1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/CodeGen/GlobalISel/Combiner.h" 10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 12 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 13 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 14 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 15 #include "llvm/CodeGen/GlobalISel/Utils.h" 16 #include "llvm/CodeGen/MachineDominators.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineInstr.h" 19 #include "llvm/CodeGen/MachineMemOperand.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/Support/MathExtras.h" 24 #include "llvm/Target/TargetMachine.h" 25 26 #define DEBUG_TYPE "gi-combiner" 27 28 using namespace llvm; 29 using namespace MIPatternMatch; 30 31 // Option to allow testing of the combiner while no targets know about indexed 32 // addressing. 33 static cl::opt<bool> 34 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 35 cl::desc("Force all indexed operations to be " 36 "legal for the GlobalISel combiner")); 37 38 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 39 MachineIRBuilder &B, GISelKnownBits *KB, 40 MachineDominatorTree *MDT, 41 const LegalizerInfo *LI) 42 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 43 KB(KB), MDT(MDT), LI(LI) { 44 (void)this->KB; 45 } 46 47 const TargetLowering &CombinerHelper::getTargetLowering() const { 48 return *Builder.getMF().getSubtarget().getTargetLowering(); 49 } 50 51 bool CombinerHelper::isLegalOrBeforeLegalizer( 52 const LegalityQuery &Query) const { 53 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 54 } 55 56 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 57 Register ToReg) const { 58 Observer.changingAllUsesOfReg(MRI, FromReg); 59 60 if (MRI.constrainRegAttrs(ToReg, FromReg)) 61 MRI.replaceRegWith(FromReg, ToReg); 62 else 63 Builder.buildCopy(ToReg, FromReg); 64 65 Observer.finishedChangingAllUsesOfReg(); 66 } 67 68 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 69 MachineOperand &FromRegOp, 70 Register ToReg) const { 71 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 72 Observer.changingInstr(*FromRegOp.getParent()); 73 74 FromRegOp.setReg(ToReg); 75 76 Observer.changedInstr(*FromRegOp.getParent()); 77 } 78 79 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 80 if (matchCombineCopy(MI)) { 81 applyCombineCopy(MI); 82 return true; 83 } 84 return false; 85 } 86 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 87 if (MI.getOpcode() != TargetOpcode::COPY) 88 return false; 89 Register DstReg = MI.getOperand(0).getReg(); 90 Register SrcReg = MI.getOperand(1).getReg(); 91 return canReplaceReg(DstReg, SrcReg, MRI); 92 } 93 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 94 Register DstReg = MI.getOperand(0).getReg(); 95 Register SrcReg = MI.getOperand(1).getReg(); 96 MI.eraseFromParent(); 97 replaceRegWith(MRI, DstReg, SrcReg); 98 } 99 100 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 101 bool IsUndef = false; 102 SmallVector<Register, 4> Ops; 103 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 104 applyCombineConcatVectors(MI, IsUndef, Ops); 105 return true; 106 } 107 return false; 108 } 109 110 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 111 SmallVectorImpl<Register> &Ops) { 112 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 113 "Invalid instruction"); 114 IsUndef = true; 115 MachineInstr *Undef = nullptr; 116 117 // Walk over all the operands of concat vectors and check if they are 118 // build_vector themselves or undef. 119 // Then collect their operands in Ops. 120 for (const MachineOperand &MO : MI.uses()) { 121 Register Reg = MO.getReg(); 122 MachineInstr *Def = MRI.getVRegDef(Reg); 123 assert(Def && "Operand not defined"); 124 switch (Def->getOpcode()) { 125 case TargetOpcode::G_BUILD_VECTOR: 126 IsUndef = false; 127 // Remember the operands of the build_vector to fold 128 // them into the yet-to-build flattened concat vectors. 129 for (const MachineOperand &BuildVecMO : Def->uses()) 130 Ops.push_back(BuildVecMO.getReg()); 131 break; 132 case TargetOpcode::G_IMPLICIT_DEF: { 133 LLT OpType = MRI.getType(Reg); 134 // Keep one undef value for all the undef operands. 135 if (!Undef) { 136 Builder.setInsertPt(*MI.getParent(), MI); 137 Undef = Builder.buildUndef(OpType.getScalarType()); 138 } 139 assert(MRI.getType(Undef->getOperand(0).getReg()) == 140 OpType.getScalarType() && 141 "All undefs should have the same type"); 142 // Break the undef vector in as many scalar elements as needed 143 // for the flattening. 144 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 145 EltIdx != EltEnd; ++EltIdx) 146 Ops.push_back(Undef->getOperand(0).getReg()); 147 break; 148 } 149 default: 150 return false; 151 } 152 } 153 return true; 154 } 155 void CombinerHelper::applyCombineConcatVectors( 156 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 157 // We determined that the concat_vectors can be flatten. 158 // Generate the flattened build_vector. 159 Register DstReg = MI.getOperand(0).getReg(); 160 Builder.setInsertPt(*MI.getParent(), MI); 161 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 162 163 // Note: IsUndef is sort of redundant. We could have determine it by 164 // checking that at all Ops are undef. Alternatively, we could have 165 // generate a build_vector of undefs and rely on another combine to 166 // clean that up. For now, given we already gather this information 167 // in tryCombineConcatVectors, just save compile time and issue the 168 // right thing. 169 if (IsUndef) 170 Builder.buildUndef(NewDstReg); 171 else 172 Builder.buildBuildVector(NewDstReg, Ops); 173 MI.eraseFromParent(); 174 replaceRegWith(MRI, DstReg, NewDstReg); 175 } 176 177 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 178 SmallVector<Register, 4> Ops; 179 if (matchCombineShuffleVector(MI, Ops)) { 180 applyCombineShuffleVector(MI, Ops); 181 return true; 182 } 183 return false; 184 } 185 186 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 187 SmallVectorImpl<Register> &Ops) { 188 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 189 "Invalid instruction kind"); 190 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 191 Register Src1 = MI.getOperand(1).getReg(); 192 LLT SrcType = MRI.getType(Src1); 193 // As bizarre as it may look, shuffle vector can actually produce 194 // scalar! This is because at the IR level a <1 x ty> shuffle 195 // vector is perfectly valid. 196 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 197 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 198 199 // If the resulting vector is smaller than the size of the source 200 // vectors being concatenated, we won't be able to replace the 201 // shuffle vector into a concat_vectors. 202 // 203 // Note: We may still be able to produce a concat_vectors fed by 204 // extract_vector_elt and so on. It is less clear that would 205 // be better though, so don't bother for now. 206 // 207 // If the destination is a scalar, the size of the sources doesn't 208 // matter. we will lower the shuffle to a plain copy. This will 209 // work only if the source and destination have the same size. But 210 // that's covered by the next condition. 211 // 212 // TODO: If the size between the source and destination don't match 213 // we could still emit an extract vector element in that case. 214 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 215 return false; 216 217 // Check that the shuffle mask can be broken evenly between the 218 // different sources. 219 if (DstNumElts % SrcNumElts != 0) 220 return false; 221 222 // Mask length is a multiple of the source vector length. 223 // Check if the shuffle is some kind of concatenation of the input 224 // vectors. 225 unsigned NumConcat = DstNumElts / SrcNumElts; 226 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 227 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 228 for (unsigned i = 0; i != DstNumElts; ++i) { 229 int Idx = Mask[i]; 230 // Undef value. 231 if (Idx < 0) 232 continue; 233 // Ensure the indices in each SrcType sized piece are sequential and that 234 // the same source is used for the whole piece. 235 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 236 (ConcatSrcs[i / SrcNumElts] >= 0 && 237 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 238 return false; 239 // Remember which source this index came from. 240 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 241 } 242 243 // The shuffle is concatenating multiple vectors together. 244 // Collect the different operands for that. 245 Register UndefReg; 246 Register Src2 = MI.getOperand(2).getReg(); 247 for (auto Src : ConcatSrcs) { 248 if (Src < 0) { 249 if (!UndefReg) { 250 Builder.setInsertPt(*MI.getParent(), MI); 251 UndefReg = Builder.buildUndef(SrcType).getReg(0); 252 } 253 Ops.push_back(UndefReg); 254 } else if (Src == 0) 255 Ops.push_back(Src1); 256 else 257 Ops.push_back(Src2); 258 } 259 return true; 260 } 261 262 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 263 const ArrayRef<Register> Ops) { 264 Register DstReg = MI.getOperand(0).getReg(); 265 Builder.setInsertPt(*MI.getParent(), MI); 266 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 267 268 if (Ops.size() == 1) 269 Builder.buildCopy(NewDstReg, Ops[0]); 270 else 271 Builder.buildMerge(NewDstReg, Ops); 272 273 MI.eraseFromParent(); 274 replaceRegWith(MRI, DstReg, NewDstReg); 275 } 276 277 namespace { 278 279 /// Select a preference between two uses. CurrentUse is the current preference 280 /// while *ForCandidate is attributes of the candidate under consideration. 281 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 282 const LLT TyForCandidate, 283 unsigned OpcodeForCandidate, 284 MachineInstr *MIForCandidate) { 285 if (!CurrentUse.Ty.isValid()) { 286 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 287 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 288 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 289 return CurrentUse; 290 } 291 292 // We permit the extend to hoist through basic blocks but this is only 293 // sensible if the target has extending loads. If you end up lowering back 294 // into a load and extend during the legalizer then the end result is 295 // hoisting the extend up to the load. 296 297 // Prefer defined extensions to undefined extensions as these are more 298 // likely to reduce the number of instructions. 299 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 300 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 301 return CurrentUse; 302 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 303 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 304 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 305 306 // Prefer sign extensions to zero extensions as sign-extensions tend to be 307 // more expensive. 308 if (CurrentUse.Ty == TyForCandidate) { 309 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 310 OpcodeForCandidate == TargetOpcode::G_ZEXT) 311 return CurrentUse; 312 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 313 OpcodeForCandidate == TargetOpcode::G_SEXT) 314 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 315 } 316 317 // This is potentially target specific. We've chosen the largest type 318 // because G_TRUNC is usually free. One potential catch with this is that 319 // some targets have a reduced number of larger registers than smaller 320 // registers and this choice potentially increases the live-range for the 321 // larger value. 322 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 323 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 324 } 325 return CurrentUse; 326 } 327 328 /// Find a suitable place to insert some instructions and insert them. This 329 /// function accounts for special cases like inserting before a PHI node. 330 /// The current strategy for inserting before PHI's is to duplicate the 331 /// instructions for each predecessor. However, while that's ok for G_TRUNC 332 /// on most targets since it generally requires no code, other targets/cases may 333 /// want to try harder to find a dominating block. 334 static void InsertInsnsWithoutSideEffectsBeforeUse( 335 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 336 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 337 MachineOperand &UseMO)> 338 Inserter) { 339 MachineInstr &UseMI = *UseMO.getParent(); 340 341 MachineBasicBlock *InsertBB = UseMI.getParent(); 342 343 // If the use is a PHI then we want the predecessor block instead. 344 if (UseMI.isPHI()) { 345 MachineOperand *PredBB = std::next(&UseMO); 346 InsertBB = PredBB->getMBB(); 347 } 348 349 // If the block is the same block as the def then we want to insert just after 350 // the def instead of at the start of the block. 351 if (InsertBB == DefMI.getParent()) { 352 MachineBasicBlock::iterator InsertPt = &DefMI; 353 Inserter(InsertBB, std::next(InsertPt), UseMO); 354 return; 355 } 356 357 // Otherwise we want the start of the BB 358 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 359 } 360 } // end anonymous namespace 361 362 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 363 PreferredTuple Preferred; 364 if (matchCombineExtendingLoads(MI, Preferred)) { 365 applyCombineExtendingLoads(MI, Preferred); 366 return true; 367 } 368 return false; 369 } 370 371 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 372 PreferredTuple &Preferred) { 373 // We match the loads and follow the uses to the extend instead of matching 374 // the extends and following the def to the load. This is because the load 375 // must remain in the same position for correctness (unless we also add code 376 // to find a safe place to sink it) whereas the extend is freely movable. 377 // It also prevents us from duplicating the load for the volatile case or just 378 // for performance. 379 380 if (MI.getOpcode() != TargetOpcode::G_LOAD && 381 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 382 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 383 return false; 384 385 auto &LoadValue = MI.getOperand(0); 386 assert(LoadValue.isReg() && "Result wasn't a register?"); 387 388 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 389 if (!LoadValueTy.isScalar()) 390 return false; 391 392 // Most architectures are going to legalize <s8 loads into at least a 1 byte 393 // load, and the MMOs can only describe memory accesses in multiples of bytes. 394 // If we try to perform extload combining on those, we can end up with 395 // %a(s8) = extload %ptr (load 1 byte from %ptr) 396 // ... which is an illegal extload instruction. 397 if (LoadValueTy.getSizeInBits() < 8) 398 return false; 399 400 // For non power-of-2 types, they will very likely be legalized into multiple 401 // loads. Don't bother trying to match them into extending loads. 402 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 403 return false; 404 405 // Find the preferred type aside from the any-extends (unless it's the only 406 // one) and non-extending ops. We'll emit an extending load to that type and 407 // and emit a variant of (extend (trunc X)) for the others according to the 408 // relative type sizes. At the same time, pick an extend to use based on the 409 // extend involved in the chosen type. 410 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 411 ? TargetOpcode::G_ANYEXT 412 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 413 ? TargetOpcode::G_SEXT 414 : TargetOpcode::G_ZEXT; 415 Preferred = {LLT(), PreferredOpcode, nullptr}; 416 for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) { 417 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 418 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 419 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 420 // Check for legality. 421 if (LI) { 422 LegalityQuery::MemDesc MMDesc; 423 const auto &MMO = **MI.memoperands_begin(); 424 MMDesc.SizeInBits = MMO.getSizeInBits(); 425 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 426 MMDesc.Ordering = MMO.getOrdering(); 427 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 428 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 429 if (LI->getAction({MI.getOpcode(), {UseTy, SrcTy}, {MMDesc}}).Action != 430 LegalizeActions::Legal) 431 continue; 432 } 433 Preferred = ChoosePreferredUse(Preferred, 434 MRI.getType(UseMI.getOperand(0).getReg()), 435 UseMI.getOpcode(), &UseMI); 436 } 437 } 438 439 // There were no extends 440 if (!Preferred.MI) 441 return false; 442 // It should be impossible to chose an extend without selecting a different 443 // type since by definition the result of an extend is larger. 444 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 445 446 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 447 return true; 448 } 449 450 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 451 PreferredTuple &Preferred) { 452 // Rewrite the load to the chosen extending load. 453 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 454 455 // Inserter to insert a truncate back to the original type at a given point 456 // with some basic CSE to limit truncate duplication to one per BB. 457 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 458 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 459 MachineBasicBlock::iterator InsertBefore, 460 MachineOperand &UseMO) { 461 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 462 if (PreviouslyEmitted) { 463 Observer.changingInstr(*UseMO.getParent()); 464 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 465 Observer.changedInstr(*UseMO.getParent()); 466 return; 467 } 468 469 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 470 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 471 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 472 EmittedInsns[InsertIntoBB] = NewMI; 473 replaceRegOpWith(MRI, UseMO, NewDstReg); 474 }; 475 476 Observer.changingInstr(MI); 477 MI.setDesc( 478 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 479 ? TargetOpcode::G_SEXTLOAD 480 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 481 ? TargetOpcode::G_ZEXTLOAD 482 : TargetOpcode::G_LOAD)); 483 484 // Rewrite all the uses to fix up the types. 485 auto &LoadValue = MI.getOperand(0); 486 SmallVector<MachineOperand *, 4> Uses; 487 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 488 Uses.push_back(&UseMO); 489 490 for (auto *UseMO : Uses) { 491 MachineInstr *UseMI = UseMO->getParent(); 492 493 // If the extend is compatible with the preferred extend then we should fix 494 // up the type and extend so that it uses the preferred use. 495 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 496 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 497 Register UseDstReg = UseMI->getOperand(0).getReg(); 498 MachineOperand &UseSrcMO = UseMI->getOperand(1); 499 const LLT UseDstTy = MRI.getType(UseDstReg); 500 if (UseDstReg != ChosenDstReg) { 501 if (Preferred.Ty == UseDstTy) { 502 // If the use has the same type as the preferred use, then merge 503 // the vregs and erase the extend. For example: 504 // %1:_(s8) = G_LOAD ... 505 // %2:_(s32) = G_SEXT %1(s8) 506 // %3:_(s32) = G_ANYEXT %1(s8) 507 // ... = ... %3(s32) 508 // rewrites to: 509 // %2:_(s32) = G_SEXTLOAD ... 510 // ... = ... %2(s32) 511 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 512 Observer.erasingInstr(*UseMO->getParent()); 513 UseMO->getParent()->eraseFromParent(); 514 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 515 // If the preferred size is smaller, then keep the extend but extend 516 // from the result of the extending load. For example: 517 // %1:_(s8) = G_LOAD ... 518 // %2:_(s32) = G_SEXT %1(s8) 519 // %3:_(s64) = G_ANYEXT %1(s8) 520 // ... = ... %3(s64) 521 /// rewrites to: 522 // %2:_(s32) = G_SEXTLOAD ... 523 // %3:_(s64) = G_ANYEXT %2:_(s32) 524 // ... = ... %3(s64) 525 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 526 } else { 527 // If the preferred size is large, then insert a truncate. For 528 // example: 529 // %1:_(s8) = G_LOAD ... 530 // %2:_(s64) = G_SEXT %1(s8) 531 // %3:_(s32) = G_ZEXT %1(s8) 532 // ... = ... %3(s32) 533 /// rewrites to: 534 // %2:_(s64) = G_SEXTLOAD ... 535 // %4:_(s8) = G_TRUNC %2:_(s32) 536 // %3:_(s64) = G_ZEXT %2:_(s8) 537 // ... = ... %3(s64) 538 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 539 InsertTruncAt); 540 } 541 continue; 542 } 543 // The use is (one of) the uses of the preferred use we chose earlier. 544 // We're going to update the load to def this value later so just erase 545 // the old extend. 546 Observer.erasingInstr(*UseMO->getParent()); 547 UseMO->getParent()->eraseFromParent(); 548 continue; 549 } 550 551 // The use isn't an extend. Truncate back to the type we originally loaded. 552 // This is free on many targets. 553 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 554 } 555 556 MI.getOperand(0).setReg(ChosenDstReg); 557 Observer.changedInstr(MI); 558 } 559 560 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 561 const MachineInstr &UseMI) { 562 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 563 "shouldn't consider debug uses"); 564 assert(DefMI.getParent() == UseMI.getParent()); 565 if (&DefMI == &UseMI) 566 return false; 567 568 // Loop through the basic block until we find one of the instructions. 569 MachineBasicBlock::const_iterator I = DefMI.getParent()->begin(); 570 for (; &*I != &DefMI && &*I != &UseMI; ++I) 571 return &*I == &DefMI; 572 573 llvm_unreachable("Block must contain instructions"); 574 } 575 576 bool CombinerHelper::dominates(const MachineInstr &DefMI, 577 const MachineInstr &UseMI) { 578 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 579 "shouldn't consider debug uses"); 580 if (MDT) 581 return MDT->dominates(&DefMI, &UseMI); 582 else if (DefMI.getParent() != UseMI.getParent()) 583 return false; 584 585 return isPredecessor(DefMI, UseMI); 586 } 587 588 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 589 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 590 Register SrcReg = MI.getOperand(1).getReg(); 591 Register LoadUser = SrcReg; 592 593 if (MRI.getType(SrcReg).isVector()) 594 return false; 595 596 Register TruncSrc; 597 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 598 LoadUser = TruncSrc; 599 600 uint64_t SizeInBits = MI.getOperand(2).getImm(); 601 // If the source is a G_SEXTLOAD from the same bit width, then we don't 602 // need any extend at all, just a truncate. 603 if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) { 604 const auto &MMO = **LoadMI->memoperands_begin(); 605 // If truncating more than the original extended value, abort. 606 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits()) 607 return false; 608 if (MMO.getSizeInBits() == SizeInBits) 609 return true; 610 } 611 return false; 612 } 613 614 bool CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 615 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 616 Builder.setInstrAndDebugLoc(MI); 617 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 618 MI.eraseFromParent(); 619 return true; 620 } 621 622 bool CombinerHelper::matchSextInRegOfLoad( 623 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 624 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 625 626 // Only supports scalars for now. 627 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 628 return false; 629 630 Register SrcReg = MI.getOperand(1).getReg(); 631 MachineInstr *LoadDef = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI); 632 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg())) 633 return false; 634 635 // If the sign extend extends from a narrower width than the load's width, 636 // then we can narrow the load width when we combine to a G_SEXTLOAD. 637 auto &MMO = **LoadDef->memoperands_begin(); 638 // Don't do this for non-simple loads. 639 if (MMO.isAtomic() || MMO.isVolatile()) 640 return false; 641 642 // Avoid widening the load at all. 643 unsigned NewSizeBits = 644 std::min((uint64_t)MI.getOperand(2).getImm(), MMO.getSizeInBits()); 645 646 // Don't generate G_SEXTLOADs with a < 1 byte width. 647 if (NewSizeBits < 8) 648 return false; 649 // Don't bother creating a non-power-2 sextload, it will likely be broken up 650 // anyway for most targets. 651 if (!isPowerOf2_32(NewSizeBits)) 652 return false; 653 MatchInfo = std::make_tuple(LoadDef->getOperand(0).getReg(), NewSizeBits); 654 return true; 655 } 656 657 bool CombinerHelper::applySextInRegOfLoad( 658 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 659 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 660 Register LoadReg; 661 unsigned ScalarSizeBits; 662 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 663 auto *LoadDef = MRI.getVRegDef(LoadReg); 664 assert(LoadDef && "Expected a load reg"); 665 666 // If we have the following: 667 // %ld = G_LOAD %ptr, (load 2) 668 // %ext = G_SEXT_INREG %ld, 8 669 // ==> 670 // %ld = G_SEXTLOAD %ptr (load 1) 671 672 auto &MMO = **LoadDef->memoperands_begin(); 673 Builder.setInstrAndDebugLoc(MI); 674 auto &MF = Builder.getMF(); 675 auto PtrInfo = MMO.getPointerInfo(); 676 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 677 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 678 LoadDef->getOperand(1).getReg(), *NewMMO); 679 MI.eraseFromParent(); 680 return true; 681 } 682 683 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 684 Register &Base, Register &Offset) { 685 auto &MF = *MI.getParent()->getParent(); 686 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 687 688 #ifndef NDEBUG 689 unsigned Opcode = MI.getOpcode(); 690 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 691 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 692 #endif 693 694 Base = MI.getOperand(1).getReg(); 695 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 696 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 697 return false; 698 699 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 700 701 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 702 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 703 continue; 704 705 Offset = Use.getOperand(2).getReg(); 706 if (!ForceLegalIndexing && 707 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 708 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 709 << Use); 710 continue; 711 } 712 713 // Make sure the offset calculation is before the potentially indexed op. 714 // FIXME: we really care about dependency here. The offset calculation might 715 // be movable. 716 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 717 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 718 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 719 << Use); 720 continue; 721 } 722 723 // FIXME: check whether all uses of Base are load/store with foldable 724 // addressing modes. If so, using the normal addr-modes is better than 725 // forming an indexed one. 726 727 bool MemOpDominatesAddrUses = true; 728 for (auto &PtrAddUse : 729 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 730 if (!dominates(MI, PtrAddUse)) { 731 MemOpDominatesAddrUses = false; 732 break; 733 } 734 } 735 736 if (!MemOpDominatesAddrUses) { 737 LLVM_DEBUG( 738 dbgs() << " Ignoring candidate as memop does not dominate uses: " 739 << Use); 740 continue; 741 } 742 743 LLVM_DEBUG(dbgs() << " Found match: " << Use); 744 Addr = Use.getOperand(0).getReg(); 745 return true; 746 } 747 748 return false; 749 } 750 751 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 752 Register &Base, Register &Offset) { 753 auto &MF = *MI.getParent()->getParent(); 754 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 755 756 #ifndef NDEBUG 757 unsigned Opcode = MI.getOpcode(); 758 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 759 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 760 #endif 761 762 Addr = MI.getOperand(1).getReg(); 763 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 764 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 765 return false; 766 767 Base = AddrDef->getOperand(1).getReg(); 768 Offset = AddrDef->getOperand(2).getReg(); 769 770 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 771 772 if (!ForceLegalIndexing && 773 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 774 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 775 return false; 776 } 777 778 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 779 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 780 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 781 return false; 782 } 783 784 if (MI.getOpcode() == TargetOpcode::G_STORE) { 785 // Would require a copy. 786 if (Base == MI.getOperand(0).getReg()) { 787 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 788 return false; 789 } 790 791 // We're expecting one use of Addr in MI, but it could also be the 792 // value stored, which isn't actually dominated by the instruction. 793 if (MI.getOperand(0).getReg() == Addr) { 794 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 795 return false; 796 } 797 } 798 799 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 800 // That might allow us to end base's liveness here by adjusting the constant. 801 802 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 803 if (!dominates(MI, UseMI)) { 804 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 805 return false; 806 } 807 } 808 809 return true; 810 } 811 812 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 813 IndexedLoadStoreMatchInfo MatchInfo; 814 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 815 applyCombineIndexedLoadStore(MI, MatchInfo); 816 return true; 817 } 818 return false; 819 } 820 821 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 822 unsigned Opcode = MI.getOpcode(); 823 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 824 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 825 return false; 826 827 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 828 MatchInfo.Offset); 829 if (!MatchInfo.IsPre && 830 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 831 MatchInfo.Offset)) 832 return false; 833 834 return true; 835 } 836 837 void CombinerHelper::applyCombineIndexedLoadStore( 838 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 839 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 840 MachineIRBuilder MIRBuilder(MI); 841 unsigned Opcode = MI.getOpcode(); 842 bool IsStore = Opcode == TargetOpcode::G_STORE; 843 unsigned NewOpcode; 844 switch (Opcode) { 845 case TargetOpcode::G_LOAD: 846 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 847 break; 848 case TargetOpcode::G_SEXTLOAD: 849 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 850 break; 851 case TargetOpcode::G_ZEXTLOAD: 852 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 853 break; 854 case TargetOpcode::G_STORE: 855 NewOpcode = TargetOpcode::G_INDEXED_STORE; 856 break; 857 default: 858 llvm_unreachable("Unknown load/store opcode"); 859 } 860 861 auto MIB = MIRBuilder.buildInstr(NewOpcode); 862 if (IsStore) { 863 MIB.addDef(MatchInfo.Addr); 864 MIB.addUse(MI.getOperand(0).getReg()); 865 } else { 866 MIB.addDef(MI.getOperand(0).getReg()); 867 MIB.addDef(MatchInfo.Addr); 868 } 869 870 MIB.addUse(MatchInfo.Base); 871 MIB.addUse(MatchInfo.Offset); 872 MIB.addImm(MatchInfo.IsPre); 873 MI.eraseFromParent(); 874 AddrDef.eraseFromParent(); 875 876 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 877 } 878 879 bool CombinerHelper::matchElideBrByInvertingCond(MachineInstr &MI) { 880 if (MI.getOpcode() != TargetOpcode::G_BR) 881 return false; 882 883 // Try to match the following: 884 // bb1: 885 // %c(s32) = G_ICMP pred, %a, %b 886 // %c1(s1) = G_TRUNC %c(s32) 887 // G_BRCOND %c1, %bb2 888 // G_BR %bb3 889 // bb2: 890 // ... 891 // bb3: 892 893 // The above pattern does not have a fall through to the successor bb2, always 894 // resulting in a branch no matter which path is taken. Here we try to find 895 // and replace that pattern with conditional branch to bb3 and otherwise 896 // fallthrough to bb2. 897 898 MachineBasicBlock *MBB = MI.getParent(); 899 MachineBasicBlock::iterator BrIt(MI); 900 if (BrIt == MBB->begin()) 901 return false; 902 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 903 904 MachineInstr *BrCond = &*std::prev(BrIt); 905 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 906 return false; 907 908 // Check that the next block is the conditional branch target. 909 if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB())) 910 return false; 911 912 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 913 if (!CmpMI || CmpMI->getOpcode() != TargetOpcode::G_ICMP || 914 !MRI.hasOneNonDBGUse(CmpMI->getOperand(0).getReg())) 915 return false; 916 return true; 917 } 918 919 bool CombinerHelper::tryElideBrByInvertingCond(MachineInstr &MI) { 920 if (!matchElideBrByInvertingCond(MI)) 921 return false; 922 applyElideBrByInvertingCond(MI); 923 return true; 924 } 925 926 void CombinerHelper::applyElideBrByInvertingCond(MachineInstr &MI) { 927 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 928 MachineBasicBlock::iterator BrIt(MI); 929 MachineInstr *BrCond = &*std::prev(BrIt); 930 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 931 932 CmpInst::Predicate InversePred = CmpInst::getInversePredicate( 933 (CmpInst::Predicate)CmpMI->getOperand(1).getPredicate()); 934 935 // Invert the G_ICMP condition. 936 Observer.changingInstr(*CmpMI); 937 CmpMI->getOperand(1).setPredicate(InversePred); 938 Observer.changedInstr(*CmpMI); 939 940 // Change the conditional branch target. 941 Observer.changingInstr(*BrCond); 942 BrCond->getOperand(1).setMBB(BrTarget); 943 Observer.changedInstr(*BrCond); 944 MI.eraseFromParent(); 945 } 946 947 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 948 // On Darwin, -Os means optimize for size without hurting performance, so 949 // only really optimize for size when -Oz (MinSize) is used. 950 if (MF.getTarget().getTargetTriple().isOSDarwin()) 951 return MF.getFunction().hasMinSize(); 952 return MF.getFunction().hasOptSize(); 953 } 954 955 // Returns a list of types to use for memory op lowering in MemOps. A partial 956 // port of findOptimalMemOpLowering in TargetLowering. 957 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 958 unsigned Limit, const MemOp &Op, 959 unsigned DstAS, unsigned SrcAS, 960 const AttributeList &FuncAttributes, 961 const TargetLowering &TLI) { 962 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 963 return false; 964 965 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 966 967 if (Ty == LLT()) { 968 // Use the largest scalar type whose alignment constraints are satisfied. 969 // We only need to check DstAlign here as SrcAlign is always greater or 970 // equal to DstAlign (or zero). 971 Ty = LLT::scalar(64); 972 if (Op.isFixedDstAlign()) 973 while (Op.getDstAlign() < Ty.getSizeInBytes() && 974 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 975 Ty = LLT::scalar(Ty.getSizeInBytes()); 976 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 977 // FIXME: check for the largest legal type we can load/store to. 978 } 979 980 unsigned NumMemOps = 0; 981 uint64_t Size = Op.size(); 982 while (Size) { 983 unsigned TySize = Ty.getSizeInBytes(); 984 while (TySize > Size) { 985 // For now, only use non-vector load / store's for the left-over pieces. 986 LLT NewTy = Ty; 987 // FIXME: check for mem op safety and legality of the types. Not all of 988 // SDAGisms map cleanly to GISel concepts. 989 if (NewTy.isVector()) 990 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 991 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 992 unsigned NewTySize = NewTy.getSizeInBytes(); 993 assert(NewTySize > 0 && "Could not find appropriate type"); 994 995 // If the new LLT cannot cover all of the remaining bits, then consider 996 // issuing a (or a pair of) unaligned and overlapping load / store. 997 bool Fast; 998 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 999 MVT VT = getMVTForLLT(Ty); 1000 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 1001 TLI.allowsMisalignedMemoryAccesses( 1002 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 1003 MachineMemOperand::MONone, &Fast) && 1004 Fast) 1005 TySize = Size; 1006 else { 1007 Ty = NewTy; 1008 TySize = NewTySize; 1009 } 1010 } 1011 1012 if (++NumMemOps > Limit) 1013 return false; 1014 1015 MemOps.push_back(Ty); 1016 Size -= TySize; 1017 } 1018 1019 return true; 1020 } 1021 1022 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1023 if (Ty.isVector()) 1024 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1025 Ty.getNumElements()); 1026 return IntegerType::get(C, Ty.getSizeInBits()); 1027 } 1028 1029 // Get a vectorized representation of the memset value operand, GISel edition. 1030 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 1031 MachineRegisterInfo &MRI = *MIB.getMRI(); 1032 unsigned NumBits = Ty.getScalarSizeInBits(); 1033 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1034 if (!Ty.isVector() && ValVRegAndVal) { 1035 unsigned KnownVal = ValVRegAndVal->Value; 1036 APInt Scalar = APInt(8, KnownVal); 1037 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 1038 return MIB.buildConstant(Ty, SplatVal).getReg(0); 1039 } 1040 1041 // Extend the byte value to the larger type, and then multiply by a magic 1042 // value 0x010101... in order to replicate it across every byte. 1043 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 1044 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 1045 return MIB.buildConstant(Ty, 0).getReg(0); 1046 } 1047 1048 LLT ExtType = Ty.getScalarType(); 1049 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 1050 if (NumBits > 8) { 1051 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 1052 auto MagicMI = MIB.buildConstant(ExtType, Magic); 1053 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 1054 } 1055 1056 // For vector types create a G_BUILD_VECTOR. 1057 if (Ty.isVector()) 1058 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 1059 1060 return Val; 1061 } 1062 1063 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 1064 Register Val, unsigned KnownLen, 1065 Align Alignment, bool IsVolatile) { 1066 auto &MF = *MI.getParent()->getParent(); 1067 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1068 auto &DL = MF.getDataLayout(); 1069 LLVMContext &C = MF.getFunction().getContext(); 1070 1071 assert(KnownLen != 0 && "Have a zero length memset length!"); 1072 1073 bool DstAlignCanChange = false; 1074 MachineFrameInfo &MFI = MF.getFrameInfo(); 1075 bool OptSize = shouldLowerMemFuncForSize(MF); 1076 1077 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1078 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1079 DstAlignCanChange = true; 1080 1081 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1082 std::vector<LLT> MemOps; 1083 1084 const auto &DstMMO = **MI.memoperands_begin(); 1085 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1086 1087 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1088 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1089 1090 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1091 MemOp::Set(KnownLen, DstAlignCanChange, 1092 Alignment, 1093 /*IsZeroMemset=*/IsZeroVal, 1094 /*IsVolatile=*/IsVolatile), 1095 DstPtrInfo.getAddrSpace(), ~0u, 1096 MF.getFunction().getAttributes(), TLI)) 1097 return false; 1098 1099 if (DstAlignCanChange) { 1100 // Get an estimate of the type from the LLT. 1101 Type *IRTy = getTypeForLLT(MemOps[0], C); 1102 Align NewAlign = DL.getABITypeAlign(IRTy); 1103 if (NewAlign > Alignment) { 1104 Alignment = NewAlign; 1105 unsigned FI = FIDef->getOperand(1).getIndex(); 1106 // Give the stack frame object a larger alignment if needed. 1107 if (MFI.getObjectAlign(FI) < Alignment) 1108 MFI.setObjectAlignment(FI, Alignment); 1109 } 1110 } 1111 1112 MachineIRBuilder MIB(MI); 1113 // Find the largest store and generate the bit pattern for it. 1114 LLT LargestTy = MemOps[0]; 1115 for (unsigned i = 1; i < MemOps.size(); i++) 1116 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1117 LargestTy = MemOps[i]; 1118 1119 // The memset stored value is always defined as an s8, so in order to make it 1120 // work with larger store types we need to repeat the bit pattern across the 1121 // wider type. 1122 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1123 1124 if (!MemSetValue) 1125 return false; 1126 1127 // Generate the stores. For each store type in the list, we generate the 1128 // matching store of that type to the destination address. 1129 LLT PtrTy = MRI.getType(Dst); 1130 unsigned DstOff = 0; 1131 unsigned Size = KnownLen; 1132 for (unsigned I = 0; I < MemOps.size(); I++) { 1133 LLT Ty = MemOps[I]; 1134 unsigned TySize = Ty.getSizeInBytes(); 1135 if (TySize > Size) { 1136 // Issuing an unaligned load / store pair that overlaps with the previous 1137 // pair. Adjust the offset accordingly. 1138 assert(I == MemOps.size() - 1 && I != 0); 1139 DstOff -= TySize - Size; 1140 } 1141 1142 // If this store is smaller than the largest store see whether we can get 1143 // the smaller value for free with a truncate. 1144 Register Value = MemSetValue; 1145 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1146 MVT VT = getMVTForLLT(Ty); 1147 MVT LargestVT = getMVTForLLT(LargestTy); 1148 if (!LargestTy.isVector() && !Ty.isVector() && 1149 TLI.isTruncateFree(LargestVT, VT)) 1150 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1151 else 1152 Value = getMemsetValue(Val, Ty, MIB); 1153 if (!Value) 1154 return false; 1155 } 1156 1157 auto *StoreMMO = 1158 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1159 1160 Register Ptr = Dst; 1161 if (DstOff != 0) { 1162 auto Offset = 1163 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1164 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1165 } 1166 1167 MIB.buildStore(Value, Ptr, *StoreMMO); 1168 DstOff += Ty.getSizeInBytes(); 1169 Size -= TySize; 1170 } 1171 1172 MI.eraseFromParent(); 1173 return true; 1174 } 1175 1176 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1177 Register Src, unsigned KnownLen, 1178 Align DstAlign, Align SrcAlign, 1179 bool IsVolatile) { 1180 auto &MF = *MI.getParent()->getParent(); 1181 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1182 auto &DL = MF.getDataLayout(); 1183 LLVMContext &C = MF.getFunction().getContext(); 1184 1185 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1186 1187 bool DstAlignCanChange = false; 1188 MachineFrameInfo &MFI = MF.getFrameInfo(); 1189 bool OptSize = shouldLowerMemFuncForSize(MF); 1190 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1191 1192 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1193 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1194 DstAlignCanChange = true; 1195 1196 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1197 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1198 // if the memcpy is in a tail call position. 1199 1200 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1201 std::vector<LLT> MemOps; 1202 1203 const auto &DstMMO = **MI.memoperands_begin(); 1204 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1205 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1206 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1207 1208 if (!findGISelOptimalMemOpLowering( 1209 MemOps, Limit, 1210 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1211 IsVolatile), 1212 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1213 MF.getFunction().getAttributes(), TLI)) 1214 return false; 1215 1216 if (DstAlignCanChange) { 1217 // Get an estimate of the type from the LLT. 1218 Type *IRTy = getTypeForLLT(MemOps[0], C); 1219 Align NewAlign = DL.getABITypeAlign(IRTy); 1220 1221 // Don't promote to an alignment that would require dynamic stack 1222 // realignment. 1223 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1224 if (!TRI->needsStackRealignment(MF)) 1225 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1226 NewAlign = NewAlign / 2; 1227 1228 if (NewAlign > Alignment) { 1229 Alignment = NewAlign; 1230 unsigned FI = FIDef->getOperand(1).getIndex(); 1231 // Give the stack frame object a larger alignment if needed. 1232 if (MFI.getObjectAlign(FI) < Alignment) 1233 MFI.setObjectAlignment(FI, Alignment); 1234 } 1235 } 1236 1237 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1238 1239 MachineIRBuilder MIB(MI); 1240 // Now we need to emit a pair of load and stores for each of the types we've 1241 // collected. I.e. for each type, generate a load from the source pointer of 1242 // that type width, and then generate a corresponding store to the dest buffer 1243 // of that value loaded. This can result in a sequence of loads and stores 1244 // mixed types, depending on what the target specifies as good types to use. 1245 unsigned CurrOffset = 0; 1246 LLT PtrTy = MRI.getType(Src); 1247 unsigned Size = KnownLen; 1248 for (auto CopyTy : MemOps) { 1249 // Issuing an unaligned load / store pair that overlaps with the previous 1250 // pair. Adjust the offset accordingly. 1251 if (CopyTy.getSizeInBytes() > Size) 1252 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1253 1254 // Construct MMOs for the accesses. 1255 auto *LoadMMO = 1256 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1257 auto *StoreMMO = 1258 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1259 1260 // Create the load. 1261 Register LoadPtr = Src; 1262 Register Offset; 1263 if (CurrOffset != 0) { 1264 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1265 .getReg(0); 1266 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1267 } 1268 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1269 1270 // Create the store. 1271 Register StorePtr = 1272 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1273 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1274 CurrOffset += CopyTy.getSizeInBytes(); 1275 Size -= CopyTy.getSizeInBytes(); 1276 } 1277 1278 MI.eraseFromParent(); 1279 return true; 1280 } 1281 1282 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1283 Register Src, unsigned KnownLen, 1284 Align DstAlign, Align SrcAlign, 1285 bool IsVolatile) { 1286 auto &MF = *MI.getParent()->getParent(); 1287 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1288 auto &DL = MF.getDataLayout(); 1289 LLVMContext &C = MF.getFunction().getContext(); 1290 1291 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1292 1293 bool DstAlignCanChange = false; 1294 MachineFrameInfo &MFI = MF.getFrameInfo(); 1295 bool OptSize = shouldLowerMemFuncForSize(MF); 1296 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1297 1298 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1299 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1300 DstAlignCanChange = true; 1301 1302 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1303 std::vector<LLT> MemOps; 1304 1305 const auto &DstMMO = **MI.memoperands_begin(); 1306 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1307 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1308 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1309 1310 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1311 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1312 // same thing here. 1313 if (!findGISelOptimalMemOpLowering( 1314 MemOps, Limit, 1315 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1316 /*IsVolatile*/ true), 1317 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1318 MF.getFunction().getAttributes(), TLI)) 1319 return false; 1320 1321 if (DstAlignCanChange) { 1322 // Get an estimate of the type from the LLT. 1323 Type *IRTy = getTypeForLLT(MemOps[0], C); 1324 Align NewAlign = DL.getABITypeAlign(IRTy); 1325 1326 // Don't promote to an alignment that would require dynamic stack 1327 // realignment. 1328 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1329 if (!TRI->needsStackRealignment(MF)) 1330 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1331 NewAlign = NewAlign / 2; 1332 1333 if (NewAlign > Alignment) { 1334 Alignment = NewAlign; 1335 unsigned FI = FIDef->getOperand(1).getIndex(); 1336 // Give the stack frame object a larger alignment if needed. 1337 if (MFI.getObjectAlign(FI) < Alignment) 1338 MFI.setObjectAlignment(FI, Alignment); 1339 } 1340 } 1341 1342 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1343 1344 MachineIRBuilder MIB(MI); 1345 // Memmove requires that we perform the loads first before issuing the stores. 1346 // Apart from that, this loop is pretty much doing the same thing as the 1347 // memcpy codegen function. 1348 unsigned CurrOffset = 0; 1349 LLT PtrTy = MRI.getType(Src); 1350 SmallVector<Register, 16> LoadVals; 1351 for (auto CopyTy : MemOps) { 1352 // Construct MMO for the load. 1353 auto *LoadMMO = 1354 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1355 1356 // Create the load. 1357 Register LoadPtr = Src; 1358 if (CurrOffset != 0) { 1359 auto Offset = 1360 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1361 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1362 } 1363 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1364 CurrOffset += CopyTy.getSizeInBytes(); 1365 } 1366 1367 CurrOffset = 0; 1368 for (unsigned I = 0; I < MemOps.size(); ++I) { 1369 LLT CopyTy = MemOps[I]; 1370 // Now store the values loaded. 1371 auto *StoreMMO = 1372 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1373 1374 Register StorePtr = Dst; 1375 if (CurrOffset != 0) { 1376 auto Offset = 1377 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1378 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1379 } 1380 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1381 CurrOffset += CopyTy.getSizeInBytes(); 1382 } 1383 MI.eraseFromParent(); 1384 return true; 1385 } 1386 1387 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1388 const unsigned Opc = MI.getOpcode(); 1389 // This combine is fairly complex so it's not written with a separate 1390 // matcher function. 1391 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 1392 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); 1393 1394 auto MMOIt = MI.memoperands_begin(); 1395 const MachineMemOperand *MemOp = *MMOIt; 1396 bool IsVolatile = MemOp->isVolatile(); 1397 // Don't try to optimize volatile. 1398 if (IsVolatile) 1399 return false; 1400 1401 Align DstAlign = MemOp->getBaseAlign(); 1402 Align SrcAlign; 1403 Register Dst = MI.getOperand(0).getReg(); 1404 Register Src = MI.getOperand(1).getReg(); 1405 Register Len = MI.getOperand(2).getReg(); 1406 1407 if (Opc != TargetOpcode::G_MEMSET) { 1408 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1409 MemOp = *(++MMOIt); 1410 SrcAlign = MemOp->getBaseAlign(); 1411 } 1412 1413 // See if this is a constant length copy 1414 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1415 if (!LenVRegAndVal) 1416 return false; // Leave it to the legalizer to lower it to a libcall. 1417 unsigned KnownLen = LenVRegAndVal->Value; 1418 1419 if (KnownLen == 0) { 1420 MI.eraseFromParent(); 1421 return true; 1422 } 1423 1424 if (MaxLen && KnownLen > MaxLen) 1425 return false; 1426 1427 if (Opc == TargetOpcode::G_MEMCPY) 1428 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1429 if (Opc == TargetOpcode::G_MEMMOVE) 1430 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1431 if (Opc == TargetOpcode::G_MEMSET) 1432 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1433 return false; 1434 } 1435 1436 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1437 PtrAddChain &MatchInfo) { 1438 // We're trying to match the following pattern: 1439 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1440 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1441 // --> 1442 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1443 1444 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1445 return false; 1446 1447 Register Add2 = MI.getOperand(1).getReg(); 1448 Register Imm1 = MI.getOperand(2).getReg(); 1449 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1450 if (!MaybeImmVal) 1451 return false; 1452 1453 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1454 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1455 return false; 1456 1457 Register Base = Add2Def->getOperand(1).getReg(); 1458 Register Imm2 = Add2Def->getOperand(2).getReg(); 1459 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1460 if (!MaybeImm2Val) 1461 return false; 1462 1463 // Pass the combined immediate to the apply function. 1464 MatchInfo.Imm = MaybeImmVal->Value + MaybeImm2Val->Value; 1465 MatchInfo.Base = Base; 1466 return true; 1467 } 1468 1469 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1470 PtrAddChain &MatchInfo) { 1471 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1472 MachineIRBuilder MIB(MI); 1473 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1474 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1475 Observer.changingInstr(MI); 1476 MI.getOperand(1).setReg(MatchInfo.Base); 1477 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1478 Observer.changedInstr(MI); 1479 return true; 1480 } 1481 1482 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1483 unsigned &ShiftVal) { 1484 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1485 auto MaybeImmVal = 1486 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1487 if (!MaybeImmVal || !isPowerOf2_64(MaybeImmVal->Value)) 1488 return false; 1489 ShiftVal = Log2_64(MaybeImmVal->Value); 1490 return true; 1491 } 1492 1493 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1494 unsigned &ShiftVal) { 1495 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1496 MachineIRBuilder MIB(MI); 1497 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1498 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1499 Observer.changingInstr(MI); 1500 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1501 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1502 Observer.changedInstr(MI); 1503 return true; 1504 } 1505 1506 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1507 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1508 RegisterImmPair &MatchData) { 1509 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1510 1511 Register LHS = MI.getOperand(1).getReg(); 1512 1513 Register ExtSrc; 1514 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1515 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1516 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1517 return false; 1518 1519 // TODO: Should handle vector splat. 1520 Register RHS = MI.getOperand(2).getReg(); 1521 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 1522 if (!MaybeShiftAmtVal) 1523 return false; 1524 1525 if (LI) { 1526 LLT SrcTy = MRI.getType(ExtSrc); 1527 1528 // We only really care about the legality with the shifted value. We can 1529 // pick any type the constant shift amount, so ask the target what to 1530 // use. Otherwise we would have to guess and hope it is reported as legal. 1531 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1532 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1533 return false; 1534 } 1535 1536 int64_t ShiftAmt = MaybeShiftAmtVal->Value; 1537 MatchData.Reg = ExtSrc; 1538 MatchData.Imm = ShiftAmt; 1539 1540 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1541 return MinLeadingZeros >= ShiftAmt; 1542 } 1543 1544 bool CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1545 const RegisterImmPair &MatchData) { 1546 Register ExtSrcReg = MatchData.Reg; 1547 int64_t ShiftAmtVal = MatchData.Imm; 1548 1549 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1550 Builder.setInstrAndDebugLoc(MI); 1551 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1552 auto NarrowShift = 1553 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1554 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1555 MI.eraseFromParent(); 1556 return true; 1557 } 1558 1559 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1560 unsigned TargetShiftSize, 1561 unsigned &ShiftVal) { 1562 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1563 MI.getOpcode() == TargetOpcode::G_LSHR || 1564 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1565 1566 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1567 if (Ty.isVector()) // TODO: 1568 return false; 1569 1570 // Don't narrow further than the requested size. 1571 unsigned Size = Ty.getSizeInBits(); 1572 if (Size <= TargetShiftSize) 1573 return false; 1574 1575 auto MaybeImmVal = 1576 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1577 if (!MaybeImmVal) 1578 return false; 1579 1580 ShiftVal = MaybeImmVal->Value; 1581 return ShiftVal >= Size / 2 && ShiftVal < Size; 1582 } 1583 1584 bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1585 const unsigned &ShiftVal) { 1586 Register DstReg = MI.getOperand(0).getReg(); 1587 Register SrcReg = MI.getOperand(1).getReg(); 1588 LLT Ty = MRI.getType(SrcReg); 1589 unsigned Size = Ty.getSizeInBits(); 1590 unsigned HalfSize = Size / 2; 1591 assert(ShiftVal >= HalfSize); 1592 1593 LLT HalfTy = LLT::scalar(HalfSize); 1594 1595 Builder.setInstr(MI); 1596 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1597 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1598 1599 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1600 Register Narrowed = Unmerge.getReg(1); 1601 1602 // dst = G_LSHR s64:x, C for C >= 32 1603 // => 1604 // lo, hi = G_UNMERGE_VALUES x 1605 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1606 1607 if (NarrowShiftAmt != 0) { 1608 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1609 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1610 } 1611 1612 auto Zero = Builder.buildConstant(HalfTy, 0); 1613 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1614 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1615 Register Narrowed = Unmerge.getReg(0); 1616 // dst = G_SHL s64:x, C for C >= 32 1617 // => 1618 // lo, hi = G_UNMERGE_VALUES x 1619 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1620 if (NarrowShiftAmt != 0) { 1621 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1622 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1623 } 1624 1625 auto Zero = Builder.buildConstant(HalfTy, 0); 1626 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1627 } else { 1628 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1629 auto Hi = Builder.buildAShr( 1630 HalfTy, Unmerge.getReg(1), 1631 Builder.buildConstant(HalfTy, HalfSize - 1)); 1632 1633 if (ShiftVal == HalfSize) { 1634 // (G_ASHR i64:x, 32) -> 1635 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1636 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1637 } else if (ShiftVal == Size - 1) { 1638 // Don't need a second shift. 1639 // (G_ASHR i64:x, 63) -> 1640 // %narrowed = (G_ASHR hi_32(x), 31) 1641 // G_MERGE_VALUES %narrowed, %narrowed 1642 Builder.buildMerge(DstReg, { Hi, Hi }); 1643 } else { 1644 auto Lo = Builder.buildAShr( 1645 HalfTy, Unmerge.getReg(1), 1646 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1647 1648 // (G_ASHR i64:x, C) ->, for C >= 32 1649 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1650 Builder.buildMerge(DstReg, { Lo, Hi }); 1651 } 1652 } 1653 1654 MI.eraseFromParent(); 1655 return true; 1656 } 1657 1658 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1659 unsigned TargetShiftAmount) { 1660 unsigned ShiftAmt; 1661 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1662 applyCombineShiftToUnmerge(MI, ShiftAmt); 1663 return true; 1664 } 1665 1666 return false; 1667 } 1668 1669 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1670 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1671 Register DstReg = MI.getOperand(0).getReg(); 1672 LLT DstTy = MRI.getType(DstReg); 1673 Register SrcReg = MI.getOperand(1).getReg(); 1674 return mi_match(SrcReg, MRI, 1675 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 1676 } 1677 1678 bool CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1679 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1680 Register DstReg = MI.getOperand(0).getReg(); 1681 Builder.setInstr(MI); 1682 Builder.buildCopy(DstReg, Reg); 1683 MI.eraseFromParent(); 1684 return true; 1685 } 1686 1687 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1688 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1689 Register SrcReg = MI.getOperand(1).getReg(); 1690 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 1691 } 1692 1693 bool CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1694 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1695 Register DstReg = MI.getOperand(0).getReg(); 1696 Builder.setInstr(MI); 1697 Builder.buildZExtOrTrunc(DstReg, Reg); 1698 MI.eraseFromParent(); 1699 return true; 1700 } 1701 1702 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 1703 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1704 assert(MI.getOpcode() == TargetOpcode::G_ADD); 1705 Register LHS = MI.getOperand(1).getReg(); 1706 Register RHS = MI.getOperand(2).getReg(); 1707 LLT IntTy = MRI.getType(LHS); 1708 1709 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 1710 // instruction. 1711 PtrReg.second = false; 1712 for (Register SrcReg : {LHS, RHS}) { 1713 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 1714 // Don't handle cases where the integer is implicitly converted to the 1715 // pointer width. 1716 LLT PtrTy = MRI.getType(PtrReg.first); 1717 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 1718 return true; 1719 } 1720 1721 PtrReg.second = true; 1722 } 1723 1724 return false; 1725 } 1726 1727 bool CombinerHelper::applyCombineAddP2IToPtrAdd( 1728 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1729 Register Dst = MI.getOperand(0).getReg(); 1730 Register LHS = MI.getOperand(1).getReg(); 1731 Register RHS = MI.getOperand(2).getReg(); 1732 1733 const bool DoCommute = PtrReg.second; 1734 if (DoCommute) 1735 std::swap(LHS, RHS); 1736 LHS = PtrReg.first; 1737 1738 LLT PtrTy = MRI.getType(LHS); 1739 1740 Builder.setInstrAndDebugLoc(MI); 1741 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 1742 Builder.buildPtrToInt(Dst, PtrAdd); 1743 MI.eraseFromParent(); 1744 return true; 1745 } 1746 1747 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 1748 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 1749 return MO.isReg() && 1750 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 1751 }); 1752 } 1753 1754 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 1755 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 1756 return !MO.isReg() || 1757 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 1758 }); 1759 } 1760 1761 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 1762 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 1763 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 1764 return all_of(Mask, [](int Elt) { return Elt < 0; }); 1765 } 1766 1767 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 1768 assert(MI.getOpcode() == TargetOpcode::G_STORE); 1769 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 1770 MRI); 1771 } 1772 1773 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 1774 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 1775 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 1776 MRI); 1777 } 1778 1779 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 1780 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 1781 if (auto MaybeCstCmp = 1782 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 1783 OpIdx = MaybeCstCmp->Value ? 2 : 3; 1784 return true; 1785 } 1786 return false; 1787 } 1788 1789 bool CombinerHelper::eraseInst(MachineInstr &MI) { 1790 MI.eraseFromParent(); 1791 return true; 1792 } 1793 1794 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 1795 const MachineOperand &MOP2) { 1796 if (!MOP1.isReg() || !MOP2.isReg()) 1797 return false; 1798 MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); 1799 if (!I1) 1800 return false; 1801 MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); 1802 if (!I2) 1803 return false; 1804 1805 // Handle a case like this: 1806 // 1807 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 1808 // 1809 // Even though %0 and %1 are produced by the same instruction they are not 1810 // the same values. 1811 if (I1 == I2) 1812 return MOP1.getReg() == MOP2.getReg(); 1813 1814 // If we have an instruction which loads or stores, we can't guarantee that 1815 // it is identical. 1816 // 1817 // For example, we may have 1818 // 1819 // %x1 = G_LOAD %addr (load N from @somewhere) 1820 // ... 1821 // call @foo 1822 // ... 1823 // %x2 = G_LOAD %addr (load N from @somewhere) 1824 // ... 1825 // %or = G_OR %x1, %x2 1826 // 1827 // It's possible that @foo will modify whatever lives at the address we're 1828 // loading from. To be safe, let's just assume that all loads and stores 1829 // are different (unless we have something which is guaranteed to not 1830 // change.) 1831 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 1832 return false; 1833 1834 // Check for physical registers on the instructions first to avoid cases 1835 // like this: 1836 // 1837 // %a = COPY $physreg 1838 // ... 1839 // SOMETHING implicit-def $physreg 1840 // ... 1841 // %b = COPY $physreg 1842 // 1843 // These copies are not equivalent. 1844 if (any_of(I1->uses(), [](const MachineOperand &MO) { 1845 return MO.isReg() && MO.getReg().isPhysical(); 1846 })) { 1847 // Check if we have a case like this: 1848 // 1849 // %a = COPY $physreg 1850 // %b = COPY %a 1851 // 1852 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 1853 // From that, we know that they must have the same value, since they must 1854 // have come from the same COPY. 1855 return I1->isIdenticalTo(*I2); 1856 } 1857 1858 // We don't have any physical registers, so we don't necessarily need the 1859 // same vreg defs. 1860 // 1861 // On the off-chance that there's some target instruction feeding into the 1862 // instruction, let's use produceSameValue instead of isIdenticalTo. 1863 return Builder.getTII().produceSameValue(*I1, *I2, &MRI); 1864 } 1865 1866 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 1867 if (!MOP.isReg()) 1868 return false; 1869 // MIPatternMatch doesn't let us look through G_ZEXT etc. 1870 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 1871 return ValAndVReg && ValAndVReg->Value == C; 1872 } 1873 1874 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 1875 unsigned OpIdx) { 1876 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 1877 Register OldReg = MI.getOperand(0).getReg(); 1878 Register Replacement = MI.getOperand(OpIdx).getReg(); 1879 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 1880 MI.eraseFromParent(); 1881 replaceRegWith(MRI, OldReg, Replacement); 1882 return true; 1883 } 1884 1885 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 1886 Register Replacement) { 1887 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 1888 Register OldReg = MI.getOperand(0).getReg(); 1889 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 1890 MI.eraseFromParent(); 1891 replaceRegWith(MRI, OldReg, Replacement); 1892 return true; 1893 } 1894 1895 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 1896 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 1897 // Match (cond ? x : x) 1898 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 1899 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 1900 MRI); 1901 } 1902 1903 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 1904 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 1905 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1906 MRI); 1907 } 1908 1909 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 1910 return matchConstantOp(MI.getOperand(OpIdx), 0) && 1911 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 1912 MRI); 1913 } 1914 1915 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 1916 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 1917 Builder.setInstr(MI); 1918 Builder.buildFConstant(MI.getOperand(0), C); 1919 MI.eraseFromParent(); 1920 return true; 1921 } 1922 1923 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 1924 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 1925 Builder.setInstr(MI); 1926 Builder.buildConstant(MI.getOperand(0), C); 1927 MI.eraseFromParent(); 1928 return true; 1929 } 1930 1931 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 1932 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 1933 Builder.setInstr(MI); 1934 Builder.buildUndef(MI.getOperand(0)); 1935 MI.eraseFromParent(); 1936 return true; 1937 } 1938 1939 bool CombinerHelper::matchSimplifyAddToSub( 1940 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 1941 Register LHS = MI.getOperand(1).getReg(); 1942 Register RHS = MI.getOperand(2).getReg(); 1943 Register &NewLHS = std::get<0>(MatchInfo); 1944 Register &NewRHS = std::get<1>(MatchInfo); 1945 1946 // Helper lambda to check for opportunities for 1947 // ((0-A) + B) -> B - A 1948 // (A + (0-B)) -> A - B 1949 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 1950 int64_t Cst; 1951 if (!mi_match(MaybeSub, MRI, m_GSub(m_ICst(Cst), m_Reg(NewRHS))) || 1952 Cst != 0) 1953 return false; 1954 NewLHS = MaybeNewLHS; 1955 return true; 1956 }; 1957 1958 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 1959 } 1960 1961 bool CombinerHelper::applySimplifyAddToSub( 1962 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 1963 Builder.setInstr(MI); 1964 Register SubLHS, SubRHS; 1965 std::tie(SubLHS, SubRHS) = MatchInfo; 1966 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 1967 MI.eraseFromParent(); 1968 return true; 1969 } 1970 1971 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 1972 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 1973 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 1974 // 1975 // Creates the new hand + logic instruction (but does not insert them.) 1976 // 1977 // On success, MatchInfo is populated with the new instructions. These are 1978 // inserted in applyHoistLogicOpWithSameOpcodeHands. 1979 unsigned LogicOpcode = MI.getOpcode(); 1980 assert(LogicOpcode == TargetOpcode::G_AND || 1981 LogicOpcode == TargetOpcode::G_OR || 1982 LogicOpcode == TargetOpcode::G_XOR); 1983 MachineIRBuilder MIB(MI); 1984 Register Dst = MI.getOperand(0).getReg(); 1985 Register LHSReg = MI.getOperand(1).getReg(); 1986 Register RHSReg = MI.getOperand(2).getReg(); 1987 1988 // Don't recompute anything. 1989 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 1990 return false; 1991 1992 // Make sure we have (hand x, ...), (hand y, ...) 1993 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 1994 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 1995 if (!LeftHandInst || !RightHandInst) 1996 return false; 1997 unsigned HandOpcode = LeftHandInst->getOpcode(); 1998 if (HandOpcode != RightHandInst->getOpcode()) 1999 return false; 2000 if (!LeftHandInst->getOperand(1).isReg() || 2001 !RightHandInst->getOperand(1).isReg()) 2002 return false; 2003 2004 // Make sure the types match up, and if we're doing this post-legalization, 2005 // we end up with legal types. 2006 Register X = LeftHandInst->getOperand(1).getReg(); 2007 Register Y = RightHandInst->getOperand(1).getReg(); 2008 LLT XTy = MRI.getType(X); 2009 LLT YTy = MRI.getType(Y); 2010 if (XTy != YTy) 2011 return false; 2012 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2013 return false; 2014 2015 // Optional extra source register. 2016 Register ExtraHandOpSrcReg; 2017 switch (HandOpcode) { 2018 default: 2019 return false; 2020 case TargetOpcode::G_ANYEXT: 2021 case TargetOpcode::G_SEXT: 2022 case TargetOpcode::G_ZEXT: { 2023 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2024 break; 2025 } 2026 case TargetOpcode::G_AND: 2027 case TargetOpcode::G_ASHR: 2028 case TargetOpcode::G_LSHR: 2029 case TargetOpcode::G_SHL: { 2030 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2031 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2032 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2033 return false; 2034 ExtraHandOpSrcReg = ZOp.getReg(); 2035 break; 2036 } 2037 } 2038 2039 // Record the steps to build the new instructions. 2040 // 2041 // Steps to build (logic x, y) 2042 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2043 OperandBuildSteps LogicBuildSteps = { 2044 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2045 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2046 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2047 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2048 2049 // Steps to build hand (logic x, y), ...z 2050 OperandBuildSteps HandBuildSteps = { 2051 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2052 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2053 if (ExtraHandOpSrcReg.isValid()) 2054 HandBuildSteps.push_back( 2055 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2056 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2057 2058 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2059 return true; 2060 } 2061 2062 bool CombinerHelper::applyBuildInstructionSteps( 2063 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2064 assert(MatchInfo.InstrsToBuild.size() && 2065 "Expected at least one instr to build?"); 2066 Builder.setInstr(MI); 2067 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2068 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2069 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2070 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2071 for (auto &OperandFn : InstrToBuild.OperandFns) 2072 OperandFn(Instr); 2073 } 2074 MI.eraseFromParent(); 2075 return true; 2076 } 2077 2078 bool CombinerHelper::matchAshrShlToSextInreg( 2079 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2080 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2081 int64_t ShlCst, AshrCst; 2082 Register Src; 2083 // FIXME: detect splat constant vectors. 2084 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2085 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2086 return false; 2087 if (ShlCst != AshrCst) 2088 return false; 2089 if (!isLegalOrBeforeLegalizer( 2090 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2091 return false; 2092 MatchInfo = std::make_tuple(Src, ShlCst); 2093 return true; 2094 } 2095 bool CombinerHelper::applyAshShlToSextInreg( 2096 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2097 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2098 Register Src; 2099 int64_t ShiftAmt; 2100 std::tie(Src, ShiftAmt) = MatchInfo; 2101 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2102 Builder.setInstrAndDebugLoc(MI); 2103 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2104 MI.eraseFromParent(); 2105 return true; 2106 } 2107 2108 bool CombinerHelper::matchAndWithTrivialMask(MachineInstr &MI, 2109 Register &Replacement) { 2110 // Given 2111 // 2112 // %mask:_(sN) = G_CONSTANT iN 000...0111...1 2113 // %x:_(sN) = G_SOMETHING 2114 // %y:_(sN) = G_AND %x, %mask 2115 // 2116 // Eliminate the G_AND when it is known that x & mask == x. 2117 // 2118 // Patterns like this can appear as a result of legalization. E.g. 2119 // 2120 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2121 // %one:_(s32) = G_CONSTANT i32 1 2122 // %and:_(s32) = G_AND %cmp, %one 2123 // 2124 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2125 assert(MI.getOpcode() == TargetOpcode::G_AND); 2126 if (!KB) 2127 return false; 2128 2129 // Replacement = %x, AndDst = %y. Check that we can replace AndDst with the 2130 // LHS of the G_AND. 2131 Replacement = MI.getOperand(1).getReg(); 2132 Register AndDst = MI.getOperand(0).getReg(); 2133 LLT DstTy = MRI.getType(AndDst); 2134 2135 // FIXME: This should be removed once GISelKnownBits supports vectors. 2136 if (DstTy.isVector()) 2137 return false; 2138 if (!canReplaceReg(AndDst, Replacement, MRI)) 2139 return false; 2140 2141 // Check that we have a constant on the RHS of the G_AND, which is of the form 2142 // 000...0111...1. 2143 int64_t Cst; 2144 if (!mi_match(MI.getOperand(2).getReg(), MRI, m_ICst(Cst))) 2145 return false; 2146 APInt Mask(DstTy.getSizeInBits(), Cst); 2147 if (!Mask.isMask()) 2148 return false; 2149 2150 // Now, let's check that x & Mask == x. If this is true, then x & ~Mask == 0. 2151 return KB->maskedValueIsZero(Replacement, ~Mask); 2152 } 2153 2154 bool CombinerHelper::tryCombine(MachineInstr &MI) { 2155 if (tryCombineCopy(MI)) 2156 return true; 2157 if (tryCombineExtendingLoads(MI)) 2158 return true; 2159 if (tryCombineIndexedLoadStore(MI)) 2160 return true; 2161 return false; 2162 } 2163