowMemSizeInBits % 8 != 0) 3464 return false; 3465 3466 // Check if each register feeding into each OR is a load from the same 3467 // base pointer + some arithmetic. 3468 // 3469 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3470 // 3471 // Also verify that each of these ends up putting a[i] into the same memory 3472 // offset as a load into a wide type would. 3473 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3474 GZExtLoad *LowestIdxLoad, *LatestLoad; 3475 int64_t LowestIdx; 3476 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3477 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3478 if (!MaybeLoadInfo) 3479 return false; 3480 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3481 3482 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3483 // we found before, check if this corresponds to a big or little endian byte 3484 // pattern. If it does, then we can represent it using a load + possibly a 3485 // BSWAP. 3486 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3487 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3488 if (!IsBigEndian) 3489 return false; 3490 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3491 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3492 return false; 3493 3494 // Make sure that the load from the lowest index produces offset 0 in the 3495 // final value. 3496 // 3497 // This ensures that we won't combine something like this: 3498 // 3499 // load x[i] -> byte 2 3500 // load x[i+1] -> byte 0 ---> wide_load x[i] 3501 // load x[i+2] -> byte 1 3502 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3503 const unsigned ZeroByteOffset = 3504 *IsBigEndian 3505 ? bigEndianByteAt(NumLoadsInTy, 0) 3506 : littleEndianByteAt(NumLoadsInTy, 0); 3507 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3508 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3509 ZeroOffsetIdx->second != LowestIdx) 3510 return false; 3511 3512 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3513 // may not use index 0. 3514 Register Ptr = LowestIdxLoad->getPointerReg(); 3515 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3516 LegalityQuery::MemDesc MMDesc(MMO); 3517 MMDesc.MemoryTy = Ty; 3518 if (!isLegalOrBeforeLegalizer( 3519 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3520 return false; 3521 auto PtrInfo = MMO.getPointerInfo(); 3522 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3523 3524 // Load must be allowed and fast on the target. 3525 LLVMContext &C = MF.getFunction().getContext(); 3526 auto &DL = MF.getDataLayout(); 3527 bool Fast = false; 3528 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3529 !Fast) 3530 return false; 3531 3532 MatchInfo = [=](MachineIRBuilder &MIB) { 3533 MIB.setInstrAndDebugLoc(*LatestLoad); 3534 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3535 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3536 if (NeedsBSwap) 3537 MIB.buildBSwap(Dst, LoadDst); 3538 }; 3539 return true; 3540 } 3541 3542 /// Check if the store \p Store is a truncstore that can be merged. That is, 3543 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty 3544 /// Register then it does not need to match and SrcVal is set to the source 3545 /// value found. 3546 /// On match, returns the start byte offset of the \p SrcVal that is being 3547 /// stored. 3548 static Optional<int64_t> getTruncStoreByteOffset(GStore &Store, Register &SrcVal, 3549 MachineRegisterInfo &MRI) { 3550 Register TruncVal; 3551 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) 3552 return None; 3553 3554 // The shift amount must be a constant multiple of the narrow type. 3555 // It is translated to the offset address in the wide source value "y". 3556 // 3557 // x = G_LSHR y, ShiftAmtC 3558 // s8 z = G_TRUNC x 3559 // store z, ... 3560 Register FoundSrcVal; 3561 int64_t ShiftAmt; 3562 if (!mi_match(TruncVal, MRI, 3563 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), 3564 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { 3565 if (!SrcVal.isValid() || TruncVal == SrcVal) { 3566 if (!SrcVal.isValid()) 3567 SrcVal = TruncVal; 3568 return 0; // If it's the lowest index store. 3569 } 3570 return None; 3571 } 3572 3573 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); 3574 if (ShiftAmt % NarrowBits!= 0) 3575 return None; 3576 const unsigned Offset = ShiftAmt / NarrowBits; 3577 3578 if (SrcVal.isValid() && FoundSrcVal != SrcVal) 3579 return None; 3580 3581 if (!SrcVal.isValid()) 3582 SrcVal = FoundSrcVal; 3583 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) 3584 return None; 3585 return Offset; 3586 } 3587 3588 /// Match a pattern where a wide type scalar value is stored by several narrow 3589 /// stores. Fold it into a single store or a BSWAP and a store if the targets 3590 /// supports it. 3591 /// 3592 /// Assuming little endian target: 3593 /// i8 *p = ... 3594 /// i32 val = ... 3595 /// p[0] = (val >> 0) & 0xFF; 3596 /// p[1] = (val >> 8) & 0xFF; 3597 /// p[2] = (val >> 16) & 0xFF; 3598 /// p[3] = (val >> 24) & 0xFF; 3599 /// => 3600 /// *((i32)p) = val; 3601 /// 3602 /// i8 *p = ... 3603 /// i32 val = ... 3604 /// p[0] = (val >> 24) & 0xFF; 3605 /// p[1] = (val >> 16) & 0xFF; 3606 /// p[2] = (val >> 8) & 0xFF; 3607 /// p[3] = (val >> 0) & 0xFF; 3608 /// => 3609 /// *((i32)p) = BSWAP(val); 3610 bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI, 3611 MergeTruncStoresInfo &MatchInfo) { 3612 auto &StoreMI = cast<GStore>(MI); 3613 LLT MemTy = StoreMI.getMMO().getMemoryType(); 3614 3615 // We only handle merging simple stores of 1-4 bytes. 3616 if (!MemTy.isScalar()) 3617 return false; 3618 switch (MemTy.getSizeInBits()) { 3619 case 8: 3620 case 16: 3621 case 32: 3622 break; 3623 default: 3624 return false; 3625 } 3626 if (!StoreMI.isSimple()) 3627 return false; 3628 3629 // We do a simple search for mergeable stores prior to this one. 3630 // Any potential alias hazard along the way terminates the search. 3631 SmallVector<GStore *> FoundStores; 3632 3633 // We're looking for: 3634 // 1) a (store(trunc(...))) 3635 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get 3636 // the partial value stored. 3637 // 3) where the offsets form either a little or big-endian sequence. 3638 3639 auto &LastStore = StoreMI; 3640 3641 // The single base pointer that all stores must use. 3642 Register BaseReg; 3643 int64_t LastOffset; 3644 if (!mi_match(LastStore.getPointerReg(), MRI, 3645 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { 3646 BaseReg = LastStore.getPointerReg(); 3647 LastOffset = 0; 3648 } 3649 3650 GStore *LowestIdxStore = &LastStore; 3651 int64_t LowestIdxOffset = LastOffset; 3652 3653 Register WideSrcVal; 3654 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI); 3655 if (!LowestShiftAmt) 3656 return false; // Didn't match a trunc. 3657 assert(WideSrcVal.isValid()); 3658 3659 LLT WideStoreTy = MRI.getType(WideSrcVal); 3660 // The wide type might not be a multiple of the memory type, e.g. s48 and s32. 3661 if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0) 3662 return false; 3663 const unsigned NumStoresRequired = 3664 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); 3665 3666 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); 3667 OffsetMap[*LowestShiftAmt] = LastOffset; 3668 FoundStores.emplace_back(&LastStore); 3669 3670 // Search the block up for more stores. 3671 // We use a search threshold of 10 instructions here because the combiner 3672 // works top-down within a block, and we don't want to search an unbounded 3673 // number of predecessor instructions trying to find matching stores. 3674 // If we moved this optimization into a separate pass then we could probably 3675 // use a more efficient search without having a hard-coded threshold. 3676 const int MaxInstsToCheck = 10; 3677 int NumInstsChecked = 0; 3678 for (auto II = ++LastStore.getReverseIterator(); 3679 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; 3680 ++II) { 3681 NumInstsChecked++; 3682 GStore *NewStore; 3683 if ((NewStore = dyn_cast<GStore>(&*II))) { 3684 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) 3685 break; 3686 } else if (II->isLoadFoldBarrier() || II->mayLoad()) { 3687 break; 3688 } else { 3689 continue; // This is a safe instruction we can look past. 3690 } 3691 3692 Register NewBaseReg; 3693 int64_t MemOffset; 3694 // Check we're storing to the same base + some offset. 3695 if (!mi_match(NewStore->getPointerReg(), MRI, 3696 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { 3697 NewBaseReg = NewStore->getPointerReg(); 3698 MemOffset = 0; 3699 } 3700 if (BaseReg != NewBaseReg) 3701 break; 3702 3703 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI); 3704 if (!ShiftByteOffset) 3705 break; 3706 if (MemOffset < LowestIdxOffset) { 3707 LowestIdxOffset = MemOffset; 3708 LowestIdxStore = NewStore; 3709 } 3710 3711 // Map the offset in the store and the offset in the combined value, and 3712 // early return if it has been set before. 3713 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || 3714 OffsetMap[*ShiftByteOffset] != INT64_MAX) 3715 break; 3716 OffsetMap[*ShiftByteOffset] = MemOffset; 3717 3718 FoundStores.emplace_back(NewStore); 3719 // Reset counter since we've found a matching inst. 3720 NumInstsChecked = 0; 3721 if (FoundStores.size() == NumStoresRequired) 3722 break; 3723 } 3724 3725 if (FoundStores.size() != NumStoresRequired) { 3726 return false; 3727 } 3728 3729 const auto &DL = LastStore.getMF()->getDataLayout(); 3730 auto &C = LastStore.getMF()->getFunction().getContext(); 3731 // Check that a store of the wide type is both allowed and fast on the target 3732 bool Fast = false; 3733 bool Allowed = getTargetLowering().allowsMemoryAccess( 3734 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); 3735 if (!Allowed || !Fast) 3736 return false; 3737 3738 // Check if the pieces of the value are going to the expected places in memory 3739 // to merge the stores. 3740 unsigned NarrowBits = MemTy.getScalarSizeInBits(); 3741 auto checkOffsets = [&](bool MatchLittleEndian) { 3742 if (MatchLittleEndian) { 3743 for (unsigned i = 0; i != NumStoresRequired; ++i) 3744 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) 3745 return false; 3746 } else { // MatchBigEndian by reversing loop counter. 3747 for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired; 3748 ++i, --j) 3749 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) 3750 return false; 3751 } 3752 return true; 3753 }; 3754 3755 // Check if the offsets line up for the native data layout of this target. 3756 bool NeedBswap = false; 3757 bool NeedRotate = false; 3758 if (!checkOffsets(DL.isLittleEndian())) { 3759 // Special-case: check if byte offsets line up for the opposite endian. 3760 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) 3761 NeedBswap = true; 3762 else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian())) 3763 NeedRotate = true; 3764 else 3765 return false; 3766 } 3767 3768 if (NeedBswap && 3769 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}})) 3770 return false; 3771 if (NeedRotate && 3772 !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}})) 3773 return false; 3774 3775 MatchInfo.NeedBSwap = NeedBswap; 3776 MatchInfo.NeedRotate = NeedRotate; 3777 MatchInfo.LowestIdxStore = LowestIdxStore; 3778 MatchInfo.WideSrcVal = WideSrcVal; 3779 MatchInfo.FoundStores = std::move(FoundStores); 3780 return true; 3781 } 3782 3783 void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI, 3784 MergeTruncStoresInfo &MatchInfo) { 3785 3786 Builder.setInstrAndDebugLoc(MI); 3787 Register WideSrcVal = MatchInfo.WideSrcVal; 3788 LLT WideStoreTy = MRI.getType(WideSrcVal); 3789 3790 if (MatchInfo.NeedBSwap) { 3791 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); 3792 } else if (MatchInfo.NeedRotate) { 3793 assert(WideStoreTy.getSizeInBits() % 2 == 0 && 3794 "Unexpected type for rotate"); 3795 auto RotAmt = 3796 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); 3797 WideSrcVal = 3798 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); 3799 } 3800 3801 Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(), 3802 MatchInfo.LowestIdxStore->getMMO().getPointerInfo(), 3803 MatchInfo.LowestIdxStore->getMMO().getAlign()); 3804 3805 // Erase the old stores. 3806 for (auto *ST : MatchInfo.FoundStores) 3807 ST->eraseFromParent(); 3808 } 3809 3810 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3811 MachineInstr *&ExtMI) { 3812 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3813 3814 Register DstReg = MI.getOperand(0).getReg(); 3815 3816 // TODO: Extending a vector may be expensive, don't do this until heuristics 3817 // are better. 3818 if (MRI.getType(DstReg).isVector()) 3819 return false; 3820 3821 // Try to match a phi, whose only use is an extend. 3822 if (!MRI.hasOneNonDBGUse(DstReg)) 3823 return false; 3824 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3825 switch (ExtMI->getOpcode()) { 3826 case TargetOpcode::G_ANYEXT: 3827 return true; // G_ANYEXT is usually free. 3828 case TargetOpcode::G_ZEXT: 3829 case TargetOpcode::G_SEXT: 3830 break; 3831 default: 3832 return false; 3833 } 3834 3835 // If the target is likely to fold this extend away, don't propagate. 3836 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3837 return false; 3838 3839 // We don't want to propagate the extends unless there's a good chance that 3840 // they'll be optimized in some way. 3841 // Collect the unique incoming values. 3842 SmallPtrSet<MachineInstr *, 4> InSrcs; 3843 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3844 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3845 switch (DefMI->getOpcode()) { 3846 case TargetOpcode::G_LOAD: 3847 case TargetOpcode::G_TRUNC: 3848 case TargetOpcode::G_SEXT: 3849 case TargetOpcode::G_ZEXT: 3850 case TargetOpcode::G_ANYEXT: 3851 case TargetOpcode::G_CONSTANT: 3852 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3853 // Don't try to propagate if there are too many places to create new 3854 // extends, chances are it'll increase code size. 3855 if (InSrcs.size() > 2) 3856 return false; 3857 break; 3858 default: 3859 return false; 3860 } 3861 } 3862 return true; 3863 } 3864 3865 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3866 MachineInstr *&ExtMI) { 3867 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3868 Register DstReg = ExtMI->getOperand(0).getReg(); 3869 LLT ExtTy = MRI.getType(DstReg); 3870 3871 // Propagate the extension into the block of each incoming reg's block. 3872 // Use a SetVector here because PHIs can have duplicate edges, and we want 3873 // deterministic iteration order. 3874 SmallSetVector<MachineInstr *, 8> SrcMIs; 3875 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3876 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3877 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3878 if (!SrcMIs.insert(SrcMI)) 3879 continue; 3880 3881 // Build an extend after each src inst. 3882 auto *MBB = SrcMI->getParent(); 3883 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3884 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3885 InsertPt = MBB->getFirstNonPHI(); 3886 3887 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3888 Builder.setDebugLoc(MI.getDebugLoc()); 3889 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3890 SrcMI->getOperand(0).getReg()); 3891 OldToNewSrcMap[SrcMI] = NewExt; 3892 } 3893 3894 // Create a new phi with the extended inputs. 3895 Builder.setInstrAndDebugLoc(MI); 3896 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3897 NewPhi.addDef(DstReg); 3898 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 3899 if (!MO.isReg()) { 3900 NewPhi.addMBB(MO.getMBB()); 3901 continue; 3902 } 3903 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3904 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3905 } 3906 Builder.insertInstr(NewPhi); 3907 ExtMI->eraseFromParent(); 3908 } 3909 3910 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3911 Register &Reg) { 3912 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3913 // If we have a constant index, look for a G_BUILD_VECTOR source 3914 // and find the source register that the index maps to. 3915 Register SrcVec = MI.getOperand(1).getReg(); 3916 LLT SrcTy = MRI.getType(SrcVec); 3917 if (!isLegalOrBeforeLegalizer( 3918 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3919 return false; 3920 3921 auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3922 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3923 return false; 3924 3925 unsigned VecIdx = Cst->Value.getZExtValue(); 3926 MachineInstr *BuildVecMI = 3927 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3928 if (!BuildVecMI) { 3929 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3930 if (!BuildVecMI) 3931 return false; 3932 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3933 if (!isLegalOrBeforeLegalizer( 3934 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3935 return false; 3936 } 3937 3938 EVT Ty(getMVTForLLT(SrcTy)); 3939 if (!MRI.hasOneNonDBGUse(SrcVec) && 3940 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3941 return false; 3942 3943 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3944 return true; 3945 } 3946 3947 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3948 Register &Reg) { 3949 // Check the type of the register, since it may have come from a 3950 // G_BUILD_VECTOR_TRUNC. 3951 LLT ScalarTy = MRI.getType(Reg); 3952 Register DstReg = MI.getOperand(0).getReg(); 3953 LLT DstTy = MRI.getType(DstReg); 3954 3955 Builder.setInstrAndDebugLoc(MI); 3956 if (ScalarTy != DstTy) { 3957 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3958 Builder.buildTrunc(DstReg, Reg); 3959 MI.eraseFromParent(); 3960 return; 3961 } 3962 replaceSingleDefInstWithReg(MI, Reg); 3963 } 3964 3965 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3966 MachineInstr &MI, 3967 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3968 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3969 // This combine tries to find build_vector's which have every source element 3970 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3971 // the masked load scalarization is run late in the pipeline. There's already 3972 // a combine for a similar pattern starting from the extract, but that 3973 // doesn't attempt to do it if there are multiple uses of the build_vector, 3974 // which in this case is true. Starting the combine from the build_vector 3975 // feels more natural than trying to find sibling nodes of extracts. 3976 // E.g. 3977 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3978 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3979 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3980 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3981 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3982 // ==> 3983 // replace ext{1,2,3,4} with %s{1,2,3,4} 3984 3985 Register DstReg = MI.getOperand(0).getReg(); 3986 LLT DstTy = MRI.getType(DstReg); 3987 unsigned NumElts = DstTy.getNumElements(); 3988 3989 SmallBitVector ExtractedElts(NumElts); 3990 for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) { 3991 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3992 return false; 3993 auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI); 3994 if (!Cst) 3995 return false; 3996 unsigned Idx = Cst->getZExtValue(); 3997 if (Idx >= NumElts) 3998 return false; // Out of range. 3999 ExtractedElts.set(Idx); 4000 SrcDstPairs.emplace_back( 4001 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 4002 } 4003 // Match if every element was extracted. 4004 return ExtractedElts.all(); 4005 } 4006 4007 void CombinerHelper::applyExtractAllEltsFromBuildVector( 4008 MachineInstr &MI, 4009 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 4010 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 4011 for (auto &Pair : SrcDstPairs) { 4012 auto *ExtMI = Pair.second; 4013 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 4014 ExtMI->eraseFromParent(); 4015 } 4016 MI.eraseFromParent(); 4017 } 4018 4019 void CombinerHelper::applyBuildFn( 4020 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4021 Builder.setInstrAndDebugLoc(MI); 4022 MatchInfo(Builder); 4023 MI.eraseFromParent(); 4024 } 4025 4026 void CombinerHelper::applyBuildFnNoErase( 4027 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4028 Builder.setInstrAndDebugLoc(MI); 4029 MatchInfo(Builder); 4030 } 4031 4032 bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI, 4033 BuildFnTy &MatchInfo) { 4034 assert(MI.getOpcode() == TargetOpcode::G_OR); 4035 4036 Register Dst = MI.getOperand(0).getReg(); 4037 LLT Ty = MRI.getType(Dst); 4038 unsigned BitWidth = Ty.getScalarSizeInBits(); 4039 4040 Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt; 4041 unsigned FshOpc = 0; 4042 4043 // Match (or (shl ...), (lshr ...)). 4044 if (!mi_match(Dst, MRI, 4045 // m_GOr() handles the commuted version as well. 4046 m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)), 4047 m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt))))) 4048 return false; 4049 4050 // Given constants C0 and C1 such that C0 + C1 is bit-width: 4051 // (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1) 4052 int64_t CstShlAmt, CstLShrAmt; 4053 if (mi_match(ShlAmt, MRI, m_ICstOrSplat(CstShlAmt)) && 4054 mi_match(LShrAmt, MRI, m_ICstOrSplat(CstLShrAmt)) && 4055 CstShlAmt + CstLShrAmt == BitWidth) { 4056 FshOpc = TargetOpcode::G_FSHR; 4057 Amt = LShrAmt; 4058 4059 } else if (mi_match(LShrAmt, MRI, 4060 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && 4061 ShlAmt == Amt) { 4062 // (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt) 4063 FshOpc = TargetOpcode::G_FSHL; 4064 4065 } else if (mi_match(ShlAmt, MRI, 4066 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && 4067 LShrAmt == Amt) { 4068 // (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt) 4069 FshOpc = TargetOpcode::G_FSHR; 4070 4071 } else { 4072 return false; 4073 } 4074 4075 LLT AmtTy = MRI.getType(Amt); 4076 if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}})) 4077 return false; 4078 4079 MatchInfo = [=](MachineIRBuilder &B) { 4080 B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt}); 4081 }; 4082 return true; 4083 } 4084 4085 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 4086 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 4087 unsigned Opc = MI.getOpcode(); 4088 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 4089 Register X = MI.getOperand(1).getReg(); 4090 Register Y = MI.getOperand(2).getReg(); 4091 if (X != Y) 4092 return false; 4093 unsigned RotateOpc = 4094 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 4095 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 4096 } 4097 4098 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 4099 unsigned Opc = MI.getOpcode(); 4100 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 4101 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 4102 Observer.changingInstr(MI); 4103 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 4104 : TargetOpcode::G_ROTR)); 4105 MI.removeOperand(2); 4106 Observer.changedInstr(MI); 4107 } 4108 4109 // Fold (rot x, c) -> (rot x, c % BitSize) 4110 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 4111 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4112 MI.getOpcode() == TargetOpcode::G_ROTR); 4113 unsigned Bitsize = 4114 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4115 Register AmtReg = MI.getOperand(2).getReg(); 4116 bool OutOfRange = false; 4117 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 4118 if (auto *CI = dyn_cast<ConstantInt>(C)) 4119 OutOfRange |= CI->getValue().uge(Bitsize); 4120 return true; 4121 }; 4122 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 4123 } 4124 4125 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 4126 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4127 MI.getOpcode() == TargetOpcode::G_ROTR); 4128 unsigned Bitsize = 4129 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4130 Builder.setInstrAndDebugLoc(MI); 4131 Register Amt = MI.getOperand(2).getReg(); 4132 LLT AmtTy = MRI.getType(Amt); 4133 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 4134 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 4135 Observer.changingInstr(MI); 4136 MI.getOperand(2).setReg(Amt); 4137 Observer.changedInstr(MI); 4138 } 4139 4140 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 4141 int64_t &MatchInfo) { 4142 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4143 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4144 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 4145 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 4146 Optional<bool> KnownVal; 4147 switch (Pred) { 4148 default: 4149 llvm_unreachable("Unexpected G_ICMP predicate?"); 4150 case CmpInst::ICMP_EQ: 4151 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 4152 break; 4153 case CmpInst::ICMP_NE: 4154 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 4155 break; 4156 case CmpInst::ICMP_SGE: 4157 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 4158 break; 4159 case CmpInst::ICMP_SGT: 4160 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 4161 break; 4162 case CmpInst::ICMP_SLE: 4163 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 4164 break; 4165 case CmpInst::ICMP_SLT: 4166 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 4167 break; 4168 case CmpInst::ICMP_UGE: 4169 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 4170 break; 4171 case CmpInst::ICMP_UGT: 4172 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 4173 break; 4174 case CmpInst::ICMP_ULE: 4175 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 4176 break; 4177 case CmpInst::ICMP_ULT: 4178 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 4179 break; 4180 } 4181 if (!KnownVal) 4182 return false; 4183 MatchInfo = 4184 *KnownVal 4185 ? getICmpTrueVal(getTargetLowering(), 4186 /*IsVector = */ 4187 MRI.getType(MI.getOperand(0).getReg()).isVector(), 4188 /* IsFP = */ false) 4189 : 0; 4190 return true; 4191 } 4192 4193 bool CombinerHelper::matchICmpToLHSKnownBits( 4194 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4195 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4196 // Given: 4197 // 4198 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4199 // %cmp = G_ICMP ne %x, 0 4200 // 4201 // Or: 4202 // 4203 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4204 // %cmp = G_ICMP eq %x, 1 4205 // 4206 // We can replace %cmp with %x assuming true is 1 on the target. 4207 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4208 if (!CmpInst::isEquality(Pred)) 4209 return false; 4210 Register Dst = MI.getOperand(0).getReg(); 4211 LLT DstTy = MRI.getType(Dst); 4212 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), 4213 /* IsFP = */ false) != 1) 4214 return false; 4215 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; 4216 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) 4217 return false; 4218 Register LHS = MI.getOperand(2).getReg(); 4219 auto KnownLHS = KB->getKnownBits(LHS); 4220 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) 4221 return false; 4222 // Make sure replacing Dst with the LHS is a legal operation. 4223 LLT LHSTy = MRI.getType(LHS); 4224 unsigned LHSSize = LHSTy.getSizeInBits(); 4225 unsigned DstSize = DstTy.getSizeInBits(); 4226 unsigned Op = TargetOpcode::COPY; 4227 if (DstSize != LHSSize) 4228 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; 4229 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) 4230 return false; 4231 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; 4232 return true; 4233 } 4234 4235 // Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0 4236 bool CombinerHelper::matchAndOrDisjointMask( 4237 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4238 assert(MI.getOpcode() == TargetOpcode::G_AND); 4239 4240 // Ignore vector types to simplify matching the two constants. 4241 // TODO: do this for vectors and scalars via a demanded bits analysis. 4242 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 4243 if (Ty.isVector()) 4244 return false; 4245 4246 Register Src; 4247 Register AndMaskReg; 4248 int64_t AndMaskBits; 4249 int64_t OrMaskBits; 4250 if (!mi_match(MI, MRI, 4251 m_GAnd(m_GOr(m_Reg(Src), m_ICst(OrMaskBits)), 4252 m_all_of(m_ICst(AndMaskBits), m_Reg(AndMaskReg))))) 4253 return false; 4254 4255 // Check if OrMask could turn on any bits in Src. 4256 if (AndMaskBits & OrMaskBits) 4257 return false; 4258 4259 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4260 Observer.changingInstr(MI); 4261 // Canonicalize the result to have the constant on the RHS. 4262 if (MI.getOperand(1).getReg() == AndMaskReg) 4263 MI.getOperand(2).setReg(AndMaskReg); 4264 MI.getOperand(1).setReg(Src); 4265 Observer.changedInstr(MI); 4266 }; 4267 return true; 4268 } 4269 4270 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4271 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4272 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4273 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4274 Register Dst = MI.getOperand(0).getReg(); 4275 Register Src = MI.getOperand(1).getReg(); 4276 LLT Ty = MRI.getType(Src); 4277 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4278 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4279 return false; 4280 int64_t Width = MI.getOperand(2).getImm(); 4281 Register ShiftSrc; 4282 int64_t ShiftImm; 4283 if (!mi_match( 4284 Src, MRI, 4285 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4286 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4287 return false; 4288 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4289 return false; 4290 4291 MatchInfo = [=](MachineIRBuilder &B) { 4292 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4293 auto Cst2 = B.buildConstant(ExtractTy, Width); 4294 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4295 }; 4296 return true; 4297 } 4298 4299 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4300 bool CombinerHelper::matchBitfieldExtractFromAnd( 4301 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4302 assert(MI.getOpcode() == TargetOpcode::G_AND); 4303 Register Dst = MI.getOperand(0).getReg(); 4304 LLT Ty = MRI.getType(Dst); 4305 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4306 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( 4307 TargetOpcode::G_UBFX, Ty, ExtractTy)) 4308 return false; 4309 4310 int64_t AndImm, LSBImm; 4311 Register ShiftSrc; 4312 const unsigned Size = Ty.getScalarSizeInBits(); 4313 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4314 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4315 m_ICst(AndImm)))) 4316 return false; 4317 4318 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4319 auto MaybeMask = static_cast<uint64_t>(AndImm); 4320 if (MaybeMask & (MaybeMask + 1)) 4321 return false; 4322 4323 // LSB must fit within the register. 4324 if (static_cast<uint64_t>(LSBImm) >= Size) 4325 return false; 4326 4327 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4328 MatchInfo = [=](MachineIRBuilder &B) { 4329 auto WidthCst = B.buildConstant(ExtractTy, Width); 4330 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4331 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4332 }; 4333 return true; 4334 } 4335 4336 bool CombinerHelper::matchBitfieldExtractFromShr( 4337 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4338 const unsigned Opcode = MI.getOpcode(); 4339 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 4340 4341 const Register Dst = MI.getOperand(0).getReg(); 4342 4343 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 4344 ? TargetOpcode::G_SBFX 4345 : TargetOpcode::G_UBFX; 4346 4347 // Check if the type we would use for the extract is legal 4348 LLT Ty = MRI.getType(Dst); 4349 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4350 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 4351 return false; 4352 4353 Register ShlSrc; 4354 int64_t ShrAmt; 4355 int64_t ShlAmt; 4356 const unsigned Size = Ty.getScalarSizeInBits(); 4357 4358 // Try to match shr (shl x, c1), c2 4359 if (!mi_match(Dst, MRI, 4360 m_BinOp(Opcode, 4361 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4362 m_ICst(ShrAmt)))) 4363 return false; 4364 4365 // Make sure that the shift sizes can fit a bitfield extract 4366 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4367 return false; 4368 4369 // Skip this combine if the G_SEXT_INREG combine could handle it 4370 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4371 return false; 4372 4373 // Calculate start position and width of the extract 4374 const int64_t Pos = ShrAmt - ShlAmt; 4375 const int64_t Width = Size - ShrAmt; 4376 4377 MatchInfo = [=](MachineIRBuilder &B) { 4378 auto WidthCst = B.buildConstant(ExtractTy, Width); 4379 auto PosCst = B.buildConstant(ExtractTy, Pos); 4380 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4381 }; 4382 return true; 4383 } 4384 4385 bool CombinerHelper::matchBitfieldExtractFromShrAnd( 4386 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4387 const unsigned Opcode = MI.getOpcode(); 4388 assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR); 4389 4390 const Register Dst = MI.getOperand(0).getReg(); 4391 LLT Ty = MRI.getType(Dst); 4392 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4393 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( 4394 TargetOpcode::G_UBFX, Ty, ExtractTy)) 4395 return false; 4396 4397 // Try to match shr (and x, c1), c2 4398 Register AndSrc; 4399 int64_t ShrAmt; 4400 int64_t SMask; 4401 if (!mi_match(Dst, MRI, 4402 m_BinOp(Opcode, 4403 m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))), 4404 m_ICst(ShrAmt)))) 4405 return false; 4406 4407 const unsigned Size = Ty.getScalarSizeInBits(); 4408 if (ShrAmt < 0 || ShrAmt >= Size) 4409 return false; 4410 4411 // If the shift subsumes the mask, emit the 0 directly. 4412 if (0 == (SMask >> ShrAmt)) { 4413 MatchInfo = [=](MachineIRBuilder &B) { 4414 B.buildConstant(Dst, 0); 4415 }; 4416 return true; 4417 } 4418 4419 // Check that ubfx can do the extraction, with no holes in the mask. 4420 uint64_t UMask = SMask; 4421 UMask |= maskTrailingOnes<uint64_t>(ShrAmt); 4422 UMask &= maskTrailingOnes<uint64_t>(Size); 4423 if (!isMask_64(UMask)) 4424 return false; 4425 4426 // Calculate start position and width of the extract. 4427 const int64_t Pos = ShrAmt; 4428 const int64_t Width = countTrailingOnes(UMask) - ShrAmt; 4429 4430 // It's preferable to keep the shift, rather than form G_SBFX. 4431 // TODO: remove the G_AND via demanded bits analysis. 4432 if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size) 4433 return false; 4434 4435 MatchInfo = [=](MachineIRBuilder &B) { 4436 auto WidthCst = B.buildConstant(ExtractTy, Width); 4437 auto PosCst = B.buildConstant(ExtractTy, Pos); 4438 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst}); 4439 }; 4440 return true; 4441 } 4442 4443 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4444 MachineInstr &PtrAdd) { 4445 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4446 4447 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4448 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4449 if (!Src1Def) 4450 return false; 4451 4452 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4453 4454 if (MRI.hasOneNonDBGUse(Src1Reg)) 4455 return false; 4456 4457 auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4458 if (!C1) 4459 return false; 4460 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4461 if (!C2) 4462 return false; 4463 4464 const APInt &C1APIntVal = *C1; 4465 const APInt &C2APIntVal = *C2; 4466 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4467 4468 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4469 // This combine may end up running before ptrtoint/inttoptr combines 4470 // manage to eliminate redundant conversions, so try to look through them. 4471 MachineInstr *ConvUseMI = &UseMI; 4472 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4473 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4474 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4475 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4476 if (!MRI.hasOneNonDBGUse(DefReg)) 4477 break; 4478 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4479 ConvUseOpc = ConvUseMI->getOpcode(); 4480 } 4481 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4482 ConvUseOpc == TargetOpcode::G_STORE; 4483 if (!LoadStore) 4484 continue; 4485 // Is x[offset2] already not a legal addressing mode? If so then 4486 // reassociating the constants breaks nothing (we test offset2 because 4487 // that's the one we hope to fold into the load or store). 4488 TargetLoweringBase::AddrMode AM; 4489 AM.HasBaseReg = true; 4490 AM.BaseOffs = C2APIntVal.getSExtValue(); 4491 unsigned AS = 4492 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4493 Type *AccessTy = 4494 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4495 PtrAdd.getMF()->getFunction().getContext()); 4496 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4497 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4498 AccessTy, AS)) 4499 continue; 4500 4501 // Would x[offset1+offset2] still be a legal addressing mode? 4502 AM.BaseOffs = CombinedValue; 4503 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4504 AccessTy, AS)) 4505 return true; 4506 } 4507 4508 return false; 4509 } 4510 4511 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI, 4512 MachineInstr *RHS, 4513 BuildFnTy &MatchInfo) { 4514 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4515 Register Src1Reg = MI.getOperand(1).getReg(); 4516 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4517 return false; 4518 auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4519 if (!C2) 4520 return false; 4521 4522 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4523 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4524 4525 auto NewBase = 4526 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4527 Observer.changingInstr(MI); 4528 MI.getOperand(1).setReg(NewBase.getReg(0)); 4529 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4530 Observer.changedInstr(MI); 4531 }; 4532 return !reassociationCanBreakAddressingModePattern(MI); 4533 } 4534 4535 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI, 4536 MachineInstr *LHS, 4537 MachineInstr *RHS, 4538 BuildFnTy &MatchInfo) { 4539 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C) 4540 // if and only if (G_PTR_ADD X, C) has one use. 4541 Register LHSBase; 4542 Optional<ValueAndVReg> LHSCstOff; 4543 if (!mi_match(MI.getBaseReg(), MRI, 4544 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff))))) 4545 return false; 4546 4547 auto *LHSPtrAdd = cast<GPtrAdd>(LHS); 4548 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4549 // When we change LHSPtrAdd's offset register we might cause it to use a reg 4550 // before its def. Sink the instruction so the outer PTR_ADD to ensure this 4551 // doesn't happen. 4552 LHSPtrAdd->moveBefore(&MI); 4553 Register RHSReg = MI.getOffsetReg(); 4554 Observer.changingInstr(MI); 4555 MI.getOperand(2).setReg(LHSCstOff->VReg); 4556 Observer.changedInstr(MI); 4557 Observer.changingInstr(*LHSPtrAdd); 4558 LHSPtrAdd->getOperand(2).setReg(RHSReg); 4559 Observer.changedInstr(*LHSPtrAdd); 4560 }; 4561 return !reassociationCanBreakAddressingModePattern(MI); 4562 } 4563 4564 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI, 4565 MachineInstr *LHS, 4566 MachineInstr *RHS, 4567 BuildFnTy &MatchInfo) { 4568 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4569 auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS); 4570 if (!LHSPtrAdd) 4571 return false; 4572 4573 Register Src2Reg = MI.getOperand(2).getReg(); 4574 Register LHSSrc1 = LHSPtrAdd->getBaseReg(); 4575 Register LHSSrc2 = LHSPtrAdd->getOffsetReg(); 4576 auto C1 = getIConstantVRegVal(LHSSrc2, MRI); 4577 if (!C1) 4578 return false; 4579 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4580 if (!C2) 4581 return false; 4582 4583 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4584 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4585 Observer.changingInstr(MI); 4586 MI.getOperand(1).setReg(LHSSrc1); 4587 MI.getOperand(2).setReg(NewCst.getReg(0)); 4588 Observer.changedInstr(MI); 4589 }; 4590 return !reassociationCanBreakAddressingModePattern(MI); 4591 } 4592 4593 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI, 4594 BuildFnTy &MatchInfo) { 4595 auto &PtrAdd = cast<GPtrAdd>(MI); 4596 // We're trying to match a few pointer computation patterns here for 4597 // re-association opportunities. 4598 // 1) Isolating a constant operand to be on the RHS, e.g.: 4599 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4600 // 4601 // 2) Folding two constants in each sub-tree as long as such folding 4602 // doesn't break a legal addressing mode. 4603 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4604 // 4605 // 3) Move a constant from the LHS of an inner op to the RHS of the outer. 4606 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C) 4607 // iif (G_PTR_ADD X, C) has one use. 4608 MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg()); 4609 MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg()); 4610 4611 // Try to match example 2. 4612 if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo)) 4613 return true; 4614 4615 // Try to match example 3. 4616 if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo)) 4617 return true; 4618 4619 // Try to match example 1. 4620 if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo)) 4621 return true; 4622 4623 return false; 4624 } 4625 4626 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4627 Register Op1 = MI.getOperand(1).getReg(); 4628 Register Op2 = MI.getOperand(2).getReg(); 4629 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4630 if (!MaybeCst) 4631 return false; 4632 MatchInfo = *MaybeCst; 4633 return true; 4634 } 4635 4636 bool CombinerHelper::matchNarrowBinopFeedingAnd( 4637 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4638 // Look for a binop feeding into an AND with a mask: 4639 // 4640 // %add = G_ADD %lhs, %rhs 4641 // %and = G_AND %add, 000...11111111 4642 // 4643 // Check if it's possible to perform the binop at a narrower width and zext 4644 // back to the original width like so: 4645 // 4646 // %narrow_lhs = G_TRUNC %lhs 4647 // %narrow_rhs = G_TRUNC %rhs 4648 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 4649 // %new_add = G_ZEXT %narrow_add 4650 // %and = G_AND %new_add, 000...11111111 4651 // 4652 // This can allow later combines to eliminate the G_AND if it turns out 4653 // that the mask is irrelevant. 4654 assert(MI.getOpcode() == TargetOpcode::G_AND); 4655 Register Dst = MI.getOperand(0).getReg(); 4656 Register AndLHS = MI.getOperand(1).getReg(); 4657 Register AndRHS = MI.getOperand(2).getReg(); 4658 LLT WideTy = MRI.getType(Dst); 4659 4660 // If the potential binop has more than one use, then it's possible that one 4661 // of those uses will need its full width. 4662 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 4663 return false; 4664 4665 // Check if the LHS feeding the AND is impacted by the high bits that we're 4666 // masking out. 4667 // 4668 // e.g. for 64-bit x, y: 4669 // 4670 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 4671 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 4672 if (!LHSInst) 4673 return false; 4674 unsigned LHSOpc = LHSInst->getOpcode(); 4675 switch (LHSOpc) { 4676 default: 4677 return false; 4678 case TargetOpcode::G_ADD: 4679 case TargetOpcode::G_SUB: 4680 case TargetOpcode::G_MUL: 4681 case TargetOpcode::G_AND: 4682 case TargetOpcode::G_OR: 4683 case TargetOpcode::G_XOR: 4684 break; 4685 } 4686 4687 // Find the mask on the RHS. 4688 auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI); 4689 if (!Cst) 4690 return false; 4691 auto Mask = Cst->Value; 4692 if (!Mask.isMask()) 4693 return false; 4694 4695 // No point in combining if there's nothing to truncate. 4696 unsigned NarrowWidth = Mask.countTrailingOnes(); 4697 if (NarrowWidth == WideTy.getSizeInBits()) 4698 return false; 4699 LLT NarrowTy = LLT::scalar(NarrowWidth); 4700 4701 // Check if adding the zext + truncates could be harmful. 4702 auto &MF = *MI.getMF(); 4703 const auto &TLI = getTargetLowering(); 4704 LLVMContext &Ctx = MF.getFunction().getContext(); 4705 auto &DL = MF.getDataLayout(); 4706 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 4707 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 4708 return false; 4709 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 4710 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 4711 return false; 4712 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 4713 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 4714 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4715 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 4716 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 4717 auto NarrowBinOp = 4718 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 4719 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 4720 Observer.changingInstr(MI); 4721 MI.getOperand(1).setReg(Ext.getReg(0)); 4722 Observer.changedInstr(MI); 4723 }; 4724 return true; 4725 } 4726 4727 bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) { 4728 unsigned Opc = MI.getOpcode(); 4729 assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO); 4730 4731 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2))) 4732 return false; 4733 4734 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4735 Observer.changingInstr(MI); 4736 unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO 4737 : TargetOpcode::G_SADDO; 4738 MI.setDesc(Builder.getTII().get(NewOpc)); 4739 MI.getOperand(3).setReg(MI.getOperand(2).getReg()); 4740 Observer.changedInstr(MI); 4741 }; 4742 return true; 4743 } 4744 4745 bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { 4746 // (G_*MULO x, 0) -> 0 + no carry out 4747 assert(MI.getOpcode() == TargetOpcode::G_UMULO || 4748 MI.getOpcode() == TargetOpcode::G_SMULO); 4749 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) 4750 return false; 4751 Register Dst = MI.getOperand(0).getReg(); 4752 Register Carry = MI.getOperand(1).getReg(); 4753 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) || 4754 !isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) 4755 return false; 4756 MatchInfo = [=](MachineIRBuilder &B) { 4757 B.buildConstant(Dst, 0); 4758 B.buildConstant(Carry, 0); 4759 }; 4760 return true; 4761 } 4762 4763 bool CombinerHelper::matchAddOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { 4764 // (G_*ADDO x, 0) -> x + no carry out 4765 assert(MI.getOpcode() == TargetOpcode::G_UADDO || 4766 MI.getOpcode() == TargetOpcode::G_SADDO); 4767 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) 4768 return false; 4769 Register Carry = MI.getOperand(1).getReg(); 4770 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) 4771 return false; 4772 Register Dst = MI.getOperand(0).getReg(); 4773 Register LHS = MI.getOperand(2).getReg(); 4774 MatchInfo = [=](MachineIRBuilder &B) { 4775 B.buildCopy(Dst, LHS); 4776 B.buildConstant(Carry, 0); 4777 }; 4778 return true; 4779 } 4780 4781 MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) { 4782 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4783 auto &UDiv = cast<GenericMachineInstr>(MI); 4784 Register Dst = UDiv.getReg(0); 4785 Register LHS = UDiv.getReg(1); 4786 Register RHS = UDiv.getReg(2); 4787 LLT Ty = MRI.getType(Dst); 4788 LLT ScalarTy = Ty.getScalarType(); 4789 const unsigned EltBits = ScalarTy.getScalarSizeInBits(); 4790 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4791 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); 4792 auto &MIB = Builder; 4793 MIB.setInstrAndDebugLoc(MI); 4794 4795 bool UseNPQ = false; 4796 SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4797 4798 auto BuildUDIVPattern = [&](const Constant *C) { 4799 auto *CI = cast<ConstantInt>(C); 4800 const APInt &Divisor = CI->getValue(); 4801 UnsignedDivisonByConstantInfo magics = 4802 UnsignedDivisonByConstantInfo::get(Divisor); 4803 unsigned PreShift = 0, PostShift = 0; 4804 4805 // If the divisor is even, we can avoid using the expensive fixup by 4806 // shifting the divided value upfront. 4807 if (magics.IsAdd != 0 && !Divisor[0]) { 4808 PreShift = Divisor.countTrailingZeros(); 4809 // Get magic number for the shifted divisor. 4810 magics = 4811 UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 4812 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 4813 } 4814 4815 APInt Magic = magics.Magic; 4816 4817 unsigned SelNPQ; 4818 if (magics.IsAdd == 0 || Divisor.isOneValue()) { 4819 assert(magics.ShiftAmount < Divisor.getBitWidth() && 4820 "We shouldn't generate an undefined shift!"); 4821 PostShift = magics.ShiftAmount; 4822 SelNPQ = false; 4823 } else { 4824 PostShift = magics.ShiftAmount - 1; 4825 SelNPQ = true; 4826 } 4827 4828 PreShifts.push_back( 4829 MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0)); 4830 MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0)); 4831 NPQFactors.push_back( 4832 MIB.buildConstant(ScalarTy, 4833 SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4834 : APInt::getZero(EltBits)) 4835 .getReg(0)); 4836 PostShifts.push_back( 4837 MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0)); 4838 UseNPQ |= SelNPQ; 4839 return true; 4840 }; 4841 4842 // Collect the shifts/magic values from each element. 4843 bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern); 4844 (void)Matched; 4845 assert(Matched && "Expected unary predicate match to succeed"); 4846 4847 Register PreShift, PostShift, MagicFactor, NPQFactor; 4848 auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI); 4849 if (RHSDef) { 4850 PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0); 4851 MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0); 4852 NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0); 4853 PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0); 4854 } else { 4855 assert(MRI.getType(RHS).isScalar() && 4856 "Non-build_vector operation should have been a scalar"); 4857 PreShift = PreShifts[0]; 4858 MagicFactor = MagicFactors[0]; 4859 PostShift = PostShifts[0]; 4860 } 4861 4862 Register Q = LHS; 4863 Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0); 4864 4865 // Multiply the numerator (operand 0) by the magic value. 4866 Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0); 4867 4868 if (UseNPQ) { 4869 Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0); 4870 4871 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4872 // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero. 4873 if (Ty.isVector()) 4874 NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0); 4875 else 4876 NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0); 4877 4878 Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0); 4879 } 4880 4881 Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0); 4882 auto One = MIB.buildConstant(Ty, 1); 4883 auto IsOne = MIB.buildICmp( 4884 CmpInst::Predicate::ICMP_EQ, 4885 Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One); 4886 return MIB.buildSelect(Ty, IsOne, LHS, Q); 4887 } 4888 4889 bool CombinerHelper::matchUDivByConst(MachineInstr &MI) { 4890 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4891 Register Dst = MI.getOperand(0).getReg(); 4892 Register RHS = MI.getOperand(2).getReg(); 4893 LLT DstTy = MRI.getType(Dst); 4894 auto *RHSDef = MRI.getVRegDef(RHS); 4895 if (!isConstantOrConstantVector(*RHSDef, MRI)) 4896 return false; 4897 4898 auto &MF = *MI.getMF(); 4899 AttributeList Attr = MF.getFunction().getAttributes(); 4900 const auto &TLI = getTargetLowering(); 4901 LLVMContext &Ctx = MF.getFunction().getContext(); 4902 auto &DL = MF.getDataLayout(); 4903 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) 4904 return false; 4905 4906 // Don't do this for minsize because the instruction sequence is usually 4907 // larger. 4908 if (MF.getFunction().hasMinSize()) 4909 return false; 4910 4911 // Don't do this if the types are not going to be legal. 4912 if (LI) { 4913 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}})) 4914 return false; 4915 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}})) 4916 return false; 4917 if (!isLegalOrBeforeLegalizer( 4918 {TargetOpcode::G_ICMP, 4919 {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1), 4920 DstTy}})) 4921 return false; 4922 } 4923 4924 auto CheckEltValue = [&](const Constant *C) { 4925 if (auto *CI = dyn_cast_or_null<ConstantInt>(C)) 4926 return !CI->isZero(); 4927 return false; 4928 }; 4929 return matchUnaryPredicate(MRI, RHS, CheckEltValue); 4930 } 4931 4932 void CombinerHelper::applyUDivByConst(MachineInstr &MI) { 4933 auto *NewMI = buildUDivUsingMul(MI); 4934 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); 4935 } 4936 4937 bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) { 4938 assert(MI.getOpcode() == TargetOpcode::G_UMULH); 4939 Register RHS = MI.getOperand(2).getReg(); 4940 Register Dst = MI.getOperand(0).getReg(); 4941 LLT Ty = MRI.getType(Dst); 4942 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4943 auto MatchPow2ExceptOne = [&](const Constant *C) { 4944 if (auto *CI = dyn_cast<ConstantInt>(C)) 4945 return CI->getValue().isPowerOf2() && !CI->getValue().isOne(); 4946 return false; 4947 }; 4948 if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false)) 4949 return false; 4950 return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}}); 4951 } 4952 4953 void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) { 4954 Register LHS = MI.getOperand(1).getReg(); 4955 Register RHS = MI.getOperand(2).getReg(); 4956 Register Dst = MI.getOperand(0).getReg(); 4957 LLT Ty = MRI.getType(Dst); 4958 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4959 unsigned NumEltBits = Ty.getScalarSizeInBits(); 4960 4961 Builder.setInstrAndDebugLoc(MI); 4962 auto LogBase2 = buildLogBase2(RHS, Builder); 4963 auto ShiftAmt = 4964 Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2); 4965 auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt); 4966 Builder.buildLShr(Dst, LHS, Trunc); 4967 MI.eraseFromParent(); 4968 } 4969 4970 bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI, 4971 BuildFnTy &MatchInfo) { 4972 unsigned Opc = MI.getOpcode(); 4973 assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB || 4974 Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 4975 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA); 4976 4977 Register Dst = MI.getOperand(0).getReg(); 4978 Register X = MI.getOperand(1).getReg(); 4979 Register Y = MI.getOperand(2).getReg(); 4980 LLT Type = MRI.getType(Dst); 4981 4982 // fold (fadd x, fneg(y)) -> (fsub x, y) 4983 // fold (fadd fneg(y), x) -> (fsub x, y) 4984 // G_ADD is commutative so both cases are checked by m_GFAdd 4985 if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 4986 isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) { 4987 Opc = TargetOpcode::G_FSUB; 4988 } 4989 /// fold (fsub x, fneg(y)) -> (fadd x, y) 4990 else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 4991 isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) { 4992 Opc = TargetOpcode::G_FADD; 4993 } 4994 // fold (fmul fneg(x), fneg(y)) -> (fmul x, y) 4995 // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y) 4996 // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z) 4997 // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z) 4998 else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 4999 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) && 5000 mi_match(X, MRI, m_GFNeg(m_Reg(X))) && 5001 mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) { 5002 // no opcode change 5003 } else 5004 return false; 5005 5006 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5007 Observer.changingInstr(MI); 5008 MI.setDesc(B.getTII().get(Opc)); 5009 MI.getOperand(1).setReg(X); 5010 MI.getOperand(2).setReg(Y); 5011 Observer.changedInstr(MI); 5012 }; 5013 return true; 5014 } 5015 5016 /// Checks if \p MI is TargetOpcode::G_FMUL and contractable either 5017 /// due to global flags or MachineInstr flags. 5018 static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) { 5019 if (MI.getOpcode() != TargetOpcode::G_FMUL) 5020 return false; 5021 return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract); 5022 } 5023 5024 static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1, 5025 const MachineRegisterInfo &MRI) { 5026 return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()), 5027 MRI.use_instr_nodbg_end()) > 5028 std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()), 5029 MRI.use_instr_nodbg_end()); 5030 } 5031 5032 bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI, 5033 bool &AllowFusionGlobally, 5034 bool &HasFMAD, bool &Aggressive, 5035 bool CanReassociate) { 5036 5037 auto *MF = MI.getMF(); 5038 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 5039 const TargetOptions &Options = MF->getTarget().Options; 5040 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5041 5042 if (CanReassociate && 5043 !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc))) 5044 return false; 5045 5046 // Floating-point multiply-add with intermediate rounding. 5047 HasFMAD = (LI && TLI.isFMADLegal(MI, DstType)); 5048 // Floating-point multiply-add without intermediate rounding. 5049 bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) && 5050 isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}}); 5051 // No valid opcode, do not combine. 5052 if (!HasFMAD && !HasFMA) 5053 return false; 5054 5055 AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast || 5056 Options.UnsafeFPMath || HasFMAD; 5057 // If the addition is not contractable, do not combine. 5058 if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract)) 5059 return false; 5060 5061 Aggressive = TLI.enableAggressiveFMAFusion(DstType); 5062 return true; 5063 } 5064 5065 bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA( 5066 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5067 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5068 5069 bool AllowFusionGlobally, HasFMAD, Aggressive; 5070 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5071 return false; 5072 5073 Register Op1 = MI.getOperand(1).getReg(); 5074 Register Op2 = MI.getOperand(2).getReg(); 5075 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5076 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5077 unsigned PreferredFusedOpcode = 5078 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5079 5080 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5081 // prefer to fold the multiply with fewer uses. 5082 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5083 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5084 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5085 std::swap(LHS, RHS); 5086 } 5087 5088 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 5089 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5090 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) { 5091 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5092 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5093 {LHS.MI->getOperand(1).getReg(), 5094 LHS.MI->getOperand(2).getReg(), RHS.Reg}); 5095 }; 5096 return true; 5097 } 5098 5099 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 5100 if (isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5101 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) { 5102 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5103 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5104 {RHS.MI->getOperand(1).getReg(), 5105 RHS.MI->getOperand(2).getReg(), LHS.Reg}); 5106 }; 5107 return true; 5108 } 5109 5110 return false; 5111 } 5112 5113 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA( 5114 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5115 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5116 5117 bool AllowFusionGlobally, HasFMAD, Aggressive; 5118 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5119 return false; 5120 5121 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5122 Register Op1 = MI.getOperand(1).getReg(); 5123 Register Op2 = MI.getOperand(2).getReg(); 5124 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5125 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5126 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5127 5128 unsigned PreferredFusedOpcode = 5129 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5130 5131 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5132 // prefer to fold the multiply with fewer uses. 5133 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5134 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5135 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5136 std::swap(LHS, RHS); 5137 } 5138 5139 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 5140 MachineInstr *FpExtSrc; 5141 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && 5142 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 5143 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5144 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 5145 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5146 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 5147 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 5148 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5149 {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg}); 5150 }; 5151 return true; 5152 } 5153 5154 // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z) 5155 // Note: Commutes FADD operands. 5156 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && 5157 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 5158 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5159 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 5160 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5161 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 5162 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 5163 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5164 {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg}); 5165 }; 5166 return true; 5167 } 5168 5169 return false; 5170 } 5171 5172 bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA( 5173 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5174 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5175 5176 bool AllowFusionGlobally, HasFMAD, Aggressive; 5177 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true)) 5178 return false; 5179 5180 Register Op1 = MI.getOperand(1).getReg(); 5181 Register Op2 = MI.getOperand(2).getReg(); 5182 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5183 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5184 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5185 5186 unsigned PreferredFusedOpcode = 5187 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5188 5189 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5190 // prefer to fold the multiply with fewer uses. 5191 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5192 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5193 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5194 std::swap(LHS, RHS); 5195 } 5196 5197 MachineInstr *FMA = nullptr; 5198 Register Z; 5199 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z)) 5200 if (LHS.MI->getOpcode() == PreferredFusedOpcode && 5201 (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() == 5202 TargetOpcode::G_FMUL) && 5203 MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) && 5204 MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) { 5205 FMA = LHS.MI; 5206 Z = RHS.Reg; 5207 } 5208 // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z)) 5209 else if (RHS.MI->getOpcode() == PreferredFusedOpcode && 5210 (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() == 5211 TargetOpcode::G_FMUL) && 5212 MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) && 5213 MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) { 5214 Z = LHS.Reg; 5215 FMA = RHS.MI; 5216 } 5217 5218 if (FMA) { 5219 MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg()); 5220 Register X = FMA->getOperand(1).getReg(); 5221 Register Y = FMA->getOperand(2).getReg(); 5222 Register U = FMulMI->getOperand(1).getReg(); 5223 Register V = FMulMI->getOperand(2).getReg(); 5224 5225 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5226 Register InnerFMA = MRI.createGenericVirtualRegister(DstTy); 5227 B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z}); 5228 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5229 {X, Y, InnerFMA}); 5230 }; 5231 return true; 5232 } 5233 5234 return false; 5235 } 5236 5237 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive( 5238 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5239 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5240 5241 bool AllowFusionGlobally, HasFMAD, Aggressive; 5242 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5243 return false; 5244 5245 if (!Aggressive) 5246 return false; 5247 5248 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5249 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5250 Register Op1 = MI.getOperand(1).getReg(); 5251 Register Op2 = MI.getOperand(2).getReg(); 5252 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5253 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5254 5255 unsigned PreferredFusedOpcode = 5256 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5257 5258 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5259 // prefer to fold the multiply with fewer uses. 5260 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5261 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5262 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5263 std::swap(LHS, RHS); 5264 } 5265 5266 // Builds: (fma x, y, (fma (fpext u), (fpext v), z)) 5267 auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X, 5268 Register Y, MachineIRBuilder &B) { 5269 Register FpExtU = B.buildFPExt(DstType, U).getReg(0); 5270 Register FpExtV = B.buildFPExt(DstType, V).getReg(0); 5271 Register InnerFMA = 5272 B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z}) 5273 .getReg(0); 5274 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5275 {X, Y, InnerFMA}); 5276 }; 5277 5278 MachineInstr *FMulMI, *FMAMI; 5279 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 5280 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5281 if (LHS.MI->getOpcode() == PreferredFusedOpcode && 5282 mi_match(LHS.MI->getOperand(3).getReg(), MRI, 5283 m_GFPExt(m_MInstr(FMulMI))) && 5284 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5285 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5286 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5287 MatchInfo = [=](MachineIRBuilder &B) { 5288 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5289 FMulMI->getOperand(2).getReg(), RHS.Reg, 5290 LHS.MI->getOperand(1).getReg(), 5291 LHS.MI->getOperand(2).getReg(), B); 5292 }; 5293 return true; 5294 } 5295 5296 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 5297 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5298 // FIXME: This turns two single-precision and one double-precision 5299 // operation into two double-precision operations, which might not be 5300 // interesting for all targets, especially GPUs. 5301 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && 5302 FMAMI->getOpcode() == PreferredFusedOpcode) { 5303 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 5304 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 5305 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5306 MRI.getType(FMAMI->getOperand(0).getReg()))) { 5307 MatchInfo = [=](MachineIRBuilder &B) { 5308 Register X = FMAMI->getOperand(1).getReg(); 5309 Register Y = FMAMI->getOperand(2).getReg(); 5310 X = B.buildFPExt(DstType, X).getReg(0); 5311 Y = B.buildFPExt(DstType, Y).getReg(0); 5312 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5313 FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B); 5314 }; 5315 5316 return true; 5317 } 5318 } 5319 5320 // fold (fadd z, (fma x, y, (fpext (fmul u, v))) 5321 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5322 if (RHS.MI->getOpcode() == PreferredFusedOpcode && 5323 mi_match(RHS.MI->getOperand(3).getReg(), MRI, 5324 m_GFPExt(m_MInstr(FMulMI))) && 5325 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5326 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5327 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5328 MatchInfo = [=](MachineIRBuilder &B) { 5329 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5330 FMulMI->getOperand(2).getReg(), LHS.Reg, 5331 RHS.MI->getOperand(1).getReg(), 5332 RHS.MI->getOperand(2).getReg(), B); 5333 }; 5334 return true; 5335 } 5336 5337 // fold (fadd z, (fpext (fma x, y, (fmul u, v))) 5338 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5339 // FIXME: This turns two single-precision and one double-precision 5340 // operation into two double-precision operations, which might not be 5341 // interesting for all targets, especially GPUs. 5342 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && 5343 FMAMI->getOpcode() == PreferredFusedOpcode) { 5344 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 5345 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 5346 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5347 MRI.getType(FMAMI->getOperand(0).getReg()))) { 5348 MatchInfo = [=](MachineIRBuilder &B) { 5349 Register X = FMAMI->getOperand(1).getReg(); 5350 Register Y = FMAMI->getOperand(2).getReg(); 5351 X = B.buildFPExt(DstType, X).getReg(0); 5352 Y = B.buildFPExt(DstType, Y).getReg(0); 5353 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5354 FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B); 5355 }; 5356 return true; 5357 } 5358 } 5359 5360 return false; 5361 } 5362 5363 bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA( 5364 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5365 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5366 5367 bool AllowFusionGlobally, HasFMAD, Aggressive; 5368 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5369 return false; 5370 5371 Register Op1 = MI.getOperand(1).getReg(); 5372 Register Op2 = MI.getOperand(2).getReg(); 5373 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5374 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5375 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5376 5377 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5378 // prefer to fold the multiply with fewer uses. 5379 int FirstMulHasFewerUses = true; 5380 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5381 isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5382 hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5383 FirstMulHasFewerUses = false; 5384 5385 unsigned PreferredFusedOpcode = 5386 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5387 5388 // fold (fsub (fmul x, y), z) -> (fma x, y, -z) 5389 if (FirstMulHasFewerUses && 5390 (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5391 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) { 5392 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5393 Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0); 5394 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5395 {LHS.MI->getOperand(1).getReg(), 5396 LHS.MI->getOperand(2).getReg(), NegZ}); 5397 }; 5398 return true; 5399 } 5400 // fold (fsub x, (fmul y, z)) -> (fma -y, z, x) 5401 else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5402 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) { 5403 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5404 Register NegY = 5405 B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0); 5406 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5407 {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg}); 5408 }; 5409 return true; 5410 } 5411 5412 return false; 5413 } 5414 5415 bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA( 5416 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5417 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5418 5419 bool AllowFusionGlobally, HasFMAD, Aggressive; 5420 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5421 return false; 5422 5423 Register LHSReg = MI.getOperand(1).getReg(); 5424 Register RHSReg = MI.getOperand(2).getReg(); 5425 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5426 5427 unsigned PreferredFusedOpcode = 5428 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5429 5430 MachineInstr *FMulMI; 5431 // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z)) 5432 if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 5433 (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) && 5434 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 5435 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 5436 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5437 Register NegX = 5438 B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5439 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 5440 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5441 {NegX, FMulMI->getOperand(2).getReg(), NegZ}); 5442 }; 5443 return true; 5444 } 5445 5446 // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x) 5447 if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 5448 (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) && 5449 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 5450 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 5451 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5452 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5453 {FMulMI->getOperand(1).getReg(), 5454 FMulMI->getOperand(2).getReg(), LHSReg}); 5455 }; 5456 return true; 5457 } 5458 5459 return false; 5460 } 5461 5462 bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA( 5463 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5464 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5465 5466 bool AllowFusionGlobally, HasFMAD, Aggressive; 5467 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5468 return false; 5469 5470 Register LHSReg = MI.getOperand(1).getReg(); 5471 Register RHSReg = MI.getOperand(2).getReg(); 5472 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5473 5474 unsigned PreferredFusedOpcode = 5475 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5476 5477 MachineInstr *FMulMI; 5478 // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z)) 5479 if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 5480 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5481 (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) { 5482 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5483 Register FpExtX = 5484 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5485 Register FpExtY = 5486 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 5487 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 5488 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5489 {FpExtX, FpExtY, NegZ}); 5490 }; 5491 return true; 5492 } 5493 5494 // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x) 5495 if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 5496 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5497 (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) { 5498 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5499 Register FpExtY = 5500 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5501 Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0); 5502 Register FpExtZ = 5503 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 5504 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5505 {NegY, FpExtZ, LHSReg}); 5506 }; 5507 return true; 5508 } 5509 5510 return false; 5511 } 5512 5513 bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA( 5514 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5515 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5516 5517 bool AllowFusionGlobally, HasFMAD, Aggressive; 5518 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5519 return false; 5520 5521 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5522 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5523 Register LHSReg = MI.getOperand(1).getReg(); 5524 Register RHSReg = MI.getOperand(2).getReg(); 5525 5526 unsigned PreferredFusedOpcode = 5527 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5528 5529 auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z, 5530 MachineIRBuilder &B) { 5531 Register FpExtX = B.buildFPExt(DstTy, X).getReg(0); 5532 Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0); 5533 B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z}); 5534 }; 5535 5536 MachineInstr *FMulMI; 5537 // fold (fsub (fpext (fneg (fmul x, y))), z) -> 5538 // (fneg (fma (fpext x), (fpext y), z)) 5539 // fold (fsub (fneg (fpext (fmul x, y))), z) -> 5540 // (fneg (fma (fpext x), (fpext y), z)) 5541 if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 5542 mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 5543 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5544 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 5545 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5546 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5547 Register FMAReg = MRI.createGenericVirtualRegister(DstTy); 5548 buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(), 5549 FMulMI->getOperand(2).getReg(), RHSReg, B); 5550 B.buildFNeg(MI.getOperand(0).getReg(), FMAReg); 5551 }; 5552 return true; 5553 } 5554 5555 // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 5556 // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 5557 if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 5558 mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 5559 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5560 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 5561 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5562 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5563 buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(), 5564 FMulMI->getOperand(2).getReg(), LHSReg, B); 5565 }; 5566 return true; 5567 } 5568 5569 return false; 5570 } 5571 5572 bool CombinerHelper::matchSelectToLogical(MachineInstr &MI, 5573 BuildFnTy &MatchInfo) { 5574 GSelect &Sel = cast<GSelect>(MI); 5575 Register DstReg = Sel.getReg(0); 5576 Register Cond = Sel.getCondReg(); 5577 Register TrueReg = Sel.getTrueReg(); 5578 Register FalseReg = Sel.getFalseReg(); 5579 5580 auto *TrueDef = getDefIgnoringCopies(TrueReg, MRI); 5581 auto *FalseDef = getDefIgnoringCopies(FalseReg, MRI); 5582 5583 const LLT CondTy = MRI.getType(Cond); 5584 const LLT OpTy = MRI.getType(TrueReg); 5585 if (CondTy != OpTy || OpTy.getScalarSizeInBits() != 1) 5586 return false; 5587 5588 // We have a boolean select. 5589 5590 // select Cond, Cond, F --> or Cond, F 5591 // select Cond, 1, F --> or Cond, F 5592 auto MaybeCstTrue = isConstantOrConstantSplatVector(*TrueDef, MRI); 5593 if (Cond == TrueReg || (MaybeCstTrue && MaybeCstTrue->isOne())) { 5594 MatchInfo = [=](MachineIRBuilder &MIB) { 5595 MIB.buildOr(DstReg, Cond, FalseReg); 5596 }; 5597 return true; 5598 } 5599 5600 // select Cond, T, Cond --> and Cond, T 5601 // select Cond, T, 0 --> and Cond, T 5602 auto MaybeCstFalse = isConstantOrConstantSplatVector(*FalseDef, MRI); 5603 if (Cond == FalseReg || (MaybeCstFalse && MaybeCstFalse->isZero())) { 5604 MatchInfo = [=](MachineIRBuilder &MIB) { 5605 MIB.buildAnd(DstReg, Cond, TrueReg); 5606 }; 5607 return true; 5608 } 5609 5610 // select Cond, T, 1 --> or (not Cond), T 5611 if (MaybeCstFalse && MaybeCstFalse->isOne()) { 5612 MatchInfo = [=](MachineIRBuilder &MIB) { 5613 MIB.buildOr(DstReg, MIB.buildNot(OpTy, Cond), TrueReg); 5614 }; 5615 return true; 5616 } 5617 5618 // select Cond, 0, F --> and (not Cond), F 5619 if (MaybeCstTrue && MaybeCstTrue->isZero()) { 5620 MatchInfo = [=](MachineIRBuilder &MIB) { 5621 MIB.buildAnd(DstReg, MIB.buildNot(OpTy, Cond), FalseReg); 5622 }; 5623 return true; 5624 } 5625 return false; 5626 } 5627 5628 bool CombinerHelper::matchCombineFMinMaxNaN(MachineInstr &MI, 5629 unsigned &IdxToPropagate) { 5630 bool PropagateNaN; 5631 switch (MI.getOpcode()) { 5632 default: 5633 return false; 5634 case TargetOpcode::G_FMINNUM: 5635 case TargetOpcode::G_FMAXNUM: 5636 PropagateNaN = false; 5637 break; 5638 case TargetOpcode::G_FMINIMUM: 5639 case TargetOpcode::G_FMAXIMUM: 5640 PropagateNaN = true; 5641 break; 5642 } 5643 5644 auto MatchNaN = [&](unsigned Idx) { 5645 Register MaybeNaNReg = MI.getOperand(Idx).getReg(); 5646 const ConstantFP *MaybeCst = getConstantFPVRegVal(MaybeNaNReg, MRI); 5647 if (!MaybeCst || !MaybeCst->getValueAPF().isNaN()) 5648 return false; 5649 IdxToPropagate = PropagateNaN ? Idx : (Idx == 1 ? 2 : 1); 5650 return true; 5651 }; 5652 5653 return MatchNaN(1) || MatchNaN(2); 5654 } 5655 5656 bool CombinerHelper::matchAddSubSameReg(MachineInstr &MI, Register &Src) { 5657 assert(MI.getOpcode() == TargetOpcode::G_ADD && "Expected a G_ADD"); 5658 Register LHS = MI.getOperand(1).getReg(); 5659 Register RHS = MI.getOperand(2).getReg(); 5660 5661 // Helper lambda to check for opportunities for 5662 // A + (B - A) -> B 5663 // (B - A) + A -> B 5664 auto CheckFold = [&](Register MaybeSub, Register MaybeSameReg) { 5665 Register Reg; 5666 return mi_match(MaybeSub, MRI, m_GSub(m_Reg(Src), m_Reg(Reg))) && 5667 Reg == MaybeSameReg; 5668 }; 5669 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 5670 } 5671 5672 bool CombinerHelper::tryCombine(MachineInstr &MI) { 5673 if (tryCombineCopy(MI)) 5674 return true; 5675 if (tryCombineExtendingLoads(MI)) 5676 return true; 5677 if (tryCombineIndexedLoadStore(MI)) 5678 return true; 5679 return false; 5680 } 5681