1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
9 #include "llvm/ADT/SetVector.h"
10 #include "llvm/ADT/SmallBitVector.h"
11 #include "llvm/CodeGen/GlobalISel/Combiner.h"
12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
17 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
20 #include "llvm/CodeGen/GlobalISel/Utils.h"
21 #include "llvm/CodeGen/LowLevelType.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetInstrInfo.h"
29 #include "llvm/CodeGen/TargetLowering.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/CodeGen/TargetOpcodes.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/DivisionByConstantInfo.h"
35 #include "llvm/Support/MathExtras.h"
36 #include <tuple>
37 
38 #define DEBUG_TYPE "gi-combiner"
39 
40 using namespace llvm;
41 using namespace MIPatternMatch;
42 
43 // Option to allow testing of the combiner while no targets know about indexed
44 // addressing.
45 static cl::opt<bool>
46     ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
47                        cl::desc("Force all indexed operations to be "
48                                 "legal for the GlobalISel combiner"));
49 
50 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
51                                MachineIRBuilder &B, GISelKnownBits *KB,
52                                MachineDominatorTree *MDT,
53                                const LegalizerInfo *LI)
54     : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB),
55       MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()),
56       TRI(Builder.getMF().getSubtarget().getRegisterInfo()) {
57   (void)this->KB;
58 }
59 
60 const TargetLowering &CombinerHelper::getTargetLowering() const {
61   return *Builder.getMF().getSubtarget().getTargetLowering();
62 }
63 
64 /// \returns The little endian in-memory byte position of byte \p I in a
65 /// \p ByteWidth bytes wide type.
66 ///
67 /// E.g. Given a 4-byte type x, x[0] -> byte 0
68 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) {
69   assert(I < ByteWidth && "I must be in [0, ByteWidth)");
70   return I;
71 }
72 
73 /// Determines the LogBase2 value for a non-null input value using the
74 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
75 static Register buildLogBase2(Register V, MachineIRBuilder &MIB) {
76   auto &MRI = *MIB.getMRI();
77   LLT Ty = MRI.getType(V);
78   auto Ctlz = MIB.buildCTLZ(Ty, V);
79   auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1);
80   return MIB.buildSub(Ty, Base, Ctlz).getReg(0);
81 }
82 
83 /// \returns The big endian in-memory byte position of byte \p I in a
84 /// \p ByteWidth bytes wide type.
85 ///
86 /// E.g. Given a 4-byte type x, x[0] -> byte 3
87 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) {
88   assert(I < ByteWidth && "I must be in [0, ByteWidth)");
89   return ByteWidth - I - 1;
90 }
91 
92 /// Given a map from byte offsets in memory to indices in a load/store,
93 /// determine if that map corresponds to a little or big endian byte pattern.
94 ///
95 /// \param MemOffset2Idx maps memory offsets to address offsets.
96 /// \param LowestIdx is the lowest index in \p MemOffset2Idx.
97 ///
98 /// \returns true if the map corresponds to a big endian byte pattern, false
99 /// if it corresponds to a little endian byte pattern, and None otherwise.
100 ///
101 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns
102 /// are as follows:
103 ///
104 /// AddrOffset   Little endian    Big endian
105 /// 0            0                3
106 /// 1            1                2
107 /// 2            2                1
108 /// 3            3                0
109 static Optional<bool>
110 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
111             int64_t LowestIdx) {
112   // Need at least two byte positions to decide on endianness.
113   unsigned Width = MemOffset2Idx.size();
114   if (Width < 2)
115     return None;
116   bool BigEndian = true, LittleEndian = true;
117   for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) {
118     auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset);
119     if (MemOffsetAndIdx == MemOffset2Idx.end())
120       return None;
121     const int64_t Idx = MemOffsetAndIdx->second - LowestIdx;
122     assert(Idx >= 0 && "Expected non-negative byte offset?");
123     LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset);
124     BigEndian &= Idx == bigEndianByteAt(Width, MemOffset);
125     if (!BigEndian && !LittleEndian)
126       return None;
127   }
128 
129   assert((BigEndian != LittleEndian) &&
130          "Pattern cannot be both big and little endian!");
131   return BigEndian;
132 }
133 
134 bool CombinerHelper::isPreLegalize() const { return !LI; }
135 
136 bool CombinerHelper::isLegal(const LegalityQuery &Query) const {
137   assert(LI && "Must have LegalizerInfo to query isLegal!");
138   return LI->getAction(Query).Action == LegalizeActions::Legal;
139 }
140 
141 bool CombinerHelper::isLegalOrBeforeLegalizer(
142     const LegalityQuery &Query) const {
143   return isPreLegalize() || isLegal(Query);
144 }
145 
146 bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const {
147   if (!Ty.isVector())
148     return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}});
149   // Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs.
150   if (isPreLegalize())
151     return true;
152   LLT EltTy = Ty.getElementType();
153   return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) &&
154          isLegal({TargetOpcode::G_CONSTANT, {EltTy}});
155 }
156 
157 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
158                                     Register ToReg) const {
159   Observer.changingAllUsesOfReg(MRI, FromReg);
160 
161   if (MRI.constrainRegAttrs(ToReg, FromReg))
162     MRI.replaceRegWith(FromReg, ToReg);
163   else
164     Builder.buildCopy(ToReg, FromReg);
165 
166   Observer.finishedChangingAllUsesOfReg();
167 }
168 
169 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
170                                       MachineOperand &FromRegOp,
171                                       Register ToReg) const {
172   assert(FromRegOp.getParent() && "Expected an operand in an MI");
173   Observer.changingInstr(*FromRegOp.getParent());
174 
175   FromRegOp.setReg(ToReg);
176 
177   Observer.changedInstr(*FromRegOp.getParent());
178 }
179 
180 void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI,
181                                        unsigned ToOpcode) const {
182   Observer.changingInstr(FromMI);
183 
184   FromMI.setDesc(Builder.getTII().get(ToOpcode));
185 
186   Observer.changedInstr(FromMI);
187 }
188 
189 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const {
190   return RBI->getRegBank(Reg, MRI, *TRI);
191 }
192 
193 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) {
194   if (RegBank)
195     MRI.setRegBank(Reg, *RegBank);
196 }
197 
198 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
199   if (matchCombineCopy(MI)) {
200     applyCombineCopy(MI);
201     return true;
202   }
203   return false;
204 }
205 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
206   if (MI.getOpcode() != TargetOpcode::COPY)
207     return false;
208   Register DstReg = MI.getOperand(0).getReg();
209   Register SrcReg = MI.getOperand(1).getReg();
210   return canReplaceReg(DstReg, SrcReg, MRI);
211 }
212 void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
213   Register DstReg = MI.getOperand(0).getReg();
214   Register SrcReg = MI.getOperand(1).getReg();
215   MI.eraseFromParent();
216   replaceRegWith(MRI, DstReg, SrcReg);
217 }
218 
219 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) {
220   bool IsUndef = false;
221   SmallVector<Register, 4> Ops;
222   if (matchCombineConcatVectors(MI, IsUndef, Ops)) {
223     applyCombineConcatVectors(MI, IsUndef, Ops);
224     return true;
225   }
226   return false;
227 }
228 
229 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef,
230                                                SmallVectorImpl<Register> &Ops) {
231   assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
232          "Invalid instruction");
233   IsUndef = true;
234   MachineInstr *Undef = nullptr;
235 
236   // Walk over all the operands of concat vectors and check if they are
237   // build_vector themselves or undef.
238   // Then collect their operands in Ops.
239   for (const MachineOperand &MO : MI.uses()) {
240     Register Reg = MO.getReg();
241     MachineInstr *Def = MRI.getVRegDef(Reg);
242     assert(Def && "Operand not defined");
243     switch (Def->getOpcode()) {
244     case TargetOpcode::G_BUILD_VECTOR:
245       IsUndef = false;
246       // Remember the operands of the build_vector to fold
247       // them into the yet-to-build flattened concat vectors.
248       for (const MachineOperand &BuildVecMO : Def->uses())
249         Ops.push_back(BuildVecMO.getReg());
250       break;
251     case TargetOpcode::G_IMPLICIT_DEF: {
252       LLT OpType = MRI.getType(Reg);
253       // Keep one undef value for all the undef operands.
254       if (!Undef) {
255         Builder.setInsertPt(*MI.getParent(), MI);
256         Undef = Builder.buildUndef(OpType.getScalarType());
257       }
258       assert(MRI.getType(Undef->getOperand(0).getReg()) ==
259                  OpType.getScalarType() &&
260              "All undefs should have the same type");
261       // Break the undef vector in as many scalar elements as needed
262       // for the flattening.
263       for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
264            EltIdx != EltEnd; ++EltIdx)
265         Ops.push_back(Undef->getOperand(0).getReg());
266       break;
267     }
268     default:
269       return false;
270     }
271   }
272   return true;
273 }
274 void CombinerHelper::applyCombineConcatVectors(
275     MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) {
276   // We determined that the concat_vectors can be flatten.
277   // Generate the flattened build_vector.
278   Register DstReg = MI.getOperand(0).getReg();
279   Builder.setInsertPt(*MI.getParent(), MI);
280   Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
281 
282   // Note: IsUndef is sort of redundant. We could have determine it by
283   // checking that at all Ops are undef.  Alternatively, we could have
284   // generate a build_vector of undefs and rely on another combine to
285   // clean that up.  For now, given we already gather this information
286   // in tryCombineConcatVectors, just save compile time and issue the
287   // right thing.
288   if (IsUndef)
289     Builder.buildUndef(NewDstReg);
290   else
291     Builder.buildBuildVector(NewDstReg, Ops);
292   MI.eraseFromParent();
293   replaceRegWith(MRI, DstReg, NewDstReg);
294 }
295 
296 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
297   SmallVector<Register, 4> Ops;
298   if (matchCombineShuffleVector(MI, Ops)) {
299     applyCombineShuffleVector(MI, Ops);
300     return true;
301   }
302   return false;
303 }
304 
305 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
306                                                SmallVectorImpl<Register> &Ops) {
307   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
308          "Invalid instruction kind");
309   LLT DstType = MRI.getType(MI.getOperand(0).getReg());
310   Register Src1 = MI.getOperand(1).getReg();
311   LLT SrcType = MRI.getType(Src1);
312   // As bizarre as it may look, shuffle vector can actually produce
313   // scalar! This is because at the IR level a <1 x ty> shuffle
314   // vector is perfectly valid.
315   unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1;
316   unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1;
317 
318   // If the resulting vector is smaller than the size of the source
319   // vectors being concatenated, we won't be able to replace the
320   // shuffle vector into a concat_vectors.
321   //
322   // Note: We may still be able to produce a concat_vectors fed by
323   //       extract_vector_elt and so on. It is less clear that would
324   //       be better though, so don't bother for now.
325   //
326   // If the destination is a scalar, the size of the sources doesn't
327   // matter. we will lower the shuffle to a plain copy. This will
328   // work only if the source and destination have the same size. But
329   // that's covered by the next condition.
330   //
331   // TODO: If the size between the source and destination don't match
332   //       we could still emit an extract vector element in that case.
333   if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1)
334     return false;
335 
336   // Check that the shuffle mask can be broken evenly between the
337   // different sources.
338   if (DstNumElts % SrcNumElts != 0)
339     return false;
340 
341   // Mask length is a multiple of the source vector length.
342   // Check if the shuffle is some kind of concatenation of the input
343   // vectors.
344   unsigned NumConcat = DstNumElts / SrcNumElts;
345   SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
346   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
347   for (unsigned i = 0; i != DstNumElts; ++i) {
348     int Idx = Mask[i];
349     // Undef value.
350     if (Idx < 0)
351       continue;
352     // Ensure the indices in each SrcType sized piece are sequential and that
353     // the same source is used for the whole piece.
354     if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
355         (ConcatSrcs[i / SrcNumElts] >= 0 &&
356          ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
357       return false;
358     // Remember which source this index came from.
359     ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
360   }
361 
362   // The shuffle is concatenating multiple vectors together.
363   // Collect the different operands for that.
364   Register UndefReg;
365   Register Src2 = MI.getOperand(2).getReg();
366   for (auto Src : ConcatSrcs) {
367     if (Src < 0) {
368       if (!UndefReg) {
369         Builder.setInsertPt(*MI.getParent(), MI);
370         UndefReg = Builder.buildUndef(SrcType).getReg(0);
371       }
372       Ops.push_back(UndefReg);
373     } else if (Src == 0)
374       Ops.push_back(Src1);
375     else
376       Ops.push_back(Src2);
377   }
378   return true;
379 }
380 
381 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
382                                                const ArrayRef<Register> Ops) {
383   Register DstReg = MI.getOperand(0).getReg();
384   Builder.setInsertPt(*MI.getParent(), MI);
385   Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
386 
387   if (Ops.size() == 1)
388     Builder.buildCopy(NewDstReg, Ops[0]);
389   else
390     Builder.buildMerge(NewDstReg, Ops);
391 
392   MI.eraseFromParent();
393   replaceRegWith(MRI, DstReg, NewDstReg);
394 }
395 
396 namespace {
397 
398 /// Select a preference between two uses. CurrentUse is the current preference
399 /// while *ForCandidate is attributes of the candidate under consideration.
400 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse,
401                                   const LLT TyForCandidate,
402                                   unsigned OpcodeForCandidate,
403                                   MachineInstr *MIForCandidate) {
404   if (!CurrentUse.Ty.isValid()) {
405     if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
406         CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
407       return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
408     return CurrentUse;
409   }
410 
411   // We permit the extend to hoist through basic blocks but this is only
412   // sensible if the target has extending loads. If you end up lowering back
413   // into a load and extend during the legalizer then the end result is
414   // hoisting the extend up to the load.
415 
416   // Prefer defined extensions to undefined extensions as these are more
417   // likely to reduce the number of instructions.
418   if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
419       CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
420     return CurrentUse;
421   else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
422            OpcodeForCandidate != TargetOpcode::G_ANYEXT)
423     return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
424 
425   // Prefer sign extensions to zero extensions as sign-extensions tend to be
426   // more expensive.
427   if (CurrentUse.Ty == TyForCandidate) {
428     if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
429         OpcodeForCandidate == TargetOpcode::G_ZEXT)
430       return CurrentUse;
431     else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
432              OpcodeForCandidate == TargetOpcode::G_SEXT)
433       return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
434   }
435 
436   // This is potentially target specific. We've chosen the largest type
437   // because G_TRUNC is usually free. One potential catch with this is that
438   // some targets have a reduced number of larger registers than smaller
439   // registers and this choice potentially increases the live-range for the
440   // larger value.
441   if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
442     return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
443   }
444   return CurrentUse;
445 }
446 
447 /// Find a suitable place to insert some instructions and insert them. This
448 /// function accounts for special cases like inserting before a PHI node.
449 /// The current strategy for inserting before PHI's is to duplicate the
450 /// instructions for each predecessor. However, while that's ok for G_TRUNC
451 /// on most targets since it generally requires no code, other targets/cases may
452 /// want to try harder to find a dominating block.
453 static void InsertInsnsWithoutSideEffectsBeforeUse(
454     MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
455     std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
456                        MachineOperand &UseMO)>
457         Inserter) {
458   MachineInstr &UseMI = *UseMO.getParent();
459 
460   MachineBasicBlock *InsertBB = UseMI.getParent();
461 
462   // If the use is a PHI then we want the predecessor block instead.
463   if (UseMI.isPHI()) {
464     MachineOperand *PredBB = std::next(&UseMO);
465     InsertBB = PredBB->getMBB();
466   }
467 
468   // If the block is the same block as the def then we want to insert just after
469   // the def instead of at the start of the block.
470   if (InsertBB == DefMI.getParent()) {
471     MachineBasicBlock::iterator InsertPt = &DefMI;
472     Inserter(InsertBB, std::next(InsertPt), UseMO);
473     return;
474   }
475 
476   // Otherwise we want the start of the BB
477   Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
478 }
479 } // end anonymous namespace
480 
481 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
482   PreferredTuple Preferred;
483   if (matchCombineExtendingLoads(MI, Preferred)) {
484     applyCombineExtendingLoads(MI, Preferred);
485     return true;
486   }
487   return false;
488 }
489 
490 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
491                                                 PreferredTuple &Preferred) {
492   // We match the loads and follow the uses to the extend instead of matching
493   // the extends and following the def to the load. This is because the load
494   // must remain in the same position for correctness (unless we also add code
495   // to find a safe place to sink it) whereas the extend is freely movable.
496   // It also prevents us from duplicating the load for the volatile case or just
497   // for performance.
498   GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI);
499   if (!LoadMI)
500     return false;
501 
502   Register LoadReg = LoadMI->getDstReg();
503 
504   LLT LoadValueTy = MRI.getType(LoadReg);
505   if (!LoadValueTy.isScalar())
506     return false;
507 
508   // Most architectures are going to legalize <s8 loads into at least a 1 byte
509   // load, and the MMOs can only describe memory accesses in multiples of bytes.
510   // If we try to perform extload combining on those, we can end up with
511   // %a(s8) = extload %ptr (load 1 byte from %ptr)
512   // ... which is an illegal extload instruction.
513   if (LoadValueTy.getSizeInBits() < 8)
514     return false;
515 
516   // For non power-of-2 types, they will very likely be legalized into multiple
517   // loads. Don't bother trying to match them into extending loads.
518   if (!isPowerOf2_32(LoadValueTy.getSizeInBits()))
519     return false;
520 
521   // Find the preferred type aside from the any-extends (unless it's the only
522   // one) and non-extending ops. We'll emit an extending load to that type and
523   // and emit a variant of (extend (trunc X)) for the others according to the
524   // relative type sizes. At the same time, pick an extend to use based on the
525   // extend involved in the chosen type.
526   unsigned PreferredOpcode =
527       isa<GLoad>(&MI)
528           ? TargetOpcode::G_ANYEXT
529           : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
530   Preferred = {LLT(), PreferredOpcode, nullptr};
531   for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) {
532     if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
533         UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
534         (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) {
535       const auto &MMO = LoadMI->getMMO();
536       // For atomics, only form anyextending loads.
537       if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT)
538         continue;
539       // Check for legality.
540       if (LI) {
541         LegalityQuery::MemDesc MMDesc(MMO);
542         LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg());
543         LLT SrcTy = MRI.getType(LoadMI->getPointerReg());
544         if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}})
545                 .Action != LegalizeActions::Legal)
546           continue;
547       }
548       Preferred = ChoosePreferredUse(Preferred,
549                                      MRI.getType(UseMI.getOperand(0).getReg()),
550                                      UseMI.getOpcode(), &UseMI);
551     }
552   }
553 
554   // There were no extends
555   if (!Preferred.MI)
556     return false;
557   // It should be impossible to chose an extend without selecting a different
558   // type since by definition the result of an extend is larger.
559   assert(Preferred.Ty != LoadValueTy && "Extending to same type?");
560 
561   LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI);
562   return true;
563 }
564 
565 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
566                                                 PreferredTuple &Preferred) {
567   // Rewrite the load to the chosen extending load.
568   Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
569 
570   // Inserter to insert a truncate back to the original type at a given point
571   // with some basic CSE to limit truncate duplication to one per BB.
572   DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
573   auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
574                            MachineBasicBlock::iterator InsertBefore,
575                            MachineOperand &UseMO) {
576     MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
577     if (PreviouslyEmitted) {
578       Observer.changingInstr(*UseMO.getParent());
579       UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
580       Observer.changedInstr(*UseMO.getParent());
581       return;
582     }
583 
584     Builder.setInsertPt(*InsertIntoBB, InsertBefore);
585     Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
586     MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
587     EmittedInsns[InsertIntoBB] = NewMI;
588     replaceRegOpWith(MRI, UseMO, NewDstReg);
589   };
590 
591   Observer.changingInstr(MI);
592   MI.setDesc(
593       Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT
594                                ? TargetOpcode::G_SEXTLOAD
595                                : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT
596                                      ? TargetOpcode::G_ZEXTLOAD
597                                      : TargetOpcode::G_LOAD));
598 
599   // Rewrite all the uses to fix up the types.
600   auto &LoadValue = MI.getOperand(0);
601   SmallVector<MachineOperand *, 4> Uses;
602   for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
603     Uses.push_back(&UseMO);
604 
605   for (auto *UseMO : Uses) {
606     MachineInstr *UseMI = UseMO->getParent();
607 
608     // If the extend is compatible with the preferred extend then we should fix
609     // up the type and extend so that it uses the preferred use.
610     if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
611         UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
612       Register UseDstReg = UseMI->getOperand(0).getReg();
613       MachineOperand &UseSrcMO = UseMI->getOperand(1);
614       const LLT UseDstTy = MRI.getType(UseDstReg);
615       if (UseDstReg != ChosenDstReg) {
616         if (Preferred.Ty == UseDstTy) {
617           // If the use has the same type as the preferred use, then merge
618           // the vregs and erase the extend. For example:
619           //    %1:_(s8) = G_LOAD ...
620           //    %2:_(s32) = G_SEXT %1(s8)
621           //    %3:_(s32) = G_ANYEXT %1(s8)
622           //    ... = ... %3(s32)
623           // rewrites to:
624           //    %2:_(s32) = G_SEXTLOAD ...
625           //    ... = ... %2(s32)
626           replaceRegWith(MRI, UseDstReg, ChosenDstReg);
627           Observer.erasingInstr(*UseMO->getParent());
628           UseMO->getParent()->eraseFromParent();
629         } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
630           // If the preferred size is smaller, then keep the extend but extend
631           // from the result of the extending load. For example:
632           //    %1:_(s8) = G_LOAD ...
633           //    %2:_(s32) = G_SEXT %1(s8)
634           //    %3:_(s64) = G_ANYEXT %1(s8)
635           //    ... = ... %3(s64)
636           /// rewrites to:
637           //    %2:_(s32) = G_SEXTLOAD ...
638           //    %3:_(s64) = G_ANYEXT %2:_(s32)
639           //    ... = ... %3(s64)
640           replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
641         } else {
642           // If the preferred size is large, then insert a truncate. For
643           // example:
644           //    %1:_(s8) = G_LOAD ...
645           //    %2:_(s64) = G_SEXT %1(s8)
646           //    %3:_(s32) = G_ZEXT %1(s8)
647           //    ... = ... %3(s32)
648           /// rewrites to:
649           //    %2:_(s64) = G_SEXTLOAD ...
650           //    %4:_(s8) = G_TRUNC %2:_(s32)
651           //    %3:_(s64) = G_ZEXT %2:_(s8)
652           //    ... = ... %3(s64)
653           InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
654                                                  InsertTruncAt);
655         }
656         continue;
657       }
658       // The use is (one of) the uses of the preferred use we chose earlier.
659       // We're going to update the load to def this value later so just erase
660       // the old extend.
661       Observer.erasingInstr(*UseMO->getParent());
662       UseMO->getParent()->eraseFromParent();
663       continue;
664     }
665 
666     // The use isn't an extend. Truncate back to the type we originally loaded.
667     // This is free on many targets.
668     InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
669   }
670 
671   MI.getOperand(0).setReg(ChosenDstReg);
672   Observer.changedInstr(MI);
673 }
674 
675 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI,
676                                                  BuildFnTy &MatchInfo) {
677   assert(MI.getOpcode() == TargetOpcode::G_AND);
678 
679   // If we have the following code:
680   //  %mask = G_CONSTANT 255
681   //  %ld   = G_LOAD %ptr, (load s16)
682   //  %and  = G_AND %ld, %mask
683   //
684   // Try to fold it into
685   //   %ld = G_ZEXTLOAD %ptr, (load s8)
686 
687   Register Dst = MI.getOperand(0).getReg();
688   if (MRI.getType(Dst).isVector())
689     return false;
690 
691   auto MaybeMask =
692       getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
693   if (!MaybeMask)
694     return false;
695 
696   APInt MaskVal = MaybeMask->Value;
697 
698   if (!MaskVal.isMask())
699     return false;
700 
701   Register SrcReg = MI.getOperand(1).getReg();
702   GAnyLoad *LoadMI = getOpcodeDef<GAnyLoad>(SrcReg, MRI);
703   if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()) ||
704       !LoadMI->isSimple())
705     return false;
706 
707   Register LoadReg = LoadMI->getDstReg();
708   LLT LoadTy = MRI.getType(LoadReg);
709   Register PtrReg = LoadMI->getPointerReg();
710   uint64_t LoadSizeBits = LoadMI->getMemSizeInBits();
711   unsigned MaskSizeBits = MaskVal.countTrailingOnes();
712 
713   // The mask may not be larger than the in-memory type, as it might cover sign
714   // extended bits
715   if (MaskSizeBits > LoadSizeBits)
716     return false;
717 
718   // If the mask covers the whole destination register, there's nothing to
719   // extend
720   if (MaskSizeBits >= LoadTy.getSizeInBits())
721     return false;
722 
723   // Most targets cannot deal with loads of size < 8 and need to re-legalize to
724   // at least byte loads. Avoid creating such loads here
725   if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits))
726     return false;
727 
728   const MachineMemOperand &MMO = LoadMI->getMMO();
729   LegalityQuery::MemDesc MemDesc(MMO);
730   MemDesc.MemoryTy = LLT::scalar(MaskSizeBits);
731   if (!isLegalOrBeforeLegalizer(
732           {TargetOpcode::G_ZEXTLOAD, {LoadTy, MRI.getType(PtrReg)}, {MemDesc}}))
733     return false;
734 
735   MatchInfo = [=](MachineIRBuilder &B) {
736     B.setInstrAndDebugLoc(*LoadMI);
737     auto &MF = B.getMF();
738     auto PtrInfo = MMO.getPointerInfo();
739     auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MaskSizeBits / 8);
740     B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO);
741   };
742   return true;
743 }
744 
745 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI,
746                                    const MachineInstr &UseMI) {
747   assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
748          "shouldn't consider debug uses");
749   assert(DefMI.getParent() == UseMI.getParent());
750   if (&DefMI == &UseMI)
751     return true;
752   const MachineBasicBlock &MBB = *DefMI.getParent();
753   auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) {
754     return &MI == &DefMI || &MI == &UseMI;
755   });
756   if (DefOrUse == MBB.end())
757     llvm_unreachable("Block must contain both DefMI and UseMI!");
758   return &*DefOrUse == &DefMI;
759 }
760 
761 bool CombinerHelper::dominates(const MachineInstr &DefMI,
762                                const MachineInstr &UseMI) {
763   assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
764          "shouldn't consider debug uses");
765   if (MDT)
766     return MDT->dominates(&DefMI, &UseMI);
767   else if (DefMI.getParent() != UseMI.getParent())
768     return false;
769 
770   return isPredecessor(DefMI, UseMI);
771 }
772 
773 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) {
774   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
775   Register SrcReg = MI.getOperand(1).getReg();
776   Register LoadUser = SrcReg;
777 
778   if (MRI.getType(SrcReg).isVector())
779     return false;
780 
781   Register TruncSrc;
782   if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))))
783     LoadUser = TruncSrc;
784 
785   uint64_t SizeInBits = MI.getOperand(2).getImm();
786   // If the source is a G_SEXTLOAD from the same bit width, then we don't
787   // need any extend at all, just a truncate.
788   if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) {
789     // If truncating more than the original extended value, abort.
790     auto LoadSizeBits = LoadMI->getMemSizeInBits();
791     if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits)
792       return false;
793     if (LoadSizeBits == SizeInBits)
794       return true;
795   }
796   return false;
797 }
798 
799 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) {
800   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
801   Builder.setInstrAndDebugLoc(MI);
802   Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
803   MI.eraseFromParent();
804 }
805 
806 bool CombinerHelper::matchSextInRegOfLoad(
807     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
808   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
809 
810   // Only supports scalars for now.
811   if (MRI.getType(MI.getOperand(0).getReg()).isVector())
812     return false;
813 
814   Register SrcReg = MI.getOperand(1).getReg();
815   auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI);
816   if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) ||
817       !LoadDef->isSimple())
818     return false;
819 
820   // If the sign extend extends from a narrower width than the load's width,
821   // then we can narrow the load width when we combine to a G_SEXTLOAD.
822   // Avoid widening the load at all.
823   unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(),
824                                   LoadDef->getMemSizeInBits());
825 
826   // Don't generate G_SEXTLOADs with a < 1 byte width.
827   if (NewSizeBits < 8)
828     return false;
829   // Don't bother creating a non-power-2 sextload, it will likely be broken up
830   // anyway for most targets.
831   if (!isPowerOf2_32(NewSizeBits))
832     return false;
833 
834   const MachineMemOperand &MMO = LoadDef->getMMO();
835   LegalityQuery::MemDesc MMDesc(MMO);
836   MMDesc.MemoryTy = LLT::scalar(NewSizeBits);
837   if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD,
838                                  {MRI.getType(LoadDef->getDstReg()),
839                                   MRI.getType(LoadDef->getPointerReg())},
840                                  {MMDesc}}))
841     return false;
842 
843   MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits);
844   return true;
845 }
846 
847 void CombinerHelper::applySextInRegOfLoad(
848     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
849   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
850   Register LoadReg;
851   unsigned ScalarSizeBits;
852   std::tie(LoadReg, ScalarSizeBits) = MatchInfo;
853   GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg));
854 
855   // If we have the following:
856   // %ld = G_LOAD %ptr, (load 2)
857   // %ext = G_SEXT_INREG %ld, 8
858   //    ==>
859   // %ld = G_SEXTLOAD %ptr (load 1)
860 
861   auto &MMO = LoadDef->getMMO();
862   Builder.setInstrAndDebugLoc(*LoadDef);
863   auto &MF = Builder.getMF();
864   auto PtrInfo = MMO.getPointerInfo();
865   auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8);
866   Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(),
867                          LoadDef->getPointerReg(), *NewMMO);
868   MI.eraseFromParent();
869 }
870 
871 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr,
872                                             Register &Base, Register &Offset) {
873   auto &MF = *MI.getParent()->getParent();
874   const auto &TLI = *MF.getSubtarget().getTargetLowering();
875 
876 #ifndef NDEBUG
877   unsigned Opcode = MI.getOpcode();
878   assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
879          Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
880 #endif
881 
882   Base = MI.getOperand(1).getReg();
883   MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base);
884   if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
885     return false;
886 
887   LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI);
888   // FIXME: The following use traversal needs a bail out for patholigical cases.
889   for (auto &Use : MRI.use_nodbg_instructions(Base)) {
890     if (Use.getOpcode() != TargetOpcode::G_PTR_ADD)
891       continue;
892 
893     Offset = Use.getOperand(2).getReg();
894     if (!ForceLegalIndexing &&
895         !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) {
896       LLVM_DEBUG(dbgs() << "    Ignoring candidate with illegal addrmode: "
897                         << Use);
898       continue;
899     }
900 
901     // Make sure the offset calculation is before the potentially indexed op.
902     // FIXME: we really care about dependency here. The offset calculation might
903     // be movable.
904     MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset);
905     if (!OffsetDef || !dominates(*OffsetDef, MI)) {
906       LLVM_DEBUG(dbgs() << "    Ignoring candidate with offset after mem-op: "
907                         << Use);
908       continue;
909     }
910 
911     // FIXME: check whether all uses of Base are load/store with foldable
912     // addressing modes. If so, using the normal addr-modes is better than
913     // forming an indexed one.
914 
915     bool MemOpDominatesAddrUses = true;
916     for (auto &PtrAddUse :
917          MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) {
918       if (!dominates(MI, PtrAddUse)) {
919         MemOpDominatesAddrUses = false;
920         break;
921       }
922     }
923 
924     if (!MemOpDominatesAddrUses) {
925       LLVM_DEBUG(
926           dbgs() << "    Ignoring candidate as memop does not dominate uses: "
927                  << Use);
928       continue;
929     }
930 
931     LLVM_DEBUG(dbgs() << "    Found match: " << Use);
932     Addr = Use.getOperand(0).getReg();
933     return true;
934   }
935 
936   return false;
937 }
938 
939 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr,
940                                            Register &Base, Register &Offset) {
941   auto &MF = *MI.getParent()->getParent();
942   const auto &TLI = *MF.getSubtarget().getTargetLowering();
943 
944 #ifndef NDEBUG
945   unsigned Opcode = MI.getOpcode();
946   assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
947          Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
948 #endif
949 
950   Addr = MI.getOperand(1).getReg();
951   MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI);
952   if (!AddrDef || MRI.hasOneNonDBGUse(Addr))
953     return false;
954 
955   Base = AddrDef->getOperand(1).getReg();
956   Offset = AddrDef->getOperand(2).getReg();
957 
958   LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI);
959 
960   if (!ForceLegalIndexing &&
961       !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) {
962     LLVM_DEBUG(dbgs() << "    Skipping, not legal for target");
963     return false;
964   }
965 
966   MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
967   if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
968     LLVM_DEBUG(dbgs() << "    Skipping, frame index would need copy anyway.");
969     return false;
970   }
971 
972   if (MI.getOpcode() == TargetOpcode::G_STORE) {
973     // Would require a copy.
974     if (Base == MI.getOperand(0).getReg()) {
975       LLVM_DEBUG(dbgs() << "    Skipping, storing base so need copy anyway.");
976       return false;
977     }
978 
979     // We're expecting one use of Addr in MI, but it could also be the
980     // value stored, which isn't actually dominated by the instruction.
981     if (MI.getOperand(0).getReg() == Addr) {
982       LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses");
983       return false;
984     }
985   }
986 
987   // FIXME: check whether all uses of the base pointer are constant PtrAdds.
988   // That might allow us to end base's liveness here by adjusting the constant.
989 
990   for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) {
991     if (!dominates(MI, UseMI)) {
992       LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses.");
993       return false;
994     }
995   }
996 
997   return true;
998 }
999 
1000 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) {
1001   IndexedLoadStoreMatchInfo MatchInfo;
1002   if (matchCombineIndexedLoadStore(MI, MatchInfo)) {
1003     applyCombineIndexedLoadStore(MI, MatchInfo);
1004     return true;
1005   }
1006   return false;
1007 }
1008 
1009 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
1010   unsigned Opcode = MI.getOpcode();
1011   if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD &&
1012       Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE)
1013     return false;
1014 
1015   // For now, no targets actually support these opcodes so don't waste time
1016   // running these unless we're forced to for testing.
1017   if (!ForceLegalIndexing)
1018     return false;
1019 
1020   MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
1021                                           MatchInfo.Offset);
1022   if (!MatchInfo.IsPre &&
1023       !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
1024                               MatchInfo.Offset))
1025     return false;
1026 
1027   return true;
1028 }
1029 
1030 void CombinerHelper::applyCombineIndexedLoadStore(
1031     MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
1032   MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr);
1033   MachineIRBuilder MIRBuilder(MI);
1034   unsigned Opcode = MI.getOpcode();
1035   bool IsStore = Opcode == TargetOpcode::G_STORE;
1036   unsigned NewOpcode;
1037   switch (Opcode) {
1038   case TargetOpcode::G_LOAD:
1039     NewOpcode = TargetOpcode::G_INDEXED_LOAD;
1040     break;
1041   case TargetOpcode::G_SEXTLOAD:
1042     NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD;
1043     break;
1044   case TargetOpcode::G_ZEXTLOAD:
1045     NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD;
1046     break;
1047   case TargetOpcode::G_STORE:
1048     NewOpcode = TargetOpcode::G_INDEXED_STORE;
1049     break;
1050   default:
1051     llvm_unreachable("Unknown load/store opcode");
1052   }
1053 
1054   auto MIB = MIRBuilder.buildInstr(NewOpcode);
1055   if (IsStore) {
1056     MIB.addDef(MatchInfo.Addr);
1057     MIB.addUse(MI.getOperand(0).getReg());
1058   } else {
1059     MIB.addDef(MI.getOperand(0).getReg());
1060     MIB.addDef(MatchInfo.Addr);
1061   }
1062 
1063   MIB.addUse(MatchInfo.Base);
1064   MIB.addUse(MatchInfo.Offset);
1065   MIB.addImm(MatchInfo.IsPre);
1066   MI.eraseFromParent();
1067   AddrDef.eraseFromParent();
1068 
1069   LLVM_DEBUG(dbgs() << "    Combinined to indexed operation");
1070 }
1071 
1072 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI,
1073                                         MachineInstr *&OtherMI) {
1074   unsigned Opcode = MI.getOpcode();
1075   bool IsDiv, IsSigned;
1076 
1077   switch (Opcode) {
1078   default:
1079     llvm_unreachable("Unexpected opcode!");
1080   case TargetOpcode::G_SDIV:
1081   case TargetOpcode::G_UDIV: {
1082     IsDiv = true;
1083     IsSigned = Opcode == TargetOpcode::G_SDIV;
1084     break;
1085   }
1086   case TargetOpcode::G_SREM:
1087   case TargetOpcode::G_UREM: {
1088     IsDiv = false;
1089     IsSigned = Opcode == TargetOpcode::G_SREM;
1090     break;
1091   }
1092   }
1093 
1094   Register Src1 = MI.getOperand(1).getReg();
1095   unsigned DivOpcode, RemOpcode, DivremOpcode;
1096   if (IsSigned) {
1097     DivOpcode = TargetOpcode::G_SDIV;
1098     RemOpcode = TargetOpcode::G_SREM;
1099     DivremOpcode = TargetOpcode::G_SDIVREM;
1100   } else {
1101     DivOpcode = TargetOpcode::G_UDIV;
1102     RemOpcode = TargetOpcode::G_UREM;
1103     DivremOpcode = TargetOpcode::G_UDIVREM;
1104   }
1105 
1106   if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}}))
1107     return false;
1108 
1109   // Combine:
1110   //   %div:_ = G_[SU]DIV %src1:_, %src2:_
1111   //   %rem:_ = G_[SU]REM %src1:_, %src2:_
1112   // into:
1113   //  %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
1114 
1115   // Combine:
1116   //   %rem:_ = G_[SU]REM %src1:_, %src2:_
1117   //   %div:_ = G_[SU]DIV %src1:_, %src2:_
1118   // into:
1119   //  %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
1120 
1121   for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) {
1122     if (MI.getParent() == UseMI.getParent() &&
1123         ((IsDiv && UseMI.getOpcode() == RemOpcode) ||
1124          (!IsDiv && UseMI.getOpcode() == DivOpcode)) &&
1125         matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) {
1126       OtherMI = &UseMI;
1127       return true;
1128     }
1129   }
1130 
1131   return false;
1132 }
1133 
1134 void CombinerHelper::applyCombineDivRem(MachineInstr &MI,
1135                                         MachineInstr *&OtherMI) {
1136   unsigned Opcode = MI.getOpcode();
1137   assert(OtherMI && "OtherMI shouldn't be empty.");
1138 
1139   Register DestDivReg, DestRemReg;
1140   if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) {
1141     DestDivReg = MI.getOperand(0).getReg();
1142     DestRemReg = OtherMI->getOperand(0).getReg();
1143   } else {
1144     DestDivReg = OtherMI->getOperand(0).getReg();
1145     DestRemReg = MI.getOperand(0).getReg();
1146   }
1147 
1148   bool IsSigned =
1149       Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM;
1150 
1151   // Check which instruction is first in the block so we don't break def-use
1152   // deps by "moving" the instruction incorrectly.
1153   if (dominates(MI, *OtherMI))
1154     Builder.setInstrAndDebugLoc(MI);
1155   else
1156     Builder.setInstrAndDebugLoc(*OtherMI);
1157 
1158   Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM
1159                               : TargetOpcode::G_UDIVREM,
1160                      {DestDivReg, DestRemReg},
1161                      {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()});
1162   MI.eraseFromParent();
1163   OtherMI->eraseFromParent();
1164 }
1165 
1166 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI,
1167                                                    MachineInstr *&BrCond) {
1168   assert(MI.getOpcode() == TargetOpcode::G_BR);
1169 
1170   // Try to match the following:
1171   // bb1:
1172   //   G_BRCOND %c1, %bb2
1173   //   G_BR %bb3
1174   // bb2:
1175   // ...
1176   // bb3:
1177 
1178   // The above pattern does not have a fall through to the successor bb2, always
1179   // resulting in a branch no matter which path is taken. Here we try to find
1180   // and replace that pattern with conditional branch to bb3 and otherwise
1181   // fallthrough to bb2. This is generally better for branch predictors.
1182 
1183   MachineBasicBlock *MBB = MI.getParent();
1184   MachineBasicBlock::iterator BrIt(MI);
1185   if (BrIt == MBB->begin())
1186     return false;
1187   assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator");
1188 
1189   BrCond = &*std::prev(BrIt);
1190   if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
1191     return false;
1192 
1193   // Check that the next block is the conditional branch target. Also make sure
1194   // that it isn't the same as the G_BR's target (otherwise, this will loop.)
1195   MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB();
1196   return BrCondTarget != MI.getOperand(0).getMBB() &&
1197          MBB->isLayoutSuccessor(BrCondTarget);
1198 }
1199 
1200 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI,
1201                                                    MachineInstr *&BrCond) {
1202   MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
1203   Builder.setInstrAndDebugLoc(*BrCond);
1204   LLT Ty = MRI.getType(BrCond->getOperand(0).getReg());
1205   // FIXME: Does int/fp matter for this? If so, we might need to restrict
1206   // this to i1 only since we might not know for sure what kind of
1207   // compare generated the condition value.
1208   auto True = Builder.buildConstant(
1209       Ty, getICmpTrueVal(getTargetLowering(), false, false));
1210   auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True);
1211 
1212   auto *FallthroughBB = BrCond->getOperand(1).getMBB();
1213   Observer.changingInstr(MI);
1214   MI.getOperand(0).setMBB(FallthroughBB);
1215   Observer.changedInstr(MI);
1216 
1217   // Change the conditional branch to use the inverted condition and
1218   // new target block.
1219   Observer.changingInstr(*BrCond);
1220   BrCond->getOperand(0).setReg(Xor.getReg(0));
1221   BrCond->getOperand(1).setMBB(BrTarget);
1222   Observer.changedInstr(*BrCond);
1223 }
1224 
1225 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
1226   if (Ty.isVector())
1227     return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
1228                                 Ty.getNumElements());
1229   return IntegerType::get(C, Ty.getSizeInBits());
1230 }
1231 
1232 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) {
1233   MachineIRBuilder HelperBuilder(MI);
1234   GISelObserverWrapper DummyObserver;
1235   LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
1236   return Helper.lowerMemcpyInline(MI) ==
1237          LegalizerHelper::LegalizeResult::Legalized;
1238 }
1239 
1240 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
1241   MachineIRBuilder HelperBuilder(MI);
1242   GISelObserverWrapper DummyObserver;
1243   LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
1244   return Helper.lowerMemCpyFamily(MI, MaxLen) ==
1245          LegalizerHelper::LegalizeResult::Legalized;
1246 }
1247 
1248 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy,
1249                                              const Register Op,
1250                                              const MachineRegisterInfo &MRI) {
1251   const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI);
1252   if (!MaybeCst)
1253     return None;
1254 
1255   APFloat V = MaybeCst->getValueAPF();
1256   switch (Opcode) {
1257   default:
1258     llvm_unreachable("Unexpected opcode!");
1259   case TargetOpcode::G_FNEG: {
1260     V.changeSign();
1261     return V;
1262   }
1263   case TargetOpcode::G_FABS: {
1264     V.clearSign();
1265     return V;
1266   }
1267   case TargetOpcode::G_FPTRUNC:
1268     break;
1269   case TargetOpcode::G_FSQRT: {
1270     bool Unused;
1271     V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1272     V = APFloat(sqrt(V.convertToDouble()));
1273     break;
1274   }
1275   case TargetOpcode::G_FLOG2: {
1276     bool Unused;
1277     V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1278     V = APFloat(log2(V.convertToDouble()));
1279     break;
1280   }
1281   }
1282   // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise,
1283   // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`,
1284   // and `G_FLOG2` reach here.
1285   bool Unused;
1286   V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused);
1287   return V;
1288 }
1289 
1290 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI,
1291                                                      Optional<APFloat> &Cst) {
1292   Register DstReg = MI.getOperand(0).getReg();
1293   Register SrcReg = MI.getOperand(1).getReg();
1294   LLT DstTy = MRI.getType(DstReg);
1295   Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI);
1296   return Cst.hasValue();
1297 }
1298 
1299 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI,
1300                                                      Optional<APFloat> &Cst) {
1301   assert(Cst.hasValue() && "Optional is unexpectedly empty!");
1302   Builder.setInstrAndDebugLoc(MI);
1303   MachineFunction &MF = Builder.getMF();
1304   auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst);
1305   Register DstReg = MI.getOperand(0).getReg();
1306   Builder.buildFConstant(DstReg, *FPVal);
1307   MI.eraseFromParent();
1308 }
1309 
1310 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI,
1311                                            PtrAddChain &MatchInfo) {
1312   // We're trying to match the following pattern:
1313   //   %t1 = G_PTR_ADD %base, G_CONSTANT imm1
1314   //   %root = G_PTR_ADD %t1, G_CONSTANT imm2
1315   // -->
1316   //   %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2)
1317 
1318   if (MI.getOpcode() != TargetOpcode::G_PTR_ADD)
1319     return false;
1320 
1321   Register Add2 = MI.getOperand(1).getReg();
1322   Register Imm1 = MI.getOperand(2).getReg();
1323   auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
1324   if (!MaybeImmVal)
1325     return false;
1326 
1327   MachineInstr *Add2Def = MRI.getVRegDef(Add2);
1328   if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD)
1329     return false;
1330 
1331   Register Base = Add2Def->getOperand(1).getReg();
1332   Register Imm2 = Add2Def->getOperand(2).getReg();
1333   auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
1334   if (!MaybeImm2Val)
1335     return false;
1336 
1337   // Check if the new combined immediate forms an illegal addressing mode.
1338   // Do not combine if it was legal before but would get illegal.
1339   // To do so, we need to find a load/store user of the pointer to get
1340   // the access type.
1341   Type *AccessTy = nullptr;
1342   auto &MF = *MI.getMF();
1343   for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) {
1344     if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) {
1345       AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)),
1346                                MF.getFunction().getContext());
1347       break;
1348     }
1349   }
1350   TargetLoweringBase::AddrMode AMNew;
1351   APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value;
1352   AMNew.BaseOffs = CombinedImm.getSExtValue();
1353   if (AccessTy) {
1354     AMNew.HasBaseReg = true;
1355     TargetLoweringBase::AddrMode AMOld;
1356     AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue();
1357     AMOld.HasBaseReg = true;
1358     unsigned AS = MRI.getType(Add2).getAddressSpace();
1359     const auto &TLI = *MF.getSubtarget().getTargetLowering();
1360     if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) &&
1361         !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS))
1362       return false;
1363   }
1364 
1365   // Pass the combined immediate to the apply function.
1366   MatchInfo.Imm = AMNew.BaseOffs;
1367   MatchInfo.Base = Base;
1368   MatchInfo.Bank = getRegBank(Imm2);
1369   return true;
1370 }
1371 
1372 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI,
1373                                            PtrAddChain &MatchInfo) {
1374   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
1375   MachineIRBuilder MIB(MI);
1376   LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg());
1377   auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm);
1378   setRegBank(NewOffset.getReg(0), MatchInfo.Bank);
1379   Observer.changingInstr(MI);
1380   MI.getOperand(1).setReg(MatchInfo.Base);
1381   MI.getOperand(2).setReg(NewOffset.getReg(0));
1382   Observer.changedInstr(MI);
1383 }
1384 
1385 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI,
1386                                           RegisterImmPair &MatchInfo) {
1387   // We're trying to match the following pattern with any of
1388   // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions:
1389   //   %t1 = SHIFT %base, G_CONSTANT imm1
1390   //   %root = SHIFT %t1, G_CONSTANT imm2
1391   // -->
1392   //   %root = SHIFT %base, G_CONSTANT (imm1 + imm2)
1393 
1394   unsigned Opcode = MI.getOpcode();
1395   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1396           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1397           Opcode == TargetOpcode::G_USHLSAT) &&
1398          "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1399 
1400   Register Shl2 = MI.getOperand(1).getReg();
1401   Register Imm1 = MI.getOperand(2).getReg();
1402   auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
1403   if (!MaybeImmVal)
1404     return false;
1405 
1406   MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2);
1407   if (Shl2Def->getOpcode() != Opcode)
1408     return false;
1409 
1410   Register Base = Shl2Def->getOperand(1).getReg();
1411   Register Imm2 = Shl2Def->getOperand(2).getReg();
1412   auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
1413   if (!MaybeImm2Val)
1414     return false;
1415 
1416   // Pass the combined immediate to the apply function.
1417   MatchInfo.Imm =
1418       (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue();
1419   MatchInfo.Reg = Base;
1420 
1421   // There is no simple replacement for a saturating unsigned left shift that
1422   // exceeds the scalar size.
1423   if (Opcode == TargetOpcode::G_USHLSAT &&
1424       MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits())
1425     return false;
1426 
1427   return true;
1428 }
1429 
1430 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI,
1431                                           RegisterImmPair &MatchInfo) {
1432   unsigned Opcode = MI.getOpcode();
1433   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1434           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1435           Opcode == TargetOpcode::G_USHLSAT) &&
1436          "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1437 
1438   Builder.setInstrAndDebugLoc(MI);
1439   LLT Ty = MRI.getType(MI.getOperand(1).getReg());
1440   unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits();
1441   auto Imm = MatchInfo.Imm;
1442 
1443   if (Imm >= ScalarSizeInBits) {
1444     // Any logical shift that exceeds scalar size will produce zero.
1445     if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) {
1446       Builder.buildConstant(MI.getOperand(0), 0);
1447       MI.eraseFromParent();
1448       return;
1449     }
1450     // Arithmetic shift and saturating signed left shift have no effect beyond
1451     // scalar size.
1452     Imm = ScalarSizeInBits - 1;
1453   }
1454 
1455   LLT ImmTy = MRI.getType(MI.getOperand(2).getReg());
1456   Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0);
1457   Observer.changingInstr(MI);
1458   MI.getOperand(1).setReg(MatchInfo.Reg);
1459   MI.getOperand(2).setReg(NewImm);
1460   Observer.changedInstr(MI);
1461 }
1462 
1463 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI,
1464                                               ShiftOfShiftedLogic &MatchInfo) {
1465   // We're trying to match the following pattern with any of
1466   // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination
1467   // with any of G_AND/G_OR/G_XOR logic instructions.
1468   //   %t1 = SHIFT %X, G_CONSTANT C0
1469   //   %t2 = LOGIC %t1, %Y
1470   //   %root = SHIFT %t2, G_CONSTANT C1
1471   // -->
1472   //   %t3 = SHIFT %X, G_CONSTANT (C0+C1)
1473   //   %t4 = SHIFT %Y, G_CONSTANT C1
1474   //   %root = LOGIC %t3, %t4
1475   unsigned ShiftOpcode = MI.getOpcode();
1476   assert((ShiftOpcode == TargetOpcode::G_SHL ||
1477           ShiftOpcode == TargetOpcode::G_ASHR ||
1478           ShiftOpcode == TargetOpcode::G_LSHR ||
1479           ShiftOpcode == TargetOpcode::G_USHLSAT ||
1480           ShiftOpcode == TargetOpcode::G_SSHLSAT) &&
1481          "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1482 
1483   // Match a one-use bitwise logic op.
1484   Register LogicDest = MI.getOperand(1).getReg();
1485   if (!MRI.hasOneNonDBGUse(LogicDest))
1486     return false;
1487 
1488   MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest);
1489   unsigned LogicOpcode = LogicMI->getOpcode();
1490   if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR &&
1491       LogicOpcode != TargetOpcode::G_XOR)
1492     return false;
1493 
1494   // Find a matching one-use shift by constant.
1495   const Register C1 = MI.getOperand(2).getReg();
1496   auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI);
1497   if (!MaybeImmVal)
1498     return false;
1499 
1500   const uint64_t C1Val = MaybeImmVal->Value.getZExtValue();
1501 
1502   auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) {
1503     // Shift should match previous one and should be a one-use.
1504     if (MI->getOpcode() != ShiftOpcode ||
1505         !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
1506       return false;
1507 
1508     // Must be a constant.
1509     auto MaybeImmVal =
1510         getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
1511     if (!MaybeImmVal)
1512       return false;
1513 
1514     ShiftVal = MaybeImmVal->Value.getSExtValue();
1515     return true;
1516   };
1517 
1518   // Logic ops are commutative, so check each operand for a match.
1519   Register LogicMIReg1 = LogicMI->getOperand(1).getReg();
1520   MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1);
1521   Register LogicMIReg2 = LogicMI->getOperand(2).getReg();
1522   MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2);
1523   uint64_t C0Val;
1524 
1525   if (matchFirstShift(LogicMIOp1, C0Val)) {
1526     MatchInfo.LogicNonShiftReg = LogicMIReg2;
1527     MatchInfo.Shift2 = LogicMIOp1;
1528   } else if (matchFirstShift(LogicMIOp2, C0Val)) {
1529     MatchInfo.LogicNonShiftReg = LogicMIReg1;
1530     MatchInfo.Shift2 = LogicMIOp2;
1531   } else
1532     return false;
1533 
1534   MatchInfo.ValSum = C0Val + C1Val;
1535 
1536   // The fold is not valid if the sum of the shift values exceeds bitwidth.
1537   if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits())
1538     return false;
1539 
1540   MatchInfo.Logic = LogicMI;
1541   return true;
1542 }
1543 
1544 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI,
1545                                               ShiftOfShiftedLogic &MatchInfo) {
1546   unsigned Opcode = MI.getOpcode();
1547   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1548           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT ||
1549           Opcode == TargetOpcode::G_SSHLSAT) &&
1550          "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1551 
1552   LLT ShlType = MRI.getType(MI.getOperand(2).getReg());
1553   LLT DestType = MRI.getType(MI.getOperand(0).getReg());
1554   Builder.setInstrAndDebugLoc(MI);
1555 
1556   Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0);
1557 
1558   Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg();
1559   Register Shift1 =
1560       Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0);
1561 
1562   Register Shift2Const = MI.getOperand(2).getReg();
1563   Register Shift2 = Builder
1564                         .buildInstr(Opcode, {DestType},
1565                                     {MatchInfo.LogicNonShiftReg, Shift2Const})
1566                         .getReg(0);
1567 
1568   Register Dest = MI.getOperand(0).getReg();
1569   Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2});
1570 
1571   // These were one use so it's safe to remove them.
1572   MatchInfo.Shift2->eraseFromParent();
1573   MatchInfo.Logic->eraseFromParent();
1574 
1575   MI.eraseFromParent();
1576 }
1577 
1578 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI,
1579                                           unsigned &ShiftVal) {
1580   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
1581   auto MaybeImmVal =
1582       getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
1583   if (!MaybeImmVal)
1584     return false;
1585 
1586   ShiftVal = MaybeImmVal->Value.exactLogBase2();
1587   return (static_cast<int32_t>(ShiftVal) != -1);
1588 }
1589 
1590 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI,
1591                                           unsigned &ShiftVal) {
1592   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
1593   MachineIRBuilder MIB(MI);
1594   LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg());
1595   auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal);
1596   Observer.changingInstr(MI);
1597   MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL));
1598   MI.getOperand(2).setReg(ShiftCst.getReg(0));
1599   Observer.changedInstr(MI);
1600 }
1601 
1602 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source
1603 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI,
1604                                              RegisterImmPair &MatchData) {
1605   assert(MI.getOpcode() == TargetOpcode::G_SHL && KB);
1606 
1607   Register LHS = MI.getOperand(1).getReg();
1608 
1609   Register ExtSrc;
1610   if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) &&
1611       !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) &&
1612       !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc))))
1613     return false;
1614 
1615   // TODO: Should handle vector splat.
1616   Register RHS = MI.getOperand(2).getReg();
1617   auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI);
1618   if (!MaybeShiftAmtVal)
1619     return false;
1620 
1621   if (LI) {
1622     LLT SrcTy = MRI.getType(ExtSrc);
1623 
1624     // We only really care about the legality with the shifted value. We can
1625     // pick any type the constant shift amount, so ask the target what to
1626     // use. Otherwise we would have to guess and hope it is reported as legal.
1627     LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy);
1628     if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}}))
1629       return false;
1630   }
1631 
1632   int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue();
1633   MatchData.Reg = ExtSrc;
1634   MatchData.Imm = ShiftAmt;
1635 
1636   unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes();
1637   return MinLeadingZeros >= ShiftAmt;
1638 }
1639 
1640 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI,
1641                                              const RegisterImmPair &MatchData) {
1642   Register ExtSrcReg = MatchData.Reg;
1643   int64_t ShiftAmtVal = MatchData.Imm;
1644 
1645   LLT ExtSrcTy = MRI.getType(ExtSrcReg);
1646   Builder.setInstrAndDebugLoc(MI);
1647   auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal);
1648   auto NarrowShift =
1649       Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags());
1650   Builder.buildZExt(MI.getOperand(0), NarrowShift);
1651   MI.eraseFromParent();
1652 }
1653 
1654 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI,
1655                                               Register &MatchInfo) {
1656   GMerge &Merge = cast<GMerge>(MI);
1657   SmallVector<Register, 16> MergedValues;
1658   for (unsigned I = 0; I < Merge.getNumSources(); ++I)
1659     MergedValues.emplace_back(Merge.getSourceReg(I));
1660 
1661   auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI);
1662   if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources())
1663     return false;
1664 
1665   for (unsigned I = 0; I < MergedValues.size(); ++I)
1666     if (MergedValues[I] != Unmerge->getReg(I))
1667       return false;
1668 
1669   MatchInfo = Unmerge->getSourceReg();
1670   return true;
1671 }
1672 
1673 static Register peekThroughBitcast(Register Reg,
1674                                    const MachineRegisterInfo &MRI) {
1675   while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg))))
1676     ;
1677 
1678   return Reg;
1679 }
1680 
1681 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues(
1682     MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
1683   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1684          "Expected an unmerge");
1685   auto &Unmerge = cast<GUnmerge>(MI);
1686   Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI);
1687 
1688   auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI);
1689   if (!SrcInstr)
1690     return false;
1691 
1692   // Check the source type of the merge.
1693   LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0));
1694   LLT Dst0Ty = MRI.getType(Unmerge.getReg(0));
1695   bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits();
1696   if (SrcMergeTy != Dst0Ty && !SameSize)
1697     return false;
1698   // They are the same now (modulo a bitcast).
1699   // We can collect all the src registers.
1700   for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx)
1701     Operands.push_back(SrcInstr->getSourceReg(Idx));
1702   return true;
1703 }
1704 
1705 void CombinerHelper::applyCombineUnmergeMergeToPlainValues(
1706     MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
1707   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1708          "Expected an unmerge");
1709   assert((MI.getNumOperands() - 1 == Operands.size()) &&
1710          "Not enough operands to replace all defs");
1711   unsigned NumElems = MI.getNumOperands() - 1;
1712 
1713   LLT SrcTy = MRI.getType(Operands[0]);
1714   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1715   bool CanReuseInputDirectly = DstTy == SrcTy;
1716   Builder.setInstrAndDebugLoc(MI);
1717   for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
1718     Register DstReg = MI.getOperand(Idx).getReg();
1719     Register SrcReg = Operands[Idx];
1720     if (CanReuseInputDirectly)
1721       replaceRegWith(MRI, DstReg, SrcReg);
1722     else
1723       Builder.buildCast(DstReg, SrcReg);
1724   }
1725   MI.eraseFromParent();
1726 }
1727 
1728 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI,
1729                                                  SmallVectorImpl<APInt> &Csts) {
1730   unsigned SrcIdx = MI.getNumOperands() - 1;
1731   Register SrcReg = MI.getOperand(SrcIdx).getReg();
1732   MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
1733   if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT &&
1734       SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT)
1735     return false;
1736   // Break down the big constant in smaller ones.
1737   const MachineOperand &CstVal = SrcInstr->getOperand(1);
1738   APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT
1739                   ? CstVal.getCImm()->getValue()
1740                   : CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
1741 
1742   LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
1743   unsigned ShiftAmt = Dst0Ty.getSizeInBits();
1744   // Unmerge a constant.
1745   for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) {
1746     Csts.emplace_back(Val.trunc(ShiftAmt));
1747     Val = Val.lshr(ShiftAmt);
1748   }
1749 
1750   return true;
1751 }
1752 
1753 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI,
1754                                                  SmallVectorImpl<APInt> &Csts) {
1755   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1756          "Expected an unmerge");
1757   assert((MI.getNumOperands() - 1 == Csts.size()) &&
1758          "Not enough operands to replace all defs");
1759   unsigned NumElems = MI.getNumOperands() - 1;
1760   Builder.setInstrAndDebugLoc(MI);
1761   for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
1762     Register DstReg = MI.getOperand(Idx).getReg();
1763     Builder.buildConstant(DstReg, Csts[Idx]);
1764   }
1765 
1766   MI.eraseFromParent();
1767 }
1768 
1769 bool CombinerHelper::matchCombineUnmergeUndef(
1770     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
1771   unsigned SrcIdx = MI.getNumOperands() - 1;
1772   Register SrcReg = MI.getOperand(SrcIdx).getReg();
1773   MatchInfo = [&MI](MachineIRBuilder &B) {
1774     unsigned NumElems = MI.getNumOperands() - 1;
1775     for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
1776       Register DstReg = MI.getOperand(Idx).getReg();
1777       B.buildUndef(DstReg);
1778     }
1779   };
1780   return isa<GImplicitDef>(MRI.getVRegDef(SrcReg));
1781 }
1782 
1783 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
1784   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1785          "Expected an unmerge");
1786   // Check that all the lanes are dead except the first one.
1787   for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
1788     if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg()))
1789       return false;
1790   }
1791   return true;
1792 }
1793 
1794 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
1795   Builder.setInstrAndDebugLoc(MI);
1796   Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
1797   // Truncating a vector is going to truncate every single lane,
1798   // whereas we want the full lowbits.
1799   // Do the operation on a scalar instead.
1800   LLT SrcTy = MRI.getType(SrcReg);
1801   if (SrcTy.isVector())
1802     SrcReg =
1803         Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0);
1804 
1805   Register Dst0Reg = MI.getOperand(0).getReg();
1806   LLT Dst0Ty = MRI.getType(Dst0Reg);
1807   if (Dst0Ty.isVector()) {
1808     auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg);
1809     Builder.buildCast(Dst0Reg, MIB);
1810   } else
1811     Builder.buildTrunc(Dst0Reg, SrcReg);
1812   MI.eraseFromParent();
1813 }
1814 
1815 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) {
1816   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1817          "Expected an unmerge");
1818   Register Dst0Reg = MI.getOperand(0).getReg();
1819   LLT Dst0Ty = MRI.getType(Dst0Reg);
1820   // G_ZEXT on vector applies to each lane, so it will
1821   // affect all destinations. Therefore we won't be able
1822   // to simplify the unmerge to just the first definition.
1823   if (Dst0Ty.isVector())
1824     return false;
1825   Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
1826   LLT SrcTy = MRI.getType(SrcReg);
1827   if (SrcTy.isVector())
1828     return false;
1829 
1830   Register ZExtSrcReg;
1831   if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg))))
1832     return false;
1833 
1834   // Finally we can replace the first definition with
1835   // a zext of the source if the definition is big enough to hold
1836   // all of ZExtSrc bits.
1837   LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
1838   return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits();
1839 }
1840 
1841 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) {
1842   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1843          "Expected an unmerge");
1844 
1845   Register Dst0Reg = MI.getOperand(0).getReg();
1846 
1847   MachineInstr *ZExtInstr =
1848       MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg());
1849   assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT &&
1850          "Expecting a G_ZEXT");
1851 
1852   Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg();
1853   LLT Dst0Ty = MRI.getType(Dst0Reg);
1854   LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
1855 
1856   Builder.setInstrAndDebugLoc(MI);
1857 
1858   if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) {
1859     Builder.buildZExt(Dst0Reg, ZExtSrcReg);
1860   } else {
1861     assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() &&
1862            "ZExt src doesn't fit in destination");
1863     replaceRegWith(MRI, Dst0Reg, ZExtSrcReg);
1864   }
1865 
1866   Register ZeroReg;
1867   for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
1868     if (!ZeroReg)
1869       ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0);
1870     replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg);
1871   }
1872   MI.eraseFromParent();
1873 }
1874 
1875 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI,
1876                                                 unsigned TargetShiftSize,
1877                                                 unsigned &ShiftVal) {
1878   assert((MI.getOpcode() == TargetOpcode::G_SHL ||
1879           MI.getOpcode() == TargetOpcode::G_LSHR ||
1880           MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift");
1881 
1882   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1883   if (Ty.isVector()) // TODO:
1884     return false;
1885 
1886   // Don't narrow further than the requested size.
1887   unsigned Size = Ty.getSizeInBits();
1888   if (Size <= TargetShiftSize)
1889     return false;
1890 
1891   auto MaybeImmVal =
1892       getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
1893   if (!MaybeImmVal)
1894     return false;
1895 
1896   ShiftVal = MaybeImmVal->Value.getSExtValue();
1897   return ShiftVal >= Size / 2 && ShiftVal < Size;
1898 }
1899 
1900 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI,
1901                                                 const unsigned &ShiftVal) {
1902   Register DstReg = MI.getOperand(0).getReg();
1903   Register SrcReg = MI.getOperand(1).getReg();
1904   LLT Ty = MRI.getType(SrcReg);
1905   unsigned Size = Ty.getSizeInBits();
1906   unsigned HalfSize = Size / 2;
1907   assert(ShiftVal >= HalfSize);
1908 
1909   LLT HalfTy = LLT::scalar(HalfSize);
1910 
1911   Builder.setInstr(MI);
1912   auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg);
1913   unsigned NarrowShiftAmt = ShiftVal - HalfSize;
1914 
1915   if (MI.getOpcode() == TargetOpcode::G_LSHR) {
1916     Register Narrowed = Unmerge.getReg(1);
1917 
1918     //  dst = G_LSHR s64:x, C for C >= 32
1919     // =>
1920     //   lo, hi = G_UNMERGE_VALUES x
1921     //   dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0
1922 
1923     if (NarrowShiftAmt != 0) {
1924       Narrowed = Builder.buildLShr(HalfTy, Narrowed,
1925         Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
1926     }
1927 
1928     auto Zero = Builder.buildConstant(HalfTy, 0);
1929     Builder.buildMerge(DstReg, { Narrowed, Zero });
1930   } else if (MI.getOpcode() == TargetOpcode::G_SHL) {
1931     Register Narrowed = Unmerge.getReg(0);
1932     //  dst = G_SHL s64:x, C for C >= 32
1933     // =>
1934     //   lo, hi = G_UNMERGE_VALUES x
1935     //   dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32)
1936     if (NarrowShiftAmt != 0) {
1937       Narrowed = Builder.buildShl(HalfTy, Narrowed,
1938         Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
1939     }
1940 
1941     auto Zero = Builder.buildConstant(HalfTy, 0);
1942     Builder.buildMerge(DstReg, { Zero, Narrowed });
1943   } else {
1944     assert(MI.getOpcode() == TargetOpcode::G_ASHR);
1945     auto Hi = Builder.buildAShr(
1946       HalfTy, Unmerge.getReg(1),
1947       Builder.buildConstant(HalfTy, HalfSize - 1));
1948 
1949     if (ShiftVal == HalfSize) {
1950       // (G_ASHR i64:x, 32) ->
1951       //   G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31)
1952       Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi });
1953     } else if (ShiftVal == Size - 1) {
1954       // Don't need a second shift.
1955       // (G_ASHR i64:x, 63) ->
1956       //   %narrowed = (G_ASHR hi_32(x), 31)
1957       //   G_MERGE_VALUES %narrowed, %narrowed
1958       Builder.buildMerge(DstReg, { Hi, Hi });
1959     } else {
1960       auto Lo = Builder.buildAShr(
1961         HalfTy, Unmerge.getReg(1),
1962         Builder.buildConstant(HalfTy, ShiftVal - HalfSize));
1963 
1964       // (G_ASHR i64:x, C) ->, for C >= 32
1965       //   G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31)
1966       Builder.buildMerge(DstReg, { Lo, Hi });
1967     }
1968   }
1969 
1970   MI.eraseFromParent();
1971 }
1972 
1973 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI,
1974                                               unsigned TargetShiftAmount) {
1975   unsigned ShiftAmt;
1976   if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) {
1977     applyCombineShiftToUnmerge(MI, ShiftAmt);
1978     return true;
1979   }
1980 
1981   return false;
1982 }
1983 
1984 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
1985   assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
1986   Register DstReg = MI.getOperand(0).getReg();
1987   LLT DstTy = MRI.getType(DstReg);
1988   Register SrcReg = MI.getOperand(1).getReg();
1989   return mi_match(SrcReg, MRI,
1990                   m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg))));
1991 }
1992 
1993 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
1994   assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
1995   Register DstReg = MI.getOperand(0).getReg();
1996   Builder.setInstr(MI);
1997   Builder.buildCopy(DstReg, Reg);
1998   MI.eraseFromParent();
1999 }
2000 
2001 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2002   assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
2003   Register SrcReg = MI.getOperand(1).getReg();
2004   return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg)));
2005 }
2006 
2007 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2008   assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
2009   Register DstReg = MI.getOperand(0).getReg();
2010   Builder.setInstr(MI);
2011   Builder.buildZExtOrTrunc(DstReg, Reg);
2012   MI.eraseFromParent();
2013 }
2014 
2015 bool CombinerHelper::matchCombineAddP2IToPtrAdd(
2016     MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2017   assert(MI.getOpcode() == TargetOpcode::G_ADD);
2018   Register LHS = MI.getOperand(1).getReg();
2019   Register RHS = MI.getOperand(2).getReg();
2020   LLT IntTy = MRI.getType(LHS);
2021 
2022   // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the
2023   // instruction.
2024   PtrReg.second = false;
2025   for (Register SrcReg : {LHS, RHS}) {
2026     if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) {
2027       // Don't handle cases where the integer is implicitly converted to the
2028       // pointer width.
2029       LLT PtrTy = MRI.getType(PtrReg.first);
2030       if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits())
2031         return true;
2032     }
2033 
2034     PtrReg.second = true;
2035   }
2036 
2037   return false;
2038 }
2039 
2040 void CombinerHelper::applyCombineAddP2IToPtrAdd(
2041     MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2042   Register Dst = MI.getOperand(0).getReg();
2043   Register LHS = MI.getOperand(1).getReg();
2044   Register RHS = MI.getOperand(2).getReg();
2045 
2046   const bool DoCommute = PtrReg.second;
2047   if (DoCommute)
2048     std::swap(LHS, RHS);
2049   LHS = PtrReg.first;
2050 
2051   LLT PtrTy = MRI.getType(LHS);
2052 
2053   Builder.setInstrAndDebugLoc(MI);
2054   auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS);
2055   Builder.buildPtrToInt(Dst, PtrAdd);
2056   MI.eraseFromParent();
2057 }
2058 
2059 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI,
2060                                                   APInt &NewCst) {
2061   auto &PtrAdd = cast<GPtrAdd>(MI);
2062   Register LHS = PtrAdd.getBaseReg();
2063   Register RHS = PtrAdd.getOffsetReg();
2064   MachineRegisterInfo &MRI = Builder.getMF().getRegInfo();
2065 
2066   if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) {
2067     APInt Cst;
2068     if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) {
2069       auto DstTy = MRI.getType(PtrAdd.getReg(0));
2070       // G_INTTOPTR uses zero-extension
2071       NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits());
2072       NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits());
2073       return true;
2074     }
2075   }
2076 
2077   return false;
2078 }
2079 
2080 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI,
2081                                                   APInt &NewCst) {
2082   auto &PtrAdd = cast<GPtrAdd>(MI);
2083   Register Dst = PtrAdd.getReg(0);
2084 
2085   Builder.setInstrAndDebugLoc(MI);
2086   Builder.buildConstant(Dst, NewCst);
2087   PtrAdd.eraseFromParent();
2088 }
2089 
2090 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
2091   assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT");
2092   Register DstReg = MI.getOperand(0).getReg();
2093   Register SrcReg = MI.getOperand(1).getReg();
2094   LLT DstTy = MRI.getType(DstReg);
2095   return mi_match(SrcReg, MRI,
2096                   m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))));
2097 }
2098 
2099 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) {
2100   assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT");
2101   Register DstReg = MI.getOperand(0).getReg();
2102   Register SrcReg = MI.getOperand(1).getReg();
2103   LLT DstTy = MRI.getType(DstReg);
2104   if (mi_match(SrcReg, MRI,
2105                m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) {
2106     unsigned DstSize = DstTy.getScalarSizeInBits();
2107     unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits();
2108     return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize;
2109   }
2110   return false;
2111 }
2112 
2113 bool CombinerHelper::matchCombineExtOfExt(
2114     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2115   assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2116           MI.getOpcode() == TargetOpcode::G_SEXT ||
2117           MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2118          "Expected a G_[ASZ]EXT");
2119   Register SrcReg = MI.getOperand(1).getReg();
2120   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2121   // Match exts with the same opcode, anyext([sz]ext) and sext(zext).
2122   unsigned Opc = MI.getOpcode();
2123   unsigned SrcOpc = SrcMI->getOpcode();
2124   if (Opc == SrcOpc ||
2125       (Opc == TargetOpcode::G_ANYEXT &&
2126        (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) ||
2127       (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) {
2128     MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc);
2129     return true;
2130   }
2131   return false;
2132 }
2133 
2134 void CombinerHelper::applyCombineExtOfExt(
2135     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2136   assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2137           MI.getOpcode() == TargetOpcode::G_SEXT ||
2138           MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2139          "Expected a G_[ASZ]EXT");
2140 
2141   Register Reg = std::get<0>(MatchInfo);
2142   unsigned SrcExtOp = std::get<1>(MatchInfo);
2143 
2144   // Combine exts with the same opcode.
2145   if (MI.getOpcode() == SrcExtOp) {
2146     Observer.changingInstr(MI);
2147     MI.getOperand(1).setReg(Reg);
2148     Observer.changedInstr(MI);
2149     return;
2150   }
2151 
2152   // Combine:
2153   // - anyext([sz]ext x) to [sz]ext x
2154   // - sext(zext x) to zext x
2155   if (MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2156       (MI.getOpcode() == TargetOpcode::G_SEXT &&
2157        SrcExtOp == TargetOpcode::G_ZEXT)) {
2158     Register DstReg = MI.getOperand(0).getReg();
2159     Builder.setInstrAndDebugLoc(MI);
2160     Builder.buildInstr(SrcExtOp, {DstReg}, {Reg});
2161     MI.eraseFromParent();
2162   }
2163 }
2164 
2165 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) {
2166   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
2167   Register DstReg = MI.getOperand(0).getReg();
2168   Register SrcReg = MI.getOperand(1).getReg();
2169   LLT DstTy = MRI.getType(DstReg);
2170 
2171   Builder.setInstrAndDebugLoc(MI);
2172   Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg,
2173                    MI.getFlags());
2174   MI.eraseFromParent();
2175 }
2176 
2177 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) {
2178   assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG");
2179   Register SrcReg = MI.getOperand(1).getReg();
2180   return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg)));
2181 }
2182 
2183 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) {
2184   assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS");
2185   Src = MI.getOperand(1).getReg();
2186   Register AbsSrc;
2187   return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc)));
2188 }
2189 
2190 bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI,
2191                                             BuildFnTy &MatchInfo) {
2192   assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS");
2193   Register Src = MI.getOperand(1).getReg();
2194   Register NegSrc;
2195 
2196   if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc))))
2197     return false;
2198 
2199   MatchInfo = [=, &MI](MachineIRBuilder &B) {
2200     Observer.changingInstr(MI);
2201     MI.getOperand(1).setReg(NegSrc);
2202     Observer.changedInstr(MI);
2203   };
2204   return true;
2205 }
2206 
2207 bool CombinerHelper::matchCombineTruncOfExt(
2208     MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2209   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2210   Register SrcReg = MI.getOperand(1).getReg();
2211   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2212   unsigned SrcOpc = SrcMI->getOpcode();
2213   if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT ||
2214       SrcOpc == TargetOpcode::G_ZEXT) {
2215     MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc);
2216     return true;
2217   }
2218   return false;
2219 }
2220 
2221 void CombinerHelper::applyCombineTruncOfExt(
2222     MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2223   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2224   Register SrcReg = MatchInfo.first;
2225   unsigned SrcExtOp = MatchInfo.second;
2226   Register DstReg = MI.getOperand(0).getReg();
2227   LLT SrcTy = MRI.getType(SrcReg);
2228   LLT DstTy = MRI.getType(DstReg);
2229   if (SrcTy == DstTy) {
2230     MI.eraseFromParent();
2231     replaceRegWith(MRI, DstReg, SrcReg);
2232     return;
2233   }
2234   Builder.setInstrAndDebugLoc(MI);
2235   if (SrcTy.getSizeInBits() < DstTy.getSizeInBits())
2236     Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg});
2237   else
2238     Builder.buildTrunc(DstReg, SrcReg);
2239   MI.eraseFromParent();
2240 }
2241 
2242 bool CombinerHelper::matchCombineTruncOfShl(
2243     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
2244   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2245   Register DstReg = MI.getOperand(0).getReg();
2246   Register SrcReg = MI.getOperand(1).getReg();
2247   LLT DstTy = MRI.getType(DstReg);
2248   Register ShiftSrc;
2249   Register ShiftAmt;
2250 
2251   if (MRI.hasOneNonDBGUse(SrcReg) &&
2252       mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) &&
2253       isLegalOrBeforeLegalizer(
2254           {TargetOpcode::G_SHL,
2255            {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) {
2256     KnownBits Known = KB->getKnownBits(ShiftAmt);
2257     unsigned Size = DstTy.getSizeInBits();
2258     if (Known.countMaxActiveBits() <= Log2_32(Size)) {
2259       MatchInfo = std::make_pair(ShiftSrc, ShiftAmt);
2260       return true;
2261     }
2262   }
2263   return false;
2264 }
2265 
2266 void CombinerHelper::applyCombineTruncOfShl(
2267     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
2268   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2269   Register DstReg = MI.getOperand(0).getReg();
2270   Register SrcReg = MI.getOperand(1).getReg();
2271   LLT DstTy = MRI.getType(DstReg);
2272   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2273 
2274   Register ShiftSrc = MatchInfo.first;
2275   Register ShiftAmt = MatchInfo.second;
2276   Builder.setInstrAndDebugLoc(MI);
2277   auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc);
2278   Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags());
2279   MI.eraseFromParent();
2280 }
2281 
2282 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) {
2283   return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2284     return MO.isReg() &&
2285            getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2286   });
2287 }
2288 
2289 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) {
2290   return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2291     return !MO.isReg() ||
2292            getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2293   });
2294 }
2295 
2296 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) {
2297   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
2298   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
2299   return all_of(Mask, [](int Elt) { return Elt < 0; });
2300 }
2301 
2302 bool CombinerHelper::matchUndefStore(MachineInstr &MI) {
2303   assert(MI.getOpcode() == TargetOpcode::G_STORE);
2304   return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(),
2305                       MRI);
2306 }
2307 
2308 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) {
2309   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2310   return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(),
2311                       MRI);
2312 }
2313 
2314 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) {
2315   GSelect &SelMI = cast<GSelect>(MI);
2316   auto Cst =
2317       isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI);
2318   if (!Cst)
2319     return false;
2320   OpIdx = Cst->isZero() ? 3 : 2;
2321   return true;
2322 }
2323 
2324 bool CombinerHelper::eraseInst(MachineInstr &MI) {
2325   MI.eraseFromParent();
2326   return true;
2327 }
2328 
2329 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1,
2330                                     const MachineOperand &MOP2) {
2331   if (!MOP1.isReg() || !MOP2.isReg())
2332     return false;
2333   auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI);
2334   if (!InstAndDef1)
2335     return false;
2336   auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI);
2337   if (!InstAndDef2)
2338     return false;
2339   MachineInstr *I1 = InstAndDef1->MI;
2340   MachineInstr *I2 = InstAndDef2->MI;
2341 
2342   // Handle a case like this:
2343   //
2344   // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>)
2345   //
2346   // Even though %0 and %1 are produced by the same instruction they are not
2347   // the same values.
2348   if (I1 == I2)
2349     return MOP1.getReg() == MOP2.getReg();
2350 
2351   // If we have an instruction which loads or stores, we can't guarantee that
2352   // it is identical.
2353   //
2354   // For example, we may have
2355   //
2356   // %x1 = G_LOAD %addr (load N from @somewhere)
2357   // ...
2358   // call @foo
2359   // ...
2360   // %x2 = G_LOAD %addr (load N from @somewhere)
2361   // ...
2362   // %or = G_OR %x1, %x2
2363   //
2364   // It's possible that @foo will modify whatever lives at the address we're
2365   // loading from. To be safe, let's just assume that all loads and stores
2366   // are different (unless we have something which is guaranteed to not
2367   // change.)
2368   if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr))
2369     return false;
2370 
2371   // If both instructions are loads or stores, they are equal only if both
2372   // are dereferenceable invariant loads with the same number of bits.
2373   if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) {
2374     GLoadStore *LS1 = dyn_cast<GLoadStore>(I1);
2375     GLoadStore *LS2 = dyn_cast<GLoadStore>(I2);
2376     if (!LS1 || !LS2)
2377       return false;
2378 
2379     if (!I2->isDereferenceableInvariantLoad(nullptr) ||
2380         (LS1->getMemSizeInBits() != LS2->getMemSizeInBits()))
2381       return false;
2382   }
2383 
2384   // Check for physical registers on the instructions first to avoid cases
2385   // like this:
2386   //
2387   // %a = COPY $physreg
2388   // ...
2389   // SOMETHING implicit-def $physreg
2390   // ...
2391   // %b = COPY $physreg
2392   //
2393   // These copies are not equivalent.
2394   if (any_of(I1->uses(), [](const MachineOperand &MO) {
2395         return MO.isReg() && MO.getReg().isPhysical();
2396       })) {
2397     // Check if we have a case like this:
2398     //
2399     // %a = COPY $physreg
2400     // %b = COPY %a
2401     //
2402     // In this case, I1 and I2 will both be equal to %a = COPY $physreg.
2403     // From that, we know that they must have the same value, since they must
2404     // have come from the same COPY.
2405     return I1->isIdenticalTo(*I2);
2406   }
2407 
2408   // We don't have any physical registers, so we don't necessarily need the
2409   // same vreg defs.
2410   //
2411   // On the off-chance that there's some target instruction feeding into the
2412   // instruction, let's use produceSameValue instead of isIdenticalTo.
2413   if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) {
2414     // Handle instructions with multiple defs that produce same values. Values
2415     // are same for operands with same index.
2416     // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
2417     // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
2418     // I1 and I2 are different instructions but produce same values,
2419     // %1 and %6 are same, %1 and %7 are not the same value.
2420     return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) ==
2421            I2->findRegisterDefOperandIdx(InstAndDef2->Reg);
2422   }
2423   return false;
2424 }
2425 
2426 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) {
2427   if (!MOP.isReg())
2428     return false;
2429   auto *MI = MRI.getVRegDef(MOP.getReg());
2430   auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI);
2431   return MaybeCst.hasValue() && MaybeCst->getBitWidth() <= 64 &&
2432          MaybeCst->getSExtValue() == C;
2433 }
2434 
2435 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI,
2436                                                      unsigned OpIdx) {
2437   assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2438   Register OldReg = MI.getOperand(0).getReg();
2439   Register Replacement = MI.getOperand(OpIdx).getReg();
2440   assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2441   MI.eraseFromParent();
2442   replaceRegWith(MRI, OldReg, Replacement);
2443   return true;
2444 }
2445 
2446 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI,
2447                                                  Register Replacement) {
2448   assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2449   Register OldReg = MI.getOperand(0).getReg();
2450   assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2451   MI.eraseFromParent();
2452   replaceRegWith(MRI, OldReg, Replacement);
2453   return true;
2454 }
2455 
2456 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) {
2457   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2458   // Match (cond ? x : x)
2459   return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) &&
2460          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(),
2461                        MRI);
2462 }
2463 
2464 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) {
2465   return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) &&
2466          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
2467                        MRI);
2468 }
2469 
2470 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) {
2471   return matchConstantOp(MI.getOperand(OpIdx), 0) &&
2472          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(),
2473                        MRI);
2474 }
2475 
2476 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) {
2477   MachineOperand &MO = MI.getOperand(OpIdx);
2478   return MO.isReg() &&
2479          getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2480 }
2481 
2482 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI,
2483                                                         unsigned OpIdx) {
2484   MachineOperand &MO = MI.getOperand(OpIdx);
2485   return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB);
2486 }
2487 
2488 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) {
2489   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2490   Builder.setInstr(MI);
2491   Builder.buildFConstant(MI.getOperand(0), C);
2492   MI.eraseFromParent();
2493   return true;
2494 }
2495 
2496 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) {
2497   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2498   Builder.setInstr(MI);
2499   Builder.buildConstant(MI.getOperand(0), C);
2500   MI.eraseFromParent();
2501   return true;
2502 }
2503 
2504 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) {
2505   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2506   Builder.setInstr(MI);
2507   Builder.buildConstant(MI.getOperand(0), C);
2508   MI.eraseFromParent();
2509   return true;
2510 }
2511 
2512 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) {
2513   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2514   Builder.setInstr(MI);
2515   Builder.buildUndef(MI.getOperand(0));
2516   MI.eraseFromParent();
2517   return true;
2518 }
2519 
2520 bool CombinerHelper::matchSimplifyAddToSub(
2521     MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2522   Register LHS = MI.getOperand(1).getReg();
2523   Register RHS = MI.getOperand(2).getReg();
2524   Register &NewLHS = std::get<0>(MatchInfo);
2525   Register &NewRHS = std::get<1>(MatchInfo);
2526 
2527   // Helper lambda to check for opportunities for
2528   // ((0-A) + B) -> B - A
2529   // (A + (0-B)) -> A - B
2530   auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) {
2531     if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS))))
2532       return false;
2533     NewLHS = MaybeNewLHS;
2534     return true;
2535   };
2536 
2537   return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
2538 }
2539 
2540 bool CombinerHelper::matchCombineInsertVecElts(
2541     MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2542   assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT &&
2543          "Invalid opcode");
2544   Register DstReg = MI.getOperand(0).getReg();
2545   LLT DstTy = MRI.getType(DstReg);
2546   assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?");
2547   unsigned NumElts = DstTy.getNumElements();
2548   // If this MI is part of a sequence of insert_vec_elts, then
2549   // don't do the combine in the middle of the sequence.
2550   if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() ==
2551                                    TargetOpcode::G_INSERT_VECTOR_ELT)
2552     return false;
2553   MachineInstr *CurrInst = &MI;
2554   MachineInstr *TmpInst;
2555   int64_t IntImm;
2556   Register TmpReg;
2557   MatchInfo.resize(NumElts);
2558   while (mi_match(
2559       CurrInst->getOperand(0).getReg(), MRI,
2560       m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) {
2561     if (IntImm >= NumElts)
2562       return false;
2563     if (!MatchInfo[IntImm])
2564       MatchInfo[IntImm] = TmpReg;
2565     CurrInst = TmpInst;
2566   }
2567   // Variable index.
2568   if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
2569     return false;
2570   if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
2571     for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) {
2572       if (!MatchInfo[I - 1].isValid())
2573         MatchInfo[I - 1] = TmpInst->getOperand(I).getReg();
2574     }
2575     return true;
2576   }
2577   // If we didn't end in a G_IMPLICIT_DEF, bail out.
2578   return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF;
2579 }
2580 
2581 void CombinerHelper::applyCombineInsertVecElts(
2582     MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2583   Builder.setInstr(MI);
2584   Register UndefReg;
2585   auto GetUndef = [&]() {
2586     if (UndefReg)
2587       return UndefReg;
2588     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2589     UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0);
2590     return UndefReg;
2591   };
2592   for (unsigned I = 0; I < MatchInfo.size(); ++I) {
2593     if (!MatchInfo[I])
2594       MatchInfo[I] = GetUndef();
2595   }
2596   Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo);
2597   MI.eraseFromParent();
2598 }
2599 
2600 void CombinerHelper::applySimplifyAddToSub(
2601     MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2602   Builder.setInstr(MI);
2603   Register SubLHS, SubRHS;
2604   std::tie(SubLHS, SubRHS) = MatchInfo;
2605   Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS);
2606   MI.eraseFromParent();
2607 }
2608 
2609 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands(
2610     MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
2611   // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ...
2612   //
2613   // Creates the new hand + logic instruction (but does not insert them.)
2614   //
2615   // On success, MatchInfo is populated with the new instructions. These are
2616   // inserted in applyHoistLogicOpWithSameOpcodeHands.
2617   unsigned LogicOpcode = MI.getOpcode();
2618   assert(LogicOpcode == TargetOpcode::G_AND ||
2619          LogicOpcode == TargetOpcode::G_OR ||
2620          LogicOpcode == TargetOpcode::G_XOR);
2621   MachineIRBuilder MIB(MI);
2622   Register Dst = MI.getOperand(0).getReg();
2623   Register LHSReg = MI.getOperand(1).getReg();
2624   Register RHSReg = MI.getOperand(2).getReg();
2625 
2626   // Don't recompute anything.
2627   if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg))
2628     return false;
2629 
2630   // Make sure we have (hand x, ...), (hand y, ...)
2631   MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI);
2632   MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI);
2633   if (!LeftHandInst || !RightHandInst)
2634     return false;
2635   unsigned HandOpcode = LeftHandInst->getOpcode();
2636   if (HandOpcode != RightHandInst->getOpcode())
2637     return false;
2638   if (!LeftHandInst->getOperand(1).isReg() ||
2639       !RightHandInst->getOperand(1).isReg())
2640     return false;
2641 
2642   // Make sure the types match up, and if we're doing this post-legalization,
2643   // we end up with legal types.
2644   Register X = LeftHandInst->getOperand(1).getReg();
2645   Register Y = RightHandInst->getOperand(1).getReg();
2646   LLT XTy = MRI.getType(X);
2647   LLT YTy = MRI.getType(Y);
2648   if (XTy != YTy)
2649     return false;
2650   if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}}))
2651     return false;
2652 
2653   // Optional extra source register.
2654   Register ExtraHandOpSrcReg;
2655   switch (HandOpcode) {
2656   default:
2657     return false;
2658   case TargetOpcode::G_ANYEXT:
2659   case TargetOpcode::G_SEXT:
2660   case TargetOpcode::G_ZEXT: {
2661     // Match: logic (ext X), (ext Y) --> ext (logic X, Y)
2662     break;
2663   }
2664   case TargetOpcode::G_AND:
2665   case TargetOpcode::G_ASHR:
2666   case TargetOpcode::G_LSHR:
2667   case TargetOpcode::G_SHL: {
2668     // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z
2669     MachineOperand &ZOp = LeftHandInst->getOperand(2);
2670     if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2)))
2671       return false;
2672     ExtraHandOpSrcReg = ZOp.getReg();
2673     break;
2674   }
2675   }
2676 
2677   // Record the steps to build the new instructions.
2678   //
2679   // Steps to build (logic x, y)
2680   auto NewLogicDst = MRI.createGenericVirtualRegister(XTy);
2681   OperandBuildSteps LogicBuildSteps = {
2682       [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); },
2683       [=](MachineInstrBuilder &MIB) { MIB.addReg(X); },
2684       [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }};
2685   InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps);
2686 
2687   // Steps to build hand (logic x, y), ...z
2688   OperandBuildSteps HandBuildSteps = {
2689       [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); },
2690       [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }};
2691   if (ExtraHandOpSrcReg.isValid())
2692     HandBuildSteps.push_back(
2693         [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); });
2694   InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps);
2695 
2696   MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps});
2697   return true;
2698 }
2699 
2700 void CombinerHelper::applyBuildInstructionSteps(
2701     MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
2702   assert(MatchInfo.InstrsToBuild.size() &&
2703          "Expected at least one instr to build?");
2704   Builder.setInstr(MI);
2705   for (auto &InstrToBuild : MatchInfo.InstrsToBuild) {
2706     assert(InstrToBuild.Opcode && "Expected a valid opcode?");
2707     assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?");
2708     MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode);
2709     for (auto &OperandFn : InstrToBuild.OperandFns)
2710       OperandFn(Instr);
2711   }
2712   MI.eraseFromParent();
2713 }
2714 
2715 bool CombinerHelper::matchAshrShlToSextInreg(
2716     MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
2717   assert(MI.getOpcode() == TargetOpcode::G_ASHR);
2718   int64_t ShlCst, AshrCst;
2719   Register Src;
2720   // FIXME: detect splat constant vectors.
2721   if (!mi_match(MI.getOperand(0).getReg(), MRI,
2722                 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst))))
2723     return false;
2724   if (ShlCst != AshrCst)
2725     return false;
2726   if (!isLegalOrBeforeLegalizer(
2727           {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}}))
2728     return false;
2729   MatchInfo = std::make_tuple(Src, ShlCst);
2730   return true;
2731 }
2732 
2733 void CombinerHelper::applyAshShlToSextInreg(
2734     MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
2735   assert(MI.getOpcode() == TargetOpcode::G_ASHR);
2736   Register Src;
2737   int64_t ShiftAmt;
2738   std::tie(Src, ShiftAmt) = MatchInfo;
2739   unsigned Size = MRI.getType(Src).getScalarSizeInBits();
2740   Builder.setInstrAndDebugLoc(MI);
2741   Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt);
2742   MI.eraseFromParent();
2743 }
2744 
2745 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0
2746 bool CombinerHelper::matchOverlappingAnd(
2747     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
2748   assert(MI.getOpcode() == TargetOpcode::G_AND);
2749 
2750   Register Dst = MI.getOperand(0).getReg();
2751   LLT Ty = MRI.getType(Dst);
2752 
2753   Register R;
2754   int64_t C1;
2755   int64_t C2;
2756   if (!mi_match(
2757           Dst, MRI,
2758           m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2))))
2759     return false;
2760 
2761   MatchInfo = [=](MachineIRBuilder &B) {
2762     if (C1 & C2) {
2763       B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2));
2764       return;
2765     }
2766     auto Zero = B.buildConstant(Ty, 0);
2767     replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg());
2768   };
2769   return true;
2770 }
2771 
2772 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI,
2773                                        Register &Replacement) {
2774   // Given
2775   //
2776   // %y:_(sN) = G_SOMETHING
2777   // %x:_(sN) = G_SOMETHING
2778   // %res:_(sN) = G_AND %x, %y
2779   //
2780   // Eliminate the G_AND when it is known that x & y == x or x & y == y.
2781   //
2782   // Patterns like this can appear as a result of legalization. E.g.
2783   //
2784   // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y
2785   // %one:_(s32) = G_CONSTANT i32 1
2786   // %and:_(s32) = G_AND %cmp, %one
2787   //
2788   // In this case, G_ICMP only produces a single bit, so x & 1 == x.
2789   assert(MI.getOpcode() == TargetOpcode::G_AND);
2790   if (!KB)
2791     return false;
2792 
2793   Register AndDst = MI.getOperand(0).getReg();
2794   LLT DstTy = MRI.getType(AndDst);
2795 
2796   // FIXME: This should be removed once GISelKnownBits supports vectors.
2797   if (DstTy.isVector())
2798     return false;
2799 
2800   Register LHS = MI.getOperand(1).getReg();
2801   Register RHS = MI.getOperand(2).getReg();
2802   KnownBits LHSBits = KB->getKnownBits(LHS);
2803   KnownBits RHSBits = KB->getKnownBits(RHS);
2804 
2805   // Check that x & Mask == x.
2806   // x & 1 == x, always
2807   // x & 0 == x, only if x is also 0
2808   // Meaning Mask has no effect if every bit is either one in Mask or zero in x.
2809   //
2810   // Check if we can replace AndDst with the LHS of the G_AND
2811   if (canReplaceReg(AndDst, LHS, MRI) &&
2812       (LHSBits.Zero | RHSBits.One).isAllOnes()) {
2813     Replacement = LHS;
2814     return true;
2815   }
2816 
2817   // Check if we can replace AndDst with the RHS of the G_AND
2818   if (canReplaceReg(AndDst, RHS, MRI) &&
2819       (LHSBits.One | RHSBits.Zero).isAllOnes()) {
2820     Replacement = RHS;
2821     return true;
2822   }
2823 
2824   return false;
2825 }
2826 
2827 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) {
2828   // Given
2829   //
2830   // %y:_(sN) = G_SOMETHING
2831   // %x:_(sN) = G_SOMETHING
2832   // %res:_(sN) = G_OR %x, %y
2833   //
2834   // Eliminate the G_OR when it is known that x | y == x or x | y == y.
2835   assert(MI.getOpcode() == TargetOpcode::G_OR);
2836   if (!KB)
2837     return false;
2838 
2839   Register OrDst = MI.getOperand(0).getReg();
2840   LLT DstTy = MRI.getType(OrDst);
2841 
2842   // FIXME: This should be removed once GISelKnownBits supports vectors.
2843   if (DstTy.isVector())
2844     return false;
2845 
2846   Register LHS = MI.getOperand(1).getReg();
2847   Register RHS = MI.getOperand(2).getReg();
2848   KnownBits LHSBits = KB->getKnownBits(LHS);
2849   KnownBits RHSBits = KB->getKnownBits(RHS);
2850 
2851   // Check that x | Mask == x.
2852   // x | 0 == x, always
2853   // x | 1 == x, only if x is also 1
2854   // Meaning Mask has no effect if every bit is either zero in Mask or one in x.
2855   //
2856   // Check if we can replace OrDst with the LHS of the G_OR
2857   if (canReplaceReg(OrDst, LHS, MRI) &&
2858       (LHSBits.One | RHSBits.Zero).isAllOnes()) {
2859     Replacement = LHS;
2860     return true;
2861   }
2862 
2863   // Check if we can replace OrDst with the RHS of the G_OR
2864   if (canReplaceReg(OrDst, RHS, MRI) &&
2865       (LHSBits.Zero | RHSBits.One).isAllOnes()) {
2866     Replacement = RHS;
2867     return true;
2868   }
2869 
2870   return false;
2871 }
2872 
2873 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) {
2874   // If the input is already sign extended, just drop the extension.
2875   Register Src = MI.getOperand(1).getReg();
2876   unsigned ExtBits = MI.getOperand(2).getImm();
2877   unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits();
2878   return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1);
2879 }
2880 
2881 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits,
2882                              int64_t Cst, bool IsVector, bool IsFP) {
2883   // For i1, Cst will always be -1 regardless of boolean contents.
2884   return (ScalarSizeBits == 1 && Cst == -1) ||
2885          isConstTrueVal(TLI, Cst, IsVector, IsFP);
2886 }
2887 
2888 bool CombinerHelper::matchNotCmp(MachineInstr &MI,
2889                                  SmallVectorImpl<Register> &RegsToNegate) {
2890   assert(MI.getOpcode() == TargetOpcode::G_XOR);
2891   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2892   const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering();
2893   Register XorSrc;
2894   Register CstReg;
2895   // We match xor(src, true) here.
2896   if (!mi_match(MI.getOperand(0).getReg(), MRI,
2897                 m_GXor(m_Reg(XorSrc), m_Reg(CstReg))))
2898     return false;
2899 
2900   if (!MRI.hasOneNonDBGUse(XorSrc))
2901     return false;
2902 
2903   // Check that XorSrc is the root of a tree of comparisons combined with ANDs
2904   // and ORs. The suffix of RegsToNegate starting from index I is used a work
2905   // list of tree nodes to visit.
2906   RegsToNegate.push_back(XorSrc);
2907   // Remember whether the comparisons are all integer or all floating point.
2908   bool IsInt = false;
2909   bool IsFP = false;
2910   for (unsigned I = 0; I < RegsToNegate.size(); ++I) {
2911     Register Reg = RegsToNegate[I];
2912     if (!MRI.hasOneNonDBGUse(Reg))
2913       return false;
2914     MachineInstr *Def = MRI.getVRegDef(Reg);
2915     switch (Def->getOpcode()) {
2916     default:
2917       // Don't match if the tree contains anything other than ANDs, ORs and
2918       // comparisons.
2919       return false;
2920     case TargetOpcode::G_ICMP:
2921       if (IsFP)
2922         return false;
2923       IsInt = true;
2924       // When we apply the combine we will invert the predicate.
2925       break;
2926     case TargetOpcode::G_FCMP:
2927       if (IsInt)
2928         return false;
2929       IsFP = true;
2930       // When we apply the combine we will invert the predicate.
2931       break;
2932     case TargetOpcode::G_AND:
2933     case TargetOpcode::G_OR:
2934       // Implement De Morgan's laws:
2935       // ~(x & y) -> ~x | ~y
2936       // ~(x | y) -> ~x & ~y
2937       // When we apply the combine we will change the opcode and recursively
2938       // negate the operands.
2939       RegsToNegate.push_back(Def->getOperand(1).getReg());
2940       RegsToNegate.push_back(Def->getOperand(2).getReg());
2941       break;
2942     }
2943   }
2944 
2945   // Now we know whether the comparisons are integer or floating point, check
2946   // the constant in the xor.
2947   int64_t Cst;
2948   if (Ty.isVector()) {
2949     MachineInstr *CstDef = MRI.getVRegDef(CstReg);
2950     auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI);
2951     if (!MaybeCst)
2952       return false;
2953     if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP))
2954       return false;
2955   } else {
2956     if (!mi_match(CstReg, MRI, m_ICst(Cst)))
2957       return false;
2958     if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP))
2959       return false;
2960   }
2961 
2962   return true;
2963 }
2964 
2965 void CombinerHelper::applyNotCmp(MachineInstr &MI,
2966                                  SmallVectorImpl<Register> &RegsToNegate) {
2967   for (Register Reg : RegsToNegate) {
2968     MachineInstr *Def = MRI.getVRegDef(Reg);
2969     Observer.changingInstr(*Def);
2970     // For each comparison, invert the opcode. For each AND and OR, change the
2971     // opcode.
2972     switch (Def->getOpcode()) {
2973     default:
2974       llvm_unreachable("Unexpected opcode");
2975     case TargetOpcode::G_ICMP:
2976     case TargetOpcode::G_FCMP: {
2977       MachineOperand &PredOp = Def->getOperand(1);
2978       CmpInst::Predicate NewP = CmpInst::getInversePredicate(
2979           (CmpInst::Predicate)PredOp.getPredicate());
2980       PredOp.setPredicate(NewP);
2981       break;
2982     }
2983     case TargetOpcode::G_AND:
2984       Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR));
2985       break;
2986     case TargetOpcode::G_OR:
2987       Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND));
2988       break;
2989     }
2990     Observer.changedInstr(*Def);
2991   }
2992 
2993   replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
2994   MI.eraseFromParent();
2995 }
2996 
2997 bool CombinerHelper::matchXorOfAndWithSameReg(
2998     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
2999   // Match (xor (and x, y), y) (or any of its commuted cases)
3000   assert(MI.getOpcode() == TargetOpcode::G_XOR);
3001   Register &X = MatchInfo.first;
3002   Register &Y = MatchInfo.second;
3003   Register AndReg = MI.getOperand(1).getReg();
3004   Register SharedReg = MI.getOperand(2).getReg();
3005 
3006   // Find a G_AND on either side of the G_XOR.
3007   // Look for one of
3008   //
3009   // (xor (and x, y), SharedReg)
3010   // (xor SharedReg, (and x, y))
3011   if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) {
3012     std::swap(AndReg, SharedReg);
3013     if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y))))
3014       return false;
3015   }
3016 
3017   // Only do this if we'll eliminate the G_AND.
3018   if (!MRI.hasOneNonDBGUse(AndReg))
3019     return false;
3020 
3021   // We can combine if SharedReg is the same as either the LHS or RHS of the
3022   // G_AND.
3023   if (Y != SharedReg)
3024     std::swap(X, Y);
3025   return Y == SharedReg;
3026 }
3027 
3028 void CombinerHelper::applyXorOfAndWithSameReg(
3029     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3030   // Fold (xor (and x, y), y) -> (and (not x), y)
3031   Builder.setInstrAndDebugLoc(MI);
3032   Register X, Y;
3033   std::tie(X, Y) = MatchInfo;
3034   auto Not = Builder.buildNot(MRI.getType(X), X);
3035   Observer.changingInstr(MI);
3036   MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3037   MI.getOperand(1).setReg(Not->getOperand(0).getReg());
3038   MI.getOperand(2).setReg(Y);
3039   Observer.changedInstr(MI);
3040 }
3041 
3042 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) {
3043   auto &PtrAdd = cast<GPtrAdd>(MI);
3044   Register DstReg = PtrAdd.getReg(0);
3045   LLT Ty = MRI.getType(DstReg);
3046   const DataLayout &DL = Builder.getMF().getDataLayout();
3047 
3048   if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace()))
3049     return false;
3050 
3051   if (Ty.isPointer()) {
3052     auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI);
3053     return ConstVal && *ConstVal == 0;
3054   }
3055 
3056   assert(Ty.isVector() && "Expecting a vector type");
3057   const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg());
3058   return isBuildVectorAllZeros(*VecMI, MRI);
3059 }
3060 
3061 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) {
3062   auto &PtrAdd = cast<GPtrAdd>(MI);
3063   Builder.setInstrAndDebugLoc(PtrAdd);
3064   Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg());
3065   PtrAdd.eraseFromParent();
3066 }
3067 
3068 /// The second source operand is known to be a power of 2.
3069 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) {
3070   Register DstReg = MI.getOperand(0).getReg();
3071   Register Src0 = MI.getOperand(1).getReg();
3072   Register Pow2Src1 = MI.getOperand(2).getReg();
3073   LLT Ty = MRI.getType(DstReg);
3074   Builder.setInstrAndDebugLoc(MI);
3075 
3076   // Fold (urem x, pow2) -> (and x, pow2-1)
3077   auto NegOne = Builder.buildConstant(Ty, -1);
3078   auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne);
3079   Builder.buildAnd(DstReg, Src0, Add);
3080   MI.eraseFromParent();
3081 }
3082 
3083 bool CombinerHelper::matchFoldBinOpIntoSelect(MachineInstr &MI,
3084                                               unsigned &SelectOpNo) {
3085   Register LHS = MI.getOperand(1).getReg();
3086   Register RHS = MI.getOperand(2).getReg();
3087 
3088   Register OtherOperandReg = RHS;
3089   SelectOpNo = 1;
3090   MachineInstr *Select = MRI.getVRegDef(LHS);
3091 
3092   // Don't do this unless the old select is going away. We want to eliminate the
3093   // binary operator, not replace a binop with a select.
3094   if (Select->getOpcode() != TargetOpcode::G_SELECT ||
3095       !MRI.hasOneNonDBGUse(LHS)) {
3096     OtherOperandReg = LHS;
3097     SelectOpNo = 2;
3098     Select = MRI.getVRegDef(RHS);
3099     if (Select->getOpcode() != TargetOpcode::G_SELECT ||
3100         !MRI.hasOneNonDBGUse(RHS))
3101       return false;
3102   }
3103 
3104   MachineInstr *SelectLHS = MRI.getVRegDef(Select->getOperand(2).getReg());
3105   MachineInstr *SelectRHS = MRI.getVRegDef(Select->getOperand(3).getReg());
3106 
3107   if (!isConstantOrConstantVector(*SelectLHS, MRI,
3108                                   /*AllowFP*/ true,
3109                                   /*AllowOpaqueConstants*/ false))
3110     return false;
3111   if (!isConstantOrConstantVector(*SelectRHS, MRI,
3112                                   /*AllowFP*/ true,
3113                                   /*AllowOpaqueConstants*/ false))
3114     return false;
3115 
3116   unsigned BinOpcode = MI.getOpcode();
3117 
3118   // We know know one of the operands is a select of constants. Now verify that
3119   // the other binary operator operand is either a constant, or we can handle a
3120   // variable.
3121   bool CanFoldNonConst =
3122       (BinOpcode == TargetOpcode::G_AND || BinOpcode == TargetOpcode::G_OR) &&
3123       (isNullOrNullSplat(*SelectLHS, MRI) ||
3124        isAllOnesOrAllOnesSplat(*SelectLHS, MRI)) &&
3125       (isNullOrNullSplat(*SelectRHS, MRI) ||
3126        isAllOnesOrAllOnesSplat(*SelectRHS, MRI));
3127   if (CanFoldNonConst)
3128     return true;
3129 
3130   return isConstantOrConstantVector(*MRI.getVRegDef(OtherOperandReg), MRI,
3131                                     /*AllowFP*/ true,
3132                                     /*AllowOpaqueConstants*/ false);
3133 }
3134 
3135 /// \p SelectOperand is the operand in binary operator \p MI that is the select
3136 /// to fold.
3137 bool CombinerHelper::applyFoldBinOpIntoSelect(MachineInstr &MI,
3138                                               const unsigned &SelectOperand) {
3139   Builder.setInstrAndDebugLoc(MI);
3140 
3141   Register Dst = MI.getOperand(0).getReg();
3142   Register LHS = MI.getOperand(1).getReg();
3143   Register RHS = MI.getOperand(2).getReg();
3144   MachineInstr *Select = MRI.getVRegDef(MI.getOperand(SelectOperand).getReg());
3145 
3146   Register SelectCond = Select->getOperand(1).getReg();
3147   Register SelectTrue = Select->getOperand(2).getReg();
3148   Register SelectFalse = Select->getOperand(3).getReg();
3149 
3150   LLT Ty = MRI.getType(Dst);
3151   unsigned BinOpcode = MI.getOpcode();
3152 
3153   Register FoldTrue, FoldFalse;
3154 
3155   // We have a select-of-constants followed by a binary operator with a
3156   // constant. Eliminate the binop by pulling the constant math into the select.
3157   // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
3158   if (SelectOperand == 1) {
3159     // TODO: SelectionDAG verifies this actually constant folds before
3160     // committing to the combine.
3161 
3162     FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {SelectTrue, RHS}).getReg(0);
3163     FoldFalse =
3164         Builder.buildInstr(BinOpcode, {Ty}, {SelectFalse, RHS}).getReg(0);
3165   } else {
3166     FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectTrue}).getReg(0);
3167     FoldFalse =
3168         Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectFalse}).getReg(0);
3169   }
3170 
3171   Builder.buildSelect(Dst, SelectCond, FoldTrue, FoldFalse, MI.getFlags());
3172   Observer.erasingInstr(*Select);
3173   Select->eraseFromParent();
3174   MI.eraseFromParent();
3175 
3176   return true;
3177 }
3178 
3179 Optional<SmallVector<Register, 8>>
3180 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const {
3181   assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!");
3182   // We want to detect if Root is part of a tree which represents a bunch
3183   // of loads being merged into a larger load. We'll try to recognize patterns
3184   // like, for example:
3185   //
3186   //  Reg   Reg
3187   //   \    /
3188   //    OR_1   Reg
3189   //     \    /
3190   //      OR_2
3191   //        \     Reg
3192   //         .. /
3193   //        Root
3194   //
3195   //  Reg   Reg   Reg   Reg
3196   //     \ /       \   /
3197   //     OR_1      OR_2
3198   //       \       /
3199   //        \    /
3200   //         ...
3201   //         Root
3202   //
3203   // Each "Reg" may have been produced by a load + some arithmetic. This
3204   // function will save each of them.
3205   SmallVector<Register, 8> RegsToVisit;
3206   SmallVector<const MachineInstr *, 7> Ors = {Root};
3207 
3208   // In the "worst" case, we're dealing with a load for each byte. So, there
3209   // are at most #bytes - 1 ORs.
3210   const unsigned MaxIter =
3211       MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1;
3212   for (unsigned Iter = 0; Iter < MaxIter; ++Iter) {
3213     if (Ors.empty())
3214       break;
3215     const MachineInstr *Curr = Ors.pop_back_val();
3216     Register OrLHS = Curr->getOperand(1).getReg();
3217     Register OrRHS = Curr->getOperand(2).getReg();
3218 
3219     // In the combine, we want to elimate the entire tree.
3220     if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS))
3221       return None;
3222 
3223     // If it's a G_OR, save it and continue to walk. If it's not, then it's
3224     // something that may be a load + arithmetic.
3225     if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI))
3226       Ors.push_back(Or);
3227     else
3228       RegsToVisit.push_back(OrLHS);
3229     if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI))
3230       Ors.push_back(Or);
3231     else
3232       RegsToVisit.push_back(OrRHS);
3233   }
3234 
3235   // We're going to try and merge each register into a wider power-of-2 type,
3236   // so we ought to have an even number of registers.
3237   if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0)
3238     return None;
3239   return RegsToVisit;
3240 }
3241 
3242 /// Helper function for findLoadOffsetsForLoadOrCombine.
3243 ///
3244 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value,
3245 /// and then moving that value into a specific byte offset.
3246 ///
3247 /// e.g. x[i] << 24
3248 ///
3249 /// \returns The load instruction and the byte offset it is moved into.
3250 static Optional<std::pair<GZExtLoad *, int64_t>>
3251 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits,
3252                          const MachineRegisterInfo &MRI) {
3253   assert(MRI.hasOneNonDBGUse(Reg) &&
3254          "Expected Reg to only have one non-debug use?");
3255   Register MaybeLoad;
3256   int64_t Shift;
3257   if (!mi_match(Reg, MRI,
3258                 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) {
3259     Shift = 0;
3260     MaybeLoad = Reg;
3261   }
3262 
3263   if (Shift % MemSizeInBits != 0)
3264     return None;
3265 
3266   // TODO: Handle other types of loads.
3267   auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI);
3268   if (!Load)
3269     return None;
3270 
3271   if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits)
3272     return None;
3273 
3274   return std::make_pair(Load, Shift / MemSizeInBits);
3275 }
3276 
3277 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>>
3278 CombinerHelper::findLoadOffsetsForLoadOrCombine(
3279     SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
3280     const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) {
3281 
3282   // Each load found for the pattern. There should be one for each RegsToVisit.
3283   SmallSetVector<const MachineInstr *, 8> Loads;
3284 
3285   // The lowest index used in any load. (The lowest "i" for each x[i].)
3286   int64_t LowestIdx = INT64_MAX;
3287 
3288   // The load which uses the lowest index.
3289   GZExtLoad *LowestIdxLoad = nullptr;
3290 
3291   // Keeps track of the load indices we see. We shouldn't see any indices twice.
3292   SmallSet<int64_t, 8> SeenIdx;
3293 
3294   // Ensure each load is in the same MBB.
3295   // TODO: Support multiple MachineBasicBlocks.
3296   MachineBasicBlock *MBB = nullptr;
3297   const MachineMemOperand *MMO = nullptr;
3298 
3299   // Earliest instruction-order load in the pattern.
3300   GZExtLoad *EarliestLoad = nullptr;
3301 
3302   // Latest instruction-order load in the pattern.
3303   GZExtLoad *LatestLoad = nullptr;
3304 
3305   // Base pointer which every load should share.
3306   Register BasePtr;
3307 
3308   // We want to find a load for each register. Each load should have some
3309   // appropriate bit twiddling arithmetic. During this loop, we will also keep
3310   // track of the load which uses the lowest index. Later, we will check if we
3311   // can use its pointer in the final, combined load.
3312   for (auto Reg : RegsToVisit) {
3313     // Find the load, and find the position that it will end up in (e.g. a
3314     // shifted) value.
3315     auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI);
3316     if (!LoadAndPos)
3317       return None;
3318     GZExtLoad *Load;
3319     int64_t DstPos;
3320     std::tie(Load, DstPos) = *LoadAndPos;
3321 
3322     // TODO: Handle multiple MachineBasicBlocks. Currently not handled because
3323     // it is difficult to check for stores/calls/etc between loads.
3324     MachineBasicBlock *LoadMBB = Load->getParent();
3325     if (!MBB)
3326       MBB = LoadMBB;
3327     if (LoadMBB != MBB)
3328       return None;
3329 
3330     // Make sure that the MachineMemOperands of every seen load are compatible.
3331     auto &LoadMMO = Load->getMMO();
3332     if (!MMO)
3333       MMO = &LoadMMO;
3334     if (MMO->getAddrSpace() != LoadMMO.getAddrSpace())
3335       return None;
3336 
3337     // Find out what the base pointer and index for the load is.
3338     Register LoadPtr;
3339     int64_t Idx;
3340     if (!mi_match(Load->getOperand(1).getReg(), MRI,
3341                   m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) {
3342       LoadPtr = Load->getOperand(1).getReg();
3343       Idx = 0;
3344     }
3345 
3346     // Don't combine things like a[i], a[i] -> a bigger load.
3347     if (!SeenIdx.insert(Idx).second)
3348       return None;
3349 
3350     // Every load must share the same base pointer; don't combine things like:
3351     //
3352     // a[i], b[i + 1] -> a bigger load.
3353     if (!BasePtr.isValid())
3354       BasePtr = LoadPtr;
3355     if (BasePtr != LoadPtr)
3356       return None;
3357 
3358     if (Idx < LowestIdx) {
3359       LowestIdx = Idx;
3360       LowestIdxLoad = Load;
3361     }
3362 
3363     // Keep track of the byte offset that this load ends up at. If we have seen
3364     // the byte offset, then stop here. We do not want to combine:
3365     //
3366     // a[i] << 16, a[i + k] << 16 -> a bigger load.
3367     if (!MemOffset2Idx.try_emplace(DstPos, Idx).second)
3368       return None;
3369     Loads.insert(Load);
3370 
3371     // Keep track of the position of the earliest/latest loads in the pattern.
3372     // We will check that there are no load fold barriers between them later
3373     // on.
3374     //
3375     // FIXME: Is there a better way to check for load fold barriers?
3376     if (!EarliestLoad || dominates(*Load, *EarliestLoad))
3377       EarliestLoad = Load;
3378     if (!LatestLoad || dominates(*LatestLoad, *Load))
3379       LatestLoad = Load;
3380   }
3381 
3382   // We found a load for each register. Let's check if each load satisfies the
3383   // pattern.
3384   assert(Loads.size() == RegsToVisit.size() &&
3385          "Expected to find a load for each register?");
3386   assert(EarliestLoad != LatestLoad && EarliestLoad &&
3387          LatestLoad && "Expected at least two loads?");
3388 
3389   // Check if there are any stores, calls, etc. between any of the loads. If
3390   // there are, then we can't safely perform the combine.
3391   //
3392   // MaxIter is chosen based off the (worst case) number of iterations it
3393   // typically takes to succeed in the LLVM test suite plus some padding.
3394   //
3395   // FIXME: Is there a better way to check for load fold barriers?
3396   const unsigned MaxIter = 20;
3397   unsigned Iter = 0;
3398   for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(),
3399                                                  LatestLoad->getIterator())) {
3400     if (Loads.count(&MI))
3401       continue;
3402     if (MI.isLoadFoldBarrier())
3403       return None;
3404     if (Iter++ == MaxIter)
3405       return None;
3406   }
3407 
3408   return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad);
3409 }
3410 
3411 bool CombinerHelper::matchLoadOrCombine(
3412     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3413   assert(MI.getOpcode() == TargetOpcode::G_OR);
3414   MachineFunction &MF = *MI.getMF();
3415   // Assuming a little-endian target, transform:
3416   //  s8 *a = ...
3417   //  s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
3418   // =>
3419   //  s32 val = *((i32)a)
3420   //
3421   //  s8 *a = ...
3422   //  s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
3423   // =>
3424   //  s32 val = BSWAP(*((s32)a))
3425   Register Dst = MI.getOperand(0).getReg();
3426   LLT Ty = MRI.getType(Dst);
3427   if (Ty.isVector())
3428     return false;
3429 
3430   // We need to combine at least two loads into this type. Since the smallest
3431   // possible load is into a byte, we need at least a 16-bit wide type.
3432   const unsigned WideMemSizeInBits = Ty.getSizeInBits();
3433   if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0)
3434     return false;
3435 
3436   // Match a collection of non-OR instructions in the pattern.
3437   auto RegsToVisit = findCandidatesForLoadOrCombine(&MI);
3438   if (!RegsToVisit)
3439     return false;
3440 
3441   // We have a collection of non-OR instructions. Figure out how wide each of
3442   // the small loads should be based off of the number of potential loads we
3443   // found.
3444   const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size();
3445   if (NarrowMemSizeInBits % 8 != 0)
3446     return false;
3447 
3448   // Check if each register feeding into each OR is a load from the same
3449   // base pointer + some arithmetic.
3450   //
3451   // e.g. a[0], a[1] << 8, a[2] << 16, etc.
3452   //
3453   // Also verify that each of these ends up putting a[i] into the same memory
3454   // offset as a load into a wide type would.
3455   SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx;
3456   GZExtLoad *LowestIdxLoad, *LatestLoad;
3457   int64_t LowestIdx;
3458   auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine(
3459       MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits);
3460   if (!MaybeLoadInfo)
3461     return false;
3462   std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo;
3463 
3464   // We have a bunch of loads being OR'd together. Using the addresses + offsets
3465   // we found before, check if this corresponds to a big or little endian byte
3466   // pattern. If it does, then we can represent it using a load + possibly a
3467   // BSWAP.
3468   bool IsBigEndianTarget = MF.getDataLayout().isBigEndian();
3469   Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx);
3470   if (!IsBigEndian.hasValue())
3471     return false;
3472   bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian;
3473   if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}}))
3474     return false;
3475 
3476   // Make sure that the load from the lowest index produces offset 0 in the
3477   // final value.
3478   //
3479   // This ensures that we won't combine something like this:
3480   //
3481   // load x[i] -> byte 2
3482   // load x[i+1] -> byte 0 ---> wide_load x[i]
3483   // load x[i+2] -> byte 1
3484   const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits;
3485   const unsigned ZeroByteOffset =
3486       *IsBigEndian
3487           ? bigEndianByteAt(NumLoadsInTy, 0)
3488           : littleEndianByteAt(NumLoadsInTy, 0);
3489   auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset);
3490   if (ZeroOffsetIdx == MemOffset2Idx.end() ||
3491       ZeroOffsetIdx->second != LowestIdx)
3492     return false;
3493 
3494   // We wil reuse the pointer from the load which ends up at byte offset 0. It
3495   // may not use index 0.
3496   Register Ptr = LowestIdxLoad->getPointerReg();
3497   const MachineMemOperand &MMO = LowestIdxLoad->getMMO();
3498   LegalityQuery::MemDesc MMDesc(MMO);
3499   MMDesc.MemoryTy = Ty;
3500   if (!isLegalOrBeforeLegalizer(
3501           {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}}))
3502     return false;
3503   auto PtrInfo = MMO.getPointerInfo();
3504   auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8);
3505 
3506   // Load must be allowed and fast on the target.
3507   LLVMContext &C = MF.getFunction().getContext();
3508   auto &DL = MF.getDataLayout();
3509   bool Fast = false;
3510   if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) ||
3511       !Fast)
3512     return false;
3513 
3514   MatchInfo = [=](MachineIRBuilder &MIB) {
3515     MIB.setInstrAndDebugLoc(*LatestLoad);
3516     Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst;
3517     MIB.buildLoad(LoadDst, Ptr, *NewMMO);
3518     if (NeedsBSwap)
3519       MIB.buildBSwap(Dst, LoadDst);
3520   };
3521   return true;
3522 }
3523 
3524 /// Check if the store \p Store is a truncstore that can be merged. That is,
3525 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty
3526 /// Register then it does not need to match and SrcVal is set to the source
3527 /// value found.
3528 /// On match, returns the start byte offset of the \p SrcVal that is being
3529 /// stored.
3530 static Optional<int64_t> getTruncStoreByteOffset(GStore &Store, Register &SrcVal,
3531                                                  MachineRegisterInfo &MRI) {
3532   Register TruncVal;
3533   if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal))))
3534     return None;
3535 
3536   // The shift amount must be a constant multiple of the narrow type.
3537   // It is translated to the offset address in the wide source value "y".
3538   //
3539   // x = G_LSHR y, ShiftAmtC
3540   // s8 z = G_TRUNC x
3541   // store z, ...
3542   Register FoundSrcVal;
3543   int64_t ShiftAmt;
3544   if (!mi_match(TruncVal, MRI,
3545                 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)),
3546                          m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) {
3547     if (!SrcVal.isValid() || TruncVal == SrcVal) {
3548       if (!SrcVal.isValid())
3549         SrcVal = TruncVal;
3550       return 0; // If it's the lowest index store.
3551     }
3552     return None;
3553   }
3554 
3555   unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits();
3556   if (ShiftAmt % NarrowBits!= 0)
3557     return None;
3558   const unsigned Offset = ShiftAmt / NarrowBits;
3559 
3560   if (SrcVal.isValid() && FoundSrcVal != SrcVal)
3561     return None;
3562 
3563   if (!SrcVal.isValid())
3564     SrcVal = FoundSrcVal;
3565   else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal))
3566     return None;
3567   return Offset;
3568 }
3569 
3570 /// Match a pattern where a wide type scalar value is stored by several narrow
3571 /// stores. Fold it into a single store or a BSWAP and a store if the targets
3572 /// supports it.
3573 ///
3574 /// Assuming little endian target:
3575 ///  i8 *p = ...
3576 ///  i32 val = ...
3577 ///  p[0] = (val >> 0) & 0xFF;
3578 ///  p[1] = (val >> 8) & 0xFF;
3579 ///  p[2] = (val >> 16) & 0xFF;
3580 ///  p[3] = (val >> 24) & 0xFF;
3581 /// =>
3582 ///  *((i32)p) = val;
3583 ///
3584 ///  i8 *p = ...
3585 ///  i32 val = ...
3586 ///  p[0] = (val >> 24) & 0xFF;
3587 ///  p[1] = (val >> 16) & 0xFF;
3588 ///  p[2] = (val >> 8) & 0xFF;
3589 ///  p[3] = (val >> 0) & 0xFF;
3590 /// =>
3591 ///  *((i32)p) = BSWAP(val);
3592 bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI,
3593                                           MergeTruncStoresInfo &MatchInfo) {
3594   auto &StoreMI = cast<GStore>(MI);
3595   LLT MemTy = StoreMI.getMMO().getMemoryType();
3596 
3597   // We only handle merging simple stores of 1-4 bytes.
3598   if (!MemTy.isScalar())
3599     return false;
3600   switch (MemTy.getSizeInBits()) {
3601   case 8:
3602   case 16:
3603   case 32:
3604     break;
3605   default:
3606     return false;
3607   }
3608   if (!StoreMI.isSimple())
3609     return false;
3610 
3611   // We do a simple search for mergeable stores prior to this one.
3612   // Any potential alias hazard along the way terminates the search.
3613   SmallVector<GStore *> FoundStores;
3614 
3615   // We're looking for:
3616   // 1) a (store(trunc(...)))
3617   // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get
3618   //    the partial value stored.
3619   // 3) where the offsets form either a little or big-endian sequence.
3620 
3621   auto &LastStore = StoreMI;
3622 
3623   // The single base pointer that all stores must use.
3624   Register BaseReg;
3625   int64_t LastOffset;
3626   if (!mi_match(LastStore.getPointerReg(), MRI,
3627                 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) {
3628     BaseReg = LastStore.getPointerReg();
3629     LastOffset = 0;
3630   }
3631 
3632   GStore *LowestIdxStore = &LastStore;
3633   int64_t LowestIdxOffset = LastOffset;
3634 
3635   Register WideSrcVal;
3636   auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI);
3637   if (!LowestShiftAmt)
3638     return false; // Didn't match a trunc.
3639   assert(WideSrcVal.isValid());
3640 
3641   LLT WideStoreTy = MRI.getType(WideSrcVal);
3642   // The wide type might not be a multiple of the memory type, e.g. s48 and s32.
3643   if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0)
3644     return false;
3645   const unsigned NumStoresRequired =
3646       WideStoreTy.getSizeInBits() / MemTy.getSizeInBits();
3647 
3648   SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX);
3649   OffsetMap[*LowestShiftAmt] = LastOffset;
3650   FoundStores.emplace_back(&LastStore);
3651 
3652   // Search the block up for more stores.
3653   // We use a search threshold of 10 instructions here because the combiner
3654   // works top-down within a block, and we don't want to search an unbounded
3655   // number of predecessor instructions trying to find matching stores.
3656   // If we moved this optimization into a separate pass then we could probably
3657   // use a more efficient search without having a hard-coded threshold.
3658   const int MaxInstsToCheck = 10;
3659   int NumInstsChecked = 0;
3660   for (auto II = ++LastStore.getReverseIterator();
3661        II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck;
3662        ++II) {
3663     NumInstsChecked++;
3664     GStore *NewStore;
3665     if ((NewStore = dyn_cast<GStore>(&*II))) {
3666       if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple())
3667         break;
3668     } else if (II->isLoadFoldBarrier() || II->mayLoad()) {
3669       break;
3670     } else {
3671       continue; // This is a safe instruction we can look past.
3672     }
3673 
3674     Register NewBaseReg;
3675     int64_t MemOffset;
3676     // Check we're storing to the same base + some offset.
3677     if (!mi_match(NewStore->getPointerReg(), MRI,
3678                   m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) {
3679       NewBaseReg = NewStore->getPointerReg();
3680       MemOffset = 0;
3681     }
3682     if (BaseReg != NewBaseReg)
3683       break;
3684 
3685     auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI);
3686     if (!ShiftByteOffset)
3687       break;
3688     if (MemOffset < LowestIdxOffset) {
3689       LowestIdxOffset = MemOffset;
3690       LowestIdxStore = NewStore;
3691     }
3692 
3693     // Map the offset in the store and the offset in the combined value, and
3694     // early return if it has been set before.
3695     if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired ||
3696         OffsetMap[*ShiftByteOffset] != INT64_MAX)
3697       break;
3698     OffsetMap[*ShiftByteOffset] = MemOffset;
3699 
3700     FoundStores.emplace_back(NewStore);
3701     // Reset counter since we've found a matching inst.
3702     NumInstsChecked = 0;
3703     if (FoundStores.size() == NumStoresRequired)
3704       break;
3705   }
3706 
3707   if (FoundStores.size() != NumStoresRequired) {
3708     return false;
3709   }
3710 
3711   const auto &DL = LastStore.getMF()->getDataLayout();
3712   auto &C = LastStore.getMF()->getFunction().getContext();
3713   // Check that a store of the wide type is both allowed and fast on the target
3714   bool Fast = false;
3715   bool Allowed = getTargetLowering().allowsMemoryAccess(
3716       C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast);
3717   if (!Allowed || !Fast)
3718     return false;
3719 
3720   // Check if the pieces of the value are going to the expected places in memory
3721   // to merge the stores.
3722   unsigned NarrowBits = MemTy.getScalarSizeInBits();
3723   auto checkOffsets = [&](bool MatchLittleEndian) {
3724     if (MatchLittleEndian) {
3725       for (unsigned i = 0; i != NumStoresRequired; ++i)
3726         if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset)
3727           return false;
3728     } else { // MatchBigEndian by reversing loop counter.
3729       for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired;
3730            ++i, --j)
3731         if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset)
3732           return false;
3733     }
3734     return true;
3735   };
3736 
3737   // Check if the offsets line up for the native data layout of this target.
3738   bool NeedBswap = false;
3739   bool NeedRotate = false;
3740   if (!checkOffsets(DL.isLittleEndian())) {
3741     // Special-case: check if byte offsets line up for the opposite endian.
3742     if (NarrowBits == 8 && checkOffsets(DL.isBigEndian()))
3743       NeedBswap = true;
3744     else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian()))
3745       NeedRotate = true;
3746     else
3747       return false;
3748   }
3749 
3750   if (NeedBswap &&
3751       !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}}))
3752     return false;
3753   if (NeedRotate &&
3754       !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}}))
3755     return false;
3756 
3757   MatchInfo.NeedBSwap = NeedBswap;
3758   MatchInfo.NeedRotate = NeedRotate;
3759   MatchInfo.LowestIdxStore = LowestIdxStore;
3760   MatchInfo.WideSrcVal = WideSrcVal;
3761   MatchInfo.FoundStores = std::move(FoundStores);
3762   return true;
3763 }
3764 
3765 void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI,
3766                                           MergeTruncStoresInfo &MatchInfo) {
3767 
3768   Builder.setInstrAndDebugLoc(MI);
3769   Register WideSrcVal = MatchInfo.WideSrcVal;
3770   LLT WideStoreTy = MRI.getType(WideSrcVal);
3771 
3772   if (MatchInfo.NeedBSwap) {
3773     WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0);
3774   } else if (MatchInfo.NeedRotate) {
3775     assert(WideStoreTy.getSizeInBits() % 2 == 0 &&
3776            "Unexpected type for rotate");
3777     auto RotAmt =
3778         Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2);
3779     WideSrcVal =
3780         Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0);
3781   }
3782 
3783   Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(),
3784                      MatchInfo.LowestIdxStore->getMMO().getPointerInfo(),
3785                      MatchInfo.LowestIdxStore->getMMO().getAlign());
3786 
3787   // Erase the old stores.
3788   for (auto *ST : MatchInfo.FoundStores)
3789     ST->eraseFromParent();
3790 }
3791 
3792 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI,
3793                                             MachineInstr *&ExtMI) {
3794   assert(MI.getOpcode() == TargetOpcode::G_PHI);
3795 
3796   Register DstReg = MI.getOperand(0).getReg();
3797 
3798   // TODO: Extending a vector may be expensive, don't do this until heuristics
3799   // are better.
3800   if (MRI.getType(DstReg).isVector())
3801     return false;
3802 
3803   // Try to match a phi, whose only use is an extend.
3804   if (!MRI.hasOneNonDBGUse(DstReg))
3805     return false;
3806   ExtMI = &*MRI.use_instr_nodbg_begin(DstReg);
3807   switch (ExtMI->getOpcode()) {
3808   case TargetOpcode::G_ANYEXT:
3809     return true; // G_ANYEXT is usually free.
3810   case TargetOpcode::G_ZEXT:
3811   case TargetOpcode::G_SEXT:
3812     break;
3813   default:
3814     return false;
3815   }
3816 
3817   // If the target is likely to fold this extend away, don't propagate.
3818   if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI))
3819     return false;
3820 
3821   // We don't want to propagate the extends unless there's a good chance that
3822   // they'll be optimized in some way.
3823   // Collect the unique incoming values.
3824   SmallPtrSet<MachineInstr *, 4> InSrcs;
3825   for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
3826     auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI);
3827     switch (DefMI->getOpcode()) {
3828     case TargetOpcode::G_LOAD:
3829     case TargetOpcode::G_TRUNC:
3830     case TargetOpcode::G_SEXT:
3831     case TargetOpcode::G_ZEXT:
3832     case TargetOpcode::G_ANYEXT:
3833     case TargetOpcode::G_CONSTANT:
3834       InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI));
3835       // Don't try to propagate if there are too many places to create new
3836       // extends, chances are it'll increase code size.
3837       if (InSrcs.size() > 2)
3838         return false;
3839       break;
3840     default:
3841       return false;
3842     }
3843   }
3844   return true;
3845 }
3846 
3847 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI,
3848                                             MachineInstr *&ExtMI) {
3849   assert(MI.getOpcode() == TargetOpcode::G_PHI);
3850   Register DstReg = ExtMI->getOperand(0).getReg();
3851   LLT ExtTy = MRI.getType(DstReg);
3852 
3853   // Propagate the extension into the block of each incoming reg's block.
3854   // Use a SetVector here because PHIs can have duplicate edges, and we want
3855   // deterministic iteration order.
3856   SmallSetVector<MachineInstr *, 8> SrcMIs;
3857   SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap;
3858   for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) {
3859     auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg());
3860     if (!SrcMIs.insert(SrcMI))
3861       continue;
3862 
3863     // Build an extend after each src inst.
3864     auto *MBB = SrcMI->getParent();
3865     MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator();
3866     if (InsertPt != MBB->end() && InsertPt->isPHI())
3867       InsertPt = MBB->getFirstNonPHI();
3868 
3869     Builder.setInsertPt(*SrcMI->getParent(), InsertPt);
3870     Builder.setDebugLoc(MI.getDebugLoc());
3871     auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy,
3872                                           SrcMI->getOperand(0).getReg());
3873     OldToNewSrcMap[SrcMI] = NewExt;
3874   }
3875 
3876   // Create a new phi with the extended inputs.
3877   Builder.setInstrAndDebugLoc(MI);
3878   auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI);
3879   NewPhi.addDef(DstReg);
3880   for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
3881     if (!MO.isReg()) {
3882       NewPhi.addMBB(MO.getMBB());
3883       continue;
3884     }
3885     auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())];
3886     NewPhi.addUse(NewSrc->getOperand(0).getReg());
3887   }
3888   Builder.insertInstr(NewPhi);
3889   ExtMI->eraseFromParent();
3890 }
3891 
3892 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI,
3893                                                 Register &Reg) {
3894   assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT);
3895   // If we have a constant index, look for a G_BUILD_VECTOR source
3896   // and find the source register that the index maps to.
3897   Register SrcVec = MI.getOperand(1).getReg();
3898   LLT SrcTy = MRI.getType(SrcVec);
3899   if (!isLegalOrBeforeLegalizer(
3900           {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}}))
3901     return false;
3902 
3903   auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
3904   if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements())
3905     return false;
3906 
3907   unsigned VecIdx = Cst->Value.getZExtValue();
3908   MachineInstr *BuildVecMI =
3909       getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI);
3910   if (!BuildVecMI) {
3911     BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI);
3912     if (!BuildVecMI)
3913       return false;
3914     LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg());
3915     if (!isLegalOrBeforeLegalizer(
3916             {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}}))
3917       return false;
3918   }
3919 
3920   EVT Ty(getMVTForLLT(SrcTy));
3921   if (!MRI.hasOneNonDBGUse(SrcVec) &&
3922       !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty))
3923     return false;
3924 
3925   Reg = BuildVecMI->getOperand(VecIdx + 1).getReg();
3926   return true;
3927 }
3928 
3929 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI,
3930                                                 Register &Reg) {
3931   // Check the type of the register, since it may have come from a
3932   // G_BUILD_VECTOR_TRUNC.
3933   LLT ScalarTy = MRI.getType(Reg);
3934   Register DstReg = MI.getOperand(0).getReg();
3935   LLT DstTy = MRI.getType(DstReg);
3936 
3937   Builder.setInstrAndDebugLoc(MI);
3938   if (ScalarTy != DstTy) {
3939     assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits());
3940     Builder.buildTrunc(DstReg, Reg);
3941     MI.eraseFromParent();
3942     return;
3943   }
3944   replaceSingleDefInstWithReg(MI, Reg);
3945 }
3946 
3947 bool CombinerHelper::matchExtractAllEltsFromBuildVector(
3948     MachineInstr &MI,
3949     SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
3950   assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
3951   // This combine tries to find build_vector's which have every source element
3952   // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like
3953   // the masked load scalarization is run late in the pipeline. There's already
3954   // a combine for a similar pattern starting from the extract, but that
3955   // doesn't attempt to do it if there are multiple uses of the build_vector,
3956   // which in this case is true. Starting the combine from the build_vector
3957   // feels more natural than trying to find sibling nodes of extracts.
3958   // E.g.
3959   //  %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4
3960   //  %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0
3961   //  %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1
3962   //  %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2
3963   //  %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3
3964   // ==>
3965   // replace ext{1,2,3,4} with %s{1,2,3,4}
3966 
3967   Register DstReg = MI.getOperand(0).getReg();
3968   LLT DstTy = MRI.getType(DstReg);
3969   unsigned NumElts = DstTy.getNumElements();
3970 
3971   SmallBitVector ExtractedElts(NumElts);
3972   for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) {
3973     if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT)
3974       return false;
3975     auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI);
3976     if (!Cst)
3977       return false;
3978     unsigned Idx = Cst.getValue().getZExtValue();
3979     if (Idx >= NumElts)
3980       return false; // Out of range.
3981     ExtractedElts.set(Idx);
3982     SrcDstPairs.emplace_back(
3983         std::make_pair(MI.getOperand(Idx + 1).getReg(), &II));
3984   }
3985   // Match if every element was extracted.
3986   return ExtractedElts.all();
3987 }
3988 
3989 void CombinerHelper::applyExtractAllEltsFromBuildVector(
3990     MachineInstr &MI,
3991     SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
3992   assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
3993   for (auto &Pair : SrcDstPairs) {
3994     auto *ExtMI = Pair.second;
3995     replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first);
3996     ExtMI->eraseFromParent();
3997   }
3998   MI.eraseFromParent();
3999 }
4000 
4001 void CombinerHelper::applyBuildFn(
4002     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4003   Builder.setInstrAndDebugLoc(MI);
4004   MatchInfo(Builder);
4005   MI.eraseFromParent();
4006 }
4007 
4008 void CombinerHelper::applyBuildFnNoErase(
4009     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4010   Builder.setInstrAndDebugLoc(MI);
4011   MatchInfo(Builder);
4012 }
4013 
4014 bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI,
4015                                                BuildFnTy &MatchInfo) {
4016   assert(MI.getOpcode() == TargetOpcode::G_OR);
4017 
4018   Register Dst = MI.getOperand(0).getReg();
4019   LLT Ty = MRI.getType(Dst);
4020   unsigned BitWidth = Ty.getScalarSizeInBits();
4021 
4022   Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt;
4023   unsigned FshOpc = 0;
4024 
4025   // Match (or (shl ...), (lshr ...)).
4026   if (!mi_match(Dst, MRI,
4027                 // m_GOr() handles the commuted version as well.
4028                 m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)),
4029                       m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt)))))
4030     return false;
4031 
4032   // Given constants C0 and C1 such that C0 + C1 is bit-width:
4033   // (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1)
4034   // TODO: Match constant splat.
4035   int64_t CstShlAmt, CstLShrAmt;
4036   if (mi_match(ShlAmt, MRI, m_ICst(CstShlAmt)) &&
4037       mi_match(LShrAmt, MRI, m_ICst(CstLShrAmt)) &&
4038       CstShlAmt + CstLShrAmt == BitWidth) {
4039     FshOpc = TargetOpcode::G_FSHR;
4040     Amt = LShrAmt;
4041 
4042   } else if (mi_match(LShrAmt, MRI,
4043                       m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
4044              ShlAmt == Amt) {
4045     // (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt)
4046     FshOpc = TargetOpcode::G_FSHL;
4047 
4048   } else if (mi_match(ShlAmt, MRI,
4049                       m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
4050              LShrAmt == Amt) {
4051     // (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt)
4052     FshOpc = TargetOpcode::G_FSHR;
4053 
4054   } else {
4055     return false;
4056   }
4057 
4058   LLT AmtTy = MRI.getType(Amt);
4059   if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}}))
4060     return false;
4061 
4062   MatchInfo = [=](MachineIRBuilder &B) {
4063     B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt});
4064   };
4065   return true;
4066 }
4067 
4068 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate.
4069 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) {
4070   unsigned Opc = MI.getOpcode();
4071   assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
4072   Register X = MI.getOperand(1).getReg();
4073   Register Y = MI.getOperand(2).getReg();
4074   if (X != Y)
4075     return false;
4076   unsigned RotateOpc =
4077       Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR;
4078   return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}});
4079 }
4080 
4081 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) {
4082   unsigned Opc = MI.getOpcode();
4083   assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
4084   bool IsFSHL = Opc == TargetOpcode::G_FSHL;
4085   Observer.changingInstr(MI);
4086   MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL
4087                                          : TargetOpcode::G_ROTR));
4088   MI.RemoveOperand(2);
4089   Observer.changedInstr(MI);
4090 }
4091 
4092 // Fold (rot x, c) -> (rot x, c % BitSize)
4093 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) {
4094   assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
4095          MI.getOpcode() == TargetOpcode::G_ROTR);
4096   unsigned Bitsize =
4097       MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
4098   Register AmtReg = MI.getOperand(2).getReg();
4099   bool OutOfRange = false;
4100   auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) {
4101     if (auto *CI = dyn_cast<ConstantInt>(C))
4102       OutOfRange |= CI->getValue().uge(Bitsize);
4103     return true;
4104   };
4105   return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange;
4106 }
4107 
4108 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) {
4109   assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
4110          MI.getOpcode() == TargetOpcode::G_ROTR);
4111   unsigned Bitsize =
4112       MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
4113   Builder.setInstrAndDebugLoc(MI);
4114   Register Amt = MI.getOperand(2).getReg();
4115   LLT AmtTy = MRI.getType(Amt);
4116   auto Bits = Builder.buildConstant(AmtTy, Bitsize);
4117   Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0);
4118   Observer.changingInstr(MI);
4119   MI.getOperand(2).setReg(Amt);
4120   Observer.changedInstr(MI);
4121 }
4122 
4123 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI,
4124                                                    int64_t &MatchInfo) {
4125   assert(MI.getOpcode() == TargetOpcode::G_ICMP);
4126   auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
4127   auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg());
4128   auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg());
4129   Optional<bool> KnownVal;
4130   switch (Pred) {
4131   default:
4132     llvm_unreachable("Unexpected G_ICMP predicate?");
4133   case CmpInst::ICMP_EQ:
4134     KnownVal = KnownBits::eq(KnownLHS, KnownRHS);
4135     break;
4136   case CmpInst::ICMP_NE:
4137     KnownVal = KnownBits::ne(KnownLHS, KnownRHS);
4138     break;
4139   case CmpInst::ICMP_SGE:
4140     KnownVal = KnownBits::sge(KnownLHS, KnownRHS);
4141     break;
4142   case CmpInst::ICMP_SGT:
4143     KnownVal = KnownBits::sgt(KnownLHS, KnownRHS);
4144     break;
4145   case CmpInst::ICMP_SLE:
4146     KnownVal = KnownBits::sle(KnownLHS, KnownRHS);
4147     break;
4148   case CmpInst::ICMP_SLT:
4149     KnownVal = KnownBits::slt(KnownLHS, KnownRHS);
4150     break;
4151   case CmpInst::ICMP_UGE:
4152     KnownVal = KnownBits::uge(KnownLHS, KnownRHS);
4153     break;
4154   case CmpInst::ICMP_UGT:
4155     KnownVal = KnownBits::ugt(KnownLHS, KnownRHS);
4156     break;
4157   case CmpInst::ICMP_ULE:
4158     KnownVal = KnownBits::ule(KnownLHS, KnownRHS);
4159     break;
4160   case CmpInst::ICMP_ULT:
4161     KnownVal = KnownBits::ult(KnownLHS, KnownRHS);
4162     break;
4163   }
4164   if (!KnownVal)
4165     return false;
4166   MatchInfo =
4167       *KnownVal
4168           ? getICmpTrueVal(getTargetLowering(),
4169                            /*IsVector = */
4170                            MRI.getType(MI.getOperand(0).getReg()).isVector(),
4171                            /* IsFP = */ false)
4172           : 0;
4173   return true;
4174 }
4175 
4176 bool CombinerHelper::matchICmpToLHSKnownBits(
4177     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4178   assert(MI.getOpcode() == TargetOpcode::G_ICMP);
4179   // Given:
4180   //
4181   // %x = G_WHATEVER (... x is known to be 0 or 1 ...)
4182   // %cmp = G_ICMP ne %x, 0
4183   //
4184   // Or:
4185   //
4186   // %x = G_WHATEVER (... x is known to be 0 or 1 ...)
4187   // %cmp = G_ICMP eq %x, 1
4188   //
4189   // We can replace %cmp with %x assuming true is 1 on the target.
4190   auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
4191   if (!CmpInst::isEquality(Pred))
4192     return false;
4193   Register Dst = MI.getOperand(0).getReg();
4194   LLT DstTy = MRI.getType(Dst);
4195   if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(),
4196                      /* IsFP = */ false) != 1)
4197     return false;
4198   int64_t OneOrZero = Pred == CmpInst::ICMP_EQ;
4199   if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero)))
4200     return false;
4201   Register LHS = MI.getOperand(2).getReg();
4202   auto KnownLHS = KB->getKnownBits(LHS);
4203   if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1)
4204     return false;
4205   // Make sure replacing Dst with the LHS is a legal operation.
4206   LLT LHSTy = MRI.getType(LHS);
4207   unsigned LHSSize = LHSTy.getSizeInBits();
4208   unsigned DstSize = DstTy.getSizeInBits();
4209   unsigned Op = TargetOpcode::COPY;
4210   if (DstSize != LHSSize)
4211     Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT;
4212   if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}}))
4213     return false;
4214   MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); };
4215   return true;
4216 }
4217 
4218 // Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0
4219 bool CombinerHelper::matchAndOrDisjointMask(
4220     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4221   assert(MI.getOpcode() == TargetOpcode::G_AND);
4222 
4223   // Ignore vector types to simplify matching the two constants.
4224   // TODO: do this for vectors and scalars via a demanded bits analysis.
4225   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
4226   if (Ty.isVector())
4227     return false;
4228 
4229   Register Src;
4230   int64_t MaskAnd;
4231   int64_t MaskOr;
4232   if (!mi_match(MI, MRI,
4233                 m_GAnd(m_GOr(m_Reg(Src), m_ICst(MaskOr)), m_ICst(MaskAnd))))
4234     return false;
4235 
4236   // Check if MaskOr could turn on any bits in Src.
4237   if (MaskAnd & MaskOr)
4238     return false;
4239 
4240   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4241     Observer.changingInstr(MI);
4242     MI.getOperand(1).setReg(Src);
4243     Observer.changedInstr(MI);
4244   };
4245   return true;
4246 }
4247 
4248 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift.
4249 bool CombinerHelper::matchBitfieldExtractFromSExtInReg(
4250     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4251   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
4252   Register Dst = MI.getOperand(0).getReg();
4253   Register Src = MI.getOperand(1).getReg();
4254   LLT Ty = MRI.getType(Src);
4255   LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4256   if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}}))
4257     return false;
4258   int64_t Width = MI.getOperand(2).getImm();
4259   Register ShiftSrc;
4260   int64_t ShiftImm;
4261   if (!mi_match(
4262           Src, MRI,
4263           m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)),
4264                                   m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm))))))
4265     return false;
4266   if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits())
4267     return false;
4268 
4269   MatchInfo = [=](MachineIRBuilder &B) {
4270     auto Cst1 = B.buildConstant(ExtractTy, ShiftImm);
4271     auto Cst2 = B.buildConstant(ExtractTy, Width);
4272     B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2);
4273   };
4274   return true;
4275 }
4276 
4277 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants.
4278 bool CombinerHelper::matchBitfieldExtractFromAnd(
4279     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4280   assert(MI.getOpcode() == TargetOpcode::G_AND);
4281   Register Dst = MI.getOperand(0).getReg();
4282   LLT Ty = MRI.getType(Dst);
4283   LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4284   if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal(
4285           TargetOpcode::G_UBFX, Ty, ExtractTy))
4286     return false;
4287 
4288   int64_t AndImm, LSBImm;
4289   Register ShiftSrc;
4290   const unsigned Size = Ty.getScalarSizeInBits();
4291   if (!mi_match(MI.getOperand(0).getReg(), MRI,
4292                 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))),
4293                        m_ICst(AndImm))))
4294     return false;
4295 
4296   // The mask is a mask of the low bits iff imm & (imm+1) == 0.
4297   auto MaybeMask = static_cast<uint64_t>(AndImm);
4298   if (MaybeMask & (MaybeMask + 1))
4299     return false;
4300 
4301   // LSB must fit within the register.
4302   if (static_cast<uint64_t>(LSBImm) >= Size)
4303     return false;
4304 
4305   uint64_t Width = APInt(Size, AndImm).countTrailingOnes();
4306   MatchInfo = [=](MachineIRBuilder &B) {
4307     auto WidthCst = B.buildConstant(ExtractTy, Width);
4308     auto LSBCst = B.buildConstant(ExtractTy, LSBImm);
4309     B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst});
4310   };
4311   return true;
4312 }
4313 
4314 bool CombinerHelper::matchBitfieldExtractFromShr(
4315     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4316   const unsigned Opcode = MI.getOpcode();
4317   assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR);
4318 
4319   const Register Dst = MI.getOperand(0).getReg();
4320 
4321   const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR
4322                                   ? TargetOpcode::G_SBFX
4323                                   : TargetOpcode::G_UBFX;
4324 
4325   // Check if the type we would use for the extract is legal
4326   LLT Ty = MRI.getType(Dst);
4327   LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4328   if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}}))
4329     return false;
4330 
4331   Register ShlSrc;
4332   int64_t ShrAmt;
4333   int64_t ShlAmt;
4334   const unsigned Size = Ty.getScalarSizeInBits();
4335 
4336   // Try to match shr (shl x, c1), c2
4337   if (!mi_match(Dst, MRI,
4338                 m_BinOp(Opcode,
4339                         m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))),
4340                         m_ICst(ShrAmt))))
4341     return false;
4342 
4343   // Make sure that the shift sizes can fit a bitfield extract
4344   if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size)
4345     return false;
4346 
4347   // Skip this combine if the G_SEXT_INREG combine could handle it
4348   if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt)
4349     return false;
4350 
4351   // Calculate start position and width of the extract
4352   const int64_t Pos = ShrAmt - ShlAmt;
4353   const int64_t Width = Size - ShrAmt;
4354 
4355   MatchInfo = [=](MachineIRBuilder &B) {
4356     auto WidthCst = B.buildConstant(ExtractTy, Width);
4357     auto PosCst = B.buildConstant(ExtractTy, Pos);
4358     B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst});
4359   };
4360   return true;
4361 }
4362 
4363 bool CombinerHelper::matchBitfieldExtractFromShrAnd(
4364     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4365   const unsigned Opcode = MI.getOpcode();
4366   assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR);
4367 
4368   const Register Dst = MI.getOperand(0).getReg();
4369   LLT Ty = MRI.getType(Dst);
4370   LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4371   if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal(
4372           TargetOpcode::G_UBFX, Ty, ExtractTy))
4373     return false;
4374 
4375   // Try to match shr (and x, c1), c2
4376   Register AndSrc;
4377   int64_t ShrAmt;
4378   int64_t SMask;
4379   if (!mi_match(Dst, MRI,
4380                 m_BinOp(Opcode,
4381                         m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))),
4382                         m_ICst(ShrAmt))))
4383     return false;
4384 
4385   const unsigned Size = Ty.getScalarSizeInBits();
4386   if (ShrAmt < 0 || ShrAmt >= Size)
4387     return false;
4388 
4389   // Check that ubfx can do the extraction, with no holes in the mask.
4390   uint64_t UMask = SMask;
4391   UMask |= maskTrailingOnes<uint64_t>(ShrAmt);
4392   UMask &= maskTrailingOnes<uint64_t>(Size);
4393   if (!isMask_64(UMask))
4394     return false;
4395 
4396   // Calculate start position and width of the extract.
4397   const int64_t Pos = ShrAmt;
4398   const int64_t Width = countTrailingOnes(UMask) - ShrAmt;
4399 
4400   // It's preferable to keep the shift, rather than form G_SBFX.
4401   // TODO: remove the G_AND via demanded bits analysis.
4402   if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size)
4403     return false;
4404 
4405   MatchInfo = [=](MachineIRBuilder &B) {
4406     auto WidthCst = B.buildConstant(ExtractTy, Width);
4407     auto PosCst = B.buildConstant(ExtractTy, Pos);
4408     B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst});
4409   };
4410   return true;
4411 }
4412 
4413 bool CombinerHelper::reassociationCanBreakAddressingModePattern(
4414     MachineInstr &PtrAdd) {
4415   assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD);
4416 
4417   Register Src1Reg = PtrAdd.getOperand(1).getReg();
4418   MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI);
4419   if (!Src1Def)
4420     return false;
4421 
4422   Register Src2Reg = PtrAdd.getOperand(2).getReg();
4423 
4424   if (MRI.hasOneNonDBGUse(Src1Reg))
4425     return false;
4426 
4427   auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI);
4428   if (!C1)
4429     return false;
4430   auto C2 = getIConstantVRegVal(Src2Reg, MRI);
4431   if (!C2)
4432     return false;
4433 
4434   const APInt &C1APIntVal = *C1;
4435   const APInt &C2APIntVal = *C2;
4436   const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue();
4437 
4438   for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) {
4439     // This combine may end up running before ptrtoint/inttoptr combines
4440     // manage to eliminate redundant conversions, so try to look through them.
4441     MachineInstr *ConvUseMI = &UseMI;
4442     unsigned ConvUseOpc = ConvUseMI->getOpcode();
4443     while (ConvUseOpc == TargetOpcode::G_INTTOPTR ||
4444            ConvUseOpc == TargetOpcode::G_PTRTOINT) {
4445       Register DefReg = ConvUseMI->getOperand(0).getReg();
4446       if (!MRI.hasOneNonDBGUse(DefReg))
4447         break;
4448       ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg);
4449       ConvUseOpc = ConvUseMI->getOpcode();
4450     }
4451     auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD ||
4452                      ConvUseOpc == TargetOpcode::G_STORE;
4453     if (!LoadStore)
4454       continue;
4455     // Is x[offset2] already not a legal addressing mode? If so then
4456     // reassociating the constants breaks nothing (we test offset2 because
4457     // that's the one we hope to fold into the load or store).
4458     TargetLoweringBase::AddrMode AM;
4459     AM.HasBaseReg = true;
4460     AM.BaseOffs = C2APIntVal.getSExtValue();
4461     unsigned AS =
4462         MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace();
4463     Type *AccessTy =
4464         getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()),
4465                       PtrAdd.getMF()->getFunction().getContext());
4466     const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering();
4467     if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4468                                    AccessTy, AS))
4469       continue;
4470 
4471     // Would x[offset1+offset2] still be a legal addressing mode?
4472     AM.BaseOffs = CombinedValue;
4473     if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4474                                    AccessTy, AS))
4475       return true;
4476   }
4477 
4478   return false;
4479 }
4480 
4481 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI,
4482                                                   MachineInstr *RHS,
4483                                                   BuildFnTy &MatchInfo) {
4484   // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
4485   Register Src1Reg = MI.getOperand(1).getReg();
4486   if (RHS->getOpcode() != TargetOpcode::G_ADD)
4487     return false;
4488   auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI);
4489   if (!C2)
4490     return false;
4491 
4492   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4493     LLT PtrTy = MRI.getType(MI.getOperand(0).getReg());
4494 
4495     auto NewBase =
4496         Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg());
4497     Observer.changingInstr(MI);
4498     MI.getOperand(1).setReg(NewBase.getReg(0));
4499     MI.getOperand(2).setReg(RHS->getOperand(2).getReg());
4500     Observer.changedInstr(MI);
4501   };
4502   return !reassociationCanBreakAddressingModePattern(MI);
4503 }
4504 
4505 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI,
4506                                                   MachineInstr *LHS,
4507                                                   MachineInstr *RHS,
4508                                                   BuildFnTy &MatchInfo) {
4509   // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C)
4510   // if and only if (G_PTR_ADD X, C) has one use.
4511   Register LHSBase;
4512   Optional<ValueAndVReg> LHSCstOff;
4513   if (!mi_match(MI.getBaseReg(), MRI,
4514                 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff)))))
4515     return false;
4516 
4517   auto *LHSPtrAdd = cast<GPtrAdd>(LHS);
4518   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4519     // When we change LHSPtrAdd's offset register we might cause it to use a reg
4520     // before its def. Sink the instruction so the outer PTR_ADD to ensure this
4521     // doesn't happen.
4522     LHSPtrAdd->moveBefore(&MI);
4523     Register RHSReg = MI.getOffsetReg();
4524     Observer.changingInstr(MI);
4525     MI.getOperand(2).setReg(LHSCstOff->VReg);
4526     Observer.changedInstr(MI);
4527     Observer.changingInstr(*LHSPtrAdd);
4528     LHSPtrAdd->getOperand(2).setReg(RHSReg);
4529     Observer.changedInstr(*LHSPtrAdd);
4530   };
4531   return !reassociationCanBreakAddressingModePattern(MI);
4532 }
4533 
4534 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI,
4535                                                         MachineInstr *LHS,
4536                                                         MachineInstr *RHS,
4537                                                         BuildFnTy &MatchInfo) {
4538   // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
4539   auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS);
4540   if (!LHSPtrAdd)
4541     return false;
4542 
4543   Register Src2Reg = MI.getOperand(2).getReg();
4544   Register LHSSrc1 = LHSPtrAdd->getBaseReg();
4545   Register LHSSrc2 = LHSPtrAdd->getOffsetReg();
4546   auto C1 = getIConstantVRegVal(LHSSrc2, MRI);
4547   if (!C1)
4548     return false;
4549   auto C2 = getIConstantVRegVal(Src2Reg, MRI);
4550   if (!C2)
4551     return false;
4552 
4553   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4554     auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2);
4555     Observer.changingInstr(MI);
4556     MI.getOperand(1).setReg(LHSSrc1);
4557     MI.getOperand(2).setReg(NewCst.getReg(0));
4558     Observer.changedInstr(MI);
4559   };
4560   return !reassociationCanBreakAddressingModePattern(MI);
4561 }
4562 
4563 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI,
4564                                         BuildFnTy &MatchInfo) {
4565   auto &PtrAdd = cast<GPtrAdd>(MI);
4566   // We're trying to match a few pointer computation patterns here for
4567   // re-association opportunities.
4568   // 1) Isolating a constant operand to be on the RHS, e.g.:
4569   // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
4570   //
4571   // 2) Folding two constants in each sub-tree as long as such folding
4572   // doesn't break a legal addressing mode.
4573   // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
4574   //
4575   // 3) Move a constant from the LHS of an inner op to the RHS of the outer.
4576   // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C)
4577   // iif (G_PTR_ADD X, C) has one use.
4578   MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg());
4579   MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg());
4580 
4581   // Try to match example 2.
4582   if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo))
4583     return true;
4584 
4585   // Try to match example 3.
4586   if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo))
4587     return true;
4588 
4589   // Try to match example 1.
4590   if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo))
4591     return true;
4592 
4593   return false;
4594 }
4595 
4596 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) {
4597   Register Op1 = MI.getOperand(1).getReg();
4598   Register Op2 = MI.getOperand(2).getReg();
4599   auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI);
4600   if (!MaybeCst)
4601     return false;
4602   MatchInfo = *MaybeCst;
4603   return true;
4604 }
4605 
4606 bool CombinerHelper::matchNarrowBinopFeedingAnd(
4607     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4608   // Look for a binop feeding into an AND with a mask:
4609   //
4610   // %add = G_ADD %lhs, %rhs
4611   // %and = G_AND %add, 000...11111111
4612   //
4613   // Check if it's possible to perform the binop at a narrower width and zext
4614   // back to the original width like so:
4615   //
4616   // %narrow_lhs = G_TRUNC %lhs
4617   // %narrow_rhs = G_TRUNC %rhs
4618   // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs
4619   // %new_add = G_ZEXT %narrow_add
4620   // %and = G_AND %new_add, 000...11111111
4621   //
4622   // This can allow later combines to eliminate the G_AND if it turns out
4623   // that the mask is irrelevant.
4624   assert(MI.getOpcode() == TargetOpcode::G_AND);
4625   Register Dst = MI.getOperand(0).getReg();
4626   Register AndLHS = MI.getOperand(1).getReg();
4627   Register AndRHS = MI.getOperand(2).getReg();
4628   LLT WideTy = MRI.getType(Dst);
4629 
4630   // If the potential binop has more than one use, then it's possible that one
4631   // of those uses will need its full width.
4632   if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS))
4633     return false;
4634 
4635   // Check if the LHS feeding the AND is impacted by the high bits that we're
4636   // masking out.
4637   //
4638   // e.g. for 64-bit x, y:
4639   //
4640   // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535
4641   MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI);
4642   if (!LHSInst)
4643     return false;
4644   unsigned LHSOpc = LHSInst->getOpcode();
4645   switch (LHSOpc) {
4646   default:
4647     return false;
4648   case TargetOpcode::G_ADD:
4649   case TargetOpcode::G_SUB:
4650   case TargetOpcode::G_MUL:
4651   case TargetOpcode::G_AND:
4652   case TargetOpcode::G_OR:
4653   case TargetOpcode::G_XOR:
4654     break;
4655   }
4656 
4657   // Find the mask on the RHS.
4658   auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI);
4659   if (!Cst)
4660     return false;
4661   auto Mask = Cst->Value;
4662   if (!Mask.isMask())
4663     return false;
4664 
4665   // No point in combining if there's nothing to truncate.
4666   unsigned NarrowWidth = Mask.countTrailingOnes();
4667   if (NarrowWidth == WideTy.getSizeInBits())
4668     return false;
4669   LLT NarrowTy = LLT::scalar(NarrowWidth);
4670 
4671   // Check if adding the zext + truncates could be harmful.
4672   auto &MF = *MI.getMF();
4673   const auto &TLI = getTargetLowering();
4674   LLVMContext &Ctx = MF.getFunction().getContext();
4675   auto &DL = MF.getDataLayout();
4676   if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) ||
4677       !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx))
4678     return false;
4679   if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) ||
4680       !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}}))
4681     return false;
4682   Register BinOpLHS = LHSInst->getOperand(1).getReg();
4683   Register BinOpRHS = LHSInst->getOperand(2).getReg();
4684   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4685     auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS);
4686     auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS);
4687     auto NarrowBinOp =
4688         Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS});
4689     auto Ext = Builder.buildZExt(WideTy, NarrowBinOp);
4690     Observer.changingInstr(MI);
4691     MI.getOperand(1).setReg(Ext.getReg(0));
4692     Observer.changedInstr(MI);
4693   };
4694   return true;
4695 }
4696 
4697 bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) {
4698   unsigned Opc = MI.getOpcode();
4699   assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO);
4700 
4701   if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2)))
4702     return false;
4703 
4704   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4705     Observer.changingInstr(MI);
4706     unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO
4707                                                    : TargetOpcode::G_SADDO;
4708     MI.setDesc(Builder.getTII().get(NewOpc));
4709     MI.getOperand(3).setReg(MI.getOperand(2).getReg());
4710     Observer.changedInstr(MI);
4711   };
4712   return true;
4713 }
4714 
4715 bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) {
4716   // (G_*MULO x, 0) -> 0 + no carry out
4717   assert(MI.getOpcode() == TargetOpcode::G_UMULO ||
4718          MI.getOpcode() == TargetOpcode::G_SMULO);
4719   if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0)))
4720     return false;
4721   Register Dst = MI.getOperand(0).getReg();
4722   Register Carry = MI.getOperand(1).getReg();
4723   if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) ||
4724       !isConstantLegalOrBeforeLegalizer(MRI.getType(Carry)))
4725     return false;
4726   MatchInfo = [=](MachineIRBuilder &B) {
4727     B.buildConstant(Dst, 0);
4728     B.buildConstant(Carry, 0);
4729   };
4730   return true;
4731 }
4732 
4733 bool CombinerHelper::matchAddOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) {
4734   // (G_*ADDO x, 0) -> x + no carry out
4735   assert(MI.getOpcode() == TargetOpcode::G_UADDO ||
4736          MI.getOpcode() == TargetOpcode::G_SADDO);
4737   if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0)))
4738     return false;
4739   Register Carry = MI.getOperand(1).getReg();
4740   if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry)))
4741     return false;
4742   Register Dst = MI.getOperand(0).getReg();
4743   Register LHS = MI.getOperand(2).getReg();
4744   MatchInfo = [=](MachineIRBuilder &B) {
4745     B.buildCopy(Dst, LHS);
4746     B.buildConstant(Carry, 0);
4747   };
4748   return true;
4749 }
4750 
4751 MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) {
4752   assert(MI.getOpcode() == TargetOpcode::G_UDIV);
4753   auto &UDiv = cast<GenericMachineInstr>(MI);
4754   Register Dst = UDiv.getReg(0);
4755   Register LHS = UDiv.getReg(1);
4756   Register RHS = UDiv.getReg(2);
4757   LLT Ty = MRI.getType(Dst);
4758   LLT ScalarTy = Ty.getScalarType();
4759   const unsigned EltBits = ScalarTy.getScalarSizeInBits();
4760   LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4761   LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType();
4762   auto &MIB = Builder;
4763   MIB.setInstrAndDebugLoc(MI);
4764 
4765   bool UseNPQ = false;
4766   SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4767 
4768   auto BuildUDIVPattern = [&](const Constant *C) {
4769     auto *CI = cast<ConstantInt>(C);
4770     const APInt &Divisor = CI->getValue();
4771     UnsignedDivisonByConstantInfo magics =
4772         UnsignedDivisonByConstantInfo::get(Divisor);
4773     unsigned PreShift = 0, PostShift = 0;
4774 
4775     // If the divisor is even, we can avoid using the expensive fixup by
4776     // shifting the divided value upfront.
4777     if (magics.IsAdd != 0 && !Divisor[0]) {
4778       PreShift = Divisor.countTrailingZeros();
4779       // Get magic number for the shifted divisor.
4780       magics =
4781           UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
4782       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
4783     }
4784 
4785     APInt Magic = magics.Magic;
4786 
4787     unsigned SelNPQ;
4788     if (magics.IsAdd == 0 || Divisor.isOneValue()) {
4789       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
4790              "We shouldn't generate an undefined shift!");
4791       PostShift = magics.ShiftAmount;
4792       SelNPQ = false;
4793     } else {
4794       PostShift = magics.ShiftAmount - 1;
4795       SelNPQ = true;
4796     }
4797 
4798     PreShifts.push_back(
4799         MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0));
4800     MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0));
4801     NPQFactors.push_back(
4802         MIB.buildConstant(ScalarTy,
4803                           SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4804                                  : APInt::getZero(EltBits))
4805             .getReg(0));
4806     PostShifts.push_back(
4807         MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0));
4808     UseNPQ |= SelNPQ;
4809     return true;
4810   };
4811 
4812   // Collect the shifts/magic values from each element.
4813   bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern);
4814   (void)Matched;
4815   assert(Matched && "Expected unary predicate match to succeed");
4816 
4817   Register PreShift, PostShift, MagicFactor, NPQFactor;
4818   auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI);
4819   if (RHSDef) {
4820     PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0);
4821     MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0);
4822     NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0);
4823     PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0);
4824   } else {
4825     assert(MRI.getType(RHS).isScalar() &&
4826            "Non-build_vector operation should have been a scalar");
4827     PreShift = PreShifts[0];
4828     MagicFactor = MagicFactors[0];
4829     PostShift = PostShifts[0];
4830   }
4831 
4832   Register Q = LHS;
4833   Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0);
4834 
4835   // Multiply the numerator (operand 0) by the magic value.
4836   Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0);
4837 
4838   if (UseNPQ) {
4839     Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0);
4840 
4841     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4842     // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero.
4843     if (Ty.isVector())
4844       NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0);
4845     else
4846       NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0);
4847 
4848     Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0);
4849   }
4850 
4851   Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0);
4852   auto One = MIB.buildConstant(Ty, 1);
4853   auto IsOne = MIB.buildICmp(
4854       CmpInst::Predicate::ICMP_EQ,
4855       Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One);
4856   return MIB.buildSelect(Ty, IsOne, LHS, Q);
4857 }
4858 
4859 bool CombinerHelper::matchUDivByConst(MachineInstr &MI) {
4860   assert(MI.getOpcode() == TargetOpcode::G_UDIV);
4861   Register Dst = MI.getOperand(0).getReg();
4862   Register RHS = MI.getOperand(2).getReg();
4863   LLT DstTy = MRI.getType(Dst);
4864   auto *RHSDef = MRI.getVRegDef(RHS);
4865   if (!isConstantOrConstantVector(*RHSDef, MRI))
4866     return false;
4867 
4868   auto &MF = *MI.getMF();
4869   AttributeList Attr = MF.getFunction().getAttributes();
4870   const auto &TLI = getTargetLowering();
4871   LLVMContext &Ctx = MF.getFunction().getContext();
4872   auto &DL = MF.getDataLayout();
4873   if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr))
4874     return false;
4875 
4876   // Don't do this for minsize because the instruction sequence is usually
4877   // larger.
4878   if (MF.getFunction().hasMinSize())
4879     return false;
4880 
4881   // Don't do this if the types are not going to be legal.
4882   if (LI) {
4883     if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}}))
4884       return false;
4885     if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}}))
4886       return false;
4887     if (!isLegalOrBeforeLegalizer(
4888             {TargetOpcode::G_ICMP,
4889              {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1),
4890               DstTy}}))
4891       return false;
4892   }
4893 
4894   auto CheckEltValue = [&](const Constant *C) {
4895     if (auto *CI = dyn_cast_or_null<ConstantInt>(C))
4896       return !CI->isZero();
4897     return false;
4898   };
4899   return matchUnaryPredicate(MRI, RHS, CheckEltValue);
4900 }
4901 
4902 void CombinerHelper::applyUDivByConst(MachineInstr &MI) {
4903   auto *NewMI = buildUDivUsingMul(MI);
4904   replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg());
4905 }
4906 
4907 bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) {
4908   assert(MI.getOpcode() == TargetOpcode::G_UMULH);
4909   Register RHS = MI.getOperand(2).getReg();
4910   Register Dst = MI.getOperand(0).getReg();
4911   LLT Ty = MRI.getType(Dst);
4912   LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4913   auto MatchPow2ExceptOne = [&](const Constant *C) {
4914     if (auto *CI = dyn_cast<ConstantInt>(C))
4915       return CI->getValue().isPowerOf2() && !CI->getValue().isOne();
4916     return false;
4917   };
4918   if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false))
4919     return false;
4920   return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}});
4921 }
4922 
4923 void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) {
4924   Register LHS = MI.getOperand(1).getReg();
4925   Register RHS = MI.getOperand(2).getReg();
4926   Register Dst = MI.getOperand(0).getReg();
4927   LLT Ty = MRI.getType(Dst);
4928   LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4929   unsigned NumEltBits = Ty.getScalarSizeInBits();
4930 
4931   Builder.setInstrAndDebugLoc(MI);
4932   auto LogBase2 = buildLogBase2(RHS, Builder);
4933   auto ShiftAmt =
4934       Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2);
4935   auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt);
4936   Builder.buildLShr(Dst, LHS, Trunc);
4937   MI.eraseFromParent();
4938 }
4939 
4940 bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI,
4941                                                BuildFnTy &MatchInfo) {
4942   unsigned Opc = MI.getOpcode();
4943   assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB ||
4944          Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||
4945          Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA);
4946 
4947   Register Dst = MI.getOperand(0).getReg();
4948   Register X = MI.getOperand(1).getReg();
4949   Register Y = MI.getOperand(2).getReg();
4950   LLT Type = MRI.getType(Dst);
4951 
4952   // fold (fadd x, fneg(y)) -> (fsub x, y)
4953   // fold (fadd fneg(y), x) -> (fsub x, y)
4954   // G_ADD is commutative so both cases are checked by m_GFAdd
4955   if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
4956       isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) {
4957     Opc = TargetOpcode::G_FSUB;
4958   }
4959   /// fold (fsub x, fneg(y)) -> (fadd x, y)
4960   else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
4961            isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) {
4962     Opc = TargetOpcode::G_FADD;
4963   }
4964   // fold (fmul fneg(x), fneg(y)) -> (fmul x, y)
4965   // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y)
4966   // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z)
4967   // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z)
4968   else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||
4969             Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) &&
4970            mi_match(X, MRI, m_GFNeg(m_Reg(X))) &&
4971            mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) {
4972     // no opcode change
4973   } else
4974     return false;
4975 
4976   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4977     Observer.changingInstr(MI);
4978     MI.setDesc(B.getTII().get(Opc));
4979     MI.getOperand(1).setReg(X);
4980     MI.getOperand(2).setReg(Y);
4981     Observer.changedInstr(MI);
4982   };
4983   return true;
4984 }
4985 
4986 /// Checks if \p MI is TargetOpcode::G_FMUL and contractable either
4987 /// due to global flags or MachineInstr flags.
4988 static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) {
4989   if (MI.getOpcode() != TargetOpcode::G_FMUL)
4990     return false;
4991   return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract);
4992 }
4993 
4994 static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1,
4995                         const MachineRegisterInfo &MRI) {
4996   return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()),
4997                        MRI.use_instr_nodbg_end()) >
4998          std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()),
4999                        MRI.use_instr_nodbg_end());
5000 }
5001 
5002 bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI,
5003                                          bool &AllowFusionGlobally,
5004                                          bool &HasFMAD, bool &Aggressive,
5005                                          bool CanReassociate) {
5006 
5007   auto *MF = MI.getMF();
5008   const auto &TLI = *MF->getSubtarget().getTargetLowering();
5009   const TargetOptions &Options = MF->getTarget().Options;
5010   LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5011 
5012   if (CanReassociate &&
5013       !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc)))
5014     return false;
5015 
5016   // Floating-point multiply-add with intermediate rounding.
5017   HasFMAD = (LI && TLI.isFMADLegal(MI, DstType));
5018   // Floating-point multiply-add without intermediate rounding.
5019   bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) &&
5020                 isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}});
5021   // No valid opcode, do not combine.
5022   if (!HasFMAD && !HasFMA)
5023     return false;
5024 
5025   AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast ||
5026                         Options.UnsafeFPMath || HasFMAD;
5027   // If the addition is not contractable, do not combine.
5028   if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract))
5029     return false;
5030 
5031   Aggressive = TLI.enableAggressiveFMAFusion(DstType);
5032   return true;
5033 }
5034 
5035 bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA(
5036     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5037   assert(MI.getOpcode() == TargetOpcode::G_FADD);
5038 
5039   bool AllowFusionGlobally, HasFMAD, Aggressive;
5040   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5041     return false;
5042 
5043   Register Op1 = MI.getOperand(1).getReg();
5044   Register Op2 = MI.getOperand(2).getReg();
5045   DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5046   DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5047   unsigned PreferredFusedOpcode =
5048       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5049 
5050   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5051   // prefer to fold the multiply with fewer uses.
5052   if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5053       isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5054     if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5055       std::swap(LHS, RHS);
5056   }
5057 
5058   // fold (fadd (fmul x, y), z) -> (fma x, y, z)
5059   if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5060       (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) {
5061     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5062       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5063                    {LHS.MI->getOperand(1).getReg(),
5064                     LHS.MI->getOperand(2).getReg(), RHS.Reg});
5065     };
5066     return true;
5067   }
5068 
5069   // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
5070   if (isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
5071       (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) {
5072     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5073       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5074                    {RHS.MI->getOperand(1).getReg(),
5075                     RHS.MI->getOperand(2).getReg(), LHS.Reg});
5076     };
5077     return true;
5078   }
5079 
5080   return false;
5081 }
5082 
5083 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA(
5084     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5085   assert(MI.getOpcode() == TargetOpcode::G_FADD);
5086 
5087   bool AllowFusionGlobally, HasFMAD, Aggressive;
5088   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5089     return false;
5090 
5091   const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
5092   Register Op1 = MI.getOperand(1).getReg();
5093   Register Op2 = MI.getOperand(2).getReg();
5094   DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5095   DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5096   LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5097 
5098   unsigned PreferredFusedOpcode =
5099       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5100 
5101   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5102   // prefer to fold the multiply with fewer uses.
5103   if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5104       isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5105     if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5106       std::swap(LHS, RHS);
5107   }
5108 
5109   // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
5110   MachineInstr *FpExtSrc;
5111   if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
5112       isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
5113       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5114                           MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
5115     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5116       auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
5117       auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
5118       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5119                    {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg});
5120     };
5121     return true;
5122   }
5123 
5124   // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z)
5125   // Note: Commutes FADD operands.
5126   if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
5127       isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
5128       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5129                           MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
5130     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5131       auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
5132       auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
5133       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5134                    {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg});
5135     };
5136     return true;
5137   }
5138 
5139   return false;
5140 }
5141 
5142 bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA(
5143     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5144   assert(MI.getOpcode() == TargetOpcode::G_FADD);
5145 
5146   bool AllowFusionGlobally, HasFMAD, Aggressive;
5147   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true))
5148     return false;
5149 
5150   Register Op1 = MI.getOperand(1).getReg();
5151   Register Op2 = MI.getOperand(2).getReg();
5152   DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5153   DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5154   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5155 
5156   unsigned PreferredFusedOpcode =
5157       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5158 
5159   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5160   // prefer to fold the multiply with fewer uses.
5161   if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5162       isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5163     if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5164       std::swap(LHS, RHS);
5165   }
5166 
5167   MachineInstr *FMA = nullptr;
5168   Register Z;
5169   // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z))
5170   if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
5171       (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() ==
5172        TargetOpcode::G_FMUL) &&
5173       MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) &&
5174       MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) {
5175     FMA = LHS.MI;
5176     Z = RHS.Reg;
5177   }
5178   // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z))
5179   else if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
5180            (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() ==
5181             TargetOpcode::G_FMUL) &&
5182            MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) &&
5183            MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) {
5184     Z = LHS.Reg;
5185     FMA = RHS.MI;
5186   }
5187 
5188   if (FMA) {
5189     MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg());
5190     Register X = FMA->getOperand(1).getReg();
5191     Register Y = FMA->getOperand(2).getReg();
5192     Register U = FMulMI->getOperand(1).getReg();
5193     Register V = FMulMI->getOperand(2).getReg();
5194 
5195     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5196       Register InnerFMA = MRI.createGenericVirtualRegister(DstTy);
5197       B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z});
5198       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5199                    {X, Y, InnerFMA});
5200     };
5201     return true;
5202   }
5203 
5204   return false;
5205 }
5206 
5207 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive(
5208     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5209   assert(MI.getOpcode() == TargetOpcode::G_FADD);
5210 
5211   bool AllowFusionGlobally, HasFMAD, Aggressive;
5212   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5213     return false;
5214 
5215   if (!Aggressive)
5216     return false;
5217 
5218   const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
5219   LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5220   Register Op1 = MI.getOperand(1).getReg();
5221   Register Op2 = MI.getOperand(2).getReg();
5222   DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5223   DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5224 
5225   unsigned PreferredFusedOpcode =
5226       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5227 
5228   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5229   // prefer to fold the multiply with fewer uses.
5230   if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5231       isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5232     if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5233       std::swap(LHS, RHS);
5234   }
5235 
5236   // Builds: (fma x, y, (fma (fpext u), (fpext v), z))
5237   auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X,
5238                                  Register Y, MachineIRBuilder &B) {
5239     Register FpExtU = B.buildFPExt(DstType, U).getReg(0);
5240     Register FpExtV = B.buildFPExt(DstType, V).getReg(0);
5241     Register InnerFMA =
5242         B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z})
5243             .getReg(0);
5244     B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5245                  {X, Y, InnerFMA});
5246   };
5247 
5248   MachineInstr *FMulMI, *FMAMI;
5249   // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
5250   //   -> (fma x, y, (fma (fpext u), (fpext v), z))
5251   if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
5252       mi_match(LHS.MI->getOperand(3).getReg(), MRI,
5253                m_GFPExt(m_MInstr(FMulMI))) &&
5254       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5255       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5256                           MRI.getType(FMulMI->getOperand(0).getReg()))) {
5257     MatchInfo = [=](MachineIRBuilder &B) {
5258       buildMatchInfo(FMulMI->getOperand(1).getReg(),
5259                      FMulMI->getOperand(2).getReg(), RHS.Reg,
5260                      LHS.MI->getOperand(1).getReg(),
5261                      LHS.MI->getOperand(2).getReg(), B);
5262     };
5263     return true;
5264   }
5265 
5266   // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
5267   //   -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
5268   // FIXME: This turns two single-precision and one double-precision
5269   // operation into two double-precision operations, which might not be
5270   // interesting for all targets, especially GPUs.
5271   if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
5272       FMAMI->getOpcode() == PreferredFusedOpcode) {
5273     MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
5274     if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5275         TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5276                             MRI.getType(FMAMI->getOperand(0).getReg()))) {
5277       MatchInfo = [=](MachineIRBuilder &B) {
5278         Register X = FMAMI->getOperand(1).getReg();
5279         Register Y = FMAMI->getOperand(2).getReg();
5280         X = B.buildFPExt(DstType, X).getReg(0);
5281         Y = B.buildFPExt(DstType, Y).getReg(0);
5282         buildMatchInfo(FMulMI->getOperand(1).getReg(),
5283                        FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B);
5284       };
5285 
5286       return true;
5287     }
5288   }
5289 
5290   // fold (fadd z, (fma x, y, (fpext (fmul u, v)))
5291   //   -> (fma x, y, (fma (fpext u), (fpext v), z))
5292   if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
5293       mi_match(RHS.MI->getOperand(3).getReg(), MRI,
5294                m_GFPExt(m_MInstr(FMulMI))) &&
5295       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5296       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5297                           MRI.getType(FMulMI->getOperand(0).getReg()))) {
5298     MatchInfo = [=](MachineIRBuilder &B) {
5299       buildMatchInfo(FMulMI->getOperand(1).getReg(),
5300                      FMulMI->getOperand(2).getReg(), LHS.Reg,
5301                      RHS.MI->getOperand(1).getReg(),
5302                      RHS.MI->getOperand(2).getReg(), B);
5303     };
5304     return true;
5305   }
5306 
5307   // fold (fadd z, (fpext (fma x, y, (fmul u, v)))
5308   //   -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
5309   // FIXME: This turns two single-precision and one double-precision
5310   // operation into two double-precision operations, which might not be
5311   // interesting for all targets, especially GPUs.
5312   if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
5313       FMAMI->getOpcode() == PreferredFusedOpcode) {
5314     MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
5315     if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5316         TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5317                             MRI.getType(FMAMI->getOperand(0).getReg()))) {
5318       MatchInfo = [=](MachineIRBuilder &B) {
5319         Register X = FMAMI->getOperand(1).getReg();
5320         Register Y = FMAMI->getOperand(2).getReg();
5321         X = B.buildFPExt(DstType, X).getReg(0);
5322         Y = B.buildFPExt(DstType, Y).getReg(0);
5323         buildMatchInfo(FMulMI->getOperand(1).getReg(),
5324                        FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B);
5325       };
5326       return true;
5327     }
5328   }
5329 
5330   return false;
5331 }
5332 
5333 bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA(
5334     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5335   assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5336 
5337   bool AllowFusionGlobally, HasFMAD, Aggressive;
5338   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5339     return false;
5340 
5341   Register Op1 = MI.getOperand(1).getReg();
5342   Register Op2 = MI.getOperand(2).getReg();
5343   DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5344   DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5345   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5346 
5347   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5348   // prefer to fold the multiply with fewer uses.
5349   int FirstMulHasFewerUses = true;
5350   if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5351       isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
5352       hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5353     FirstMulHasFewerUses = false;
5354 
5355   unsigned PreferredFusedOpcode =
5356       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5357 
5358   // fold (fsub (fmul x, y), z) -> (fma x, y, -z)
5359   if (FirstMulHasFewerUses &&
5360       (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5361        (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) {
5362     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5363       Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0);
5364       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5365                    {LHS.MI->getOperand(1).getReg(),
5366                     LHS.MI->getOperand(2).getReg(), NegZ});
5367     };
5368     return true;
5369   }
5370   // fold (fsub x, (fmul y, z)) -> (fma -y, z, x)
5371   else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
5372             (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) {
5373     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5374       Register NegY =
5375           B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0);
5376       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5377                    {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg});
5378     };
5379     return true;
5380   }
5381 
5382   return false;
5383 }
5384 
5385 bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA(
5386     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5387   assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5388 
5389   bool AllowFusionGlobally, HasFMAD, Aggressive;
5390   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5391     return false;
5392 
5393   Register LHSReg = MI.getOperand(1).getReg();
5394   Register RHSReg = MI.getOperand(2).getReg();
5395   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5396 
5397   unsigned PreferredFusedOpcode =
5398       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5399 
5400   MachineInstr *FMulMI;
5401   // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z))
5402   if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
5403       (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) &&
5404                       MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
5405       isContractableFMul(*FMulMI, AllowFusionGlobally)) {
5406     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5407       Register NegX =
5408           B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
5409       Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0);
5410       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5411                    {NegX, FMulMI->getOperand(2).getReg(), NegZ});
5412     };
5413     return true;
5414   }
5415 
5416   // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x)
5417   if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
5418       (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) &&
5419                       MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
5420       isContractableFMul(*FMulMI, AllowFusionGlobally)) {
5421     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5422       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5423                    {FMulMI->getOperand(1).getReg(),
5424                     FMulMI->getOperand(2).getReg(), LHSReg});
5425     };
5426     return true;
5427   }
5428 
5429   return false;
5430 }
5431 
5432 bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA(
5433     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5434   assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5435 
5436   bool AllowFusionGlobally, HasFMAD, Aggressive;
5437   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5438     return false;
5439 
5440   Register LHSReg = MI.getOperand(1).getReg();
5441   Register RHSReg = MI.getOperand(2).getReg();
5442   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5443 
5444   unsigned PreferredFusedOpcode =
5445       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5446 
5447   MachineInstr *FMulMI;
5448   // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z))
5449   if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) &&
5450       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5451       (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) {
5452     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5453       Register FpExtX =
5454           B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
5455       Register FpExtY =
5456           B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0);
5457       Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0);
5458       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5459                    {FpExtX, FpExtY, NegZ});
5460     };
5461     return true;
5462   }
5463 
5464   // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x)
5465   if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) &&
5466       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5467       (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) {
5468     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5469       Register FpExtY =
5470           B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
5471       Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0);
5472       Register FpExtZ =
5473           B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0);
5474       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5475                    {NegY, FpExtZ, LHSReg});
5476     };
5477     return true;
5478   }
5479 
5480   return false;
5481 }
5482 
5483 bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA(
5484     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5485   assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5486 
5487   bool AllowFusionGlobally, HasFMAD, Aggressive;
5488   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5489     return false;
5490 
5491   const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
5492   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5493   Register LHSReg = MI.getOperand(1).getReg();
5494   Register RHSReg = MI.getOperand(2).getReg();
5495 
5496   unsigned PreferredFusedOpcode =
5497       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5498 
5499   auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z,
5500                             MachineIRBuilder &B) {
5501     Register FpExtX = B.buildFPExt(DstTy, X).getReg(0);
5502     Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0);
5503     B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z});
5504   };
5505 
5506   MachineInstr *FMulMI;
5507   // fold (fsub (fpext (fneg (fmul x, y))), z) ->
5508   //      (fneg (fma (fpext x), (fpext y), z))
5509   // fold (fsub (fneg (fpext (fmul x, y))), z) ->
5510   //      (fneg (fma (fpext x), (fpext y), z))
5511   if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) ||
5512        mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) &&
5513       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5514       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy,
5515                           MRI.getType(FMulMI->getOperand(0).getReg()))) {
5516     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5517       Register FMAReg = MRI.createGenericVirtualRegister(DstTy);
5518       buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(),
5519                      FMulMI->getOperand(2).getReg(), RHSReg, B);
5520       B.buildFNeg(MI.getOperand(0).getReg(), FMAReg);
5521     };
5522     return true;
5523   }
5524 
5525   // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x)
5526   // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x)
5527   if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) ||
5528        mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) &&
5529       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5530       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy,
5531                           MRI.getType(FMulMI->getOperand(0).getReg()))) {
5532     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5533       buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(),
5534                      FMulMI->getOperand(2).getReg(), LHSReg, B);
5535     };
5536     return true;
5537   }
5538 
5539   return false;
5540 }
5541 
5542 bool CombinerHelper::tryCombine(MachineInstr &MI) {
5543   if (tryCombineCopy(MI))
5544     return true;
5545   if (tryCombineExtendingLoads(MI))
5546     return true;
5547   if (tryCombineIndexedLoadStore(MI))
5548     return true;
5549   return false;
5550 }
5551