1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
9 #include "llvm/ADT/SetVector.h"
10 #include "llvm/ADT/SmallBitVector.h"
11 #include "llvm/CodeGen/GlobalISel/Combiner.h"
12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
15 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
16 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/LowLevelType.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include <tuple>
32 
33 #define DEBUG_TYPE "gi-combiner"
34 
35 using namespace llvm;
36 using namespace MIPatternMatch;
37 
38 // Option to allow testing of the combiner while no targets know about indexed
39 // addressing.
40 static cl::opt<bool>
41     ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
42                        cl::desc("Force all indexed operations to be "
43                                 "legal for the GlobalISel combiner"));
44 
45 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
46                                MachineIRBuilder &B, GISelKnownBits *KB,
47                                MachineDominatorTree *MDT,
48                                const LegalizerInfo *LI)
49     : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer),
50       KB(KB), MDT(MDT), LI(LI) {
51   (void)this->KB;
52 }
53 
54 const TargetLowering &CombinerHelper::getTargetLowering() const {
55   return *Builder.getMF().getSubtarget().getTargetLowering();
56 }
57 
58 /// \returns The little endian in-memory byte position of byte \p I in a
59 /// \p ByteWidth bytes wide type.
60 ///
61 /// E.g. Given a 4-byte type x, x[0] -> byte 0
62 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) {
63   assert(I < ByteWidth && "I must be in [0, ByteWidth)");
64   return I;
65 }
66 
67 /// \returns The big endian in-memory byte position of byte \p I in a
68 /// \p ByteWidth bytes wide type.
69 ///
70 /// E.g. Given a 4-byte type x, x[0] -> byte 3
71 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) {
72   assert(I < ByteWidth && "I must be in [0, ByteWidth)");
73   return ByteWidth - I - 1;
74 }
75 
76 /// Given a map from byte offsets in memory to indices in a load/store,
77 /// determine if that map corresponds to a little or big endian byte pattern.
78 ///
79 /// \param MemOffset2Idx maps memory offsets to address offsets.
80 /// \param LowestIdx is the lowest index in \p MemOffset2Idx.
81 ///
82 /// \returns true if the map corresponds to a big endian byte pattern, false
83 /// if it corresponds to a little endian byte pattern, and None otherwise.
84 ///
85 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns
86 /// are as follows:
87 ///
88 /// AddrOffset   Little endian    Big endian
89 /// 0            0                3
90 /// 1            1                2
91 /// 2            2                1
92 /// 3            3                0
93 static Optional<bool>
94 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
95             int64_t LowestIdx) {
96   // Need at least two byte positions to decide on endianness.
97   unsigned Width = MemOffset2Idx.size();
98   if (Width < 2)
99     return None;
100   bool BigEndian = true, LittleEndian = true;
101   for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) {
102     auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset);
103     if (MemOffsetAndIdx == MemOffset2Idx.end())
104       return None;
105     const int64_t Idx = MemOffsetAndIdx->second - LowestIdx;
106     assert(Idx >= 0 && "Expected non-negative byte offset?");
107     LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset);
108     BigEndian &= Idx == bigEndianByteAt(Width, MemOffset);
109     if (!BigEndian && !LittleEndian)
110       return None;
111   }
112 
113   assert((BigEndian != LittleEndian) &&
114          "Pattern cannot be both big and little endian!");
115   return BigEndian;
116 }
117 
118 bool CombinerHelper::isLegalOrBeforeLegalizer(
119     const LegalityQuery &Query) const {
120   return !LI || LI->getAction(Query).Action == LegalizeActions::Legal;
121 }
122 
123 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
124                                     Register ToReg) const {
125   Observer.changingAllUsesOfReg(MRI, FromReg);
126 
127   if (MRI.constrainRegAttrs(ToReg, FromReg))
128     MRI.replaceRegWith(FromReg, ToReg);
129   else
130     Builder.buildCopy(ToReg, FromReg);
131 
132   Observer.finishedChangingAllUsesOfReg();
133 }
134 
135 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
136                                       MachineOperand &FromRegOp,
137                                       Register ToReg) const {
138   assert(FromRegOp.getParent() && "Expected an operand in an MI");
139   Observer.changingInstr(*FromRegOp.getParent());
140 
141   FromRegOp.setReg(ToReg);
142 
143   Observer.changedInstr(*FromRegOp.getParent());
144 }
145 
146 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
147   if (matchCombineCopy(MI)) {
148     applyCombineCopy(MI);
149     return true;
150   }
151   return false;
152 }
153 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
154   if (MI.getOpcode() != TargetOpcode::COPY)
155     return false;
156   Register DstReg = MI.getOperand(0).getReg();
157   Register SrcReg = MI.getOperand(1).getReg();
158   return canReplaceReg(DstReg, SrcReg, MRI);
159 }
160 void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
161   Register DstReg = MI.getOperand(0).getReg();
162   Register SrcReg = MI.getOperand(1).getReg();
163   MI.eraseFromParent();
164   replaceRegWith(MRI, DstReg, SrcReg);
165 }
166 
167 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) {
168   bool IsUndef = false;
169   SmallVector<Register, 4> Ops;
170   if (matchCombineConcatVectors(MI, IsUndef, Ops)) {
171     applyCombineConcatVectors(MI, IsUndef, Ops);
172     return true;
173   }
174   return false;
175 }
176 
177 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef,
178                                                SmallVectorImpl<Register> &Ops) {
179   assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
180          "Invalid instruction");
181   IsUndef = true;
182   MachineInstr *Undef = nullptr;
183 
184   // Walk over all the operands of concat vectors and check if they are
185   // build_vector themselves or undef.
186   // Then collect their operands in Ops.
187   for (const MachineOperand &MO : MI.uses()) {
188     Register Reg = MO.getReg();
189     MachineInstr *Def = MRI.getVRegDef(Reg);
190     assert(Def && "Operand not defined");
191     switch (Def->getOpcode()) {
192     case TargetOpcode::G_BUILD_VECTOR:
193       IsUndef = false;
194       // Remember the operands of the build_vector to fold
195       // them into the yet-to-build flattened concat vectors.
196       for (const MachineOperand &BuildVecMO : Def->uses())
197         Ops.push_back(BuildVecMO.getReg());
198       break;
199     case TargetOpcode::G_IMPLICIT_DEF: {
200       LLT OpType = MRI.getType(Reg);
201       // Keep one undef value for all the undef operands.
202       if (!Undef) {
203         Builder.setInsertPt(*MI.getParent(), MI);
204         Undef = Builder.buildUndef(OpType.getScalarType());
205       }
206       assert(MRI.getType(Undef->getOperand(0).getReg()) ==
207                  OpType.getScalarType() &&
208              "All undefs should have the same type");
209       // Break the undef vector in as many scalar elements as needed
210       // for the flattening.
211       for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
212            EltIdx != EltEnd; ++EltIdx)
213         Ops.push_back(Undef->getOperand(0).getReg());
214       break;
215     }
216     default:
217       return false;
218     }
219   }
220   return true;
221 }
222 void CombinerHelper::applyCombineConcatVectors(
223     MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) {
224   // We determined that the concat_vectors can be flatten.
225   // Generate the flattened build_vector.
226   Register DstReg = MI.getOperand(0).getReg();
227   Builder.setInsertPt(*MI.getParent(), MI);
228   Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
229 
230   // Note: IsUndef is sort of redundant. We could have determine it by
231   // checking that at all Ops are undef.  Alternatively, we could have
232   // generate a build_vector of undefs and rely on another combine to
233   // clean that up.  For now, given we already gather this information
234   // in tryCombineConcatVectors, just save compile time and issue the
235   // right thing.
236   if (IsUndef)
237     Builder.buildUndef(NewDstReg);
238   else
239     Builder.buildBuildVector(NewDstReg, Ops);
240   MI.eraseFromParent();
241   replaceRegWith(MRI, DstReg, NewDstReg);
242 }
243 
244 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
245   SmallVector<Register, 4> Ops;
246   if (matchCombineShuffleVector(MI, Ops)) {
247     applyCombineShuffleVector(MI, Ops);
248     return true;
249   }
250   return false;
251 }
252 
253 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
254                                                SmallVectorImpl<Register> &Ops) {
255   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
256          "Invalid instruction kind");
257   LLT DstType = MRI.getType(MI.getOperand(0).getReg());
258   Register Src1 = MI.getOperand(1).getReg();
259   LLT SrcType = MRI.getType(Src1);
260   // As bizarre as it may look, shuffle vector can actually produce
261   // scalar! This is because at the IR level a <1 x ty> shuffle
262   // vector is perfectly valid.
263   unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1;
264   unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1;
265 
266   // If the resulting vector is smaller than the size of the source
267   // vectors being concatenated, we won't be able to replace the
268   // shuffle vector into a concat_vectors.
269   //
270   // Note: We may still be able to produce a concat_vectors fed by
271   //       extract_vector_elt and so on. It is less clear that would
272   //       be better though, so don't bother for now.
273   //
274   // If the destination is a scalar, the size of the sources doesn't
275   // matter. we will lower the shuffle to a plain copy. This will
276   // work only if the source and destination have the same size. But
277   // that's covered by the next condition.
278   //
279   // TODO: If the size between the source and destination don't match
280   //       we could still emit an extract vector element in that case.
281   if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1)
282     return false;
283 
284   // Check that the shuffle mask can be broken evenly between the
285   // different sources.
286   if (DstNumElts % SrcNumElts != 0)
287     return false;
288 
289   // Mask length is a multiple of the source vector length.
290   // Check if the shuffle is some kind of concatenation of the input
291   // vectors.
292   unsigned NumConcat = DstNumElts / SrcNumElts;
293   SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
294   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
295   for (unsigned i = 0; i != DstNumElts; ++i) {
296     int Idx = Mask[i];
297     // Undef value.
298     if (Idx < 0)
299       continue;
300     // Ensure the indices in each SrcType sized piece are sequential and that
301     // the same source is used for the whole piece.
302     if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
303         (ConcatSrcs[i / SrcNumElts] >= 0 &&
304          ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
305       return false;
306     // Remember which source this index came from.
307     ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
308   }
309 
310   // The shuffle is concatenating multiple vectors together.
311   // Collect the different operands for that.
312   Register UndefReg;
313   Register Src2 = MI.getOperand(2).getReg();
314   for (auto Src : ConcatSrcs) {
315     if (Src < 0) {
316       if (!UndefReg) {
317         Builder.setInsertPt(*MI.getParent(), MI);
318         UndefReg = Builder.buildUndef(SrcType).getReg(0);
319       }
320       Ops.push_back(UndefReg);
321     } else if (Src == 0)
322       Ops.push_back(Src1);
323     else
324       Ops.push_back(Src2);
325   }
326   return true;
327 }
328 
329 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
330                                                const ArrayRef<Register> Ops) {
331   Register DstReg = MI.getOperand(0).getReg();
332   Builder.setInsertPt(*MI.getParent(), MI);
333   Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
334 
335   if (Ops.size() == 1)
336     Builder.buildCopy(NewDstReg, Ops[0]);
337   else
338     Builder.buildMerge(NewDstReg, Ops);
339 
340   MI.eraseFromParent();
341   replaceRegWith(MRI, DstReg, NewDstReg);
342 }
343 
344 namespace {
345 
346 /// Select a preference between two uses. CurrentUse is the current preference
347 /// while *ForCandidate is attributes of the candidate under consideration.
348 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse,
349                                   const LLT TyForCandidate,
350                                   unsigned OpcodeForCandidate,
351                                   MachineInstr *MIForCandidate) {
352   if (!CurrentUse.Ty.isValid()) {
353     if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
354         CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
355       return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
356     return CurrentUse;
357   }
358 
359   // We permit the extend to hoist through basic blocks but this is only
360   // sensible if the target has extending loads. If you end up lowering back
361   // into a load and extend during the legalizer then the end result is
362   // hoisting the extend up to the load.
363 
364   // Prefer defined extensions to undefined extensions as these are more
365   // likely to reduce the number of instructions.
366   if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
367       CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
368     return CurrentUse;
369   else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
370            OpcodeForCandidate != TargetOpcode::G_ANYEXT)
371     return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
372 
373   // Prefer sign extensions to zero extensions as sign-extensions tend to be
374   // more expensive.
375   if (CurrentUse.Ty == TyForCandidate) {
376     if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
377         OpcodeForCandidate == TargetOpcode::G_ZEXT)
378       return CurrentUse;
379     else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
380              OpcodeForCandidate == TargetOpcode::G_SEXT)
381       return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
382   }
383 
384   // This is potentially target specific. We've chosen the largest type
385   // because G_TRUNC is usually free. One potential catch with this is that
386   // some targets have a reduced number of larger registers than smaller
387   // registers and this choice potentially increases the live-range for the
388   // larger value.
389   if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
390     return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
391   }
392   return CurrentUse;
393 }
394 
395 /// Find a suitable place to insert some instructions and insert them. This
396 /// function accounts for special cases like inserting before a PHI node.
397 /// The current strategy for inserting before PHI's is to duplicate the
398 /// instructions for each predecessor. However, while that's ok for G_TRUNC
399 /// on most targets since it generally requires no code, other targets/cases may
400 /// want to try harder to find a dominating block.
401 static void InsertInsnsWithoutSideEffectsBeforeUse(
402     MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
403     std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
404                        MachineOperand &UseMO)>
405         Inserter) {
406   MachineInstr &UseMI = *UseMO.getParent();
407 
408   MachineBasicBlock *InsertBB = UseMI.getParent();
409 
410   // If the use is a PHI then we want the predecessor block instead.
411   if (UseMI.isPHI()) {
412     MachineOperand *PredBB = std::next(&UseMO);
413     InsertBB = PredBB->getMBB();
414   }
415 
416   // If the block is the same block as the def then we want to insert just after
417   // the def instead of at the start of the block.
418   if (InsertBB == DefMI.getParent()) {
419     MachineBasicBlock::iterator InsertPt = &DefMI;
420     Inserter(InsertBB, std::next(InsertPt), UseMO);
421     return;
422   }
423 
424   // Otherwise we want the start of the BB
425   Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
426 }
427 } // end anonymous namespace
428 
429 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
430   PreferredTuple Preferred;
431   if (matchCombineExtendingLoads(MI, Preferred)) {
432     applyCombineExtendingLoads(MI, Preferred);
433     return true;
434   }
435   return false;
436 }
437 
438 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
439                                                 PreferredTuple &Preferred) {
440   // We match the loads and follow the uses to the extend instead of matching
441   // the extends and following the def to the load. This is because the load
442   // must remain in the same position for correctness (unless we also add code
443   // to find a safe place to sink it) whereas the extend is freely movable.
444   // It also prevents us from duplicating the load for the volatile case or just
445   // for performance.
446   GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI);
447   if (!LoadMI)
448     return false;
449 
450   Register LoadReg = LoadMI->getDstReg();
451 
452   LLT LoadValueTy = MRI.getType(LoadReg);
453   if (!LoadValueTy.isScalar())
454     return false;
455 
456   // Most architectures are going to legalize <s8 loads into at least a 1 byte
457   // load, and the MMOs can only describe memory accesses in multiples of bytes.
458   // If we try to perform extload combining on those, we can end up with
459   // %a(s8) = extload %ptr (load 1 byte from %ptr)
460   // ... which is an illegal extload instruction.
461   if (LoadValueTy.getSizeInBits() < 8)
462     return false;
463 
464   // For non power-of-2 types, they will very likely be legalized into multiple
465   // loads. Don't bother trying to match them into extending loads.
466   if (!isPowerOf2_32(LoadValueTy.getSizeInBits()))
467     return false;
468 
469   // Find the preferred type aside from the any-extends (unless it's the only
470   // one) and non-extending ops. We'll emit an extending load to that type and
471   // and emit a variant of (extend (trunc X)) for the others according to the
472   // relative type sizes. At the same time, pick an extend to use based on the
473   // extend involved in the chosen type.
474   unsigned PreferredOpcode =
475       isa<GLoad>(&MI)
476           ? TargetOpcode::G_ANYEXT
477           : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
478   Preferred = {LLT(), PreferredOpcode, nullptr};
479   for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) {
480     if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
481         UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
482         (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) {
483       const auto &MMO = LoadMI->getMMO();
484       // For atomics, only form anyextending loads.
485       if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT)
486         continue;
487       // Check for legality.
488       if (LI) {
489         LegalityQuery::MemDesc MMDesc;
490         MMDesc.MemoryTy = MMO.getMemoryType();
491         MMDesc.AlignInBits = MMO.getAlign().value() * 8;
492         MMDesc.Ordering = MMO.getSuccessOrdering();
493         LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg());
494         LLT SrcTy = MRI.getType(LoadMI->getPointerReg());
495         if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}})
496                 .Action != LegalizeActions::Legal)
497           continue;
498       }
499       Preferred = ChoosePreferredUse(Preferred,
500                                      MRI.getType(UseMI.getOperand(0).getReg()),
501                                      UseMI.getOpcode(), &UseMI);
502     }
503   }
504 
505   // There were no extends
506   if (!Preferred.MI)
507     return false;
508   // It should be impossible to chose an extend without selecting a different
509   // type since by definition the result of an extend is larger.
510   assert(Preferred.Ty != LoadValueTy && "Extending to same type?");
511 
512   LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI);
513   return true;
514 }
515 
516 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
517                                                 PreferredTuple &Preferred) {
518   // Rewrite the load to the chosen extending load.
519   Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
520 
521   // Inserter to insert a truncate back to the original type at a given point
522   // with some basic CSE to limit truncate duplication to one per BB.
523   DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
524   auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
525                            MachineBasicBlock::iterator InsertBefore,
526                            MachineOperand &UseMO) {
527     MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
528     if (PreviouslyEmitted) {
529       Observer.changingInstr(*UseMO.getParent());
530       UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
531       Observer.changedInstr(*UseMO.getParent());
532       return;
533     }
534 
535     Builder.setInsertPt(*InsertIntoBB, InsertBefore);
536     Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
537     MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
538     EmittedInsns[InsertIntoBB] = NewMI;
539     replaceRegOpWith(MRI, UseMO, NewDstReg);
540   };
541 
542   Observer.changingInstr(MI);
543   MI.setDesc(
544       Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT
545                                ? TargetOpcode::G_SEXTLOAD
546                                : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT
547                                      ? TargetOpcode::G_ZEXTLOAD
548                                      : TargetOpcode::G_LOAD));
549 
550   // Rewrite all the uses to fix up the types.
551   auto &LoadValue = MI.getOperand(0);
552   SmallVector<MachineOperand *, 4> Uses;
553   for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
554     Uses.push_back(&UseMO);
555 
556   for (auto *UseMO : Uses) {
557     MachineInstr *UseMI = UseMO->getParent();
558 
559     // If the extend is compatible with the preferred extend then we should fix
560     // up the type and extend so that it uses the preferred use.
561     if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
562         UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
563       Register UseDstReg = UseMI->getOperand(0).getReg();
564       MachineOperand &UseSrcMO = UseMI->getOperand(1);
565       const LLT UseDstTy = MRI.getType(UseDstReg);
566       if (UseDstReg != ChosenDstReg) {
567         if (Preferred.Ty == UseDstTy) {
568           // If the use has the same type as the preferred use, then merge
569           // the vregs and erase the extend. For example:
570           //    %1:_(s8) = G_LOAD ...
571           //    %2:_(s32) = G_SEXT %1(s8)
572           //    %3:_(s32) = G_ANYEXT %1(s8)
573           //    ... = ... %3(s32)
574           // rewrites to:
575           //    %2:_(s32) = G_SEXTLOAD ...
576           //    ... = ... %2(s32)
577           replaceRegWith(MRI, UseDstReg, ChosenDstReg);
578           Observer.erasingInstr(*UseMO->getParent());
579           UseMO->getParent()->eraseFromParent();
580         } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
581           // If the preferred size is smaller, then keep the extend but extend
582           // from the result of the extending load. For example:
583           //    %1:_(s8) = G_LOAD ...
584           //    %2:_(s32) = G_SEXT %1(s8)
585           //    %3:_(s64) = G_ANYEXT %1(s8)
586           //    ... = ... %3(s64)
587           /// rewrites to:
588           //    %2:_(s32) = G_SEXTLOAD ...
589           //    %3:_(s64) = G_ANYEXT %2:_(s32)
590           //    ... = ... %3(s64)
591           replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
592         } else {
593           // If the preferred size is large, then insert a truncate. For
594           // example:
595           //    %1:_(s8) = G_LOAD ...
596           //    %2:_(s64) = G_SEXT %1(s8)
597           //    %3:_(s32) = G_ZEXT %1(s8)
598           //    ... = ... %3(s32)
599           /// rewrites to:
600           //    %2:_(s64) = G_SEXTLOAD ...
601           //    %4:_(s8) = G_TRUNC %2:_(s32)
602           //    %3:_(s64) = G_ZEXT %2:_(s8)
603           //    ... = ... %3(s64)
604           InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
605                                                  InsertTruncAt);
606         }
607         continue;
608       }
609       // The use is (one of) the uses of the preferred use we chose earlier.
610       // We're going to update the load to def this value later so just erase
611       // the old extend.
612       Observer.erasingInstr(*UseMO->getParent());
613       UseMO->getParent()->eraseFromParent();
614       continue;
615     }
616 
617     // The use isn't an extend. Truncate back to the type we originally loaded.
618     // This is free on many targets.
619     InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
620   }
621 
622   MI.getOperand(0).setReg(ChosenDstReg);
623   Observer.changedInstr(MI);
624 }
625 
626 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI,
627                                    const MachineInstr &UseMI) {
628   assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
629          "shouldn't consider debug uses");
630   assert(DefMI.getParent() == UseMI.getParent());
631   if (&DefMI == &UseMI)
632     return false;
633   const MachineBasicBlock &MBB = *DefMI.getParent();
634   auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) {
635     return &MI == &DefMI || &MI == &UseMI;
636   });
637   if (DefOrUse == MBB.end())
638     llvm_unreachable("Block must contain both DefMI and UseMI!");
639   return &*DefOrUse == &DefMI;
640 }
641 
642 bool CombinerHelper::dominates(const MachineInstr &DefMI,
643                                const MachineInstr &UseMI) {
644   assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
645          "shouldn't consider debug uses");
646   if (MDT)
647     return MDT->dominates(&DefMI, &UseMI);
648   else if (DefMI.getParent() != UseMI.getParent())
649     return false;
650 
651   return isPredecessor(DefMI, UseMI);
652 }
653 
654 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) {
655   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
656   Register SrcReg = MI.getOperand(1).getReg();
657   Register LoadUser = SrcReg;
658 
659   if (MRI.getType(SrcReg).isVector())
660     return false;
661 
662   Register TruncSrc;
663   if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))))
664     LoadUser = TruncSrc;
665 
666   uint64_t SizeInBits = MI.getOperand(2).getImm();
667   // If the source is a G_SEXTLOAD from the same bit width, then we don't
668   // need any extend at all, just a truncate.
669   if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) {
670     // If truncating more than the original extended value, abort.
671     auto LoadSizeBits = LoadMI->getMemSizeInBits();
672     if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits)
673       return false;
674     if (LoadSizeBits == SizeInBits)
675       return true;
676   }
677   return false;
678 }
679 
680 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) {
681   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
682   Builder.setInstrAndDebugLoc(MI);
683   Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
684   MI.eraseFromParent();
685 }
686 
687 bool CombinerHelper::matchSextInRegOfLoad(
688     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
689   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
690 
691   // Only supports scalars for now.
692   if (MRI.getType(MI.getOperand(0).getReg()).isVector())
693     return false;
694 
695   Register SrcReg = MI.getOperand(1).getReg();
696   auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI);
697   if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) ||
698       !LoadDef->isSimple())
699     return false;
700 
701   // If the sign extend extends from a narrower width than the load's width,
702   // then we can narrow the load width when we combine to a G_SEXTLOAD.
703   // Avoid widening the load at all.
704   unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(),
705                                   LoadDef->getMemSizeInBits());
706 
707   // Don't generate G_SEXTLOADs with a < 1 byte width.
708   if (NewSizeBits < 8)
709     return false;
710   // Don't bother creating a non-power-2 sextload, it will likely be broken up
711   // anyway for most targets.
712   if (!isPowerOf2_32(NewSizeBits))
713     return false;
714   MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits);
715   return true;
716 }
717 
718 void CombinerHelper::applySextInRegOfLoad(
719     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
720   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
721   Register LoadReg;
722   unsigned ScalarSizeBits;
723   std::tie(LoadReg, ScalarSizeBits) = MatchInfo;
724   GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg));
725 
726   // If we have the following:
727   // %ld = G_LOAD %ptr, (load 2)
728   // %ext = G_SEXT_INREG %ld, 8
729   //    ==>
730   // %ld = G_SEXTLOAD %ptr (load 1)
731 
732   auto &MMO = LoadDef->getMMO();
733   Builder.setInstrAndDebugLoc(*LoadDef);
734   auto &MF = Builder.getMF();
735   auto PtrInfo = MMO.getPointerInfo();
736   auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8);
737   Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(),
738                          LoadDef->getPointerReg(), *NewMMO);
739   MI.eraseFromParent();
740 }
741 
742 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr,
743                                             Register &Base, Register &Offset) {
744   auto &MF = *MI.getParent()->getParent();
745   const auto &TLI = *MF.getSubtarget().getTargetLowering();
746 
747 #ifndef NDEBUG
748   unsigned Opcode = MI.getOpcode();
749   assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
750          Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
751 #endif
752 
753   Base = MI.getOperand(1).getReg();
754   MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base);
755   if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
756     return false;
757 
758   LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI);
759   // FIXME: The following use traversal needs a bail out for patholigical cases.
760   for (auto &Use : MRI.use_nodbg_instructions(Base)) {
761     if (Use.getOpcode() != TargetOpcode::G_PTR_ADD)
762       continue;
763 
764     Offset = Use.getOperand(2).getReg();
765     if (!ForceLegalIndexing &&
766         !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) {
767       LLVM_DEBUG(dbgs() << "    Ignoring candidate with illegal addrmode: "
768                         << Use);
769       continue;
770     }
771 
772     // Make sure the offset calculation is before the potentially indexed op.
773     // FIXME: we really care about dependency here. The offset calculation might
774     // be movable.
775     MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset);
776     if (!OffsetDef || !dominates(*OffsetDef, MI)) {
777       LLVM_DEBUG(dbgs() << "    Ignoring candidate with offset after mem-op: "
778                         << Use);
779       continue;
780     }
781 
782     // FIXME: check whether all uses of Base are load/store with foldable
783     // addressing modes. If so, using the normal addr-modes is better than
784     // forming an indexed one.
785 
786     bool MemOpDominatesAddrUses = true;
787     for (auto &PtrAddUse :
788          MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) {
789       if (!dominates(MI, PtrAddUse)) {
790         MemOpDominatesAddrUses = false;
791         break;
792       }
793     }
794 
795     if (!MemOpDominatesAddrUses) {
796       LLVM_DEBUG(
797           dbgs() << "    Ignoring candidate as memop does not dominate uses: "
798                  << Use);
799       continue;
800     }
801 
802     LLVM_DEBUG(dbgs() << "    Found match: " << Use);
803     Addr = Use.getOperand(0).getReg();
804     return true;
805   }
806 
807   return false;
808 }
809 
810 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr,
811                                            Register &Base, Register &Offset) {
812   auto &MF = *MI.getParent()->getParent();
813   const auto &TLI = *MF.getSubtarget().getTargetLowering();
814 
815 #ifndef NDEBUG
816   unsigned Opcode = MI.getOpcode();
817   assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
818          Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
819 #endif
820 
821   Addr = MI.getOperand(1).getReg();
822   MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI);
823   if (!AddrDef || MRI.hasOneNonDBGUse(Addr))
824     return false;
825 
826   Base = AddrDef->getOperand(1).getReg();
827   Offset = AddrDef->getOperand(2).getReg();
828 
829   LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI);
830 
831   if (!ForceLegalIndexing &&
832       !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) {
833     LLVM_DEBUG(dbgs() << "    Skipping, not legal for target");
834     return false;
835   }
836 
837   MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
838   if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
839     LLVM_DEBUG(dbgs() << "    Skipping, frame index would need copy anyway.");
840     return false;
841   }
842 
843   if (MI.getOpcode() == TargetOpcode::G_STORE) {
844     // Would require a copy.
845     if (Base == MI.getOperand(0).getReg()) {
846       LLVM_DEBUG(dbgs() << "    Skipping, storing base so need copy anyway.");
847       return false;
848     }
849 
850     // We're expecting one use of Addr in MI, but it could also be the
851     // value stored, which isn't actually dominated by the instruction.
852     if (MI.getOperand(0).getReg() == Addr) {
853       LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses");
854       return false;
855     }
856   }
857 
858   // FIXME: check whether all uses of the base pointer are constant PtrAdds.
859   // That might allow us to end base's liveness here by adjusting the constant.
860 
861   for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) {
862     if (!dominates(MI, UseMI)) {
863       LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses.");
864       return false;
865     }
866   }
867 
868   return true;
869 }
870 
871 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) {
872   IndexedLoadStoreMatchInfo MatchInfo;
873   if (matchCombineIndexedLoadStore(MI, MatchInfo)) {
874     applyCombineIndexedLoadStore(MI, MatchInfo);
875     return true;
876   }
877   return false;
878 }
879 
880 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
881   unsigned Opcode = MI.getOpcode();
882   if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD &&
883       Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE)
884     return false;
885 
886   // For now, no targets actually support these opcodes so don't waste time
887   // running these unless we're forced to for testing.
888   if (!ForceLegalIndexing)
889     return false;
890 
891   MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
892                                           MatchInfo.Offset);
893   if (!MatchInfo.IsPre &&
894       !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
895                               MatchInfo.Offset))
896     return false;
897 
898   return true;
899 }
900 
901 void CombinerHelper::applyCombineIndexedLoadStore(
902     MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
903   MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr);
904   MachineIRBuilder MIRBuilder(MI);
905   unsigned Opcode = MI.getOpcode();
906   bool IsStore = Opcode == TargetOpcode::G_STORE;
907   unsigned NewOpcode;
908   switch (Opcode) {
909   case TargetOpcode::G_LOAD:
910     NewOpcode = TargetOpcode::G_INDEXED_LOAD;
911     break;
912   case TargetOpcode::G_SEXTLOAD:
913     NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD;
914     break;
915   case TargetOpcode::G_ZEXTLOAD:
916     NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD;
917     break;
918   case TargetOpcode::G_STORE:
919     NewOpcode = TargetOpcode::G_INDEXED_STORE;
920     break;
921   default:
922     llvm_unreachable("Unknown load/store opcode");
923   }
924 
925   auto MIB = MIRBuilder.buildInstr(NewOpcode);
926   if (IsStore) {
927     MIB.addDef(MatchInfo.Addr);
928     MIB.addUse(MI.getOperand(0).getReg());
929   } else {
930     MIB.addDef(MI.getOperand(0).getReg());
931     MIB.addDef(MatchInfo.Addr);
932   }
933 
934   MIB.addUse(MatchInfo.Base);
935   MIB.addUse(MatchInfo.Offset);
936   MIB.addImm(MatchInfo.IsPre);
937   MI.eraseFromParent();
938   AddrDef.eraseFromParent();
939 
940   LLVM_DEBUG(dbgs() << "    Combinined to indexed operation");
941 }
942 
943 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI,
944                                         MachineInstr *&OtherMI) {
945   unsigned Opcode = MI.getOpcode();
946   bool IsDiv, IsSigned;
947 
948   switch (Opcode) {
949   default:
950     llvm_unreachable("Unexpected opcode!");
951   case TargetOpcode::G_SDIV:
952   case TargetOpcode::G_UDIV: {
953     IsDiv = true;
954     IsSigned = Opcode == TargetOpcode::G_SDIV;
955     break;
956   }
957   case TargetOpcode::G_SREM:
958   case TargetOpcode::G_UREM: {
959     IsDiv = false;
960     IsSigned = Opcode == TargetOpcode::G_SREM;
961     break;
962   }
963   }
964 
965   Register Src1 = MI.getOperand(1).getReg();
966   unsigned DivOpcode, RemOpcode, DivremOpcode;
967   if (IsSigned) {
968     DivOpcode = TargetOpcode::G_SDIV;
969     RemOpcode = TargetOpcode::G_SREM;
970     DivremOpcode = TargetOpcode::G_SDIVREM;
971   } else {
972     DivOpcode = TargetOpcode::G_UDIV;
973     RemOpcode = TargetOpcode::G_UREM;
974     DivremOpcode = TargetOpcode::G_UDIVREM;
975   }
976 
977   if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}}))
978     return false;
979 
980   // Combine:
981   //   %div:_ = G_[SU]DIV %src1:_, %src2:_
982   //   %rem:_ = G_[SU]REM %src1:_, %src2:_
983   // into:
984   //  %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
985 
986   // Combine:
987   //   %rem:_ = G_[SU]REM %src1:_, %src2:_
988   //   %div:_ = G_[SU]DIV %src1:_, %src2:_
989   // into:
990   //  %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
991 
992   for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) {
993     if (MI.getParent() == UseMI.getParent() &&
994         ((IsDiv && UseMI.getOpcode() == RemOpcode) ||
995          (!IsDiv && UseMI.getOpcode() == DivOpcode)) &&
996         matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) {
997       OtherMI = &UseMI;
998       return true;
999     }
1000   }
1001 
1002   return false;
1003 }
1004 
1005 void CombinerHelper::applyCombineDivRem(MachineInstr &MI,
1006                                         MachineInstr *&OtherMI) {
1007   unsigned Opcode = MI.getOpcode();
1008   assert(OtherMI && "OtherMI shouldn't be empty.");
1009 
1010   Register DestDivReg, DestRemReg;
1011   if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) {
1012     DestDivReg = MI.getOperand(0).getReg();
1013     DestRemReg = OtherMI->getOperand(0).getReg();
1014   } else {
1015     DestDivReg = OtherMI->getOperand(0).getReg();
1016     DestRemReg = MI.getOperand(0).getReg();
1017   }
1018 
1019   bool IsSigned =
1020       Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM;
1021 
1022   // Check which instruction is first in the block so we don't break def-use
1023   // deps by "moving" the instruction incorrectly.
1024   if (dominates(MI, *OtherMI))
1025     Builder.setInstrAndDebugLoc(MI);
1026   else
1027     Builder.setInstrAndDebugLoc(*OtherMI);
1028 
1029   Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM
1030                               : TargetOpcode::G_UDIVREM,
1031                      {DestDivReg, DestRemReg},
1032                      {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()});
1033   MI.eraseFromParent();
1034   OtherMI->eraseFromParent();
1035 }
1036 
1037 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI,
1038                                                    MachineInstr *&BrCond) {
1039   assert(MI.getOpcode() == TargetOpcode::G_BR);
1040 
1041   // Try to match the following:
1042   // bb1:
1043   //   G_BRCOND %c1, %bb2
1044   //   G_BR %bb3
1045   // bb2:
1046   // ...
1047   // bb3:
1048 
1049   // The above pattern does not have a fall through to the successor bb2, always
1050   // resulting in a branch no matter which path is taken. Here we try to find
1051   // and replace that pattern with conditional branch to bb3 and otherwise
1052   // fallthrough to bb2. This is generally better for branch predictors.
1053 
1054   MachineBasicBlock *MBB = MI.getParent();
1055   MachineBasicBlock::iterator BrIt(MI);
1056   if (BrIt == MBB->begin())
1057     return false;
1058   assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator");
1059 
1060   BrCond = &*std::prev(BrIt);
1061   if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
1062     return false;
1063 
1064   // Check that the next block is the conditional branch target. Also make sure
1065   // that it isn't the same as the G_BR's target (otherwise, this will loop.)
1066   MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB();
1067   return BrCondTarget != MI.getOperand(0).getMBB() &&
1068          MBB->isLayoutSuccessor(BrCondTarget);
1069 }
1070 
1071 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI,
1072                                                    MachineInstr *&BrCond) {
1073   MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
1074   Builder.setInstrAndDebugLoc(*BrCond);
1075   LLT Ty = MRI.getType(BrCond->getOperand(0).getReg());
1076   // FIXME: Does int/fp matter for this? If so, we might need to restrict
1077   // this to i1 only since we might not know for sure what kind of
1078   // compare generated the condition value.
1079   auto True = Builder.buildConstant(
1080       Ty, getICmpTrueVal(getTargetLowering(), false, false));
1081   auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True);
1082 
1083   auto *FallthroughBB = BrCond->getOperand(1).getMBB();
1084   Observer.changingInstr(MI);
1085   MI.getOperand(0).setMBB(FallthroughBB);
1086   Observer.changedInstr(MI);
1087 
1088   // Change the conditional branch to use the inverted condition and
1089   // new target block.
1090   Observer.changingInstr(*BrCond);
1091   BrCond->getOperand(0).setReg(Xor.getReg(0));
1092   BrCond->getOperand(1).setMBB(BrTarget);
1093   Observer.changedInstr(*BrCond);
1094 }
1095 
1096 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
1097   // On Darwin, -Os means optimize for size without hurting performance, so
1098   // only really optimize for size when -Oz (MinSize) is used.
1099   if (MF.getTarget().getTargetTriple().isOSDarwin())
1100     return MF.getFunction().hasMinSize();
1101   return MF.getFunction().hasOptSize();
1102 }
1103 
1104 // Returns a list of types to use for memory op lowering in MemOps. A partial
1105 // port of findOptimalMemOpLowering in TargetLowering.
1106 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps,
1107                                           unsigned Limit, const MemOp &Op,
1108                                           unsigned DstAS, unsigned SrcAS,
1109                                           const AttributeList &FuncAttributes,
1110                                           const TargetLowering &TLI) {
1111   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
1112     return false;
1113 
1114   LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes);
1115 
1116   if (Ty == LLT()) {
1117     // Use the largest scalar type whose alignment constraints are satisfied.
1118     // We only need to check DstAlign here as SrcAlign is always greater or
1119     // equal to DstAlign (or zero).
1120     Ty = LLT::scalar(64);
1121     if (Op.isFixedDstAlign())
1122       while (Op.getDstAlign() < Ty.getSizeInBytes() &&
1123              !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign()))
1124         Ty = LLT::scalar(Ty.getSizeInBytes());
1125     assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
1126     // FIXME: check for the largest legal type we can load/store to.
1127   }
1128 
1129   unsigned NumMemOps = 0;
1130   uint64_t Size = Op.size();
1131   while (Size) {
1132     unsigned TySize = Ty.getSizeInBytes();
1133     while (TySize > Size) {
1134       // For now, only use non-vector load / store's for the left-over pieces.
1135       LLT NewTy = Ty;
1136       // FIXME: check for mem op safety and legality of the types. Not all of
1137       // SDAGisms map cleanly to GISel concepts.
1138       if (NewTy.isVector())
1139         NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
1140       NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
1141       unsigned NewTySize = NewTy.getSizeInBytes();
1142       assert(NewTySize > 0 && "Could not find appropriate type");
1143 
1144       // If the new LLT cannot cover all of the remaining bits, then consider
1145       // issuing a (or a pair of) unaligned and overlapping load / store.
1146       bool Fast;
1147       // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
1148       MVT VT = getMVTForLLT(Ty);
1149       if (NumMemOps && Op.allowOverlap() && NewTySize < Size &&
1150           TLI.allowsMisalignedMemoryAccesses(
1151               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
1152               MachineMemOperand::MONone, &Fast) &&
1153           Fast)
1154         TySize = Size;
1155       else {
1156         Ty = NewTy;
1157         TySize = NewTySize;
1158       }
1159     }
1160 
1161     if (++NumMemOps > Limit)
1162       return false;
1163 
1164     MemOps.push_back(Ty);
1165     Size -= TySize;
1166   }
1167 
1168   return true;
1169 }
1170 
1171 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
1172   if (Ty.isVector())
1173     return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
1174                                 Ty.getNumElements());
1175   return IntegerType::get(C, Ty.getSizeInBits());
1176 }
1177 
1178 // Get a vectorized representation of the memset value operand, GISel edition.
1179 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
1180   MachineRegisterInfo &MRI = *MIB.getMRI();
1181   unsigned NumBits = Ty.getScalarSizeInBits();
1182   auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
1183   if (!Ty.isVector() && ValVRegAndVal) {
1184     APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8);
1185     APInt SplatVal = APInt::getSplat(NumBits, Scalar);
1186     return MIB.buildConstant(Ty, SplatVal).getReg(0);
1187   }
1188 
1189   // Extend the byte value to the larger type, and then multiply by a magic
1190   // value 0x010101... in order to replicate it across every byte.
1191   // Unless it's zero, in which case just emit a larger G_CONSTANT 0.
1192   if (ValVRegAndVal && ValVRegAndVal->Value == 0) {
1193     return MIB.buildConstant(Ty, 0).getReg(0);
1194   }
1195 
1196   LLT ExtType = Ty.getScalarType();
1197   auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
1198   if (NumBits > 8) {
1199     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
1200     auto MagicMI = MIB.buildConstant(ExtType, Magic);
1201     Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
1202   }
1203 
1204   // For vector types create a G_BUILD_VECTOR.
1205   if (Ty.isVector())
1206     Val = MIB.buildSplatVector(Ty, Val).getReg(0);
1207 
1208   return Val;
1209 }
1210 
1211 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst,
1212                                     Register Val, uint64_t KnownLen,
1213                                     Align Alignment, bool IsVolatile) {
1214   auto &MF = *MI.getParent()->getParent();
1215   const auto &TLI = *MF.getSubtarget().getTargetLowering();
1216   auto &DL = MF.getDataLayout();
1217   LLVMContext &C = MF.getFunction().getContext();
1218 
1219   assert(KnownLen != 0 && "Have a zero length memset length!");
1220 
1221   bool DstAlignCanChange = false;
1222   MachineFrameInfo &MFI = MF.getFrameInfo();
1223   bool OptSize = shouldLowerMemFuncForSize(MF);
1224 
1225   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
1226   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
1227     DstAlignCanChange = true;
1228 
1229   unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
1230   std::vector<LLT> MemOps;
1231 
1232   const auto &DstMMO = **MI.memoperands_begin();
1233   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
1234 
1235   auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
1236   bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
1237 
1238   if (!findGISelOptimalMemOpLowering(MemOps, Limit,
1239                                      MemOp::Set(KnownLen, DstAlignCanChange,
1240                                                 Alignment,
1241                                                 /*IsZeroMemset=*/IsZeroVal,
1242                                                 /*IsVolatile=*/IsVolatile),
1243                                      DstPtrInfo.getAddrSpace(), ~0u,
1244                                      MF.getFunction().getAttributes(), TLI))
1245     return false;
1246 
1247   if (DstAlignCanChange) {
1248     // Get an estimate of the type from the LLT.
1249     Type *IRTy = getTypeForLLT(MemOps[0], C);
1250     Align NewAlign = DL.getABITypeAlign(IRTy);
1251     if (NewAlign > Alignment) {
1252       Alignment = NewAlign;
1253       unsigned FI = FIDef->getOperand(1).getIndex();
1254       // Give the stack frame object a larger alignment if needed.
1255       if (MFI.getObjectAlign(FI) < Alignment)
1256         MFI.setObjectAlignment(FI, Alignment);
1257     }
1258   }
1259 
1260   MachineIRBuilder MIB(MI);
1261   // Find the largest store and generate the bit pattern for it.
1262   LLT LargestTy = MemOps[0];
1263   for (unsigned i = 1; i < MemOps.size(); i++)
1264     if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
1265       LargestTy = MemOps[i];
1266 
1267   // The memset stored value is always defined as an s8, so in order to make it
1268   // work with larger store types we need to repeat the bit pattern across the
1269   // wider type.
1270   Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
1271 
1272   if (!MemSetValue)
1273     return false;
1274 
1275   // Generate the stores. For each store type in the list, we generate the
1276   // matching store of that type to the destination address.
1277   LLT PtrTy = MRI.getType(Dst);
1278   unsigned DstOff = 0;
1279   unsigned Size = KnownLen;
1280   for (unsigned I = 0; I < MemOps.size(); I++) {
1281     LLT Ty = MemOps[I];
1282     unsigned TySize = Ty.getSizeInBytes();
1283     if (TySize > Size) {
1284       // Issuing an unaligned load / store pair that overlaps with the previous
1285       // pair. Adjust the offset accordingly.
1286       assert(I == MemOps.size() - 1 && I != 0);
1287       DstOff -= TySize - Size;
1288     }
1289 
1290     // If this store is smaller than the largest store see whether we can get
1291     // the smaller value for free with a truncate.
1292     Register Value = MemSetValue;
1293     if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
1294       MVT VT = getMVTForLLT(Ty);
1295       MVT LargestVT = getMVTForLLT(LargestTy);
1296       if (!LargestTy.isVector() && !Ty.isVector() &&
1297           TLI.isTruncateFree(LargestVT, VT))
1298         Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
1299       else
1300         Value = getMemsetValue(Val, Ty, MIB);
1301       if (!Value)
1302         return false;
1303     }
1304 
1305     auto *StoreMMO =
1306         MF.getMachineMemOperand(&DstMMO, DstOff, Ty);
1307 
1308     Register Ptr = Dst;
1309     if (DstOff != 0) {
1310       auto Offset =
1311           MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
1312       Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
1313     }
1314 
1315     MIB.buildStore(Value, Ptr, *StoreMMO);
1316     DstOff += Ty.getSizeInBytes();
1317     Size -= TySize;
1318   }
1319 
1320   MI.eraseFromParent();
1321   return true;
1322 }
1323 
1324 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) {
1325   assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
1326 
1327   Register Dst = MI.getOperand(0).getReg();
1328   Register Src = MI.getOperand(1).getReg();
1329   Register Len = MI.getOperand(2).getReg();
1330 
1331   const auto *MMOIt = MI.memoperands_begin();
1332   const MachineMemOperand *MemOp = *MMOIt;
1333   bool IsVolatile = MemOp->isVolatile();
1334 
1335   // See if this is a constant length copy
1336   auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI);
1337   // FIXME: support dynamically sized G_MEMCPY_INLINE
1338   assert(LenVRegAndVal.hasValue() &&
1339          "inline memcpy with dynamic size is not yet supported");
1340   uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
1341   if (KnownLen == 0) {
1342     MI.eraseFromParent();
1343     return true;
1344   }
1345 
1346   const auto &DstMMO = **MI.memoperands_begin();
1347   const auto &SrcMMO = **std::next(MI.memoperands_begin());
1348   Align DstAlign = DstMMO.getBaseAlign();
1349   Align SrcAlign = SrcMMO.getBaseAlign();
1350 
1351   return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
1352                              IsVolatile);
1353 }
1354 
1355 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI, Register Dst,
1356                                          Register Src, uint64_t KnownLen,
1357                                          Align DstAlign, Align SrcAlign,
1358                                          bool IsVolatile) {
1359   assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
1360   return optimizeMemcpy(MI, Dst, Src, KnownLen,
1361                         std::numeric_limits<uint64_t>::max(), DstAlign,
1362                         SrcAlign, IsVolatile);
1363 }
1364 
1365 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst,
1366                                     Register Src, uint64_t KnownLen,
1367                                     uint64_t Limit, Align DstAlign,
1368                                     Align SrcAlign, bool IsVolatile) {
1369   auto &MF = *MI.getParent()->getParent();
1370   const auto &TLI = *MF.getSubtarget().getTargetLowering();
1371   auto &DL = MF.getDataLayout();
1372   LLVMContext &C = MF.getFunction().getContext();
1373 
1374   assert(KnownLen != 0 && "Have a zero length memcpy length!");
1375 
1376   bool DstAlignCanChange = false;
1377   MachineFrameInfo &MFI = MF.getFrameInfo();
1378   Align Alignment = commonAlignment(DstAlign, SrcAlign);
1379 
1380   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
1381   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
1382     DstAlignCanChange = true;
1383 
1384   // FIXME: infer better src pointer alignment like SelectionDAG does here.
1385   // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
1386   // if the memcpy is in a tail call position.
1387 
1388   std::vector<LLT> MemOps;
1389 
1390   const auto &DstMMO = **MI.memoperands_begin();
1391   const auto &SrcMMO = **std::next(MI.memoperands_begin());
1392   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
1393   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
1394 
1395   if (!findGISelOptimalMemOpLowering(
1396           MemOps, Limit,
1397           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
1398                       IsVolatile),
1399           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
1400           MF.getFunction().getAttributes(), TLI))
1401     return false;
1402 
1403   if (DstAlignCanChange) {
1404     // Get an estimate of the type from the LLT.
1405     Type *IRTy = getTypeForLLT(MemOps[0], C);
1406     Align NewAlign = DL.getABITypeAlign(IRTy);
1407 
1408     // Don't promote to an alignment that would require dynamic stack
1409     // realignment.
1410     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1411     if (!TRI->hasStackRealignment(MF))
1412       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
1413         NewAlign = NewAlign / 2;
1414 
1415     if (NewAlign > Alignment) {
1416       Alignment = NewAlign;
1417       unsigned FI = FIDef->getOperand(1).getIndex();
1418       // Give the stack frame object a larger alignment if needed.
1419       if (MFI.getObjectAlign(FI) < Alignment)
1420         MFI.setObjectAlignment(FI, Alignment);
1421     }
1422   }
1423 
1424   LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");
1425 
1426   MachineIRBuilder MIB(MI);
1427   // Now we need to emit a pair of load and stores for each of the types we've
1428   // collected. I.e. for each type, generate a load from the source pointer of
1429   // that type width, and then generate a corresponding store to the dest buffer
1430   // of that value loaded. This can result in a sequence of loads and stores
1431   // mixed types, depending on what the target specifies as good types to use.
1432   unsigned CurrOffset = 0;
1433   LLT PtrTy = MRI.getType(Src);
1434   unsigned Size = KnownLen;
1435   for (auto CopyTy : MemOps) {
1436     // Issuing an unaligned load / store pair  that overlaps with the previous
1437     // pair. Adjust the offset accordingly.
1438     if (CopyTy.getSizeInBytes() > Size)
1439       CurrOffset -= CopyTy.getSizeInBytes() - Size;
1440 
1441     // Construct MMOs for the accesses.
1442     auto *LoadMMO =
1443         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
1444     auto *StoreMMO =
1445         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
1446 
1447     // Create the load.
1448     Register LoadPtr = Src;
1449     Register Offset;
1450     if (CurrOffset != 0) {
1451       Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset)
1452                    .getReg(0);
1453       LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0);
1454     }
1455     auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
1456 
1457     // Create the store.
1458     Register StorePtr =
1459         CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
1460     MIB.buildStore(LdVal, StorePtr, *StoreMMO);
1461     CurrOffset += CopyTy.getSizeInBytes();
1462     Size -= CopyTy.getSizeInBytes();
1463   }
1464 
1465   MI.eraseFromParent();
1466   return true;
1467 }
1468 
1469 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst,
1470                                      Register Src, uint64_t KnownLen,
1471                                      Align DstAlign, Align SrcAlign,
1472                                      bool IsVolatile) {
1473   auto &MF = *MI.getParent()->getParent();
1474   const auto &TLI = *MF.getSubtarget().getTargetLowering();
1475   auto &DL = MF.getDataLayout();
1476   LLVMContext &C = MF.getFunction().getContext();
1477 
1478   assert(KnownLen != 0 && "Have a zero length memmove length!");
1479 
1480   bool DstAlignCanChange = false;
1481   MachineFrameInfo &MFI = MF.getFrameInfo();
1482   bool OptSize = shouldLowerMemFuncForSize(MF);
1483   Align Alignment = commonAlignment(DstAlign, SrcAlign);
1484 
1485   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
1486   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
1487     DstAlignCanChange = true;
1488 
1489   unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
1490   std::vector<LLT> MemOps;
1491 
1492   const auto &DstMMO = **MI.memoperands_begin();
1493   const auto &SrcMMO = **std::next(MI.memoperands_begin());
1494   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
1495   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
1496 
1497   // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
1498   // to a bug in it's findOptimalMemOpLowering implementation. For now do the
1499   // same thing here.
1500   if (!findGISelOptimalMemOpLowering(
1501           MemOps, Limit,
1502           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
1503                       /*IsVolatile*/ true),
1504           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
1505           MF.getFunction().getAttributes(), TLI))
1506     return false;
1507 
1508   if (DstAlignCanChange) {
1509     // Get an estimate of the type from the LLT.
1510     Type *IRTy = getTypeForLLT(MemOps[0], C);
1511     Align NewAlign = DL.getABITypeAlign(IRTy);
1512 
1513     // Don't promote to an alignment that would require dynamic stack
1514     // realignment.
1515     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1516     if (!TRI->hasStackRealignment(MF))
1517       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
1518         NewAlign = NewAlign / 2;
1519 
1520     if (NewAlign > Alignment) {
1521       Alignment = NewAlign;
1522       unsigned FI = FIDef->getOperand(1).getIndex();
1523       // Give the stack frame object a larger alignment if needed.
1524       if (MFI.getObjectAlign(FI) < Alignment)
1525         MFI.setObjectAlignment(FI, Alignment);
1526     }
1527   }
1528 
1529   LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");
1530 
1531   MachineIRBuilder MIB(MI);
1532   // Memmove requires that we perform the loads first before issuing the stores.
1533   // Apart from that, this loop is pretty much doing the same thing as the
1534   // memcpy codegen function.
1535   unsigned CurrOffset = 0;
1536   LLT PtrTy = MRI.getType(Src);
1537   SmallVector<Register, 16> LoadVals;
1538   for (auto CopyTy : MemOps) {
1539     // Construct MMO for the load.
1540     auto *LoadMMO =
1541         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
1542 
1543     // Create the load.
1544     Register LoadPtr = Src;
1545     if (CurrOffset != 0) {
1546       auto Offset =
1547           MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
1548       LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0);
1549     }
1550     LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
1551     CurrOffset += CopyTy.getSizeInBytes();
1552   }
1553 
1554   CurrOffset = 0;
1555   for (unsigned I = 0; I < MemOps.size(); ++I) {
1556     LLT CopyTy = MemOps[I];
1557     // Now store the values loaded.
1558     auto *StoreMMO =
1559         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
1560 
1561     Register StorePtr = Dst;
1562     if (CurrOffset != 0) {
1563       auto Offset =
1564           MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
1565       StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
1566     }
1567     MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
1568     CurrOffset += CopyTy.getSizeInBytes();
1569   }
1570   MI.eraseFromParent();
1571   return true;
1572 }
1573 
1574 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
1575   const unsigned Opc = MI.getOpcode();
1576   // This combine is fairly complex so it's not written with a separate
1577   // matcher function.
1578   assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE ||
1579           Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction");
1580 
1581   auto MMOIt = MI.memoperands_begin();
1582   const MachineMemOperand *MemOp = *MMOIt;
1583 
1584   Align DstAlign = MemOp->getBaseAlign();
1585   Align SrcAlign;
1586   Register Dst = MI.getOperand(0).getReg();
1587   Register Src = MI.getOperand(1).getReg();
1588   Register Len = MI.getOperand(2).getReg();
1589 
1590   if (Opc != TargetOpcode::G_MEMSET) {
1591     assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
1592     MemOp = *(++MMOIt);
1593     SrcAlign = MemOp->getBaseAlign();
1594   }
1595 
1596   // See if this is a constant length copy
1597   auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI);
1598   if (!LenVRegAndVal)
1599     return false; // Leave it to the legalizer to lower it to a libcall.
1600   uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
1601 
1602   if (KnownLen == 0) {
1603     MI.eraseFromParent();
1604     return true;
1605   }
1606 
1607   bool IsVolatile = MemOp->isVolatile();
1608   if (Opc == TargetOpcode::G_MEMCPY_INLINE)
1609     return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
1610                                IsVolatile);
1611 
1612   // Don't try to optimize volatile.
1613   if (IsVolatile)
1614     return false;
1615 
1616   if (MaxLen && KnownLen > MaxLen)
1617     return false;
1618 
1619   if (Opc == TargetOpcode::G_MEMCPY) {
1620     auto &MF = *MI.getParent()->getParent();
1621     const auto &TLI = *MF.getSubtarget().getTargetLowering();
1622     bool OptSize = shouldLowerMemFuncForSize(MF);
1623     uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize);
1624     return optimizeMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign,
1625                           IsVolatile);
1626   }
1627   if (Opc == TargetOpcode::G_MEMMOVE)
1628     return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
1629   if (Opc == TargetOpcode::G_MEMSET)
1630     return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
1631   return false;
1632 }
1633 
1634 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy,
1635                                              const Register Op,
1636                                              const MachineRegisterInfo &MRI) {
1637   const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI);
1638   if (!MaybeCst)
1639     return None;
1640 
1641   APFloat V = MaybeCst->getValueAPF();
1642   switch (Opcode) {
1643   default:
1644     llvm_unreachable("Unexpected opcode!");
1645   case TargetOpcode::G_FNEG: {
1646     V.changeSign();
1647     return V;
1648   }
1649   case TargetOpcode::G_FABS: {
1650     V.clearSign();
1651     return V;
1652   }
1653   case TargetOpcode::G_FPTRUNC:
1654     break;
1655   case TargetOpcode::G_FSQRT: {
1656     bool Unused;
1657     V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1658     V = APFloat(sqrt(V.convertToDouble()));
1659     break;
1660   }
1661   case TargetOpcode::G_FLOG2: {
1662     bool Unused;
1663     V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1664     V = APFloat(log2(V.convertToDouble()));
1665     break;
1666   }
1667   }
1668   // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise,
1669   // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`,
1670   // and `G_FLOG2` reach here.
1671   bool Unused;
1672   V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused);
1673   return V;
1674 }
1675 
1676 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI,
1677                                                      Optional<APFloat> &Cst) {
1678   Register DstReg = MI.getOperand(0).getReg();
1679   Register SrcReg = MI.getOperand(1).getReg();
1680   LLT DstTy = MRI.getType(DstReg);
1681   Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI);
1682   return Cst.hasValue();
1683 }
1684 
1685 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI,
1686                                                      Optional<APFloat> &Cst) {
1687   assert(Cst.hasValue() && "Optional is unexpectedly empty!");
1688   Builder.setInstrAndDebugLoc(MI);
1689   MachineFunction &MF = Builder.getMF();
1690   auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst);
1691   Register DstReg = MI.getOperand(0).getReg();
1692   Builder.buildFConstant(DstReg, *FPVal);
1693   MI.eraseFromParent();
1694 }
1695 
1696 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI,
1697                                            PtrAddChain &MatchInfo) {
1698   // We're trying to match the following pattern:
1699   //   %t1 = G_PTR_ADD %base, G_CONSTANT imm1
1700   //   %root = G_PTR_ADD %t1, G_CONSTANT imm2
1701   // -->
1702   //   %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2)
1703 
1704   if (MI.getOpcode() != TargetOpcode::G_PTR_ADD)
1705     return false;
1706 
1707   Register Add2 = MI.getOperand(1).getReg();
1708   Register Imm1 = MI.getOperand(2).getReg();
1709   auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI);
1710   if (!MaybeImmVal)
1711     return false;
1712 
1713   // Don't do this combine if there multiple uses of the first PTR_ADD,
1714   // since we may be able to compute the second PTR_ADD as an immediate
1715   // offset anyway. Folding the first offset into the second may cause us
1716   // to go beyond the bounds of our legal addressing modes.
1717   if (!MRI.hasOneNonDBGUse(Add2))
1718     return false;
1719 
1720   MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2);
1721   if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD)
1722     return false;
1723 
1724   Register Base = Add2Def->getOperand(1).getReg();
1725   Register Imm2 = Add2Def->getOperand(2).getReg();
1726   auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI);
1727   if (!MaybeImm2Val)
1728     return false;
1729 
1730   // Pass the combined immediate to the apply function.
1731   MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue();
1732   MatchInfo.Base = Base;
1733   return true;
1734 }
1735 
1736 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI,
1737                                            PtrAddChain &MatchInfo) {
1738   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
1739   MachineIRBuilder MIB(MI);
1740   LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg());
1741   auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm);
1742   Observer.changingInstr(MI);
1743   MI.getOperand(1).setReg(MatchInfo.Base);
1744   MI.getOperand(2).setReg(NewOffset.getReg(0));
1745   Observer.changedInstr(MI);
1746 }
1747 
1748 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI,
1749                                           RegisterImmPair &MatchInfo) {
1750   // We're trying to match the following pattern with any of
1751   // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions:
1752   //   %t1 = SHIFT %base, G_CONSTANT imm1
1753   //   %root = SHIFT %t1, G_CONSTANT imm2
1754   // -->
1755   //   %root = SHIFT %base, G_CONSTANT (imm1 + imm2)
1756 
1757   unsigned Opcode = MI.getOpcode();
1758   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1759           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1760           Opcode == TargetOpcode::G_USHLSAT) &&
1761          "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1762 
1763   Register Shl2 = MI.getOperand(1).getReg();
1764   Register Imm1 = MI.getOperand(2).getReg();
1765   auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI);
1766   if (!MaybeImmVal)
1767     return false;
1768 
1769   MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2);
1770   if (Shl2Def->getOpcode() != Opcode)
1771     return false;
1772 
1773   Register Base = Shl2Def->getOperand(1).getReg();
1774   Register Imm2 = Shl2Def->getOperand(2).getReg();
1775   auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI);
1776   if (!MaybeImm2Val)
1777     return false;
1778 
1779   // Pass the combined immediate to the apply function.
1780   MatchInfo.Imm =
1781       (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue();
1782   MatchInfo.Reg = Base;
1783 
1784   // There is no simple replacement for a saturating unsigned left shift that
1785   // exceeds the scalar size.
1786   if (Opcode == TargetOpcode::G_USHLSAT &&
1787       MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits())
1788     return false;
1789 
1790   return true;
1791 }
1792 
1793 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI,
1794                                           RegisterImmPair &MatchInfo) {
1795   unsigned Opcode = MI.getOpcode();
1796   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1797           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1798           Opcode == TargetOpcode::G_USHLSAT) &&
1799          "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1800 
1801   Builder.setInstrAndDebugLoc(MI);
1802   LLT Ty = MRI.getType(MI.getOperand(1).getReg());
1803   unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits();
1804   auto Imm = MatchInfo.Imm;
1805 
1806   if (Imm >= ScalarSizeInBits) {
1807     // Any logical shift that exceeds scalar size will produce zero.
1808     if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) {
1809       Builder.buildConstant(MI.getOperand(0), 0);
1810       MI.eraseFromParent();
1811       return;
1812     }
1813     // Arithmetic shift and saturating signed left shift have no effect beyond
1814     // scalar size.
1815     Imm = ScalarSizeInBits - 1;
1816   }
1817 
1818   LLT ImmTy = MRI.getType(MI.getOperand(2).getReg());
1819   Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0);
1820   Observer.changingInstr(MI);
1821   MI.getOperand(1).setReg(MatchInfo.Reg);
1822   MI.getOperand(2).setReg(NewImm);
1823   Observer.changedInstr(MI);
1824 }
1825 
1826 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI,
1827                                               ShiftOfShiftedLogic &MatchInfo) {
1828   // We're trying to match the following pattern with any of
1829   // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination
1830   // with any of G_AND/G_OR/G_XOR logic instructions.
1831   //   %t1 = SHIFT %X, G_CONSTANT C0
1832   //   %t2 = LOGIC %t1, %Y
1833   //   %root = SHIFT %t2, G_CONSTANT C1
1834   // -->
1835   //   %t3 = SHIFT %X, G_CONSTANT (C0+C1)
1836   //   %t4 = SHIFT %Y, G_CONSTANT C1
1837   //   %root = LOGIC %t3, %t4
1838   unsigned ShiftOpcode = MI.getOpcode();
1839   assert((ShiftOpcode == TargetOpcode::G_SHL ||
1840           ShiftOpcode == TargetOpcode::G_ASHR ||
1841           ShiftOpcode == TargetOpcode::G_LSHR ||
1842           ShiftOpcode == TargetOpcode::G_USHLSAT ||
1843           ShiftOpcode == TargetOpcode::G_SSHLSAT) &&
1844          "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1845 
1846   // Match a one-use bitwise logic op.
1847   Register LogicDest = MI.getOperand(1).getReg();
1848   if (!MRI.hasOneNonDBGUse(LogicDest))
1849     return false;
1850 
1851   MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest);
1852   unsigned LogicOpcode = LogicMI->getOpcode();
1853   if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR &&
1854       LogicOpcode != TargetOpcode::G_XOR)
1855     return false;
1856 
1857   // Find a matching one-use shift by constant.
1858   const Register C1 = MI.getOperand(2).getReg();
1859   auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI);
1860   if (!MaybeImmVal)
1861     return false;
1862 
1863   const uint64_t C1Val = MaybeImmVal->Value.getZExtValue();
1864 
1865   auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) {
1866     // Shift should match previous one and should be a one-use.
1867     if (MI->getOpcode() != ShiftOpcode ||
1868         !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
1869       return false;
1870 
1871     // Must be a constant.
1872     auto MaybeImmVal =
1873         getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
1874     if (!MaybeImmVal)
1875       return false;
1876 
1877     ShiftVal = MaybeImmVal->Value.getSExtValue();
1878     return true;
1879   };
1880 
1881   // Logic ops are commutative, so check each operand for a match.
1882   Register LogicMIReg1 = LogicMI->getOperand(1).getReg();
1883   MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1);
1884   Register LogicMIReg2 = LogicMI->getOperand(2).getReg();
1885   MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2);
1886   uint64_t C0Val;
1887 
1888   if (matchFirstShift(LogicMIOp1, C0Val)) {
1889     MatchInfo.LogicNonShiftReg = LogicMIReg2;
1890     MatchInfo.Shift2 = LogicMIOp1;
1891   } else if (matchFirstShift(LogicMIOp2, C0Val)) {
1892     MatchInfo.LogicNonShiftReg = LogicMIReg1;
1893     MatchInfo.Shift2 = LogicMIOp2;
1894   } else
1895     return false;
1896 
1897   MatchInfo.ValSum = C0Val + C1Val;
1898 
1899   // The fold is not valid if the sum of the shift values exceeds bitwidth.
1900   if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits())
1901     return false;
1902 
1903   MatchInfo.Logic = LogicMI;
1904   return true;
1905 }
1906 
1907 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI,
1908                                               ShiftOfShiftedLogic &MatchInfo) {
1909   unsigned Opcode = MI.getOpcode();
1910   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1911           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT ||
1912           Opcode == TargetOpcode::G_SSHLSAT) &&
1913          "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1914 
1915   LLT ShlType = MRI.getType(MI.getOperand(2).getReg());
1916   LLT DestType = MRI.getType(MI.getOperand(0).getReg());
1917   Builder.setInstrAndDebugLoc(MI);
1918 
1919   Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0);
1920 
1921   Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg();
1922   Register Shift1 =
1923       Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0);
1924 
1925   Register Shift2Const = MI.getOperand(2).getReg();
1926   Register Shift2 = Builder
1927                         .buildInstr(Opcode, {DestType},
1928                                     {MatchInfo.LogicNonShiftReg, Shift2Const})
1929                         .getReg(0);
1930 
1931   Register Dest = MI.getOperand(0).getReg();
1932   Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2});
1933 
1934   // These were one use so it's safe to remove them.
1935   MatchInfo.Shift2->eraseFromParent();
1936   MatchInfo.Logic->eraseFromParent();
1937 
1938   MI.eraseFromParent();
1939 }
1940 
1941 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI,
1942                                           unsigned &ShiftVal) {
1943   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
1944   auto MaybeImmVal =
1945       getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
1946   if (!MaybeImmVal)
1947     return false;
1948 
1949   ShiftVal = MaybeImmVal->Value.exactLogBase2();
1950   return (static_cast<int32_t>(ShiftVal) != -1);
1951 }
1952 
1953 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI,
1954                                           unsigned &ShiftVal) {
1955   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
1956   MachineIRBuilder MIB(MI);
1957   LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg());
1958   auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal);
1959   Observer.changingInstr(MI);
1960   MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL));
1961   MI.getOperand(2).setReg(ShiftCst.getReg(0));
1962   Observer.changedInstr(MI);
1963 }
1964 
1965 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source
1966 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI,
1967                                              RegisterImmPair &MatchData) {
1968   assert(MI.getOpcode() == TargetOpcode::G_SHL && KB);
1969 
1970   Register LHS = MI.getOperand(1).getReg();
1971 
1972   Register ExtSrc;
1973   if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) &&
1974       !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) &&
1975       !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc))))
1976     return false;
1977 
1978   // TODO: Should handle vector splat.
1979   Register RHS = MI.getOperand(2).getReg();
1980   auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI);
1981   if (!MaybeShiftAmtVal)
1982     return false;
1983 
1984   if (LI) {
1985     LLT SrcTy = MRI.getType(ExtSrc);
1986 
1987     // We only really care about the legality with the shifted value. We can
1988     // pick any type the constant shift amount, so ask the target what to
1989     // use. Otherwise we would have to guess and hope it is reported as legal.
1990     LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy);
1991     if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}}))
1992       return false;
1993   }
1994 
1995   int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue();
1996   MatchData.Reg = ExtSrc;
1997   MatchData.Imm = ShiftAmt;
1998 
1999   unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes();
2000   return MinLeadingZeros >= ShiftAmt;
2001 }
2002 
2003 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI,
2004                                              const RegisterImmPair &MatchData) {
2005   Register ExtSrcReg = MatchData.Reg;
2006   int64_t ShiftAmtVal = MatchData.Imm;
2007 
2008   LLT ExtSrcTy = MRI.getType(ExtSrcReg);
2009   Builder.setInstrAndDebugLoc(MI);
2010   auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal);
2011   auto NarrowShift =
2012       Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags());
2013   Builder.buildZExt(MI.getOperand(0), NarrowShift);
2014   MI.eraseFromParent();
2015 }
2016 
2017 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI,
2018                                               Register &MatchInfo) {
2019   GMerge &Merge = cast<GMerge>(MI);
2020   SmallVector<Register, 16> MergedValues;
2021   for (unsigned I = 0; I < Merge.getNumSources(); ++I)
2022     MergedValues.emplace_back(Merge.getSourceReg(I));
2023 
2024   auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI);
2025   if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources())
2026     return false;
2027 
2028   for (unsigned I = 0; I < MergedValues.size(); ++I)
2029     if (MergedValues[I] != Unmerge->getReg(I))
2030       return false;
2031 
2032   MatchInfo = Unmerge->getSourceReg();
2033   return true;
2034 }
2035 
2036 static Register peekThroughBitcast(Register Reg,
2037                                    const MachineRegisterInfo &MRI) {
2038   while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg))))
2039     ;
2040 
2041   return Reg;
2042 }
2043 
2044 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues(
2045     MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
2046   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2047          "Expected an unmerge");
2048   auto &Unmerge = cast<GUnmerge>(MI);
2049   Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI);
2050 
2051   auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI);
2052   if (!SrcInstr)
2053     return false;
2054 
2055   // Check the source type of the merge.
2056   LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0));
2057   LLT Dst0Ty = MRI.getType(Unmerge.getReg(0));
2058   bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits();
2059   if (SrcMergeTy != Dst0Ty && !SameSize)
2060     return false;
2061   // They are the same now (modulo a bitcast).
2062   // We can collect all the src registers.
2063   for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx)
2064     Operands.push_back(SrcInstr->getSourceReg(Idx));
2065   return true;
2066 }
2067 
2068 void CombinerHelper::applyCombineUnmergeMergeToPlainValues(
2069     MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
2070   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2071          "Expected an unmerge");
2072   assert((MI.getNumOperands() - 1 == Operands.size()) &&
2073          "Not enough operands to replace all defs");
2074   unsigned NumElems = MI.getNumOperands() - 1;
2075 
2076   LLT SrcTy = MRI.getType(Operands[0]);
2077   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2078   bool CanReuseInputDirectly = DstTy == SrcTy;
2079   Builder.setInstrAndDebugLoc(MI);
2080   for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
2081     Register DstReg = MI.getOperand(Idx).getReg();
2082     Register SrcReg = Operands[Idx];
2083     if (CanReuseInputDirectly)
2084       replaceRegWith(MRI, DstReg, SrcReg);
2085     else
2086       Builder.buildCast(DstReg, SrcReg);
2087   }
2088   MI.eraseFromParent();
2089 }
2090 
2091 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI,
2092                                                  SmallVectorImpl<APInt> &Csts) {
2093   unsigned SrcIdx = MI.getNumOperands() - 1;
2094   Register SrcReg = MI.getOperand(SrcIdx).getReg();
2095   MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
2096   if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT &&
2097       SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT)
2098     return false;
2099   // Break down the big constant in smaller ones.
2100   const MachineOperand &CstVal = SrcInstr->getOperand(1);
2101   APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT
2102                   ? CstVal.getCImm()->getValue()
2103                   : CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
2104 
2105   LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
2106   unsigned ShiftAmt = Dst0Ty.getSizeInBits();
2107   // Unmerge a constant.
2108   for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) {
2109     Csts.emplace_back(Val.trunc(ShiftAmt));
2110     Val = Val.lshr(ShiftAmt);
2111   }
2112 
2113   return true;
2114 }
2115 
2116 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI,
2117                                                  SmallVectorImpl<APInt> &Csts) {
2118   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2119          "Expected an unmerge");
2120   assert((MI.getNumOperands() - 1 == Csts.size()) &&
2121          "Not enough operands to replace all defs");
2122   unsigned NumElems = MI.getNumOperands() - 1;
2123   Builder.setInstrAndDebugLoc(MI);
2124   for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
2125     Register DstReg = MI.getOperand(Idx).getReg();
2126     Builder.buildConstant(DstReg, Csts[Idx]);
2127   }
2128 
2129   MI.eraseFromParent();
2130 }
2131 
2132 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
2133   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2134          "Expected an unmerge");
2135   // Check that all the lanes are dead except the first one.
2136   for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
2137     if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg()))
2138       return false;
2139   }
2140   return true;
2141 }
2142 
2143 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
2144   Builder.setInstrAndDebugLoc(MI);
2145   Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
2146   // Truncating a vector is going to truncate every single lane,
2147   // whereas we want the full lowbits.
2148   // Do the operation on a scalar instead.
2149   LLT SrcTy = MRI.getType(SrcReg);
2150   if (SrcTy.isVector())
2151     SrcReg =
2152         Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0);
2153 
2154   Register Dst0Reg = MI.getOperand(0).getReg();
2155   LLT Dst0Ty = MRI.getType(Dst0Reg);
2156   if (Dst0Ty.isVector()) {
2157     auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg);
2158     Builder.buildCast(Dst0Reg, MIB);
2159   } else
2160     Builder.buildTrunc(Dst0Reg, SrcReg);
2161   MI.eraseFromParent();
2162 }
2163 
2164 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) {
2165   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2166          "Expected an unmerge");
2167   Register Dst0Reg = MI.getOperand(0).getReg();
2168   LLT Dst0Ty = MRI.getType(Dst0Reg);
2169   // G_ZEXT on vector applies to each lane, so it will
2170   // affect all destinations. Therefore we won't be able
2171   // to simplify the unmerge to just the first definition.
2172   if (Dst0Ty.isVector())
2173     return false;
2174   Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
2175   LLT SrcTy = MRI.getType(SrcReg);
2176   if (SrcTy.isVector())
2177     return false;
2178 
2179   Register ZExtSrcReg;
2180   if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg))))
2181     return false;
2182 
2183   // Finally we can replace the first definition with
2184   // a zext of the source if the definition is big enough to hold
2185   // all of ZExtSrc bits.
2186   LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
2187   return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits();
2188 }
2189 
2190 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) {
2191   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2192          "Expected an unmerge");
2193 
2194   Register Dst0Reg = MI.getOperand(0).getReg();
2195 
2196   MachineInstr *ZExtInstr =
2197       MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg());
2198   assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT &&
2199          "Expecting a G_ZEXT");
2200 
2201   Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg();
2202   LLT Dst0Ty = MRI.getType(Dst0Reg);
2203   LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
2204 
2205   Builder.setInstrAndDebugLoc(MI);
2206 
2207   if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) {
2208     Builder.buildZExt(Dst0Reg, ZExtSrcReg);
2209   } else {
2210     assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() &&
2211            "ZExt src doesn't fit in destination");
2212     replaceRegWith(MRI, Dst0Reg, ZExtSrcReg);
2213   }
2214 
2215   Register ZeroReg;
2216   for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
2217     if (!ZeroReg)
2218       ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0);
2219     replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg);
2220   }
2221   MI.eraseFromParent();
2222 }
2223 
2224 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI,
2225                                                 unsigned TargetShiftSize,
2226                                                 unsigned &ShiftVal) {
2227   assert((MI.getOpcode() == TargetOpcode::G_SHL ||
2228           MI.getOpcode() == TargetOpcode::G_LSHR ||
2229           MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift");
2230 
2231   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2232   if (Ty.isVector()) // TODO:
2233     return false;
2234 
2235   // Don't narrow further than the requested size.
2236   unsigned Size = Ty.getSizeInBits();
2237   if (Size <= TargetShiftSize)
2238     return false;
2239 
2240   auto MaybeImmVal =
2241     getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
2242   if (!MaybeImmVal)
2243     return false;
2244 
2245   ShiftVal = MaybeImmVal->Value.getSExtValue();
2246   return ShiftVal >= Size / 2 && ShiftVal < Size;
2247 }
2248 
2249 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI,
2250                                                 const unsigned &ShiftVal) {
2251   Register DstReg = MI.getOperand(0).getReg();
2252   Register SrcReg = MI.getOperand(1).getReg();
2253   LLT Ty = MRI.getType(SrcReg);
2254   unsigned Size = Ty.getSizeInBits();
2255   unsigned HalfSize = Size / 2;
2256   assert(ShiftVal >= HalfSize);
2257 
2258   LLT HalfTy = LLT::scalar(HalfSize);
2259 
2260   Builder.setInstr(MI);
2261   auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg);
2262   unsigned NarrowShiftAmt = ShiftVal - HalfSize;
2263 
2264   if (MI.getOpcode() == TargetOpcode::G_LSHR) {
2265     Register Narrowed = Unmerge.getReg(1);
2266 
2267     //  dst = G_LSHR s64:x, C for C >= 32
2268     // =>
2269     //   lo, hi = G_UNMERGE_VALUES x
2270     //   dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0
2271 
2272     if (NarrowShiftAmt != 0) {
2273       Narrowed = Builder.buildLShr(HalfTy, Narrowed,
2274         Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
2275     }
2276 
2277     auto Zero = Builder.buildConstant(HalfTy, 0);
2278     Builder.buildMerge(DstReg, { Narrowed, Zero });
2279   } else if (MI.getOpcode() == TargetOpcode::G_SHL) {
2280     Register Narrowed = Unmerge.getReg(0);
2281     //  dst = G_SHL s64:x, C for C >= 32
2282     // =>
2283     //   lo, hi = G_UNMERGE_VALUES x
2284     //   dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32)
2285     if (NarrowShiftAmt != 0) {
2286       Narrowed = Builder.buildShl(HalfTy, Narrowed,
2287         Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
2288     }
2289 
2290     auto Zero = Builder.buildConstant(HalfTy, 0);
2291     Builder.buildMerge(DstReg, { Zero, Narrowed });
2292   } else {
2293     assert(MI.getOpcode() == TargetOpcode::G_ASHR);
2294     auto Hi = Builder.buildAShr(
2295       HalfTy, Unmerge.getReg(1),
2296       Builder.buildConstant(HalfTy, HalfSize - 1));
2297 
2298     if (ShiftVal == HalfSize) {
2299       // (G_ASHR i64:x, 32) ->
2300       //   G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31)
2301       Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi });
2302     } else if (ShiftVal == Size - 1) {
2303       // Don't need a second shift.
2304       // (G_ASHR i64:x, 63) ->
2305       //   %narrowed = (G_ASHR hi_32(x), 31)
2306       //   G_MERGE_VALUES %narrowed, %narrowed
2307       Builder.buildMerge(DstReg, { Hi, Hi });
2308     } else {
2309       auto Lo = Builder.buildAShr(
2310         HalfTy, Unmerge.getReg(1),
2311         Builder.buildConstant(HalfTy, ShiftVal - HalfSize));
2312 
2313       // (G_ASHR i64:x, C) ->, for C >= 32
2314       //   G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31)
2315       Builder.buildMerge(DstReg, { Lo, Hi });
2316     }
2317   }
2318 
2319   MI.eraseFromParent();
2320 }
2321 
2322 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI,
2323                                               unsigned TargetShiftAmount) {
2324   unsigned ShiftAmt;
2325   if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) {
2326     applyCombineShiftToUnmerge(MI, ShiftAmt);
2327     return true;
2328   }
2329 
2330   return false;
2331 }
2332 
2333 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2334   assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
2335   Register DstReg = MI.getOperand(0).getReg();
2336   LLT DstTy = MRI.getType(DstReg);
2337   Register SrcReg = MI.getOperand(1).getReg();
2338   return mi_match(SrcReg, MRI,
2339                   m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg))));
2340 }
2341 
2342 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2343   assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
2344   Register DstReg = MI.getOperand(0).getReg();
2345   Builder.setInstr(MI);
2346   Builder.buildCopy(DstReg, Reg);
2347   MI.eraseFromParent();
2348 }
2349 
2350 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2351   assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
2352   Register SrcReg = MI.getOperand(1).getReg();
2353   return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg)));
2354 }
2355 
2356 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2357   assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
2358   Register DstReg = MI.getOperand(0).getReg();
2359   Builder.setInstr(MI);
2360   Builder.buildZExtOrTrunc(DstReg, Reg);
2361   MI.eraseFromParent();
2362 }
2363 
2364 bool CombinerHelper::matchCombineAddP2IToPtrAdd(
2365     MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2366   assert(MI.getOpcode() == TargetOpcode::G_ADD);
2367   Register LHS = MI.getOperand(1).getReg();
2368   Register RHS = MI.getOperand(2).getReg();
2369   LLT IntTy = MRI.getType(LHS);
2370 
2371   // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the
2372   // instruction.
2373   PtrReg.second = false;
2374   for (Register SrcReg : {LHS, RHS}) {
2375     if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) {
2376       // Don't handle cases where the integer is implicitly converted to the
2377       // pointer width.
2378       LLT PtrTy = MRI.getType(PtrReg.first);
2379       if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits())
2380         return true;
2381     }
2382 
2383     PtrReg.second = true;
2384   }
2385 
2386   return false;
2387 }
2388 
2389 void CombinerHelper::applyCombineAddP2IToPtrAdd(
2390     MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2391   Register Dst = MI.getOperand(0).getReg();
2392   Register LHS = MI.getOperand(1).getReg();
2393   Register RHS = MI.getOperand(2).getReg();
2394 
2395   const bool DoCommute = PtrReg.second;
2396   if (DoCommute)
2397     std::swap(LHS, RHS);
2398   LHS = PtrReg.first;
2399 
2400   LLT PtrTy = MRI.getType(LHS);
2401 
2402   Builder.setInstrAndDebugLoc(MI);
2403   auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS);
2404   Builder.buildPtrToInt(Dst, PtrAdd);
2405   MI.eraseFromParent();
2406 }
2407 
2408 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI,
2409                                                   int64_t &NewCst) {
2410   auto &PtrAdd = cast<GPtrAdd>(MI);
2411   Register LHS = PtrAdd.getBaseReg();
2412   Register RHS = PtrAdd.getOffsetReg();
2413   MachineRegisterInfo &MRI = Builder.getMF().getRegInfo();
2414 
2415   if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) {
2416     int64_t Cst;
2417     if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) {
2418       NewCst = Cst + *RHSCst;
2419       return true;
2420     }
2421   }
2422 
2423   return false;
2424 }
2425 
2426 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI,
2427                                                   int64_t &NewCst) {
2428   auto &PtrAdd = cast<GPtrAdd>(MI);
2429   Register Dst = PtrAdd.getReg(0);
2430 
2431   Builder.setInstrAndDebugLoc(MI);
2432   Builder.buildConstant(Dst, NewCst);
2433   PtrAdd.eraseFromParent();
2434 }
2435 
2436 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
2437   assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT");
2438   Register DstReg = MI.getOperand(0).getReg();
2439   Register SrcReg = MI.getOperand(1).getReg();
2440   LLT DstTy = MRI.getType(DstReg);
2441   return mi_match(SrcReg, MRI,
2442                   m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))));
2443 }
2444 
2445 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) {
2446   assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT");
2447   Register DstReg = MI.getOperand(0).getReg();
2448   Register SrcReg = MI.getOperand(1).getReg();
2449   LLT DstTy = MRI.getType(DstReg);
2450   if (mi_match(SrcReg, MRI,
2451                m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) {
2452     unsigned DstSize = DstTy.getScalarSizeInBits();
2453     unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits();
2454     return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize;
2455   }
2456   return false;
2457 }
2458 
2459 bool CombinerHelper::matchCombineExtOfExt(
2460     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2461   assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2462           MI.getOpcode() == TargetOpcode::G_SEXT ||
2463           MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2464          "Expected a G_[ASZ]EXT");
2465   Register SrcReg = MI.getOperand(1).getReg();
2466   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2467   // Match exts with the same opcode, anyext([sz]ext) and sext(zext).
2468   unsigned Opc = MI.getOpcode();
2469   unsigned SrcOpc = SrcMI->getOpcode();
2470   if (Opc == SrcOpc ||
2471       (Opc == TargetOpcode::G_ANYEXT &&
2472        (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) ||
2473       (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) {
2474     MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc);
2475     return true;
2476   }
2477   return false;
2478 }
2479 
2480 void CombinerHelper::applyCombineExtOfExt(
2481     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2482   assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2483           MI.getOpcode() == TargetOpcode::G_SEXT ||
2484           MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2485          "Expected a G_[ASZ]EXT");
2486 
2487   Register Reg = std::get<0>(MatchInfo);
2488   unsigned SrcExtOp = std::get<1>(MatchInfo);
2489 
2490   // Combine exts with the same opcode.
2491   if (MI.getOpcode() == SrcExtOp) {
2492     Observer.changingInstr(MI);
2493     MI.getOperand(1).setReg(Reg);
2494     Observer.changedInstr(MI);
2495     return;
2496   }
2497 
2498   // Combine:
2499   // - anyext([sz]ext x) to [sz]ext x
2500   // - sext(zext x) to zext x
2501   if (MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2502       (MI.getOpcode() == TargetOpcode::G_SEXT &&
2503        SrcExtOp == TargetOpcode::G_ZEXT)) {
2504     Register DstReg = MI.getOperand(0).getReg();
2505     Builder.setInstrAndDebugLoc(MI);
2506     Builder.buildInstr(SrcExtOp, {DstReg}, {Reg});
2507     MI.eraseFromParent();
2508   }
2509 }
2510 
2511 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) {
2512   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
2513   Register DstReg = MI.getOperand(0).getReg();
2514   Register SrcReg = MI.getOperand(1).getReg();
2515   LLT DstTy = MRI.getType(DstReg);
2516 
2517   Builder.setInstrAndDebugLoc(MI);
2518   Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg,
2519                    MI.getFlags());
2520   MI.eraseFromParent();
2521 }
2522 
2523 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) {
2524   assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG");
2525   Register SrcReg = MI.getOperand(1).getReg();
2526   return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg)));
2527 }
2528 
2529 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) {
2530   assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS");
2531   Src = MI.getOperand(1).getReg();
2532   Register AbsSrc;
2533   return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc)));
2534 }
2535 
2536 bool CombinerHelper::matchCombineTruncOfExt(
2537     MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2538   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2539   Register SrcReg = MI.getOperand(1).getReg();
2540   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2541   unsigned SrcOpc = SrcMI->getOpcode();
2542   if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT ||
2543       SrcOpc == TargetOpcode::G_ZEXT) {
2544     MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc);
2545     return true;
2546   }
2547   return false;
2548 }
2549 
2550 void CombinerHelper::applyCombineTruncOfExt(
2551     MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2552   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2553   Register SrcReg = MatchInfo.first;
2554   unsigned SrcExtOp = MatchInfo.second;
2555   Register DstReg = MI.getOperand(0).getReg();
2556   LLT SrcTy = MRI.getType(SrcReg);
2557   LLT DstTy = MRI.getType(DstReg);
2558   if (SrcTy == DstTy) {
2559     MI.eraseFromParent();
2560     replaceRegWith(MRI, DstReg, SrcReg);
2561     return;
2562   }
2563   Builder.setInstrAndDebugLoc(MI);
2564   if (SrcTy.getSizeInBits() < DstTy.getSizeInBits())
2565     Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg});
2566   else
2567     Builder.buildTrunc(DstReg, SrcReg);
2568   MI.eraseFromParent();
2569 }
2570 
2571 bool CombinerHelper::matchCombineTruncOfShl(
2572     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
2573   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2574   Register DstReg = MI.getOperand(0).getReg();
2575   Register SrcReg = MI.getOperand(1).getReg();
2576   LLT DstTy = MRI.getType(DstReg);
2577   Register ShiftSrc;
2578   Register ShiftAmt;
2579 
2580   if (MRI.hasOneNonDBGUse(SrcReg) &&
2581       mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) &&
2582       isLegalOrBeforeLegalizer(
2583           {TargetOpcode::G_SHL,
2584            {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) {
2585     KnownBits Known = KB->getKnownBits(ShiftAmt);
2586     unsigned Size = DstTy.getSizeInBits();
2587     if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
2588       MatchInfo = std::make_pair(ShiftSrc, ShiftAmt);
2589       return true;
2590     }
2591   }
2592   return false;
2593 }
2594 
2595 void CombinerHelper::applyCombineTruncOfShl(
2596     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
2597   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2598   Register DstReg = MI.getOperand(0).getReg();
2599   Register SrcReg = MI.getOperand(1).getReg();
2600   LLT DstTy = MRI.getType(DstReg);
2601   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2602 
2603   Register ShiftSrc = MatchInfo.first;
2604   Register ShiftAmt = MatchInfo.second;
2605   Builder.setInstrAndDebugLoc(MI);
2606   auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc);
2607   Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags());
2608   MI.eraseFromParent();
2609 }
2610 
2611 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) {
2612   return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2613     return MO.isReg() &&
2614            getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2615   });
2616 }
2617 
2618 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) {
2619   return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2620     return !MO.isReg() ||
2621            getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2622   });
2623 }
2624 
2625 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) {
2626   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
2627   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
2628   return all_of(Mask, [](int Elt) { return Elt < 0; });
2629 }
2630 
2631 bool CombinerHelper::matchUndefStore(MachineInstr &MI) {
2632   assert(MI.getOpcode() == TargetOpcode::G_STORE);
2633   return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(),
2634                       MRI);
2635 }
2636 
2637 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) {
2638   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2639   return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(),
2640                       MRI);
2641 }
2642 
2643 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) {
2644   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2645   if (auto MaybeCstCmp =
2646           getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) {
2647     OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2;
2648     return true;
2649   }
2650   return false;
2651 }
2652 
2653 bool CombinerHelper::eraseInst(MachineInstr &MI) {
2654   MI.eraseFromParent();
2655   return true;
2656 }
2657 
2658 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1,
2659                                     const MachineOperand &MOP2) {
2660   if (!MOP1.isReg() || !MOP2.isReg())
2661     return false;
2662   MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI);
2663   if (!I1)
2664     return false;
2665   MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI);
2666   if (!I2)
2667     return false;
2668 
2669   // Handle a case like this:
2670   //
2671   // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>)
2672   //
2673   // Even though %0 and %1 are produced by the same instruction they are not
2674   // the same values.
2675   if (I1 == I2)
2676     return MOP1.getReg() == MOP2.getReg();
2677 
2678   // If we have an instruction which loads or stores, we can't guarantee that
2679   // it is identical.
2680   //
2681   // For example, we may have
2682   //
2683   // %x1 = G_LOAD %addr (load N from @somewhere)
2684   // ...
2685   // call @foo
2686   // ...
2687   // %x2 = G_LOAD %addr (load N from @somewhere)
2688   // ...
2689   // %or = G_OR %x1, %x2
2690   //
2691   // It's possible that @foo will modify whatever lives at the address we're
2692   // loading from. To be safe, let's just assume that all loads and stores
2693   // are different (unless we have something which is guaranteed to not
2694   // change.)
2695   if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr))
2696     return false;
2697 
2698   // Check for physical registers on the instructions first to avoid cases
2699   // like this:
2700   //
2701   // %a = COPY $physreg
2702   // ...
2703   // SOMETHING implicit-def $physreg
2704   // ...
2705   // %b = COPY $physreg
2706   //
2707   // These copies are not equivalent.
2708   if (any_of(I1->uses(), [](const MachineOperand &MO) {
2709         return MO.isReg() && MO.getReg().isPhysical();
2710       })) {
2711     // Check if we have a case like this:
2712     //
2713     // %a = COPY $physreg
2714     // %b = COPY %a
2715     //
2716     // In this case, I1 and I2 will both be equal to %a = COPY $physreg.
2717     // From that, we know that they must have the same value, since they must
2718     // have come from the same COPY.
2719     return I1->isIdenticalTo(*I2);
2720   }
2721 
2722   // We don't have any physical registers, so we don't necessarily need the
2723   // same vreg defs.
2724   //
2725   // On the off-chance that there's some target instruction feeding into the
2726   // instruction, let's use produceSameValue instead of isIdenticalTo.
2727   return Builder.getTII().produceSameValue(*I1, *I2, &MRI);
2728 }
2729 
2730 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) {
2731   if (!MOP.isReg())
2732     return false;
2733   // MIPatternMatch doesn't let us look through G_ZEXT etc.
2734   auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI);
2735   return ValAndVReg && ValAndVReg->Value == C;
2736 }
2737 
2738 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI,
2739                                                      unsigned OpIdx) {
2740   assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2741   Register OldReg = MI.getOperand(0).getReg();
2742   Register Replacement = MI.getOperand(OpIdx).getReg();
2743   assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2744   MI.eraseFromParent();
2745   replaceRegWith(MRI, OldReg, Replacement);
2746   return true;
2747 }
2748 
2749 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI,
2750                                                  Register Replacement) {
2751   assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2752   Register OldReg = MI.getOperand(0).getReg();
2753   assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2754   MI.eraseFromParent();
2755   replaceRegWith(MRI, OldReg, Replacement);
2756   return true;
2757 }
2758 
2759 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) {
2760   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2761   // Match (cond ? x : x)
2762   return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) &&
2763          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(),
2764                        MRI);
2765 }
2766 
2767 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) {
2768   return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) &&
2769          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
2770                        MRI);
2771 }
2772 
2773 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) {
2774   return matchConstantOp(MI.getOperand(OpIdx), 0) &&
2775          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(),
2776                        MRI);
2777 }
2778 
2779 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) {
2780   MachineOperand &MO = MI.getOperand(OpIdx);
2781   return MO.isReg() &&
2782          getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2783 }
2784 
2785 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI,
2786                                                         unsigned OpIdx) {
2787   MachineOperand &MO = MI.getOperand(OpIdx);
2788   return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB);
2789 }
2790 
2791 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) {
2792   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2793   Builder.setInstr(MI);
2794   Builder.buildFConstant(MI.getOperand(0), C);
2795   MI.eraseFromParent();
2796   return true;
2797 }
2798 
2799 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) {
2800   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2801   Builder.setInstr(MI);
2802   Builder.buildConstant(MI.getOperand(0), C);
2803   MI.eraseFromParent();
2804   return true;
2805 }
2806 
2807 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) {
2808   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2809   Builder.setInstr(MI);
2810   Builder.buildConstant(MI.getOperand(0), C);
2811   MI.eraseFromParent();
2812   return true;
2813 }
2814 
2815 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) {
2816   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2817   Builder.setInstr(MI);
2818   Builder.buildUndef(MI.getOperand(0));
2819   MI.eraseFromParent();
2820   return true;
2821 }
2822 
2823 bool CombinerHelper::matchSimplifyAddToSub(
2824     MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2825   Register LHS = MI.getOperand(1).getReg();
2826   Register RHS = MI.getOperand(2).getReg();
2827   Register &NewLHS = std::get<0>(MatchInfo);
2828   Register &NewRHS = std::get<1>(MatchInfo);
2829 
2830   // Helper lambda to check for opportunities for
2831   // ((0-A) + B) -> B - A
2832   // (A + (0-B)) -> A - B
2833   auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) {
2834     if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS))))
2835       return false;
2836     NewLHS = MaybeNewLHS;
2837     return true;
2838   };
2839 
2840   return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
2841 }
2842 
2843 bool CombinerHelper::matchCombineInsertVecElts(
2844     MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2845   assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT &&
2846          "Invalid opcode");
2847   Register DstReg = MI.getOperand(0).getReg();
2848   LLT DstTy = MRI.getType(DstReg);
2849   assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?");
2850   unsigned NumElts = DstTy.getNumElements();
2851   // If this MI is part of a sequence of insert_vec_elts, then
2852   // don't do the combine in the middle of the sequence.
2853   if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() ==
2854                                    TargetOpcode::G_INSERT_VECTOR_ELT)
2855     return false;
2856   MachineInstr *CurrInst = &MI;
2857   MachineInstr *TmpInst;
2858   int64_t IntImm;
2859   Register TmpReg;
2860   MatchInfo.resize(NumElts);
2861   while (mi_match(
2862       CurrInst->getOperand(0).getReg(), MRI,
2863       m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) {
2864     if (IntImm >= NumElts)
2865       return false;
2866     if (!MatchInfo[IntImm])
2867       MatchInfo[IntImm] = TmpReg;
2868     CurrInst = TmpInst;
2869   }
2870   // Variable index.
2871   if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
2872     return false;
2873   if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
2874     for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) {
2875       if (!MatchInfo[I - 1].isValid())
2876         MatchInfo[I - 1] = TmpInst->getOperand(I).getReg();
2877     }
2878     return true;
2879   }
2880   // If we didn't end in a G_IMPLICIT_DEF, bail out.
2881   return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF;
2882 }
2883 
2884 void CombinerHelper::applyCombineInsertVecElts(
2885     MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2886   Builder.setInstr(MI);
2887   Register UndefReg;
2888   auto GetUndef = [&]() {
2889     if (UndefReg)
2890       return UndefReg;
2891     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2892     UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0);
2893     return UndefReg;
2894   };
2895   for (unsigned I = 0; I < MatchInfo.size(); ++I) {
2896     if (!MatchInfo[I])
2897       MatchInfo[I] = GetUndef();
2898   }
2899   Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo);
2900   MI.eraseFromParent();
2901 }
2902 
2903 void CombinerHelper::applySimplifyAddToSub(
2904     MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2905   Builder.setInstr(MI);
2906   Register SubLHS, SubRHS;
2907   std::tie(SubLHS, SubRHS) = MatchInfo;
2908   Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS);
2909   MI.eraseFromParent();
2910 }
2911 
2912 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands(
2913     MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
2914   // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ...
2915   //
2916   // Creates the new hand + logic instruction (but does not insert them.)
2917   //
2918   // On success, MatchInfo is populated with the new instructions. These are
2919   // inserted in applyHoistLogicOpWithSameOpcodeHands.
2920   unsigned LogicOpcode = MI.getOpcode();
2921   assert(LogicOpcode == TargetOpcode::G_AND ||
2922          LogicOpcode == TargetOpcode::G_OR ||
2923          LogicOpcode == TargetOpcode::G_XOR);
2924   MachineIRBuilder MIB(MI);
2925   Register Dst = MI.getOperand(0).getReg();
2926   Register LHSReg = MI.getOperand(1).getReg();
2927   Register RHSReg = MI.getOperand(2).getReg();
2928 
2929   // Don't recompute anything.
2930   if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg))
2931     return false;
2932 
2933   // Make sure we have (hand x, ...), (hand y, ...)
2934   MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI);
2935   MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI);
2936   if (!LeftHandInst || !RightHandInst)
2937     return false;
2938   unsigned HandOpcode = LeftHandInst->getOpcode();
2939   if (HandOpcode != RightHandInst->getOpcode())
2940     return false;
2941   if (!LeftHandInst->getOperand(1).isReg() ||
2942       !RightHandInst->getOperand(1).isReg())
2943     return false;
2944 
2945   // Make sure the types match up, and if we're doing this post-legalization,
2946   // we end up with legal types.
2947   Register X = LeftHandInst->getOperand(1).getReg();
2948   Register Y = RightHandInst->getOperand(1).getReg();
2949   LLT XTy = MRI.getType(X);
2950   LLT YTy = MRI.getType(Y);
2951   if (XTy != YTy)
2952     return false;
2953   if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}}))
2954     return false;
2955 
2956   // Optional extra source register.
2957   Register ExtraHandOpSrcReg;
2958   switch (HandOpcode) {
2959   default:
2960     return false;
2961   case TargetOpcode::G_ANYEXT:
2962   case TargetOpcode::G_SEXT:
2963   case TargetOpcode::G_ZEXT: {
2964     // Match: logic (ext X), (ext Y) --> ext (logic X, Y)
2965     break;
2966   }
2967   case TargetOpcode::G_AND:
2968   case TargetOpcode::G_ASHR:
2969   case TargetOpcode::G_LSHR:
2970   case TargetOpcode::G_SHL: {
2971     // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z
2972     MachineOperand &ZOp = LeftHandInst->getOperand(2);
2973     if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2)))
2974       return false;
2975     ExtraHandOpSrcReg = ZOp.getReg();
2976     break;
2977   }
2978   }
2979 
2980   // Record the steps to build the new instructions.
2981   //
2982   // Steps to build (logic x, y)
2983   auto NewLogicDst = MRI.createGenericVirtualRegister(XTy);
2984   OperandBuildSteps LogicBuildSteps = {
2985       [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); },
2986       [=](MachineInstrBuilder &MIB) { MIB.addReg(X); },
2987       [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }};
2988   InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps);
2989 
2990   // Steps to build hand (logic x, y), ...z
2991   OperandBuildSteps HandBuildSteps = {
2992       [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); },
2993       [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }};
2994   if (ExtraHandOpSrcReg.isValid())
2995     HandBuildSteps.push_back(
2996         [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); });
2997   InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps);
2998 
2999   MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps});
3000   return true;
3001 }
3002 
3003 void CombinerHelper::applyBuildInstructionSteps(
3004     MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
3005   assert(MatchInfo.InstrsToBuild.size() &&
3006          "Expected at least one instr to build?");
3007   Builder.setInstr(MI);
3008   for (auto &InstrToBuild : MatchInfo.InstrsToBuild) {
3009     assert(InstrToBuild.Opcode && "Expected a valid opcode?");
3010     assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?");
3011     MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode);
3012     for (auto &OperandFn : InstrToBuild.OperandFns)
3013       OperandFn(Instr);
3014   }
3015   MI.eraseFromParent();
3016 }
3017 
3018 bool CombinerHelper::matchAshrShlToSextInreg(
3019     MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
3020   assert(MI.getOpcode() == TargetOpcode::G_ASHR);
3021   int64_t ShlCst, AshrCst;
3022   Register Src;
3023   // FIXME: detect splat constant vectors.
3024   if (!mi_match(MI.getOperand(0).getReg(), MRI,
3025                 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst))))
3026     return false;
3027   if (ShlCst != AshrCst)
3028     return false;
3029   if (!isLegalOrBeforeLegalizer(
3030           {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}}))
3031     return false;
3032   MatchInfo = std::make_tuple(Src, ShlCst);
3033   return true;
3034 }
3035 
3036 void CombinerHelper::applyAshShlToSextInreg(
3037     MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
3038   assert(MI.getOpcode() == TargetOpcode::G_ASHR);
3039   Register Src;
3040   int64_t ShiftAmt;
3041   std::tie(Src, ShiftAmt) = MatchInfo;
3042   unsigned Size = MRI.getType(Src).getScalarSizeInBits();
3043   Builder.setInstrAndDebugLoc(MI);
3044   Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt);
3045   MI.eraseFromParent();
3046 }
3047 
3048 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0
3049 bool CombinerHelper::matchOverlappingAnd(
3050     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3051   assert(MI.getOpcode() == TargetOpcode::G_AND);
3052 
3053   Register Dst = MI.getOperand(0).getReg();
3054   LLT Ty = MRI.getType(Dst);
3055 
3056   Register R;
3057   int64_t C1;
3058   int64_t C2;
3059   if (!mi_match(
3060           Dst, MRI,
3061           m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2))))
3062     return false;
3063 
3064   MatchInfo = [=](MachineIRBuilder &B) {
3065     if (C1 & C2) {
3066       B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2));
3067       return;
3068     }
3069     auto Zero = B.buildConstant(Ty, 0);
3070     replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg());
3071   };
3072   return true;
3073 }
3074 
3075 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI,
3076                                        Register &Replacement) {
3077   // Given
3078   //
3079   // %y:_(sN) = G_SOMETHING
3080   // %x:_(sN) = G_SOMETHING
3081   // %res:_(sN) = G_AND %x, %y
3082   //
3083   // Eliminate the G_AND when it is known that x & y == x or x & y == y.
3084   //
3085   // Patterns like this can appear as a result of legalization. E.g.
3086   //
3087   // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y
3088   // %one:_(s32) = G_CONSTANT i32 1
3089   // %and:_(s32) = G_AND %cmp, %one
3090   //
3091   // In this case, G_ICMP only produces a single bit, so x & 1 == x.
3092   assert(MI.getOpcode() == TargetOpcode::G_AND);
3093   if (!KB)
3094     return false;
3095 
3096   Register AndDst = MI.getOperand(0).getReg();
3097   LLT DstTy = MRI.getType(AndDst);
3098 
3099   // FIXME: This should be removed once GISelKnownBits supports vectors.
3100   if (DstTy.isVector())
3101     return false;
3102 
3103   Register LHS = MI.getOperand(1).getReg();
3104   Register RHS = MI.getOperand(2).getReg();
3105   KnownBits LHSBits = KB->getKnownBits(LHS);
3106   KnownBits RHSBits = KB->getKnownBits(RHS);
3107 
3108   // Check that x & Mask == x.
3109   // x & 1 == x, always
3110   // x & 0 == x, only if x is also 0
3111   // Meaning Mask has no effect if every bit is either one in Mask or zero in x.
3112   //
3113   // Check if we can replace AndDst with the LHS of the G_AND
3114   if (canReplaceReg(AndDst, LHS, MRI) &&
3115       (LHSBits.Zero | RHSBits.One).isAllOnesValue()) {
3116     Replacement = LHS;
3117     return true;
3118   }
3119 
3120   // Check if we can replace AndDst with the RHS of the G_AND
3121   if (canReplaceReg(AndDst, RHS, MRI) &&
3122       (LHSBits.One | RHSBits.Zero).isAllOnesValue()) {
3123     Replacement = RHS;
3124     return true;
3125   }
3126 
3127   return false;
3128 }
3129 
3130 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) {
3131   // Given
3132   //
3133   // %y:_(sN) = G_SOMETHING
3134   // %x:_(sN) = G_SOMETHING
3135   // %res:_(sN) = G_OR %x, %y
3136   //
3137   // Eliminate the G_OR when it is known that x | y == x or x | y == y.
3138   assert(MI.getOpcode() == TargetOpcode::G_OR);
3139   if (!KB)
3140     return false;
3141 
3142   Register OrDst = MI.getOperand(0).getReg();
3143   LLT DstTy = MRI.getType(OrDst);
3144 
3145   // FIXME: This should be removed once GISelKnownBits supports vectors.
3146   if (DstTy.isVector())
3147     return false;
3148 
3149   Register LHS = MI.getOperand(1).getReg();
3150   Register RHS = MI.getOperand(2).getReg();
3151   KnownBits LHSBits = KB->getKnownBits(LHS);
3152   KnownBits RHSBits = KB->getKnownBits(RHS);
3153 
3154   // Check that x | Mask == x.
3155   // x | 0 == x, always
3156   // x | 1 == x, only if x is also 1
3157   // Meaning Mask has no effect if every bit is either zero in Mask or one in x.
3158   //
3159   // Check if we can replace OrDst with the LHS of the G_OR
3160   if (canReplaceReg(OrDst, LHS, MRI) &&
3161       (LHSBits.One | RHSBits.Zero).isAllOnesValue()) {
3162     Replacement = LHS;
3163     return true;
3164   }
3165 
3166   // Check if we can replace OrDst with the RHS of the G_OR
3167   if (canReplaceReg(OrDst, RHS, MRI) &&
3168       (LHSBits.Zero | RHSBits.One).isAllOnesValue()) {
3169     Replacement = RHS;
3170     return true;
3171   }
3172 
3173   return false;
3174 }
3175 
3176 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) {
3177   // If the input is already sign extended, just drop the extension.
3178   Register Src = MI.getOperand(1).getReg();
3179   unsigned ExtBits = MI.getOperand(2).getImm();
3180   unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits();
3181   return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1);
3182 }
3183 
3184 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits,
3185                              int64_t Cst, bool IsVector, bool IsFP) {
3186   // For i1, Cst will always be -1 regardless of boolean contents.
3187   return (ScalarSizeBits == 1 && Cst == -1) ||
3188          isConstTrueVal(TLI, Cst, IsVector, IsFP);
3189 }
3190 
3191 bool CombinerHelper::matchNotCmp(MachineInstr &MI,
3192                                  SmallVectorImpl<Register> &RegsToNegate) {
3193   assert(MI.getOpcode() == TargetOpcode::G_XOR);
3194   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3195   const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering();
3196   Register XorSrc;
3197   Register CstReg;
3198   // We match xor(src, true) here.
3199   if (!mi_match(MI.getOperand(0).getReg(), MRI,
3200                 m_GXor(m_Reg(XorSrc), m_Reg(CstReg))))
3201     return false;
3202 
3203   if (!MRI.hasOneNonDBGUse(XorSrc))
3204     return false;
3205 
3206   // Check that XorSrc is the root of a tree of comparisons combined with ANDs
3207   // and ORs. The suffix of RegsToNegate starting from index I is used a work
3208   // list of tree nodes to visit.
3209   RegsToNegate.push_back(XorSrc);
3210   // Remember whether the comparisons are all integer or all floating point.
3211   bool IsInt = false;
3212   bool IsFP = false;
3213   for (unsigned I = 0; I < RegsToNegate.size(); ++I) {
3214     Register Reg = RegsToNegate[I];
3215     if (!MRI.hasOneNonDBGUse(Reg))
3216       return false;
3217     MachineInstr *Def = MRI.getVRegDef(Reg);
3218     switch (Def->getOpcode()) {
3219     default:
3220       // Don't match if the tree contains anything other than ANDs, ORs and
3221       // comparisons.
3222       return false;
3223     case TargetOpcode::G_ICMP:
3224       if (IsFP)
3225         return false;
3226       IsInt = true;
3227       // When we apply the combine we will invert the predicate.
3228       break;
3229     case TargetOpcode::G_FCMP:
3230       if (IsInt)
3231         return false;
3232       IsFP = true;
3233       // When we apply the combine we will invert the predicate.
3234       break;
3235     case TargetOpcode::G_AND:
3236     case TargetOpcode::G_OR:
3237       // Implement De Morgan's laws:
3238       // ~(x & y) -> ~x | ~y
3239       // ~(x | y) -> ~x & ~y
3240       // When we apply the combine we will change the opcode and recursively
3241       // negate the operands.
3242       RegsToNegate.push_back(Def->getOperand(1).getReg());
3243       RegsToNegate.push_back(Def->getOperand(2).getReg());
3244       break;
3245     }
3246   }
3247 
3248   // Now we know whether the comparisons are integer or floating point, check
3249   // the constant in the xor.
3250   int64_t Cst;
3251   if (Ty.isVector()) {
3252     MachineInstr *CstDef = MRI.getVRegDef(CstReg);
3253     auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI);
3254     if (!MaybeCst)
3255       return false;
3256     if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP))
3257       return false;
3258   } else {
3259     if (!mi_match(CstReg, MRI, m_ICst(Cst)))
3260       return false;
3261     if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP))
3262       return false;
3263   }
3264 
3265   return true;
3266 }
3267 
3268 void CombinerHelper::applyNotCmp(MachineInstr &MI,
3269                                  SmallVectorImpl<Register> &RegsToNegate) {
3270   for (Register Reg : RegsToNegate) {
3271     MachineInstr *Def = MRI.getVRegDef(Reg);
3272     Observer.changingInstr(*Def);
3273     // For each comparison, invert the opcode. For each AND and OR, change the
3274     // opcode.
3275     switch (Def->getOpcode()) {
3276     default:
3277       llvm_unreachable("Unexpected opcode");
3278     case TargetOpcode::G_ICMP:
3279     case TargetOpcode::G_FCMP: {
3280       MachineOperand &PredOp = Def->getOperand(1);
3281       CmpInst::Predicate NewP = CmpInst::getInversePredicate(
3282           (CmpInst::Predicate)PredOp.getPredicate());
3283       PredOp.setPredicate(NewP);
3284       break;
3285     }
3286     case TargetOpcode::G_AND:
3287       Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR));
3288       break;
3289     case TargetOpcode::G_OR:
3290       Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3291       break;
3292     }
3293     Observer.changedInstr(*Def);
3294   }
3295 
3296   replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
3297   MI.eraseFromParent();
3298 }
3299 
3300 bool CombinerHelper::matchXorOfAndWithSameReg(
3301     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3302   // Match (xor (and x, y), y) (or any of its commuted cases)
3303   assert(MI.getOpcode() == TargetOpcode::G_XOR);
3304   Register &X = MatchInfo.first;
3305   Register &Y = MatchInfo.second;
3306   Register AndReg = MI.getOperand(1).getReg();
3307   Register SharedReg = MI.getOperand(2).getReg();
3308 
3309   // Find a G_AND on either side of the G_XOR.
3310   // Look for one of
3311   //
3312   // (xor (and x, y), SharedReg)
3313   // (xor SharedReg, (and x, y))
3314   if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) {
3315     std::swap(AndReg, SharedReg);
3316     if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y))))
3317       return false;
3318   }
3319 
3320   // Only do this if we'll eliminate the G_AND.
3321   if (!MRI.hasOneNonDBGUse(AndReg))
3322     return false;
3323 
3324   // We can combine if SharedReg is the same as either the LHS or RHS of the
3325   // G_AND.
3326   if (Y != SharedReg)
3327     std::swap(X, Y);
3328   return Y == SharedReg;
3329 }
3330 
3331 void CombinerHelper::applyXorOfAndWithSameReg(
3332     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3333   // Fold (xor (and x, y), y) -> (and (not x), y)
3334   Builder.setInstrAndDebugLoc(MI);
3335   Register X, Y;
3336   std::tie(X, Y) = MatchInfo;
3337   auto Not = Builder.buildNot(MRI.getType(X), X);
3338   Observer.changingInstr(MI);
3339   MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3340   MI.getOperand(1).setReg(Not->getOperand(0).getReg());
3341   MI.getOperand(2).setReg(Y);
3342   Observer.changedInstr(MI);
3343 }
3344 
3345 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) {
3346   auto &PtrAdd = cast<GPtrAdd>(MI);
3347   Register DstReg = PtrAdd.getReg(0);
3348   LLT Ty = MRI.getType(DstReg);
3349   const DataLayout &DL = Builder.getMF().getDataLayout();
3350 
3351   if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace()))
3352     return false;
3353 
3354   if (Ty.isPointer()) {
3355     auto ConstVal = getConstantVRegVal(PtrAdd.getBaseReg(), MRI);
3356     return ConstVal && *ConstVal == 0;
3357   }
3358 
3359   assert(Ty.isVector() && "Expecting a vector type");
3360   const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg());
3361   return isBuildVectorAllZeros(*VecMI, MRI);
3362 }
3363 
3364 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) {
3365   auto &PtrAdd = cast<GPtrAdd>(MI);
3366   Builder.setInstrAndDebugLoc(PtrAdd);
3367   Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg());
3368   PtrAdd.eraseFromParent();
3369 }
3370 
3371 /// The second source operand is known to be a power of 2.
3372 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) {
3373   Register DstReg = MI.getOperand(0).getReg();
3374   Register Src0 = MI.getOperand(1).getReg();
3375   Register Pow2Src1 = MI.getOperand(2).getReg();
3376   LLT Ty = MRI.getType(DstReg);
3377   Builder.setInstrAndDebugLoc(MI);
3378 
3379   // Fold (urem x, pow2) -> (and x, pow2-1)
3380   auto NegOne = Builder.buildConstant(Ty, -1);
3381   auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne);
3382   Builder.buildAnd(DstReg, Src0, Add);
3383   MI.eraseFromParent();
3384 }
3385 
3386 Optional<SmallVector<Register, 8>>
3387 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const {
3388   assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!");
3389   // We want to detect if Root is part of a tree which represents a bunch
3390   // of loads being merged into a larger load. We'll try to recognize patterns
3391   // like, for example:
3392   //
3393   //  Reg   Reg
3394   //   \    /
3395   //    OR_1   Reg
3396   //     \    /
3397   //      OR_2
3398   //        \     Reg
3399   //         .. /
3400   //        Root
3401   //
3402   //  Reg   Reg   Reg   Reg
3403   //     \ /       \   /
3404   //     OR_1      OR_2
3405   //       \       /
3406   //        \    /
3407   //         ...
3408   //         Root
3409   //
3410   // Each "Reg" may have been produced by a load + some arithmetic. This
3411   // function will save each of them.
3412   SmallVector<Register, 8> RegsToVisit;
3413   SmallVector<const MachineInstr *, 7> Ors = {Root};
3414 
3415   // In the "worst" case, we're dealing with a load for each byte. So, there
3416   // are at most #bytes - 1 ORs.
3417   const unsigned MaxIter =
3418       MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1;
3419   for (unsigned Iter = 0; Iter < MaxIter; ++Iter) {
3420     if (Ors.empty())
3421       break;
3422     const MachineInstr *Curr = Ors.pop_back_val();
3423     Register OrLHS = Curr->getOperand(1).getReg();
3424     Register OrRHS = Curr->getOperand(2).getReg();
3425 
3426     // In the combine, we want to elimate the entire tree.
3427     if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS))
3428       return None;
3429 
3430     // If it's a G_OR, save it and continue to walk. If it's not, then it's
3431     // something that may be a load + arithmetic.
3432     if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI))
3433       Ors.push_back(Or);
3434     else
3435       RegsToVisit.push_back(OrLHS);
3436     if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI))
3437       Ors.push_back(Or);
3438     else
3439       RegsToVisit.push_back(OrRHS);
3440   }
3441 
3442   // We're going to try and merge each register into a wider power-of-2 type,
3443   // so we ought to have an even number of registers.
3444   if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0)
3445     return None;
3446   return RegsToVisit;
3447 }
3448 
3449 /// Helper function for findLoadOffsetsForLoadOrCombine.
3450 ///
3451 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value,
3452 /// and then moving that value into a specific byte offset.
3453 ///
3454 /// e.g. x[i] << 24
3455 ///
3456 /// \returns The load instruction and the byte offset it is moved into.
3457 static Optional<std::pair<GZExtLoad *, int64_t>>
3458 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits,
3459                          const MachineRegisterInfo &MRI) {
3460   assert(MRI.hasOneNonDBGUse(Reg) &&
3461          "Expected Reg to only have one non-debug use?");
3462   Register MaybeLoad;
3463   int64_t Shift;
3464   if (!mi_match(Reg, MRI,
3465                 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) {
3466     Shift = 0;
3467     MaybeLoad = Reg;
3468   }
3469 
3470   if (Shift % MemSizeInBits != 0)
3471     return None;
3472 
3473   // TODO: Handle other types of loads.
3474   auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI);
3475   if (!Load)
3476     return None;
3477 
3478   if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits)
3479     return None;
3480 
3481   return std::make_pair(Load, Shift / MemSizeInBits);
3482 }
3483 
3484 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>>
3485 CombinerHelper::findLoadOffsetsForLoadOrCombine(
3486     SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
3487     const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) {
3488 
3489   // Each load found for the pattern. There should be one for each RegsToVisit.
3490   SmallSetVector<const MachineInstr *, 8> Loads;
3491 
3492   // The lowest index used in any load. (The lowest "i" for each x[i].)
3493   int64_t LowestIdx = INT64_MAX;
3494 
3495   // The load which uses the lowest index.
3496   GZExtLoad *LowestIdxLoad = nullptr;
3497 
3498   // Keeps track of the load indices we see. We shouldn't see any indices twice.
3499   SmallSet<int64_t, 8> SeenIdx;
3500 
3501   // Ensure each load is in the same MBB.
3502   // TODO: Support multiple MachineBasicBlocks.
3503   MachineBasicBlock *MBB = nullptr;
3504   const MachineMemOperand *MMO = nullptr;
3505 
3506   // Earliest instruction-order load in the pattern.
3507   GZExtLoad *EarliestLoad = nullptr;
3508 
3509   // Latest instruction-order load in the pattern.
3510   GZExtLoad *LatestLoad = nullptr;
3511 
3512   // Base pointer which every load should share.
3513   Register BasePtr;
3514 
3515   // We want to find a load for each register. Each load should have some
3516   // appropriate bit twiddling arithmetic. During this loop, we will also keep
3517   // track of the load which uses the lowest index. Later, we will check if we
3518   // can use its pointer in the final, combined load.
3519   for (auto Reg : RegsToVisit) {
3520     // Find the load, and find the position that it will end up in (e.g. a
3521     // shifted) value.
3522     auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI);
3523     if (!LoadAndPos)
3524       return None;
3525     GZExtLoad *Load;
3526     int64_t DstPos;
3527     std::tie(Load, DstPos) = *LoadAndPos;
3528 
3529     // TODO: Handle multiple MachineBasicBlocks. Currently not handled because
3530     // it is difficult to check for stores/calls/etc between loads.
3531     MachineBasicBlock *LoadMBB = Load->getParent();
3532     if (!MBB)
3533       MBB = LoadMBB;
3534     if (LoadMBB != MBB)
3535       return None;
3536 
3537     // Make sure that the MachineMemOperands of every seen load are compatible.
3538     auto &LoadMMO = Load->getMMO();
3539     if (!MMO)
3540       MMO = &LoadMMO;
3541     if (MMO->getAddrSpace() != LoadMMO.getAddrSpace())
3542       return None;
3543 
3544     // Find out what the base pointer and index for the load is.
3545     Register LoadPtr;
3546     int64_t Idx;
3547     if (!mi_match(Load->getOperand(1).getReg(), MRI,
3548                   m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) {
3549       LoadPtr = Load->getOperand(1).getReg();
3550       Idx = 0;
3551     }
3552 
3553     // Don't combine things like a[i], a[i] -> a bigger load.
3554     if (!SeenIdx.insert(Idx).second)
3555       return None;
3556 
3557     // Every load must share the same base pointer; don't combine things like:
3558     //
3559     // a[i], b[i + 1] -> a bigger load.
3560     if (!BasePtr.isValid())
3561       BasePtr = LoadPtr;
3562     if (BasePtr != LoadPtr)
3563       return None;
3564 
3565     if (Idx < LowestIdx) {
3566       LowestIdx = Idx;
3567       LowestIdxLoad = Load;
3568     }
3569 
3570     // Keep track of the byte offset that this load ends up at. If we have seen
3571     // the byte offset, then stop here. We do not want to combine:
3572     //
3573     // a[i] << 16, a[i + k] << 16 -> a bigger load.
3574     if (!MemOffset2Idx.try_emplace(DstPos, Idx).second)
3575       return None;
3576     Loads.insert(Load);
3577 
3578     // Keep track of the position of the earliest/latest loads in the pattern.
3579     // We will check that there are no load fold barriers between them later
3580     // on.
3581     //
3582     // FIXME: Is there a better way to check for load fold barriers?
3583     if (!EarliestLoad || dominates(*Load, *EarliestLoad))
3584       EarliestLoad = Load;
3585     if (!LatestLoad || dominates(*LatestLoad, *Load))
3586       LatestLoad = Load;
3587   }
3588 
3589   // We found a load for each register. Let's check if each load satisfies the
3590   // pattern.
3591   assert(Loads.size() == RegsToVisit.size() &&
3592          "Expected to find a load for each register?");
3593   assert(EarliestLoad != LatestLoad && EarliestLoad &&
3594          LatestLoad && "Expected at least two loads?");
3595 
3596   // Check if there are any stores, calls, etc. between any of the loads. If
3597   // there are, then we can't safely perform the combine.
3598   //
3599   // MaxIter is chosen based off the (worst case) number of iterations it
3600   // typically takes to succeed in the LLVM test suite plus some padding.
3601   //
3602   // FIXME: Is there a better way to check for load fold barriers?
3603   const unsigned MaxIter = 20;
3604   unsigned Iter = 0;
3605   for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(),
3606                                                  LatestLoad->getIterator())) {
3607     if (Loads.count(&MI))
3608       continue;
3609     if (MI.isLoadFoldBarrier())
3610       return None;
3611     if (Iter++ == MaxIter)
3612       return None;
3613   }
3614 
3615   return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad);
3616 }
3617 
3618 bool CombinerHelper::matchLoadOrCombine(
3619     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3620   assert(MI.getOpcode() == TargetOpcode::G_OR);
3621   MachineFunction &MF = *MI.getMF();
3622   // Assuming a little-endian target, transform:
3623   //  s8 *a = ...
3624   //  s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
3625   // =>
3626   //  s32 val = *((i32)a)
3627   //
3628   //  s8 *a = ...
3629   //  s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
3630   // =>
3631   //  s32 val = BSWAP(*((s32)a))
3632   Register Dst = MI.getOperand(0).getReg();
3633   LLT Ty = MRI.getType(Dst);
3634   if (Ty.isVector())
3635     return false;
3636 
3637   // We need to combine at least two loads into this type. Since the smallest
3638   // possible load is into a byte, we need at least a 16-bit wide type.
3639   const unsigned WideMemSizeInBits = Ty.getSizeInBits();
3640   if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0)
3641     return false;
3642 
3643   // Match a collection of non-OR instructions in the pattern.
3644   auto RegsToVisit = findCandidatesForLoadOrCombine(&MI);
3645   if (!RegsToVisit)
3646     return false;
3647 
3648   // We have a collection of non-OR instructions. Figure out how wide each of
3649   // the small loads should be based off of the number of potential loads we
3650   // found.
3651   const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size();
3652   if (NarrowMemSizeInBits % 8 != 0)
3653     return false;
3654 
3655   // Check if each register feeding into each OR is a load from the same
3656   // base pointer + some arithmetic.
3657   //
3658   // e.g. a[0], a[1] << 8, a[2] << 16, etc.
3659   //
3660   // Also verify that each of these ends up putting a[i] into the same memory
3661   // offset as a load into a wide type would.
3662   SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx;
3663   GZExtLoad *LowestIdxLoad, *LatestLoad;
3664   int64_t LowestIdx;
3665   auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine(
3666       MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits);
3667   if (!MaybeLoadInfo)
3668     return false;
3669   std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo;
3670 
3671   // We have a bunch of loads being OR'd together. Using the addresses + offsets
3672   // we found before, check if this corresponds to a big or little endian byte
3673   // pattern. If it does, then we can represent it using a load + possibly a
3674   // BSWAP.
3675   bool IsBigEndianTarget = MF.getDataLayout().isBigEndian();
3676   Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx);
3677   if (!IsBigEndian.hasValue())
3678     return false;
3679   bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian;
3680   if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}}))
3681     return false;
3682 
3683   // Make sure that the load from the lowest index produces offset 0 in the
3684   // final value.
3685   //
3686   // This ensures that we won't combine something like this:
3687   //
3688   // load x[i] -> byte 2
3689   // load x[i+1] -> byte 0 ---> wide_load x[i]
3690   // load x[i+2] -> byte 1
3691   const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits;
3692   const unsigned ZeroByteOffset =
3693       *IsBigEndian
3694           ? bigEndianByteAt(NumLoadsInTy, 0)
3695           : littleEndianByteAt(NumLoadsInTy, 0);
3696   auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset);
3697   if (ZeroOffsetIdx == MemOffset2Idx.end() ||
3698       ZeroOffsetIdx->second != LowestIdx)
3699     return false;
3700 
3701   // We wil reuse the pointer from the load which ends up at byte offset 0. It
3702   // may not use index 0.
3703   Register Ptr = LowestIdxLoad->getPointerReg();
3704   const MachineMemOperand &MMO = LowestIdxLoad->getMMO();
3705   LegalityQuery::MemDesc MMDesc;
3706   MMDesc.MemoryTy = Ty;
3707   MMDesc.AlignInBits = MMO.getAlign().value() * 8;
3708   MMDesc.Ordering = MMO.getSuccessOrdering();
3709   if (!isLegalOrBeforeLegalizer(
3710           {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}}))
3711     return false;
3712   auto PtrInfo = MMO.getPointerInfo();
3713   auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8);
3714 
3715   // Load must be allowed and fast on the target.
3716   LLVMContext &C = MF.getFunction().getContext();
3717   auto &DL = MF.getDataLayout();
3718   bool Fast = false;
3719   if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) ||
3720       !Fast)
3721     return false;
3722 
3723   MatchInfo = [=](MachineIRBuilder &MIB) {
3724     MIB.setInstrAndDebugLoc(*LatestLoad);
3725     Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst;
3726     MIB.buildLoad(LoadDst, Ptr, *NewMMO);
3727     if (NeedsBSwap)
3728       MIB.buildBSwap(Dst, LoadDst);
3729   };
3730   return true;
3731 }
3732 
3733 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI,
3734                                             MachineInstr *&ExtMI) {
3735   assert(MI.getOpcode() == TargetOpcode::G_PHI);
3736 
3737   Register DstReg = MI.getOperand(0).getReg();
3738 
3739   // TODO: Extending a vector may be expensive, don't do this until heuristics
3740   // are better.
3741   if (MRI.getType(DstReg).isVector())
3742     return false;
3743 
3744   // Try to match a phi, whose only use is an extend.
3745   if (!MRI.hasOneNonDBGUse(DstReg))
3746     return false;
3747   ExtMI = &*MRI.use_instr_nodbg_begin(DstReg);
3748   switch (ExtMI->getOpcode()) {
3749   case TargetOpcode::G_ANYEXT:
3750     return true; // G_ANYEXT is usually free.
3751   case TargetOpcode::G_ZEXT:
3752   case TargetOpcode::G_SEXT:
3753     break;
3754   default:
3755     return false;
3756   }
3757 
3758   // If the target is likely to fold this extend away, don't propagate.
3759   if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI))
3760     return false;
3761 
3762   // We don't want to propagate the extends unless there's a good chance that
3763   // they'll be optimized in some way.
3764   // Collect the unique incoming values.
3765   SmallPtrSet<MachineInstr *, 4> InSrcs;
3766   for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
3767     auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI);
3768     switch (DefMI->getOpcode()) {
3769     case TargetOpcode::G_LOAD:
3770     case TargetOpcode::G_TRUNC:
3771     case TargetOpcode::G_SEXT:
3772     case TargetOpcode::G_ZEXT:
3773     case TargetOpcode::G_ANYEXT:
3774     case TargetOpcode::G_CONSTANT:
3775       InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI));
3776       // Don't try to propagate if there are too many places to create new
3777       // extends, chances are it'll increase code size.
3778       if (InSrcs.size() > 2)
3779         return false;
3780       break;
3781     default:
3782       return false;
3783     }
3784   }
3785   return true;
3786 }
3787 
3788 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI,
3789                                             MachineInstr *&ExtMI) {
3790   assert(MI.getOpcode() == TargetOpcode::G_PHI);
3791   Register DstReg = ExtMI->getOperand(0).getReg();
3792   LLT ExtTy = MRI.getType(DstReg);
3793 
3794   // Propagate the extension into the block of each incoming reg's block.
3795   // Use a SetVector here because PHIs can have duplicate edges, and we want
3796   // deterministic iteration order.
3797   SmallSetVector<MachineInstr *, 8> SrcMIs;
3798   SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap;
3799   for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) {
3800     auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg());
3801     if (!SrcMIs.insert(SrcMI))
3802       continue;
3803 
3804     // Build an extend after each src inst.
3805     auto *MBB = SrcMI->getParent();
3806     MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator();
3807     if (InsertPt != MBB->end() && InsertPt->isPHI())
3808       InsertPt = MBB->getFirstNonPHI();
3809 
3810     Builder.setInsertPt(*SrcMI->getParent(), InsertPt);
3811     Builder.setDebugLoc(MI.getDebugLoc());
3812     auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy,
3813                                           SrcMI->getOperand(0).getReg());
3814     OldToNewSrcMap[SrcMI] = NewExt;
3815   }
3816 
3817   // Create a new phi with the extended inputs.
3818   Builder.setInstrAndDebugLoc(MI);
3819   auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI);
3820   NewPhi.addDef(DstReg);
3821   for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) {
3822     auto &MO = MI.getOperand(SrcIdx);
3823     if (!MO.isReg()) {
3824       NewPhi.addMBB(MO.getMBB());
3825       continue;
3826     }
3827     auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())];
3828     NewPhi.addUse(NewSrc->getOperand(0).getReg());
3829   }
3830   Builder.insertInstr(NewPhi);
3831   ExtMI->eraseFromParent();
3832 }
3833 
3834 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI,
3835                                                 Register &Reg) {
3836   assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT);
3837   // If we have a constant index, look for a G_BUILD_VECTOR source
3838   // and find the source register that the index maps to.
3839   Register SrcVec = MI.getOperand(1).getReg();
3840   LLT SrcTy = MRI.getType(SrcVec);
3841   if (!isLegalOrBeforeLegalizer(
3842           {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}}))
3843     return false;
3844 
3845   auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
3846   if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements())
3847     return false;
3848 
3849   unsigned VecIdx = Cst->Value.getZExtValue();
3850   MachineInstr *BuildVecMI =
3851       getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI);
3852   if (!BuildVecMI) {
3853     BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI);
3854     if (!BuildVecMI)
3855       return false;
3856     LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg());
3857     if (!isLegalOrBeforeLegalizer(
3858             {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}}))
3859       return false;
3860   }
3861 
3862   EVT Ty(getMVTForLLT(SrcTy));
3863   if (!MRI.hasOneNonDBGUse(SrcVec) &&
3864       !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty))
3865     return false;
3866 
3867   Reg = BuildVecMI->getOperand(VecIdx + 1).getReg();
3868   return true;
3869 }
3870 
3871 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI,
3872                                                 Register &Reg) {
3873   // Check the type of the register, since it may have come from a
3874   // G_BUILD_VECTOR_TRUNC.
3875   LLT ScalarTy = MRI.getType(Reg);
3876   Register DstReg = MI.getOperand(0).getReg();
3877   LLT DstTy = MRI.getType(DstReg);
3878 
3879   Builder.setInstrAndDebugLoc(MI);
3880   if (ScalarTy != DstTy) {
3881     assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits());
3882     Builder.buildTrunc(DstReg, Reg);
3883     MI.eraseFromParent();
3884     return;
3885   }
3886   replaceSingleDefInstWithReg(MI, Reg);
3887 }
3888 
3889 bool CombinerHelper::matchExtractAllEltsFromBuildVector(
3890     MachineInstr &MI,
3891     SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
3892   assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
3893   // This combine tries to find build_vector's which have every source element
3894   // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like
3895   // the masked load scalarization is run late in the pipeline. There's already
3896   // a combine for a similar pattern starting from the extract, but that
3897   // doesn't attempt to do it if there are multiple uses of the build_vector,
3898   // which in this case is true. Starting the combine from the build_vector
3899   // feels more natural than trying to find sibling nodes of extracts.
3900   // E.g.
3901   //  %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4
3902   //  %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0
3903   //  %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1
3904   //  %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2
3905   //  %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3
3906   // ==>
3907   // replace ext{1,2,3,4} with %s{1,2,3,4}
3908 
3909   Register DstReg = MI.getOperand(0).getReg();
3910   LLT DstTy = MRI.getType(DstReg);
3911   unsigned NumElts = DstTy.getNumElements();
3912 
3913   SmallBitVector ExtractedElts(NumElts);
3914   for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg),
3915                              MRI.use_instr_nodbg_end())) {
3916     if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT)
3917       return false;
3918     auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI);
3919     if (!Cst)
3920       return false;
3921     unsigned Idx = Cst.getValue().getZExtValue();
3922     if (Idx >= NumElts)
3923       return false; // Out of range.
3924     ExtractedElts.set(Idx);
3925     SrcDstPairs.emplace_back(
3926         std::make_pair(MI.getOperand(Idx + 1).getReg(), &II));
3927   }
3928   // Match if every element was extracted.
3929   return ExtractedElts.all();
3930 }
3931 
3932 void CombinerHelper::applyExtractAllEltsFromBuildVector(
3933     MachineInstr &MI,
3934     SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
3935   assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
3936   for (auto &Pair : SrcDstPairs) {
3937     auto *ExtMI = Pair.second;
3938     replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first);
3939     ExtMI->eraseFromParent();
3940   }
3941   MI.eraseFromParent();
3942 }
3943 
3944 void CombinerHelper::applyBuildFn(
3945     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3946   Builder.setInstrAndDebugLoc(MI);
3947   MatchInfo(Builder);
3948   MI.eraseFromParent();
3949 }
3950 
3951 void CombinerHelper::applyBuildFnNoErase(
3952     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3953   Builder.setInstrAndDebugLoc(MI);
3954   MatchInfo(Builder);
3955 }
3956 
3957 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate.
3958 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) {
3959   unsigned Opc = MI.getOpcode();
3960   assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
3961   Register X = MI.getOperand(1).getReg();
3962   Register Y = MI.getOperand(2).getReg();
3963   if (X != Y)
3964     return false;
3965   unsigned RotateOpc =
3966       Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR;
3967   return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}});
3968 }
3969 
3970 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) {
3971   unsigned Opc = MI.getOpcode();
3972   assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
3973   bool IsFSHL = Opc == TargetOpcode::G_FSHL;
3974   Observer.changingInstr(MI);
3975   MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL
3976                                          : TargetOpcode::G_ROTR));
3977   MI.RemoveOperand(2);
3978   Observer.changedInstr(MI);
3979 }
3980 
3981 // Fold (rot x, c) -> (rot x, c % BitSize)
3982 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) {
3983   assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
3984          MI.getOpcode() == TargetOpcode::G_ROTR);
3985   unsigned Bitsize =
3986       MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
3987   Register AmtReg = MI.getOperand(2).getReg();
3988   bool OutOfRange = false;
3989   auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) {
3990     if (auto *CI = dyn_cast<ConstantInt>(C))
3991       OutOfRange |= CI->getValue().uge(Bitsize);
3992     return true;
3993   };
3994   return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange;
3995 }
3996 
3997 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) {
3998   assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
3999          MI.getOpcode() == TargetOpcode::G_ROTR);
4000   unsigned Bitsize =
4001       MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
4002   Builder.setInstrAndDebugLoc(MI);
4003   Register Amt = MI.getOperand(2).getReg();
4004   LLT AmtTy = MRI.getType(Amt);
4005   auto Bits = Builder.buildConstant(AmtTy, Bitsize);
4006   Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0);
4007   Observer.changingInstr(MI);
4008   MI.getOperand(2).setReg(Amt);
4009   Observer.changedInstr(MI);
4010 }
4011 
4012 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI,
4013                                                    int64_t &MatchInfo) {
4014   assert(MI.getOpcode() == TargetOpcode::G_ICMP);
4015   auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
4016   auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg());
4017   auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg());
4018   Optional<bool> KnownVal;
4019   switch (Pred) {
4020   default:
4021     llvm_unreachable("Unexpected G_ICMP predicate?");
4022   case CmpInst::ICMP_EQ:
4023     KnownVal = KnownBits::eq(KnownLHS, KnownRHS);
4024     break;
4025   case CmpInst::ICMP_NE:
4026     KnownVal = KnownBits::ne(KnownLHS, KnownRHS);
4027     break;
4028   case CmpInst::ICMP_SGE:
4029     KnownVal = KnownBits::sge(KnownLHS, KnownRHS);
4030     break;
4031   case CmpInst::ICMP_SGT:
4032     KnownVal = KnownBits::sgt(KnownLHS, KnownRHS);
4033     break;
4034   case CmpInst::ICMP_SLE:
4035     KnownVal = KnownBits::sle(KnownLHS, KnownRHS);
4036     break;
4037   case CmpInst::ICMP_SLT:
4038     KnownVal = KnownBits::slt(KnownLHS, KnownRHS);
4039     break;
4040   case CmpInst::ICMP_UGE:
4041     KnownVal = KnownBits::uge(KnownLHS, KnownRHS);
4042     break;
4043   case CmpInst::ICMP_UGT:
4044     KnownVal = KnownBits::ugt(KnownLHS, KnownRHS);
4045     break;
4046   case CmpInst::ICMP_ULE:
4047     KnownVal = KnownBits::ule(KnownLHS, KnownRHS);
4048     break;
4049   case CmpInst::ICMP_ULT:
4050     KnownVal = KnownBits::ult(KnownLHS, KnownRHS);
4051     break;
4052   }
4053   if (!KnownVal)
4054     return false;
4055   MatchInfo =
4056       *KnownVal
4057           ? getICmpTrueVal(getTargetLowering(),
4058                            /*IsVector = */
4059                            MRI.getType(MI.getOperand(0).getReg()).isVector(),
4060                            /* IsFP = */ false)
4061           : 0;
4062   return true;
4063 }
4064 
4065 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift.
4066 bool CombinerHelper::matchBitfieldExtractFromSExtInReg(
4067     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4068   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
4069   Register Dst = MI.getOperand(0).getReg();
4070   Register Src = MI.getOperand(1).getReg();
4071   LLT Ty = MRI.getType(Src);
4072   LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4073   if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}}))
4074     return false;
4075   int64_t Width = MI.getOperand(2).getImm();
4076   Register ShiftSrc;
4077   int64_t ShiftImm;
4078   if (!mi_match(
4079           Src, MRI,
4080           m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)),
4081                                   m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm))))))
4082     return false;
4083   if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits())
4084     return false;
4085 
4086   MatchInfo = [=](MachineIRBuilder &B) {
4087     auto Cst1 = B.buildConstant(ExtractTy, ShiftImm);
4088     auto Cst2 = B.buildConstant(ExtractTy, Width);
4089     B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2);
4090   };
4091   return true;
4092 }
4093 
4094 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants.
4095 bool CombinerHelper::matchBitfieldExtractFromAnd(
4096     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4097   assert(MI.getOpcode() == TargetOpcode::G_AND);
4098   Register Dst = MI.getOperand(0).getReg();
4099   LLT Ty = MRI.getType(Dst);
4100   if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal(
4101           TargetOpcode::G_UBFX, Ty, Ty))
4102     return false;
4103 
4104   int64_t AndImm, LSBImm;
4105   Register ShiftSrc;
4106   const unsigned Size = Ty.getScalarSizeInBits();
4107   if (!mi_match(MI.getOperand(0).getReg(), MRI,
4108                 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))),
4109                        m_ICst(AndImm))))
4110     return false;
4111 
4112   // The mask is a mask of the low bits iff imm & (imm+1) == 0.
4113   auto MaybeMask = static_cast<uint64_t>(AndImm);
4114   if (MaybeMask & (MaybeMask + 1))
4115     return false;
4116 
4117   // LSB must fit within the register.
4118   if (static_cast<uint64_t>(LSBImm) >= Size)
4119     return false;
4120 
4121   LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4122   uint64_t Width = APInt(Size, AndImm).countTrailingOnes();
4123   MatchInfo = [=](MachineIRBuilder &B) {
4124     auto WidthCst = B.buildConstant(ExtractTy, Width);
4125     auto LSBCst = B.buildConstant(ExtractTy, LSBImm);
4126     B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst});
4127   };
4128   return true;
4129 }
4130 
4131 bool CombinerHelper::reassociationCanBreakAddressingModePattern(
4132     MachineInstr &PtrAdd) {
4133   assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD);
4134 
4135   Register Src1Reg = PtrAdd.getOperand(1).getReg();
4136   MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI);
4137   if (!Src1Def)
4138     return false;
4139 
4140   Register Src2Reg = PtrAdd.getOperand(2).getReg();
4141 
4142   if (MRI.hasOneNonDBGUse(Src1Reg))
4143     return false;
4144 
4145   auto C1 = getConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI);
4146   if (!C1)
4147     return false;
4148   auto C2 = getConstantVRegVal(Src2Reg, MRI);
4149   if (!C2)
4150     return false;
4151 
4152   const APInt &C1APIntVal = *C1;
4153   const APInt &C2APIntVal = *C2;
4154   const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue();
4155 
4156   for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) {
4157     // This combine may end up running before ptrtoint/inttoptr combines
4158     // manage to eliminate redundant conversions, so try to look through them.
4159     MachineInstr *ConvUseMI = &UseMI;
4160     unsigned ConvUseOpc = ConvUseMI->getOpcode();
4161     while (ConvUseOpc == TargetOpcode::G_INTTOPTR ||
4162            ConvUseOpc == TargetOpcode::G_PTRTOINT) {
4163       Register DefReg = ConvUseMI->getOperand(0).getReg();
4164       if (!MRI.hasOneNonDBGUse(DefReg))
4165         break;
4166       ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg);
4167       ConvUseOpc = ConvUseMI->getOpcode();
4168     }
4169     auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD ||
4170                      ConvUseOpc == TargetOpcode::G_STORE;
4171     if (!LoadStore)
4172       continue;
4173     // Is x[offset2] already not a legal addressing mode? If so then
4174     // reassociating the constants breaks nothing (we test offset2 because
4175     // that's the one we hope to fold into the load or store).
4176     TargetLoweringBase::AddrMode AM;
4177     AM.HasBaseReg = true;
4178     AM.BaseOffs = C2APIntVal.getSExtValue();
4179     unsigned AS =
4180         MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace();
4181     Type *AccessTy =
4182         getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()),
4183                       PtrAdd.getMF()->getFunction().getContext());
4184     const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering();
4185     if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4186                                    AccessTy, AS))
4187       continue;
4188 
4189     // Would x[offset1+offset2] still be a legal addressing mode?
4190     AM.BaseOffs = CombinedValue;
4191     if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4192                                    AccessTy, AS))
4193       return true;
4194   }
4195 
4196   return false;
4197 }
4198 
4199 bool CombinerHelper::matchReassocPtrAdd(
4200     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4201   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD);
4202   // We're trying to match a few pointer computation patterns here for
4203   // re-association opportunities.
4204   // 1) Isolating a constant operand to be on the RHS, e.g.:
4205   // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
4206   //
4207   // 2) Folding two constants in each sub-tree as long as such folding
4208   // doesn't break a legal addressing mode.
4209   // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
4210   Register Src1Reg = MI.getOperand(1).getReg();
4211   Register Src2Reg = MI.getOperand(2).getReg();
4212   MachineInstr *LHS = MRI.getVRegDef(Src1Reg);
4213   MachineInstr *RHS = MRI.getVRegDef(Src2Reg);
4214 
4215   if (LHS->getOpcode() != TargetOpcode::G_PTR_ADD) {
4216     // Try to match example 1).
4217     if (RHS->getOpcode() != TargetOpcode::G_ADD)
4218       return false;
4219     auto C2 = getConstantVRegVal(RHS->getOperand(2).getReg(), MRI);
4220     if (!C2)
4221       return false;
4222 
4223     MatchInfo = [=,&MI](MachineIRBuilder &B) {
4224       LLT PtrTy = MRI.getType(MI.getOperand(0).getReg());
4225 
4226       auto NewBase =
4227           Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg());
4228       Observer.changingInstr(MI);
4229       MI.getOperand(1).setReg(NewBase.getReg(0));
4230       MI.getOperand(2).setReg(RHS->getOperand(2).getReg());
4231       Observer.changedInstr(MI);
4232     };
4233   } else {
4234     // Try to match example 2.
4235     Register LHSSrc1 = LHS->getOperand(1).getReg();
4236     Register LHSSrc2 = LHS->getOperand(2).getReg();
4237     auto C1 = getConstantVRegVal(LHSSrc2, MRI);
4238     if (!C1)
4239       return false;
4240     auto C2 = getConstantVRegVal(Src2Reg, MRI);
4241     if (!C2)
4242       return false;
4243 
4244     MatchInfo = [=, &MI](MachineIRBuilder &B) {
4245       auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2);
4246       Observer.changingInstr(MI);
4247       MI.getOperand(1).setReg(LHSSrc1);
4248       MI.getOperand(2).setReg(NewCst.getReg(0));
4249       Observer.changedInstr(MI);
4250     };
4251   }
4252   return !reassociationCanBreakAddressingModePattern(MI);
4253 }
4254 
4255 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) {
4256   Register Op1 = MI.getOperand(1).getReg();
4257   Register Op2 = MI.getOperand(2).getReg();
4258   auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI);
4259   if (!MaybeCst)
4260     return false;
4261   MatchInfo = *MaybeCst;
4262   return true;
4263 }
4264 
4265 bool CombinerHelper::tryCombine(MachineInstr &MI) {
4266   if (tryCombineCopy(MI))
4267     return true;
4268   if (tryCombineExtendingLoads(MI))
4269     return true;
4270   if (tryCombineIndexedLoadStore(MI))
4271     return true;
4272   return false;
4273 }
4274