1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 17 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 20 #include "llvm/CodeGen/GlobalISel/Utils.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetOpcodes.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/MathExtras.h" 34 #include <tuple> 35 36 #define DEBUG_TYPE "gi-combiner" 37 38 using namespace llvm; 39 using namespace MIPatternMatch; 40 41 // Option to allow testing of the combiner while no targets know about indexed 42 // addressing. 43 static cl::opt<bool> 44 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 45 cl::desc("Force all indexed operations to be " 46 "legal for the GlobalISel combiner")); 47 48 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 49 MachineIRBuilder &B, GISelKnownBits *KB, 50 MachineDominatorTree *MDT, 51 const LegalizerInfo *LI) 52 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 53 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 54 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 55 (void)this->KB; 56 } 57 58 const TargetLowering &CombinerHelper::getTargetLowering() const { 59 return *Builder.getMF().getSubtarget().getTargetLowering(); 60 } 61 62 /// \returns The little endian in-memory byte position of byte \p I in a 63 /// \p ByteWidth bytes wide type. 64 /// 65 /// E.g. Given a 4-byte type x, x[0] -> byte 0 66 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 67 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 68 return I; 69 } 70 71 /// \returns The big endian in-memory byte position of byte \p I in a 72 /// \p ByteWidth bytes wide type. 73 /// 74 /// E.g. Given a 4-byte type x, x[0] -> byte 3 75 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 76 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 77 return ByteWidth - I - 1; 78 } 79 80 /// Given a map from byte offsets in memory to indices in a load/store, 81 /// determine if that map corresponds to a little or big endian byte pattern. 82 /// 83 /// \param MemOffset2Idx maps memory offsets to address offsets. 84 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 85 /// 86 /// \returns true if the map corresponds to a big endian byte pattern, false 87 /// if it corresponds to a little endian byte pattern, and None otherwise. 88 /// 89 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 90 /// are as follows: 91 /// 92 /// AddrOffset Little endian Big endian 93 /// 0 0 3 94 /// 1 1 2 95 /// 2 2 1 96 /// 3 3 0 97 static Optional<bool> 98 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 99 int64_t LowestIdx) { 100 // Need at least two byte positions to decide on endianness. 101 unsigned Width = MemOffset2Idx.size(); 102 if (Width < 2) 103 return None; 104 bool BigEndian = true, LittleEndian = true; 105 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 106 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 107 if (MemOffsetAndIdx == MemOffset2Idx.end()) 108 return None; 109 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 110 assert(Idx >= 0 && "Expected non-negative byte offset?"); 111 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 112 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 113 if (!BigEndian && !LittleEndian) 114 return None; 115 } 116 117 assert((BigEndian != LittleEndian) && 118 "Pattern cannot be both big and little endian!"); 119 return BigEndian; 120 } 121 122 bool CombinerHelper::isLegalOrBeforeLegalizer( 123 const LegalityQuery &Query) const { 124 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 125 } 126 127 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 128 Register ToReg) const { 129 Observer.changingAllUsesOfReg(MRI, FromReg); 130 131 if (MRI.constrainRegAttrs(ToReg, FromReg)) 132 MRI.replaceRegWith(FromReg, ToReg); 133 else 134 Builder.buildCopy(ToReg, FromReg); 135 136 Observer.finishedChangingAllUsesOfReg(); 137 } 138 139 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 140 MachineOperand &FromRegOp, 141 Register ToReg) const { 142 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 143 Observer.changingInstr(*FromRegOp.getParent()); 144 145 FromRegOp.setReg(ToReg); 146 147 Observer.changedInstr(*FromRegOp.getParent()); 148 } 149 150 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 151 return RBI->getRegBank(Reg, MRI, *TRI); 152 } 153 154 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 155 if (RegBank) 156 MRI.setRegBank(Reg, *RegBank); 157 } 158 159 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 160 if (matchCombineCopy(MI)) { 161 applyCombineCopy(MI); 162 return true; 163 } 164 return false; 165 } 166 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 167 if (MI.getOpcode() != TargetOpcode::COPY) 168 return false; 169 Register DstReg = MI.getOperand(0).getReg(); 170 Register SrcReg = MI.getOperand(1).getReg(); 171 return canReplaceReg(DstReg, SrcReg, MRI); 172 } 173 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 174 Register DstReg = MI.getOperand(0).getReg(); 175 Register SrcReg = MI.getOperand(1).getReg(); 176 MI.eraseFromParent(); 177 replaceRegWith(MRI, DstReg, SrcReg); 178 } 179 180 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 181 bool IsUndef = false; 182 SmallVector<Register, 4> Ops; 183 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 184 applyCombineConcatVectors(MI, IsUndef, Ops); 185 return true; 186 } 187 return false; 188 } 189 190 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 191 SmallVectorImpl<Register> &Ops) { 192 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 193 "Invalid instruction"); 194 IsUndef = true; 195 MachineInstr *Undef = nullptr; 196 197 // Walk over all the operands of concat vectors and check if they are 198 // build_vector themselves or undef. 199 // Then collect their operands in Ops. 200 for (const MachineOperand &MO : MI.uses()) { 201 Register Reg = MO.getReg(); 202 MachineInstr *Def = MRI.getVRegDef(Reg); 203 assert(Def && "Operand not defined"); 204 switch (Def->getOpcode()) { 205 case TargetOpcode::G_BUILD_VECTOR: 206 IsUndef = false; 207 // Remember the operands of the build_vector to fold 208 // them into the yet-to-build flattened concat vectors. 209 for (const MachineOperand &BuildVecMO : Def->uses()) 210 Ops.push_back(BuildVecMO.getReg()); 211 break; 212 case TargetOpcode::G_IMPLICIT_DEF: { 213 LLT OpType = MRI.getType(Reg); 214 // Keep one undef value for all the undef operands. 215 if (!Undef) { 216 Builder.setInsertPt(*MI.getParent(), MI); 217 Undef = Builder.buildUndef(OpType.getScalarType()); 218 } 219 assert(MRI.getType(Undef->getOperand(0).getReg()) == 220 OpType.getScalarType() && 221 "All undefs should have the same type"); 222 // Break the undef vector in as many scalar elements as needed 223 // for the flattening. 224 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 225 EltIdx != EltEnd; ++EltIdx) 226 Ops.push_back(Undef->getOperand(0).getReg()); 227 break; 228 } 229 default: 230 return false; 231 } 232 } 233 return true; 234 } 235 void CombinerHelper::applyCombineConcatVectors( 236 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 237 // We determined that the concat_vectors can be flatten. 238 // Generate the flattened build_vector. 239 Register DstReg = MI.getOperand(0).getReg(); 240 Builder.setInsertPt(*MI.getParent(), MI); 241 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 242 243 // Note: IsUndef is sort of redundant. We could have determine it by 244 // checking that at all Ops are undef. Alternatively, we could have 245 // generate a build_vector of undefs and rely on another combine to 246 // clean that up. For now, given we already gather this information 247 // in tryCombineConcatVectors, just save compile time and issue the 248 // right thing. 249 if (IsUndef) 250 Builder.buildUndef(NewDstReg); 251 else 252 Builder.buildBuildVector(NewDstReg, Ops); 253 MI.eraseFromParent(); 254 replaceRegWith(MRI, DstReg, NewDstReg); 255 } 256 257 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 258 SmallVector<Register, 4> Ops; 259 if (matchCombineShuffleVector(MI, Ops)) { 260 applyCombineShuffleVector(MI, Ops); 261 return true; 262 } 263 return false; 264 } 265 266 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 267 SmallVectorImpl<Register> &Ops) { 268 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 269 "Invalid instruction kind"); 270 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 271 Register Src1 = MI.getOperand(1).getReg(); 272 LLT SrcType = MRI.getType(Src1); 273 // As bizarre as it may look, shuffle vector can actually produce 274 // scalar! This is because at the IR level a <1 x ty> shuffle 275 // vector is perfectly valid. 276 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 277 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 278 279 // If the resulting vector is smaller than the size of the source 280 // vectors being concatenated, we won't be able to replace the 281 // shuffle vector into a concat_vectors. 282 // 283 // Note: We may still be able to produce a concat_vectors fed by 284 // extract_vector_elt and so on. It is less clear that would 285 // be better though, so don't bother for now. 286 // 287 // If the destination is a scalar, the size of the sources doesn't 288 // matter. we will lower the shuffle to a plain copy. This will 289 // work only if the source and destination have the same size. But 290 // that's covered by the next condition. 291 // 292 // TODO: If the size between the source and destination don't match 293 // we could still emit an extract vector element in that case. 294 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 295 return false; 296 297 // Check that the shuffle mask can be broken evenly between the 298 // different sources. 299 if (DstNumElts % SrcNumElts != 0) 300 return false; 301 302 // Mask length is a multiple of the source vector length. 303 // Check if the shuffle is some kind of concatenation of the input 304 // vectors. 305 unsigned NumConcat = DstNumElts / SrcNumElts; 306 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 307 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 308 for (unsigned i = 0; i != DstNumElts; ++i) { 309 int Idx = Mask[i]; 310 // Undef value. 311 if (Idx < 0) 312 continue; 313 // Ensure the indices in each SrcType sized piece are sequential and that 314 // the same source is used for the whole piece. 315 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 316 (ConcatSrcs[i / SrcNumElts] >= 0 && 317 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 318 return false; 319 // Remember which source this index came from. 320 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 321 } 322 323 // The shuffle is concatenating multiple vectors together. 324 // Collect the different operands for that. 325 Register UndefReg; 326 Register Src2 = MI.getOperand(2).getReg(); 327 for (auto Src : ConcatSrcs) { 328 if (Src < 0) { 329 if (!UndefReg) { 330 Builder.setInsertPt(*MI.getParent(), MI); 331 UndefReg = Builder.buildUndef(SrcType).getReg(0); 332 } 333 Ops.push_back(UndefReg); 334 } else if (Src == 0) 335 Ops.push_back(Src1); 336 else 337 Ops.push_back(Src2); 338 } 339 return true; 340 } 341 342 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 343 const ArrayRef<Register> Ops) { 344 Register DstReg = MI.getOperand(0).getReg(); 345 Builder.setInsertPt(*MI.getParent(), MI); 346 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 347 348 if (Ops.size() == 1) 349 Builder.buildCopy(NewDstReg, Ops[0]); 350 else 351 Builder.buildMerge(NewDstReg, Ops); 352 353 MI.eraseFromParent(); 354 replaceRegWith(MRI, DstReg, NewDstReg); 355 } 356 357 namespace { 358 359 /// Select a preference between two uses. CurrentUse is the current preference 360 /// while *ForCandidate is attributes of the candidate under consideration. 361 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 362 const LLT TyForCandidate, 363 unsigned OpcodeForCandidate, 364 MachineInstr *MIForCandidate) { 365 if (!CurrentUse.Ty.isValid()) { 366 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 367 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 368 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 369 return CurrentUse; 370 } 371 372 // We permit the extend to hoist through basic blocks but this is only 373 // sensible if the target has extending loads. If you end up lowering back 374 // into a load and extend during the legalizer then the end result is 375 // hoisting the extend up to the load. 376 377 // Prefer defined extensions to undefined extensions as these are more 378 // likely to reduce the number of instructions. 379 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 380 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 381 return CurrentUse; 382 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 383 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 384 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 385 386 // Prefer sign extensions to zero extensions as sign-extensions tend to be 387 // more expensive. 388 if (CurrentUse.Ty == TyForCandidate) { 389 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 390 OpcodeForCandidate == TargetOpcode::G_ZEXT) 391 return CurrentUse; 392 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 393 OpcodeForCandidate == TargetOpcode::G_SEXT) 394 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 395 } 396 397 // This is potentially target specific. We've chosen the largest type 398 // because G_TRUNC is usually free. One potential catch with this is that 399 // some targets have a reduced number of larger registers than smaller 400 // registers and this choice potentially increases the live-range for the 401 // larger value. 402 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 403 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 404 } 405 return CurrentUse; 406 } 407 408 /// Find a suitable place to insert some instructions and insert them. This 409 /// function accounts for special cases like inserting before a PHI node. 410 /// The current strategy for inserting before PHI's is to duplicate the 411 /// instructions for each predecessor. However, while that's ok for G_TRUNC 412 /// on most targets since it generally requires no code, other targets/cases may 413 /// want to try harder to find a dominating block. 414 static void InsertInsnsWithoutSideEffectsBeforeUse( 415 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 416 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 417 MachineOperand &UseMO)> 418 Inserter) { 419 MachineInstr &UseMI = *UseMO.getParent(); 420 421 MachineBasicBlock *InsertBB = UseMI.getParent(); 422 423 // If the use is a PHI then we want the predecessor block instead. 424 if (UseMI.isPHI()) { 425 MachineOperand *PredBB = std::next(&UseMO); 426 InsertBB = PredBB->getMBB(); 427 } 428 429 // If the block is the same block as the def then we want to insert just after 430 // the def instead of at the start of the block. 431 if (InsertBB == DefMI.getParent()) { 432 MachineBasicBlock::iterator InsertPt = &DefMI; 433 Inserter(InsertBB, std::next(InsertPt), UseMO); 434 return; 435 } 436 437 // Otherwise we want the start of the BB 438 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 439 } 440 } // end anonymous namespace 441 442 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 443 PreferredTuple Preferred; 444 if (matchCombineExtendingLoads(MI, Preferred)) { 445 applyCombineExtendingLoads(MI, Preferred); 446 return true; 447 } 448 return false; 449 } 450 451 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 452 PreferredTuple &Preferred) { 453 // We match the loads and follow the uses to the extend instead of matching 454 // the extends and following the def to the load. This is because the load 455 // must remain in the same position for correctness (unless we also add code 456 // to find a safe place to sink it) whereas the extend is freely movable. 457 // It also prevents us from duplicating the load for the volatile case or just 458 // for performance. 459 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 460 if (!LoadMI) 461 return false; 462 463 Register LoadReg = LoadMI->getDstReg(); 464 465 LLT LoadValueTy = MRI.getType(LoadReg); 466 if (!LoadValueTy.isScalar()) 467 return false; 468 469 // Most architectures are going to legalize <s8 loads into at least a 1 byte 470 // load, and the MMOs can only describe memory accesses in multiples of bytes. 471 // If we try to perform extload combining on those, we can end up with 472 // %a(s8) = extload %ptr (load 1 byte from %ptr) 473 // ... which is an illegal extload instruction. 474 if (LoadValueTy.getSizeInBits() < 8) 475 return false; 476 477 // For non power-of-2 types, they will very likely be legalized into multiple 478 // loads. Don't bother trying to match them into extending loads. 479 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 480 return false; 481 482 // Find the preferred type aside from the any-extends (unless it's the only 483 // one) and non-extending ops. We'll emit an extending load to that type and 484 // and emit a variant of (extend (trunc X)) for the others according to the 485 // relative type sizes. At the same time, pick an extend to use based on the 486 // extend involved in the chosen type. 487 unsigned PreferredOpcode = 488 isa<GLoad>(&MI) 489 ? TargetOpcode::G_ANYEXT 490 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 491 Preferred = {LLT(), PreferredOpcode, nullptr}; 492 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 493 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 494 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 495 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 496 const auto &MMO = LoadMI->getMMO(); 497 // For atomics, only form anyextending loads. 498 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 499 continue; 500 // Check for legality. 501 if (LI) { 502 LegalityQuery::MemDesc MMDesc(MMO); 503 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 504 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 505 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 506 .Action != LegalizeActions::Legal) 507 continue; 508 } 509 Preferred = ChoosePreferredUse(Preferred, 510 MRI.getType(UseMI.getOperand(0).getReg()), 511 UseMI.getOpcode(), &UseMI); 512 } 513 } 514 515 // There were no extends 516 if (!Preferred.MI) 517 return false; 518 // It should be impossible to chose an extend without selecting a different 519 // type since by definition the result of an extend is larger. 520 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 521 522 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 523 return true; 524 } 525 526 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 527 PreferredTuple &Preferred) { 528 // Rewrite the load to the chosen extending load. 529 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 530 531 // Inserter to insert a truncate back to the original type at a given point 532 // with some basic CSE to limit truncate duplication to one per BB. 533 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 534 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 535 MachineBasicBlock::iterator InsertBefore, 536 MachineOperand &UseMO) { 537 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 538 if (PreviouslyEmitted) { 539 Observer.changingInstr(*UseMO.getParent()); 540 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 541 Observer.changedInstr(*UseMO.getParent()); 542 return; 543 } 544 545 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 546 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 547 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 548 EmittedInsns[InsertIntoBB] = NewMI; 549 replaceRegOpWith(MRI, UseMO, NewDstReg); 550 }; 551 552 Observer.changingInstr(MI); 553 MI.setDesc( 554 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 555 ? TargetOpcode::G_SEXTLOAD 556 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 557 ? TargetOpcode::G_ZEXTLOAD 558 : TargetOpcode::G_LOAD)); 559 560 // Rewrite all the uses to fix up the types. 561 auto &LoadValue = MI.getOperand(0); 562 SmallVector<MachineOperand *, 4> Uses; 563 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 564 Uses.push_back(&UseMO); 565 566 for (auto *UseMO : Uses) { 567 MachineInstr *UseMI = UseMO->getParent(); 568 569 // If the extend is compatible with the preferred extend then we should fix 570 // up the type and extend so that it uses the preferred use. 571 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 572 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 573 Register UseDstReg = UseMI->getOperand(0).getReg(); 574 MachineOperand &UseSrcMO = UseMI->getOperand(1); 575 const LLT UseDstTy = MRI.getType(UseDstReg); 576 if (UseDstReg != ChosenDstReg) { 577 if (Preferred.Ty == UseDstTy) { 578 // If the use has the same type as the preferred use, then merge 579 // the vregs and erase the extend. For example: 580 // %1:_(s8) = G_LOAD ... 581 // %2:_(s32) = G_SEXT %1(s8) 582 // %3:_(s32) = G_ANYEXT %1(s8) 583 // ... = ... %3(s32) 584 // rewrites to: 585 // %2:_(s32) = G_SEXTLOAD ... 586 // ... = ... %2(s32) 587 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 588 Observer.erasingInstr(*UseMO->getParent()); 589 UseMO->getParent()->eraseFromParent(); 590 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 591 // If the preferred size is smaller, then keep the extend but extend 592 // from the result of the extending load. For example: 593 // %1:_(s8) = G_LOAD ... 594 // %2:_(s32) = G_SEXT %1(s8) 595 // %3:_(s64) = G_ANYEXT %1(s8) 596 // ... = ... %3(s64) 597 /// rewrites to: 598 // %2:_(s32) = G_SEXTLOAD ... 599 // %3:_(s64) = G_ANYEXT %2:_(s32) 600 // ... = ... %3(s64) 601 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 602 } else { 603 // If the preferred size is large, then insert a truncate. For 604 // example: 605 // %1:_(s8) = G_LOAD ... 606 // %2:_(s64) = G_SEXT %1(s8) 607 // %3:_(s32) = G_ZEXT %1(s8) 608 // ... = ... %3(s32) 609 /// rewrites to: 610 // %2:_(s64) = G_SEXTLOAD ... 611 // %4:_(s8) = G_TRUNC %2:_(s32) 612 // %3:_(s64) = G_ZEXT %2:_(s8) 613 // ... = ... %3(s64) 614 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 615 InsertTruncAt); 616 } 617 continue; 618 } 619 // The use is (one of) the uses of the preferred use we chose earlier. 620 // We're going to update the load to def this value later so just erase 621 // the old extend. 622 Observer.erasingInstr(*UseMO->getParent()); 623 UseMO->getParent()->eraseFromParent(); 624 continue; 625 } 626 627 // The use isn't an extend. Truncate back to the type we originally loaded. 628 // This is free on many targets. 629 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 630 } 631 632 MI.getOperand(0).setReg(ChosenDstReg); 633 Observer.changedInstr(MI); 634 } 635 636 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI, 637 BuildFnTy &MatchInfo) { 638 assert(MI.getOpcode() == TargetOpcode::G_AND); 639 640 // If we have the following code: 641 // %mask = G_CONSTANT 255 642 // %ld = G_LOAD %ptr, (load s16) 643 // %and = G_AND %ld, %mask 644 // 645 // Try to fold it into 646 // %ld = G_ZEXTLOAD %ptr, (load s8) 647 648 Register Dst = MI.getOperand(0).getReg(); 649 if (MRI.getType(Dst).isVector()) 650 return false; 651 652 auto MaybeMask = 653 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 654 if (!MaybeMask) 655 return false; 656 657 APInt MaskVal = MaybeMask->Value; 658 659 if (!MaskVal.isMask()) 660 return false; 661 662 Register SrcReg = MI.getOperand(1).getReg(); 663 GAnyLoad *LoadMI = getOpcodeDef<GAnyLoad>(SrcReg, MRI); 664 if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()) || 665 !LoadMI->isSimple()) 666 return false; 667 668 Register LoadReg = LoadMI->getDstReg(); 669 LLT LoadTy = MRI.getType(LoadReg); 670 Register PtrReg = LoadMI->getPointerReg(); 671 uint64_t LoadSizeBits = LoadMI->getMemSizeInBits(); 672 unsigned MaskSizeBits = MaskVal.countTrailingOnes(); 673 674 // The mask may not be larger than the in-memory type, as it might cover sign 675 // extended bits 676 if (MaskSizeBits > LoadSizeBits) 677 return false; 678 679 // If the mask covers the whole destination register, there's nothing to 680 // extend 681 if (MaskSizeBits >= LoadTy.getSizeInBits()) 682 return false; 683 684 // Most targets cannot deal with loads of size < 8 and need to re-legalize to 685 // at least byte loads. Avoid creating such loads here 686 if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits)) 687 return false; 688 689 const MachineMemOperand &MMO = LoadMI->getMMO(); 690 LegalityQuery::MemDesc MemDesc(MMO); 691 MemDesc.MemoryTy = LLT::scalar(MaskSizeBits); 692 if (!isLegalOrBeforeLegalizer( 693 {TargetOpcode::G_ZEXTLOAD, {LoadTy, MRI.getType(PtrReg)}, {MemDesc}})) 694 return false; 695 696 MatchInfo = [=](MachineIRBuilder &B) { 697 B.setInstrAndDebugLoc(*LoadMI); 698 auto &MF = B.getMF(); 699 auto PtrInfo = MMO.getPointerInfo(); 700 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MaskSizeBits / 8); 701 B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO); 702 }; 703 return true; 704 } 705 706 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 707 const MachineInstr &UseMI) { 708 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 709 "shouldn't consider debug uses"); 710 assert(DefMI.getParent() == UseMI.getParent()); 711 if (&DefMI == &UseMI) 712 return true; 713 const MachineBasicBlock &MBB = *DefMI.getParent(); 714 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 715 return &MI == &DefMI || &MI == &UseMI; 716 }); 717 if (DefOrUse == MBB.end()) 718 llvm_unreachable("Block must contain both DefMI and UseMI!"); 719 return &*DefOrUse == &DefMI; 720 } 721 722 bool CombinerHelper::dominates(const MachineInstr &DefMI, 723 const MachineInstr &UseMI) { 724 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 725 "shouldn't consider debug uses"); 726 if (MDT) 727 return MDT->dominates(&DefMI, &UseMI); 728 else if (DefMI.getParent() != UseMI.getParent()) 729 return false; 730 731 return isPredecessor(DefMI, UseMI); 732 } 733 734 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 735 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 736 Register SrcReg = MI.getOperand(1).getReg(); 737 Register LoadUser = SrcReg; 738 739 if (MRI.getType(SrcReg).isVector()) 740 return false; 741 742 Register TruncSrc; 743 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 744 LoadUser = TruncSrc; 745 746 uint64_t SizeInBits = MI.getOperand(2).getImm(); 747 // If the source is a G_SEXTLOAD from the same bit width, then we don't 748 // need any extend at all, just a truncate. 749 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 750 // If truncating more than the original extended value, abort. 751 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 752 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 753 return false; 754 if (LoadSizeBits == SizeInBits) 755 return true; 756 } 757 return false; 758 } 759 760 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 761 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 762 Builder.setInstrAndDebugLoc(MI); 763 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 764 MI.eraseFromParent(); 765 } 766 767 bool CombinerHelper::matchSextInRegOfLoad( 768 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 769 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 770 771 // Only supports scalars for now. 772 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 773 return false; 774 775 Register SrcReg = MI.getOperand(1).getReg(); 776 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 777 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || 778 !LoadDef->isSimple()) 779 return false; 780 781 // If the sign extend extends from a narrower width than the load's width, 782 // then we can narrow the load width when we combine to a G_SEXTLOAD. 783 // Avoid widening the load at all. 784 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), 785 LoadDef->getMemSizeInBits()); 786 787 // Don't generate G_SEXTLOADs with a < 1 byte width. 788 if (NewSizeBits < 8) 789 return false; 790 // Don't bother creating a non-power-2 sextload, it will likely be broken up 791 // anyway for most targets. 792 if (!isPowerOf2_32(NewSizeBits)) 793 return false; 794 795 const MachineMemOperand &MMO = LoadDef->getMMO(); 796 LegalityQuery::MemDesc MMDesc(MMO); 797 MMDesc.MemoryTy = LLT::scalar(NewSizeBits); 798 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, 799 {MRI.getType(LoadDef->getDstReg()), 800 MRI.getType(LoadDef->getPointerReg())}, 801 {MMDesc}})) 802 return false; 803 804 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 805 return true; 806 } 807 808 void CombinerHelper::applySextInRegOfLoad( 809 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 810 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 811 Register LoadReg; 812 unsigned ScalarSizeBits; 813 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 814 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 815 816 // If we have the following: 817 // %ld = G_LOAD %ptr, (load 2) 818 // %ext = G_SEXT_INREG %ld, 8 819 // ==> 820 // %ld = G_SEXTLOAD %ptr (load 1) 821 822 auto &MMO = LoadDef->getMMO(); 823 Builder.setInstrAndDebugLoc(*LoadDef); 824 auto &MF = Builder.getMF(); 825 auto PtrInfo = MMO.getPointerInfo(); 826 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 827 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 828 LoadDef->getPointerReg(), *NewMMO); 829 MI.eraseFromParent(); 830 } 831 832 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 833 Register &Base, Register &Offset) { 834 auto &MF = *MI.getParent()->getParent(); 835 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 836 837 #ifndef NDEBUG 838 unsigned Opcode = MI.getOpcode(); 839 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 840 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 841 #endif 842 843 Base = MI.getOperand(1).getReg(); 844 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 845 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 846 return false; 847 848 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 849 // FIXME: The following use traversal needs a bail out for patholigical cases. 850 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 851 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 852 continue; 853 854 Offset = Use.getOperand(2).getReg(); 855 if (!ForceLegalIndexing && 856 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 857 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 858 << Use); 859 continue; 860 } 861 862 // Make sure the offset calculation is before the potentially indexed op. 863 // FIXME: we really care about dependency here. The offset calculation might 864 // be movable. 865 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 866 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 867 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 868 << Use); 869 continue; 870 } 871 872 // FIXME: check whether all uses of Base are load/store with foldable 873 // addressing modes. If so, using the normal addr-modes is better than 874 // forming an indexed one. 875 876 bool MemOpDominatesAddrUses = true; 877 for (auto &PtrAddUse : 878 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 879 if (!dominates(MI, PtrAddUse)) { 880 MemOpDominatesAddrUses = false; 881 break; 882 } 883 } 884 885 if (!MemOpDominatesAddrUses) { 886 LLVM_DEBUG( 887 dbgs() << " Ignoring candidate as memop does not dominate uses: " 888 << Use); 889 continue; 890 } 891 892 LLVM_DEBUG(dbgs() << " Found match: " << Use); 893 Addr = Use.getOperand(0).getReg(); 894 return true; 895 } 896 897 return false; 898 } 899 900 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 901 Register &Base, Register &Offset) { 902 auto &MF = *MI.getParent()->getParent(); 903 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 904 905 #ifndef NDEBUG 906 unsigned Opcode = MI.getOpcode(); 907 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 908 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 909 #endif 910 911 Addr = MI.getOperand(1).getReg(); 912 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 913 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 914 return false; 915 916 Base = AddrDef->getOperand(1).getReg(); 917 Offset = AddrDef->getOperand(2).getReg(); 918 919 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 920 921 if (!ForceLegalIndexing && 922 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 923 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 924 return false; 925 } 926 927 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 928 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 929 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 930 return false; 931 } 932 933 if (MI.getOpcode() == TargetOpcode::G_STORE) { 934 // Would require a copy. 935 if (Base == MI.getOperand(0).getReg()) { 936 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 937 return false; 938 } 939 940 // We're expecting one use of Addr in MI, but it could also be the 941 // value stored, which isn't actually dominated by the instruction. 942 if (MI.getOperand(0).getReg() == Addr) { 943 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 944 return false; 945 } 946 } 947 948 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 949 // That might allow us to end base's liveness here by adjusting the constant. 950 951 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 952 if (!dominates(MI, UseMI)) { 953 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 954 return false; 955 } 956 } 957 958 return true; 959 } 960 961 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 962 IndexedLoadStoreMatchInfo MatchInfo; 963 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 964 applyCombineIndexedLoadStore(MI, MatchInfo); 965 return true; 966 } 967 return false; 968 } 969 970 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 971 unsigned Opcode = MI.getOpcode(); 972 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 973 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 974 return false; 975 976 // For now, no targets actually support these opcodes so don't waste time 977 // running these unless we're forced to for testing. 978 if (!ForceLegalIndexing) 979 return false; 980 981 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 982 MatchInfo.Offset); 983 if (!MatchInfo.IsPre && 984 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 985 MatchInfo.Offset)) 986 return false; 987 988 return true; 989 } 990 991 void CombinerHelper::applyCombineIndexedLoadStore( 992 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 993 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 994 MachineIRBuilder MIRBuilder(MI); 995 unsigned Opcode = MI.getOpcode(); 996 bool IsStore = Opcode == TargetOpcode::G_STORE; 997 unsigned NewOpcode; 998 switch (Opcode) { 999 case TargetOpcode::G_LOAD: 1000 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 1001 break; 1002 case TargetOpcode::G_SEXTLOAD: 1003 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 1004 break; 1005 case TargetOpcode::G_ZEXTLOAD: 1006 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 1007 break; 1008 case TargetOpcode::G_STORE: 1009 NewOpcode = TargetOpcode::G_INDEXED_STORE; 1010 break; 1011 default: 1012 llvm_unreachable("Unknown load/store opcode"); 1013 } 1014 1015 auto MIB = MIRBuilder.buildInstr(NewOpcode); 1016 if (IsStore) { 1017 MIB.addDef(MatchInfo.Addr); 1018 MIB.addUse(MI.getOperand(0).getReg()); 1019 } else { 1020 MIB.addDef(MI.getOperand(0).getReg()); 1021 MIB.addDef(MatchInfo.Addr); 1022 } 1023 1024 MIB.addUse(MatchInfo.Base); 1025 MIB.addUse(MatchInfo.Offset); 1026 MIB.addImm(MatchInfo.IsPre); 1027 MI.eraseFromParent(); 1028 AddrDef.eraseFromParent(); 1029 1030 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 1031 } 1032 1033 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 1034 MachineInstr *&OtherMI) { 1035 unsigned Opcode = MI.getOpcode(); 1036 bool IsDiv, IsSigned; 1037 1038 switch (Opcode) { 1039 default: 1040 llvm_unreachable("Unexpected opcode!"); 1041 case TargetOpcode::G_SDIV: 1042 case TargetOpcode::G_UDIV: { 1043 IsDiv = true; 1044 IsSigned = Opcode == TargetOpcode::G_SDIV; 1045 break; 1046 } 1047 case TargetOpcode::G_SREM: 1048 case TargetOpcode::G_UREM: { 1049 IsDiv = false; 1050 IsSigned = Opcode == TargetOpcode::G_SREM; 1051 break; 1052 } 1053 } 1054 1055 Register Src1 = MI.getOperand(1).getReg(); 1056 unsigned DivOpcode, RemOpcode, DivremOpcode; 1057 if (IsSigned) { 1058 DivOpcode = TargetOpcode::G_SDIV; 1059 RemOpcode = TargetOpcode::G_SREM; 1060 DivremOpcode = TargetOpcode::G_SDIVREM; 1061 } else { 1062 DivOpcode = TargetOpcode::G_UDIV; 1063 RemOpcode = TargetOpcode::G_UREM; 1064 DivremOpcode = TargetOpcode::G_UDIVREM; 1065 } 1066 1067 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 1068 return false; 1069 1070 // Combine: 1071 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1072 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1073 // into: 1074 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1075 1076 // Combine: 1077 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1078 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1079 // into: 1080 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1081 1082 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1083 if (MI.getParent() == UseMI.getParent() && 1084 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1085 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1086 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1087 OtherMI = &UseMI; 1088 return true; 1089 } 1090 } 1091 1092 return false; 1093 } 1094 1095 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1096 MachineInstr *&OtherMI) { 1097 unsigned Opcode = MI.getOpcode(); 1098 assert(OtherMI && "OtherMI shouldn't be empty."); 1099 1100 Register DestDivReg, DestRemReg; 1101 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1102 DestDivReg = MI.getOperand(0).getReg(); 1103 DestRemReg = OtherMI->getOperand(0).getReg(); 1104 } else { 1105 DestDivReg = OtherMI->getOperand(0).getReg(); 1106 DestRemReg = MI.getOperand(0).getReg(); 1107 } 1108 1109 bool IsSigned = 1110 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1111 1112 // Check which instruction is first in the block so we don't break def-use 1113 // deps by "moving" the instruction incorrectly. 1114 if (dominates(MI, *OtherMI)) 1115 Builder.setInstrAndDebugLoc(MI); 1116 else 1117 Builder.setInstrAndDebugLoc(*OtherMI); 1118 1119 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1120 : TargetOpcode::G_UDIVREM, 1121 {DestDivReg, DestRemReg}, 1122 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1123 MI.eraseFromParent(); 1124 OtherMI->eraseFromParent(); 1125 } 1126 1127 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1128 MachineInstr *&BrCond) { 1129 assert(MI.getOpcode() == TargetOpcode::G_BR); 1130 1131 // Try to match the following: 1132 // bb1: 1133 // G_BRCOND %c1, %bb2 1134 // G_BR %bb3 1135 // bb2: 1136 // ... 1137 // bb3: 1138 1139 // The above pattern does not have a fall through to the successor bb2, always 1140 // resulting in a branch no matter which path is taken. Here we try to find 1141 // and replace that pattern with conditional branch to bb3 and otherwise 1142 // fallthrough to bb2. This is generally better for branch predictors. 1143 1144 MachineBasicBlock *MBB = MI.getParent(); 1145 MachineBasicBlock::iterator BrIt(MI); 1146 if (BrIt == MBB->begin()) 1147 return false; 1148 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1149 1150 BrCond = &*std::prev(BrIt); 1151 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1152 return false; 1153 1154 // Check that the next block is the conditional branch target. Also make sure 1155 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1156 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1157 return BrCondTarget != MI.getOperand(0).getMBB() && 1158 MBB->isLayoutSuccessor(BrCondTarget); 1159 } 1160 1161 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1162 MachineInstr *&BrCond) { 1163 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1164 Builder.setInstrAndDebugLoc(*BrCond); 1165 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1166 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1167 // this to i1 only since we might not know for sure what kind of 1168 // compare generated the condition value. 1169 auto True = Builder.buildConstant( 1170 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1171 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1172 1173 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1174 Observer.changingInstr(MI); 1175 MI.getOperand(0).setMBB(FallthroughBB); 1176 Observer.changedInstr(MI); 1177 1178 // Change the conditional branch to use the inverted condition and 1179 // new target block. 1180 Observer.changingInstr(*BrCond); 1181 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1182 BrCond->getOperand(1).setMBB(BrTarget); 1183 Observer.changedInstr(*BrCond); 1184 } 1185 1186 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1187 if (Ty.isVector()) 1188 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1189 Ty.getNumElements()); 1190 return IntegerType::get(C, Ty.getSizeInBits()); 1191 } 1192 1193 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1194 MachineIRBuilder HelperBuilder(MI); 1195 GISelObserverWrapper DummyObserver; 1196 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1197 return Helper.lowerMemcpyInline(MI) == 1198 LegalizerHelper::LegalizeResult::Legalized; 1199 } 1200 1201 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1202 MachineIRBuilder HelperBuilder(MI); 1203 GISelObserverWrapper DummyObserver; 1204 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1205 return Helper.lowerMemCpyFamily(MI, MaxLen) == 1206 LegalizerHelper::LegalizeResult::Legalized; 1207 } 1208 1209 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1210 const Register Op, 1211 const MachineRegisterInfo &MRI) { 1212 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1213 if (!MaybeCst) 1214 return None; 1215 1216 APFloat V = MaybeCst->getValueAPF(); 1217 switch (Opcode) { 1218 default: 1219 llvm_unreachable("Unexpected opcode!"); 1220 case TargetOpcode::G_FNEG: { 1221 V.changeSign(); 1222 return V; 1223 } 1224 case TargetOpcode::G_FABS: { 1225 V.clearSign(); 1226 return V; 1227 } 1228 case TargetOpcode::G_FPTRUNC: 1229 break; 1230 case TargetOpcode::G_FSQRT: { 1231 bool Unused; 1232 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1233 V = APFloat(sqrt(V.convertToDouble())); 1234 break; 1235 } 1236 case TargetOpcode::G_FLOG2: { 1237 bool Unused; 1238 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1239 V = APFloat(log2(V.convertToDouble())); 1240 break; 1241 } 1242 } 1243 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1244 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1245 // and `G_FLOG2` reach here. 1246 bool Unused; 1247 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1248 return V; 1249 } 1250 1251 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1252 Optional<APFloat> &Cst) { 1253 Register DstReg = MI.getOperand(0).getReg(); 1254 Register SrcReg = MI.getOperand(1).getReg(); 1255 LLT DstTy = MRI.getType(DstReg); 1256 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1257 return Cst.hasValue(); 1258 } 1259 1260 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1261 Optional<APFloat> &Cst) { 1262 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1263 Builder.setInstrAndDebugLoc(MI); 1264 MachineFunction &MF = Builder.getMF(); 1265 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1266 Register DstReg = MI.getOperand(0).getReg(); 1267 Builder.buildFConstant(DstReg, *FPVal); 1268 MI.eraseFromParent(); 1269 } 1270 1271 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1272 PtrAddChain &MatchInfo) { 1273 // We're trying to match the following pattern: 1274 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1275 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1276 // --> 1277 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1278 1279 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1280 return false; 1281 1282 Register Add2 = MI.getOperand(1).getReg(); 1283 Register Imm1 = MI.getOperand(2).getReg(); 1284 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1285 if (!MaybeImmVal) 1286 return false; 1287 1288 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1289 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1290 return false; 1291 1292 Register Base = Add2Def->getOperand(1).getReg(); 1293 Register Imm2 = Add2Def->getOperand(2).getReg(); 1294 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1295 if (!MaybeImm2Val) 1296 return false; 1297 1298 // Check if the new combined immediate forms an illegal addressing mode. 1299 // Do not combine if it was legal before but would get illegal. 1300 // To do so, we need to find a load/store user of the pointer to get 1301 // the access type. 1302 Type *AccessTy = nullptr; 1303 auto &MF = *MI.getMF(); 1304 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1305 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1306 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1307 MF.getFunction().getContext()); 1308 break; 1309 } 1310 } 1311 TargetLoweringBase::AddrMode AMNew; 1312 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1313 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1314 if (AccessTy) { 1315 AMNew.HasBaseReg = true; 1316 TargetLoweringBase::AddrMode AMOld; 1317 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); 1318 AMOld.HasBaseReg = true; 1319 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1320 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1321 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1322 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1323 return false; 1324 } 1325 1326 // Pass the combined immediate to the apply function. 1327 MatchInfo.Imm = AMNew.BaseOffs; 1328 MatchInfo.Base = Base; 1329 MatchInfo.Bank = getRegBank(Imm2); 1330 return true; 1331 } 1332 1333 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1334 PtrAddChain &MatchInfo) { 1335 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1336 MachineIRBuilder MIB(MI); 1337 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1338 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1339 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1340 Observer.changingInstr(MI); 1341 MI.getOperand(1).setReg(MatchInfo.Base); 1342 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1343 Observer.changedInstr(MI); 1344 } 1345 1346 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1347 RegisterImmPair &MatchInfo) { 1348 // We're trying to match the following pattern with any of 1349 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1350 // %t1 = SHIFT %base, G_CONSTANT imm1 1351 // %root = SHIFT %t1, G_CONSTANT imm2 1352 // --> 1353 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1354 1355 unsigned Opcode = MI.getOpcode(); 1356 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1357 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1358 Opcode == TargetOpcode::G_USHLSAT) && 1359 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1360 1361 Register Shl2 = MI.getOperand(1).getReg(); 1362 Register Imm1 = MI.getOperand(2).getReg(); 1363 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1364 if (!MaybeImmVal) 1365 return false; 1366 1367 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1368 if (Shl2Def->getOpcode() != Opcode) 1369 return false; 1370 1371 Register Base = Shl2Def->getOperand(1).getReg(); 1372 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1373 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1374 if (!MaybeImm2Val) 1375 return false; 1376 1377 // Pass the combined immediate to the apply function. 1378 MatchInfo.Imm = 1379 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1380 MatchInfo.Reg = Base; 1381 1382 // There is no simple replacement for a saturating unsigned left shift that 1383 // exceeds the scalar size. 1384 if (Opcode == TargetOpcode::G_USHLSAT && 1385 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1386 return false; 1387 1388 return true; 1389 } 1390 1391 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1392 RegisterImmPair &MatchInfo) { 1393 unsigned Opcode = MI.getOpcode(); 1394 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1395 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1396 Opcode == TargetOpcode::G_USHLSAT) && 1397 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1398 1399 Builder.setInstrAndDebugLoc(MI); 1400 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1401 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1402 auto Imm = MatchInfo.Imm; 1403 1404 if (Imm >= ScalarSizeInBits) { 1405 // Any logical shift that exceeds scalar size will produce zero. 1406 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1407 Builder.buildConstant(MI.getOperand(0), 0); 1408 MI.eraseFromParent(); 1409 return; 1410 } 1411 // Arithmetic shift and saturating signed left shift have no effect beyond 1412 // scalar size. 1413 Imm = ScalarSizeInBits - 1; 1414 } 1415 1416 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1417 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1418 Observer.changingInstr(MI); 1419 MI.getOperand(1).setReg(MatchInfo.Reg); 1420 MI.getOperand(2).setReg(NewImm); 1421 Observer.changedInstr(MI); 1422 } 1423 1424 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1425 ShiftOfShiftedLogic &MatchInfo) { 1426 // We're trying to match the following pattern with any of 1427 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1428 // with any of G_AND/G_OR/G_XOR logic instructions. 1429 // %t1 = SHIFT %X, G_CONSTANT C0 1430 // %t2 = LOGIC %t1, %Y 1431 // %root = SHIFT %t2, G_CONSTANT C1 1432 // --> 1433 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1434 // %t4 = SHIFT %Y, G_CONSTANT C1 1435 // %root = LOGIC %t3, %t4 1436 unsigned ShiftOpcode = MI.getOpcode(); 1437 assert((ShiftOpcode == TargetOpcode::G_SHL || 1438 ShiftOpcode == TargetOpcode::G_ASHR || 1439 ShiftOpcode == TargetOpcode::G_LSHR || 1440 ShiftOpcode == TargetOpcode::G_USHLSAT || 1441 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1442 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1443 1444 // Match a one-use bitwise logic op. 1445 Register LogicDest = MI.getOperand(1).getReg(); 1446 if (!MRI.hasOneNonDBGUse(LogicDest)) 1447 return false; 1448 1449 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1450 unsigned LogicOpcode = LogicMI->getOpcode(); 1451 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1452 LogicOpcode != TargetOpcode::G_XOR) 1453 return false; 1454 1455 // Find a matching one-use shift by constant. 1456 const Register C1 = MI.getOperand(2).getReg(); 1457 auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI); 1458 if (!MaybeImmVal) 1459 return false; 1460 1461 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1462 1463 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1464 // Shift should match previous one and should be a one-use. 1465 if (MI->getOpcode() != ShiftOpcode || 1466 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1467 return false; 1468 1469 // Must be a constant. 1470 auto MaybeImmVal = 1471 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1472 if (!MaybeImmVal) 1473 return false; 1474 1475 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1476 return true; 1477 }; 1478 1479 // Logic ops are commutative, so check each operand for a match. 1480 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1481 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1482 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1483 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1484 uint64_t C0Val; 1485 1486 if (matchFirstShift(LogicMIOp1, C0Val)) { 1487 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1488 MatchInfo.Shift2 = LogicMIOp1; 1489 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1490 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1491 MatchInfo.Shift2 = LogicMIOp2; 1492 } else 1493 return false; 1494 1495 MatchInfo.ValSum = C0Val + C1Val; 1496 1497 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1498 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1499 return false; 1500 1501 MatchInfo.Logic = LogicMI; 1502 return true; 1503 } 1504 1505 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1506 ShiftOfShiftedLogic &MatchInfo) { 1507 unsigned Opcode = MI.getOpcode(); 1508 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1509 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1510 Opcode == TargetOpcode::G_SSHLSAT) && 1511 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1512 1513 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1514 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1515 Builder.setInstrAndDebugLoc(MI); 1516 1517 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1518 1519 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1520 Register Shift1 = 1521 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1522 1523 Register Shift2Const = MI.getOperand(2).getReg(); 1524 Register Shift2 = Builder 1525 .buildInstr(Opcode, {DestType}, 1526 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1527 .getReg(0); 1528 1529 Register Dest = MI.getOperand(0).getReg(); 1530 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1531 1532 // These were one use so it's safe to remove them. 1533 MatchInfo.Shift2->eraseFromParentAndMarkDBGValuesForRemoval(); 1534 MatchInfo.Logic->eraseFromParentAndMarkDBGValuesForRemoval(); 1535 1536 MI.eraseFromParent(); 1537 } 1538 1539 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1540 unsigned &ShiftVal) { 1541 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1542 auto MaybeImmVal = 1543 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1544 if (!MaybeImmVal) 1545 return false; 1546 1547 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1548 return (static_cast<int32_t>(ShiftVal) != -1); 1549 } 1550 1551 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1552 unsigned &ShiftVal) { 1553 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1554 MachineIRBuilder MIB(MI); 1555 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1556 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1557 Observer.changingInstr(MI); 1558 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1559 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1560 Observer.changedInstr(MI); 1561 } 1562 1563 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1564 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1565 RegisterImmPair &MatchData) { 1566 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1567 1568 Register LHS = MI.getOperand(1).getReg(); 1569 1570 Register ExtSrc; 1571 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1572 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1573 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1574 return false; 1575 1576 // TODO: Should handle vector splat. 1577 Register RHS = MI.getOperand(2).getReg(); 1578 auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI); 1579 if (!MaybeShiftAmtVal) 1580 return false; 1581 1582 if (LI) { 1583 LLT SrcTy = MRI.getType(ExtSrc); 1584 1585 // We only really care about the legality with the shifted value. We can 1586 // pick any type the constant shift amount, so ask the target what to 1587 // use. Otherwise we would have to guess and hope it is reported as legal. 1588 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1589 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1590 return false; 1591 } 1592 1593 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1594 MatchData.Reg = ExtSrc; 1595 MatchData.Imm = ShiftAmt; 1596 1597 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1598 return MinLeadingZeros >= ShiftAmt; 1599 } 1600 1601 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1602 const RegisterImmPair &MatchData) { 1603 Register ExtSrcReg = MatchData.Reg; 1604 int64_t ShiftAmtVal = MatchData.Imm; 1605 1606 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1607 Builder.setInstrAndDebugLoc(MI); 1608 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1609 auto NarrowShift = 1610 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1611 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1612 MI.eraseFromParent(); 1613 } 1614 1615 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 1616 Register &MatchInfo) { 1617 GMerge &Merge = cast<GMerge>(MI); 1618 SmallVector<Register, 16> MergedValues; 1619 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 1620 MergedValues.emplace_back(Merge.getSourceReg(I)); 1621 1622 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 1623 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 1624 return false; 1625 1626 for (unsigned I = 0; I < MergedValues.size(); ++I) 1627 if (MergedValues[I] != Unmerge->getReg(I)) 1628 return false; 1629 1630 MatchInfo = Unmerge->getSourceReg(); 1631 return true; 1632 } 1633 1634 static Register peekThroughBitcast(Register Reg, 1635 const MachineRegisterInfo &MRI) { 1636 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1637 ; 1638 1639 return Reg; 1640 } 1641 1642 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1643 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1644 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1645 "Expected an unmerge"); 1646 auto &Unmerge = cast<GUnmerge>(MI); 1647 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 1648 1649 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI); 1650 if (!SrcInstr) 1651 return false; 1652 1653 // Check the source type of the merge. 1654 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 1655 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 1656 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1657 if (SrcMergeTy != Dst0Ty && !SameSize) 1658 return false; 1659 // They are the same now (modulo a bitcast). 1660 // We can collect all the src registers. 1661 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 1662 Operands.push_back(SrcInstr->getSourceReg(Idx)); 1663 return true; 1664 } 1665 1666 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1667 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1668 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1669 "Expected an unmerge"); 1670 assert((MI.getNumOperands() - 1 == Operands.size()) && 1671 "Not enough operands to replace all defs"); 1672 unsigned NumElems = MI.getNumOperands() - 1; 1673 1674 LLT SrcTy = MRI.getType(Operands[0]); 1675 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1676 bool CanReuseInputDirectly = DstTy == SrcTy; 1677 Builder.setInstrAndDebugLoc(MI); 1678 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1679 Register DstReg = MI.getOperand(Idx).getReg(); 1680 Register SrcReg = Operands[Idx]; 1681 if (CanReuseInputDirectly) 1682 replaceRegWith(MRI, DstReg, SrcReg); 1683 else 1684 Builder.buildCast(DstReg, SrcReg); 1685 } 1686 MI.eraseFromParent(); 1687 } 1688 1689 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1690 SmallVectorImpl<APInt> &Csts) { 1691 unsigned SrcIdx = MI.getNumOperands() - 1; 1692 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1693 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1694 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1695 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1696 return false; 1697 // Break down the big constant in smaller ones. 1698 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1699 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1700 ? CstVal.getCImm()->getValue() 1701 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1702 1703 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1704 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1705 // Unmerge a constant. 1706 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1707 Csts.emplace_back(Val.trunc(ShiftAmt)); 1708 Val = Val.lshr(ShiftAmt); 1709 } 1710 1711 return true; 1712 } 1713 1714 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1715 SmallVectorImpl<APInt> &Csts) { 1716 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1717 "Expected an unmerge"); 1718 assert((MI.getNumOperands() - 1 == Csts.size()) && 1719 "Not enough operands to replace all defs"); 1720 unsigned NumElems = MI.getNumOperands() - 1; 1721 Builder.setInstrAndDebugLoc(MI); 1722 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1723 Register DstReg = MI.getOperand(Idx).getReg(); 1724 Builder.buildConstant(DstReg, Csts[Idx]); 1725 } 1726 1727 MI.eraseFromParent(); 1728 } 1729 1730 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1731 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1732 "Expected an unmerge"); 1733 // Check that all the lanes are dead except the first one. 1734 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1735 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1736 return false; 1737 } 1738 return true; 1739 } 1740 1741 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1742 Builder.setInstrAndDebugLoc(MI); 1743 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1744 // Truncating a vector is going to truncate every single lane, 1745 // whereas we want the full lowbits. 1746 // Do the operation on a scalar instead. 1747 LLT SrcTy = MRI.getType(SrcReg); 1748 if (SrcTy.isVector()) 1749 SrcReg = 1750 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1751 1752 Register Dst0Reg = MI.getOperand(0).getReg(); 1753 LLT Dst0Ty = MRI.getType(Dst0Reg); 1754 if (Dst0Ty.isVector()) { 1755 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 1756 Builder.buildCast(Dst0Reg, MIB); 1757 } else 1758 Builder.buildTrunc(Dst0Reg, SrcReg); 1759 MI.eraseFromParent(); 1760 } 1761 1762 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 1763 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1764 "Expected an unmerge"); 1765 Register Dst0Reg = MI.getOperand(0).getReg(); 1766 LLT Dst0Ty = MRI.getType(Dst0Reg); 1767 // G_ZEXT on vector applies to each lane, so it will 1768 // affect all destinations. Therefore we won't be able 1769 // to simplify the unmerge to just the first definition. 1770 if (Dst0Ty.isVector()) 1771 return false; 1772 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1773 LLT SrcTy = MRI.getType(SrcReg); 1774 if (SrcTy.isVector()) 1775 return false; 1776 1777 Register ZExtSrcReg; 1778 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 1779 return false; 1780 1781 // Finally we can replace the first definition with 1782 // a zext of the source if the definition is big enough to hold 1783 // all of ZExtSrc bits. 1784 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1785 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 1786 } 1787 1788 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 1789 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1790 "Expected an unmerge"); 1791 1792 Register Dst0Reg = MI.getOperand(0).getReg(); 1793 1794 MachineInstr *ZExtInstr = 1795 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 1796 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 1797 "Expecting a G_ZEXT"); 1798 1799 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 1800 LLT Dst0Ty = MRI.getType(Dst0Reg); 1801 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1802 1803 Builder.setInstrAndDebugLoc(MI); 1804 1805 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 1806 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 1807 } else { 1808 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 1809 "ZExt src doesn't fit in destination"); 1810 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 1811 } 1812 1813 Register ZeroReg; 1814 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1815 if (!ZeroReg) 1816 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 1817 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 1818 } 1819 MI.eraseFromParent(); 1820 } 1821 1822 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1823 unsigned TargetShiftSize, 1824 unsigned &ShiftVal) { 1825 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1826 MI.getOpcode() == TargetOpcode::G_LSHR || 1827 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1828 1829 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1830 if (Ty.isVector()) // TODO: 1831 return false; 1832 1833 // Don't narrow further than the requested size. 1834 unsigned Size = Ty.getSizeInBits(); 1835 if (Size <= TargetShiftSize) 1836 return false; 1837 1838 auto MaybeImmVal = 1839 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1840 if (!MaybeImmVal) 1841 return false; 1842 1843 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1844 return ShiftVal >= Size / 2 && ShiftVal < Size; 1845 } 1846 1847 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1848 const unsigned &ShiftVal) { 1849 Register DstReg = MI.getOperand(0).getReg(); 1850 Register SrcReg = MI.getOperand(1).getReg(); 1851 LLT Ty = MRI.getType(SrcReg); 1852 unsigned Size = Ty.getSizeInBits(); 1853 unsigned HalfSize = Size / 2; 1854 assert(ShiftVal >= HalfSize); 1855 1856 LLT HalfTy = LLT::scalar(HalfSize); 1857 1858 Builder.setInstr(MI); 1859 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1860 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1861 1862 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1863 Register Narrowed = Unmerge.getReg(1); 1864 1865 // dst = G_LSHR s64:x, C for C >= 32 1866 // => 1867 // lo, hi = G_UNMERGE_VALUES x 1868 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1869 1870 if (NarrowShiftAmt != 0) { 1871 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1872 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1873 } 1874 1875 auto Zero = Builder.buildConstant(HalfTy, 0); 1876 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1877 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1878 Register Narrowed = Unmerge.getReg(0); 1879 // dst = G_SHL s64:x, C for C >= 32 1880 // => 1881 // lo, hi = G_UNMERGE_VALUES x 1882 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1883 if (NarrowShiftAmt != 0) { 1884 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1885 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1886 } 1887 1888 auto Zero = Builder.buildConstant(HalfTy, 0); 1889 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1890 } else { 1891 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1892 auto Hi = Builder.buildAShr( 1893 HalfTy, Unmerge.getReg(1), 1894 Builder.buildConstant(HalfTy, HalfSize - 1)); 1895 1896 if (ShiftVal == HalfSize) { 1897 // (G_ASHR i64:x, 32) -> 1898 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1899 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1900 } else if (ShiftVal == Size - 1) { 1901 // Don't need a second shift. 1902 // (G_ASHR i64:x, 63) -> 1903 // %narrowed = (G_ASHR hi_32(x), 31) 1904 // G_MERGE_VALUES %narrowed, %narrowed 1905 Builder.buildMerge(DstReg, { Hi, Hi }); 1906 } else { 1907 auto Lo = Builder.buildAShr( 1908 HalfTy, Unmerge.getReg(1), 1909 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1910 1911 // (G_ASHR i64:x, C) ->, for C >= 32 1912 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1913 Builder.buildMerge(DstReg, { Lo, Hi }); 1914 } 1915 } 1916 1917 MI.eraseFromParent(); 1918 } 1919 1920 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1921 unsigned TargetShiftAmount) { 1922 unsigned ShiftAmt; 1923 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1924 applyCombineShiftToUnmerge(MI, ShiftAmt); 1925 return true; 1926 } 1927 1928 return false; 1929 } 1930 1931 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1932 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1933 Register DstReg = MI.getOperand(0).getReg(); 1934 LLT DstTy = MRI.getType(DstReg); 1935 Register SrcReg = MI.getOperand(1).getReg(); 1936 return mi_match(SrcReg, MRI, 1937 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 1938 } 1939 1940 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1941 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1942 Register DstReg = MI.getOperand(0).getReg(); 1943 Builder.setInstr(MI); 1944 Builder.buildCopy(DstReg, Reg); 1945 MI.eraseFromParent(); 1946 } 1947 1948 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1949 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1950 Register SrcReg = MI.getOperand(1).getReg(); 1951 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 1952 } 1953 1954 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1955 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1956 Register DstReg = MI.getOperand(0).getReg(); 1957 Builder.setInstr(MI); 1958 Builder.buildZExtOrTrunc(DstReg, Reg); 1959 MI.eraseFromParent(); 1960 } 1961 1962 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 1963 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1964 assert(MI.getOpcode() == TargetOpcode::G_ADD); 1965 Register LHS = MI.getOperand(1).getReg(); 1966 Register RHS = MI.getOperand(2).getReg(); 1967 LLT IntTy = MRI.getType(LHS); 1968 1969 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 1970 // instruction. 1971 PtrReg.second = false; 1972 for (Register SrcReg : {LHS, RHS}) { 1973 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 1974 // Don't handle cases where the integer is implicitly converted to the 1975 // pointer width. 1976 LLT PtrTy = MRI.getType(PtrReg.first); 1977 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 1978 return true; 1979 } 1980 1981 PtrReg.second = true; 1982 } 1983 1984 return false; 1985 } 1986 1987 void CombinerHelper::applyCombineAddP2IToPtrAdd( 1988 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1989 Register Dst = MI.getOperand(0).getReg(); 1990 Register LHS = MI.getOperand(1).getReg(); 1991 Register RHS = MI.getOperand(2).getReg(); 1992 1993 const bool DoCommute = PtrReg.second; 1994 if (DoCommute) 1995 std::swap(LHS, RHS); 1996 LHS = PtrReg.first; 1997 1998 LLT PtrTy = MRI.getType(LHS); 1999 2000 Builder.setInstrAndDebugLoc(MI); 2001 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2002 Builder.buildPtrToInt(Dst, PtrAdd); 2003 MI.eraseFromParent(); 2004 } 2005 2006 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2007 int64_t &NewCst) { 2008 auto &PtrAdd = cast<GPtrAdd>(MI); 2009 Register LHS = PtrAdd.getBaseReg(); 2010 Register RHS = PtrAdd.getOffsetReg(); 2011 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2012 2013 if (auto RHSCst = getIConstantVRegSExtVal(RHS, MRI)) { 2014 int64_t Cst; 2015 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2016 NewCst = Cst + *RHSCst; 2017 return true; 2018 } 2019 } 2020 2021 return false; 2022 } 2023 2024 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2025 int64_t &NewCst) { 2026 auto &PtrAdd = cast<GPtrAdd>(MI); 2027 Register Dst = PtrAdd.getReg(0); 2028 2029 Builder.setInstrAndDebugLoc(MI); 2030 Builder.buildConstant(Dst, NewCst); 2031 PtrAdd.eraseFromParent(); 2032 } 2033 2034 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2035 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2036 Register DstReg = MI.getOperand(0).getReg(); 2037 Register SrcReg = MI.getOperand(1).getReg(); 2038 LLT DstTy = MRI.getType(DstReg); 2039 return mi_match(SrcReg, MRI, 2040 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2041 } 2042 2043 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2044 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2045 Register DstReg = MI.getOperand(0).getReg(); 2046 Register SrcReg = MI.getOperand(1).getReg(); 2047 LLT DstTy = MRI.getType(DstReg); 2048 if (mi_match(SrcReg, MRI, 2049 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2050 unsigned DstSize = DstTy.getScalarSizeInBits(); 2051 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2052 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2053 } 2054 return false; 2055 } 2056 2057 bool CombinerHelper::matchCombineExtOfExt( 2058 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2059 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2060 MI.getOpcode() == TargetOpcode::G_SEXT || 2061 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2062 "Expected a G_[ASZ]EXT"); 2063 Register SrcReg = MI.getOperand(1).getReg(); 2064 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2065 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2066 unsigned Opc = MI.getOpcode(); 2067 unsigned SrcOpc = SrcMI->getOpcode(); 2068 if (Opc == SrcOpc || 2069 (Opc == TargetOpcode::G_ANYEXT && 2070 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2071 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2072 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2073 return true; 2074 } 2075 return false; 2076 } 2077 2078 void CombinerHelper::applyCombineExtOfExt( 2079 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2080 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2081 MI.getOpcode() == TargetOpcode::G_SEXT || 2082 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2083 "Expected a G_[ASZ]EXT"); 2084 2085 Register Reg = std::get<0>(MatchInfo); 2086 unsigned SrcExtOp = std::get<1>(MatchInfo); 2087 2088 // Combine exts with the same opcode. 2089 if (MI.getOpcode() == SrcExtOp) { 2090 Observer.changingInstr(MI); 2091 MI.getOperand(1).setReg(Reg); 2092 Observer.changedInstr(MI); 2093 return; 2094 } 2095 2096 // Combine: 2097 // - anyext([sz]ext x) to [sz]ext x 2098 // - sext(zext x) to zext x 2099 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2100 (MI.getOpcode() == TargetOpcode::G_SEXT && 2101 SrcExtOp == TargetOpcode::G_ZEXT)) { 2102 Register DstReg = MI.getOperand(0).getReg(); 2103 Builder.setInstrAndDebugLoc(MI); 2104 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2105 MI.eraseFromParent(); 2106 } 2107 } 2108 2109 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2110 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2111 Register DstReg = MI.getOperand(0).getReg(); 2112 Register SrcReg = MI.getOperand(1).getReg(); 2113 LLT DstTy = MRI.getType(DstReg); 2114 2115 Builder.setInstrAndDebugLoc(MI); 2116 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2117 MI.getFlags()); 2118 MI.eraseFromParent(); 2119 } 2120 2121 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2122 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2123 Register SrcReg = MI.getOperand(1).getReg(); 2124 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2125 } 2126 2127 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2128 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2129 Src = MI.getOperand(1).getReg(); 2130 Register AbsSrc; 2131 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2132 } 2133 2134 bool CombinerHelper::matchCombineTruncOfExt( 2135 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2136 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2137 Register SrcReg = MI.getOperand(1).getReg(); 2138 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2139 unsigned SrcOpc = SrcMI->getOpcode(); 2140 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2141 SrcOpc == TargetOpcode::G_ZEXT) { 2142 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2143 return true; 2144 } 2145 return false; 2146 } 2147 2148 void CombinerHelper::applyCombineTruncOfExt( 2149 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2150 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2151 Register SrcReg = MatchInfo.first; 2152 unsigned SrcExtOp = MatchInfo.second; 2153 Register DstReg = MI.getOperand(0).getReg(); 2154 LLT SrcTy = MRI.getType(SrcReg); 2155 LLT DstTy = MRI.getType(DstReg); 2156 if (SrcTy == DstTy) { 2157 MI.eraseFromParent(); 2158 replaceRegWith(MRI, DstReg, SrcReg); 2159 return; 2160 } 2161 Builder.setInstrAndDebugLoc(MI); 2162 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2163 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2164 else 2165 Builder.buildTrunc(DstReg, SrcReg); 2166 MI.eraseFromParent(); 2167 } 2168 2169 bool CombinerHelper::matchCombineTruncOfShl( 2170 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2171 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2172 Register DstReg = MI.getOperand(0).getReg(); 2173 Register SrcReg = MI.getOperand(1).getReg(); 2174 LLT DstTy = MRI.getType(DstReg); 2175 Register ShiftSrc; 2176 Register ShiftAmt; 2177 2178 if (MRI.hasOneNonDBGUse(SrcReg) && 2179 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2180 isLegalOrBeforeLegalizer( 2181 {TargetOpcode::G_SHL, 2182 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2183 KnownBits Known = KB->getKnownBits(ShiftAmt); 2184 unsigned Size = DstTy.getSizeInBits(); 2185 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2186 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2187 return true; 2188 } 2189 } 2190 return false; 2191 } 2192 2193 void CombinerHelper::applyCombineTruncOfShl( 2194 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2195 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2196 Register DstReg = MI.getOperand(0).getReg(); 2197 Register SrcReg = MI.getOperand(1).getReg(); 2198 LLT DstTy = MRI.getType(DstReg); 2199 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2200 2201 Register ShiftSrc = MatchInfo.first; 2202 Register ShiftAmt = MatchInfo.second; 2203 Builder.setInstrAndDebugLoc(MI); 2204 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2205 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2206 MI.eraseFromParent(); 2207 } 2208 2209 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2210 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2211 return MO.isReg() && 2212 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2213 }); 2214 } 2215 2216 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2217 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2218 return !MO.isReg() || 2219 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2220 }); 2221 } 2222 2223 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2224 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2225 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2226 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2227 } 2228 2229 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2230 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2231 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2232 MRI); 2233 } 2234 2235 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2236 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2237 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2238 MRI); 2239 } 2240 2241 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2242 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2243 if (auto MaybeCstCmp = 2244 getIConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2245 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; 2246 return true; 2247 } 2248 return false; 2249 } 2250 2251 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2252 MI.eraseFromParent(); 2253 return true; 2254 } 2255 2256 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2257 const MachineOperand &MOP2) { 2258 if (!MOP1.isReg() || !MOP2.isReg()) 2259 return false; 2260 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2261 if (!InstAndDef1) 2262 return false; 2263 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2264 if (!InstAndDef2) 2265 return false; 2266 MachineInstr *I1 = InstAndDef1->MI; 2267 MachineInstr *I2 = InstAndDef2->MI; 2268 2269 // Handle a case like this: 2270 // 2271 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2272 // 2273 // Even though %0 and %1 are produced by the same instruction they are not 2274 // the same values. 2275 if (I1 == I2) 2276 return MOP1.getReg() == MOP2.getReg(); 2277 2278 // If we have an instruction which loads or stores, we can't guarantee that 2279 // it is identical. 2280 // 2281 // For example, we may have 2282 // 2283 // %x1 = G_LOAD %addr (load N from @somewhere) 2284 // ... 2285 // call @foo 2286 // ... 2287 // %x2 = G_LOAD %addr (load N from @somewhere) 2288 // ... 2289 // %or = G_OR %x1, %x2 2290 // 2291 // It's possible that @foo will modify whatever lives at the address we're 2292 // loading from. To be safe, let's just assume that all loads and stores 2293 // are different (unless we have something which is guaranteed to not 2294 // change.) 2295 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2296 return false; 2297 2298 // Check for physical registers on the instructions first to avoid cases 2299 // like this: 2300 // 2301 // %a = COPY $physreg 2302 // ... 2303 // SOMETHING implicit-def $physreg 2304 // ... 2305 // %b = COPY $physreg 2306 // 2307 // These copies are not equivalent. 2308 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2309 return MO.isReg() && MO.getReg().isPhysical(); 2310 })) { 2311 // Check if we have a case like this: 2312 // 2313 // %a = COPY $physreg 2314 // %b = COPY %a 2315 // 2316 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2317 // From that, we know that they must have the same value, since they must 2318 // have come from the same COPY. 2319 return I1->isIdenticalTo(*I2); 2320 } 2321 2322 // We don't have any physical registers, so we don't necessarily need the 2323 // same vreg defs. 2324 // 2325 // On the off-chance that there's some target instruction feeding into the 2326 // instruction, let's use produceSameValue instead of isIdenticalTo. 2327 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2328 // Handle instructions with multiple defs that produce same values. Values 2329 // are same for operands with same index. 2330 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2331 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2332 // I1 and I2 are different instructions but produce same values, 2333 // %1 and %6 are same, %1 and %7 are not the same value. 2334 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2335 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2336 } 2337 return false; 2338 } 2339 2340 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2341 if (!MOP.isReg()) 2342 return false; 2343 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2344 auto ValAndVReg = getIConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2345 return ValAndVReg && ValAndVReg->Value == C; 2346 } 2347 2348 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2349 unsigned OpIdx) { 2350 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2351 Register OldReg = MI.getOperand(0).getReg(); 2352 Register Replacement = MI.getOperand(OpIdx).getReg(); 2353 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2354 MI.eraseFromParent(); 2355 replaceRegWith(MRI, OldReg, Replacement); 2356 return true; 2357 } 2358 2359 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2360 Register Replacement) { 2361 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2362 Register OldReg = MI.getOperand(0).getReg(); 2363 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2364 MI.eraseFromParent(); 2365 replaceRegWith(MRI, OldReg, Replacement); 2366 return true; 2367 } 2368 2369 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2370 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2371 // Match (cond ? x : x) 2372 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2373 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2374 MRI); 2375 } 2376 2377 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2378 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2379 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2380 MRI); 2381 } 2382 2383 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2384 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2385 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2386 MRI); 2387 } 2388 2389 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2390 MachineOperand &MO = MI.getOperand(OpIdx); 2391 return MO.isReg() && 2392 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2393 } 2394 2395 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2396 unsigned OpIdx) { 2397 MachineOperand &MO = MI.getOperand(OpIdx); 2398 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2399 } 2400 2401 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2402 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2403 Builder.setInstr(MI); 2404 Builder.buildFConstant(MI.getOperand(0), C); 2405 MI.eraseFromParent(); 2406 return true; 2407 } 2408 2409 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2410 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2411 Builder.setInstr(MI); 2412 Builder.buildConstant(MI.getOperand(0), C); 2413 MI.eraseFromParent(); 2414 return true; 2415 } 2416 2417 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2418 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2419 Builder.setInstr(MI); 2420 Builder.buildConstant(MI.getOperand(0), C); 2421 MI.eraseFromParent(); 2422 return true; 2423 } 2424 2425 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2426 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2427 Builder.setInstr(MI); 2428 Builder.buildUndef(MI.getOperand(0)); 2429 MI.eraseFromParent(); 2430 return true; 2431 } 2432 2433 bool CombinerHelper::matchSimplifyAddToSub( 2434 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2435 Register LHS = MI.getOperand(1).getReg(); 2436 Register RHS = MI.getOperand(2).getReg(); 2437 Register &NewLHS = std::get<0>(MatchInfo); 2438 Register &NewRHS = std::get<1>(MatchInfo); 2439 2440 // Helper lambda to check for opportunities for 2441 // ((0-A) + B) -> B - A 2442 // (A + (0-B)) -> A - B 2443 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2444 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2445 return false; 2446 NewLHS = MaybeNewLHS; 2447 return true; 2448 }; 2449 2450 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2451 } 2452 2453 bool CombinerHelper::matchCombineInsertVecElts( 2454 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2455 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2456 "Invalid opcode"); 2457 Register DstReg = MI.getOperand(0).getReg(); 2458 LLT DstTy = MRI.getType(DstReg); 2459 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2460 unsigned NumElts = DstTy.getNumElements(); 2461 // If this MI is part of a sequence of insert_vec_elts, then 2462 // don't do the combine in the middle of the sequence. 2463 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2464 TargetOpcode::G_INSERT_VECTOR_ELT) 2465 return false; 2466 MachineInstr *CurrInst = &MI; 2467 MachineInstr *TmpInst; 2468 int64_t IntImm; 2469 Register TmpReg; 2470 MatchInfo.resize(NumElts); 2471 while (mi_match( 2472 CurrInst->getOperand(0).getReg(), MRI, 2473 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2474 if (IntImm >= NumElts) 2475 return false; 2476 if (!MatchInfo[IntImm]) 2477 MatchInfo[IntImm] = TmpReg; 2478 CurrInst = TmpInst; 2479 } 2480 // Variable index. 2481 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2482 return false; 2483 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2484 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2485 if (!MatchInfo[I - 1].isValid()) 2486 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2487 } 2488 return true; 2489 } 2490 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2491 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2492 } 2493 2494 void CombinerHelper::applyCombineInsertVecElts( 2495 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2496 Builder.setInstr(MI); 2497 Register UndefReg; 2498 auto GetUndef = [&]() { 2499 if (UndefReg) 2500 return UndefReg; 2501 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2502 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2503 return UndefReg; 2504 }; 2505 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2506 if (!MatchInfo[I]) 2507 MatchInfo[I] = GetUndef(); 2508 } 2509 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2510 MI.eraseFromParent(); 2511 } 2512 2513 void CombinerHelper::applySimplifyAddToSub( 2514 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2515 Builder.setInstr(MI); 2516 Register SubLHS, SubRHS; 2517 std::tie(SubLHS, SubRHS) = MatchInfo; 2518 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2519 MI.eraseFromParent(); 2520 } 2521 2522 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2523 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2524 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2525 // 2526 // Creates the new hand + logic instruction (but does not insert them.) 2527 // 2528 // On success, MatchInfo is populated with the new instructions. These are 2529 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2530 unsigned LogicOpcode = MI.getOpcode(); 2531 assert(LogicOpcode == TargetOpcode::G_AND || 2532 LogicOpcode == TargetOpcode::G_OR || 2533 LogicOpcode == TargetOpcode::G_XOR); 2534 MachineIRBuilder MIB(MI); 2535 Register Dst = MI.getOperand(0).getReg(); 2536 Register LHSReg = MI.getOperand(1).getReg(); 2537 Register RHSReg = MI.getOperand(2).getReg(); 2538 2539 // Don't recompute anything. 2540 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2541 return false; 2542 2543 // Make sure we have (hand x, ...), (hand y, ...) 2544 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2545 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2546 if (!LeftHandInst || !RightHandInst) 2547 return false; 2548 unsigned HandOpcode = LeftHandInst->getOpcode(); 2549 if (HandOpcode != RightHandInst->getOpcode()) 2550 return false; 2551 if (!LeftHandInst->getOperand(1).isReg() || 2552 !RightHandInst->getOperand(1).isReg()) 2553 return false; 2554 2555 // Make sure the types match up, and if we're doing this post-legalization, 2556 // we end up with legal types. 2557 Register X = LeftHandInst->getOperand(1).getReg(); 2558 Register Y = RightHandInst->getOperand(1).getReg(); 2559 LLT XTy = MRI.getType(X); 2560 LLT YTy = MRI.getType(Y); 2561 if (XTy != YTy) 2562 return false; 2563 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2564 return false; 2565 2566 // Optional extra source register. 2567 Register ExtraHandOpSrcReg; 2568 switch (HandOpcode) { 2569 default: 2570 return false; 2571 case TargetOpcode::G_ANYEXT: 2572 case TargetOpcode::G_SEXT: 2573 case TargetOpcode::G_ZEXT: { 2574 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2575 break; 2576 } 2577 case TargetOpcode::G_AND: 2578 case TargetOpcode::G_ASHR: 2579 case TargetOpcode::G_LSHR: 2580 case TargetOpcode::G_SHL: { 2581 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2582 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2583 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2584 return false; 2585 ExtraHandOpSrcReg = ZOp.getReg(); 2586 break; 2587 } 2588 } 2589 2590 // Record the steps to build the new instructions. 2591 // 2592 // Steps to build (logic x, y) 2593 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2594 OperandBuildSteps LogicBuildSteps = { 2595 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2596 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2597 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2598 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2599 2600 // Steps to build hand (logic x, y), ...z 2601 OperandBuildSteps HandBuildSteps = { 2602 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2603 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2604 if (ExtraHandOpSrcReg.isValid()) 2605 HandBuildSteps.push_back( 2606 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2607 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2608 2609 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2610 return true; 2611 } 2612 2613 void CombinerHelper::applyBuildInstructionSteps( 2614 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2615 assert(MatchInfo.InstrsToBuild.size() && 2616 "Expected at least one instr to build?"); 2617 Builder.setInstr(MI); 2618 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2619 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2620 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2621 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2622 for (auto &OperandFn : InstrToBuild.OperandFns) 2623 OperandFn(Instr); 2624 } 2625 MI.eraseFromParent(); 2626 } 2627 2628 bool CombinerHelper::matchAshrShlToSextInreg( 2629 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2630 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2631 int64_t ShlCst, AshrCst; 2632 Register Src; 2633 // FIXME: detect splat constant vectors. 2634 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2635 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2636 return false; 2637 if (ShlCst != AshrCst) 2638 return false; 2639 if (!isLegalOrBeforeLegalizer( 2640 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2641 return false; 2642 MatchInfo = std::make_tuple(Src, ShlCst); 2643 return true; 2644 } 2645 2646 void CombinerHelper::applyAshShlToSextInreg( 2647 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2648 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2649 Register Src; 2650 int64_t ShiftAmt; 2651 std::tie(Src, ShiftAmt) = MatchInfo; 2652 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2653 Builder.setInstrAndDebugLoc(MI); 2654 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2655 MI.eraseFromParent(); 2656 } 2657 2658 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 2659 bool CombinerHelper::matchOverlappingAnd( 2660 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 2661 assert(MI.getOpcode() == TargetOpcode::G_AND); 2662 2663 Register Dst = MI.getOperand(0).getReg(); 2664 LLT Ty = MRI.getType(Dst); 2665 2666 Register R; 2667 int64_t C1; 2668 int64_t C2; 2669 if (!mi_match( 2670 Dst, MRI, 2671 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 2672 return false; 2673 2674 MatchInfo = [=](MachineIRBuilder &B) { 2675 if (C1 & C2) { 2676 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 2677 return; 2678 } 2679 auto Zero = B.buildConstant(Ty, 0); 2680 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 2681 }; 2682 return true; 2683 } 2684 2685 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2686 Register &Replacement) { 2687 // Given 2688 // 2689 // %y:_(sN) = G_SOMETHING 2690 // %x:_(sN) = G_SOMETHING 2691 // %res:_(sN) = G_AND %x, %y 2692 // 2693 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 2694 // 2695 // Patterns like this can appear as a result of legalization. E.g. 2696 // 2697 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2698 // %one:_(s32) = G_CONSTANT i32 1 2699 // %and:_(s32) = G_AND %cmp, %one 2700 // 2701 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2702 assert(MI.getOpcode() == TargetOpcode::G_AND); 2703 if (!KB) 2704 return false; 2705 2706 Register AndDst = MI.getOperand(0).getReg(); 2707 LLT DstTy = MRI.getType(AndDst); 2708 2709 // FIXME: This should be removed once GISelKnownBits supports vectors. 2710 if (DstTy.isVector()) 2711 return false; 2712 2713 Register LHS = MI.getOperand(1).getReg(); 2714 Register RHS = MI.getOperand(2).getReg(); 2715 KnownBits LHSBits = KB->getKnownBits(LHS); 2716 KnownBits RHSBits = KB->getKnownBits(RHS); 2717 2718 // Check that x & Mask == x. 2719 // x & 1 == x, always 2720 // x & 0 == x, only if x is also 0 2721 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 2722 // 2723 // Check if we can replace AndDst with the LHS of the G_AND 2724 if (canReplaceReg(AndDst, LHS, MRI) && 2725 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2726 Replacement = LHS; 2727 return true; 2728 } 2729 2730 // Check if we can replace AndDst with the RHS of the G_AND 2731 if (canReplaceReg(AndDst, RHS, MRI) && 2732 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2733 Replacement = RHS; 2734 return true; 2735 } 2736 2737 return false; 2738 } 2739 2740 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 2741 // Given 2742 // 2743 // %y:_(sN) = G_SOMETHING 2744 // %x:_(sN) = G_SOMETHING 2745 // %res:_(sN) = G_OR %x, %y 2746 // 2747 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 2748 assert(MI.getOpcode() == TargetOpcode::G_OR); 2749 if (!KB) 2750 return false; 2751 2752 Register OrDst = MI.getOperand(0).getReg(); 2753 LLT DstTy = MRI.getType(OrDst); 2754 2755 // FIXME: This should be removed once GISelKnownBits supports vectors. 2756 if (DstTy.isVector()) 2757 return false; 2758 2759 Register LHS = MI.getOperand(1).getReg(); 2760 Register RHS = MI.getOperand(2).getReg(); 2761 KnownBits LHSBits = KB->getKnownBits(LHS); 2762 KnownBits RHSBits = KB->getKnownBits(RHS); 2763 2764 // Check that x | Mask == x. 2765 // x | 0 == x, always 2766 // x | 1 == x, only if x is also 1 2767 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 2768 // 2769 // Check if we can replace OrDst with the LHS of the G_OR 2770 if (canReplaceReg(OrDst, LHS, MRI) && 2771 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 2772 Replacement = LHS; 2773 return true; 2774 } 2775 2776 // Check if we can replace OrDst with the RHS of the G_OR 2777 if (canReplaceReg(OrDst, RHS, MRI) && 2778 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 2779 Replacement = RHS; 2780 return true; 2781 } 2782 2783 return false; 2784 } 2785 2786 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 2787 // If the input is already sign extended, just drop the extension. 2788 Register Src = MI.getOperand(1).getReg(); 2789 unsigned ExtBits = MI.getOperand(2).getImm(); 2790 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 2791 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 2792 } 2793 2794 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 2795 int64_t Cst, bool IsVector, bool IsFP) { 2796 // For i1, Cst will always be -1 regardless of boolean contents. 2797 return (ScalarSizeBits == 1 && Cst == -1) || 2798 isConstTrueVal(TLI, Cst, IsVector, IsFP); 2799 } 2800 2801 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 2802 SmallVectorImpl<Register> &RegsToNegate) { 2803 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2804 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2805 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 2806 Register XorSrc; 2807 Register CstReg; 2808 // We match xor(src, true) here. 2809 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2810 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 2811 return false; 2812 2813 if (!MRI.hasOneNonDBGUse(XorSrc)) 2814 return false; 2815 2816 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 2817 // and ORs. The suffix of RegsToNegate starting from index I is used a work 2818 // list of tree nodes to visit. 2819 RegsToNegate.push_back(XorSrc); 2820 // Remember whether the comparisons are all integer or all floating point. 2821 bool IsInt = false; 2822 bool IsFP = false; 2823 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 2824 Register Reg = RegsToNegate[I]; 2825 if (!MRI.hasOneNonDBGUse(Reg)) 2826 return false; 2827 MachineInstr *Def = MRI.getVRegDef(Reg); 2828 switch (Def->getOpcode()) { 2829 default: 2830 // Don't match if the tree contains anything other than ANDs, ORs and 2831 // comparisons. 2832 return false; 2833 case TargetOpcode::G_ICMP: 2834 if (IsFP) 2835 return false; 2836 IsInt = true; 2837 // When we apply the combine we will invert the predicate. 2838 break; 2839 case TargetOpcode::G_FCMP: 2840 if (IsInt) 2841 return false; 2842 IsFP = true; 2843 // When we apply the combine we will invert the predicate. 2844 break; 2845 case TargetOpcode::G_AND: 2846 case TargetOpcode::G_OR: 2847 // Implement De Morgan's laws: 2848 // ~(x & y) -> ~x | ~y 2849 // ~(x | y) -> ~x & ~y 2850 // When we apply the combine we will change the opcode and recursively 2851 // negate the operands. 2852 RegsToNegate.push_back(Def->getOperand(1).getReg()); 2853 RegsToNegate.push_back(Def->getOperand(2).getReg()); 2854 break; 2855 } 2856 } 2857 2858 // Now we know whether the comparisons are integer or floating point, check 2859 // the constant in the xor. 2860 int64_t Cst; 2861 if (Ty.isVector()) { 2862 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 2863 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 2864 if (!MaybeCst) 2865 return false; 2866 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 2867 return false; 2868 } else { 2869 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 2870 return false; 2871 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 2872 return false; 2873 } 2874 2875 return true; 2876 } 2877 2878 void CombinerHelper::applyNotCmp(MachineInstr &MI, 2879 SmallVectorImpl<Register> &RegsToNegate) { 2880 for (Register Reg : RegsToNegate) { 2881 MachineInstr *Def = MRI.getVRegDef(Reg); 2882 Observer.changingInstr(*Def); 2883 // For each comparison, invert the opcode. For each AND and OR, change the 2884 // opcode. 2885 switch (Def->getOpcode()) { 2886 default: 2887 llvm_unreachable("Unexpected opcode"); 2888 case TargetOpcode::G_ICMP: 2889 case TargetOpcode::G_FCMP: { 2890 MachineOperand &PredOp = Def->getOperand(1); 2891 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 2892 (CmpInst::Predicate)PredOp.getPredicate()); 2893 PredOp.setPredicate(NewP); 2894 break; 2895 } 2896 case TargetOpcode::G_AND: 2897 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 2898 break; 2899 case TargetOpcode::G_OR: 2900 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2901 break; 2902 } 2903 Observer.changedInstr(*Def); 2904 } 2905 2906 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 2907 MI.eraseFromParent(); 2908 } 2909 2910 bool CombinerHelper::matchXorOfAndWithSameReg( 2911 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2912 // Match (xor (and x, y), y) (or any of its commuted cases) 2913 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2914 Register &X = MatchInfo.first; 2915 Register &Y = MatchInfo.second; 2916 Register AndReg = MI.getOperand(1).getReg(); 2917 Register SharedReg = MI.getOperand(2).getReg(); 2918 2919 // Find a G_AND on either side of the G_XOR. 2920 // Look for one of 2921 // 2922 // (xor (and x, y), SharedReg) 2923 // (xor SharedReg, (and x, y)) 2924 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 2925 std::swap(AndReg, SharedReg); 2926 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 2927 return false; 2928 } 2929 2930 // Only do this if we'll eliminate the G_AND. 2931 if (!MRI.hasOneNonDBGUse(AndReg)) 2932 return false; 2933 2934 // We can combine if SharedReg is the same as either the LHS or RHS of the 2935 // G_AND. 2936 if (Y != SharedReg) 2937 std::swap(X, Y); 2938 return Y == SharedReg; 2939 } 2940 2941 void CombinerHelper::applyXorOfAndWithSameReg( 2942 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2943 // Fold (xor (and x, y), y) -> (and (not x), y) 2944 Builder.setInstrAndDebugLoc(MI); 2945 Register X, Y; 2946 std::tie(X, Y) = MatchInfo; 2947 auto Not = Builder.buildNot(MRI.getType(X), X); 2948 Observer.changingInstr(MI); 2949 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2950 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 2951 MI.getOperand(2).setReg(Y); 2952 Observer.changedInstr(MI); 2953 } 2954 2955 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 2956 auto &PtrAdd = cast<GPtrAdd>(MI); 2957 Register DstReg = PtrAdd.getReg(0); 2958 LLT Ty = MRI.getType(DstReg); 2959 const DataLayout &DL = Builder.getMF().getDataLayout(); 2960 2961 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 2962 return false; 2963 2964 if (Ty.isPointer()) { 2965 auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI); 2966 return ConstVal && *ConstVal == 0; 2967 } 2968 2969 assert(Ty.isVector() && "Expecting a vector type"); 2970 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 2971 return isBuildVectorAllZeros(*VecMI, MRI); 2972 } 2973 2974 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 2975 auto &PtrAdd = cast<GPtrAdd>(MI); 2976 Builder.setInstrAndDebugLoc(PtrAdd); 2977 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 2978 PtrAdd.eraseFromParent(); 2979 } 2980 2981 /// The second source operand is known to be a power of 2. 2982 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 2983 Register DstReg = MI.getOperand(0).getReg(); 2984 Register Src0 = MI.getOperand(1).getReg(); 2985 Register Pow2Src1 = MI.getOperand(2).getReg(); 2986 LLT Ty = MRI.getType(DstReg); 2987 Builder.setInstrAndDebugLoc(MI); 2988 2989 // Fold (urem x, pow2) -> (and x, pow2-1) 2990 auto NegOne = Builder.buildConstant(Ty, -1); 2991 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 2992 Builder.buildAnd(DstReg, Src0, Add); 2993 MI.eraseFromParent(); 2994 } 2995 2996 Optional<SmallVector<Register, 8>> 2997 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 2998 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 2999 // We want to detect if Root is part of a tree which represents a bunch 3000 // of loads being merged into a larger load. We'll try to recognize patterns 3001 // like, for example: 3002 // 3003 // Reg Reg 3004 // \ / 3005 // OR_1 Reg 3006 // \ / 3007 // OR_2 3008 // \ Reg 3009 // .. / 3010 // Root 3011 // 3012 // Reg Reg Reg Reg 3013 // \ / \ / 3014 // OR_1 OR_2 3015 // \ / 3016 // \ / 3017 // ... 3018 // Root 3019 // 3020 // Each "Reg" may have been produced by a load + some arithmetic. This 3021 // function will save each of them. 3022 SmallVector<Register, 8> RegsToVisit; 3023 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3024 3025 // In the "worst" case, we're dealing with a load for each byte. So, there 3026 // are at most #bytes - 1 ORs. 3027 const unsigned MaxIter = 3028 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3029 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3030 if (Ors.empty()) 3031 break; 3032 const MachineInstr *Curr = Ors.pop_back_val(); 3033 Register OrLHS = Curr->getOperand(1).getReg(); 3034 Register OrRHS = Curr->getOperand(2).getReg(); 3035 3036 // In the combine, we want to elimate the entire tree. 3037 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3038 return None; 3039 3040 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3041 // something that may be a load + arithmetic. 3042 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3043 Ors.push_back(Or); 3044 else 3045 RegsToVisit.push_back(OrLHS); 3046 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3047 Ors.push_back(Or); 3048 else 3049 RegsToVisit.push_back(OrRHS); 3050 } 3051 3052 // We're going to try and merge each register into a wider power-of-2 type, 3053 // so we ought to have an even number of registers. 3054 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3055 return None; 3056 return RegsToVisit; 3057 } 3058 3059 /// Helper function for findLoadOffsetsForLoadOrCombine. 3060 /// 3061 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3062 /// and then moving that value into a specific byte offset. 3063 /// 3064 /// e.g. x[i] << 24 3065 /// 3066 /// \returns The load instruction and the byte offset it is moved into. 3067 static Optional<std::pair<GZExtLoad *, int64_t>> 3068 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3069 const MachineRegisterInfo &MRI) { 3070 assert(MRI.hasOneNonDBGUse(Reg) && 3071 "Expected Reg to only have one non-debug use?"); 3072 Register MaybeLoad; 3073 int64_t Shift; 3074 if (!mi_match(Reg, MRI, 3075 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3076 Shift = 0; 3077 MaybeLoad = Reg; 3078 } 3079 3080 if (Shift % MemSizeInBits != 0) 3081 return None; 3082 3083 // TODO: Handle other types of loads. 3084 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3085 if (!Load) 3086 return None; 3087 3088 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3089 return None; 3090 3091 return std::make_pair(Load, Shift / MemSizeInBits); 3092 } 3093 3094 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3095 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3096 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3097 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3098 3099 // Each load found for the pattern. There should be one for each RegsToVisit. 3100 SmallSetVector<const MachineInstr *, 8> Loads; 3101 3102 // The lowest index used in any load. (The lowest "i" for each x[i].) 3103 int64_t LowestIdx = INT64_MAX; 3104 3105 // The load which uses the lowest index. 3106 GZExtLoad *LowestIdxLoad = nullptr; 3107 3108 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3109 SmallSet<int64_t, 8> SeenIdx; 3110 3111 // Ensure each load is in the same MBB. 3112 // TODO: Support multiple MachineBasicBlocks. 3113 MachineBasicBlock *MBB = nullptr; 3114 const MachineMemOperand *MMO = nullptr; 3115 3116 // Earliest instruction-order load in the pattern. 3117 GZExtLoad *EarliestLoad = nullptr; 3118 3119 // Latest instruction-order load in the pattern. 3120 GZExtLoad *LatestLoad = nullptr; 3121 3122 // Base pointer which every load should share. 3123 Register BasePtr; 3124 3125 // We want to find a load for each register. Each load should have some 3126 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3127 // track of the load which uses the lowest index. Later, we will check if we 3128 // can use its pointer in the final, combined load. 3129 for (auto Reg : RegsToVisit) { 3130 // Find the load, and find the position that it will end up in (e.g. a 3131 // shifted) value. 3132 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3133 if (!LoadAndPos) 3134 return None; 3135 GZExtLoad *Load; 3136 int64_t DstPos; 3137 std::tie(Load, DstPos) = *LoadAndPos; 3138 3139 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3140 // it is difficult to check for stores/calls/etc between loads. 3141 MachineBasicBlock *LoadMBB = Load->getParent(); 3142 if (!MBB) 3143 MBB = LoadMBB; 3144 if (LoadMBB != MBB) 3145 return None; 3146 3147 // Make sure that the MachineMemOperands of every seen load are compatible. 3148 auto &LoadMMO = Load->getMMO(); 3149 if (!MMO) 3150 MMO = &LoadMMO; 3151 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3152 return None; 3153 3154 // Find out what the base pointer and index for the load is. 3155 Register LoadPtr; 3156 int64_t Idx; 3157 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3158 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3159 LoadPtr = Load->getOperand(1).getReg(); 3160 Idx = 0; 3161 } 3162 3163 // Don't combine things like a[i], a[i] -> a bigger load. 3164 if (!SeenIdx.insert(Idx).second) 3165 return None; 3166 3167 // Every load must share the same base pointer; don't combine things like: 3168 // 3169 // a[i], b[i + 1] -> a bigger load. 3170 if (!BasePtr.isValid()) 3171 BasePtr = LoadPtr; 3172 if (BasePtr != LoadPtr) 3173 return None; 3174 3175 if (Idx < LowestIdx) { 3176 LowestIdx = Idx; 3177 LowestIdxLoad = Load; 3178 } 3179 3180 // Keep track of the byte offset that this load ends up at. If we have seen 3181 // the byte offset, then stop here. We do not want to combine: 3182 // 3183 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3184 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3185 return None; 3186 Loads.insert(Load); 3187 3188 // Keep track of the position of the earliest/latest loads in the pattern. 3189 // We will check that there are no load fold barriers between them later 3190 // on. 3191 // 3192 // FIXME: Is there a better way to check for load fold barriers? 3193 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3194 EarliestLoad = Load; 3195 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3196 LatestLoad = Load; 3197 } 3198 3199 // We found a load for each register. Let's check if each load satisfies the 3200 // pattern. 3201 assert(Loads.size() == RegsToVisit.size() && 3202 "Expected to find a load for each register?"); 3203 assert(EarliestLoad != LatestLoad && EarliestLoad && 3204 LatestLoad && "Expected at least two loads?"); 3205 3206 // Check if there are any stores, calls, etc. between any of the loads. If 3207 // there are, then we can't safely perform the combine. 3208 // 3209 // MaxIter is chosen based off the (worst case) number of iterations it 3210 // typically takes to succeed in the LLVM test suite plus some padding. 3211 // 3212 // FIXME: Is there a better way to check for load fold barriers? 3213 const unsigned MaxIter = 20; 3214 unsigned Iter = 0; 3215 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3216 LatestLoad->getIterator())) { 3217 if (Loads.count(&MI)) 3218 continue; 3219 if (MI.isLoadFoldBarrier()) 3220 return None; 3221 if (Iter++ == MaxIter) 3222 return None; 3223 } 3224 3225 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3226 } 3227 3228 bool CombinerHelper::matchLoadOrCombine( 3229 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3230 assert(MI.getOpcode() == TargetOpcode::G_OR); 3231 MachineFunction &MF = *MI.getMF(); 3232 // Assuming a little-endian target, transform: 3233 // s8 *a = ... 3234 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3235 // => 3236 // s32 val = *((i32)a) 3237 // 3238 // s8 *a = ... 3239 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3240 // => 3241 // s32 val = BSWAP(*((s32)a)) 3242 Register Dst = MI.getOperand(0).getReg(); 3243 LLT Ty = MRI.getType(Dst); 3244 if (Ty.isVector()) 3245 return false; 3246 3247 // We need to combine at least two loads into this type. Since the smallest 3248 // possible load is into a byte, we need at least a 16-bit wide type. 3249 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3250 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3251 return false; 3252 3253 // Match a collection of non-OR instructions in the pattern. 3254 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3255 if (!RegsToVisit) 3256 return false; 3257 3258 // We have a collection of non-OR instructions. Figure out how wide each of 3259 // the small loads should be based off of the number of potential loads we 3260 // found. 3261 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3262 if (NarrowMemSizeInBits % 8 != 0) 3263 return false; 3264 3265 // Check if each register feeding into each OR is a load from the same 3266 // base pointer + some arithmetic. 3267 // 3268 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3269 // 3270 // Also verify that each of these ends up putting a[i] into the same memory 3271 // offset as a load into a wide type would. 3272 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3273 GZExtLoad *LowestIdxLoad, *LatestLoad; 3274 int64_t LowestIdx; 3275 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3276 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3277 if (!MaybeLoadInfo) 3278 return false; 3279 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3280 3281 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3282 // we found before, check if this corresponds to a big or little endian byte 3283 // pattern. If it does, then we can represent it using a load + possibly a 3284 // BSWAP. 3285 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3286 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3287 if (!IsBigEndian.hasValue()) 3288 return false; 3289 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3290 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3291 return false; 3292 3293 // Make sure that the load from the lowest index produces offset 0 in the 3294 // final value. 3295 // 3296 // This ensures that we won't combine something like this: 3297 // 3298 // load x[i] -> byte 2 3299 // load x[i+1] -> byte 0 ---> wide_load x[i] 3300 // load x[i+2] -> byte 1 3301 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3302 const unsigned ZeroByteOffset = 3303 *IsBigEndian 3304 ? bigEndianByteAt(NumLoadsInTy, 0) 3305 : littleEndianByteAt(NumLoadsInTy, 0); 3306 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3307 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3308 ZeroOffsetIdx->second != LowestIdx) 3309 return false; 3310 3311 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3312 // may not use index 0. 3313 Register Ptr = LowestIdxLoad->getPointerReg(); 3314 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3315 LegalityQuery::MemDesc MMDesc(MMO); 3316 MMDesc.MemoryTy = Ty; 3317 if (!isLegalOrBeforeLegalizer( 3318 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3319 return false; 3320 auto PtrInfo = MMO.getPointerInfo(); 3321 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3322 3323 // Load must be allowed and fast on the target. 3324 LLVMContext &C = MF.getFunction().getContext(); 3325 auto &DL = MF.getDataLayout(); 3326 bool Fast = false; 3327 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3328 !Fast) 3329 return false; 3330 3331 MatchInfo = [=](MachineIRBuilder &MIB) { 3332 MIB.setInstrAndDebugLoc(*LatestLoad); 3333 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3334 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3335 if (NeedsBSwap) 3336 MIB.buildBSwap(Dst, LoadDst); 3337 }; 3338 return true; 3339 } 3340 3341 /// Check if the store \p Store is a truncstore that can be merged. That is, 3342 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty 3343 /// Register then it does not need to match and SrcVal is set to the source 3344 /// value found. 3345 /// On match, returns the start byte offset of the \p SrcVal that is being 3346 /// stored. 3347 static Optional<int64_t> getTruncStoreByteOffset(GStore &Store, Register &SrcVal, 3348 MachineRegisterInfo &MRI) { 3349 Register TruncVal; 3350 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) 3351 return None; 3352 3353 // The shift amount must be a constant multiple of the narrow type. 3354 // It is translated to the offset address in the wide source value "y". 3355 // 3356 // x = G_LSHR y, ShiftAmtC 3357 // s8 z = G_TRUNC x 3358 // store z, ... 3359 Register FoundSrcVal; 3360 int64_t ShiftAmt; 3361 if (!mi_match(TruncVal, MRI, 3362 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), 3363 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { 3364 if (!SrcVal.isValid() || TruncVal == SrcVal) { 3365 if (!SrcVal.isValid()) 3366 SrcVal = TruncVal; 3367 return 0; // If it's the lowest index store. 3368 } 3369 return None; 3370 } 3371 3372 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); 3373 if (ShiftAmt % NarrowBits!= 0) 3374 return None; 3375 const unsigned Offset = ShiftAmt / NarrowBits; 3376 3377 if (SrcVal.isValid() && FoundSrcVal != SrcVal) 3378 return None; 3379 3380 if (!SrcVal.isValid()) 3381 SrcVal = FoundSrcVal; 3382 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) 3383 return None; 3384 return Offset; 3385 } 3386 3387 /// Match a pattern where a wide type scalar value is stored by several narrow 3388 /// stores. Fold it into a single store or a BSWAP and a store if the targets 3389 /// supports it. 3390 /// 3391 /// Assuming little endian target: 3392 /// i8 *p = ... 3393 /// i32 val = ... 3394 /// p[0] = (val >> 0) & 0xFF; 3395 /// p[1] = (val >> 8) & 0xFF; 3396 /// p[2] = (val >> 16) & 0xFF; 3397 /// p[3] = (val >> 24) & 0xFF; 3398 /// => 3399 /// *((i32)p) = val; 3400 /// 3401 /// i8 *p = ... 3402 /// i32 val = ... 3403 /// p[0] = (val >> 24) & 0xFF; 3404 /// p[1] = (val >> 16) & 0xFF; 3405 /// p[2] = (val >> 8) & 0xFF; 3406 /// p[3] = (val >> 0) & 0xFF; 3407 /// => 3408 /// *((i32)p) = BSWAP(val); 3409 bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI, 3410 MergeTruncStoresInfo &MatchInfo) { 3411 auto &StoreMI = cast<GStore>(MI); 3412 LLT MemTy = StoreMI.getMMO().getMemoryType(); 3413 3414 // We only handle merging simple stores of 1-4 bytes. 3415 if (!MemTy.isScalar()) 3416 return false; 3417 switch (MemTy.getSizeInBits()) { 3418 case 8: 3419 case 16: 3420 case 32: 3421 break; 3422 default: 3423 return false; 3424 } 3425 if (!StoreMI.isSimple()) 3426 return false; 3427 3428 // We do a simple search for mergeable stores prior to this one. 3429 // Any potential alias hazard along the way terminates the search. 3430 SmallVector<GStore *> FoundStores; 3431 3432 // We're looking for: 3433 // 1) a (store(trunc(...))) 3434 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get 3435 // the partial value stored. 3436 // 3) where the offsets form either a little or big-endian sequence. 3437 3438 auto &LastStore = StoreMI; 3439 3440 // The single base pointer that all stores must use. 3441 Register BaseReg; 3442 int64_t LastOffset; 3443 if (!mi_match(LastStore.getPointerReg(), MRI, 3444 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { 3445 BaseReg = LastStore.getPointerReg(); 3446 LastOffset = 0; 3447 } 3448 3449 GStore *LowestIdxStore = &LastStore; 3450 int64_t LowestIdxOffset = LastOffset; 3451 3452 Register WideSrcVal; 3453 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI); 3454 if (!LowestShiftAmt) 3455 return false; // Didn't match a trunc. 3456 assert(WideSrcVal.isValid()); 3457 3458 LLT WideStoreTy = MRI.getType(WideSrcVal); 3459 const unsigned NumStoresRequired = 3460 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); 3461 3462 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); 3463 OffsetMap[*LowestShiftAmt] = LastOffset; 3464 FoundStores.emplace_back(&LastStore); 3465 3466 // Search the block up for more stores. 3467 // We use a search threshold of 10 instructions here because the combiner 3468 // works top-down within a block, and we don't want to search an unbounded 3469 // number of predecessor instructions trying to find matching stores. 3470 // If we moved this optimization into a separate pass then we could probably 3471 // use a more efficient search without having a hard-coded threshold. 3472 const int MaxInstsToCheck = 10; 3473 int NumInstsChecked = 0; 3474 for (auto II = ++LastStore.getReverseIterator(); 3475 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; 3476 ++II) { 3477 NumInstsChecked++; 3478 GStore *NewStore; 3479 if ((NewStore = dyn_cast<GStore>(&*II))) { 3480 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) 3481 break; 3482 } else if (II->isLoadFoldBarrier() || II->mayLoad()) { 3483 break; 3484 } else { 3485 continue; // This is a safe instruction we can look past. 3486 } 3487 3488 Register NewBaseReg; 3489 int64_t MemOffset; 3490 // Check we're storing to the same base + some offset. 3491 if (!mi_match(NewStore->getPointerReg(), MRI, 3492 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { 3493 NewBaseReg = NewStore->getPointerReg(); 3494 MemOffset = 0; 3495 } 3496 if (BaseReg != NewBaseReg) 3497 break; 3498 3499 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI); 3500 if (!ShiftByteOffset) 3501 break; 3502 if (MemOffset < LowestIdxOffset) { 3503 LowestIdxOffset = MemOffset; 3504 LowestIdxStore = NewStore; 3505 } 3506 3507 // Map the offset in the store and the offset in the combined value, and 3508 // early return if it has been set before. 3509 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || 3510 OffsetMap[*ShiftByteOffset] != INT64_MAX) 3511 break; 3512 OffsetMap[*ShiftByteOffset] = MemOffset; 3513 3514 FoundStores.emplace_back(NewStore); 3515 // Reset counter since we've found a matching inst. 3516 NumInstsChecked = 0; 3517 if (FoundStores.size() == NumStoresRequired) 3518 break; 3519 } 3520 3521 if (FoundStores.size() != NumStoresRequired) { 3522 return false; 3523 } 3524 3525 const auto &DL = LastStore.getMF()->getDataLayout(); 3526 auto &C = LastStore.getMF()->getFunction().getContext(); 3527 // Check that a store of the wide type is both allowed and fast on the target 3528 bool Fast = false; 3529 bool Allowed = getTargetLowering().allowsMemoryAccess( 3530 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); 3531 if (!Allowed || !Fast) 3532 return false; 3533 3534 // Check if the pieces of the value are going to the expected places in memory 3535 // to merge the stores. 3536 unsigned NarrowBits = MemTy.getScalarSizeInBits(); 3537 auto checkOffsets = [&](bool MatchLittleEndian) { 3538 if (MatchLittleEndian) { 3539 for (unsigned i = 0; i != NumStoresRequired; ++i) 3540 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) 3541 return false; 3542 } else { // MatchBigEndian by reversing loop counter. 3543 for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired; 3544 ++i, --j) 3545 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) 3546 return false; 3547 } 3548 return true; 3549 }; 3550 3551 // Check if the offsets line up for the native data layout of this target. 3552 bool NeedBswap = false; 3553 bool NeedRotate = false; 3554 if (!checkOffsets(DL.isLittleEndian())) { 3555 // Special-case: check if byte offsets line up for the opposite endian. 3556 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) 3557 NeedBswap = true; 3558 else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian())) 3559 NeedRotate = true; 3560 else 3561 return false; 3562 } 3563 3564 if (NeedBswap && 3565 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}})) 3566 return false; 3567 if (NeedRotate && 3568 !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}})) 3569 return false; 3570 3571 MatchInfo.NeedBSwap = NeedBswap; 3572 MatchInfo.NeedRotate = NeedRotate; 3573 MatchInfo.LowestIdxStore = LowestIdxStore; 3574 MatchInfo.WideSrcVal = WideSrcVal; 3575 MatchInfo.FoundStores = std::move(FoundStores); 3576 return true; 3577 } 3578 3579 void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI, 3580 MergeTruncStoresInfo &MatchInfo) { 3581 3582 Builder.setInstrAndDebugLoc(MI); 3583 Register WideSrcVal = MatchInfo.WideSrcVal; 3584 LLT WideStoreTy = MRI.getType(WideSrcVal); 3585 3586 if (MatchInfo.NeedBSwap) { 3587 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); 3588 } else if (MatchInfo.NeedRotate) { 3589 assert(WideStoreTy.getSizeInBits() % 2 == 0 && 3590 "Unexpected type for rotate"); 3591 auto RotAmt = 3592 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); 3593 WideSrcVal = 3594 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); 3595 } 3596 3597 Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(), 3598 MatchInfo.LowestIdxStore->getMMO().getPointerInfo(), 3599 MatchInfo.LowestIdxStore->getMMO().getAlign()); 3600 3601 // Erase the old stores. 3602 for (auto *ST : MatchInfo.FoundStores) 3603 ST->eraseFromParent(); 3604 } 3605 3606 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3607 MachineInstr *&ExtMI) { 3608 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3609 3610 Register DstReg = MI.getOperand(0).getReg(); 3611 3612 // TODO: Extending a vector may be expensive, don't do this until heuristics 3613 // are better. 3614 if (MRI.getType(DstReg).isVector()) 3615 return false; 3616 3617 // Try to match a phi, whose only use is an extend. 3618 if (!MRI.hasOneNonDBGUse(DstReg)) 3619 return false; 3620 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3621 switch (ExtMI->getOpcode()) { 3622 case TargetOpcode::G_ANYEXT: 3623 return true; // G_ANYEXT is usually free. 3624 case TargetOpcode::G_ZEXT: 3625 case TargetOpcode::G_SEXT: 3626 break; 3627 default: 3628 return false; 3629 } 3630 3631 // If the target is likely to fold this extend away, don't propagate. 3632 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3633 return false; 3634 3635 // We don't want to propagate the extends unless there's a good chance that 3636 // they'll be optimized in some way. 3637 // Collect the unique incoming values. 3638 SmallPtrSet<MachineInstr *, 4> InSrcs; 3639 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3640 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3641 switch (DefMI->getOpcode()) { 3642 case TargetOpcode::G_LOAD: 3643 case TargetOpcode::G_TRUNC: 3644 case TargetOpcode::G_SEXT: 3645 case TargetOpcode::G_ZEXT: 3646 case TargetOpcode::G_ANYEXT: 3647 case TargetOpcode::G_CONSTANT: 3648 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3649 // Don't try to propagate if there are too many places to create new 3650 // extends, chances are it'll increase code size. 3651 if (InSrcs.size() > 2) 3652 return false; 3653 break; 3654 default: 3655 return false; 3656 } 3657 } 3658 return true; 3659 } 3660 3661 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3662 MachineInstr *&ExtMI) { 3663 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3664 Register DstReg = ExtMI->getOperand(0).getReg(); 3665 LLT ExtTy = MRI.getType(DstReg); 3666 3667 // Propagate the extension into the block of each incoming reg's block. 3668 // Use a SetVector here because PHIs can have duplicate edges, and we want 3669 // deterministic iteration order. 3670 SmallSetVector<MachineInstr *, 8> SrcMIs; 3671 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3672 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3673 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3674 if (!SrcMIs.insert(SrcMI)) 3675 continue; 3676 3677 // Build an extend after each src inst. 3678 auto *MBB = SrcMI->getParent(); 3679 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3680 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3681 InsertPt = MBB->getFirstNonPHI(); 3682 3683 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3684 Builder.setDebugLoc(MI.getDebugLoc()); 3685 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3686 SrcMI->getOperand(0).getReg()); 3687 OldToNewSrcMap[SrcMI] = NewExt; 3688 } 3689 3690 // Create a new phi with the extended inputs. 3691 Builder.setInstrAndDebugLoc(MI); 3692 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3693 NewPhi.addDef(DstReg); 3694 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3695 auto &MO = MI.getOperand(SrcIdx); 3696 if (!MO.isReg()) { 3697 NewPhi.addMBB(MO.getMBB()); 3698 continue; 3699 } 3700 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3701 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3702 } 3703 Builder.insertInstr(NewPhi); 3704 ExtMI->eraseFromParent(); 3705 } 3706 3707 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3708 Register &Reg) { 3709 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3710 // If we have a constant index, look for a G_BUILD_VECTOR source 3711 // and find the source register that the index maps to. 3712 Register SrcVec = MI.getOperand(1).getReg(); 3713 LLT SrcTy = MRI.getType(SrcVec); 3714 if (!isLegalOrBeforeLegalizer( 3715 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3716 return false; 3717 3718 auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3719 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3720 return false; 3721 3722 unsigned VecIdx = Cst->Value.getZExtValue(); 3723 MachineInstr *BuildVecMI = 3724 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3725 if (!BuildVecMI) { 3726 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3727 if (!BuildVecMI) 3728 return false; 3729 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3730 if (!isLegalOrBeforeLegalizer( 3731 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3732 return false; 3733 } 3734 3735 EVT Ty(getMVTForLLT(SrcTy)); 3736 if (!MRI.hasOneNonDBGUse(SrcVec) && 3737 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3738 return false; 3739 3740 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3741 return true; 3742 } 3743 3744 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3745 Register &Reg) { 3746 // Check the type of the register, since it may have come from a 3747 // G_BUILD_VECTOR_TRUNC. 3748 LLT ScalarTy = MRI.getType(Reg); 3749 Register DstReg = MI.getOperand(0).getReg(); 3750 LLT DstTy = MRI.getType(DstReg); 3751 3752 Builder.setInstrAndDebugLoc(MI); 3753 if (ScalarTy != DstTy) { 3754 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3755 Builder.buildTrunc(DstReg, Reg); 3756 MI.eraseFromParent(); 3757 return; 3758 } 3759 replaceSingleDefInstWithReg(MI, Reg); 3760 } 3761 3762 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3763 MachineInstr &MI, 3764 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3765 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3766 // This combine tries to find build_vector's which have every source element 3767 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3768 // the masked load scalarization is run late in the pipeline. There's already 3769 // a combine for a similar pattern starting from the extract, but that 3770 // doesn't attempt to do it if there are multiple uses of the build_vector, 3771 // which in this case is true. Starting the combine from the build_vector 3772 // feels more natural than trying to find sibling nodes of extracts. 3773 // E.g. 3774 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3775 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3776 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3777 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3778 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3779 // ==> 3780 // replace ext{1,2,3,4} with %s{1,2,3,4} 3781 3782 Register DstReg = MI.getOperand(0).getReg(); 3783 LLT DstTy = MRI.getType(DstReg); 3784 unsigned NumElts = DstTy.getNumElements(); 3785 3786 SmallBitVector ExtractedElts(NumElts); 3787 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), 3788 MRI.use_instr_nodbg_end())) { 3789 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3790 return false; 3791 auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI); 3792 if (!Cst) 3793 return false; 3794 unsigned Idx = Cst.getValue().getZExtValue(); 3795 if (Idx >= NumElts) 3796 return false; // Out of range. 3797 ExtractedElts.set(Idx); 3798 SrcDstPairs.emplace_back( 3799 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3800 } 3801 // Match if every element was extracted. 3802 return ExtractedElts.all(); 3803 } 3804 3805 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3806 MachineInstr &MI, 3807 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3808 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3809 for (auto &Pair : SrcDstPairs) { 3810 auto *ExtMI = Pair.second; 3811 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3812 ExtMI->eraseFromParent(); 3813 } 3814 MI.eraseFromParent(); 3815 } 3816 3817 void CombinerHelper::applyBuildFn( 3818 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3819 Builder.setInstrAndDebugLoc(MI); 3820 MatchInfo(Builder); 3821 MI.eraseFromParent(); 3822 } 3823 3824 void CombinerHelper::applyBuildFnNoErase( 3825 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3826 Builder.setInstrAndDebugLoc(MI); 3827 MatchInfo(Builder); 3828 } 3829 3830 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3831 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3832 unsigned Opc = MI.getOpcode(); 3833 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3834 Register X = MI.getOperand(1).getReg(); 3835 Register Y = MI.getOperand(2).getReg(); 3836 if (X != Y) 3837 return false; 3838 unsigned RotateOpc = 3839 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3840 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3841 } 3842 3843 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3844 unsigned Opc = MI.getOpcode(); 3845 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3846 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3847 Observer.changingInstr(MI); 3848 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3849 : TargetOpcode::G_ROTR)); 3850 MI.RemoveOperand(2); 3851 Observer.changedInstr(MI); 3852 } 3853 3854 // Fold (rot x, c) -> (rot x, c % BitSize) 3855 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3856 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3857 MI.getOpcode() == TargetOpcode::G_ROTR); 3858 unsigned Bitsize = 3859 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3860 Register AmtReg = MI.getOperand(2).getReg(); 3861 bool OutOfRange = false; 3862 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 3863 if (auto *CI = dyn_cast<ConstantInt>(C)) 3864 OutOfRange |= CI->getValue().uge(Bitsize); 3865 return true; 3866 }; 3867 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 3868 } 3869 3870 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 3871 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3872 MI.getOpcode() == TargetOpcode::G_ROTR); 3873 unsigned Bitsize = 3874 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3875 Builder.setInstrAndDebugLoc(MI); 3876 Register Amt = MI.getOperand(2).getReg(); 3877 LLT AmtTy = MRI.getType(Amt); 3878 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 3879 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 3880 Observer.changingInstr(MI); 3881 MI.getOperand(2).setReg(Amt); 3882 Observer.changedInstr(MI); 3883 } 3884 3885 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 3886 int64_t &MatchInfo) { 3887 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3888 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3889 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 3890 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 3891 Optional<bool> KnownVal; 3892 switch (Pred) { 3893 default: 3894 llvm_unreachable("Unexpected G_ICMP predicate?"); 3895 case CmpInst::ICMP_EQ: 3896 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 3897 break; 3898 case CmpInst::ICMP_NE: 3899 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 3900 break; 3901 case CmpInst::ICMP_SGE: 3902 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 3903 break; 3904 case CmpInst::ICMP_SGT: 3905 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 3906 break; 3907 case CmpInst::ICMP_SLE: 3908 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 3909 break; 3910 case CmpInst::ICMP_SLT: 3911 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 3912 break; 3913 case CmpInst::ICMP_UGE: 3914 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 3915 break; 3916 case CmpInst::ICMP_UGT: 3917 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 3918 break; 3919 case CmpInst::ICMP_ULE: 3920 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 3921 break; 3922 case CmpInst::ICMP_ULT: 3923 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 3924 break; 3925 } 3926 if (!KnownVal) 3927 return false; 3928 MatchInfo = 3929 *KnownVal 3930 ? getICmpTrueVal(getTargetLowering(), 3931 /*IsVector = */ 3932 MRI.getType(MI.getOperand(0).getReg()).isVector(), 3933 /* IsFP = */ false) 3934 : 0; 3935 return true; 3936 } 3937 3938 bool CombinerHelper::matchICmpToLHSKnownBits( 3939 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3940 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3941 // Given: 3942 // 3943 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 3944 // %cmp = G_ICMP ne %x, 0 3945 // 3946 // Or: 3947 // 3948 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 3949 // %cmp = G_ICMP eq %x, 1 3950 // 3951 // We can replace %cmp with %x assuming true is 1 on the target. 3952 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3953 if (!CmpInst::isEquality(Pred)) 3954 return false; 3955 Register Dst = MI.getOperand(0).getReg(); 3956 LLT DstTy = MRI.getType(Dst); 3957 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), 3958 /* IsFP = */ false) != 1) 3959 return false; 3960 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; 3961 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) 3962 return false; 3963 Register LHS = MI.getOperand(2).getReg(); 3964 auto KnownLHS = KB->getKnownBits(LHS); 3965 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) 3966 return false; 3967 // Make sure replacing Dst with the LHS is a legal operation. 3968 LLT LHSTy = MRI.getType(LHS); 3969 unsigned LHSSize = LHSTy.getSizeInBits(); 3970 unsigned DstSize = DstTy.getSizeInBits(); 3971 unsigned Op = TargetOpcode::COPY; 3972 if (DstSize != LHSSize) 3973 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; 3974 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) 3975 return false; 3976 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; 3977 return true; 3978 } 3979 3980 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 3981 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 3982 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3983 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 3984 Register Dst = MI.getOperand(0).getReg(); 3985 Register Src = MI.getOperand(1).getReg(); 3986 LLT Ty = MRI.getType(Src); 3987 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 3988 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 3989 return false; 3990 int64_t Width = MI.getOperand(2).getImm(); 3991 Register ShiftSrc; 3992 int64_t ShiftImm; 3993 if (!mi_match( 3994 Src, MRI, 3995 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 3996 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 3997 return false; 3998 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 3999 return false; 4000 4001 MatchInfo = [=](MachineIRBuilder &B) { 4002 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4003 auto Cst2 = B.buildConstant(ExtractTy, Width); 4004 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4005 }; 4006 return true; 4007 } 4008 4009 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4010 bool CombinerHelper::matchBitfieldExtractFromAnd( 4011 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4012 assert(MI.getOpcode() == TargetOpcode::G_AND); 4013 Register Dst = MI.getOperand(0).getReg(); 4014 LLT Ty = MRI.getType(Dst); 4015 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 4016 TargetOpcode::G_UBFX, Ty, Ty)) 4017 return false; 4018 4019 int64_t AndImm, LSBImm; 4020 Register ShiftSrc; 4021 const unsigned Size = Ty.getScalarSizeInBits(); 4022 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4023 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4024 m_ICst(AndImm)))) 4025 return false; 4026 4027 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4028 auto MaybeMask = static_cast<uint64_t>(AndImm); 4029 if (MaybeMask & (MaybeMask + 1)) 4030 return false; 4031 4032 // LSB must fit within the register. 4033 if (static_cast<uint64_t>(LSBImm) >= Size) 4034 return false; 4035 4036 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4037 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4038 MatchInfo = [=](MachineIRBuilder &B) { 4039 auto WidthCst = B.buildConstant(ExtractTy, Width); 4040 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4041 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4042 }; 4043 return true; 4044 } 4045 4046 bool CombinerHelper::matchBitfieldExtractFromShr( 4047 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4048 const unsigned Opcode = MI.getOpcode(); 4049 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 4050 4051 const Register Dst = MI.getOperand(0).getReg(); 4052 4053 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 4054 ? TargetOpcode::G_SBFX 4055 : TargetOpcode::G_UBFX; 4056 4057 // Check if the type we would use for the extract is legal 4058 LLT Ty = MRI.getType(Dst); 4059 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4060 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 4061 return false; 4062 4063 Register ShlSrc; 4064 int64_t ShrAmt; 4065 int64_t ShlAmt; 4066 const unsigned Size = Ty.getScalarSizeInBits(); 4067 4068 // Try to match shr (shl x, c1), c2 4069 if (!mi_match(Dst, MRI, 4070 m_BinOp(Opcode, 4071 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4072 m_ICst(ShrAmt)))) 4073 return false; 4074 4075 // Make sure that the shift sizes can fit a bitfield extract 4076 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4077 return false; 4078 4079 // Skip this combine if the G_SEXT_INREG combine could handle it 4080 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4081 return false; 4082 4083 // Calculate start position and width of the extract 4084 const int64_t Pos = ShrAmt - ShlAmt; 4085 const int64_t Width = Size - ShrAmt; 4086 4087 MatchInfo = [=](MachineIRBuilder &B) { 4088 auto WidthCst = B.buildConstant(ExtractTy, Width); 4089 auto PosCst = B.buildConstant(ExtractTy, Pos); 4090 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4091 }; 4092 return true; 4093 } 4094 4095 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4096 MachineInstr &PtrAdd) { 4097 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4098 4099 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4100 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4101 if (!Src1Def) 4102 return false; 4103 4104 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4105 4106 if (MRI.hasOneNonDBGUse(Src1Reg)) 4107 return false; 4108 4109 auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4110 if (!C1) 4111 return false; 4112 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4113 if (!C2) 4114 return false; 4115 4116 const APInt &C1APIntVal = *C1; 4117 const APInt &C2APIntVal = *C2; 4118 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4119 4120 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4121 // This combine may end up running before ptrtoint/inttoptr combines 4122 // manage to eliminate redundant conversions, so try to look through them. 4123 MachineInstr *ConvUseMI = &UseMI; 4124 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4125 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4126 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4127 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4128 if (!MRI.hasOneNonDBGUse(DefReg)) 4129 break; 4130 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4131 ConvUseOpc = ConvUseMI->getOpcode(); 4132 } 4133 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4134 ConvUseOpc == TargetOpcode::G_STORE; 4135 if (!LoadStore) 4136 continue; 4137 // Is x[offset2] already not a legal addressing mode? If so then 4138 // reassociating the constants breaks nothing (we test offset2 because 4139 // that's the one we hope to fold into the load or store). 4140 TargetLoweringBase::AddrMode AM; 4141 AM.HasBaseReg = true; 4142 AM.BaseOffs = C2APIntVal.getSExtValue(); 4143 unsigned AS = 4144 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4145 Type *AccessTy = 4146 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4147 PtrAdd.getMF()->getFunction().getContext()); 4148 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4149 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4150 AccessTy, AS)) 4151 continue; 4152 4153 // Would x[offset1+offset2] still be a legal addressing mode? 4154 AM.BaseOffs = CombinedValue; 4155 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4156 AccessTy, AS)) 4157 return true; 4158 } 4159 4160 return false; 4161 } 4162 4163 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI, 4164 MachineInstr *RHS, 4165 BuildFnTy &MatchInfo) { 4166 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4167 Register Src1Reg = MI.getOperand(1).getReg(); 4168 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4169 return false; 4170 auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4171 if (!C2) 4172 return false; 4173 4174 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4175 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4176 4177 auto NewBase = 4178 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4179 Observer.changingInstr(MI); 4180 MI.getOperand(1).setReg(NewBase.getReg(0)); 4181 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4182 Observer.changedInstr(MI); 4183 }; 4184 return !reassociationCanBreakAddressingModePattern(MI); 4185 } 4186 4187 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI, 4188 MachineInstr *LHS, 4189 MachineInstr *RHS, 4190 BuildFnTy &MatchInfo) { 4191 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C) 4192 // if and only if (G_PTR_ADD X, C) has one use. 4193 Register LHSBase; 4194 Optional<ValueAndVReg> LHSCstOff; 4195 if (!mi_match(MI.getBaseReg(), MRI, 4196 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff))))) 4197 return false; 4198 4199 auto *LHSPtrAdd = cast<GPtrAdd>(LHS); 4200 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4201 // When we change LHSPtrAdd's offset register we might cause it to use a reg 4202 // before its def. Sink the instruction so the outer PTR_ADD to ensure this 4203 // doesn't happen. 4204 LHSPtrAdd->moveBefore(&MI); 4205 Register RHSReg = MI.getOffsetReg(); 4206 Observer.changingInstr(MI); 4207 MI.getOperand(2).setReg(LHSCstOff->VReg); 4208 Observer.changedInstr(MI); 4209 Observer.changingInstr(*LHSPtrAdd); 4210 LHSPtrAdd->getOperand(2).setReg(RHSReg); 4211 Observer.changedInstr(*LHSPtrAdd); 4212 }; 4213 return !reassociationCanBreakAddressingModePattern(MI); 4214 } 4215 4216 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI, 4217 MachineInstr *LHS, 4218 MachineInstr *RHS, 4219 BuildFnTy &MatchInfo) { 4220 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4221 auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS); 4222 if (!LHSPtrAdd) 4223 return false; 4224 4225 Register Src2Reg = MI.getOperand(2).getReg(); 4226 Register LHSSrc1 = LHSPtrAdd->getBaseReg(); 4227 Register LHSSrc2 = LHSPtrAdd->getOffsetReg(); 4228 auto C1 = getIConstantVRegVal(LHSSrc2, MRI); 4229 if (!C1) 4230 return false; 4231 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4232 if (!C2) 4233 return false; 4234 4235 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4236 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4237 Observer.changingInstr(MI); 4238 MI.getOperand(1).setReg(LHSSrc1); 4239 MI.getOperand(2).setReg(NewCst.getReg(0)); 4240 Observer.changedInstr(MI); 4241 }; 4242 return !reassociationCanBreakAddressingModePattern(MI); 4243 } 4244 4245 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI, 4246 BuildFnTy &MatchInfo) { 4247 auto &PtrAdd = cast<GPtrAdd>(MI); 4248 // We're trying to match a few pointer computation patterns here for 4249 // re-association opportunities. 4250 // 1) Isolating a constant operand to be on the RHS, e.g.: 4251 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4252 // 4253 // 2) Folding two constants in each sub-tree as long as such folding 4254 // doesn't break a legal addressing mode. 4255 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4256 // 4257 // 3) Move a constant from the LHS of an inner op to the RHS of the outer. 4258 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C) 4259 // iif (G_PTR_ADD X, C) has one use. 4260 MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg()); 4261 MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg()); 4262 4263 // Try to match example 2. 4264 if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo)) 4265 return true; 4266 4267 // Try to match example 3. 4268 if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo)) 4269 return true; 4270 4271 // Try to match example 1. 4272 if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo)) 4273 return true; 4274 4275 return false; 4276 } 4277 4278 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4279 Register Op1 = MI.getOperand(1).getReg(); 4280 Register Op2 = MI.getOperand(2).getReg(); 4281 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4282 if (!MaybeCst) 4283 return false; 4284 MatchInfo = *MaybeCst; 4285 return true; 4286 } 4287 4288 bool CombinerHelper::matchNarrowBinopFeedingAnd( 4289 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4290 // Look for a binop feeding into an AND with a mask: 4291 // 4292 // %add = G_ADD %lhs, %rhs 4293 // %and = G_AND %add, 000...11111111 4294 // 4295 // Check if it's possible to perform the binop at a narrower width and zext 4296 // back to the original width like so: 4297 // 4298 // %narrow_lhs = G_TRUNC %lhs 4299 // %narrow_rhs = G_TRUNC %rhs 4300 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 4301 // %new_add = G_ZEXT %narrow_add 4302 // %and = G_AND %new_add, 000...11111111 4303 // 4304 // This can allow later combines to eliminate the G_AND if it turns out 4305 // that the mask is irrelevant. 4306 assert(MI.getOpcode() == TargetOpcode::G_AND); 4307 Register Dst = MI.getOperand(0).getReg(); 4308 Register AndLHS = MI.getOperand(1).getReg(); 4309 Register AndRHS = MI.getOperand(2).getReg(); 4310 LLT WideTy = MRI.getType(Dst); 4311 4312 // If the potential binop has more than one use, then it's possible that one 4313 // of those uses will need its full width. 4314 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 4315 return false; 4316 4317 // Check if the LHS feeding the AND is impacted by the high bits that we're 4318 // masking out. 4319 // 4320 // e.g. for 64-bit x, y: 4321 // 4322 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 4323 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 4324 if (!LHSInst) 4325 return false; 4326 unsigned LHSOpc = LHSInst->getOpcode(); 4327 switch (LHSOpc) { 4328 default: 4329 return false; 4330 case TargetOpcode::G_ADD: 4331 case TargetOpcode::G_SUB: 4332 case TargetOpcode::G_MUL: 4333 case TargetOpcode::G_AND: 4334 case TargetOpcode::G_OR: 4335 case TargetOpcode::G_XOR: 4336 break; 4337 } 4338 4339 // Find the mask on the RHS. 4340 auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI); 4341 if (!Cst) 4342 return false; 4343 auto Mask = Cst->Value; 4344 if (!Mask.isMask()) 4345 return false; 4346 4347 // No point in combining if there's nothing to truncate. 4348 unsigned NarrowWidth = Mask.countTrailingOnes(); 4349 if (NarrowWidth == WideTy.getSizeInBits()) 4350 return false; 4351 LLT NarrowTy = LLT::scalar(NarrowWidth); 4352 4353 // Check if adding the zext + truncates could be harmful. 4354 auto &MF = *MI.getMF(); 4355 const auto &TLI = getTargetLowering(); 4356 LLVMContext &Ctx = MF.getFunction().getContext(); 4357 auto &DL = MF.getDataLayout(); 4358 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 4359 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 4360 return false; 4361 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 4362 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 4363 return false; 4364 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 4365 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 4366 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4367 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 4368 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 4369 auto NarrowBinOp = 4370 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 4371 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 4372 Observer.changingInstr(MI); 4373 MI.getOperand(1).setReg(Ext.getReg(0)); 4374 Observer.changedInstr(MI); 4375 }; 4376 return true; 4377 } 4378 4379 bool CombinerHelper::tryCombine(MachineInstr &MI) { 4380 if (tryCombineCopy(MI)) 4381 return true; 4382 if (tryCombineExtendingLoads(MI)) 4383 return true; 4384 if (tryCombineIndexedLoadStore(MI)) 4385 return true; 4386 return false; 4387 } 4388