1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 17 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 20 #include "llvm/CodeGen/GlobalISel/Utils.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetOpcodes.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/DivisionByConstantInfo.h" 34 #include "llvm/Support/MathExtras.h" 35 #include <tuple> 36 37 #define DEBUG_TYPE "gi-combiner" 38 39 using namespace llvm; 40 using namespace MIPatternMatch; 41 42 // Option to allow testing of the combiner while no targets know about indexed 43 // addressing. 44 static cl::opt<bool> 45 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 46 cl::desc("Force all indexed operations to be " 47 "legal for the GlobalISel combiner")); 48 49 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 50 MachineIRBuilder &B, GISelKnownBits *KB, 51 MachineDominatorTree *MDT, 52 const LegalizerInfo *LI) 53 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 54 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 55 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 56 (void)this->KB; 57 } 58 59 const TargetLowering &CombinerHelper::getTargetLowering() const { 60 return *Builder.getMF().getSubtarget().getTargetLowering(); 61 } 62 63 /// \returns The little endian in-memory byte position of byte \p I in a 64 /// \p ByteWidth bytes wide type. 65 /// 66 /// E.g. Given a 4-byte type x, x[0] -> byte 0 67 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 68 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 69 return I; 70 } 71 72 /// \returns The big endian in-memory byte position of byte \p I in a 73 /// \p ByteWidth bytes wide type. 74 /// 75 /// E.g. Given a 4-byte type x, x[0] -> byte 3 76 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 77 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 78 return ByteWidth - I - 1; 79 } 80 81 /// Given a map from byte offsets in memory to indices in a load/store, 82 /// determine if that map corresponds to a little or big endian byte pattern. 83 /// 84 /// \param MemOffset2Idx maps memory offsets to address offsets. 85 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 86 /// 87 /// \returns true if the map corresponds to a big endian byte pattern, false 88 /// if it corresponds to a little endian byte pattern, and None otherwise. 89 /// 90 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 91 /// are as follows: 92 /// 93 /// AddrOffset Little endian Big endian 94 /// 0 0 3 95 /// 1 1 2 96 /// 2 2 1 97 /// 3 3 0 98 static Optional<bool> 99 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 100 int64_t LowestIdx) { 101 // Need at least two byte positions to decide on endianness. 102 unsigned Width = MemOffset2Idx.size(); 103 if (Width < 2) 104 return None; 105 bool BigEndian = true, LittleEndian = true; 106 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 107 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 108 if (MemOffsetAndIdx == MemOffset2Idx.end()) 109 return None; 110 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 111 assert(Idx >= 0 && "Expected non-negative byte offset?"); 112 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 113 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 114 if (!BigEndian && !LittleEndian) 115 return None; 116 } 117 118 assert((BigEndian != LittleEndian) && 119 "Pattern cannot be both big and little endian!"); 120 return BigEndian; 121 } 122 123 bool CombinerHelper::isLegalOrBeforeLegalizer( 124 const LegalityQuery &Query) const { 125 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 126 } 127 128 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 129 Register ToReg) const { 130 Observer.changingAllUsesOfReg(MRI, FromReg); 131 132 if (MRI.constrainRegAttrs(ToReg, FromReg)) 133 MRI.replaceRegWith(FromReg, ToReg); 134 else 135 Builder.buildCopy(ToReg, FromReg); 136 137 Observer.finishedChangingAllUsesOfReg(); 138 } 139 140 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 141 MachineOperand &FromRegOp, 142 Register ToReg) const { 143 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 144 Observer.changingInstr(*FromRegOp.getParent()); 145 146 FromRegOp.setReg(ToReg); 147 148 Observer.changedInstr(*FromRegOp.getParent()); 149 } 150 151 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 152 return RBI->getRegBank(Reg, MRI, *TRI); 153 } 154 155 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 156 if (RegBank) 157 MRI.setRegBank(Reg, *RegBank); 158 } 159 160 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 161 if (matchCombineCopy(MI)) { 162 applyCombineCopy(MI); 163 return true; 164 } 165 return false; 166 } 167 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 168 if (MI.getOpcode() != TargetOpcode::COPY) 169 return false; 170 Register DstReg = MI.getOperand(0).getReg(); 171 Register SrcReg = MI.getOperand(1).getReg(); 172 return canReplaceReg(DstReg, SrcReg, MRI); 173 } 174 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 175 Register DstReg = MI.getOperand(0).getReg(); 176 Register SrcReg = MI.getOperand(1).getReg(); 177 MI.eraseFromParent(); 178 replaceRegWith(MRI, DstReg, SrcReg); 179 } 180 181 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 182 bool IsUndef = false; 183 SmallVector<Register, 4> Ops; 184 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 185 applyCombineConcatVectors(MI, IsUndef, Ops); 186 return true; 187 } 188 return false; 189 } 190 191 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 192 SmallVectorImpl<Register> &Ops) { 193 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 194 "Invalid instruction"); 195 IsUndef = true; 196 MachineInstr *Undef = nullptr; 197 198 // Walk over all the operands of concat vectors and check if they are 199 // build_vector themselves or undef. 200 // Then collect their operands in Ops. 201 for (const MachineOperand &MO : MI.uses()) { 202 Register Reg = MO.getReg(); 203 MachineInstr *Def = MRI.getVRegDef(Reg); 204 assert(Def && "Operand not defined"); 205 switch (Def->getOpcode()) { 206 case TargetOpcode::G_BUILD_VECTOR: 207 IsUndef = false; 208 // Remember the operands of the build_vector to fold 209 // them into the yet-to-build flattened concat vectors. 210 for (const MachineOperand &BuildVecMO : Def->uses()) 211 Ops.push_back(BuildVecMO.getReg()); 212 break; 213 case TargetOpcode::G_IMPLICIT_DEF: { 214 LLT OpType = MRI.getType(Reg); 215 // Keep one undef value for all the undef operands. 216 if (!Undef) { 217 Builder.setInsertPt(*MI.getParent(), MI); 218 Undef = Builder.buildUndef(OpType.getScalarType()); 219 } 220 assert(MRI.getType(Undef->getOperand(0).getReg()) == 221 OpType.getScalarType() && 222 "All undefs should have the same type"); 223 // Break the undef vector in as many scalar elements as needed 224 // for the flattening. 225 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 226 EltIdx != EltEnd; ++EltIdx) 227 Ops.push_back(Undef->getOperand(0).getReg()); 228 break; 229 } 230 default: 231 return false; 232 } 233 } 234 return true; 235 } 236 void CombinerHelper::applyCombineConcatVectors( 237 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 238 // We determined that the concat_vectors can be flatten. 239 // Generate the flattened build_vector. 240 Register DstReg = MI.getOperand(0).getReg(); 241 Builder.setInsertPt(*MI.getParent(), MI); 242 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 243 244 // Note: IsUndef is sort of redundant. We could have determine it by 245 // checking that at all Ops are undef. Alternatively, we could have 246 // generate a build_vector of undefs and rely on another combine to 247 // clean that up. For now, given we already gather this information 248 // in tryCombineConcatVectors, just save compile time and issue the 249 // right thing. 250 if (IsUndef) 251 Builder.buildUndef(NewDstReg); 252 else 253 Builder.buildBuildVector(NewDstReg, Ops); 254 MI.eraseFromParent(); 255 replaceRegWith(MRI, DstReg, NewDstReg); 256 } 257 258 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 259 SmallVector<Register, 4> Ops; 260 if (matchCombineShuffleVector(MI, Ops)) { 261 applyCombineShuffleVector(MI, Ops); 262 return true; 263 } 264 return false; 265 } 266 267 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 268 SmallVectorImpl<Register> &Ops) { 269 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 270 "Invalid instruction kind"); 271 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 272 Register Src1 = MI.getOperand(1).getReg(); 273 LLT SrcType = MRI.getType(Src1); 274 // As bizarre as it may look, shuffle vector can actually produce 275 // scalar! This is because at the IR level a <1 x ty> shuffle 276 // vector is perfectly valid. 277 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 278 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 279 280 // If the resulting vector is smaller than the size of the source 281 // vectors being concatenated, we won't be able to replace the 282 // shuffle vector into a concat_vectors. 283 // 284 // Note: We may still be able to produce a concat_vectors fed by 285 // extract_vector_elt and so on. It is less clear that would 286 // be better though, so don't bother for now. 287 // 288 // If the destination is a scalar, the size of the sources doesn't 289 // matter. we will lower the shuffle to a plain copy. This will 290 // work only if the source and destination have the same size. But 291 // that's covered by the next condition. 292 // 293 // TODO: If the size between the source and destination don't match 294 // we could still emit an extract vector element in that case. 295 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 296 return false; 297 298 // Check that the shuffle mask can be broken evenly between the 299 // different sources. 300 if (DstNumElts % SrcNumElts != 0) 301 return false; 302 303 // Mask length is a multiple of the source vector length. 304 // Check if the shuffle is some kind of concatenation of the input 305 // vectors. 306 unsigned NumConcat = DstNumElts / SrcNumElts; 307 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 308 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 309 for (unsigned i = 0; i != DstNumElts; ++i) { 310 int Idx = Mask[i]; 311 // Undef value. 312 if (Idx < 0) 313 continue; 314 // Ensure the indices in each SrcType sized piece are sequential and that 315 // the same source is used for the whole piece. 316 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 317 (ConcatSrcs[i / SrcNumElts] >= 0 && 318 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 319 return false; 320 // Remember which source this index came from. 321 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 322 } 323 324 // The shuffle is concatenating multiple vectors together. 325 // Collect the different operands for that. 326 Register UndefReg; 327 Register Src2 = MI.getOperand(2).getReg(); 328 for (auto Src : ConcatSrcs) { 329 if (Src < 0) { 330 if (!UndefReg) { 331 Builder.setInsertPt(*MI.getParent(), MI); 332 UndefReg = Builder.buildUndef(SrcType).getReg(0); 333 } 334 Ops.push_back(UndefReg); 335 } else if (Src == 0) 336 Ops.push_back(Src1); 337 else 338 Ops.push_back(Src2); 339 } 340 return true; 341 } 342 343 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 344 const ArrayRef<Register> Ops) { 345 Register DstReg = MI.getOperand(0).getReg(); 346 Builder.setInsertPt(*MI.getParent(), MI); 347 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 348 349 if (Ops.size() == 1) 350 Builder.buildCopy(NewDstReg, Ops[0]); 351 else 352 Builder.buildMerge(NewDstReg, Ops); 353 354 MI.eraseFromParent(); 355 replaceRegWith(MRI, DstReg, NewDstReg); 356 } 357 358 namespace { 359 360 /// Select a preference between two uses. CurrentUse is the current preference 361 /// while *ForCandidate is attributes of the candidate under consideration. 362 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 363 const LLT TyForCandidate, 364 unsigned OpcodeForCandidate, 365 MachineInstr *MIForCandidate) { 366 if (!CurrentUse.Ty.isValid()) { 367 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 368 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 369 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 370 return CurrentUse; 371 } 372 373 // We permit the extend to hoist through basic blocks but this is only 374 // sensible if the target has extending loads. If you end up lowering back 375 // into a load and extend during the legalizer then the end result is 376 // hoisting the extend up to the load. 377 378 // Prefer defined extensions to undefined extensions as these are more 379 // likely to reduce the number of instructions. 380 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 381 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 382 return CurrentUse; 383 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 384 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 385 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 386 387 // Prefer sign extensions to zero extensions as sign-extensions tend to be 388 // more expensive. 389 if (CurrentUse.Ty == TyForCandidate) { 390 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 391 OpcodeForCandidate == TargetOpcode::G_ZEXT) 392 return CurrentUse; 393 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 394 OpcodeForCandidate == TargetOpcode::G_SEXT) 395 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 396 } 397 398 // This is potentially target specific. We've chosen the largest type 399 // because G_TRUNC is usually free. One potential catch with this is that 400 // some targets have a reduced number of larger registers than smaller 401 // registers and this choice potentially increases the live-range for the 402 // larger value. 403 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 404 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 405 } 406 return CurrentUse; 407 } 408 409 /// Find a suitable place to insert some instructions and insert them. This 410 /// function accounts for special cases like inserting before a PHI node. 411 /// The current strategy for inserting before PHI's is to duplicate the 412 /// instructions for each predecessor. However, while that's ok for G_TRUNC 413 /// on most targets since it generally requires no code, other targets/cases may 414 /// want to try harder to find a dominating block. 415 static void InsertInsnsWithoutSideEffectsBeforeUse( 416 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 417 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 418 MachineOperand &UseMO)> 419 Inserter) { 420 MachineInstr &UseMI = *UseMO.getParent(); 421 422 MachineBasicBlock *InsertBB = UseMI.getParent(); 423 424 // If the use is a PHI then we want the predecessor block instead. 425 if (UseMI.isPHI()) { 426 MachineOperand *PredBB = std::next(&UseMO); 427 InsertBB = PredBB->getMBB(); 428 } 429 430 // If the block is the same block as the def then we want to insert just after 431 // the def instead of at the start of the block. 432 if (InsertBB == DefMI.getParent()) { 433 MachineBasicBlock::iterator InsertPt = &DefMI; 434 Inserter(InsertBB, std::next(InsertPt), UseMO); 435 return; 436 } 437 438 // Otherwise we want the start of the BB 439 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 440 } 441 } // end anonymous namespace 442 443 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 444 PreferredTuple Preferred; 445 if (matchCombineExtendingLoads(MI, Preferred)) { 446 applyCombineExtendingLoads(MI, Preferred); 447 return true; 448 } 449 return false; 450 } 451 452 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 453 PreferredTuple &Preferred) { 454 // We match the loads and follow the uses to the extend instead of matching 455 // the extends and following the def to the load. This is because the load 456 // must remain in the same position for correctness (unless we also add code 457 // to find a safe place to sink it) whereas the extend is freely movable. 458 // It also prevents us from duplicating the load for the volatile case or just 459 // for performance. 460 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 461 if (!LoadMI) 462 return false; 463 464 Register LoadReg = LoadMI->getDstReg(); 465 466 LLT LoadValueTy = MRI.getType(LoadReg); 467 if (!LoadValueTy.isScalar()) 468 return false; 469 470 // Most architectures are going to legalize <s8 loads into at least a 1 byte 471 // load, and the MMOs can only describe memory accesses in multiples of bytes. 472 // If we try to perform extload combining on those, we can end up with 473 // %a(s8) = extload %ptr (load 1 byte from %ptr) 474 // ... which is an illegal extload instruction. 475 if (LoadValueTy.getSizeInBits() < 8) 476 return false; 477 478 // For non power-of-2 types, they will very likely be legalized into multiple 479 // loads. Don't bother trying to match them into extending loads. 480 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 481 return false; 482 483 // Find the preferred type aside from the any-extends (unless it's the only 484 // one) and non-extending ops. We'll emit an extending load to that type and 485 // and emit a variant of (extend (trunc X)) for the others according to the 486 // relative type sizes. At the same time, pick an extend to use based on the 487 // extend involved in the chosen type. 488 unsigned PreferredOpcode = 489 isa<GLoad>(&MI) 490 ? TargetOpcode::G_ANYEXT 491 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 492 Preferred = {LLT(), PreferredOpcode, nullptr}; 493 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 494 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 495 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 496 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 497 const auto &MMO = LoadMI->getMMO(); 498 // For atomics, only form anyextending loads. 499 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 500 continue; 501 // Check for legality. 502 if (LI) { 503 LegalityQuery::MemDesc MMDesc(MMO); 504 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 505 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 506 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 507 .Action != LegalizeActions::Legal) 508 continue; 509 } 510 Preferred = ChoosePreferredUse(Preferred, 511 MRI.getType(UseMI.getOperand(0).getReg()), 512 UseMI.getOpcode(), &UseMI); 513 } 514 } 515 516 // There were no extends 517 if (!Preferred.MI) 518 return false; 519 // It should be impossible to chose an extend without selecting a different 520 // type since by definition the result of an extend is larger. 521 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 522 523 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 524 return true; 525 } 526 527 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 528 PreferredTuple &Preferred) { 529 // Rewrite the load to the chosen extending load. 530 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 531 532 // Inserter to insert a truncate back to the original type at a given point 533 // with some basic CSE to limit truncate duplication to one per BB. 534 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 535 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 536 MachineBasicBlock::iterator InsertBefore, 537 MachineOperand &UseMO) { 538 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 539 if (PreviouslyEmitted) { 540 Observer.changingInstr(*UseMO.getParent()); 541 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 542 Observer.changedInstr(*UseMO.getParent()); 543 return; 544 } 545 546 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 547 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 548 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 549 EmittedInsns[InsertIntoBB] = NewMI; 550 replaceRegOpWith(MRI, UseMO, NewDstReg); 551 }; 552 553 Observer.changingInstr(MI); 554 MI.setDesc( 555 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 556 ? TargetOpcode::G_SEXTLOAD 557 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 558 ? TargetOpcode::G_ZEXTLOAD 559 : TargetOpcode::G_LOAD)); 560 561 // Rewrite all the uses to fix up the types. 562 auto &LoadValue = MI.getOperand(0); 563 SmallVector<MachineOperand *, 4> Uses; 564 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 565 Uses.push_back(&UseMO); 566 567 for (auto *UseMO : Uses) { 568 MachineInstr *UseMI = UseMO->getParent(); 569 570 // If the extend is compatible with the preferred extend then we should fix 571 // up the type and extend so that it uses the preferred use. 572 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 573 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 574 Register UseDstReg = UseMI->getOperand(0).getReg(); 575 MachineOperand &UseSrcMO = UseMI->getOperand(1); 576 const LLT UseDstTy = MRI.getType(UseDstReg); 577 if (UseDstReg != ChosenDstReg) { 578 if (Preferred.Ty == UseDstTy) { 579 // If the use has the same type as the preferred use, then merge 580 // the vregs and erase the extend. For example: 581 // %1:_(s8) = G_LOAD ... 582 // %2:_(s32) = G_SEXT %1(s8) 583 // %3:_(s32) = G_ANYEXT %1(s8) 584 // ... = ... %3(s32) 585 // rewrites to: 586 // %2:_(s32) = G_SEXTLOAD ... 587 // ... = ... %2(s32) 588 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 589 Observer.erasingInstr(*UseMO->getParent()); 590 UseMO->getParent()->eraseFromParent(); 591 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 592 // If the preferred size is smaller, then keep the extend but extend 593 // from the result of the extending load. For example: 594 // %1:_(s8) = G_LOAD ... 595 // %2:_(s32) = G_SEXT %1(s8) 596 // %3:_(s64) = G_ANYEXT %1(s8) 597 // ... = ... %3(s64) 598 /// rewrites to: 599 // %2:_(s32) = G_SEXTLOAD ... 600 // %3:_(s64) = G_ANYEXT %2:_(s32) 601 // ... = ... %3(s64) 602 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 603 } else { 604 // If the preferred size is large, then insert a truncate. For 605 // example: 606 // %1:_(s8) = G_LOAD ... 607 // %2:_(s64) = G_SEXT %1(s8) 608 // %3:_(s32) = G_ZEXT %1(s8) 609 // ... = ... %3(s32) 610 /// rewrites to: 611 // %2:_(s64) = G_SEXTLOAD ... 612 // %4:_(s8) = G_TRUNC %2:_(s32) 613 // %3:_(s64) = G_ZEXT %2:_(s8) 614 // ... = ... %3(s64) 615 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 616 InsertTruncAt); 617 } 618 continue; 619 } 620 // The use is (one of) the uses of the preferred use we chose earlier. 621 // We're going to update the load to def this value later so just erase 622 // the old extend. 623 Observer.erasingInstr(*UseMO->getParent()); 624 UseMO->getParent()->eraseFromParent(); 625 continue; 626 } 627 628 // The use isn't an extend. Truncate back to the type we originally loaded. 629 // This is free on many targets. 630 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 631 } 632 633 MI.getOperand(0).setReg(ChosenDstReg); 634 Observer.changedInstr(MI); 635 } 636 637 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI, 638 BuildFnTy &MatchInfo) { 639 assert(MI.getOpcode() == TargetOpcode::G_AND); 640 641 // If we have the following code: 642 // %mask = G_CONSTANT 255 643 // %ld = G_LOAD %ptr, (load s16) 644 // %and = G_AND %ld, %mask 645 // 646 // Try to fold it into 647 // %ld = G_ZEXTLOAD %ptr, (load s8) 648 649 Register Dst = MI.getOperand(0).getReg(); 650 if (MRI.getType(Dst).isVector()) 651 return false; 652 653 auto MaybeMask = 654 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 655 if (!MaybeMask) 656 return false; 657 658 APInt MaskVal = MaybeMask->Value; 659 660 if (!MaskVal.isMask()) 661 return false; 662 663 Register SrcReg = MI.getOperand(1).getReg(); 664 GAnyLoad *LoadMI = getOpcodeDef<GAnyLoad>(SrcReg, MRI); 665 if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()) || 666 !LoadMI->isSimple()) 667 return false; 668 669 Register LoadReg = LoadMI->getDstReg(); 670 LLT LoadTy = MRI.getType(LoadReg); 671 Register PtrReg = LoadMI->getPointerReg(); 672 uint64_t LoadSizeBits = LoadMI->getMemSizeInBits(); 673 unsigned MaskSizeBits = MaskVal.countTrailingOnes(); 674 675 // The mask may not be larger than the in-memory type, as it might cover sign 676 // extended bits 677 if (MaskSizeBits > LoadSizeBits) 678 return false; 679 680 // If the mask covers the whole destination register, there's nothing to 681 // extend 682 if (MaskSizeBits >= LoadTy.getSizeInBits()) 683 return false; 684 685 // Most targets cannot deal with loads of size < 8 and need to re-legalize to 686 // at least byte loads. Avoid creating such loads here 687 if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits)) 688 return false; 689 690 const MachineMemOperand &MMO = LoadMI->getMMO(); 691 LegalityQuery::MemDesc MemDesc(MMO); 692 MemDesc.MemoryTy = LLT::scalar(MaskSizeBits); 693 if (!isLegalOrBeforeLegalizer( 694 {TargetOpcode::G_ZEXTLOAD, {LoadTy, MRI.getType(PtrReg)}, {MemDesc}})) 695 return false; 696 697 MatchInfo = [=](MachineIRBuilder &B) { 698 B.setInstrAndDebugLoc(*LoadMI); 699 auto &MF = B.getMF(); 700 auto PtrInfo = MMO.getPointerInfo(); 701 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MaskSizeBits / 8); 702 B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO); 703 }; 704 return true; 705 } 706 707 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 708 const MachineInstr &UseMI) { 709 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 710 "shouldn't consider debug uses"); 711 assert(DefMI.getParent() == UseMI.getParent()); 712 if (&DefMI == &UseMI) 713 return true; 714 const MachineBasicBlock &MBB = *DefMI.getParent(); 715 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 716 return &MI == &DefMI || &MI == &UseMI; 717 }); 718 if (DefOrUse == MBB.end()) 719 llvm_unreachable("Block must contain both DefMI and UseMI!"); 720 return &*DefOrUse == &DefMI; 721 } 722 723 bool CombinerHelper::dominates(const MachineInstr &DefMI, 724 const MachineInstr &UseMI) { 725 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 726 "shouldn't consider debug uses"); 727 if (MDT) 728 return MDT->dominates(&DefMI, &UseMI); 729 else if (DefMI.getParent() != UseMI.getParent()) 730 return false; 731 732 return isPredecessor(DefMI, UseMI); 733 } 734 735 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 736 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 737 Register SrcReg = MI.getOperand(1).getReg(); 738 Register LoadUser = SrcReg; 739 740 if (MRI.getType(SrcReg).isVector()) 741 return false; 742 743 Register TruncSrc; 744 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 745 LoadUser = TruncSrc; 746 747 uint64_t SizeInBits = MI.getOperand(2).getImm(); 748 // If the source is a G_SEXTLOAD from the same bit width, then we don't 749 // need any extend at all, just a truncate. 750 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 751 // If truncating more than the original extended value, abort. 752 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 753 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 754 return false; 755 if (LoadSizeBits == SizeInBits) 756 return true; 757 } 758 return false; 759 } 760 761 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 762 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 763 Builder.setInstrAndDebugLoc(MI); 764 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 765 MI.eraseFromParent(); 766 } 767 768 bool CombinerHelper::matchSextInRegOfLoad( 769 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 770 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 771 772 // Only supports scalars for now. 773 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 774 return false; 775 776 Register SrcReg = MI.getOperand(1).getReg(); 777 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 778 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || 779 !LoadDef->isSimple()) 780 return false; 781 782 // If the sign extend extends from a narrower width than the load's width, 783 // then we can narrow the load width when we combine to a G_SEXTLOAD. 784 // Avoid widening the load at all. 785 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), 786 LoadDef->getMemSizeInBits()); 787 788 // Don't generate G_SEXTLOADs with a < 1 byte width. 789 if (NewSizeBits < 8) 790 return false; 791 // Don't bother creating a non-power-2 sextload, it will likely be broken up 792 // anyway for most targets. 793 if (!isPowerOf2_32(NewSizeBits)) 794 return false; 795 796 const MachineMemOperand &MMO = LoadDef->getMMO(); 797 LegalityQuery::MemDesc MMDesc(MMO); 798 MMDesc.MemoryTy = LLT::scalar(NewSizeBits); 799 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, 800 {MRI.getType(LoadDef->getDstReg()), 801 MRI.getType(LoadDef->getPointerReg())}, 802 {MMDesc}})) 803 return false; 804 805 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 806 return true; 807 } 808 809 void CombinerHelper::applySextInRegOfLoad( 810 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 811 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 812 Register LoadReg; 813 unsigned ScalarSizeBits; 814 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 815 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 816 817 // If we have the following: 818 // %ld = G_LOAD %ptr, (load 2) 819 // %ext = G_SEXT_INREG %ld, 8 820 // ==> 821 // %ld = G_SEXTLOAD %ptr (load 1) 822 823 auto &MMO = LoadDef->getMMO(); 824 Builder.setInstrAndDebugLoc(*LoadDef); 825 auto &MF = Builder.getMF(); 826 auto PtrInfo = MMO.getPointerInfo(); 827 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 828 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 829 LoadDef->getPointerReg(), *NewMMO); 830 MI.eraseFromParent(); 831 } 832 833 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 834 Register &Base, Register &Offset) { 835 auto &MF = *MI.getParent()->getParent(); 836 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 837 838 #ifndef NDEBUG 839 unsigned Opcode = MI.getOpcode(); 840 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 841 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 842 #endif 843 844 Base = MI.getOperand(1).getReg(); 845 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 846 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 847 return false; 848 849 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 850 // FIXME: The following use traversal needs a bail out for patholigical cases. 851 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 852 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 853 continue; 854 855 Offset = Use.getOperand(2).getReg(); 856 if (!ForceLegalIndexing && 857 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 858 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 859 << Use); 860 continue; 861 } 862 863 // Make sure the offset calculation is before the potentially indexed op. 864 // FIXME: we really care about dependency here. The offset calculation might 865 // be movable. 866 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 867 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 868 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 869 << Use); 870 continue; 871 } 872 873 // FIXME: check whether all uses of Base are load/store with foldable 874 // addressing modes. If so, using the normal addr-modes is better than 875 // forming an indexed one. 876 877 bool MemOpDominatesAddrUses = true; 878 for (auto &PtrAddUse : 879 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 880 if (!dominates(MI, PtrAddUse)) { 881 MemOpDominatesAddrUses = false; 882 break; 883 } 884 } 885 886 if (!MemOpDominatesAddrUses) { 887 LLVM_DEBUG( 888 dbgs() << " Ignoring candidate as memop does not dominate uses: " 889 << Use); 890 continue; 891 } 892 893 LLVM_DEBUG(dbgs() << " Found match: " << Use); 894 Addr = Use.getOperand(0).getReg(); 895 return true; 896 } 897 898 return false; 899 } 900 901 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 902 Register &Base, Register &Offset) { 903 auto &MF = *MI.getParent()->getParent(); 904 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 905 906 #ifndef NDEBUG 907 unsigned Opcode = MI.getOpcode(); 908 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 909 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 910 #endif 911 912 Addr = MI.getOperand(1).getReg(); 913 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 914 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 915 return false; 916 917 Base = AddrDef->getOperand(1).getReg(); 918 Offset = AddrDef->getOperand(2).getReg(); 919 920 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 921 922 if (!ForceLegalIndexing && 923 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 924 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 925 return false; 926 } 927 928 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 929 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 930 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 931 return false; 932 } 933 934 if (MI.getOpcode() == TargetOpcode::G_STORE) { 935 // Would require a copy. 936 if (Base == MI.getOperand(0).getReg()) { 937 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 938 return false; 939 } 940 941 // We're expecting one use of Addr in MI, but it could also be the 942 // value stored, which isn't actually dominated by the instruction. 943 if (MI.getOperand(0).getReg() == Addr) { 944 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 945 return false; 946 } 947 } 948 949 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 950 // That might allow us to end base's liveness here by adjusting the constant. 951 952 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 953 if (!dominates(MI, UseMI)) { 954 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 955 return false; 956 } 957 } 958 959 return true; 960 } 961 962 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 963 IndexedLoadStoreMatchInfo MatchInfo; 964 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 965 applyCombineIndexedLoadStore(MI, MatchInfo); 966 return true; 967 } 968 return false; 969 } 970 971 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 972 unsigned Opcode = MI.getOpcode(); 973 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 974 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 975 return false; 976 977 // For now, no targets actually support these opcodes so don't waste time 978 // running these unless we're forced to for testing. 979 if (!ForceLegalIndexing) 980 return false; 981 982 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 983 MatchInfo.Offset); 984 if (!MatchInfo.IsPre && 985 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 986 MatchInfo.Offset)) 987 return false; 988 989 return true; 990 } 991 992 void CombinerHelper::applyCombineIndexedLoadStore( 993 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 994 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 995 MachineIRBuilder MIRBuilder(MI); 996 unsigned Opcode = MI.getOpcode(); 997 bool IsStore = Opcode == TargetOpcode::G_STORE; 998 unsigned NewOpcode; 999 switch (Opcode) { 1000 case TargetOpcode::G_LOAD: 1001 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 1002 break; 1003 case TargetOpcode::G_SEXTLOAD: 1004 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 1005 break; 1006 case TargetOpcode::G_ZEXTLOAD: 1007 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 1008 break; 1009 case TargetOpcode::G_STORE: 1010 NewOpcode = TargetOpcode::G_INDEXED_STORE; 1011 break; 1012 default: 1013 llvm_unreachable("Unknown load/store opcode"); 1014 } 1015 1016 auto MIB = MIRBuilder.buildInstr(NewOpcode); 1017 if (IsStore) { 1018 MIB.addDef(MatchInfo.Addr); 1019 MIB.addUse(MI.getOperand(0).getReg()); 1020 } else { 1021 MIB.addDef(MI.getOperand(0).getReg()); 1022 MIB.addDef(MatchInfo.Addr); 1023 } 1024 1025 MIB.addUse(MatchInfo.Base); 1026 MIB.addUse(MatchInfo.Offset); 1027 MIB.addImm(MatchInfo.IsPre); 1028 MI.eraseFromParent(); 1029 AddrDef.eraseFromParent(); 1030 1031 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 1032 } 1033 1034 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 1035 MachineInstr *&OtherMI) { 1036 unsigned Opcode = MI.getOpcode(); 1037 bool IsDiv, IsSigned; 1038 1039 switch (Opcode) { 1040 default: 1041 llvm_unreachable("Unexpected opcode!"); 1042 case TargetOpcode::G_SDIV: 1043 case TargetOpcode::G_UDIV: { 1044 IsDiv = true; 1045 IsSigned = Opcode == TargetOpcode::G_SDIV; 1046 break; 1047 } 1048 case TargetOpcode::G_SREM: 1049 case TargetOpcode::G_UREM: { 1050 IsDiv = false; 1051 IsSigned = Opcode == TargetOpcode::G_SREM; 1052 break; 1053 } 1054 } 1055 1056 Register Src1 = MI.getOperand(1).getReg(); 1057 unsigned DivOpcode, RemOpcode, DivremOpcode; 1058 if (IsSigned) { 1059 DivOpcode = TargetOpcode::G_SDIV; 1060 RemOpcode = TargetOpcode::G_SREM; 1061 DivremOpcode = TargetOpcode::G_SDIVREM; 1062 } else { 1063 DivOpcode = TargetOpcode::G_UDIV; 1064 RemOpcode = TargetOpcode::G_UREM; 1065 DivremOpcode = TargetOpcode::G_UDIVREM; 1066 } 1067 1068 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 1069 return false; 1070 1071 // Combine: 1072 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1073 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1074 // into: 1075 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1076 1077 // Combine: 1078 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1079 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1080 // into: 1081 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1082 1083 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1084 if (MI.getParent() == UseMI.getParent() && 1085 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1086 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1087 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1088 OtherMI = &UseMI; 1089 return true; 1090 } 1091 } 1092 1093 return false; 1094 } 1095 1096 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1097 MachineInstr *&OtherMI) { 1098 unsigned Opcode = MI.getOpcode(); 1099 assert(OtherMI && "OtherMI shouldn't be empty."); 1100 1101 Register DestDivReg, DestRemReg; 1102 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1103 DestDivReg = MI.getOperand(0).getReg(); 1104 DestRemReg = OtherMI->getOperand(0).getReg(); 1105 } else { 1106 DestDivReg = OtherMI->getOperand(0).getReg(); 1107 DestRemReg = MI.getOperand(0).getReg(); 1108 } 1109 1110 bool IsSigned = 1111 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1112 1113 // Check which instruction is first in the block so we don't break def-use 1114 // deps by "moving" the instruction incorrectly. 1115 if (dominates(MI, *OtherMI)) 1116 Builder.setInstrAndDebugLoc(MI); 1117 else 1118 Builder.setInstrAndDebugLoc(*OtherMI); 1119 1120 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1121 : TargetOpcode::G_UDIVREM, 1122 {DestDivReg, DestRemReg}, 1123 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1124 MI.eraseFromParent(); 1125 OtherMI->eraseFromParent(); 1126 } 1127 1128 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1129 MachineInstr *&BrCond) { 1130 assert(MI.getOpcode() == TargetOpcode::G_BR); 1131 1132 // Try to match the following: 1133 // bb1: 1134 // G_BRCOND %c1, %bb2 1135 // G_BR %bb3 1136 // bb2: 1137 // ... 1138 // bb3: 1139 1140 // The above pattern does not have a fall through to the successor bb2, always 1141 // resulting in a branch no matter which path is taken. Here we try to find 1142 // and replace that pattern with conditional branch to bb3 and otherwise 1143 // fallthrough to bb2. This is generally better for branch predictors. 1144 1145 MachineBasicBlock *MBB = MI.getParent(); 1146 MachineBasicBlock::iterator BrIt(MI); 1147 if (BrIt == MBB->begin()) 1148 return false; 1149 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1150 1151 BrCond = &*std::prev(BrIt); 1152 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1153 return false; 1154 1155 // Check that the next block is the conditional branch target. Also make sure 1156 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1157 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1158 return BrCondTarget != MI.getOperand(0).getMBB() && 1159 MBB->isLayoutSuccessor(BrCondTarget); 1160 } 1161 1162 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1163 MachineInstr *&BrCond) { 1164 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1165 Builder.setInstrAndDebugLoc(*BrCond); 1166 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1167 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1168 // this to i1 only since we might not know for sure what kind of 1169 // compare generated the condition value. 1170 auto True = Builder.buildConstant( 1171 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1172 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1173 1174 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1175 Observer.changingInstr(MI); 1176 MI.getOperand(0).setMBB(FallthroughBB); 1177 Observer.changedInstr(MI); 1178 1179 // Change the conditional branch to use the inverted condition and 1180 // new target block. 1181 Observer.changingInstr(*BrCond); 1182 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1183 BrCond->getOperand(1).setMBB(BrTarget); 1184 Observer.changedInstr(*BrCond); 1185 } 1186 1187 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1188 if (Ty.isVector()) 1189 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1190 Ty.getNumElements()); 1191 return IntegerType::get(C, Ty.getSizeInBits()); 1192 } 1193 1194 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1195 MachineIRBuilder HelperBuilder(MI); 1196 GISelObserverWrapper DummyObserver; 1197 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1198 return Helper.lowerMemcpyInline(MI) == 1199 LegalizerHelper::LegalizeResult::Legalized; 1200 } 1201 1202 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1203 MachineIRBuilder HelperBuilder(MI); 1204 GISelObserverWrapper DummyObserver; 1205 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1206 return Helper.lowerMemCpyFamily(MI, MaxLen) == 1207 LegalizerHelper::LegalizeResult::Legalized; 1208 } 1209 1210 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1211 const Register Op, 1212 const MachineRegisterInfo &MRI) { 1213 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1214 if (!MaybeCst) 1215 return None; 1216 1217 APFloat V = MaybeCst->getValueAPF(); 1218 switch (Opcode) { 1219 default: 1220 llvm_unreachable("Unexpected opcode!"); 1221 case TargetOpcode::G_FNEG: { 1222 V.changeSign(); 1223 return V; 1224 } 1225 case TargetOpcode::G_FABS: { 1226 V.clearSign(); 1227 return V; 1228 } 1229 case TargetOpcode::G_FPTRUNC: 1230 break; 1231 case TargetOpcode::G_FSQRT: { 1232 bool Unused; 1233 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1234 V = APFloat(sqrt(V.convertToDouble())); 1235 break; 1236 } 1237 case TargetOpcode::G_FLOG2: { 1238 bool Unused; 1239 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1240 V = APFloat(log2(V.convertToDouble())); 1241 break; 1242 } 1243 } 1244 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1245 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1246 // and `G_FLOG2` reach here. 1247 bool Unused; 1248 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1249 return V; 1250 } 1251 1252 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1253 Optional<APFloat> &Cst) { 1254 Register DstReg = MI.getOperand(0).getReg(); 1255 Register SrcReg = MI.getOperand(1).getReg(); 1256 LLT DstTy = MRI.getType(DstReg); 1257 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1258 return Cst.hasValue(); 1259 } 1260 1261 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1262 Optional<APFloat> &Cst) { 1263 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1264 Builder.setInstrAndDebugLoc(MI); 1265 MachineFunction &MF = Builder.getMF(); 1266 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1267 Register DstReg = MI.getOperand(0).getReg(); 1268 Builder.buildFConstant(DstReg, *FPVal); 1269 MI.eraseFromParent(); 1270 } 1271 1272 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1273 PtrAddChain &MatchInfo) { 1274 // We're trying to match the following pattern: 1275 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1276 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1277 // --> 1278 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1279 1280 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1281 return false; 1282 1283 Register Add2 = MI.getOperand(1).getReg(); 1284 Register Imm1 = MI.getOperand(2).getReg(); 1285 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1286 if (!MaybeImmVal) 1287 return false; 1288 1289 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1290 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1291 return false; 1292 1293 Register Base = Add2Def->getOperand(1).getReg(); 1294 Register Imm2 = Add2Def->getOperand(2).getReg(); 1295 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1296 if (!MaybeImm2Val) 1297 return false; 1298 1299 // Check if the new combined immediate forms an illegal addressing mode. 1300 // Do not combine if it was legal before but would get illegal. 1301 // To do so, we need to find a load/store user of the pointer to get 1302 // the access type. 1303 Type *AccessTy = nullptr; 1304 auto &MF = *MI.getMF(); 1305 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1306 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1307 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1308 MF.getFunction().getContext()); 1309 break; 1310 } 1311 } 1312 TargetLoweringBase::AddrMode AMNew; 1313 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1314 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1315 if (AccessTy) { 1316 AMNew.HasBaseReg = true; 1317 TargetLoweringBase::AddrMode AMOld; 1318 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); 1319 AMOld.HasBaseReg = true; 1320 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1321 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1322 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1323 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1324 return false; 1325 } 1326 1327 // Pass the combined immediate to the apply function. 1328 MatchInfo.Imm = AMNew.BaseOffs; 1329 MatchInfo.Base = Base; 1330 MatchInfo.Bank = getRegBank(Imm2); 1331 return true; 1332 } 1333 1334 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1335 PtrAddChain &MatchInfo) { 1336 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1337 MachineIRBuilder MIB(MI); 1338 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1339 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1340 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1341 Observer.changingInstr(MI); 1342 MI.getOperand(1).setReg(MatchInfo.Base); 1343 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1344 Observer.changedInstr(MI); 1345 } 1346 1347 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1348 RegisterImmPair &MatchInfo) { 1349 // We're trying to match the following pattern with any of 1350 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1351 // %t1 = SHIFT %base, G_CONSTANT imm1 1352 // %root = SHIFT %t1, G_CONSTANT imm2 1353 // --> 1354 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1355 1356 unsigned Opcode = MI.getOpcode(); 1357 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1358 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1359 Opcode == TargetOpcode::G_USHLSAT) && 1360 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1361 1362 Register Shl2 = MI.getOperand(1).getReg(); 1363 Register Imm1 = MI.getOperand(2).getReg(); 1364 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1365 if (!MaybeImmVal) 1366 return false; 1367 1368 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1369 if (Shl2Def->getOpcode() != Opcode) 1370 return false; 1371 1372 Register Base = Shl2Def->getOperand(1).getReg(); 1373 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1374 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1375 if (!MaybeImm2Val) 1376 return false; 1377 1378 // Pass the combined immediate to the apply function. 1379 MatchInfo.Imm = 1380 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1381 MatchInfo.Reg = Base; 1382 1383 // There is no simple replacement for a saturating unsigned left shift that 1384 // exceeds the scalar size. 1385 if (Opcode == TargetOpcode::G_USHLSAT && 1386 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1387 return false; 1388 1389 return true; 1390 } 1391 1392 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1393 RegisterImmPair &MatchInfo) { 1394 unsigned Opcode = MI.getOpcode(); 1395 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1396 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1397 Opcode == TargetOpcode::G_USHLSAT) && 1398 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1399 1400 Builder.setInstrAndDebugLoc(MI); 1401 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1402 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1403 auto Imm = MatchInfo.Imm; 1404 1405 if (Imm >= ScalarSizeInBits) { 1406 // Any logical shift that exceeds scalar size will produce zero. 1407 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1408 Builder.buildConstant(MI.getOperand(0), 0); 1409 MI.eraseFromParent(); 1410 return; 1411 } 1412 // Arithmetic shift and saturating signed left shift have no effect beyond 1413 // scalar size. 1414 Imm = ScalarSizeInBits - 1; 1415 } 1416 1417 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1418 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1419 Observer.changingInstr(MI); 1420 MI.getOperand(1).setReg(MatchInfo.Reg); 1421 MI.getOperand(2).setReg(NewImm); 1422 Observer.changedInstr(MI); 1423 } 1424 1425 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1426 ShiftOfShiftedLogic &MatchInfo) { 1427 // We're trying to match the following pattern with any of 1428 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1429 // with any of G_AND/G_OR/G_XOR logic instructions. 1430 // %t1 = SHIFT %X, G_CONSTANT C0 1431 // %t2 = LOGIC %t1, %Y 1432 // %root = SHIFT %t2, G_CONSTANT C1 1433 // --> 1434 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1435 // %t4 = SHIFT %Y, G_CONSTANT C1 1436 // %root = LOGIC %t3, %t4 1437 unsigned ShiftOpcode = MI.getOpcode(); 1438 assert((ShiftOpcode == TargetOpcode::G_SHL || 1439 ShiftOpcode == TargetOpcode::G_ASHR || 1440 ShiftOpcode == TargetOpcode::G_LSHR || 1441 ShiftOpcode == TargetOpcode::G_USHLSAT || 1442 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1443 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1444 1445 // Match a one-use bitwise logic op. 1446 Register LogicDest = MI.getOperand(1).getReg(); 1447 if (!MRI.hasOneNonDBGUse(LogicDest)) 1448 return false; 1449 1450 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1451 unsigned LogicOpcode = LogicMI->getOpcode(); 1452 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1453 LogicOpcode != TargetOpcode::G_XOR) 1454 return false; 1455 1456 // Find a matching one-use shift by constant. 1457 const Register C1 = MI.getOperand(2).getReg(); 1458 auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI); 1459 if (!MaybeImmVal) 1460 return false; 1461 1462 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1463 1464 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1465 // Shift should match previous one and should be a one-use. 1466 if (MI->getOpcode() != ShiftOpcode || 1467 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1468 return false; 1469 1470 // Must be a constant. 1471 auto MaybeImmVal = 1472 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1473 if (!MaybeImmVal) 1474 return false; 1475 1476 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1477 return true; 1478 }; 1479 1480 // Logic ops are commutative, so check each operand for a match. 1481 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1482 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1483 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1484 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1485 uint64_t C0Val; 1486 1487 if (matchFirstShift(LogicMIOp1, C0Val)) { 1488 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1489 MatchInfo.Shift2 = LogicMIOp1; 1490 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1491 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1492 MatchInfo.Shift2 = LogicMIOp2; 1493 } else 1494 return false; 1495 1496 MatchInfo.ValSum = C0Val + C1Val; 1497 1498 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1499 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1500 return false; 1501 1502 MatchInfo.Logic = LogicMI; 1503 return true; 1504 } 1505 1506 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1507 ShiftOfShiftedLogic &MatchInfo) { 1508 unsigned Opcode = MI.getOpcode(); 1509 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1510 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1511 Opcode == TargetOpcode::G_SSHLSAT) && 1512 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1513 1514 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1515 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1516 Builder.setInstrAndDebugLoc(MI); 1517 1518 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1519 1520 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1521 Register Shift1 = 1522 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1523 1524 Register Shift2Const = MI.getOperand(2).getReg(); 1525 Register Shift2 = Builder 1526 .buildInstr(Opcode, {DestType}, 1527 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1528 .getReg(0); 1529 1530 Register Dest = MI.getOperand(0).getReg(); 1531 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1532 1533 // These were one use so it's safe to remove them. 1534 MatchInfo.Shift2->eraseFromParentAndMarkDBGValuesForRemoval(); 1535 MatchInfo.Logic->eraseFromParentAndMarkDBGValuesForRemoval(); 1536 1537 MI.eraseFromParent(); 1538 } 1539 1540 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1541 unsigned &ShiftVal) { 1542 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1543 auto MaybeImmVal = 1544 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1545 if (!MaybeImmVal) 1546 return false; 1547 1548 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1549 return (static_cast<int32_t>(ShiftVal) != -1); 1550 } 1551 1552 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1553 unsigned &ShiftVal) { 1554 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1555 MachineIRBuilder MIB(MI); 1556 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1557 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1558 Observer.changingInstr(MI); 1559 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1560 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1561 Observer.changedInstr(MI); 1562 } 1563 1564 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1565 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1566 RegisterImmPair &MatchData) { 1567 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1568 1569 Register LHS = MI.getOperand(1).getReg(); 1570 1571 Register ExtSrc; 1572 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1573 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1574 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1575 return false; 1576 1577 // TODO: Should handle vector splat. 1578 Register RHS = MI.getOperand(2).getReg(); 1579 auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI); 1580 if (!MaybeShiftAmtVal) 1581 return false; 1582 1583 if (LI) { 1584 LLT SrcTy = MRI.getType(ExtSrc); 1585 1586 // We only really care about the legality with the shifted value. We can 1587 // pick any type the constant shift amount, so ask the target what to 1588 // use. Otherwise we would have to guess and hope it is reported as legal. 1589 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1590 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1591 return false; 1592 } 1593 1594 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1595 MatchData.Reg = ExtSrc; 1596 MatchData.Imm = ShiftAmt; 1597 1598 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1599 return MinLeadingZeros >= ShiftAmt; 1600 } 1601 1602 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1603 const RegisterImmPair &MatchData) { 1604 Register ExtSrcReg = MatchData.Reg; 1605 int64_t ShiftAmtVal = MatchData.Imm; 1606 1607 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1608 Builder.setInstrAndDebugLoc(MI); 1609 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1610 auto NarrowShift = 1611 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1612 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1613 MI.eraseFromParent(); 1614 } 1615 1616 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 1617 Register &MatchInfo) { 1618 GMerge &Merge = cast<GMerge>(MI); 1619 SmallVector<Register, 16> MergedValues; 1620 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 1621 MergedValues.emplace_back(Merge.getSourceReg(I)); 1622 1623 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 1624 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 1625 return false; 1626 1627 for (unsigned I = 0; I < MergedValues.size(); ++I) 1628 if (MergedValues[I] != Unmerge->getReg(I)) 1629 return false; 1630 1631 MatchInfo = Unmerge->getSourceReg(); 1632 return true; 1633 } 1634 1635 static Register peekThroughBitcast(Register Reg, 1636 const MachineRegisterInfo &MRI) { 1637 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1638 ; 1639 1640 return Reg; 1641 } 1642 1643 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1644 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1645 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1646 "Expected an unmerge"); 1647 auto &Unmerge = cast<GUnmerge>(MI); 1648 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 1649 1650 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI); 1651 if (!SrcInstr) 1652 return false; 1653 1654 // Check the source type of the merge. 1655 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 1656 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 1657 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1658 if (SrcMergeTy != Dst0Ty && !SameSize) 1659 return false; 1660 // They are the same now (modulo a bitcast). 1661 // We can collect all the src registers. 1662 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 1663 Operands.push_back(SrcInstr->getSourceReg(Idx)); 1664 return true; 1665 } 1666 1667 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1668 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1669 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1670 "Expected an unmerge"); 1671 assert((MI.getNumOperands() - 1 == Operands.size()) && 1672 "Not enough operands to replace all defs"); 1673 unsigned NumElems = MI.getNumOperands() - 1; 1674 1675 LLT SrcTy = MRI.getType(Operands[0]); 1676 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1677 bool CanReuseInputDirectly = DstTy == SrcTy; 1678 Builder.setInstrAndDebugLoc(MI); 1679 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1680 Register DstReg = MI.getOperand(Idx).getReg(); 1681 Register SrcReg = Operands[Idx]; 1682 if (CanReuseInputDirectly) 1683 replaceRegWith(MRI, DstReg, SrcReg); 1684 else 1685 Builder.buildCast(DstReg, SrcReg); 1686 } 1687 MI.eraseFromParent(); 1688 } 1689 1690 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1691 SmallVectorImpl<APInt> &Csts) { 1692 unsigned SrcIdx = MI.getNumOperands() - 1; 1693 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1694 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1695 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1696 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1697 return false; 1698 // Break down the big constant in smaller ones. 1699 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1700 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1701 ? CstVal.getCImm()->getValue() 1702 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1703 1704 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1705 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1706 // Unmerge a constant. 1707 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1708 Csts.emplace_back(Val.trunc(ShiftAmt)); 1709 Val = Val.lshr(ShiftAmt); 1710 } 1711 1712 return true; 1713 } 1714 1715 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1716 SmallVectorImpl<APInt> &Csts) { 1717 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1718 "Expected an unmerge"); 1719 assert((MI.getNumOperands() - 1 == Csts.size()) && 1720 "Not enough operands to replace all defs"); 1721 unsigned NumElems = MI.getNumOperands() - 1; 1722 Builder.setInstrAndDebugLoc(MI); 1723 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1724 Register DstReg = MI.getOperand(Idx).getReg(); 1725 Builder.buildConstant(DstReg, Csts[Idx]); 1726 } 1727 1728 MI.eraseFromParent(); 1729 } 1730 1731 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1732 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1733 "Expected an unmerge"); 1734 // Check that all the lanes are dead except the first one. 1735 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1736 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1737 return false; 1738 } 1739 return true; 1740 } 1741 1742 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1743 Builder.setInstrAndDebugLoc(MI); 1744 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1745 // Truncating a vector is going to truncate every single lane, 1746 // whereas we want the full lowbits. 1747 // Do the operation on a scalar instead. 1748 LLT SrcTy = MRI.getType(SrcReg); 1749 if (SrcTy.isVector()) 1750 SrcReg = 1751 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1752 1753 Register Dst0Reg = MI.getOperand(0).getReg(); 1754 LLT Dst0Ty = MRI.getType(Dst0Reg); 1755 if (Dst0Ty.isVector()) { 1756 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 1757 Builder.buildCast(Dst0Reg, MIB); 1758 } else 1759 Builder.buildTrunc(Dst0Reg, SrcReg); 1760 MI.eraseFromParent(); 1761 } 1762 1763 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 1764 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1765 "Expected an unmerge"); 1766 Register Dst0Reg = MI.getOperand(0).getReg(); 1767 LLT Dst0Ty = MRI.getType(Dst0Reg); 1768 // G_ZEXT on vector applies to each lane, so it will 1769 // affect all destinations. Therefore we won't be able 1770 // to simplify the unmerge to just the first definition. 1771 if (Dst0Ty.isVector()) 1772 return false; 1773 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1774 LLT SrcTy = MRI.getType(SrcReg); 1775 if (SrcTy.isVector()) 1776 return false; 1777 1778 Register ZExtSrcReg; 1779 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 1780 return false; 1781 1782 // Finally we can replace the first definition with 1783 // a zext of the source if the definition is big enough to hold 1784 // all of ZExtSrc bits. 1785 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1786 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 1787 } 1788 1789 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 1790 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1791 "Expected an unmerge"); 1792 1793 Register Dst0Reg = MI.getOperand(0).getReg(); 1794 1795 MachineInstr *ZExtInstr = 1796 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 1797 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 1798 "Expecting a G_ZEXT"); 1799 1800 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 1801 LLT Dst0Ty = MRI.getType(Dst0Reg); 1802 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1803 1804 Builder.setInstrAndDebugLoc(MI); 1805 1806 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 1807 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 1808 } else { 1809 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 1810 "ZExt src doesn't fit in destination"); 1811 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 1812 } 1813 1814 Register ZeroReg; 1815 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1816 if (!ZeroReg) 1817 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 1818 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 1819 } 1820 MI.eraseFromParent(); 1821 } 1822 1823 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1824 unsigned TargetShiftSize, 1825 unsigned &ShiftVal) { 1826 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1827 MI.getOpcode() == TargetOpcode::G_LSHR || 1828 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1829 1830 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1831 if (Ty.isVector()) // TODO: 1832 return false; 1833 1834 // Don't narrow further than the requested size. 1835 unsigned Size = Ty.getSizeInBits(); 1836 if (Size <= TargetShiftSize) 1837 return false; 1838 1839 auto MaybeImmVal = 1840 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1841 if (!MaybeImmVal) 1842 return false; 1843 1844 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1845 return ShiftVal >= Size / 2 && ShiftVal < Size; 1846 } 1847 1848 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1849 const unsigned &ShiftVal) { 1850 Register DstReg = MI.getOperand(0).getReg(); 1851 Register SrcReg = MI.getOperand(1).getReg(); 1852 LLT Ty = MRI.getType(SrcReg); 1853 unsigned Size = Ty.getSizeInBits(); 1854 unsigned HalfSize = Size / 2; 1855 assert(ShiftVal >= HalfSize); 1856 1857 LLT HalfTy = LLT::scalar(HalfSize); 1858 1859 Builder.setInstr(MI); 1860 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1861 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1862 1863 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1864 Register Narrowed = Unmerge.getReg(1); 1865 1866 // dst = G_LSHR s64:x, C for C >= 32 1867 // => 1868 // lo, hi = G_UNMERGE_VALUES x 1869 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1870 1871 if (NarrowShiftAmt != 0) { 1872 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1873 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1874 } 1875 1876 auto Zero = Builder.buildConstant(HalfTy, 0); 1877 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1878 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1879 Register Narrowed = Unmerge.getReg(0); 1880 // dst = G_SHL s64:x, C for C >= 32 1881 // => 1882 // lo, hi = G_UNMERGE_VALUES x 1883 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1884 if (NarrowShiftAmt != 0) { 1885 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1886 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1887 } 1888 1889 auto Zero = Builder.buildConstant(HalfTy, 0); 1890 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1891 } else { 1892 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1893 auto Hi = Builder.buildAShr( 1894 HalfTy, Unmerge.getReg(1), 1895 Builder.buildConstant(HalfTy, HalfSize - 1)); 1896 1897 if (ShiftVal == HalfSize) { 1898 // (G_ASHR i64:x, 32) -> 1899 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1900 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1901 } else if (ShiftVal == Size - 1) { 1902 // Don't need a second shift. 1903 // (G_ASHR i64:x, 63) -> 1904 // %narrowed = (G_ASHR hi_32(x), 31) 1905 // G_MERGE_VALUES %narrowed, %narrowed 1906 Builder.buildMerge(DstReg, { Hi, Hi }); 1907 } else { 1908 auto Lo = Builder.buildAShr( 1909 HalfTy, Unmerge.getReg(1), 1910 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1911 1912 // (G_ASHR i64:x, C) ->, for C >= 32 1913 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1914 Builder.buildMerge(DstReg, { Lo, Hi }); 1915 } 1916 } 1917 1918 MI.eraseFromParent(); 1919 } 1920 1921 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1922 unsigned TargetShiftAmount) { 1923 unsigned ShiftAmt; 1924 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1925 applyCombineShiftToUnmerge(MI, ShiftAmt); 1926 return true; 1927 } 1928 1929 return false; 1930 } 1931 1932 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1933 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1934 Register DstReg = MI.getOperand(0).getReg(); 1935 LLT DstTy = MRI.getType(DstReg); 1936 Register SrcReg = MI.getOperand(1).getReg(); 1937 return mi_match(SrcReg, MRI, 1938 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 1939 } 1940 1941 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1942 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1943 Register DstReg = MI.getOperand(0).getReg(); 1944 Builder.setInstr(MI); 1945 Builder.buildCopy(DstReg, Reg); 1946 MI.eraseFromParent(); 1947 } 1948 1949 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1950 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1951 Register SrcReg = MI.getOperand(1).getReg(); 1952 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 1953 } 1954 1955 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1956 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1957 Register DstReg = MI.getOperand(0).getReg(); 1958 Builder.setInstr(MI); 1959 Builder.buildZExtOrTrunc(DstReg, Reg); 1960 MI.eraseFromParent(); 1961 } 1962 1963 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 1964 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1965 assert(MI.getOpcode() == TargetOpcode::G_ADD); 1966 Register LHS = MI.getOperand(1).getReg(); 1967 Register RHS = MI.getOperand(2).getReg(); 1968 LLT IntTy = MRI.getType(LHS); 1969 1970 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 1971 // instruction. 1972 PtrReg.second = false; 1973 for (Register SrcReg : {LHS, RHS}) { 1974 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 1975 // Don't handle cases where the integer is implicitly converted to the 1976 // pointer width. 1977 LLT PtrTy = MRI.getType(PtrReg.first); 1978 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 1979 return true; 1980 } 1981 1982 PtrReg.second = true; 1983 } 1984 1985 return false; 1986 } 1987 1988 void CombinerHelper::applyCombineAddP2IToPtrAdd( 1989 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1990 Register Dst = MI.getOperand(0).getReg(); 1991 Register LHS = MI.getOperand(1).getReg(); 1992 Register RHS = MI.getOperand(2).getReg(); 1993 1994 const bool DoCommute = PtrReg.second; 1995 if (DoCommute) 1996 std::swap(LHS, RHS); 1997 LHS = PtrReg.first; 1998 1999 LLT PtrTy = MRI.getType(LHS); 2000 2001 Builder.setInstrAndDebugLoc(MI); 2002 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2003 Builder.buildPtrToInt(Dst, PtrAdd); 2004 MI.eraseFromParent(); 2005 } 2006 2007 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2008 int64_t &NewCst) { 2009 auto &PtrAdd = cast<GPtrAdd>(MI); 2010 Register LHS = PtrAdd.getBaseReg(); 2011 Register RHS = PtrAdd.getOffsetReg(); 2012 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2013 2014 if (auto RHSCst = getIConstantVRegSExtVal(RHS, MRI)) { 2015 int64_t Cst; 2016 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2017 NewCst = Cst + *RHSCst; 2018 return true; 2019 } 2020 } 2021 2022 return false; 2023 } 2024 2025 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2026 int64_t &NewCst) { 2027 auto &PtrAdd = cast<GPtrAdd>(MI); 2028 Register Dst = PtrAdd.getReg(0); 2029 2030 Builder.setInstrAndDebugLoc(MI); 2031 Builder.buildConstant(Dst, NewCst); 2032 PtrAdd.eraseFromParent(); 2033 } 2034 2035 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2036 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2037 Register DstReg = MI.getOperand(0).getReg(); 2038 Register SrcReg = MI.getOperand(1).getReg(); 2039 LLT DstTy = MRI.getType(DstReg); 2040 return mi_match(SrcReg, MRI, 2041 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2042 } 2043 2044 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2045 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2046 Register DstReg = MI.getOperand(0).getReg(); 2047 Register SrcReg = MI.getOperand(1).getReg(); 2048 LLT DstTy = MRI.getType(DstReg); 2049 if (mi_match(SrcReg, MRI, 2050 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2051 unsigned DstSize = DstTy.getScalarSizeInBits(); 2052 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2053 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2054 } 2055 return false; 2056 } 2057 2058 bool CombinerHelper::matchCombineExtOfExt( 2059 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2060 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2061 MI.getOpcode() == TargetOpcode::G_SEXT || 2062 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2063 "Expected a G_[ASZ]EXT"); 2064 Register SrcReg = MI.getOperand(1).getReg(); 2065 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2066 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2067 unsigned Opc = MI.getOpcode(); 2068 unsigned SrcOpc = SrcMI->getOpcode(); 2069 if (Opc == SrcOpc || 2070 (Opc == TargetOpcode::G_ANYEXT && 2071 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2072 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2073 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2074 return true; 2075 } 2076 return false; 2077 } 2078 2079 void CombinerHelper::applyCombineExtOfExt( 2080 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2081 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2082 MI.getOpcode() == TargetOpcode::G_SEXT || 2083 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2084 "Expected a G_[ASZ]EXT"); 2085 2086 Register Reg = std::get<0>(MatchInfo); 2087 unsigned SrcExtOp = std::get<1>(MatchInfo); 2088 2089 // Combine exts with the same opcode. 2090 if (MI.getOpcode() == SrcExtOp) { 2091 Observer.changingInstr(MI); 2092 MI.getOperand(1).setReg(Reg); 2093 Observer.changedInstr(MI); 2094 return; 2095 } 2096 2097 // Combine: 2098 // - anyext([sz]ext x) to [sz]ext x 2099 // - sext(zext x) to zext x 2100 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2101 (MI.getOpcode() == TargetOpcode::G_SEXT && 2102 SrcExtOp == TargetOpcode::G_ZEXT)) { 2103 Register DstReg = MI.getOperand(0).getReg(); 2104 Builder.setInstrAndDebugLoc(MI); 2105 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2106 MI.eraseFromParent(); 2107 } 2108 } 2109 2110 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2111 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2112 Register DstReg = MI.getOperand(0).getReg(); 2113 Register SrcReg = MI.getOperand(1).getReg(); 2114 LLT DstTy = MRI.getType(DstReg); 2115 2116 Builder.setInstrAndDebugLoc(MI); 2117 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2118 MI.getFlags()); 2119 MI.eraseFromParent(); 2120 } 2121 2122 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2123 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2124 Register SrcReg = MI.getOperand(1).getReg(); 2125 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2126 } 2127 2128 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2129 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2130 Src = MI.getOperand(1).getReg(); 2131 Register AbsSrc; 2132 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2133 } 2134 2135 bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI, 2136 BuildFnTy &MatchInfo) { 2137 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2138 Register Src = MI.getOperand(1).getReg(); 2139 Register NegSrc; 2140 2141 if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc)))) 2142 return false; 2143 2144 MatchInfo = [=, &MI](MachineIRBuilder &B) { 2145 Observer.changingInstr(MI); 2146 MI.getOperand(1).setReg(NegSrc); 2147 Observer.changedInstr(MI); 2148 }; 2149 return true; 2150 } 2151 2152 bool CombinerHelper::matchCombineTruncOfExt( 2153 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2154 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2155 Register SrcReg = MI.getOperand(1).getReg(); 2156 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2157 unsigned SrcOpc = SrcMI->getOpcode(); 2158 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2159 SrcOpc == TargetOpcode::G_ZEXT) { 2160 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2161 return true; 2162 } 2163 return false; 2164 } 2165 2166 void CombinerHelper::applyCombineTruncOfExt( 2167 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2168 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2169 Register SrcReg = MatchInfo.first; 2170 unsigned SrcExtOp = MatchInfo.second; 2171 Register DstReg = MI.getOperand(0).getReg(); 2172 LLT SrcTy = MRI.getType(SrcReg); 2173 LLT DstTy = MRI.getType(DstReg); 2174 if (SrcTy == DstTy) { 2175 MI.eraseFromParent(); 2176 replaceRegWith(MRI, DstReg, SrcReg); 2177 return; 2178 } 2179 Builder.setInstrAndDebugLoc(MI); 2180 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2181 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2182 else 2183 Builder.buildTrunc(DstReg, SrcReg); 2184 MI.eraseFromParent(); 2185 } 2186 2187 bool CombinerHelper::matchCombineTruncOfShl( 2188 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2189 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2190 Register DstReg = MI.getOperand(0).getReg(); 2191 Register SrcReg = MI.getOperand(1).getReg(); 2192 LLT DstTy = MRI.getType(DstReg); 2193 Register ShiftSrc; 2194 Register ShiftAmt; 2195 2196 if (MRI.hasOneNonDBGUse(SrcReg) && 2197 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2198 isLegalOrBeforeLegalizer( 2199 {TargetOpcode::G_SHL, 2200 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2201 KnownBits Known = KB->getKnownBits(ShiftAmt); 2202 unsigned Size = DstTy.getSizeInBits(); 2203 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2204 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2205 return true; 2206 } 2207 } 2208 return false; 2209 } 2210 2211 void CombinerHelper::applyCombineTruncOfShl( 2212 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2213 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2214 Register DstReg = MI.getOperand(0).getReg(); 2215 Register SrcReg = MI.getOperand(1).getReg(); 2216 LLT DstTy = MRI.getType(DstReg); 2217 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2218 2219 Register ShiftSrc = MatchInfo.first; 2220 Register ShiftAmt = MatchInfo.second; 2221 Builder.setInstrAndDebugLoc(MI); 2222 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2223 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2224 MI.eraseFromParent(); 2225 } 2226 2227 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2228 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2229 return MO.isReg() && 2230 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2231 }); 2232 } 2233 2234 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2235 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2236 return !MO.isReg() || 2237 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2238 }); 2239 } 2240 2241 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2242 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2243 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2244 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2245 } 2246 2247 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2248 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2249 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2250 MRI); 2251 } 2252 2253 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2254 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2255 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2256 MRI); 2257 } 2258 2259 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2260 GSelect &SelMI = cast<GSelect>(MI); 2261 auto Cst = 2262 isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI); 2263 if (!Cst) 2264 return false; 2265 OpIdx = Cst->isZero() ? 3 : 2; 2266 return true; 2267 } 2268 2269 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2270 MI.eraseFromParent(); 2271 return true; 2272 } 2273 2274 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2275 const MachineOperand &MOP2) { 2276 if (!MOP1.isReg() || !MOP2.isReg()) 2277 return false; 2278 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2279 if (!InstAndDef1) 2280 return false; 2281 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2282 if (!InstAndDef2) 2283 return false; 2284 MachineInstr *I1 = InstAndDef1->MI; 2285 MachineInstr *I2 = InstAndDef2->MI; 2286 2287 // Handle a case like this: 2288 // 2289 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2290 // 2291 // Even though %0 and %1 are produced by the same instruction they are not 2292 // the same values. 2293 if (I1 == I2) 2294 return MOP1.getReg() == MOP2.getReg(); 2295 2296 // If we have an instruction which loads or stores, we can't guarantee that 2297 // it is identical. 2298 // 2299 // For example, we may have 2300 // 2301 // %x1 = G_LOAD %addr (load N from @somewhere) 2302 // ... 2303 // call @foo 2304 // ... 2305 // %x2 = G_LOAD %addr (load N from @somewhere) 2306 // ... 2307 // %or = G_OR %x1, %x2 2308 // 2309 // It's possible that @foo will modify whatever lives at the address we're 2310 // loading from. To be safe, let's just assume that all loads and stores 2311 // are different (unless we have something which is guaranteed to not 2312 // change.) 2313 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2314 return false; 2315 2316 // Check for physical registers on the instructions first to avoid cases 2317 // like this: 2318 // 2319 // %a = COPY $physreg 2320 // ... 2321 // SOMETHING implicit-def $physreg 2322 // ... 2323 // %b = COPY $physreg 2324 // 2325 // These copies are not equivalent. 2326 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2327 return MO.isReg() && MO.getReg().isPhysical(); 2328 })) { 2329 // Check if we have a case like this: 2330 // 2331 // %a = COPY $physreg 2332 // %b = COPY %a 2333 // 2334 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2335 // From that, we know that they must have the same value, since they must 2336 // have come from the same COPY. 2337 return I1->isIdenticalTo(*I2); 2338 } 2339 2340 // We don't have any physical registers, so we don't necessarily need the 2341 // same vreg defs. 2342 // 2343 // On the off-chance that there's some target instruction feeding into the 2344 // instruction, let's use produceSameValue instead of isIdenticalTo. 2345 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2346 // Handle instructions with multiple defs that produce same values. Values 2347 // are same for operands with same index. 2348 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2349 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2350 // I1 and I2 are different instructions but produce same values, 2351 // %1 and %6 are same, %1 and %7 are not the same value. 2352 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2353 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2354 } 2355 return false; 2356 } 2357 2358 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2359 if (!MOP.isReg()) 2360 return false; 2361 auto *MI = MRI.getVRegDef(MOP.getReg()); 2362 auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI); 2363 return MaybeCst.hasValue() && MaybeCst->getSExtValue() == C; 2364 } 2365 2366 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2367 unsigned OpIdx) { 2368 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2369 Register OldReg = MI.getOperand(0).getReg(); 2370 Register Replacement = MI.getOperand(OpIdx).getReg(); 2371 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2372 MI.eraseFromParent(); 2373 replaceRegWith(MRI, OldReg, Replacement); 2374 return true; 2375 } 2376 2377 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2378 Register Replacement) { 2379 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2380 Register OldReg = MI.getOperand(0).getReg(); 2381 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2382 MI.eraseFromParent(); 2383 replaceRegWith(MRI, OldReg, Replacement); 2384 return true; 2385 } 2386 2387 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2388 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2389 // Match (cond ? x : x) 2390 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2391 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2392 MRI); 2393 } 2394 2395 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2396 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2397 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2398 MRI); 2399 } 2400 2401 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2402 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2403 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2404 MRI); 2405 } 2406 2407 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2408 MachineOperand &MO = MI.getOperand(OpIdx); 2409 return MO.isReg() && 2410 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2411 } 2412 2413 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2414 unsigned OpIdx) { 2415 MachineOperand &MO = MI.getOperand(OpIdx); 2416 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2417 } 2418 2419 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2420 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2421 Builder.setInstr(MI); 2422 Builder.buildFConstant(MI.getOperand(0), C); 2423 MI.eraseFromParent(); 2424 return true; 2425 } 2426 2427 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2428 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2429 Builder.setInstr(MI); 2430 Builder.buildConstant(MI.getOperand(0), C); 2431 MI.eraseFromParent(); 2432 return true; 2433 } 2434 2435 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2436 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2437 Builder.setInstr(MI); 2438 Builder.buildConstant(MI.getOperand(0), C); 2439 MI.eraseFromParent(); 2440 return true; 2441 } 2442 2443 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2444 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2445 Builder.setInstr(MI); 2446 Builder.buildUndef(MI.getOperand(0)); 2447 MI.eraseFromParent(); 2448 return true; 2449 } 2450 2451 bool CombinerHelper::matchSimplifyAddToSub( 2452 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2453 Register LHS = MI.getOperand(1).getReg(); 2454 Register RHS = MI.getOperand(2).getReg(); 2455 Register &NewLHS = std::get<0>(MatchInfo); 2456 Register &NewRHS = std::get<1>(MatchInfo); 2457 2458 // Helper lambda to check for opportunities for 2459 // ((0-A) + B) -> B - A 2460 // (A + (0-B)) -> A - B 2461 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2462 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2463 return false; 2464 NewLHS = MaybeNewLHS; 2465 return true; 2466 }; 2467 2468 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2469 } 2470 2471 bool CombinerHelper::matchCombineInsertVecElts( 2472 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2473 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2474 "Invalid opcode"); 2475 Register DstReg = MI.getOperand(0).getReg(); 2476 LLT DstTy = MRI.getType(DstReg); 2477 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2478 unsigned NumElts = DstTy.getNumElements(); 2479 // If this MI is part of a sequence of insert_vec_elts, then 2480 // don't do the combine in the middle of the sequence. 2481 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2482 TargetOpcode::G_INSERT_VECTOR_ELT) 2483 return false; 2484 MachineInstr *CurrInst = &MI; 2485 MachineInstr *TmpInst; 2486 int64_t IntImm; 2487 Register TmpReg; 2488 MatchInfo.resize(NumElts); 2489 while (mi_match( 2490 CurrInst->getOperand(0).getReg(), MRI, 2491 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2492 if (IntImm >= NumElts) 2493 return false; 2494 if (!MatchInfo[IntImm]) 2495 MatchInfo[IntImm] = TmpReg; 2496 CurrInst = TmpInst; 2497 } 2498 // Variable index. 2499 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2500 return false; 2501 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2502 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2503 if (!MatchInfo[I - 1].isValid()) 2504 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2505 } 2506 return true; 2507 } 2508 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2509 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2510 } 2511 2512 void CombinerHelper::applyCombineInsertVecElts( 2513 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2514 Builder.setInstr(MI); 2515 Register UndefReg; 2516 auto GetUndef = [&]() { 2517 if (UndefReg) 2518 return UndefReg; 2519 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2520 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2521 return UndefReg; 2522 }; 2523 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2524 if (!MatchInfo[I]) 2525 MatchInfo[I] = GetUndef(); 2526 } 2527 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2528 MI.eraseFromParent(); 2529 } 2530 2531 void CombinerHelper::applySimplifyAddToSub( 2532 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2533 Builder.setInstr(MI); 2534 Register SubLHS, SubRHS; 2535 std::tie(SubLHS, SubRHS) = MatchInfo; 2536 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2537 MI.eraseFromParent(); 2538 } 2539 2540 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2541 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2542 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2543 // 2544 // Creates the new hand + logic instruction (but does not insert them.) 2545 // 2546 // On success, MatchInfo is populated with the new instructions. These are 2547 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2548 unsigned LogicOpcode = MI.getOpcode(); 2549 assert(LogicOpcode == TargetOpcode::G_AND || 2550 LogicOpcode == TargetOpcode::G_OR || 2551 LogicOpcode == TargetOpcode::G_XOR); 2552 MachineIRBuilder MIB(MI); 2553 Register Dst = MI.getOperand(0).getReg(); 2554 Register LHSReg = MI.getOperand(1).getReg(); 2555 Register RHSReg = MI.getOperand(2).getReg(); 2556 2557 // Don't recompute anything. 2558 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2559 return false; 2560 2561 // Make sure we have (hand x, ...), (hand y, ...) 2562 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2563 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2564 if (!LeftHandInst || !RightHandInst) 2565 return false; 2566 unsigned HandOpcode = LeftHandInst->getOpcode(); 2567 if (HandOpcode != RightHandInst->getOpcode()) 2568 return false; 2569 if (!LeftHandInst->getOperand(1).isReg() || 2570 !RightHandInst->getOperand(1).isReg()) 2571 return false; 2572 2573 // Make sure the types match up, and if we're doing this post-legalization, 2574 // we end up with legal types. 2575 Register X = LeftHandInst->getOperand(1).getReg(); 2576 Register Y = RightHandInst->getOperand(1).getReg(); 2577 LLT XTy = MRI.getType(X); 2578 LLT YTy = MRI.getType(Y); 2579 if (XTy != YTy) 2580 return false; 2581 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2582 return false; 2583 2584 // Optional extra source register. 2585 Register ExtraHandOpSrcReg; 2586 switch (HandOpcode) { 2587 default: 2588 return false; 2589 case TargetOpcode::G_ANYEXT: 2590 case TargetOpcode::G_SEXT: 2591 case TargetOpcode::G_ZEXT: { 2592 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2593 break; 2594 } 2595 case TargetOpcode::G_AND: 2596 case TargetOpcode::G_ASHR: 2597 case TargetOpcode::G_LSHR: 2598 case TargetOpcode::G_SHL: { 2599 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2600 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2601 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2602 return false; 2603 ExtraHandOpSrcReg = ZOp.getReg(); 2604 break; 2605 } 2606 } 2607 2608 // Record the steps to build the new instructions. 2609 // 2610 // Steps to build (logic x, y) 2611 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2612 OperandBuildSteps LogicBuildSteps = { 2613 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2614 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2615 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2616 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2617 2618 // Steps to build hand (logic x, y), ...z 2619 OperandBuildSteps HandBuildSteps = { 2620 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2621 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2622 if (ExtraHandOpSrcReg.isValid()) 2623 HandBuildSteps.push_back( 2624 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2625 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2626 2627 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2628 return true; 2629 } 2630 2631 void CombinerHelper::applyBuildInstructionSteps( 2632 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2633 assert(MatchInfo.InstrsToBuild.size() && 2634 "Expected at least one instr to build?"); 2635 Builder.setInstr(MI); 2636 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2637 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2638 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2639 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2640 for (auto &OperandFn : InstrToBuild.OperandFns) 2641 OperandFn(Instr); 2642 } 2643 MI.eraseFromParent(); 2644 } 2645 2646 bool CombinerHelper::matchAshrShlToSextInreg( 2647 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2648 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2649 int64_t ShlCst, AshrCst; 2650 Register Src; 2651 // FIXME: detect splat constant vectors. 2652 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2653 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2654 return false; 2655 if (ShlCst != AshrCst) 2656 return false; 2657 if (!isLegalOrBeforeLegalizer( 2658 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2659 return false; 2660 MatchInfo = std::make_tuple(Src, ShlCst); 2661 return true; 2662 } 2663 2664 void CombinerHelper::applyAshShlToSextInreg( 2665 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2666 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2667 Register Src; 2668 int64_t ShiftAmt; 2669 std::tie(Src, ShiftAmt) = MatchInfo; 2670 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2671 Builder.setInstrAndDebugLoc(MI); 2672 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2673 MI.eraseFromParent(); 2674 } 2675 2676 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 2677 bool CombinerHelper::matchOverlappingAnd( 2678 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 2679 assert(MI.getOpcode() == TargetOpcode::G_AND); 2680 2681 Register Dst = MI.getOperand(0).getReg(); 2682 LLT Ty = MRI.getType(Dst); 2683 2684 Register R; 2685 int64_t C1; 2686 int64_t C2; 2687 if (!mi_match( 2688 Dst, MRI, 2689 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 2690 return false; 2691 2692 MatchInfo = [=](MachineIRBuilder &B) { 2693 if (C1 & C2) { 2694 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 2695 return; 2696 } 2697 auto Zero = B.buildConstant(Ty, 0); 2698 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 2699 }; 2700 return true; 2701 } 2702 2703 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2704 Register &Replacement) { 2705 // Given 2706 // 2707 // %y:_(sN) = G_SOMETHING 2708 // %x:_(sN) = G_SOMETHING 2709 // %res:_(sN) = G_AND %x, %y 2710 // 2711 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 2712 // 2713 // Patterns like this can appear as a result of legalization. E.g. 2714 // 2715 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2716 // %one:_(s32) = G_CONSTANT i32 1 2717 // %and:_(s32) = G_AND %cmp, %one 2718 // 2719 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2720 assert(MI.getOpcode() == TargetOpcode::G_AND); 2721 if (!KB) 2722 return false; 2723 2724 Register AndDst = MI.getOperand(0).getReg(); 2725 LLT DstTy = MRI.getType(AndDst); 2726 2727 // FIXME: This should be removed once GISelKnownBits supports vectors. 2728 if (DstTy.isVector()) 2729 return false; 2730 2731 Register LHS = MI.getOperand(1).getReg(); 2732 Register RHS = MI.getOperand(2).getReg(); 2733 KnownBits LHSBits = KB->getKnownBits(LHS); 2734 KnownBits RHSBits = KB->getKnownBits(RHS); 2735 2736 // Check that x & Mask == x. 2737 // x & 1 == x, always 2738 // x & 0 == x, only if x is also 0 2739 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 2740 // 2741 // Check if we can replace AndDst with the LHS of the G_AND 2742 if (canReplaceReg(AndDst, LHS, MRI) && 2743 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2744 Replacement = LHS; 2745 return true; 2746 } 2747 2748 // Check if we can replace AndDst with the RHS of the G_AND 2749 if (canReplaceReg(AndDst, RHS, MRI) && 2750 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2751 Replacement = RHS; 2752 return true; 2753 } 2754 2755 return false; 2756 } 2757 2758 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 2759 // Given 2760 // 2761 // %y:_(sN) = G_SOMETHING 2762 // %x:_(sN) = G_SOMETHING 2763 // %res:_(sN) = G_OR %x, %y 2764 // 2765 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 2766 assert(MI.getOpcode() == TargetOpcode::G_OR); 2767 if (!KB) 2768 return false; 2769 2770 Register OrDst = MI.getOperand(0).getReg(); 2771 LLT DstTy = MRI.getType(OrDst); 2772 2773 // FIXME: This should be removed once GISelKnownBits supports vectors. 2774 if (DstTy.isVector()) 2775 return false; 2776 2777 Register LHS = MI.getOperand(1).getReg(); 2778 Register RHS = MI.getOperand(2).getReg(); 2779 KnownBits LHSBits = KB->getKnownBits(LHS); 2780 KnownBits RHSBits = KB->getKnownBits(RHS); 2781 2782 // Check that x | Mask == x. 2783 // x | 0 == x, always 2784 // x | 1 == x, only if x is also 1 2785 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 2786 // 2787 // Check if we can replace OrDst with the LHS of the G_OR 2788 if (canReplaceReg(OrDst, LHS, MRI) && 2789 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2790 Replacement = LHS; 2791 return true; 2792 } 2793 2794 // Check if we can replace OrDst with the RHS of the G_OR 2795 if (canReplaceReg(OrDst, RHS, MRI) && 2796 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2797 Replacement = RHS; 2798 return true; 2799 } 2800 2801 return false; 2802 } 2803 2804 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 2805 // If the input is already sign extended, just drop the extension. 2806 Register Src = MI.getOperand(1).getReg(); 2807 unsigned ExtBits = MI.getOperand(2).getImm(); 2808 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 2809 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 2810 } 2811 2812 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 2813 int64_t Cst, bool IsVector, bool IsFP) { 2814 // For i1, Cst will always be -1 regardless of boolean contents. 2815 return (ScalarSizeBits == 1 && Cst == -1) || 2816 isConstTrueVal(TLI, Cst, IsVector, IsFP); 2817 } 2818 2819 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 2820 SmallVectorImpl<Register> &RegsToNegate) { 2821 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2822 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2823 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 2824 Register XorSrc; 2825 Register CstReg; 2826 // We match xor(src, true) here. 2827 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2828 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 2829 return false; 2830 2831 if (!MRI.hasOneNonDBGUse(XorSrc)) 2832 return false; 2833 2834 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 2835 // and ORs. The suffix of RegsToNegate starting from index I is used a work 2836 // list of tree nodes to visit. 2837 RegsToNegate.push_back(XorSrc); 2838 // Remember whether the comparisons are all integer or all floating point. 2839 bool IsInt = false; 2840 bool IsFP = false; 2841 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 2842 Register Reg = RegsToNegate[I]; 2843 if (!MRI.hasOneNonDBGUse(Reg)) 2844 return false; 2845 MachineInstr *Def = MRI.getVRegDef(Reg); 2846 switch (Def->getOpcode()) { 2847 default: 2848 // Don't match if the tree contains anything other than ANDs, ORs and 2849 // comparisons. 2850 return false; 2851 case TargetOpcode::G_ICMP: 2852 if (IsFP) 2853 return false; 2854 IsInt = true; 2855 // When we apply the combine we will invert the predicate. 2856 break; 2857 case TargetOpcode::G_FCMP: 2858 if (IsInt) 2859 return false; 2860 IsFP = true; 2861 // When we apply the combine we will invert the predicate. 2862 break; 2863 case TargetOpcode::G_AND: 2864 case TargetOpcode::G_OR: 2865 // Implement De Morgan's laws: 2866 // ~(x & y) -> ~x | ~y 2867 // ~(x | y) -> ~x & ~y 2868 // When we apply the combine we will change the opcode and recursively 2869 // negate the operands. 2870 RegsToNegate.push_back(Def->getOperand(1).getReg()); 2871 RegsToNegate.push_back(Def->getOperand(2).getReg()); 2872 break; 2873 } 2874 } 2875 2876 // Now we know whether the comparisons are integer or floating point, check 2877 // the constant in the xor. 2878 int64_t Cst; 2879 if (Ty.isVector()) { 2880 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 2881 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 2882 if (!MaybeCst) 2883 return false; 2884 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 2885 return false; 2886 } else { 2887 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 2888 return false; 2889 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 2890 return false; 2891 } 2892 2893 return true; 2894 } 2895 2896 void CombinerHelper::applyNotCmp(MachineInstr &MI, 2897 SmallVectorImpl<Register> &RegsToNegate) { 2898 for (Register Reg : RegsToNegate) { 2899 MachineInstr *Def = MRI.getVRegDef(Reg); 2900 Observer.changingInstr(*Def); 2901 // For each comparison, invert the opcode. For each AND and OR, change the 2902 // opcode. 2903 switch (Def->getOpcode()) { 2904 default: 2905 llvm_unreachable("Unexpected opcode"); 2906 case TargetOpcode::G_ICMP: 2907 case TargetOpcode::G_FCMP: { 2908 MachineOperand &PredOp = Def->getOperand(1); 2909 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 2910 (CmpInst::Predicate)PredOp.getPredicate()); 2911 PredOp.setPredicate(NewP); 2912 break; 2913 } 2914 case TargetOpcode::G_AND: 2915 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 2916 break; 2917 case TargetOpcode::G_OR: 2918 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2919 break; 2920 } 2921 Observer.changedInstr(*Def); 2922 } 2923 2924 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 2925 MI.eraseFromParent(); 2926 } 2927 2928 bool CombinerHelper::matchXorOfAndWithSameReg( 2929 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2930 // Match (xor (and x, y), y) (or any of its commuted cases) 2931 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2932 Register &X = MatchInfo.first; 2933 Register &Y = MatchInfo.second; 2934 Register AndReg = MI.getOperand(1).getReg(); 2935 Register SharedReg = MI.getOperand(2).getReg(); 2936 2937 // Find a G_AND on either side of the G_XOR. 2938 // Look for one of 2939 // 2940 // (xor (and x, y), SharedReg) 2941 // (xor SharedReg, (and x, y)) 2942 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 2943 std::swap(AndReg, SharedReg); 2944 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 2945 return false; 2946 } 2947 2948 // Only do this if we'll eliminate the G_AND. 2949 if (!MRI.hasOneNonDBGUse(AndReg)) 2950 return false; 2951 2952 // We can combine if SharedReg is the same as either the LHS or RHS of the 2953 // G_AND. 2954 if (Y != SharedReg) 2955 std::swap(X, Y); 2956 return Y == SharedReg; 2957 } 2958 2959 void CombinerHelper::applyXorOfAndWithSameReg( 2960 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2961 // Fold (xor (and x, y), y) -> (and (not x), y) 2962 Builder.setInstrAndDebugLoc(MI); 2963 Register X, Y; 2964 std::tie(X, Y) = MatchInfo; 2965 auto Not = Builder.buildNot(MRI.getType(X), X); 2966 Observer.changingInstr(MI); 2967 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2968 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 2969 MI.getOperand(2).setReg(Y); 2970 Observer.changedInstr(MI); 2971 } 2972 2973 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 2974 auto &PtrAdd = cast<GPtrAdd>(MI); 2975 Register DstReg = PtrAdd.getReg(0); 2976 LLT Ty = MRI.getType(DstReg); 2977 const DataLayout &DL = Builder.getMF().getDataLayout(); 2978 2979 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 2980 return false; 2981 2982 if (Ty.isPointer()) { 2983 auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI); 2984 return ConstVal && *ConstVal == 0; 2985 } 2986 2987 assert(Ty.isVector() && "Expecting a vector type"); 2988 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 2989 return isBuildVectorAllZeros(*VecMI, MRI); 2990 } 2991 2992 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 2993 auto &PtrAdd = cast<GPtrAdd>(MI); 2994 Builder.setInstrAndDebugLoc(PtrAdd); 2995 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 2996 PtrAdd.eraseFromParent(); 2997 } 2998 2999 /// The second source operand is known to be a power of 2. 3000 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3001 Register DstReg = MI.getOperand(0).getReg(); 3002 Register Src0 = MI.getOperand(1).getReg(); 3003 Register Pow2Src1 = MI.getOperand(2).getReg(); 3004 LLT Ty = MRI.getType(DstReg); 3005 Builder.setInstrAndDebugLoc(MI); 3006 3007 // Fold (urem x, pow2) -> (and x, pow2-1) 3008 auto NegOne = Builder.buildConstant(Ty, -1); 3009 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3010 Builder.buildAnd(DstReg, Src0, Add); 3011 MI.eraseFromParent(); 3012 } 3013 3014 Optional<SmallVector<Register, 8>> 3015 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3016 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3017 // We want to detect if Root is part of a tree which represents a bunch 3018 // of loads being merged into a larger load. We'll try to recognize patterns 3019 // like, for example: 3020 // 3021 // Reg Reg 3022 // \ / 3023 // OR_1 Reg 3024 // \ / 3025 // OR_2 3026 // \ Reg 3027 // .. / 3028 // Root 3029 // 3030 // Reg Reg Reg Reg 3031 // \ / \ / 3032 // OR_1 OR_2 3033 // \ / 3034 // \ / 3035 // ... 3036 // Root 3037 // 3038 // Each "Reg" may have been produced by a load + some arithmetic. This 3039 // function will save each of them. 3040 SmallVector<Register, 8> RegsToVisit; 3041 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3042 3043 // In the "worst" case, we're dealing with a load for each byte. So, there 3044 // are at most #bytes - 1 ORs. 3045 const unsigned MaxIter = 3046 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3047 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3048 if (Ors.empty()) 3049 break; 3050 const MachineInstr *Curr = Ors.pop_back_val(); 3051 Register OrLHS = Curr->getOperand(1).getReg(); 3052 Register OrRHS = Curr->getOperand(2).getReg(); 3053 3054 // In the combine, we want to elimate the entire tree. 3055 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3056 return None; 3057 3058 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3059 // something that may be a load + arithmetic. 3060 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3061 Ors.push_back(Or); 3062 else 3063 RegsToVisit.push_back(OrLHS); 3064 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3065 Ors.push_back(Or); 3066 else 3067 RegsToVisit.push_back(OrRHS); 3068 } 3069 3070 // We're going to try and merge each register into a wider power-of-2 type, 3071 // so we ought to have an even number of registers. 3072 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3073 return None; 3074 return RegsToVisit; 3075 } 3076 3077 /// Helper function for findLoadOffsetsForLoadOrCombine. 3078 /// 3079 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3080 /// and then moving that value into a specific byte offset. 3081 /// 3082 /// e.g. x[i] << 24 3083 /// 3084 /// \returns The load instruction and the byte offset it is moved into. 3085 static Optional<std::pair<GZExtLoad *, int64_t>> 3086 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3087 const MachineRegisterInfo &MRI) { 3088 assert(MRI.hasOneNonDBGUse(Reg) && 3089 "Expected Reg to only have one non-debug use?"); 3090 Register MaybeLoad; 3091 int64_t Shift; 3092 if (!mi_match(Reg, MRI, 3093 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3094 Shift = 0; 3095 MaybeLoad = Reg; 3096 } 3097 3098 if (Shift % MemSizeInBits != 0) 3099 return None; 3100 3101 // TODO: Handle other types of loads. 3102 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3103 if (!Load) 3104 return None; 3105 3106 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3107 return None; 3108 3109 return std::make_pair(Load, Shift / MemSizeInBits); 3110 } 3111 3112 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3113 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3114 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3115 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3116 3117 // Each load found for the pattern. There should be one for each RegsToVisit. 3118 SmallSetVector<const MachineInstr *, 8> Loads; 3119 3120 // The lowest index used in any load. (The lowest "i" for each x[i].) 3121 int64_t LowestIdx = INT64_MAX; 3122 3123 // The load which uses the lowest index. 3124 GZExtLoad *LowestIdxLoad = nullptr; 3125 3126 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3127 SmallSet<int64_t, 8> SeenIdx; 3128 3129 // Ensure each load is in the same MBB. 3130 // TODO: Support multiple MachineBasicBlocks. 3131 MachineBasicBlock *MBB = nullptr; 3132 const MachineMemOperand *MMO = nullptr; 3133 3134 // Earliest instruction-order load in the pattern. 3135 GZExtLoad *EarliestLoad = nullptr; 3136 3137 // Latest instruction-order load in the pattern. 3138 GZExtLoad *LatestLoad = nullptr; 3139 3140 // Base pointer which every load should share. 3141 Register BasePtr; 3142 3143 // We want to find a load for each register. Each load should have some 3144 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3145 // track of the load which uses the lowest index. Later, we will check if we 3146 // can use its pointer in the final, combined load. 3147 for (auto Reg : RegsToVisit) { 3148 // Find the load, and find the position that it will end up in (e.g. a 3149 // shifted) value. 3150 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3151 if (!LoadAndPos) 3152 return None; 3153 GZExtLoad *Load; 3154 int64_t DstPos; 3155 std::tie(Load, DstPos) = *LoadAndPos; 3156 3157 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3158 // it is difficult to check for stores/calls/etc between loads. 3159 MachineBasicBlock *LoadMBB = Load->getParent(); 3160 if (!MBB) 3161 MBB = LoadMBB; 3162 if (LoadMBB != MBB) 3163 return None; 3164 3165 // Make sure that the MachineMemOperands of every seen load are compatible. 3166 auto &LoadMMO = Load->getMMO(); 3167 if (!MMO) 3168 MMO = &LoadMMO; 3169 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3170 return None; 3171 3172 // Find out what the base pointer and index for the load is. 3173 Register LoadPtr; 3174 int64_t Idx; 3175 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3176 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3177 LoadPtr = Load->getOperand(1).getReg(); 3178 Idx = 0; 3179 } 3180 3181 // Don't combine things like a[i], a[i] -> a bigger load. 3182 if (!SeenIdx.insert(Idx).second) 3183 return None; 3184 3185 // Every load must share the same base pointer; don't combine things like: 3186 // 3187 // a[i], b[i + 1] -> a bigger load. 3188 if (!BasePtr.isValid()) 3189 BasePtr = LoadPtr; 3190 if (BasePtr != LoadPtr) 3191 return None; 3192 3193 if (Idx < LowestIdx) { 3194 LowestIdx = Idx; 3195 LowestIdxLoad = Load; 3196 } 3197 3198 // Keep track of the byte offset that this load ends up at. If we have seen 3199 // the byte offset, then stop here. We do not want to combine: 3200 // 3201 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3202 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3203 return None; 3204 Loads.insert(Load); 3205 3206 // Keep track of the position of the earliest/latest loads in the pattern. 3207 // We will check that there are no load fold barriers between them later 3208 // on. 3209 // 3210 // FIXME: Is there a better way to check for load fold barriers? 3211 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3212 EarliestLoad = Load; 3213 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3214 LatestLoad = Load; 3215 } 3216 3217 // We found a load for each register. Let's check if each load satisfies the 3218 // pattern. 3219 assert(Loads.size() == RegsToVisit.size() && 3220 "Expected to find a load for each register?"); 3221 assert(EarliestLoad != LatestLoad && EarliestLoad && 3222 LatestLoad && "Expected at least two loads?"); 3223 3224 // Check if there are any stores, calls, etc. between any of the loads. If 3225 // there are, then we can't safely perform the combine. 3226 // 3227 // MaxIter is chosen based off the (worst case) number of iterations it 3228 // typically takes to succeed in the LLVM test suite plus some padding. 3229 // 3230 // FIXME: Is there a better way to check for load fold barriers? 3231 const unsigned MaxIter = 20; 3232 unsigned Iter = 0; 3233 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3234 LatestLoad->getIterator())) { 3235 if (Loads.count(&MI)) 3236 continue; 3237 if (MI.isLoadFoldBarrier()) 3238 return None; 3239 if (Iter++ == MaxIter) 3240 return None; 3241 } 3242 3243 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3244 } 3245 3246 bool CombinerHelper::matchLoadOrCombine( 3247 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3248 assert(MI.getOpcode() == TargetOpcode::G_OR); 3249 MachineFunction &MF = *MI.getMF(); 3250 // Assuming a little-endian target, transform: 3251 // s8 *a = ... 3252 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3253 // => 3254 // s32 val = *((i32)a) 3255 // 3256 // s8 *a = ... 3257 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3258 // => 3259 // s32 val = BSWAP(*((s32)a)) 3260 Register Dst = MI.getOperand(0).getReg(); 3261 LLT Ty = MRI.getType(Dst); 3262 if (Ty.isVector()) 3263 return false; 3264 3265 // We need to combine at least two loads into this type. Since the smallest 3266 // possible load is into a byte, we need at least a 16-bit wide type. 3267 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3268 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3269 return false; 3270 3271 // Match a collection of non-OR instructions in the pattern. 3272 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3273 if (!RegsToVisit) 3274 return false; 3275 3276 // We have a collection of non-OR instructions. Figure out how wide each of 3277 // the small loads should be based off of the number of potential loads we 3278 // found. 3279 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3280 if (NarrowMemSizeInBits % 8 != 0) 3281 return false; 3282 3283 // Check if each register feeding into each OR is a load from the same 3284 // base pointer + some arithmetic. 3285 // 3286 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3287 // 3288 // Also verify that each of these ends up putting a[i] into the same memory 3289 // offset as a load into a wide type would. 3290 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3291 GZExtLoad *LowestIdxLoad, *LatestLoad; 3292 int64_t LowestIdx; 3293 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3294 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3295 if (!MaybeLoadInfo) 3296 return false; 3297 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3298 3299 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3300 // we found before, check if this corresponds to a big or little endian byte 3301 // pattern. If it does, then we can represent it using a load + possibly a 3302 // BSWAP. 3303 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3304 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3305 if (!IsBigEndian.hasValue()) 3306 return false; 3307 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3308 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3309 return false; 3310 3311 // Make sure that the load from the lowest index produces offset 0 in the 3312 // final value. 3313 // 3314 // This ensures that we won't combine something like this: 3315 // 3316 // load x[i] -> byte 2 3317 // load x[i+1] -> byte 0 ---> wide_load x[i] 3318 // load x[i+2] -> byte 1 3319 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3320 const unsigned ZeroByteOffset = 3321 *IsBigEndian 3322 ? bigEndianByteAt(NumLoadsInTy, 0) 3323 : littleEndianByteAt(NumLoadsInTy, 0); 3324 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3325 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3326 ZeroOffsetIdx->second != LowestIdx) 3327 return false; 3328 3329 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3330 // may not use index 0. 3331 Register Ptr = LowestIdxLoad->getPointerReg(); 3332 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3333 LegalityQuery::MemDesc MMDesc(MMO); 3334 MMDesc.MemoryTy = Ty; 3335 if (!isLegalOrBeforeLegalizer( 3336 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3337 return false; 3338 auto PtrInfo = MMO.getPointerInfo(); 3339 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3340 3341 // Load must be allowed and fast on the target. 3342 LLVMContext &C = MF.getFunction().getContext(); 3343 auto &DL = MF.getDataLayout(); 3344 bool Fast = false; 3345 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3346 !Fast) 3347 return false; 3348 3349 MatchInfo = [=](MachineIRBuilder &MIB) { 3350 MIB.setInstrAndDebugLoc(*LatestLoad); 3351 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3352 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3353 if (NeedsBSwap) 3354 MIB.buildBSwap(Dst, LoadDst); 3355 }; 3356 return true; 3357 } 3358 3359 /// Check if the store \p Store is a truncstore that can be merged. That is, 3360 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty 3361 /// Register then it does not need to match and SrcVal is set to the source 3362 /// value found. 3363 /// On match, returns the start byte offset of the \p SrcVal that is being 3364 /// stored. 3365 static Optional<int64_t> getTruncStoreByteOffset(GStore &Store, Register &SrcVal, 3366 MachineRegisterInfo &MRI) { 3367 Register TruncVal; 3368 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) 3369 return None; 3370 3371 // The shift amount must be a constant multiple of the narrow type. 3372 // It is translated to the offset address in the wide source value "y". 3373 // 3374 // x = G_LSHR y, ShiftAmtC 3375 // s8 z = G_TRUNC x 3376 // store z, ... 3377 Register FoundSrcVal; 3378 int64_t ShiftAmt; 3379 if (!mi_match(TruncVal, MRI, 3380 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), 3381 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { 3382 if (!SrcVal.isValid() || TruncVal == SrcVal) { 3383 if (!SrcVal.isValid()) 3384 SrcVal = TruncVal; 3385 return 0; // If it's the lowest index store. 3386 } 3387 return None; 3388 } 3389 3390 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); 3391 if (ShiftAmt % NarrowBits!= 0) 3392 return None; 3393 const unsigned Offset = ShiftAmt / NarrowBits; 3394 3395 if (SrcVal.isValid() && FoundSrcVal != SrcVal) 3396 return None; 3397 3398 if (!SrcVal.isValid()) 3399 SrcVal = FoundSrcVal; 3400 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) 3401 return None; 3402 return Offset; 3403 } 3404 3405 /// Match a pattern where a wide type scalar value is stored by several narrow 3406 /// stores. Fold it into a single store or a BSWAP and a store if the targets 3407 /// supports it. 3408 /// 3409 /// Assuming little endian target: 3410 /// i8 *p = ... 3411 /// i32 val = ... 3412 /// p[0] = (val >> 0) & 0xFF; 3413 /// p[1] = (val >> 8) & 0xFF; 3414 /// p[2] = (val >> 16) & 0xFF; 3415 /// p[3] = (val >> 24) & 0xFF; 3416 /// => 3417 /// *((i32)p) = val; 3418 /// 3419 /// i8 *p = ... 3420 /// i32 val = ... 3421 /// p[0] = (val >> 24) & 0xFF; 3422 /// p[1] = (val >> 16) & 0xFF; 3423 /// p[2] = (val >> 8) & 0xFF; 3424 /// p[3] = (val >> 0) & 0xFF; 3425 /// => 3426 /// *((i32)p) = BSWAP(val); 3427 bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI, 3428 MergeTruncStoresInfo &MatchInfo) { 3429 auto &StoreMI = cast<GStore>(MI); 3430 LLT MemTy = StoreMI.getMMO().getMemoryType(); 3431 3432 // We only handle merging simple stores of 1-4 bytes. 3433 if (!MemTy.isScalar()) 3434 return false; 3435 switch (MemTy.getSizeInBits()) { 3436 case 8: 3437 case 16: 3438 case 32: 3439 break; 3440 default: 3441 return false; 3442 } 3443 if (!StoreMI.isSimple()) 3444 return false; 3445 3446 // We do a simple search for mergeable stores prior to this one. 3447 // Any potential alias hazard along the way terminates the search. 3448 SmallVector<GStore *> FoundStores; 3449 3450 // We're looking for: 3451 // 1) a (store(trunc(...))) 3452 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get 3453 // the partial value stored. 3454 // 3) where the offsets form either a little or big-endian sequence. 3455 3456 auto &LastStore = StoreMI; 3457 3458 // The single base pointer that all stores must use. 3459 Register BaseReg; 3460 int64_t LastOffset; 3461 if (!mi_match(LastStore.getPointerReg(), MRI, 3462 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { 3463 BaseReg = LastStore.getPointerReg(); 3464 LastOffset = 0; 3465 } 3466 3467 GStore *LowestIdxStore = &LastStore; 3468 int64_t LowestIdxOffset = LastOffset; 3469 3470 Register WideSrcVal; 3471 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI); 3472 if (!LowestShiftAmt) 3473 return false; // Didn't match a trunc. 3474 assert(WideSrcVal.isValid()); 3475 3476 LLT WideStoreTy = MRI.getType(WideSrcVal); 3477 const unsigned NumStoresRequired = 3478 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); 3479 3480 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); 3481 OffsetMap[*LowestShiftAmt] = LastOffset; 3482 FoundStores.emplace_back(&LastStore); 3483 3484 // Search the block up for more stores. 3485 // We use a search threshold of 10 instructions here because the combiner 3486 // works top-down within a block, and we don't want to search an unbounded 3487 // number of predecessor instructions trying to find matching stores. 3488 // If we moved this optimization into a separate pass then we could probably 3489 // use a more efficient search without having a hard-coded threshold. 3490 const int MaxInstsToCheck = 10; 3491 int NumInstsChecked = 0; 3492 for (auto II = ++LastStore.getReverseIterator(); 3493 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; 3494 ++II) { 3495 NumInstsChecked++; 3496 GStore *NewStore; 3497 if ((NewStore = dyn_cast<GStore>(&*II))) { 3498 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) 3499 break; 3500 } else if (II->isLoadFoldBarrier() || II->mayLoad()) { 3501 break; 3502 } else { 3503 continue; // This is a safe instruction we can look past. 3504 } 3505 3506 Register NewBaseReg; 3507 int64_t MemOffset; 3508 // Check we're storing to the same base + some offset. 3509 if (!mi_match(NewStore->getPointerReg(), MRI, 3510 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { 3511 NewBaseReg = NewStore->getPointerReg(); 3512 MemOffset = 0; 3513 } 3514 if (BaseReg != NewBaseReg) 3515 break; 3516 3517 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI); 3518 if (!ShiftByteOffset) 3519 break; 3520 if (MemOffset < LowestIdxOffset) { 3521 LowestIdxOffset = MemOffset; 3522 LowestIdxStore = NewStore; 3523 } 3524 3525 // Map the offset in the store and the offset in the combined value, and 3526 // early return if it has been set before. 3527 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || 3528 OffsetMap[*ShiftByteOffset] != INT64_MAX) 3529 break; 3530 OffsetMap[*ShiftByteOffset] = MemOffset; 3531 3532 FoundStores.emplace_back(NewStore); 3533 // Reset counter since we've found a matching inst. 3534 NumInstsChecked = 0; 3535 if (FoundStores.size() == NumStoresRequired) 3536 break; 3537 } 3538 3539 if (FoundStores.size() != NumStoresRequired) { 3540 return false; 3541 } 3542 3543 const auto &DL = LastStore.getMF()->getDataLayout(); 3544 auto &C = LastStore.getMF()->getFunction().getContext(); 3545 // Check that a store of the wide type is both allowed and fast on the target 3546 bool Fast = false; 3547 bool Allowed = getTargetLowering().allowsMemoryAccess( 3548 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); 3549 if (!Allowed || !Fast) 3550 return false; 3551 3552 // Check if the pieces of the value are going to the expected places in memory 3553 // to merge the stores. 3554 unsigned NarrowBits = MemTy.getScalarSizeInBits(); 3555 auto checkOffsets = [&](bool MatchLittleEndian) { 3556 if (MatchLittleEndian) { 3557 for (unsigned i = 0; i != NumStoresRequired; ++i) 3558 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) 3559 return false; 3560 } else { // MatchBigEndian by reversing loop counter. 3561 for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired; 3562 ++i, --j) 3563 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) 3564 return false; 3565 } 3566 return true; 3567 }; 3568 3569 // Check if the offsets line up for the native data layout of this target. 3570 bool NeedBswap = false; 3571 bool NeedRotate = false; 3572 if (!checkOffsets(DL.isLittleEndian())) { 3573 // Special-case: check if byte offsets line up for the opposite endian. 3574 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) 3575 NeedBswap = true; 3576 else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian())) 3577 NeedRotate = true; 3578 else 3579 return false; 3580 } 3581 3582 if (NeedBswap && 3583 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}})) 3584 return false; 3585 if (NeedRotate && 3586 !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}})) 3587 return false; 3588 3589 MatchInfo.NeedBSwap = NeedBswap; 3590 MatchInfo.NeedRotate = NeedRotate; 3591 MatchInfo.LowestIdxStore = LowestIdxStore; 3592 MatchInfo.WideSrcVal = WideSrcVal; 3593 MatchInfo.FoundStores = std::move(FoundStores); 3594 return true; 3595 } 3596 3597 void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI, 3598 MergeTruncStoresInfo &MatchInfo) { 3599 3600 Builder.setInstrAndDebugLoc(MI); 3601 Register WideSrcVal = MatchInfo.WideSrcVal; 3602 LLT WideStoreTy = MRI.getType(WideSrcVal); 3603 3604 if (MatchInfo.NeedBSwap) { 3605 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); 3606 } else if (MatchInfo.NeedRotate) { 3607 assert(WideStoreTy.getSizeInBits() % 2 == 0 && 3608 "Unexpected type for rotate"); 3609 auto RotAmt = 3610 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); 3611 WideSrcVal = 3612 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); 3613 } 3614 3615 Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(), 3616 MatchInfo.LowestIdxStore->getMMO().getPointerInfo(), 3617 MatchInfo.LowestIdxStore->getMMO().getAlign()); 3618 3619 // Erase the old stores. 3620 for (auto *ST : MatchInfo.FoundStores) 3621 ST->eraseFromParent(); 3622 } 3623 3624 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3625 MachineInstr *&ExtMI) { 3626 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3627 3628 Register DstReg = MI.getOperand(0).getReg(); 3629 3630 // TODO: Extending a vector may be expensive, don't do this until heuristics 3631 // are better. 3632 if (MRI.getType(DstReg).isVector()) 3633 return false; 3634 3635 // Try to match a phi, whose only use is an extend. 3636 if (!MRI.hasOneNonDBGUse(DstReg)) 3637 return false; 3638 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3639 switch (ExtMI->getOpcode()) { 3640 case TargetOpcode::G_ANYEXT: 3641 return true; // G_ANYEXT is usually free. 3642 case TargetOpcode::G_ZEXT: 3643 case TargetOpcode::G_SEXT: 3644 break; 3645 default: 3646 return false; 3647 } 3648 3649 // If the target is likely to fold this extend away, don't propagate. 3650 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3651 return false; 3652 3653 // We don't want to propagate the extends unless there's a good chance that 3654 // they'll be optimized in some way. 3655 // Collect the unique incoming values. 3656 SmallPtrSet<MachineInstr *, 4> InSrcs; 3657 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3658 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3659 switch (DefMI->getOpcode()) { 3660 case TargetOpcode::G_LOAD: 3661 case TargetOpcode::G_TRUNC: 3662 case TargetOpcode::G_SEXT: 3663 case TargetOpcode::G_ZEXT: 3664 case TargetOpcode::G_ANYEXT: 3665 case TargetOpcode::G_CONSTANT: 3666 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3667 // Don't try to propagate if there are too many places to create new 3668 // extends, chances are it'll increase code size. 3669 if (InSrcs.size() > 2) 3670 return false; 3671 break; 3672 default: 3673 return false; 3674 } 3675 } 3676 return true; 3677 } 3678 3679 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3680 MachineInstr *&ExtMI) { 3681 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3682 Register DstReg = ExtMI->getOperand(0).getReg(); 3683 LLT ExtTy = MRI.getType(DstReg); 3684 3685 // Propagate the extension into the block of each incoming reg's block. 3686 // Use a SetVector here because PHIs can have duplicate edges, and we want 3687 // deterministic iteration order. 3688 SmallSetVector<MachineInstr *, 8> SrcMIs; 3689 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3690 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3691 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3692 if (!SrcMIs.insert(SrcMI)) 3693 continue; 3694 3695 // Build an extend after each src inst. 3696 auto *MBB = SrcMI->getParent(); 3697 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3698 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3699 InsertPt = MBB->getFirstNonPHI(); 3700 3701 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3702 Builder.setDebugLoc(MI.getDebugLoc()); 3703 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3704 SrcMI->getOperand(0).getReg()); 3705 OldToNewSrcMap[SrcMI] = NewExt; 3706 } 3707 3708 // Create a new phi with the extended inputs. 3709 Builder.setInstrAndDebugLoc(MI); 3710 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3711 NewPhi.addDef(DstReg); 3712 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3713 auto &MO = MI.getOperand(SrcIdx); 3714 if (!MO.isReg()) { 3715 NewPhi.addMBB(MO.getMBB()); 3716 continue; 3717 } 3718 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3719 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3720 } 3721 Builder.insertInstr(NewPhi); 3722 ExtMI->eraseFromParent(); 3723 } 3724 3725 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3726 Register &Reg) { 3727 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3728 // If we have a constant index, look for a G_BUILD_VECTOR source 3729 // and find the source register that the index maps to. 3730 Register SrcVec = MI.getOperand(1).getReg(); 3731 LLT SrcTy = MRI.getType(SrcVec); 3732 if (!isLegalOrBeforeLegalizer( 3733 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3734 return false; 3735 3736 auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3737 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3738 return false; 3739 3740 unsigned VecIdx = Cst->Value.getZExtValue(); 3741 MachineInstr *BuildVecMI = 3742 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3743 if (!BuildVecMI) { 3744 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3745 if (!BuildVecMI) 3746 return false; 3747 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3748 if (!isLegalOrBeforeLegalizer( 3749 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3750 return false; 3751 } 3752 3753 EVT Ty(getMVTForLLT(SrcTy)); 3754 if (!MRI.hasOneNonDBGUse(SrcVec) && 3755 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3756 return false; 3757 3758 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3759 return true; 3760 } 3761 3762 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3763 Register &Reg) { 3764 // Check the type of the register, since it may have come from a 3765 // G_BUILD_VECTOR_TRUNC. 3766 LLT ScalarTy = MRI.getType(Reg); 3767 Register DstReg = MI.getOperand(0).getReg(); 3768 LLT DstTy = MRI.getType(DstReg); 3769 3770 Builder.setInstrAndDebugLoc(MI); 3771 if (ScalarTy != DstTy) { 3772 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3773 Builder.buildTrunc(DstReg, Reg); 3774 MI.eraseFromParent(); 3775 return; 3776 } 3777 replaceSingleDefInstWithReg(MI, Reg); 3778 } 3779 3780 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3781 MachineInstr &MI, 3782 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3783 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3784 // This combine tries to find build_vector's which have every source element 3785 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3786 // the masked load scalarization is run late in the pipeline. There's already 3787 // a combine for a similar pattern starting from the extract, but that 3788 // doesn't attempt to do it if there are multiple uses of the build_vector, 3789 // which in this case is true. Starting the combine from the build_vector 3790 // feels more natural than trying to find sibling nodes of extracts. 3791 // E.g. 3792 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3793 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3794 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3795 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3796 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3797 // ==> 3798 // replace ext{1,2,3,4} with %s{1,2,3,4} 3799 3800 Register DstReg = MI.getOperand(0).getReg(); 3801 LLT DstTy = MRI.getType(DstReg); 3802 unsigned NumElts = DstTy.getNumElements(); 3803 3804 SmallBitVector ExtractedElts(NumElts); 3805 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), 3806 MRI.use_instr_nodbg_end())) { 3807 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3808 return false; 3809 auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI); 3810 if (!Cst) 3811 return false; 3812 unsigned Idx = Cst.getValue().getZExtValue(); 3813 if (Idx >= NumElts) 3814 return false; // Out of range. 3815 ExtractedElts.set(Idx); 3816 SrcDstPairs.emplace_back( 3817 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3818 } 3819 // Match if every element was extracted. 3820 return ExtractedElts.all(); 3821 } 3822 3823 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3824 MachineInstr &MI, 3825 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3826 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3827 for (auto &Pair : SrcDstPairs) { 3828 auto *ExtMI = Pair.second; 3829 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3830 ExtMI->eraseFromParent(); 3831 } 3832 MI.eraseFromParent(); 3833 } 3834 3835 void CombinerHelper::applyBuildFn( 3836 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3837 Builder.setInstrAndDebugLoc(MI); 3838 MatchInfo(Builder); 3839 MI.eraseFromParent(); 3840 } 3841 3842 void CombinerHelper::applyBuildFnNoErase( 3843 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3844 Builder.setInstrAndDebugLoc(MI); 3845 MatchInfo(Builder); 3846 } 3847 3848 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3849 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3850 unsigned Opc = MI.getOpcode(); 3851 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3852 Register X = MI.getOperand(1).getReg(); 3853 Register Y = MI.getOperand(2).getReg(); 3854 if (X != Y) 3855 return false; 3856 unsigned RotateOpc = 3857 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3858 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3859 } 3860 3861 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3862 unsigned Opc = MI.getOpcode(); 3863 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3864 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3865 Observer.changingInstr(MI); 3866 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3867 : TargetOpcode::G_ROTR)); 3868 MI.RemoveOperand(2); 3869 Observer.changedInstr(MI); 3870 } 3871 3872 // Fold (rot x, c) -> (rot x, c % BitSize) 3873 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3874 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3875 MI.getOpcode() == TargetOpcode::G_ROTR); 3876 unsigned Bitsize = 3877 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3878 Register AmtReg = MI.getOperand(2).getReg(); 3879 bool OutOfRange = false; 3880 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 3881 if (auto *CI = dyn_cast<ConstantInt>(C)) 3882 OutOfRange |= CI->getValue().uge(Bitsize); 3883 return true; 3884 }; 3885 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 3886 } 3887 3888 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 3889 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3890 MI.getOpcode() == TargetOpcode::G_ROTR); 3891 unsigned Bitsize = 3892 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3893 Builder.setInstrAndDebugLoc(MI); 3894 Register Amt = MI.getOperand(2).getReg(); 3895 LLT AmtTy = MRI.getType(Amt); 3896 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 3897 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 3898 Observer.changingInstr(MI); 3899 MI.getOperand(2).setReg(Amt); 3900 Observer.changedInstr(MI); 3901 } 3902 3903 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 3904 int64_t &MatchInfo) { 3905 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3906 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3907 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 3908 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 3909 Optional<bool> KnownVal; 3910 switch (Pred) { 3911 default: 3912 llvm_unreachable("Unexpected G_ICMP predicate?"); 3913 case CmpInst::ICMP_EQ: 3914 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 3915 break; 3916 case CmpInst::ICMP_NE: 3917 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 3918 break; 3919 case CmpInst::ICMP_SGE: 3920 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 3921 break; 3922 case CmpInst::ICMP_SGT: 3923 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 3924 break; 3925 case CmpInst::ICMP_SLE: 3926 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 3927 break; 3928 case CmpInst::ICMP_SLT: 3929 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 3930 break; 3931 case CmpInst::ICMP_UGE: 3932 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 3933 break; 3934 case CmpInst::ICMP_UGT: 3935 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 3936 break; 3937 case CmpInst::ICMP_ULE: 3938 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 3939 break; 3940 case CmpInst::ICMP_ULT: 3941 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 3942 break; 3943 } 3944 if (!KnownVal) 3945 return false; 3946 MatchInfo = 3947 *KnownVal 3948 ? getICmpTrueVal(getTargetLowering(), 3949 /*IsVector = */ 3950 MRI.getType(MI.getOperand(0).getReg()).isVector(), 3951 /* IsFP = */ false) 3952 : 0; 3953 return true; 3954 } 3955 3956 bool CombinerHelper::matchICmpToLHSKnownBits( 3957 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3958 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3959 // Given: 3960 // 3961 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 3962 // %cmp = G_ICMP ne %x, 0 3963 // 3964 // Or: 3965 // 3966 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 3967 // %cmp = G_ICMP eq %x, 1 3968 // 3969 // We can replace %cmp with %x assuming true is 1 on the target. 3970 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3971 if (!CmpInst::isEquality(Pred)) 3972 return false; 3973 Register Dst = MI.getOperand(0).getReg(); 3974 LLT DstTy = MRI.getType(Dst); 3975 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), 3976 /* IsFP = */ false) != 1) 3977 return false; 3978 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; 3979 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) 3980 return false; 3981 Register LHS = MI.getOperand(2).getReg(); 3982 auto KnownLHS = KB->getKnownBits(LHS); 3983 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) 3984 return false; 3985 // Make sure replacing Dst with the LHS is a legal operation. 3986 LLT LHSTy = MRI.getType(LHS); 3987 unsigned LHSSize = LHSTy.getSizeInBits(); 3988 unsigned DstSize = DstTy.getSizeInBits(); 3989 unsigned Op = TargetOpcode::COPY; 3990 if (DstSize != LHSSize) 3991 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; 3992 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) 3993 return false; 3994 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; 3995 return true; 3996 } 3997 3998 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 3999 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4000 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4001 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4002 Register Dst = MI.getOperand(0).getReg(); 4003 Register Src = MI.getOperand(1).getReg(); 4004 LLT Ty = MRI.getType(Src); 4005 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4006 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4007 return false; 4008 int64_t Width = MI.getOperand(2).getImm(); 4009 Register ShiftSrc; 4010 int64_t ShiftImm; 4011 if (!mi_match( 4012 Src, MRI, 4013 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4014 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4015 return false; 4016 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4017 return false; 4018 4019 MatchInfo = [=](MachineIRBuilder &B) { 4020 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4021 auto Cst2 = B.buildConstant(ExtractTy, Width); 4022 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4023 }; 4024 return true; 4025 } 4026 4027 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4028 bool CombinerHelper::matchBitfieldExtractFromAnd( 4029 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4030 assert(MI.getOpcode() == TargetOpcode::G_AND); 4031 Register Dst = MI.getOperand(0).getReg(); 4032 LLT Ty = MRI.getType(Dst); 4033 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 4034 TargetOpcode::G_UBFX, Ty, Ty)) 4035 return false; 4036 4037 int64_t AndImm, LSBImm; 4038 Register ShiftSrc; 4039 const unsigned Size = Ty.getScalarSizeInBits(); 4040 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4041 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4042 m_ICst(AndImm)))) 4043 return false; 4044 4045 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4046 auto MaybeMask = static_cast<uint64_t>(AndImm); 4047 if (MaybeMask & (MaybeMask + 1)) 4048 return false; 4049 4050 // LSB must fit within the register. 4051 if (static_cast<uint64_t>(LSBImm) >= Size) 4052 return false; 4053 4054 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4055 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4056 MatchInfo = [=](MachineIRBuilder &B) { 4057 auto WidthCst = B.buildConstant(ExtractTy, Width); 4058 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4059 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4060 }; 4061 return true; 4062 } 4063 4064 bool CombinerHelper::matchBitfieldExtractFromShr( 4065 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4066 const unsigned Opcode = MI.getOpcode(); 4067 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 4068 4069 const Register Dst = MI.getOperand(0).getReg(); 4070 4071 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 4072 ? TargetOpcode::G_SBFX 4073 : TargetOpcode::G_UBFX; 4074 4075 // Check if the type we would use for the extract is legal 4076 LLT Ty = MRI.getType(Dst); 4077 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4078 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 4079 return false; 4080 4081 Register ShlSrc; 4082 int64_t ShrAmt; 4083 int64_t ShlAmt; 4084 const unsigned Size = Ty.getScalarSizeInBits(); 4085 4086 // Try to match shr (shl x, c1), c2 4087 if (!mi_match(Dst, MRI, 4088 m_BinOp(Opcode, 4089 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4090 m_ICst(ShrAmt)))) 4091 return false; 4092 4093 // Make sure that the shift sizes can fit a bitfield extract 4094 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4095 return false; 4096 4097 // Skip this combine if the G_SEXT_INREG combine could handle it 4098 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4099 return false; 4100 4101 // Calculate start position and width of the extract 4102 const int64_t Pos = ShrAmt - ShlAmt; 4103 const int64_t Width = Size - ShrAmt; 4104 4105 MatchInfo = [=](MachineIRBuilder &B) { 4106 auto WidthCst = B.buildConstant(ExtractTy, Width); 4107 auto PosCst = B.buildConstant(ExtractTy, Pos); 4108 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4109 }; 4110 return true; 4111 } 4112 4113 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4114 MachineInstr &PtrAdd) { 4115 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4116 4117 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4118 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4119 if (!Src1Def) 4120 return false; 4121 4122 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4123 4124 if (MRI.hasOneNonDBGUse(Src1Reg)) 4125 return false; 4126 4127 auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4128 if (!C1) 4129 return false; 4130 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4131 if (!C2) 4132 return false; 4133 4134 const APInt &C1APIntVal = *C1; 4135 const APInt &C2APIntVal = *C2; 4136 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4137 4138 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4139 // This combine may end up running before ptrtoint/inttoptr combines 4140 // manage to eliminate redundant conversions, so try to look through them. 4141 MachineInstr *ConvUseMI = &UseMI; 4142 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4143 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4144 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4145 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4146 if (!MRI.hasOneNonDBGUse(DefReg)) 4147 break; 4148 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4149 ConvUseOpc = ConvUseMI->getOpcode(); 4150 } 4151 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4152 ConvUseOpc == TargetOpcode::G_STORE; 4153 if (!LoadStore) 4154 continue; 4155 // Is x[offset2] already not a legal addressing mode? If so then 4156 // reassociating the constants breaks nothing (we test offset2 because 4157 // that's the one we hope to fold into the load or store). 4158 TargetLoweringBase::AddrMode AM; 4159 AM.HasBaseReg = true; 4160 AM.BaseOffs = C2APIntVal.getSExtValue(); 4161 unsigned AS = 4162 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4163 Type *AccessTy = 4164 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4165 PtrAdd.getMF()->getFunction().getContext()); 4166 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4167 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4168 AccessTy, AS)) 4169 continue; 4170 4171 // Would x[offset1+offset2] still be a legal addressing mode? 4172 AM.BaseOffs = CombinedValue; 4173 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4174 AccessTy, AS)) 4175 return true; 4176 } 4177 4178 return false; 4179 } 4180 4181 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI, 4182 MachineInstr *RHS, 4183 BuildFnTy &MatchInfo) { 4184 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4185 Register Src1Reg = MI.getOperand(1).getReg(); 4186 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4187 return false; 4188 auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4189 if (!C2) 4190 return false; 4191 4192 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4193 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4194 4195 auto NewBase = 4196 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4197 Observer.changingInstr(MI); 4198 MI.getOperand(1).setReg(NewBase.getReg(0)); 4199 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4200 Observer.changedInstr(MI); 4201 }; 4202 return !reassociationCanBreakAddressingModePattern(MI); 4203 } 4204 4205 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI, 4206 MachineInstr *LHS, 4207 MachineInstr *RHS, 4208 BuildFnTy &MatchInfo) { 4209 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C) 4210 // if and only if (G_PTR_ADD X, C) has one use. 4211 Register LHSBase; 4212 Optional<ValueAndVReg> LHSCstOff; 4213 if (!mi_match(MI.getBaseReg(), MRI, 4214 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff))))) 4215 return false; 4216 4217 auto *LHSPtrAdd = cast<GPtrAdd>(LHS); 4218 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4219 // When we change LHSPtrAdd's offset register we might cause it to use a reg 4220 // before its def. Sink the instruction so the outer PTR_ADD to ensure this 4221 // doesn't happen. 4222 LHSPtrAdd->moveBefore(&MI); 4223 Register RHSReg = MI.getOffsetReg(); 4224 Observer.changingInstr(MI); 4225 MI.getOperand(2).setReg(LHSCstOff->VReg); 4226 Observer.changedInstr(MI); 4227 Observer.changingInstr(*LHSPtrAdd); 4228 LHSPtrAdd->getOperand(2).setReg(RHSReg); 4229 Observer.changedInstr(*LHSPtrAdd); 4230 }; 4231 return !reassociationCanBreakAddressingModePattern(MI); 4232 } 4233 4234 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI, 4235 MachineInstr *LHS, 4236 MachineInstr *RHS, 4237 BuildFnTy &MatchInfo) { 4238 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4239 auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS); 4240 if (!LHSPtrAdd) 4241 return false; 4242 4243 Register Src2Reg = MI.getOperand(2).getReg(); 4244 Register LHSSrc1 = LHSPtrAdd->getBaseReg(); 4245 Register LHSSrc2 = LHSPtrAdd->getOffsetReg(); 4246 auto C1 = getIConstantVRegVal(LHSSrc2, MRI); 4247 if (!C1) 4248 return false; 4249 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4250 if (!C2) 4251 return false; 4252 4253 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4254 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4255 Observer.changingInstr(MI); 4256 MI.getOperand(1).setReg(LHSSrc1); 4257 MI.getOperand(2).setReg(NewCst.getReg(0)); 4258 Observer.changedInstr(MI); 4259 }; 4260 return !reassociationCanBreakAddressingModePattern(MI); 4261 } 4262 4263 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI, 4264 BuildFnTy &MatchInfo) { 4265 auto &PtrAdd = cast<GPtrAdd>(MI); 4266 // We're trying to match a few pointer computation patterns here for 4267 // re-association opportunities. 4268 // 1) Isolating a constant operand to be on the RHS, e.g.: 4269 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4270 // 4271 // 2) Folding two constants in each sub-tree as long as such folding 4272 // doesn't break a legal addressing mode. 4273 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4274 // 4275 // 3) Move a constant from the LHS of an inner op to the RHS of the outer. 4276 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C) 4277 // iif (G_PTR_ADD X, C) has one use. 4278 MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg()); 4279 MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg()); 4280 4281 // Try to match example 2. 4282 if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo)) 4283 return true; 4284 4285 // Try to match example 3. 4286 if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo)) 4287 return true; 4288 4289 // Try to match example 1. 4290 if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo)) 4291 return true; 4292 4293 return false; 4294 } 4295 4296 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4297 Register Op1 = MI.getOperand(1).getReg(); 4298 Register Op2 = MI.getOperand(2).getReg(); 4299 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4300 if (!MaybeCst) 4301 return false; 4302 MatchInfo = *MaybeCst; 4303 return true; 4304 } 4305 4306 bool CombinerHelper::matchNarrowBinopFeedingAnd( 4307 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4308 // Look for a binop feeding into an AND with a mask: 4309 // 4310 // %add = G_ADD %lhs, %rhs 4311 // %and = G_AND %add, 000...11111111 4312 // 4313 // Check if it's possible to perform the binop at a narrower width and zext 4314 // back to the original width like so: 4315 // 4316 // %narrow_lhs = G_TRUNC %lhs 4317 // %narrow_rhs = G_TRUNC %rhs 4318 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 4319 // %new_add = G_ZEXT %narrow_add 4320 // %and = G_AND %new_add, 000...11111111 4321 // 4322 // This can allow later combines to eliminate the G_AND if it turns out 4323 // that the mask is irrelevant. 4324 assert(MI.getOpcode() == TargetOpcode::G_AND); 4325 Register Dst = MI.getOperand(0).getReg(); 4326 Register AndLHS = MI.getOperand(1).getReg(); 4327 Register AndRHS = MI.getOperand(2).getReg(); 4328 LLT WideTy = MRI.getType(Dst); 4329 4330 // If the potential binop has more than one use, then it's possible that one 4331 // of those uses will need its full width. 4332 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 4333 return false; 4334 4335 // Check if the LHS feeding the AND is impacted by the high bits that we're 4336 // masking out. 4337 // 4338 // e.g. for 64-bit x, y: 4339 // 4340 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 4341 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 4342 if (!LHSInst) 4343 return false; 4344 unsigned LHSOpc = LHSInst->getOpcode(); 4345 switch (LHSOpc) { 4346 default: 4347 return false; 4348 case TargetOpcode::G_ADD: 4349 case TargetOpcode::G_SUB: 4350 case TargetOpcode::G_MUL: 4351 case TargetOpcode::G_AND: 4352 case TargetOpcode::G_OR: 4353 case TargetOpcode::G_XOR: 4354 break; 4355 } 4356 4357 // Find the mask on the RHS. 4358 auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI); 4359 if (!Cst) 4360 return false; 4361 auto Mask = Cst->Value; 4362 if (!Mask.isMask()) 4363 return false; 4364 4365 // No point in combining if there's nothing to truncate. 4366 unsigned NarrowWidth = Mask.countTrailingOnes(); 4367 if (NarrowWidth == WideTy.getSizeInBits()) 4368 return false; 4369 LLT NarrowTy = LLT::scalar(NarrowWidth); 4370 4371 // Check if adding the zext + truncates could be harmful. 4372 auto &MF = *MI.getMF(); 4373 const auto &TLI = getTargetLowering(); 4374 LLVMContext &Ctx = MF.getFunction().getContext(); 4375 auto &DL = MF.getDataLayout(); 4376 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 4377 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 4378 return false; 4379 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 4380 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 4381 return false; 4382 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 4383 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 4384 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4385 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 4386 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 4387 auto NarrowBinOp = 4388 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 4389 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 4390 Observer.changingInstr(MI); 4391 MI.getOperand(1).setReg(Ext.getReg(0)); 4392 Observer.changedInstr(MI); 4393 }; 4394 return true; 4395 } 4396 4397 bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) { 4398 unsigned Opc = MI.getOpcode(); 4399 assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO); 4400 // Check for a constant 2 or a splat of 2 on the RHS. 4401 auto RHS = MI.getOperand(3).getReg(); 4402 bool IsVector = MRI.getType(RHS).isVector(); 4403 if (!IsVector && !mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(2))) 4404 return false; 4405 if (IsVector) { 4406 // FIXME: There's no mi_match pattern for this yet. 4407 auto *RHSDef = getDefIgnoringCopies(RHS, MRI); 4408 if (!RHSDef) 4409 return false; 4410 auto Splat = getBuildVectorConstantSplat(*RHSDef, MRI); 4411 if (!Splat || *Splat != 2) 4412 return false; 4413 } 4414 4415 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4416 Observer.changingInstr(MI); 4417 unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO 4418 : TargetOpcode::G_SADDO; 4419 MI.setDesc(Builder.getTII().get(NewOpc)); 4420 MI.getOperand(3).setReg(MI.getOperand(2).getReg()); 4421 Observer.changedInstr(MI); 4422 }; 4423 return true; 4424 } 4425 4426 MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) { 4427 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4428 auto &UDiv = cast<GenericMachineInstr>(MI); 4429 Register Dst = UDiv.getReg(0); 4430 Register LHS = UDiv.getReg(1); 4431 Register RHS = UDiv.getReg(2); 4432 LLT Ty = MRI.getType(Dst); 4433 LLT ScalarTy = Ty.getScalarType(); 4434 const unsigned EltBits = ScalarTy.getScalarSizeInBits(); 4435 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4436 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); 4437 auto &MIB = Builder; 4438 MIB.setInstrAndDebugLoc(MI); 4439 4440 bool UseNPQ = false; 4441 SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4442 4443 auto BuildUDIVPattern = [&](const Constant *C) { 4444 auto *CI = cast<ConstantInt>(C); 4445 const APInt &Divisor = CI->getValue(); 4446 UnsignedDivisonByConstantInfo magics = 4447 UnsignedDivisonByConstantInfo::get(Divisor); 4448 unsigned PreShift = 0, PostShift = 0; 4449 4450 // If the divisor is even, we can avoid using the expensive fixup by 4451 // shifting the divided value upfront. 4452 if (magics.IsAdd != 0 && !Divisor[0]) { 4453 PreShift = Divisor.countTrailingZeros(); 4454 // Get magic number for the shifted divisor. 4455 magics = 4456 UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 4457 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 4458 } 4459 4460 APInt Magic = magics.Magic; 4461 4462 unsigned SelNPQ; 4463 if (magics.IsAdd == 0 || Divisor.isOneValue()) { 4464 assert(magics.ShiftAmount < Divisor.getBitWidth() && 4465 "We shouldn't generate an undefined shift!"); 4466 PostShift = magics.ShiftAmount; 4467 SelNPQ = false; 4468 } else { 4469 PostShift = magics.ShiftAmount - 1; 4470 SelNPQ = true; 4471 } 4472 4473 PreShifts.push_back( 4474 MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0)); 4475 MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0)); 4476 NPQFactors.push_back( 4477 MIB.buildConstant(ScalarTy, 4478 SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4479 : APInt::getZero(EltBits)) 4480 .getReg(0)); 4481 PostShifts.push_back( 4482 MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0)); 4483 UseNPQ |= SelNPQ; 4484 return true; 4485 }; 4486 4487 // Collect the shifts/magic values from each element. 4488 bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern); 4489 (void)Matched; 4490 assert(Matched && "Expected unary predicate match to succeed"); 4491 4492 Register PreShift, PostShift, MagicFactor, NPQFactor; 4493 auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI); 4494 if (RHSDef) { 4495 PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0); 4496 MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0); 4497 NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0); 4498 PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0); 4499 } else { 4500 assert(MRI.getType(RHS).isScalar() && 4501 "Non-build_vector operation should have been a scalar"); 4502 PreShift = PreShifts[0]; 4503 MagicFactor = MagicFactors[0]; 4504 PostShift = PostShifts[0]; 4505 } 4506 4507 Register Q = LHS; 4508 Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0); 4509 4510 // Multiply the numerator (operand 0) by the magic value. 4511 Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0); 4512 4513 if (UseNPQ) { 4514 Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0); 4515 4516 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4517 // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero. 4518 if (Ty.isVector()) 4519 NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0); 4520 else 4521 NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0); 4522 4523 Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0); 4524 } 4525 4526 Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0); 4527 auto One = MIB.buildConstant(Ty, 1); 4528 auto IsOne = MIB.buildICmp( 4529 CmpInst::Predicate::ICMP_EQ, 4530 Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One); 4531 return MIB.buildSelect(Ty, IsOne, LHS, Q); 4532 } 4533 4534 bool CombinerHelper::matchUDivByConst(MachineInstr &MI) { 4535 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4536 Register Dst = MI.getOperand(0).getReg(); 4537 Register RHS = MI.getOperand(2).getReg(); 4538 LLT DstTy = MRI.getType(Dst); 4539 auto *RHSDef = MRI.getVRegDef(RHS); 4540 if (!isConstantOrConstantVector(*RHSDef, MRI)) 4541 return false; 4542 4543 auto &MF = *MI.getMF(); 4544 AttributeList Attr = MF.getFunction().getAttributes(); 4545 const auto &TLI = getTargetLowering(); 4546 LLVMContext &Ctx = MF.getFunction().getContext(); 4547 auto &DL = MF.getDataLayout(); 4548 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) 4549 return false; 4550 4551 // Don't do this for minsize because the instruction sequence is usually 4552 // larger. 4553 if (MF.getFunction().hasMinSize()) 4554 return false; 4555 4556 // Don't do this if the types are not going to be legal. 4557 if (LI) { 4558 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}})) 4559 return false; 4560 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}})) 4561 return false; 4562 if (!isLegalOrBeforeLegalizer( 4563 {TargetOpcode::G_ICMP, 4564 {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1), 4565 DstTy}})) 4566 return false; 4567 } 4568 4569 auto CheckEltValue = [&](const Constant *C) { 4570 if (auto *CI = dyn_cast_or_null<ConstantInt>(C)) 4571 return !CI->isZero(); 4572 return false; 4573 }; 4574 return matchUnaryPredicate(MRI, RHS, CheckEltValue); 4575 } 4576 4577 void CombinerHelper::applyUDivByConst(MachineInstr &MI) { 4578 auto *NewMI = buildUDivUsingMul(MI); 4579 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); 4580 } 4581 4582 bool CombinerHelper::tryCombine(MachineInstr &MI) { 4583 if (tryCombineCopy(MI)) 4584 return true; 4585 if (tryCombineExtendingLoads(MI)) 4586 return true; 4587 if (tryCombineIndexedLoadStore(MI)) 4588 return true; 4589 return false; 4590 } 4591