1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/CodeGen/GlobalISel/Combiner.h" 11 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 12 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 13 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 14 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 15 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 16 #include "llvm/CodeGen/GlobalISel/Utils.h" 17 #include "llvm/CodeGen/MachineBasicBlock.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineInstr.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 #define DEBUG_TYPE "gi-combiner" 29 30 using namespace llvm; 31 using namespace MIPatternMatch; 32 33 // Option to allow testing of the combiner while no targets know about indexed 34 // addressing. 35 static cl::opt<bool> 36 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 37 cl::desc("Force all indexed operations to be " 38 "legal for the GlobalISel combiner")); 39 40 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 41 MachineIRBuilder &B, GISelKnownBits *KB, 42 MachineDominatorTree *MDT, 43 const LegalizerInfo *LI) 44 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 45 KB(KB), MDT(MDT), LI(LI) { 46 (void)this->KB; 47 } 48 49 const TargetLowering &CombinerHelper::getTargetLowering() const { 50 return *Builder.getMF().getSubtarget().getTargetLowering(); 51 } 52 53 /// \returns The little endian in-memory byte position of byte \p I in a 54 /// \p ByteWidth bytes wide type. 55 /// 56 /// E.g. Given a 4-byte type x, x[0] -> byte 0 57 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 58 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 59 return I; 60 } 61 62 /// \returns The big endian in-memory byte position of byte \p I in a 63 /// \p ByteWidth bytes wide type. 64 /// 65 /// E.g. Given a 4-byte type x, x[0] -> byte 3 66 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 67 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 68 return ByteWidth - I - 1; 69 } 70 71 /// Given a map from byte offsets in memory to indices in a load/store, 72 /// determine if that map corresponds to a little or big endian byte pattern. 73 /// 74 /// \param MemOffset2Idx maps memory offsets to address offsets. 75 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 76 /// 77 /// \returns true if the map corresponds to a big endian byte pattern, false 78 /// if it corresponds to a little endian byte pattern, and None otherwise. 79 /// 80 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 81 /// are as follows: 82 /// 83 /// AddrOffset Little endian Big endian 84 /// 0 0 3 85 /// 1 1 2 86 /// 2 2 1 87 /// 3 3 0 88 static Optional<bool> 89 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 90 int64_t LowestIdx) { 91 // Need at least two byte positions to decide on endianness. 92 unsigned Width = MemOffset2Idx.size(); 93 if (Width < 2) 94 return None; 95 bool BigEndian = true, LittleEndian = true; 96 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 97 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 98 if (MemOffsetAndIdx == MemOffset2Idx.end()) 99 return None; 100 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 101 assert(Idx >= 0 && "Expected non-negative byte offset?"); 102 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 103 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 104 if (!BigEndian && !LittleEndian) 105 return None; 106 } 107 108 assert((BigEndian != LittleEndian) && 109 "Pattern cannot be both big and little endian!"); 110 return BigEndian; 111 } 112 113 bool CombinerHelper::isLegalOrBeforeLegalizer( 114 const LegalityQuery &Query) const { 115 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 116 } 117 118 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 119 Register ToReg) const { 120 Observer.changingAllUsesOfReg(MRI, FromReg); 121 122 if (MRI.constrainRegAttrs(ToReg, FromReg)) 123 MRI.replaceRegWith(FromReg, ToReg); 124 else 125 Builder.buildCopy(ToReg, FromReg); 126 127 Observer.finishedChangingAllUsesOfReg(); 128 } 129 130 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 131 MachineOperand &FromRegOp, 132 Register ToReg) const { 133 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 134 Observer.changingInstr(*FromRegOp.getParent()); 135 136 FromRegOp.setReg(ToReg); 137 138 Observer.changedInstr(*FromRegOp.getParent()); 139 } 140 141 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 142 if (matchCombineCopy(MI)) { 143 applyCombineCopy(MI); 144 return true; 145 } 146 return false; 147 } 148 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 149 if (MI.getOpcode() != TargetOpcode::COPY) 150 return false; 151 Register DstReg = MI.getOperand(0).getReg(); 152 Register SrcReg = MI.getOperand(1).getReg(); 153 return canReplaceReg(DstReg, SrcReg, MRI); 154 } 155 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 156 Register DstReg = MI.getOperand(0).getReg(); 157 Register SrcReg = MI.getOperand(1).getReg(); 158 MI.eraseFromParent(); 159 replaceRegWith(MRI, DstReg, SrcReg); 160 } 161 162 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 163 bool IsUndef = false; 164 SmallVector<Register, 4> Ops; 165 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 166 applyCombineConcatVectors(MI, IsUndef, Ops); 167 return true; 168 } 169 return false; 170 } 171 172 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 173 SmallVectorImpl<Register> &Ops) { 174 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 175 "Invalid instruction"); 176 IsUndef = true; 177 MachineInstr *Undef = nullptr; 178 179 // Walk over all the operands of concat vectors and check if they are 180 // build_vector themselves or undef. 181 // Then collect their operands in Ops. 182 for (const MachineOperand &MO : MI.uses()) { 183 Register Reg = MO.getReg(); 184 MachineInstr *Def = MRI.getVRegDef(Reg); 185 assert(Def && "Operand not defined"); 186 switch (Def->getOpcode()) { 187 case TargetOpcode::G_BUILD_VECTOR: 188 IsUndef = false; 189 // Remember the operands of the build_vector to fold 190 // them into the yet-to-build flattened concat vectors. 191 for (const MachineOperand &BuildVecMO : Def->uses()) 192 Ops.push_back(BuildVecMO.getReg()); 193 break; 194 case TargetOpcode::G_IMPLICIT_DEF: { 195 LLT OpType = MRI.getType(Reg); 196 // Keep one undef value for all the undef operands. 197 if (!Undef) { 198 Builder.setInsertPt(*MI.getParent(), MI); 199 Undef = Builder.buildUndef(OpType.getScalarType()); 200 } 201 assert(MRI.getType(Undef->getOperand(0).getReg()) == 202 OpType.getScalarType() && 203 "All undefs should have the same type"); 204 // Break the undef vector in as many scalar elements as needed 205 // for the flattening. 206 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 207 EltIdx != EltEnd; ++EltIdx) 208 Ops.push_back(Undef->getOperand(0).getReg()); 209 break; 210 } 211 default: 212 return false; 213 } 214 } 215 return true; 216 } 217 void CombinerHelper::applyCombineConcatVectors( 218 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 219 // We determined that the concat_vectors can be flatten. 220 // Generate the flattened build_vector. 221 Register DstReg = MI.getOperand(0).getReg(); 222 Builder.setInsertPt(*MI.getParent(), MI); 223 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 224 225 // Note: IsUndef is sort of redundant. We could have determine it by 226 // checking that at all Ops are undef. Alternatively, we could have 227 // generate a build_vector of undefs and rely on another combine to 228 // clean that up. For now, given we already gather this information 229 // in tryCombineConcatVectors, just save compile time and issue the 230 // right thing. 231 if (IsUndef) 232 Builder.buildUndef(NewDstReg); 233 else 234 Builder.buildBuildVector(NewDstReg, Ops); 235 MI.eraseFromParent(); 236 replaceRegWith(MRI, DstReg, NewDstReg); 237 } 238 239 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 240 SmallVector<Register, 4> Ops; 241 if (matchCombineShuffleVector(MI, Ops)) { 242 applyCombineShuffleVector(MI, Ops); 243 return true; 244 } 245 return false; 246 } 247 248 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 249 SmallVectorImpl<Register> &Ops) { 250 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 251 "Invalid instruction kind"); 252 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 253 Register Src1 = MI.getOperand(1).getReg(); 254 LLT SrcType = MRI.getType(Src1); 255 // As bizarre as it may look, shuffle vector can actually produce 256 // scalar! This is because at the IR level a <1 x ty> shuffle 257 // vector is perfectly valid. 258 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 259 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 260 261 // If the resulting vector is smaller than the size of the source 262 // vectors being concatenated, we won't be able to replace the 263 // shuffle vector into a concat_vectors. 264 // 265 // Note: We may still be able to produce a concat_vectors fed by 266 // extract_vector_elt and so on. It is less clear that would 267 // be better though, so don't bother for now. 268 // 269 // If the destination is a scalar, the size of the sources doesn't 270 // matter. we will lower the shuffle to a plain copy. This will 271 // work only if the source and destination have the same size. But 272 // that's covered by the next condition. 273 // 274 // TODO: If the size between the source and destination don't match 275 // we could still emit an extract vector element in that case. 276 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 277 return false; 278 279 // Check that the shuffle mask can be broken evenly between the 280 // different sources. 281 if (DstNumElts % SrcNumElts != 0) 282 return false; 283 284 // Mask length is a multiple of the source vector length. 285 // Check if the shuffle is some kind of concatenation of the input 286 // vectors. 287 unsigned NumConcat = DstNumElts / SrcNumElts; 288 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 289 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 290 for (unsigned i = 0; i != DstNumElts; ++i) { 291 int Idx = Mask[i]; 292 // Undef value. 293 if (Idx < 0) 294 continue; 295 // Ensure the indices in each SrcType sized piece are sequential and that 296 // the same source is used for the whole piece. 297 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 298 (ConcatSrcs[i / SrcNumElts] >= 0 && 299 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 300 return false; 301 // Remember which source this index came from. 302 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 303 } 304 305 // The shuffle is concatenating multiple vectors together. 306 // Collect the different operands for that. 307 Register UndefReg; 308 Register Src2 = MI.getOperand(2).getReg(); 309 for (auto Src : ConcatSrcs) { 310 if (Src < 0) { 311 if (!UndefReg) { 312 Builder.setInsertPt(*MI.getParent(), MI); 313 UndefReg = Builder.buildUndef(SrcType).getReg(0); 314 } 315 Ops.push_back(UndefReg); 316 } else if (Src == 0) 317 Ops.push_back(Src1); 318 else 319 Ops.push_back(Src2); 320 } 321 return true; 322 } 323 324 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 325 const ArrayRef<Register> Ops) { 326 Register DstReg = MI.getOperand(0).getReg(); 327 Builder.setInsertPt(*MI.getParent(), MI); 328 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 329 330 if (Ops.size() == 1) 331 Builder.buildCopy(NewDstReg, Ops[0]); 332 else 333 Builder.buildMerge(NewDstReg, Ops); 334 335 MI.eraseFromParent(); 336 replaceRegWith(MRI, DstReg, NewDstReg); 337 } 338 339 namespace { 340 341 /// Select a preference between two uses. CurrentUse is the current preference 342 /// while *ForCandidate is attributes of the candidate under consideration. 343 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 344 const LLT TyForCandidate, 345 unsigned OpcodeForCandidate, 346 MachineInstr *MIForCandidate) { 347 if (!CurrentUse.Ty.isValid()) { 348 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 349 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 350 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 351 return CurrentUse; 352 } 353 354 // We permit the extend to hoist through basic blocks but this is only 355 // sensible if the target has extending loads. If you end up lowering back 356 // into a load and extend during the legalizer then the end result is 357 // hoisting the extend up to the load. 358 359 // Prefer defined extensions to undefined extensions as these are more 360 // likely to reduce the number of instructions. 361 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 362 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 363 return CurrentUse; 364 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 365 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 366 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 367 368 // Prefer sign extensions to zero extensions as sign-extensions tend to be 369 // more expensive. 370 if (CurrentUse.Ty == TyForCandidate) { 371 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 372 OpcodeForCandidate == TargetOpcode::G_ZEXT) 373 return CurrentUse; 374 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 375 OpcodeForCandidate == TargetOpcode::G_SEXT) 376 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 377 } 378 379 // This is potentially target specific. We've chosen the largest type 380 // because G_TRUNC is usually free. One potential catch with this is that 381 // some targets have a reduced number of larger registers than smaller 382 // registers and this choice potentially increases the live-range for the 383 // larger value. 384 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 385 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 386 } 387 return CurrentUse; 388 } 389 390 /// Find a suitable place to insert some instructions and insert them. This 391 /// function accounts for special cases like inserting before a PHI node. 392 /// The current strategy for inserting before PHI's is to duplicate the 393 /// instructions for each predecessor. However, while that's ok for G_TRUNC 394 /// on most targets since it generally requires no code, other targets/cases may 395 /// want to try harder to find a dominating block. 396 static void InsertInsnsWithoutSideEffectsBeforeUse( 397 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 398 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 399 MachineOperand &UseMO)> 400 Inserter) { 401 MachineInstr &UseMI = *UseMO.getParent(); 402 403 MachineBasicBlock *InsertBB = UseMI.getParent(); 404 405 // If the use is a PHI then we want the predecessor block instead. 406 if (UseMI.isPHI()) { 407 MachineOperand *PredBB = std::next(&UseMO); 408 InsertBB = PredBB->getMBB(); 409 } 410 411 // If the block is the same block as the def then we want to insert just after 412 // the def instead of at the start of the block. 413 if (InsertBB == DefMI.getParent()) { 414 MachineBasicBlock::iterator InsertPt = &DefMI; 415 Inserter(InsertBB, std::next(InsertPt), UseMO); 416 return; 417 } 418 419 // Otherwise we want the start of the BB 420 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 421 } 422 } // end anonymous namespace 423 424 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 425 PreferredTuple Preferred; 426 if (matchCombineExtendingLoads(MI, Preferred)) { 427 applyCombineExtendingLoads(MI, Preferred); 428 return true; 429 } 430 return false; 431 } 432 433 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 434 PreferredTuple &Preferred) { 435 // We match the loads and follow the uses to the extend instead of matching 436 // the extends and following the def to the load. This is because the load 437 // must remain in the same position for correctness (unless we also add code 438 // to find a safe place to sink it) whereas the extend is freely movable. 439 // It also prevents us from duplicating the load for the volatile case or just 440 // for performance. 441 442 if (MI.getOpcode() != TargetOpcode::G_LOAD && 443 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 444 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 445 return false; 446 447 auto &LoadValue = MI.getOperand(0); 448 assert(LoadValue.isReg() && "Result wasn't a register?"); 449 450 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 451 if (!LoadValueTy.isScalar()) 452 return false; 453 454 // Most architectures are going to legalize <s8 loads into at least a 1 byte 455 // load, and the MMOs can only describe memory accesses in multiples of bytes. 456 // If we try to perform extload combining on those, we can end up with 457 // %a(s8) = extload %ptr (load 1 byte from %ptr) 458 // ... which is an illegal extload instruction. 459 if (LoadValueTy.getSizeInBits() < 8) 460 return false; 461 462 // For non power-of-2 types, they will very likely be legalized into multiple 463 // loads. Don't bother trying to match them into extending loads. 464 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 465 return false; 466 467 // Find the preferred type aside from the any-extends (unless it's the only 468 // one) and non-extending ops. We'll emit an extending load to that type and 469 // and emit a variant of (extend (trunc X)) for the others according to the 470 // relative type sizes. At the same time, pick an extend to use based on the 471 // extend involved in the chosen type. 472 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 473 ? TargetOpcode::G_ANYEXT 474 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 475 ? TargetOpcode::G_SEXT 476 : TargetOpcode::G_ZEXT; 477 Preferred = {LLT(), PreferredOpcode, nullptr}; 478 for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) { 479 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 480 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 481 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 482 // Check for legality. 483 if (LI) { 484 LegalityQuery::MemDesc MMDesc; 485 const auto &MMO = **MI.memoperands_begin(); 486 MMDesc.SizeInBits = MMO.getSizeInBits(); 487 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 488 MMDesc.Ordering = MMO.getOrdering(); 489 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 490 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 491 if (LI->getAction({MI.getOpcode(), {UseTy, SrcTy}, {MMDesc}}).Action != 492 LegalizeActions::Legal) 493 continue; 494 } 495 Preferred = ChoosePreferredUse(Preferred, 496 MRI.getType(UseMI.getOperand(0).getReg()), 497 UseMI.getOpcode(), &UseMI); 498 } 499 } 500 501 // There were no extends 502 if (!Preferred.MI) 503 return false; 504 // It should be impossible to chose an extend without selecting a different 505 // type since by definition the result of an extend is larger. 506 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 507 508 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 509 return true; 510 } 511 512 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 513 PreferredTuple &Preferred) { 514 // Rewrite the load to the chosen extending load. 515 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 516 517 // Inserter to insert a truncate back to the original type at a given point 518 // with some basic CSE to limit truncate duplication to one per BB. 519 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 520 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 521 MachineBasicBlock::iterator InsertBefore, 522 MachineOperand &UseMO) { 523 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 524 if (PreviouslyEmitted) { 525 Observer.changingInstr(*UseMO.getParent()); 526 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 527 Observer.changedInstr(*UseMO.getParent()); 528 return; 529 } 530 531 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 532 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 533 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 534 EmittedInsns[InsertIntoBB] = NewMI; 535 replaceRegOpWith(MRI, UseMO, NewDstReg); 536 }; 537 538 Observer.changingInstr(MI); 539 MI.setDesc( 540 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 541 ? TargetOpcode::G_SEXTLOAD 542 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 543 ? TargetOpcode::G_ZEXTLOAD 544 : TargetOpcode::G_LOAD)); 545 546 // Rewrite all the uses to fix up the types. 547 auto &LoadValue = MI.getOperand(0); 548 SmallVector<MachineOperand *, 4> Uses; 549 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 550 Uses.push_back(&UseMO); 551 552 for (auto *UseMO : Uses) { 553 MachineInstr *UseMI = UseMO->getParent(); 554 555 // If the extend is compatible with the preferred extend then we should fix 556 // up the type and extend so that it uses the preferred use. 557 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 558 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 559 Register UseDstReg = UseMI->getOperand(0).getReg(); 560 MachineOperand &UseSrcMO = UseMI->getOperand(1); 561 const LLT UseDstTy = MRI.getType(UseDstReg); 562 if (UseDstReg != ChosenDstReg) { 563 if (Preferred.Ty == UseDstTy) { 564 // If the use has the same type as the preferred use, then merge 565 // the vregs and erase the extend. For example: 566 // %1:_(s8) = G_LOAD ... 567 // %2:_(s32) = G_SEXT %1(s8) 568 // %3:_(s32) = G_ANYEXT %1(s8) 569 // ... = ... %3(s32) 570 // rewrites to: 571 // %2:_(s32) = G_SEXTLOAD ... 572 // ... = ... %2(s32) 573 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 574 Observer.erasingInstr(*UseMO->getParent()); 575 UseMO->getParent()->eraseFromParent(); 576 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 577 // If the preferred size is smaller, then keep the extend but extend 578 // from the result of the extending load. For example: 579 // %1:_(s8) = G_LOAD ... 580 // %2:_(s32) = G_SEXT %1(s8) 581 // %3:_(s64) = G_ANYEXT %1(s8) 582 // ... = ... %3(s64) 583 /// rewrites to: 584 // %2:_(s32) = G_SEXTLOAD ... 585 // %3:_(s64) = G_ANYEXT %2:_(s32) 586 // ... = ... %3(s64) 587 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 588 } else { 589 // If the preferred size is large, then insert a truncate. For 590 // example: 591 // %1:_(s8) = G_LOAD ... 592 // %2:_(s64) = G_SEXT %1(s8) 593 // %3:_(s32) = G_ZEXT %1(s8) 594 // ... = ... %3(s32) 595 /// rewrites to: 596 // %2:_(s64) = G_SEXTLOAD ... 597 // %4:_(s8) = G_TRUNC %2:_(s32) 598 // %3:_(s64) = G_ZEXT %2:_(s8) 599 // ... = ... %3(s64) 600 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 601 InsertTruncAt); 602 } 603 continue; 604 } 605 // The use is (one of) the uses of the preferred use we chose earlier. 606 // We're going to update the load to def this value later so just erase 607 // the old extend. 608 Observer.erasingInstr(*UseMO->getParent()); 609 UseMO->getParent()->eraseFromParent(); 610 continue; 611 } 612 613 // The use isn't an extend. Truncate back to the type we originally loaded. 614 // This is free on many targets. 615 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 616 } 617 618 MI.getOperand(0).setReg(ChosenDstReg); 619 Observer.changedInstr(MI); 620 } 621 622 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 623 const MachineInstr &UseMI) { 624 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 625 "shouldn't consider debug uses"); 626 assert(DefMI.getParent() == UseMI.getParent()); 627 if (&DefMI == &UseMI) 628 return false; 629 const MachineBasicBlock &MBB = *DefMI.getParent(); 630 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 631 return &MI == &DefMI || &MI == &UseMI; 632 }); 633 if (DefOrUse == MBB.end()) 634 llvm_unreachable("Block must contain both DefMI and UseMI!"); 635 return &*DefOrUse == &DefMI; 636 } 637 638 bool CombinerHelper::dominates(const MachineInstr &DefMI, 639 const MachineInstr &UseMI) { 640 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 641 "shouldn't consider debug uses"); 642 if (MDT) 643 return MDT->dominates(&DefMI, &UseMI); 644 else if (DefMI.getParent() != UseMI.getParent()) 645 return false; 646 647 return isPredecessor(DefMI, UseMI); 648 } 649 650 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 651 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 652 Register SrcReg = MI.getOperand(1).getReg(); 653 Register LoadUser = SrcReg; 654 655 if (MRI.getType(SrcReg).isVector()) 656 return false; 657 658 Register TruncSrc; 659 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 660 LoadUser = TruncSrc; 661 662 uint64_t SizeInBits = MI.getOperand(2).getImm(); 663 // If the source is a G_SEXTLOAD from the same bit width, then we don't 664 // need any extend at all, just a truncate. 665 if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) { 666 const auto &MMO = **LoadMI->memoperands_begin(); 667 // If truncating more than the original extended value, abort. 668 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits()) 669 return false; 670 if (MMO.getSizeInBits() == SizeInBits) 671 return true; 672 } 673 return false; 674 } 675 676 bool CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 677 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 678 Builder.setInstrAndDebugLoc(MI); 679 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 680 MI.eraseFromParent(); 681 return true; 682 } 683 684 bool CombinerHelper::matchSextInRegOfLoad( 685 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 686 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 687 688 // Only supports scalars for now. 689 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 690 return false; 691 692 Register SrcReg = MI.getOperand(1).getReg(); 693 MachineInstr *LoadDef = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI); 694 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg())) 695 return false; 696 697 // If the sign extend extends from a narrower width than the load's width, 698 // then we can narrow the load width when we combine to a G_SEXTLOAD. 699 auto &MMO = **LoadDef->memoperands_begin(); 700 // Don't do this for non-simple loads. 701 if (MMO.isAtomic() || MMO.isVolatile()) 702 return false; 703 704 // Avoid widening the load at all. 705 unsigned NewSizeBits = 706 std::min((uint64_t)MI.getOperand(2).getImm(), MMO.getSizeInBits()); 707 708 // Don't generate G_SEXTLOADs with a < 1 byte width. 709 if (NewSizeBits < 8) 710 return false; 711 // Don't bother creating a non-power-2 sextload, it will likely be broken up 712 // anyway for most targets. 713 if (!isPowerOf2_32(NewSizeBits)) 714 return false; 715 MatchInfo = std::make_tuple(LoadDef->getOperand(0).getReg(), NewSizeBits); 716 return true; 717 } 718 719 bool CombinerHelper::applySextInRegOfLoad( 720 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 721 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 722 Register LoadReg; 723 unsigned ScalarSizeBits; 724 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 725 auto *LoadDef = MRI.getVRegDef(LoadReg); 726 assert(LoadDef && "Expected a load reg"); 727 728 // If we have the following: 729 // %ld = G_LOAD %ptr, (load 2) 730 // %ext = G_SEXT_INREG %ld, 8 731 // ==> 732 // %ld = G_SEXTLOAD %ptr (load 1) 733 734 auto &MMO = **LoadDef->memoperands_begin(); 735 Builder.setInstrAndDebugLoc(*LoadDef); 736 auto &MF = Builder.getMF(); 737 auto PtrInfo = MMO.getPointerInfo(); 738 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 739 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 740 LoadDef->getOperand(1).getReg(), *NewMMO); 741 MI.eraseFromParent(); 742 return true; 743 } 744 745 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 746 Register &Base, Register &Offset) { 747 auto &MF = *MI.getParent()->getParent(); 748 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 749 750 #ifndef NDEBUG 751 unsigned Opcode = MI.getOpcode(); 752 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 753 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 754 #endif 755 756 Base = MI.getOperand(1).getReg(); 757 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 758 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 759 return false; 760 761 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 762 // FIXME: The following use traversal needs a bail out for patholigical cases. 763 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 764 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 765 continue; 766 767 Offset = Use.getOperand(2).getReg(); 768 if (!ForceLegalIndexing && 769 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 770 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 771 << Use); 772 continue; 773 } 774 775 // Make sure the offset calculation is before the potentially indexed op. 776 // FIXME: we really care about dependency here. The offset calculation might 777 // be movable. 778 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 779 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 780 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 781 << Use); 782 continue; 783 } 784 785 // FIXME: check whether all uses of Base are load/store with foldable 786 // addressing modes. If so, using the normal addr-modes is better than 787 // forming an indexed one. 788 789 bool MemOpDominatesAddrUses = true; 790 for (auto &PtrAddUse : 791 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 792 if (!dominates(MI, PtrAddUse)) { 793 MemOpDominatesAddrUses = false; 794 break; 795 } 796 } 797 798 if (!MemOpDominatesAddrUses) { 799 LLVM_DEBUG( 800 dbgs() << " Ignoring candidate as memop does not dominate uses: " 801 << Use); 802 continue; 803 } 804 805 LLVM_DEBUG(dbgs() << " Found match: " << Use); 806 Addr = Use.getOperand(0).getReg(); 807 return true; 808 } 809 810 return false; 811 } 812 813 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 814 Register &Base, Register &Offset) { 815 auto &MF = *MI.getParent()->getParent(); 816 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 817 818 #ifndef NDEBUG 819 unsigned Opcode = MI.getOpcode(); 820 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 821 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 822 #endif 823 824 Addr = MI.getOperand(1).getReg(); 825 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 826 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 827 return false; 828 829 Base = AddrDef->getOperand(1).getReg(); 830 Offset = AddrDef->getOperand(2).getReg(); 831 832 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 833 834 if (!ForceLegalIndexing && 835 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 836 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 837 return false; 838 } 839 840 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 841 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 842 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 843 return false; 844 } 845 846 if (MI.getOpcode() == TargetOpcode::G_STORE) { 847 // Would require a copy. 848 if (Base == MI.getOperand(0).getReg()) { 849 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 850 return false; 851 } 852 853 // We're expecting one use of Addr in MI, but it could also be the 854 // value stored, which isn't actually dominated by the instruction. 855 if (MI.getOperand(0).getReg() == Addr) { 856 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 857 return false; 858 } 859 } 860 861 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 862 // That might allow us to end base's liveness here by adjusting the constant. 863 864 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 865 if (!dominates(MI, UseMI)) { 866 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 867 return false; 868 } 869 } 870 871 return true; 872 } 873 874 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 875 IndexedLoadStoreMatchInfo MatchInfo; 876 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 877 applyCombineIndexedLoadStore(MI, MatchInfo); 878 return true; 879 } 880 return false; 881 } 882 883 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 884 unsigned Opcode = MI.getOpcode(); 885 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 886 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 887 return false; 888 889 // For now, no targets actually support these opcodes so don't waste time 890 // running these unless we're forced to for testing. 891 if (!ForceLegalIndexing) 892 return false; 893 894 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 895 MatchInfo.Offset); 896 if (!MatchInfo.IsPre && 897 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 898 MatchInfo.Offset)) 899 return false; 900 901 return true; 902 } 903 904 void CombinerHelper::applyCombineIndexedLoadStore( 905 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 906 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 907 MachineIRBuilder MIRBuilder(MI); 908 unsigned Opcode = MI.getOpcode(); 909 bool IsStore = Opcode == TargetOpcode::G_STORE; 910 unsigned NewOpcode; 911 switch (Opcode) { 912 case TargetOpcode::G_LOAD: 913 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 914 break; 915 case TargetOpcode::G_SEXTLOAD: 916 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 917 break; 918 case TargetOpcode::G_ZEXTLOAD: 919 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 920 break; 921 case TargetOpcode::G_STORE: 922 NewOpcode = TargetOpcode::G_INDEXED_STORE; 923 break; 924 default: 925 llvm_unreachable("Unknown load/store opcode"); 926 } 927 928 auto MIB = MIRBuilder.buildInstr(NewOpcode); 929 if (IsStore) { 930 MIB.addDef(MatchInfo.Addr); 931 MIB.addUse(MI.getOperand(0).getReg()); 932 } else { 933 MIB.addDef(MI.getOperand(0).getReg()); 934 MIB.addDef(MatchInfo.Addr); 935 } 936 937 MIB.addUse(MatchInfo.Base); 938 MIB.addUse(MatchInfo.Offset); 939 MIB.addImm(MatchInfo.IsPre); 940 MI.eraseFromParent(); 941 AddrDef.eraseFromParent(); 942 943 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 944 } 945 946 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI) { 947 if (MI.getOpcode() != TargetOpcode::G_BR) 948 return false; 949 950 // Try to match the following: 951 // bb1: 952 // G_BRCOND %c1, %bb2 953 // G_BR %bb3 954 // bb2: 955 // ... 956 // bb3: 957 958 // The above pattern does not have a fall through to the successor bb2, always 959 // resulting in a branch no matter which path is taken. Here we try to find 960 // and replace that pattern with conditional branch to bb3 and otherwise 961 // fallthrough to bb2. This is generally better for branch predictors. 962 963 MachineBasicBlock *MBB = MI.getParent(); 964 MachineBasicBlock::iterator BrIt(MI); 965 if (BrIt == MBB->begin()) 966 return false; 967 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 968 969 MachineInstr *BrCond = &*std::prev(BrIt); 970 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 971 return false; 972 973 // Check that the next block is the conditional branch target. Also make sure 974 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 975 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 976 return BrCondTarget != MI.getOperand(0).getMBB() && 977 MBB->isLayoutSuccessor(BrCondTarget); 978 } 979 980 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI) { 981 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 982 MachineBasicBlock::iterator BrIt(MI); 983 MachineInstr *BrCond = &*std::prev(BrIt); 984 985 Builder.setInstrAndDebugLoc(*BrCond); 986 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 987 // FIXME: Does int/fp matter for this? If so, we might need to restrict 988 // this to i1 only since we might not know for sure what kind of 989 // compare generated the condition value. 990 auto True = Builder.buildConstant( 991 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 992 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 993 994 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 995 Observer.changingInstr(MI); 996 MI.getOperand(0).setMBB(FallthroughBB); 997 Observer.changedInstr(MI); 998 999 // Change the conditional branch to use the inverted condition and 1000 // new target block. 1001 Observer.changingInstr(*BrCond); 1002 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1003 BrCond->getOperand(1).setMBB(BrTarget); 1004 Observer.changedInstr(*BrCond); 1005 } 1006 1007 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 1008 // On Darwin, -Os means optimize for size without hurting performance, so 1009 // only really optimize for size when -Oz (MinSize) is used. 1010 if (MF.getTarget().getTargetTriple().isOSDarwin()) 1011 return MF.getFunction().hasMinSize(); 1012 return MF.getFunction().hasOptSize(); 1013 } 1014 1015 // Returns a list of types to use for memory op lowering in MemOps. A partial 1016 // port of findOptimalMemOpLowering in TargetLowering. 1017 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 1018 unsigned Limit, const MemOp &Op, 1019 unsigned DstAS, unsigned SrcAS, 1020 const AttributeList &FuncAttributes, 1021 const TargetLowering &TLI) { 1022 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 1023 return false; 1024 1025 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 1026 1027 if (Ty == LLT()) { 1028 // Use the largest scalar type whose alignment constraints are satisfied. 1029 // We only need to check DstAlign here as SrcAlign is always greater or 1030 // equal to DstAlign (or zero). 1031 Ty = LLT::scalar(64); 1032 if (Op.isFixedDstAlign()) 1033 while (Op.getDstAlign() < Ty.getSizeInBytes() && 1034 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 1035 Ty = LLT::scalar(Ty.getSizeInBytes()); 1036 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 1037 // FIXME: check for the largest legal type we can load/store to. 1038 } 1039 1040 unsigned NumMemOps = 0; 1041 uint64_t Size = Op.size(); 1042 while (Size) { 1043 unsigned TySize = Ty.getSizeInBytes(); 1044 while (TySize > Size) { 1045 // For now, only use non-vector load / store's for the left-over pieces. 1046 LLT NewTy = Ty; 1047 // FIXME: check for mem op safety and legality of the types. Not all of 1048 // SDAGisms map cleanly to GISel concepts. 1049 if (NewTy.isVector()) 1050 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 1051 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 1052 unsigned NewTySize = NewTy.getSizeInBytes(); 1053 assert(NewTySize > 0 && "Could not find appropriate type"); 1054 1055 // If the new LLT cannot cover all of the remaining bits, then consider 1056 // issuing a (or a pair of) unaligned and overlapping load / store. 1057 bool Fast; 1058 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 1059 MVT VT = getMVTForLLT(Ty); 1060 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 1061 TLI.allowsMisalignedMemoryAccesses( 1062 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 1063 MachineMemOperand::MONone, &Fast) && 1064 Fast) 1065 TySize = Size; 1066 else { 1067 Ty = NewTy; 1068 TySize = NewTySize; 1069 } 1070 } 1071 1072 if (++NumMemOps > Limit) 1073 return false; 1074 1075 MemOps.push_back(Ty); 1076 Size -= TySize; 1077 } 1078 1079 return true; 1080 } 1081 1082 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1083 if (Ty.isVector()) 1084 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1085 Ty.getNumElements()); 1086 return IntegerType::get(C, Ty.getSizeInBits()); 1087 } 1088 1089 // Get a vectorized representation of the memset value operand, GISel edition. 1090 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 1091 MachineRegisterInfo &MRI = *MIB.getMRI(); 1092 unsigned NumBits = Ty.getScalarSizeInBits(); 1093 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1094 if (!Ty.isVector() && ValVRegAndVal) { 1095 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 1096 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 1097 return MIB.buildConstant(Ty, SplatVal).getReg(0); 1098 } 1099 1100 // Extend the byte value to the larger type, and then multiply by a magic 1101 // value 0x010101... in order to replicate it across every byte. 1102 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 1103 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 1104 return MIB.buildConstant(Ty, 0).getReg(0); 1105 } 1106 1107 LLT ExtType = Ty.getScalarType(); 1108 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 1109 if (NumBits > 8) { 1110 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 1111 auto MagicMI = MIB.buildConstant(ExtType, Magic); 1112 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 1113 } 1114 1115 // For vector types create a G_BUILD_VECTOR. 1116 if (Ty.isVector()) 1117 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 1118 1119 return Val; 1120 } 1121 1122 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 1123 Register Val, unsigned KnownLen, 1124 Align Alignment, bool IsVolatile) { 1125 auto &MF = *MI.getParent()->getParent(); 1126 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1127 auto &DL = MF.getDataLayout(); 1128 LLVMContext &C = MF.getFunction().getContext(); 1129 1130 assert(KnownLen != 0 && "Have a zero length memset length!"); 1131 1132 bool DstAlignCanChange = false; 1133 MachineFrameInfo &MFI = MF.getFrameInfo(); 1134 bool OptSize = shouldLowerMemFuncForSize(MF); 1135 1136 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1137 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1138 DstAlignCanChange = true; 1139 1140 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1141 std::vector<LLT> MemOps; 1142 1143 const auto &DstMMO = **MI.memoperands_begin(); 1144 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1145 1146 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1147 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1148 1149 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1150 MemOp::Set(KnownLen, DstAlignCanChange, 1151 Alignment, 1152 /*IsZeroMemset=*/IsZeroVal, 1153 /*IsVolatile=*/IsVolatile), 1154 DstPtrInfo.getAddrSpace(), ~0u, 1155 MF.getFunction().getAttributes(), TLI)) 1156 return false; 1157 1158 if (DstAlignCanChange) { 1159 // Get an estimate of the type from the LLT. 1160 Type *IRTy = getTypeForLLT(MemOps[0], C); 1161 Align NewAlign = DL.getABITypeAlign(IRTy); 1162 if (NewAlign > Alignment) { 1163 Alignment = NewAlign; 1164 unsigned FI = FIDef->getOperand(1).getIndex(); 1165 // Give the stack frame object a larger alignment if needed. 1166 if (MFI.getObjectAlign(FI) < Alignment) 1167 MFI.setObjectAlignment(FI, Alignment); 1168 } 1169 } 1170 1171 MachineIRBuilder MIB(MI); 1172 // Find the largest store and generate the bit pattern for it. 1173 LLT LargestTy = MemOps[0]; 1174 for (unsigned i = 1; i < MemOps.size(); i++) 1175 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1176 LargestTy = MemOps[i]; 1177 1178 // The memset stored value is always defined as an s8, so in order to make it 1179 // work with larger store types we need to repeat the bit pattern across the 1180 // wider type. 1181 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1182 1183 if (!MemSetValue) 1184 return false; 1185 1186 // Generate the stores. For each store type in the list, we generate the 1187 // matching store of that type to the destination address. 1188 LLT PtrTy = MRI.getType(Dst); 1189 unsigned DstOff = 0; 1190 unsigned Size = KnownLen; 1191 for (unsigned I = 0; I < MemOps.size(); I++) { 1192 LLT Ty = MemOps[I]; 1193 unsigned TySize = Ty.getSizeInBytes(); 1194 if (TySize > Size) { 1195 // Issuing an unaligned load / store pair that overlaps with the previous 1196 // pair. Adjust the offset accordingly. 1197 assert(I == MemOps.size() - 1 && I != 0); 1198 DstOff -= TySize - Size; 1199 } 1200 1201 // If this store is smaller than the largest store see whether we can get 1202 // the smaller value for free with a truncate. 1203 Register Value = MemSetValue; 1204 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1205 MVT VT = getMVTForLLT(Ty); 1206 MVT LargestVT = getMVTForLLT(LargestTy); 1207 if (!LargestTy.isVector() && !Ty.isVector() && 1208 TLI.isTruncateFree(LargestVT, VT)) 1209 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1210 else 1211 Value = getMemsetValue(Val, Ty, MIB); 1212 if (!Value) 1213 return false; 1214 } 1215 1216 auto *StoreMMO = 1217 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1218 1219 Register Ptr = Dst; 1220 if (DstOff != 0) { 1221 auto Offset = 1222 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1223 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1224 } 1225 1226 MIB.buildStore(Value, Ptr, *StoreMMO); 1227 DstOff += Ty.getSizeInBytes(); 1228 Size -= TySize; 1229 } 1230 1231 MI.eraseFromParent(); 1232 return true; 1233 } 1234 1235 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1236 Register Src, unsigned KnownLen, 1237 Align DstAlign, Align SrcAlign, 1238 bool IsVolatile) { 1239 auto &MF = *MI.getParent()->getParent(); 1240 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1241 auto &DL = MF.getDataLayout(); 1242 LLVMContext &C = MF.getFunction().getContext(); 1243 1244 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1245 1246 bool DstAlignCanChange = false; 1247 MachineFrameInfo &MFI = MF.getFrameInfo(); 1248 bool OptSize = shouldLowerMemFuncForSize(MF); 1249 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1250 1251 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1252 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1253 DstAlignCanChange = true; 1254 1255 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1256 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1257 // if the memcpy is in a tail call position. 1258 1259 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1260 std::vector<LLT> MemOps; 1261 1262 const auto &DstMMO = **MI.memoperands_begin(); 1263 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1264 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1265 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1266 1267 if (!findGISelOptimalMemOpLowering( 1268 MemOps, Limit, 1269 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1270 IsVolatile), 1271 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1272 MF.getFunction().getAttributes(), TLI)) 1273 return false; 1274 1275 if (DstAlignCanChange) { 1276 // Get an estimate of the type from the LLT. 1277 Type *IRTy = getTypeForLLT(MemOps[0], C); 1278 Align NewAlign = DL.getABITypeAlign(IRTy); 1279 1280 // Don't promote to an alignment that would require dynamic stack 1281 // realignment. 1282 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1283 if (!TRI->needsStackRealignment(MF)) 1284 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1285 NewAlign = NewAlign / 2; 1286 1287 if (NewAlign > Alignment) { 1288 Alignment = NewAlign; 1289 unsigned FI = FIDef->getOperand(1).getIndex(); 1290 // Give the stack frame object a larger alignment if needed. 1291 if (MFI.getObjectAlign(FI) < Alignment) 1292 MFI.setObjectAlignment(FI, Alignment); 1293 } 1294 } 1295 1296 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1297 1298 MachineIRBuilder MIB(MI); 1299 // Now we need to emit a pair of load and stores for each of the types we've 1300 // collected. I.e. for each type, generate a load from the source pointer of 1301 // that type width, and then generate a corresponding store to the dest buffer 1302 // of that value loaded. This can result in a sequence of loads and stores 1303 // mixed types, depending on what the target specifies as good types to use. 1304 unsigned CurrOffset = 0; 1305 LLT PtrTy = MRI.getType(Src); 1306 unsigned Size = KnownLen; 1307 for (auto CopyTy : MemOps) { 1308 // Issuing an unaligned load / store pair that overlaps with the previous 1309 // pair. Adjust the offset accordingly. 1310 if (CopyTy.getSizeInBytes() > Size) 1311 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1312 1313 // Construct MMOs for the accesses. 1314 auto *LoadMMO = 1315 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1316 auto *StoreMMO = 1317 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1318 1319 // Create the load. 1320 Register LoadPtr = Src; 1321 Register Offset; 1322 if (CurrOffset != 0) { 1323 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1324 .getReg(0); 1325 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1326 } 1327 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1328 1329 // Create the store. 1330 Register StorePtr = 1331 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1332 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1333 CurrOffset += CopyTy.getSizeInBytes(); 1334 Size -= CopyTy.getSizeInBytes(); 1335 } 1336 1337 MI.eraseFromParent(); 1338 return true; 1339 } 1340 1341 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1342 Register Src, unsigned KnownLen, 1343 Align DstAlign, Align SrcAlign, 1344 bool IsVolatile) { 1345 auto &MF = *MI.getParent()->getParent(); 1346 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1347 auto &DL = MF.getDataLayout(); 1348 LLVMContext &C = MF.getFunction().getContext(); 1349 1350 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1351 1352 bool DstAlignCanChange = false; 1353 MachineFrameInfo &MFI = MF.getFrameInfo(); 1354 bool OptSize = shouldLowerMemFuncForSize(MF); 1355 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1356 1357 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1358 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1359 DstAlignCanChange = true; 1360 1361 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1362 std::vector<LLT> MemOps; 1363 1364 const auto &DstMMO = **MI.memoperands_begin(); 1365 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1366 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1367 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1368 1369 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1370 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1371 // same thing here. 1372 if (!findGISelOptimalMemOpLowering( 1373 MemOps, Limit, 1374 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1375 /*IsVolatile*/ true), 1376 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1377 MF.getFunction().getAttributes(), TLI)) 1378 return false; 1379 1380 if (DstAlignCanChange) { 1381 // Get an estimate of the type from the LLT. 1382 Type *IRTy = getTypeForLLT(MemOps[0], C); 1383 Align NewAlign = DL.getABITypeAlign(IRTy); 1384 1385 // Don't promote to an alignment that would require dynamic stack 1386 // realignment. 1387 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1388 if (!TRI->needsStackRealignment(MF)) 1389 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1390 NewAlign = NewAlign / 2; 1391 1392 if (NewAlign > Alignment) { 1393 Alignment = NewAlign; 1394 unsigned FI = FIDef->getOperand(1).getIndex(); 1395 // Give the stack frame object a larger alignment if needed. 1396 if (MFI.getObjectAlign(FI) < Alignment) 1397 MFI.setObjectAlignment(FI, Alignment); 1398 } 1399 } 1400 1401 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1402 1403 MachineIRBuilder MIB(MI); 1404 // Memmove requires that we perform the loads first before issuing the stores. 1405 // Apart from that, this loop is pretty much doing the same thing as the 1406 // memcpy codegen function. 1407 unsigned CurrOffset = 0; 1408 LLT PtrTy = MRI.getType(Src); 1409 SmallVector<Register, 16> LoadVals; 1410 for (auto CopyTy : MemOps) { 1411 // Construct MMO for the load. 1412 auto *LoadMMO = 1413 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1414 1415 // Create the load. 1416 Register LoadPtr = Src; 1417 if (CurrOffset != 0) { 1418 auto Offset = 1419 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1420 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1421 } 1422 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1423 CurrOffset += CopyTy.getSizeInBytes(); 1424 } 1425 1426 CurrOffset = 0; 1427 for (unsigned I = 0; I < MemOps.size(); ++I) { 1428 LLT CopyTy = MemOps[I]; 1429 // Now store the values loaded. 1430 auto *StoreMMO = 1431 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1432 1433 Register StorePtr = Dst; 1434 if (CurrOffset != 0) { 1435 auto Offset = 1436 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1437 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1438 } 1439 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1440 CurrOffset += CopyTy.getSizeInBytes(); 1441 } 1442 MI.eraseFromParent(); 1443 return true; 1444 } 1445 1446 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1447 const unsigned Opc = MI.getOpcode(); 1448 // This combine is fairly complex so it's not written with a separate 1449 // matcher function. 1450 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 1451 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); 1452 1453 auto MMOIt = MI.memoperands_begin(); 1454 const MachineMemOperand *MemOp = *MMOIt; 1455 bool IsVolatile = MemOp->isVolatile(); 1456 // Don't try to optimize volatile. 1457 if (IsVolatile) 1458 return false; 1459 1460 Align DstAlign = MemOp->getBaseAlign(); 1461 Align SrcAlign; 1462 Register Dst = MI.getOperand(0).getReg(); 1463 Register Src = MI.getOperand(1).getReg(); 1464 Register Len = MI.getOperand(2).getReg(); 1465 1466 if (Opc != TargetOpcode::G_MEMSET) { 1467 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1468 MemOp = *(++MMOIt); 1469 SrcAlign = MemOp->getBaseAlign(); 1470 } 1471 1472 // See if this is a constant length copy 1473 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1474 if (!LenVRegAndVal) 1475 return false; // Leave it to the legalizer to lower it to a libcall. 1476 unsigned KnownLen = LenVRegAndVal->Value.getZExtValue(); 1477 1478 if (KnownLen == 0) { 1479 MI.eraseFromParent(); 1480 return true; 1481 } 1482 1483 if (MaxLen && KnownLen > MaxLen) 1484 return false; 1485 1486 if (Opc == TargetOpcode::G_MEMCPY) 1487 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1488 if (Opc == TargetOpcode::G_MEMMOVE) 1489 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1490 if (Opc == TargetOpcode::G_MEMSET) 1491 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1492 return false; 1493 } 1494 1495 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1496 const Register Op, 1497 const MachineRegisterInfo &MRI) { 1498 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1499 if (!MaybeCst) 1500 return None; 1501 1502 APFloat V = MaybeCst->getValueAPF(); 1503 switch (Opcode) { 1504 default: 1505 llvm_unreachable("Unexpected opcode!"); 1506 case TargetOpcode::G_FNEG: { 1507 V.changeSign(); 1508 return V; 1509 } 1510 case TargetOpcode::G_FABS: { 1511 V.clearSign(); 1512 return V; 1513 } 1514 case TargetOpcode::G_FPTRUNC: 1515 break; 1516 case TargetOpcode::G_FSQRT: { 1517 bool Unused; 1518 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1519 V = APFloat(sqrt(V.convertToDouble())); 1520 break; 1521 } 1522 case TargetOpcode::G_FLOG2: { 1523 bool Unused; 1524 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1525 V = APFloat(log2(V.convertToDouble())); 1526 break; 1527 } 1528 } 1529 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1530 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1531 // and `G_FLOG2` reach here. 1532 bool Unused; 1533 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1534 return V; 1535 } 1536 1537 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1538 Optional<APFloat> &Cst) { 1539 Register DstReg = MI.getOperand(0).getReg(); 1540 Register SrcReg = MI.getOperand(1).getReg(); 1541 LLT DstTy = MRI.getType(DstReg); 1542 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1543 return Cst.hasValue(); 1544 } 1545 1546 bool CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1547 Optional<APFloat> &Cst) { 1548 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1549 Builder.setInstrAndDebugLoc(MI); 1550 MachineFunction &MF = Builder.getMF(); 1551 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1552 Register DstReg = MI.getOperand(0).getReg(); 1553 Builder.buildFConstant(DstReg, *FPVal); 1554 MI.eraseFromParent(); 1555 return true; 1556 } 1557 1558 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1559 PtrAddChain &MatchInfo) { 1560 // We're trying to match the following pattern: 1561 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1562 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1563 // --> 1564 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1565 1566 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1567 return false; 1568 1569 Register Add2 = MI.getOperand(1).getReg(); 1570 Register Imm1 = MI.getOperand(2).getReg(); 1571 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1572 if (!MaybeImmVal) 1573 return false; 1574 1575 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1576 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1577 return false; 1578 1579 Register Base = Add2Def->getOperand(1).getReg(); 1580 Register Imm2 = Add2Def->getOperand(2).getReg(); 1581 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1582 if (!MaybeImm2Val) 1583 return false; 1584 1585 // Pass the combined immediate to the apply function. 1586 MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue(); 1587 MatchInfo.Base = Base; 1588 return true; 1589 } 1590 1591 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1592 PtrAddChain &MatchInfo) { 1593 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1594 MachineIRBuilder MIB(MI); 1595 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1596 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1597 Observer.changingInstr(MI); 1598 MI.getOperand(1).setReg(MatchInfo.Base); 1599 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1600 Observer.changedInstr(MI); 1601 return true; 1602 } 1603 1604 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1605 RegisterImmPair &MatchInfo) { 1606 // We're trying to match the following pattern with any of 1607 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1608 // %t1 = SHIFT %base, G_CONSTANT imm1 1609 // %root = SHIFT %t1, G_CONSTANT imm2 1610 // --> 1611 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1612 1613 unsigned Opcode = MI.getOpcode(); 1614 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1615 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1616 Opcode == TargetOpcode::G_USHLSAT) && 1617 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1618 1619 Register Shl2 = MI.getOperand(1).getReg(); 1620 Register Imm1 = MI.getOperand(2).getReg(); 1621 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1622 if (!MaybeImmVal) 1623 return false; 1624 1625 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1626 if (Shl2Def->getOpcode() != Opcode) 1627 return false; 1628 1629 Register Base = Shl2Def->getOperand(1).getReg(); 1630 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1631 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1632 if (!MaybeImm2Val) 1633 return false; 1634 1635 // Pass the combined immediate to the apply function. 1636 MatchInfo.Imm = 1637 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1638 MatchInfo.Reg = Base; 1639 1640 // There is no simple replacement for a saturating unsigned left shift that 1641 // exceeds the scalar size. 1642 if (Opcode == TargetOpcode::G_USHLSAT && 1643 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1644 return false; 1645 1646 return true; 1647 } 1648 1649 bool CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1650 RegisterImmPair &MatchInfo) { 1651 unsigned Opcode = MI.getOpcode(); 1652 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1653 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1654 Opcode == TargetOpcode::G_USHLSAT) && 1655 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1656 1657 Builder.setInstrAndDebugLoc(MI); 1658 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1659 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1660 auto Imm = MatchInfo.Imm; 1661 1662 if (Imm >= ScalarSizeInBits) { 1663 // Any logical shift that exceeds scalar size will produce zero. 1664 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1665 Builder.buildConstant(MI.getOperand(0), 0); 1666 MI.eraseFromParent(); 1667 return true; 1668 } 1669 // Arithmetic shift and saturating signed left shift have no effect beyond 1670 // scalar size. 1671 Imm = ScalarSizeInBits - 1; 1672 } 1673 1674 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1675 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1676 Observer.changingInstr(MI); 1677 MI.getOperand(1).setReg(MatchInfo.Reg); 1678 MI.getOperand(2).setReg(NewImm); 1679 Observer.changedInstr(MI); 1680 return true; 1681 } 1682 1683 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1684 ShiftOfShiftedLogic &MatchInfo) { 1685 // We're trying to match the following pattern with any of 1686 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1687 // with any of G_AND/G_OR/G_XOR logic instructions. 1688 // %t1 = SHIFT %X, G_CONSTANT C0 1689 // %t2 = LOGIC %t1, %Y 1690 // %root = SHIFT %t2, G_CONSTANT C1 1691 // --> 1692 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1693 // %t4 = SHIFT %Y, G_CONSTANT C1 1694 // %root = LOGIC %t3, %t4 1695 unsigned ShiftOpcode = MI.getOpcode(); 1696 assert((ShiftOpcode == TargetOpcode::G_SHL || 1697 ShiftOpcode == TargetOpcode::G_ASHR || 1698 ShiftOpcode == TargetOpcode::G_LSHR || 1699 ShiftOpcode == TargetOpcode::G_USHLSAT || 1700 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1701 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1702 1703 // Match a one-use bitwise logic op. 1704 Register LogicDest = MI.getOperand(1).getReg(); 1705 if (!MRI.hasOneNonDBGUse(LogicDest)) 1706 return false; 1707 1708 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1709 unsigned LogicOpcode = LogicMI->getOpcode(); 1710 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1711 LogicOpcode != TargetOpcode::G_XOR) 1712 return false; 1713 1714 // Find a matching one-use shift by constant. 1715 const Register C1 = MI.getOperand(2).getReg(); 1716 auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); 1717 if (!MaybeImmVal) 1718 return false; 1719 1720 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1721 1722 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1723 // Shift should match previous one and should be a one-use. 1724 if (MI->getOpcode() != ShiftOpcode || 1725 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1726 return false; 1727 1728 // Must be a constant. 1729 auto MaybeImmVal = 1730 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1731 if (!MaybeImmVal) 1732 return false; 1733 1734 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1735 return true; 1736 }; 1737 1738 // Logic ops are commutative, so check each operand for a match. 1739 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1740 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1741 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1742 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1743 uint64_t C0Val; 1744 1745 if (matchFirstShift(LogicMIOp1, C0Val)) { 1746 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1747 MatchInfo.Shift2 = LogicMIOp1; 1748 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1749 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1750 MatchInfo.Shift2 = LogicMIOp2; 1751 } else 1752 return false; 1753 1754 MatchInfo.ValSum = C0Val + C1Val; 1755 1756 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1757 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1758 return false; 1759 1760 MatchInfo.Logic = LogicMI; 1761 return true; 1762 } 1763 1764 bool CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1765 ShiftOfShiftedLogic &MatchInfo) { 1766 unsigned Opcode = MI.getOpcode(); 1767 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1768 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1769 Opcode == TargetOpcode::G_SSHLSAT) && 1770 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1771 1772 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1773 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1774 Builder.setInstrAndDebugLoc(MI); 1775 1776 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1777 1778 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1779 Register Shift1 = 1780 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1781 1782 Register Shift2Const = MI.getOperand(2).getReg(); 1783 Register Shift2 = Builder 1784 .buildInstr(Opcode, {DestType}, 1785 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1786 .getReg(0); 1787 1788 Register Dest = MI.getOperand(0).getReg(); 1789 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1790 1791 // These were one use so it's safe to remove them. 1792 MatchInfo.Shift2->eraseFromParent(); 1793 MatchInfo.Logic->eraseFromParent(); 1794 1795 MI.eraseFromParent(); 1796 return true; 1797 } 1798 1799 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1800 unsigned &ShiftVal) { 1801 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1802 auto MaybeImmVal = 1803 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1804 if (!MaybeImmVal) 1805 return false; 1806 1807 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1808 return (static_cast<int32_t>(ShiftVal) != -1); 1809 } 1810 1811 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1812 unsigned &ShiftVal) { 1813 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1814 MachineIRBuilder MIB(MI); 1815 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1816 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1817 Observer.changingInstr(MI); 1818 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1819 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1820 Observer.changedInstr(MI); 1821 return true; 1822 } 1823 1824 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1825 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1826 RegisterImmPair &MatchData) { 1827 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1828 1829 Register LHS = MI.getOperand(1).getReg(); 1830 1831 Register ExtSrc; 1832 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1833 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1834 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1835 return false; 1836 1837 // TODO: Should handle vector splat. 1838 Register RHS = MI.getOperand(2).getReg(); 1839 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 1840 if (!MaybeShiftAmtVal) 1841 return false; 1842 1843 if (LI) { 1844 LLT SrcTy = MRI.getType(ExtSrc); 1845 1846 // We only really care about the legality with the shifted value. We can 1847 // pick any type the constant shift amount, so ask the target what to 1848 // use. Otherwise we would have to guess and hope it is reported as legal. 1849 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1850 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1851 return false; 1852 } 1853 1854 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1855 MatchData.Reg = ExtSrc; 1856 MatchData.Imm = ShiftAmt; 1857 1858 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1859 return MinLeadingZeros >= ShiftAmt; 1860 } 1861 1862 bool CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1863 const RegisterImmPair &MatchData) { 1864 Register ExtSrcReg = MatchData.Reg; 1865 int64_t ShiftAmtVal = MatchData.Imm; 1866 1867 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1868 Builder.setInstrAndDebugLoc(MI); 1869 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1870 auto NarrowShift = 1871 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1872 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1873 MI.eraseFromParent(); 1874 return true; 1875 } 1876 1877 static Register peekThroughBitcast(Register Reg, 1878 const MachineRegisterInfo &MRI) { 1879 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1880 ; 1881 1882 return Reg; 1883 } 1884 1885 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1886 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1887 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1888 "Expected an unmerge"); 1889 Register SrcReg = 1890 peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI); 1891 1892 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1893 if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES && 1894 SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR && 1895 SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS) 1896 return false; 1897 1898 // Check the source type of the merge. 1899 LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg()); 1900 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1901 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1902 if (SrcMergeTy != Dst0Ty && !SameSize) 1903 return false; 1904 // They are the same now (modulo a bitcast). 1905 // We can collect all the src registers. 1906 for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx; 1907 ++Idx) 1908 Operands.push_back(SrcInstr->getOperand(Idx).getReg()); 1909 return true; 1910 } 1911 1912 bool CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1913 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1914 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1915 "Expected an unmerge"); 1916 assert((MI.getNumOperands() - 1 == Operands.size()) && 1917 "Not enough operands to replace all defs"); 1918 unsigned NumElems = MI.getNumOperands() - 1; 1919 1920 LLT SrcTy = MRI.getType(Operands[0]); 1921 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1922 bool CanReuseInputDirectly = DstTy == SrcTy; 1923 Builder.setInstrAndDebugLoc(MI); 1924 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1925 Register DstReg = MI.getOperand(Idx).getReg(); 1926 Register SrcReg = Operands[Idx]; 1927 if (CanReuseInputDirectly) 1928 replaceRegWith(MRI, DstReg, SrcReg); 1929 else 1930 Builder.buildCast(DstReg, SrcReg); 1931 } 1932 MI.eraseFromParent(); 1933 return true; 1934 } 1935 1936 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1937 SmallVectorImpl<APInt> &Csts) { 1938 unsigned SrcIdx = MI.getNumOperands() - 1; 1939 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1940 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1941 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1942 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1943 return false; 1944 // Break down the big constant in smaller ones. 1945 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1946 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1947 ? CstVal.getCImm()->getValue() 1948 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1949 1950 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1951 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1952 // Unmerge a constant. 1953 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1954 Csts.emplace_back(Val.trunc(ShiftAmt)); 1955 Val = Val.lshr(ShiftAmt); 1956 } 1957 1958 return true; 1959 } 1960 1961 bool CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1962 SmallVectorImpl<APInt> &Csts) { 1963 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1964 "Expected an unmerge"); 1965 assert((MI.getNumOperands() - 1 == Csts.size()) && 1966 "Not enough operands to replace all defs"); 1967 unsigned NumElems = MI.getNumOperands() - 1; 1968 Builder.setInstrAndDebugLoc(MI); 1969 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1970 Register DstReg = MI.getOperand(Idx).getReg(); 1971 Builder.buildConstant(DstReg, Csts[Idx]); 1972 } 1973 1974 MI.eraseFromParent(); 1975 return true; 1976 } 1977 1978 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1979 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1980 "Expected an unmerge"); 1981 // Check that all the lanes are dead except the first one. 1982 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1983 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1984 return false; 1985 } 1986 return true; 1987 } 1988 1989 bool CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1990 Builder.setInstrAndDebugLoc(MI); 1991 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1992 // Truncating a vector is going to truncate every single lane, 1993 // whereas we want the full lowbits. 1994 // Do the operation on a scalar instead. 1995 LLT SrcTy = MRI.getType(SrcReg); 1996 if (SrcTy.isVector()) 1997 SrcReg = 1998 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1999 2000 Register Dst0Reg = MI.getOperand(0).getReg(); 2001 LLT Dst0Ty = MRI.getType(Dst0Reg); 2002 if (Dst0Ty.isVector()) { 2003 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 2004 Builder.buildCast(Dst0Reg, MIB); 2005 } else 2006 Builder.buildTrunc(Dst0Reg, SrcReg); 2007 MI.eraseFromParent(); 2008 return true; 2009 } 2010 2011 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 2012 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2013 "Expected an unmerge"); 2014 Register Dst0Reg = MI.getOperand(0).getReg(); 2015 LLT Dst0Ty = MRI.getType(Dst0Reg); 2016 // G_ZEXT on vector applies to each lane, so it will 2017 // affect all destinations. Therefore we won't be able 2018 // to simplify the unmerge to just the first definition. 2019 if (Dst0Ty.isVector()) 2020 return false; 2021 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2022 LLT SrcTy = MRI.getType(SrcReg); 2023 if (SrcTy.isVector()) 2024 return false; 2025 2026 Register ZExtSrcReg; 2027 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 2028 return false; 2029 2030 // Finally we can replace the first definition with 2031 // a zext of the source if the definition is big enough to hold 2032 // all of ZExtSrc bits. 2033 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2034 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 2035 } 2036 2037 bool CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 2038 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2039 "Expected an unmerge"); 2040 2041 Register Dst0Reg = MI.getOperand(0).getReg(); 2042 2043 MachineInstr *ZExtInstr = 2044 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 2045 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 2046 "Expecting a G_ZEXT"); 2047 2048 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 2049 LLT Dst0Ty = MRI.getType(Dst0Reg); 2050 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2051 2052 Builder.setInstrAndDebugLoc(MI); 2053 2054 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 2055 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 2056 } else { 2057 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 2058 "ZExt src doesn't fit in destination"); 2059 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 2060 } 2061 2062 Register ZeroReg; 2063 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2064 if (!ZeroReg) 2065 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 2066 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 2067 } 2068 MI.eraseFromParent(); 2069 return true; 2070 } 2071 2072 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 2073 unsigned TargetShiftSize, 2074 unsigned &ShiftVal) { 2075 assert((MI.getOpcode() == TargetOpcode::G_SHL || 2076 MI.getOpcode() == TargetOpcode::G_LSHR || 2077 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 2078 2079 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2080 if (Ty.isVector()) // TODO: 2081 return false; 2082 2083 // Don't narrow further than the requested size. 2084 unsigned Size = Ty.getSizeInBits(); 2085 if (Size <= TargetShiftSize) 2086 return false; 2087 2088 auto MaybeImmVal = 2089 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 2090 if (!MaybeImmVal) 2091 return false; 2092 2093 ShiftVal = MaybeImmVal->Value.getSExtValue(); 2094 return ShiftVal >= Size / 2 && ShiftVal < Size; 2095 } 2096 2097 bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 2098 const unsigned &ShiftVal) { 2099 Register DstReg = MI.getOperand(0).getReg(); 2100 Register SrcReg = MI.getOperand(1).getReg(); 2101 LLT Ty = MRI.getType(SrcReg); 2102 unsigned Size = Ty.getSizeInBits(); 2103 unsigned HalfSize = Size / 2; 2104 assert(ShiftVal >= HalfSize); 2105 2106 LLT HalfTy = LLT::scalar(HalfSize); 2107 2108 Builder.setInstr(MI); 2109 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 2110 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 2111 2112 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2113 Register Narrowed = Unmerge.getReg(1); 2114 2115 // dst = G_LSHR s64:x, C for C >= 32 2116 // => 2117 // lo, hi = G_UNMERGE_VALUES x 2118 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 2119 2120 if (NarrowShiftAmt != 0) { 2121 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 2122 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2123 } 2124 2125 auto Zero = Builder.buildConstant(HalfTy, 0); 2126 Builder.buildMerge(DstReg, { Narrowed, Zero }); 2127 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 2128 Register Narrowed = Unmerge.getReg(0); 2129 // dst = G_SHL s64:x, C for C >= 32 2130 // => 2131 // lo, hi = G_UNMERGE_VALUES x 2132 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 2133 if (NarrowShiftAmt != 0) { 2134 Narrowed = Builder.buildShl(HalfTy, Narrowed, 2135 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2136 } 2137 2138 auto Zero = Builder.buildConstant(HalfTy, 0); 2139 Builder.buildMerge(DstReg, { Zero, Narrowed }); 2140 } else { 2141 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2142 auto Hi = Builder.buildAShr( 2143 HalfTy, Unmerge.getReg(1), 2144 Builder.buildConstant(HalfTy, HalfSize - 1)); 2145 2146 if (ShiftVal == HalfSize) { 2147 // (G_ASHR i64:x, 32) -> 2148 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 2149 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 2150 } else if (ShiftVal == Size - 1) { 2151 // Don't need a second shift. 2152 // (G_ASHR i64:x, 63) -> 2153 // %narrowed = (G_ASHR hi_32(x), 31) 2154 // G_MERGE_VALUES %narrowed, %narrowed 2155 Builder.buildMerge(DstReg, { Hi, Hi }); 2156 } else { 2157 auto Lo = Builder.buildAShr( 2158 HalfTy, Unmerge.getReg(1), 2159 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 2160 2161 // (G_ASHR i64:x, C) ->, for C >= 32 2162 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 2163 Builder.buildMerge(DstReg, { Lo, Hi }); 2164 } 2165 } 2166 2167 MI.eraseFromParent(); 2168 return true; 2169 } 2170 2171 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 2172 unsigned TargetShiftAmount) { 2173 unsigned ShiftAmt; 2174 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 2175 applyCombineShiftToUnmerge(MI, ShiftAmt); 2176 return true; 2177 } 2178 2179 return false; 2180 } 2181 2182 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2183 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2184 Register DstReg = MI.getOperand(0).getReg(); 2185 LLT DstTy = MRI.getType(DstReg); 2186 Register SrcReg = MI.getOperand(1).getReg(); 2187 return mi_match(SrcReg, MRI, 2188 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2189 } 2190 2191 bool CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2192 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2193 Register DstReg = MI.getOperand(0).getReg(); 2194 Builder.setInstr(MI); 2195 Builder.buildCopy(DstReg, Reg); 2196 MI.eraseFromParent(); 2197 return true; 2198 } 2199 2200 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2201 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2202 Register SrcReg = MI.getOperand(1).getReg(); 2203 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2204 } 2205 2206 bool CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2207 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2208 Register DstReg = MI.getOperand(0).getReg(); 2209 Builder.setInstr(MI); 2210 Builder.buildZExtOrTrunc(DstReg, Reg); 2211 MI.eraseFromParent(); 2212 return true; 2213 } 2214 2215 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2216 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2217 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2218 Register LHS = MI.getOperand(1).getReg(); 2219 Register RHS = MI.getOperand(2).getReg(); 2220 LLT IntTy = MRI.getType(LHS); 2221 2222 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2223 // instruction. 2224 PtrReg.second = false; 2225 for (Register SrcReg : {LHS, RHS}) { 2226 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2227 // Don't handle cases where the integer is implicitly converted to the 2228 // pointer width. 2229 LLT PtrTy = MRI.getType(PtrReg.first); 2230 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2231 return true; 2232 } 2233 2234 PtrReg.second = true; 2235 } 2236 2237 return false; 2238 } 2239 2240 bool CombinerHelper::applyCombineAddP2IToPtrAdd( 2241 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2242 Register Dst = MI.getOperand(0).getReg(); 2243 Register LHS = MI.getOperand(1).getReg(); 2244 Register RHS = MI.getOperand(2).getReg(); 2245 2246 const bool DoCommute = PtrReg.second; 2247 if (DoCommute) 2248 std::swap(LHS, RHS); 2249 LHS = PtrReg.first; 2250 2251 LLT PtrTy = MRI.getType(LHS); 2252 2253 Builder.setInstrAndDebugLoc(MI); 2254 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2255 Builder.buildPtrToInt(Dst, PtrAdd); 2256 MI.eraseFromParent(); 2257 return true; 2258 } 2259 2260 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2261 int64_t &NewCst) { 2262 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2263 Register LHS = MI.getOperand(1).getReg(); 2264 Register RHS = MI.getOperand(2).getReg(); 2265 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2266 2267 if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { 2268 int64_t Cst; 2269 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2270 NewCst = Cst + *RHSCst; 2271 return true; 2272 } 2273 } 2274 2275 return false; 2276 } 2277 2278 bool CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2279 int64_t &NewCst) { 2280 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2281 Register Dst = MI.getOperand(0).getReg(); 2282 2283 Builder.setInstrAndDebugLoc(MI); 2284 Builder.buildConstant(Dst, NewCst); 2285 MI.eraseFromParent(); 2286 return true; 2287 } 2288 2289 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2290 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2291 Register DstReg = MI.getOperand(0).getReg(); 2292 Register SrcReg = MI.getOperand(1).getReg(); 2293 LLT DstTy = MRI.getType(DstReg); 2294 return mi_match(SrcReg, MRI, 2295 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2296 } 2297 2298 bool CombinerHelper::matchCombineExtOfExt( 2299 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2300 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2301 MI.getOpcode() == TargetOpcode::G_SEXT || 2302 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2303 "Expected a G_[ASZ]EXT"); 2304 Register SrcReg = MI.getOperand(1).getReg(); 2305 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2306 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2307 unsigned Opc = MI.getOpcode(); 2308 unsigned SrcOpc = SrcMI->getOpcode(); 2309 if (Opc == SrcOpc || 2310 (Opc == TargetOpcode::G_ANYEXT && 2311 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2312 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2313 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2314 return true; 2315 } 2316 return false; 2317 } 2318 2319 bool CombinerHelper::applyCombineExtOfExt( 2320 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2321 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2322 MI.getOpcode() == TargetOpcode::G_SEXT || 2323 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2324 "Expected a G_[ASZ]EXT"); 2325 2326 Register Reg = std::get<0>(MatchInfo); 2327 unsigned SrcExtOp = std::get<1>(MatchInfo); 2328 2329 // Combine exts with the same opcode. 2330 if (MI.getOpcode() == SrcExtOp) { 2331 Observer.changingInstr(MI); 2332 MI.getOperand(1).setReg(Reg); 2333 Observer.changedInstr(MI); 2334 return true; 2335 } 2336 2337 // Combine: 2338 // - anyext([sz]ext x) to [sz]ext x 2339 // - sext(zext x) to zext x 2340 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2341 (MI.getOpcode() == TargetOpcode::G_SEXT && 2342 SrcExtOp == TargetOpcode::G_ZEXT)) { 2343 Register DstReg = MI.getOperand(0).getReg(); 2344 Builder.setInstrAndDebugLoc(MI); 2345 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2346 MI.eraseFromParent(); 2347 return true; 2348 } 2349 2350 return false; 2351 } 2352 2353 bool CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2354 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2355 Register DstReg = MI.getOperand(0).getReg(); 2356 Register SrcReg = MI.getOperand(1).getReg(); 2357 LLT DstTy = MRI.getType(DstReg); 2358 2359 Builder.setInstrAndDebugLoc(MI); 2360 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2361 MI.getFlags()); 2362 MI.eraseFromParent(); 2363 return true; 2364 } 2365 2366 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2367 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2368 Register SrcReg = MI.getOperand(1).getReg(); 2369 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2370 } 2371 2372 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2373 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2374 Src = MI.getOperand(1).getReg(); 2375 Register AbsSrc; 2376 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2377 } 2378 2379 bool CombinerHelper::matchCombineTruncOfExt( 2380 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2381 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2382 Register SrcReg = MI.getOperand(1).getReg(); 2383 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2384 unsigned SrcOpc = SrcMI->getOpcode(); 2385 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2386 SrcOpc == TargetOpcode::G_ZEXT) { 2387 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2388 return true; 2389 } 2390 return false; 2391 } 2392 2393 bool CombinerHelper::applyCombineTruncOfExt( 2394 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2395 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2396 Register SrcReg = MatchInfo.first; 2397 unsigned SrcExtOp = MatchInfo.second; 2398 Register DstReg = MI.getOperand(0).getReg(); 2399 LLT SrcTy = MRI.getType(SrcReg); 2400 LLT DstTy = MRI.getType(DstReg); 2401 if (SrcTy == DstTy) { 2402 MI.eraseFromParent(); 2403 replaceRegWith(MRI, DstReg, SrcReg); 2404 return true; 2405 } 2406 Builder.setInstrAndDebugLoc(MI); 2407 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2408 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2409 else 2410 Builder.buildTrunc(DstReg, SrcReg); 2411 MI.eraseFromParent(); 2412 return true; 2413 } 2414 2415 bool CombinerHelper::matchCombineTruncOfShl( 2416 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2417 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2418 Register DstReg = MI.getOperand(0).getReg(); 2419 Register SrcReg = MI.getOperand(1).getReg(); 2420 LLT DstTy = MRI.getType(DstReg); 2421 Register ShiftSrc; 2422 Register ShiftAmt; 2423 2424 if (MRI.hasOneNonDBGUse(SrcReg) && 2425 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2426 isLegalOrBeforeLegalizer( 2427 {TargetOpcode::G_SHL, 2428 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2429 KnownBits Known = KB->getKnownBits(ShiftAmt); 2430 unsigned Size = DstTy.getSizeInBits(); 2431 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2432 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2433 return true; 2434 } 2435 } 2436 return false; 2437 } 2438 2439 bool CombinerHelper::applyCombineTruncOfShl( 2440 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2441 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2442 Register DstReg = MI.getOperand(0).getReg(); 2443 Register SrcReg = MI.getOperand(1).getReg(); 2444 LLT DstTy = MRI.getType(DstReg); 2445 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2446 2447 Register ShiftSrc = MatchInfo.first; 2448 Register ShiftAmt = MatchInfo.second; 2449 Builder.setInstrAndDebugLoc(MI); 2450 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2451 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2452 MI.eraseFromParent(); 2453 return true; 2454 } 2455 2456 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2457 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2458 return MO.isReg() && 2459 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2460 }); 2461 } 2462 2463 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2464 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2465 return !MO.isReg() || 2466 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2467 }); 2468 } 2469 2470 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2471 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2472 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2473 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2474 } 2475 2476 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2477 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2478 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2479 MRI); 2480 } 2481 2482 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2483 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2484 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2485 MRI); 2486 } 2487 2488 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2489 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2490 if (auto MaybeCstCmp = 2491 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2492 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; 2493 return true; 2494 } 2495 return false; 2496 } 2497 2498 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2499 MI.eraseFromParent(); 2500 return true; 2501 } 2502 2503 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2504 const MachineOperand &MOP2) { 2505 if (!MOP1.isReg() || !MOP2.isReg()) 2506 return false; 2507 MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); 2508 if (!I1) 2509 return false; 2510 MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); 2511 if (!I2) 2512 return false; 2513 2514 // Handle a case like this: 2515 // 2516 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2517 // 2518 // Even though %0 and %1 are produced by the same instruction they are not 2519 // the same values. 2520 if (I1 == I2) 2521 return MOP1.getReg() == MOP2.getReg(); 2522 2523 // If we have an instruction which loads or stores, we can't guarantee that 2524 // it is identical. 2525 // 2526 // For example, we may have 2527 // 2528 // %x1 = G_LOAD %addr (load N from @somewhere) 2529 // ... 2530 // call @foo 2531 // ... 2532 // %x2 = G_LOAD %addr (load N from @somewhere) 2533 // ... 2534 // %or = G_OR %x1, %x2 2535 // 2536 // It's possible that @foo will modify whatever lives at the address we're 2537 // loading from. To be safe, let's just assume that all loads and stores 2538 // are different (unless we have something which is guaranteed to not 2539 // change.) 2540 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2541 return false; 2542 2543 // Check for physical registers on the instructions first to avoid cases 2544 // like this: 2545 // 2546 // %a = COPY $physreg 2547 // ... 2548 // SOMETHING implicit-def $physreg 2549 // ... 2550 // %b = COPY $physreg 2551 // 2552 // These copies are not equivalent. 2553 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2554 return MO.isReg() && MO.getReg().isPhysical(); 2555 })) { 2556 // Check if we have a case like this: 2557 // 2558 // %a = COPY $physreg 2559 // %b = COPY %a 2560 // 2561 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2562 // From that, we know that they must have the same value, since they must 2563 // have come from the same COPY. 2564 return I1->isIdenticalTo(*I2); 2565 } 2566 2567 // We don't have any physical registers, so we don't necessarily need the 2568 // same vreg defs. 2569 // 2570 // On the off-chance that there's some target instruction feeding into the 2571 // instruction, let's use produceSameValue instead of isIdenticalTo. 2572 return Builder.getTII().produceSameValue(*I1, *I2, &MRI); 2573 } 2574 2575 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2576 if (!MOP.isReg()) 2577 return false; 2578 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2579 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2580 return ValAndVReg && ValAndVReg->Value == C; 2581 } 2582 2583 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2584 unsigned OpIdx) { 2585 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2586 Register OldReg = MI.getOperand(0).getReg(); 2587 Register Replacement = MI.getOperand(OpIdx).getReg(); 2588 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2589 MI.eraseFromParent(); 2590 replaceRegWith(MRI, OldReg, Replacement); 2591 return true; 2592 } 2593 2594 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2595 Register Replacement) { 2596 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2597 Register OldReg = MI.getOperand(0).getReg(); 2598 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2599 MI.eraseFromParent(); 2600 replaceRegWith(MRI, OldReg, Replacement); 2601 return true; 2602 } 2603 2604 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2605 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2606 // Match (cond ? x : x) 2607 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2608 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2609 MRI); 2610 } 2611 2612 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2613 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2614 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2615 MRI); 2616 } 2617 2618 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2619 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2620 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2621 MRI); 2622 } 2623 2624 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2625 MachineOperand &MO = MI.getOperand(OpIdx); 2626 return MO.isReg() && 2627 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2628 } 2629 2630 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2631 unsigned OpIdx) { 2632 MachineOperand &MO = MI.getOperand(OpIdx); 2633 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2634 } 2635 2636 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2637 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2638 Builder.setInstr(MI); 2639 Builder.buildFConstant(MI.getOperand(0), C); 2640 MI.eraseFromParent(); 2641 return true; 2642 } 2643 2644 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2645 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2646 Builder.setInstr(MI); 2647 Builder.buildConstant(MI.getOperand(0), C); 2648 MI.eraseFromParent(); 2649 return true; 2650 } 2651 2652 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2653 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2654 Builder.setInstr(MI); 2655 Builder.buildUndef(MI.getOperand(0)); 2656 MI.eraseFromParent(); 2657 return true; 2658 } 2659 2660 bool CombinerHelper::matchSimplifyAddToSub( 2661 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2662 Register LHS = MI.getOperand(1).getReg(); 2663 Register RHS = MI.getOperand(2).getReg(); 2664 Register &NewLHS = std::get<0>(MatchInfo); 2665 Register &NewRHS = std::get<1>(MatchInfo); 2666 2667 // Helper lambda to check for opportunities for 2668 // ((0-A) + B) -> B - A 2669 // (A + (0-B)) -> A - B 2670 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2671 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2672 return false; 2673 NewLHS = MaybeNewLHS; 2674 return true; 2675 }; 2676 2677 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2678 } 2679 2680 bool CombinerHelper::matchCombineInsertVecElts( 2681 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2682 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2683 "Invalid opcode"); 2684 Register DstReg = MI.getOperand(0).getReg(); 2685 LLT DstTy = MRI.getType(DstReg); 2686 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2687 unsigned NumElts = DstTy.getNumElements(); 2688 // If this MI is part of a sequence of insert_vec_elts, then 2689 // don't do the combine in the middle of the sequence. 2690 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2691 TargetOpcode::G_INSERT_VECTOR_ELT) 2692 return false; 2693 MachineInstr *CurrInst = &MI; 2694 MachineInstr *TmpInst; 2695 int64_t IntImm; 2696 Register TmpReg; 2697 MatchInfo.resize(NumElts); 2698 while (mi_match( 2699 CurrInst->getOperand(0).getReg(), MRI, 2700 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2701 if (IntImm >= NumElts) 2702 return false; 2703 if (!MatchInfo[IntImm]) 2704 MatchInfo[IntImm] = TmpReg; 2705 CurrInst = TmpInst; 2706 } 2707 // Variable index. 2708 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2709 return false; 2710 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2711 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2712 if (!MatchInfo[I - 1].isValid()) 2713 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2714 } 2715 return true; 2716 } 2717 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2718 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2719 } 2720 2721 bool CombinerHelper::applyCombineInsertVecElts( 2722 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2723 Builder.setInstr(MI); 2724 Register UndefReg; 2725 auto GetUndef = [&]() { 2726 if (UndefReg) 2727 return UndefReg; 2728 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2729 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2730 return UndefReg; 2731 }; 2732 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2733 if (!MatchInfo[I]) 2734 MatchInfo[I] = GetUndef(); 2735 } 2736 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2737 MI.eraseFromParent(); 2738 return true; 2739 } 2740 2741 bool CombinerHelper::applySimplifyAddToSub( 2742 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2743 Builder.setInstr(MI); 2744 Register SubLHS, SubRHS; 2745 std::tie(SubLHS, SubRHS) = MatchInfo; 2746 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2747 MI.eraseFromParent(); 2748 return true; 2749 } 2750 2751 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2752 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2753 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2754 // 2755 // Creates the new hand + logic instruction (but does not insert them.) 2756 // 2757 // On success, MatchInfo is populated with the new instructions. These are 2758 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2759 unsigned LogicOpcode = MI.getOpcode(); 2760 assert(LogicOpcode == TargetOpcode::G_AND || 2761 LogicOpcode == TargetOpcode::G_OR || 2762 LogicOpcode == TargetOpcode::G_XOR); 2763 MachineIRBuilder MIB(MI); 2764 Register Dst = MI.getOperand(0).getReg(); 2765 Register LHSReg = MI.getOperand(1).getReg(); 2766 Register RHSReg = MI.getOperand(2).getReg(); 2767 2768 // Don't recompute anything. 2769 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2770 return false; 2771 2772 // Make sure we have (hand x, ...), (hand y, ...) 2773 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2774 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2775 if (!LeftHandInst || !RightHandInst) 2776 return false; 2777 unsigned HandOpcode = LeftHandInst->getOpcode(); 2778 if (HandOpcode != RightHandInst->getOpcode()) 2779 return false; 2780 if (!LeftHandInst->getOperand(1).isReg() || 2781 !RightHandInst->getOperand(1).isReg()) 2782 return false; 2783 2784 // Make sure the types match up, and if we're doing this post-legalization, 2785 // we end up with legal types. 2786 Register X = LeftHandInst->getOperand(1).getReg(); 2787 Register Y = RightHandInst->getOperand(1).getReg(); 2788 LLT XTy = MRI.getType(X); 2789 LLT YTy = MRI.getType(Y); 2790 if (XTy != YTy) 2791 return false; 2792 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2793 return false; 2794 2795 // Optional extra source register. 2796 Register ExtraHandOpSrcReg; 2797 switch (HandOpcode) { 2798 default: 2799 return false; 2800 case TargetOpcode::G_ANYEXT: 2801 case TargetOpcode::G_SEXT: 2802 case TargetOpcode::G_ZEXT: { 2803 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2804 break; 2805 } 2806 case TargetOpcode::G_AND: 2807 case TargetOpcode::G_ASHR: 2808 case TargetOpcode::G_LSHR: 2809 case TargetOpcode::G_SHL: { 2810 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2811 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2812 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2813 return false; 2814 ExtraHandOpSrcReg = ZOp.getReg(); 2815 break; 2816 } 2817 } 2818 2819 // Record the steps to build the new instructions. 2820 // 2821 // Steps to build (logic x, y) 2822 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2823 OperandBuildSteps LogicBuildSteps = { 2824 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2825 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2826 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2827 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2828 2829 // Steps to build hand (logic x, y), ...z 2830 OperandBuildSteps HandBuildSteps = { 2831 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2832 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2833 if (ExtraHandOpSrcReg.isValid()) 2834 HandBuildSteps.push_back( 2835 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2836 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2837 2838 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2839 return true; 2840 } 2841 2842 bool CombinerHelper::applyBuildInstructionSteps( 2843 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2844 assert(MatchInfo.InstrsToBuild.size() && 2845 "Expected at least one instr to build?"); 2846 Builder.setInstr(MI); 2847 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2848 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2849 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2850 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2851 for (auto &OperandFn : InstrToBuild.OperandFns) 2852 OperandFn(Instr); 2853 } 2854 MI.eraseFromParent(); 2855 return true; 2856 } 2857 2858 bool CombinerHelper::matchAshrShlToSextInreg( 2859 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2860 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2861 int64_t ShlCst, AshrCst; 2862 Register Src; 2863 // FIXME: detect splat constant vectors. 2864 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2865 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2866 return false; 2867 if (ShlCst != AshrCst) 2868 return false; 2869 if (!isLegalOrBeforeLegalizer( 2870 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2871 return false; 2872 MatchInfo = std::make_tuple(Src, ShlCst); 2873 return true; 2874 } 2875 bool CombinerHelper::applyAshShlToSextInreg( 2876 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2877 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2878 Register Src; 2879 int64_t ShiftAmt; 2880 std::tie(Src, ShiftAmt) = MatchInfo; 2881 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2882 Builder.setInstrAndDebugLoc(MI); 2883 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2884 MI.eraseFromParent(); 2885 return true; 2886 } 2887 2888 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2889 Register &Replacement) { 2890 // Given 2891 // 2892 // %y:_(sN) = G_SOMETHING 2893 // %x:_(sN) = G_SOMETHING 2894 // %res:_(sN) = G_AND %x, %y 2895 // 2896 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 2897 // 2898 // Patterns like this can appear as a result of legalization. E.g. 2899 // 2900 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2901 // %one:_(s32) = G_CONSTANT i32 1 2902 // %and:_(s32) = G_AND %cmp, %one 2903 // 2904 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2905 assert(MI.getOpcode() == TargetOpcode::G_AND); 2906 if (!KB) 2907 return false; 2908 2909 Register AndDst = MI.getOperand(0).getReg(); 2910 LLT DstTy = MRI.getType(AndDst); 2911 2912 // FIXME: This should be removed once GISelKnownBits supports vectors. 2913 if (DstTy.isVector()) 2914 return false; 2915 2916 Register LHS = MI.getOperand(1).getReg(); 2917 Register RHS = MI.getOperand(2).getReg(); 2918 KnownBits LHSBits = KB->getKnownBits(LHS); 2919 KnownBits RHSBits = KB->getKnownBits(RHS); 2920 2921 // Check that x & Mask == x. 2922 // x & 1 == x, always 2923 // x & 0 == x, only if x is also 0 2924 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 2925 // 2926 // Check if we can replace AndDst with the LHS of the G_AND 2927 if (canReplaceReg(AndDst, LHS, MRI) && 2928 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 2929 Replacement = LHS; 2930 return true; 2931 } 2932 2933 // Check if we can replace AndDst with the RHS of the G_AND 2934 if (canReplaceReg(AndDst, RHS, MRI) && 2935 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 2936 Replacement = RHS; 2937 return true; 2938 } 2939 2940 return false; 2941 } 2942 2943 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 2944 // Given 2945 // 2946 // %y:_(sN) = G_SOMETHING 2947 // %x:_(sN) = G_SOMETHING 2948 // %res:_(sN) = G_OR %x, %y 2949 // 2950 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 2951 assert(MI.getOpcode() == TargetOpcode::G_OR); 2952 if (!KB) 2953 return false; 2954 2955 Register OrDst = MI.getOperand(0).getReg(); 2956 LLT DstTy = MRI.getType(OrDst); 2957 2958 // FIXME: This should be removed once GISelKnownBits supports vectors. 2959 if (DstTy.isVector()) 2960 return false; 2961 2962 Register LHS = MI.getOperand(1).getReg(); 2963 Register RHS = MI.getOperand(2).getReg(); 2964 KnownBits LHSBits = KB->getKnownBits(LHS); 2965 KnownBits RHSBits = KB->getKnownBits(RHS); 2966 2967 // Check that x | Mask == x. 2968 // x | 0 == x, always 2969 // x | 1 == x, only if x is also 1 2970 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 2971 // 2972 // Check if we can replace OrDst with the LHS of the G_OR 2973 if (canReplaceReg(OrDst, LHS, MRI) && 2974 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 2975 Replacement = LHS; 2976 return true; 2977 } 2978 2979 // Check if we can replace OrDst with the RHS of the G_OR 2980 if (canReplaceReg(OrDst, RHS, MRI) && 2981 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 2982 Replacement = RHS; 2983 return true; 2984 } 2985 2986 return false; 2987 } 2988 2989 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 2990 // If the input is already sign extended, just drop the extension. 2991 Register Src = MI.getOperand(1).getReg(); 2992 unsigned ExtBits = MI.getOperand(2).getImm(); 2993 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 2994 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 2995 } 2996 2997 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 2998 int64_t Cst, bool IsVector, bool IsFP) { 2999 // For i1, Cst will always be -1 regardless of boolean contents. 3000 return (ScalarSizeBits == 1 && Cst == -1) || 3001 isConstTrueVal(TLI, Cst, IsVector, IsFP); 3002 } 3003 3004 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 3005 SmallVectorImpl<Register> &RegsToNegate) { 3006 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3007 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3008 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 3009 Register XorSrc; 3010 Register CstReg; 3011 // We match xor(src, true) here. 3012 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3013 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 3014 return false; 3015 3016 if (!MRI.hasOneNonDBGUse(XorSrc)) 3017 return false; 3018 3019 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 3020 // and ORs. The suffix of RegsToNegate starting from index I is used a work 3021 // list of tree nodes to visit. 3022 RegsToNegate.push_back(XorSrc); 3023 // Remember whether the comparisons are all integer or all floating point. 3024 bool IsInt = false; 3025 bool IsFP = false; 3026 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 3027 Register Reg = RegsToNegate[I]; 3028 if (!MRI.hasOneNonDBGUse(Reg)) 3029 return false; 3030 MachineInstr *Def = MRI.getVRegDef(Reg); 3031 switch (Def->getOpcode()) { 3032 default: 3033 // Don't match if the tree contains anything other than ANDs, ORs and 3034 // comparisons. 3035 return false; 3036 case TargetOpcode::G_ICMP: 3037 if (IsFP) 3038 return false; 3039 IsInt = true; 3040 // When we apply the combine we will invert the predicate. 3041 break; 3042 case TargetOpcode::G_FCMP: 3043 if (IsInt) 3044 return false; 3045 IsFP = true; 3046 // When we apply the combine we will invert the predicate. 3047 break; 3048 case TargetOpcode::G_AND: 3049 case TargetOpcode::G_OR: 3050 // Implement De Morgan's laws: 3051 // ~(x & y) -> ~x | ~y 3052 // ~(x | y) -> ~x & ~y 3053 // When we apply the combine we will change the opcode and recursively 3054 // negate the operands. 3055 RegsToNegate.push_back(Def->getOperand(1).getReg()); 3056 RegsToNegate.push_back(Def->getOperand(2).getReg()); 3057 break; 3058 } 3059 } 3060 3061 // Now we know whether the comparisons are integer or floating point, check 3062 // the constant in the xor. 3063 int64_t Cst; 3064 if (Ty.isVector()) { 3065 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 3066 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 3067 if (!MaybeCst) 3068 return false; 3069 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 3070 return false; 3071 } else { 3072 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 3073 return false; 3074 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 3075 return false; 3076 } 3077 3078 return true; 3079 } 3080 3081 bool CombinerHelper::applyNotCmp(MachineInstr &MI, 3082 SmallVectorImpl<Register> &RegsToNegate) { 3083 for (Register Reg : RegsToNegate) { 3084 MachineInstr *Def = MRI.getVRegDef(Reg); 3085 Observer.changingInstr(*Def); 3086 // For each comparison, invert the opcode. For each AND and OR, change the 3087 // opcode. 3088 switch (Def->getOpcode()) { 3089 default: 3090 llvm_unreachable("Unexpected opcode"); 3091 case TargetOpcode::G_ICMP: 3092 case TargetOpcode::G_FCMP: { 3093 MachineOperand &PredOp = Def->getOperand(1); 3094 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 3095 (CmpInst::Predicate)PredOp.getPredicate()); 3096 PredOp.setPredicate(NewP); 3097 break; 3098 } 3099 case TargetOpcode::G_AND: 3100 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3101 break; 3102 case TargetOpcode::G_OR: 3103 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3104 break; 3105 } 3106 Observer.changedInstr(*Def); 3107 } 3108 3109 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3110 MI.eraseFromParent(); 3111 return true; 3112 } 3113 3114 bool CombinerHelper::matchXorOfAndWithSameReg( 3115 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3116 // Match (xor (and x, y), y) (or any of its commuted cases) 3117 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3118 Register &X = MatchInfo.first; 3119 Register &Y = MatchInfo.second; 3120 Register AndReg = MI.getOperand(1).getReg(); 3121 Register SharedReg = MI.getOperand(2).getReg(); 3122 3123 // Find a G_AND on either side of the G_XOR. 3124 // Look for one of 3125 // 3126 // (xor (and x, y), SharedReg) 3127 // (xor SharedReg, (and x, y)) 3128 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3129 std::swap(AndReg, SharedReg); 3130 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3131 return false; 3132 } 3133 3134 // Only do this if we'll eliminate the G_AND. 3135 if (!MRI.hasOneNonDBGUse(AndReg)) 3136 return false; 3137 3138 // We can combine if SharedReg is the same as either the LHS or RHS of the 3139 // G_AND. 3140 if (Y != SharedReg) 3141 std::swap(X, Y); 3142 return Y == SharedReg; 3143 } 3144 3145 bool CombinerHelper::applyXorOfAndWithSameReg( 3146 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3147 // Fold (xor (and x, y), y) -> (and (not x), y) 3148 Builder.setInstrAndDebugLoc(MI); 3149 Register X, Y; 3150 std::tie(X, Y) = MatchInfo; 3151 auto Not = Builder.buildNot(MRI.getType(X), X); 3152 Observer.changingInstr(MI); 3153 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3154 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3155 MI.getOperand(2).setReg(Y); 3156 Observer.changedInstr(MI); 3157 return true; 3158 } 3159 3160 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3161 Register DstReg = MI.getOperand(0).getReg(); 3162 LLT Ty = MRI.getType(DstReg); 3163 const DataLayout &DL = Builder.getMF().getDataLayout(); 3164 3165 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3166 return false; 3167 3168 if (Ty.isPointer()) { 3169 auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI); 3170 return ConstVal && *ConstVal == 0; 3171 } 3172 3173 assert(Ty.isVector() && "Expecting a vector type"); 3174 const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg()); 3175 return isBuildVectorAllZeros(*VecMI, MRI); 3176 } 3177 3178 bool CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3179 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 3180 Builder.setInstrAndDebugLoc(MI); 3181 Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2)); 3182 MI.eraseFromParent(); 3183 return true; 3184 } 3185 3186 /// The second source operand is known to be a power of 2. 3187 bool CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3188 Register DstReg = MI.getOperand(0).getReg(); 3189 Register Src0 = MI.getOperand(1).getReg(); 3190 Register Pow2Src1 = MI.getOperand(2).getReg(); 3191 LLT Ty = MRI.getType(DstReg); 3192 Builder.setInstrAndDebugLoc(MI); 3193 3194 // Fold (urem x, pow2) -> (and x, pow2-1) 3195 auto NegOne = Builder.buildConstant(Ty, -1); 3196 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3197 Builder.buildAnd(DstReg, Src0, Add); 3198 MI.eraseFromParent(); 3199 return true; 3200 } 3201 3202 Optional<SmallVector<Register, 8>> 3203 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3204 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3205 // We want to detect if Root is part of a tree which represents a bunch 3206 // of loads being merged into a larger load. We'll try to recognize patterns 3207 // like, for example: 3208 // 3209 // Reg Reg 3210 // \ / 3211 // OR_1 Reg 3212 // \ / 3213 // OR_2 3214 // \ Reg 3215 // .. / 3216 // Root 3217 // 3218 // Reg Reg Reg Reg 3219 // \ / \ / 3220 // OR_1 OR_2 3221 // \ / 3222 // \ / 3223 // ... 3224 // Root 3225 // 3226 // Each "Reg" may have been produced by a load + some arithmetic. This 3227 // function will save each of them. 3228 SmallVector<Register, 8> RegsToVisit; 3229 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3230 3231 // In the "worst" case, we're dealing with a load for each byte. So, there 3232 // are at most #bytes - 1 ORs. 3233 const unsigned MaxIter = 3234 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3235 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3236 if (Ors.empty()) 3237 break; 3238 const MachineInstr *Curr = Ors.pop_back_val(); 3239 Register OrLHS = Curr->getOperand(1).getReg(); 3240 Register OrRHS = Curr->getOperand(2).getReg(); 3241 3242 // In the combine, we want to elimate the entire tree. 3243 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3244 return None; 3245 3246 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3247 // something that may be a load + arithmetic. 3248 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3249 Ors.push_back(Or); 3250 else 3251 RegsToVisit.push_back(OrLHS); 3252 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3253 Ors.push_back(Or); 3254 else 3255 RegsToVisit.push_back(OrRHS); 3256 } 3257 3258 // We're going to try and merge each register into a wider power-of-2 type, 3259 // so we ought to have an even number of registers. 3260 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3261 return None; 3262 return RegsToVisit; 3263 } 3264 3265 /// Helper function for findLoadOffsetsForLoadOrCombine. 3266 /// 3267 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3268 /// and then moving that value into a specific byte offset. 3269 /// 3270 /// e.g. x[i] << 24 3271 /// 3272 /// \returns The load instruction and the byte offset it is moved into. 3273 static Optional<std::pair<MachineInstr *, int64_t>> 3274 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3275 const MachineRegisterInfo &MRI) { 3276 assert(MRI.hasOneNonDBGUse(Reg) && 3277 "Expected Reg to only have one non-debug use?"); 3278 Register MaybeLoad; 3279 int64_t Shift; 3280 if (!mi_match(Reg, MRI, 3281 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3282 Shift = 0; 3283 MaybeLoad = Reg; 3284 } 3285 3286 if (Shift % MemSizeInBits != 0) 3287 return None; 3288 3289 // TODO: Handle other types of loads. 3290 auto *Load = getOpcodeDef(TargetOpcode::G_ZEXTLOAD, MaybeLoad, MRI); 3291 if (!Load) 3292 return None; 3293 3294 const auto &MMO = **Load->memoperands_begin(); 3295 if (!MMO.isUnordered() || MMO.getSizeInBits() != MemSizeInBits) 3296 return None; 3297 3298 return std::make_pair(Load, Shift / MemSizeInBits); 3299 } 3300 3301 Optional<std::pair<MachineInstr *, int64_t>> 3302 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3303 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3304 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3305 3306 // Each load found for the pattern. There should be one for each RegsToVisit. 3307 SmallSetVector<const MachineInstr *, 8> Loads; 3308 3309 // The lowest index used in any load. (The lowest "i" for each x[i].) 3310 int64_t LowestIdx = INT64_MAX; 3311 3312 // The load which uses the lowest index. 3313 MachineInstr *LowestIdxLoad = nullptr; 3314 3315 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3316 SmallSet<int64_t, 8> SeenIdx; 3317 3318 // Ensure each load is in the same MBB. 3319 // TODO: Support multiple MachineBasicBlocks. 3320 MachineBasicBlock *MBB = nullptr; 3321 const MachineMemOperand *MMO = nullptr; 3322 3323 // Earliest instruction-order load in the pattern. 3324 MachineInstr *EarliestLoad = nullptr; 3325 3326 // Latest instruction-order load in the pattern. 3327 MachineInstr *LatestLoad = nullptr; 3328 3329 // Base pointer which every load should share. 3330 Register BasePtr; 3331 3332 // We want to find a load for each register. Each load should have some 3333 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3334 // track of the load which uses the lowest index. Later, we will check if we 3335 // can use its pointer in the final, combined load. 3336 for (auto Reg : RegsToVisit) { 3337 // Find the load, and find the position that it will end up in (e.g. a 3338 // shifted) value. 3339 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3340 if (!LoadAndPos) 3341 return None; 3342 MachineInstr *Load; 3343 int64_t DstPos; 3344 std::tie(Load, DstPos) = *LoadAndPos; 3345 3346 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3347 // it is difficult to check for stores/calls/etc between loads. 3348 MachineBasicBlock *LoadMBB = Load->getParent(); 3349 if (!MBB) 3350 MBB = LoadMBB; 3351 if (LoadMBB != MBB) 3352 return None; 3353 3354 // Make sure that the MachineMemOperands of every seen load are compatible. 3355 const MachineMemOperand *LoadMMO = *Load->memoperands_begin(); 3356 if (!MMO) 3357 MMO = LoadMMO; 3358 if (MMO->getAddrSpace() != LoadMMO->getAddrSpace()) 3359 return None; 3360 3361 // Find out what the base pointer and index for the load is. 3362 Register LoadPtr; 3363 int64_t Idx; 3364 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3365 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3366 LoadPtr = Load->getOperand(1).getReg(); 3367 Idx = 0; 3368 } 3369 3370 // Don't combine things like a[i], a[i] -> a bigger load. 3371 if (!SeenIdx.insert(Idx).second) 3372 return None; 3373 3374 // Every load must share the same base pointer; don't combine things like: 3375 // 3376 // a[i], b[i + 1] -> a bigger load. 3377 if (!BasePtr.isValid()) 3378 BasePtr = LoadPtr; 3379 if (BasePtr != LoadPtr) 3380 return None; 3381 3382 if (Idx < LowestIdx) { 3383 LowestIdx = Idx; 3384 LowestIdxLoad = Load; 3385 } 3386 3387 // Keep track of the byte offset that this load ends up at. If we have seen 3388 // the byte offset, then stop here. We do not want to combine: 3389 // 3390 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3391 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3392 return None; 3393 Loads.insert(Load); 3394 3395 // Keep track of the position of the earliest/latest loads in the pattern. 3396 // We will check that there are no load fold barriers between them later 3397 // on. 3398 // 3399 // FIXME: Is there a better way to check for load fold barriers? 3400 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3401 EarliestLoad = Load; 3402 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3403 LatestLoad = Load; 3404 } 3405 3406 // We found a load for each register. Let's check if each load satisfies the 3407 // pattern. 3408 assert(Loads.size() == RegsToVisit.size() && 3409 "Expected to find a load for each register?"); 3410 assert(EarliestLoad != LatestLoad && EarliestLoad && 3411 LatestLoad && "Expected at least two loads?"); 3412 3413 // Check if there are any stores, calls, etc. between any of the loads. If 3414 // there are, then we can't safely perform the combine. 3415 // 3416 // MaxIter is chosen based off the (worst case) number of iterations it 3417 // typically takes to succeed in the LLVM test suite plus some padding. 3418 // 3419 // FIXME: Is there a better way to check for load fold barriers? 3420 const unsigned MaxIter = 20; 3421 unsigned Iter = 0; 3422 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3423 LatestLoad->getIterator())) { 3424 if (Loads.count(&MI)) 3425 continue; 3426 if (MI.isLoadFoldBarrier()) 3427 return None; 3428 if (Iter++ == MaxIter) 3429 return None; 3430 } 3431 3432 return std::make_pair(LowestIdxLoad, LowestIdx); 3433 } 3434 3435 bool CombinerHelper::matchLoadOrCombine( 3436 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3437 assert(MI.getOpcode() == TargetOpcode::G_OR); 3438 MachineFunction &MF = *MI.getMF(); 3439 // Assuming a little-endian target, transform: 3440 // s8 *a = ... 3441 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3442 // => 3443 // s32 val = *((i32)a) 3444 // 3445 // s8 *a = ... 3446 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3447 // => 3448 // s32 val = BSWAP(*((s32)a)) 3449 Register Dst = MI.getOperand(0).getReg(); 3450 LLT Ty = MRI.getType(Dst); 3451 if (Ty.isVector()) 3452 return false; 3453 3454 // We need to combine at least two loads into this type. Since the smallest 3455 // possible load is into a byte, we need at least a 16-bit wide type. 3456 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3457 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3458 return false; 3459 3460 // Match a collection of non-OR instructions in the pattern. 3461 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3462 if (!RegsToVisit) 3463 return false; 3464 3465 // We have a collection of non-OR instructions. Figure out how wide each of 3466 // the small loads should be based off of the number of potential loads we 3467 // found. 3468 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3469 if (NarrowMemSizeInBits % 8 != 0) 3470 return false; 3471 3472 // Check if each register feeding into each OR is a load from the same 3473 // base pointer + some arithmetic. 3474 // 3475 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3476 // 3477 // Also verify that each of these ends up putting a[i] into the same memory 3478 // offset as a load into a wide type would. 3479 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3480 MachineInstr *LowestIdxLoad; 3481 int64_t LowestIdx; 3482 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3483 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3484 if (!MaybeLoadInfo) 3485 return false; 3486 std::tie(LowestIdxLoad, LowestIdx) = *MaybeLoadInfo; 3487 3488 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3489 // we found before, check if this corresponds to a big or little endian byte 3490 // pattern. If it does, then we can represent it using a load + possibly a 3491 // BSWAP. 3492 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3493 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3494 if (!IsBigEndian.hasValue()) 3495 return false; 3496 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3497 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3498 return false; 3499 3500 // Make sure that the load from the lowest index produces offset 0 in the 3501 // final value. 3502 // 3503 // This ensures that we won't combine something like this: 3504 // 3505 // load x[i] -> byte 2 3506 // load x[i+1] -> byte 0 ---> wide_load x[i] 3507 // load x[i+2] -> byte 1 3508 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3509 const unsigned ZeroByteOffset = 3510 *IsBigEndian 3511 ? bigEndianByteAt(NumLoadsInTy, 0) 3512 : littleEndianByteAt(NumLoadsInTy, 0); 3513 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3514 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3515 ZeroOffsetIdx->second != LowestIdx) 3516 return false; 3517 3518 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3519 // may not use index 0. 3520 Register Ptr = LowestIdxLoad->getOperand(1).getReg(); 3521 const MachineMemOperand &MMO = **LowestIdxLoad->memoperands_begin(); 3522 LegalityQuery::MemDesc MMDesc; 3523 MMDesc.SizeInBits = WideMemSizeInBits; 3524 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 3525 MMDesc.Ordering = MMO.getOrdering(); 3526 if (!isLegalOrBeforeLegalizer( 3527 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3528 return false; 3529 auto PtrInfo = MMO.getPointerInfo(); 3530 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3531 3532 // Load must be allowed and fast on the target. 3533 LLVMContext &C = MF.getFunction().getContext(); 3534 auto &DL = MF.getDataLayout(); 3535 bool Fast = false; 3536 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3537 !Fast) 3538 return false; 3539 3540 MatchInfo = [=](MachineIRBuilder &MIB) { 3541 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3542 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3543 if (NeedsBSwap) 3544 MIB.buildBSwap(Dst, LoadDst); 3545 }; 3546 return true; 3547 } 3548 3549 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3550 MachineInstr *&ExtMI) { 3551 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3552 3553 Register DstReg = MI.getOperand(0).getReg(); 3554 3555 // TODO: Extending a vector may be expensive, don't do this until heuristics 3556 // are better. 3557 if (MRI.getType(DstReg).isVector()) 3558 return false; 3559 3560 // Try to match a phi, whose only use is an extend. 3561 if (!MRI.hasOneNonDBGUse(DstReg)) 3562 return false; 3563 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3564 switch (ExtMI->getOpcode()) { 3565 case TargetOpcode::G_ANYEXT: 3566 return true; // G_ANYEXT is usually free. 3567 case TargetOpcode::G_ZEXT: 3568 case TargetOpcode::G_SEXT: 3569 break; 3570 default: 3571 return false; 3572 } 3573 3574 // If the target is likely to fold this extend away, don't propagate. 3575 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3576 return false; 3577 3578 // We don't want to propagate the extends unless there's a good chance that 3579 // they'll be optimized in some way. 3580 // Collect the unique incoming values. 3581 SmallPtrSet<MachineInstr *, 4> InSrcs; 3582 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3583 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3584 switch (DefMI->getOpcode()) { 3585 case TargetOpcode::G_LOAD: 3586 case TargetOpcode::G_TRUNC: 3587 case TargetOpcode::G_SEXT: 3588 case TargetOpcode::G_ZEXT: 3589 case TargetOpcode::G_ANYEXT: 3590 case TargetOpcode::G_CONSTANT: 3591 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3592 // Don't try to propagate if there are too many places to create new 3593 // extends, chances are it'll increase code size. 3594 if (InSrcs.size() > 2) 3595 return false; 3596 break; 3597 default: 3598 return false; 3599 } 3600 } 3601 return true; 3602 } 3603 3604 bool CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3605 MachineInstr *&ExtMI) { 3606 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3607 Register DstReg = ExtMI->getOperand(0).getReg(); 3608 LLT ExtTy = MRI.getType(DstReg); 3609 3610 // Propagate the extension into the block of each incoming reg's block. 3611 // Use a SetVector here because PHIs can have duplicate edges, and we want 3612 // deterministic iteration order. 3613 SmallSetVector<MachineInstr *, 8> SrcMIs; 3614 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3615 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3616 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3617 if (!SrcMIs.insert(SrcMI)) 3618 continue; 3619 3620 // Build an extend after each src inst. 3621 auto *MBB = SrcMI->getParent(); 3622 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3623 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3624 InsertPt = MBB->getFirstNonPHI(); 3625 3626 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3627 Builder.setDebugLoc(MI.getDebugLoc()); 3628 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3629 SrcMI->getOperand(0).getReg()); 3630 OldToNewSrcMap[SrcMI] = NewExt; 3631 } 3632 3633 // Create a new phi with the extended inputs. 3634 Builder.setInstrAndDebugLoc(MI); 3635 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3636 NewPhi.addDef(DstReg); 3637 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3638 auto &MO = MI.getOperand(SrcIdx); 3639 if (!MO.isReg()) { 3640 NewPhi.addMBB(MO.getMBB()); 3641 continue; 3642 } 3643 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3644 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3645 } 3646 Builder.insertInstr(NewPhi); 3647 ExtMI->eraseFromParent(); 3648 return true; 3649 } 3650 3651 bool CombinerHelper::applyLoadOrCombine( 3652 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3653 Builder.setInstrAndDebugLoc(MI); 3654 MatchInfo(Builder); 3655 MI.eraseFromParent(); 3656 return true; 3657 } 3658 3659 bool CombinerHelper::tryCombine(MachineInstr &MI) { 3660 if (tryCombineCopy(MI)) 3661 return true; 3662 if (tryCombineExtendingLoads(MI)) 3663 return true; 3664 if (tryCombineIndexedLoadStore(MI)) 3665 return true; 3666 return false; 3667 } 3668