1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 17 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 20 #include "llvm/CodeGen/GlobalISel/Utils.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetOpcodes.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/MathExtras.h" 34 #include <tuple> 35 36 #define DEBUG_TYPE "gi-combiner" 37 38 using namespace llvm; 39 using namespace MIPatternMatch; 40 41 // Option to allow testing of the combiner while no targets know about indexed 42 // addressing. 43 static cl::opt<bool> 44 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 45 cl::desc("Force all indexed operations to be " 46 "legal for the GlobalISel combiner")); 47 48 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 49 MachineIRBuilder &B, GISelKnownBits *KB, 50 MachineDominatorTree *MDT, 51 const LegalizerInfo *LI) 52 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 53 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 54 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 55 (void)this->KB; 56 } 57 58 const TargetLowering &CombinerHelper::getTargetLowering() const { 59 return *Builder.getMF().getSubtarget().getTargetLowering(); 60 } 61 62 /// \returns The little endian in-memory byte position of byte \p I in a 63 /// \p ByteWidth bytes wide type. 64 /// 65 /// E.g. Given a 4-byte type x, x[0] -> byte 0 66 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 67 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 68 return I; 69 } 70 71 /// \returns The big endian in-memory byte position of byte \p I in a 72 /// \p ByteWidth bytes wide type. 73 /// 74 /// E.g. Given a 4-byte type x, x[0] -> byte 3 75 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 76 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 77 return ByteWidth - I - 1; 78 } 79 80 /// Given a map from byte offsets in memory to indices in a load/store, 81 /// determine if that map corresponds to a little or big endian byte pattern. 82 /// 83 /// \param MemOffset2Idx maps memory offsets to address offsets. 84 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 85 /// 86 /// \returns true if the map corresponds to a big endian byte pattern, false 87 /// if it corresponds to a little endian byte pattern, and None otherwise. 88 /// 89 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 90 /// are as follows: 91 /// 92 /// AddrOffset Little endian Big endian 93 /// 0 0 3 94 /// 1 1 2 95 /// 2 2 1 96 /// 3 3 0 97 static Optional<bool> 98 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 99 int64_t LowestIdx) { 100 // Need at least two byte positions to decide on endianness. 101 unsigned Width = MemOffset2Idx.size(); 102 if (Width < 2) 103 return None; 104 bool BigEndian = true, LittleEndian = true; 105 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 106 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 107 if (MemOffsetAndIdx == MemOffset2Idx.end()) 108 return None; 109 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 110 assert(Idx >= 0 && "Expected non-negative byte offset?"); 111 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 112 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 113 if (!BigEndian && !LittleEndian) 114 return None; 115 } 116 117 assert((BigEndian != LittleEndian) && 118 "Pattern cannot be both big and little endian!"); 119 return BigEndian; 120 } 121 122 bool CombinerHelper::isLegalOrBeforeLegalizer( 123 const LegalityQuery &Query) const { 124 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 125 } 126 127 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 128 Register ToReg) const { 129 Observer.changingAllUsesOfReg(MRI, FromReg); 130 131 if (MRI.constrainRegAttrs(ToReg, FromReg)) 132 MRI.replaceRegWith(FromReg, ToReg); 133 else 134 Builder.buildCopy(ToReg, FromReg); 135 136 Observer.finishedChangingAllUsesOfReg(); 137 } 138 139 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 140 MachineOperand &FromRegOp, 141 Register ToReg) const { 142 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 143 Observer.changingInstr(*FromRegOp.getParent()); 144 145 FromRegOp.setReg(ToReg); 146 147 Observer.changedInstr(*FromRegOp.getParent()); 148 } 149 150 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 151 return RBI->getRegBank(Reg, MRI, *TRI); 152 } 153 154 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 155 if (RegBank) 156 MRI.setRegBank(Reg, *RegBank); 157 } 158 159 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 160 if (matchCombineCopy(MI)) { 161 applyCombineCopy(MI); 162 return true; 163 } 164 return false; 165 } 166 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 167 if (MI.getOpcode() != TargetOpcode::COPY) 168 return false; 169 Register DstReg = MI.getOperand(0).getReg(); 170 Register SrcReg = MI.getOperand(1).getReg(); 171 return canReplaceReg(DstReg, SrcReg, MRI); 172 } 173 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 174 Register DstReg = MI.getOperand(0).getReg(); 175 Register SrcReg = MI.getOperand(1).getReg(); 176 MI.eraseFromParent(); 177 replaceRegWith(MRI, DstReg, SrcReg); 178 } 179 180 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 181 bool IsUndef = false; 182 SmallVector<Register, 4> Ops; 183 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 184 applyCombineConcatVectors(MI, IsUndef, Ops); 185 return true; 186 } 187 return false; 188 } 189 190 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 191 SmallVectorImpl<Register> &Ops) { 192 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 193 "Invalid instruction"); 194 IsUndef = true; 195 MachineInstr *Undef = nullptr; 196 197 // Walk over all the operands of concat vectors and check if they are 198 // build_vector themselves or undef. 199 // Then collect their operands in Ops. 200 for (const MachineOperand &MO : MI.uses()) { 201 Register Reg = MO.getReg(); 202 MachineInstr *Def = MRI.getVRegDef(Reg); 203 assert(Def && "Operand not defined"); 204 switch (Def->getOpcode()) { 205 case TargetOpcode::G_BUILD_VECTOR: 206 IsUndef = false; 207 // Remember the operands of the build_vector to fold 208 // them into the yet-to-build flattened concat vectors. 209 for (const MachineOperand &BuildVecMO : Def->uses()) 210 Ops.push_back(BuildVecMO.getReg()); 211 break; 212 case TargetOpcode::G_IMPLICIT_DEF: { 213 LLT OpType = MRI.getType(Reg); 214 // Keep one undef value for all the undef operands. 215 if (!Undef) { 216 Builder.setInsertPt(*MI.getParent(), MI); 217 Undef = Builder.buildUndef(OpType.getScalarType()); 218 } 219 assert(MRI.getType(Undef->getOperand(0).getReg()) == 220 OpType.getScalarType() && 221 "All undefs should have the same type"); 222 // Break the undef vector in as many scalar elements as needed 223 // for the flattening. 224 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 225 EltIdx != EltEnd; ++EltIdx) 226 Ops.push_back(Undef->getOperand(0).getReg()); 227 break; 228 } 229 default: 230 return false; 231 } 232 } 233 return true; 234 } 235 void CombinerHelper::applyCombineConcatVectors( 236 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 237 // We determined that the concat_vectors can be flatten. 238 // Generate the flattened build_vector. 239 Register DstReg = MI.getOperand(0).getReg(); 240 Builder.setInsertPt(*MI.getParent(), MI); 241 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 242 243 // Note: IsUndef is sort of redundant. We could have determine it by 244 // checking that at all Ops are undef. Alternatively, we could have 245 // generate a build_vector of undefs and rely on another combine to 246 // clean that up. For now, given we already gather this information 247 // in tryCombineConcatVectors, just save compile time and issue the 248 // right thing. 249 if (IsUndef) 250 Builder.buildUndef(NewDstReg); 251 else 252 Builder.buildBuildVector(NewDstReg, Ops); 253 MI.eraseFromParent(); 254 replaceRegWith(MRI, DstReg, NewDstReg); 255 } 256 257 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 258 SmallVector<Register, 4> Ops; 259 if (matchCombineShuffleVector(MI, Ops)) { 260 applyCombineShuffleVector(MI, Ops); 261 return true; 262 } 263 return false; 264 } 265 266 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 267 SmallVectorImpl<Register> &Ops) { 268 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 269 "Invalid instruction kind"); 270 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 271 Register Src1 = MI.getOperand(1).getReg(); 272 LLT SrcType = MRI.getType(Src1); 273 // As bizarre as it may look, shuffle vector can actually produce 274 // scalar! This is because at the IR level a <1 x ty> shuffle 275 // vector is perfectly valid. 276 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 277 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 278 279 // If the resulting vector is smaller than the size of the source 280 // vectors being concatenated, we won't be able to replace the 281 // shuffle vector into a concat_vectors. 282 // 283 // Note: We may still be able to produce a concat_vectors fed by 284 // extract_vector_elt and so on. It is less clear that would 285 // be better though, so don't bother for now. 286 // 287 // If the destination is a scalar, the size of the sources doesn't 288 // matter. we will lower the shuffle to a plain copy. This will 289 // work only if the source and destination have the same size. But 290 // that's covered by the next condition. 291 // 292 // TODO: If the size between the source and destination don't match 293 // we could still emit an extract vector element in that case. 294 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 295 return false; 296 297 // Check that the shuffle mask can be broken evenly between the 298 // different sources. 299 if (DstNumElts % SrcNumElts != 0) 300 return false; 301 302 // Mask length is a multiple of the source vector length. 303 // Check if the shuffle is some kind of concatenation of the input 304 // vectors. 305 unsigned NumConcat = DstNumElts / SrcNumElts; 306 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 307 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 308 for (unsigned i = 0; i != DstNumElts; ++i) { 309 int Idx = Mask[i]; 310 // Undef value. 311 if (Idx < 0) 312 continue; 313 // Ensure the indices in each SrcType sized piece are sequential and that 314 // the same source is used for the whole piece. 315 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 316 (ConcatSrcs[i / SrcNumElts] >= 0 && 317 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 318 return false; 319 // Remember which source this index came from. 320 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 321 } 322 323 // The shuffle is concatenating multiple vectors together. 324 // Collect the different operands for that. 325 Register UndefReg; 326 Register Src2 = MI.getOperand(2).getReg(); 327 for (auto Src : ConcatSrcs) { 328 if (Src < 0) { 329 if (!UndefReg) { 330 Builder.setInsertPt(*MI.getParent(), MI); 331 UndefReg = Builder.buildUndef(SrcType).getReg(0); 332 } 333 Ops.push_back(UndefReg); 334 } else if (Src == 0) 335 Ops.push_back(Src1); 336 else 337 Ops.push_back(Src2); 338 } 339 return true; 340 } 341 342 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 343 const ArrayRef<Register> Ops) { 344 Register DstReg = MI.getOperand(0).getReg(); 345 Builder.setInsertPt(*MI.getParent(), MI); 346 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 347 348 if (Ops.size() == 1) 349 Builder.buildCopy(NewDstReg, Ops[0]); 350 else 351 Builder.buildMerge(NewDstReg, Ops); 352 353 MI.eraseFromParent(); 354 replaceRegWith(MRI, DstReg, NewDstReg); 355 } 356 357 namespace { 358 359 /// Select a preference between two uses. CurrentUse is the current preference 360 /// while *ForCandidate is attributes of the candidate under consideration. 361 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 362 const LLT TyForCandidate, 363 unsigned OpcodeForCandidate, 364 MachineInstr *MIForCandidate) { 365 if (!CurrentUse.Ty.isValid()) { 366 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 367 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 368 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 369 return CurrentUse; 370 } 371 372 // We permit the extend to hoist through basic blocks but this is only 373 // sensible if the target has extending loads. If you end up lowering back 374 // into a load and extend during the legalizer then the end result is 375 // hoisting the extend up to the load. 376 377 // Prefer defined extensions to undefined extensions as these are more 378 // likely to reduce the number of instructions. 379 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 380 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 381 return CurrentUse; 382 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 383 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 384 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 385 386 // Prefer sign extensions to zero extensions as sign-extensions tend to be 387 // more expensive. 388 if (CurrentUse.Ty == TyForCandidate) { 389 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 390 OpcodeForCandidate == TargetOpcode::G_ZEXT) 391 return CurrentUse; 392 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 393 OpcodeForCandidate == TargetOpcode::G_SEXT) 394 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 395 } 396 397 // This is potentially target specific. We've chosen the largest type 398 // because G_TRUNC is usually free. One potential catch with this is that 399 // some targets have a reduced number of larger registers than smaller 400 // registers and this choice potentially increases the live-range for the 401 // larger value. 402 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 403 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 404 } 405 return CurrentUse; 406 } 407 408 /// Find a suitable place to insert some instructions and insert them. This 409 /// function accounts for special cases like inserting before a PHI node. 410 /// The current strategy for inserting before PHI's is to duplicate the 411 /// instructions for each predecessor. However, while that's ok for G_TRUNC 412 /// on most targets since it generally requires no code, other targets/cases may 413 /// want to try harder to find a dominating block. 414 static void InsertInsnsWithoutSideEffectsBeforeUse( 415 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 416 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 417 MachineOperand &UseMO)> 418 Inserter) { 419 MachineInstr &UseMI = *UseMO.getParent(); 420 421 MachineBasicBlock *InsertBB = UseMI.getParent(); 422 423 // If the use is a PHI then we want the predecessor block instead. 424 if (UseMI.isPHI()) { 425 MachineOperand *PredBB = std::next(&UseMO); 426 InsertBB = PredBB->getMBB(); 427 } 428 429 // If the block is the same block as the def then we want to insert just after 430 // the def instead of at the start of the block. 431 if (InsertBB == DefMI.getParent()) { 432 MachineBasicBlock::iterator InsertPt = &DefMI; 433 Inserter(InsertBB, std::next(InsertPt), UseMO); 434 return; 435 } 436 437 // Otherwise we want the start of the BB 438 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 439 } 440 } // end anonymous namespace 441 442 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 443 PreferredTuple Preferred; 444 if (matchCombineExtendingLoads(MI, Preferred)) { 445 applyCombineExtendingLoads(MI, Preferred); 446 return true; 447 } 448 return false; 449 } 450 451 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 452 PreferredTuple &Preferred) { 453 // We match the loads and follow the uses to the extend instead of matching 454 // the extends and following the def to the load. This is because the load 455 // must remain in the same position for correctness (unless we also add code 456 // to find a safe place to sink it) whereas the extend is freely movable. 457 // It also prevents us from duplicating the load for the volatile case or just 458 // for performance. 459 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 460 if (!LoadMI) 461 return false; 462 463 Register LoadReg = LoadMI->getDstReg(); 464 465 LLT LoadValueTy = MRI.getType(LoadReg); 466 if (!LoadValueTy.isScalar()) 467 return false; 468 469 // Most architectures are going to legalize <s8 loads into at least a 1 byte 470 // load, and the MMOs can only describe memory accesses in multiples of bytes. 471 // If we try to perform extload combining on those, we can end up with 472 // %a(s8) = extload %ptr (load 1 byte from %ptr) 473 // ... which is an illegal extload instruction. 474 if (LoadValueTy.getSizeInBits() < 8) 475 return false; 476 477 // For non power-of-2 types, they will very likely be legalized into multiple 478 // loads. Don't bother trying to match them into extending loads. 479 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 480 return false; 481 482 // Find the preferred type aside from the any-extends (unless it's the only 483 // one) and non-extending ops. We'll emit an extending load to that type and 484 // and emit a variant of (extend (trunc X)) for the others according to the 485 // relative type sizes. At the same time, pick an extend to use based on the 486 // extend involved in the chosen type. 487 unsigned PreferredOpcode = 488 isa<GLoad>(&MI) 489 ? TargetOpcode::G_ANYEXT 490 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 491 Preferred = {LLT(), PreferredOpcode, nullptr}; 492 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 493 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 494 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 495 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 496 const auto &MMO = LoadMI->getMMO(); 497 // For atomics, only form anyextending loads. 498 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 499 continue; 500 // Check for legality. 501 if (LI) { 502 LegalityQuery::MemDesc MMDesc(MMO); 503 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 504 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 505 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 506 .Action != LegalizeActions::Legal) 507 continue; 508 } 509 Preferred = ChoosePreferredUse(Preferred, 510 MRI.getType(UseMI.getOperand(0).getReg()), 511 UseMI.getOpcode(), &UseMI); 512 } 513 } 514 515 // There were no extends 516 if (!Preferred.MI) 517 return false; 518 // It should be impossible to chose an extend without selecting a different 519 // type since by definition the result of an extend is larger. 520 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 521 522 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 523 return true; 524 } 525 526 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 527 PreferredTuple &Preferred) { 528 // Rewrite the load to the chosen extending load. 529 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 530 531 // Inserter to insert a truncate back to the original type at a given point 532 // with some basic CSE to limit truncate duplication to one per BB. 533 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 534 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 535 MachineBasicBlock::iterator InsertBefore, 536 MachineOperand &UseMO) { 537 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 538 if (PreviouslyEmitted) { 539 Observer.changingInstr(*UseMO.getParent()); 540 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 541 Observer.changedInstr(*UseMO.getParent()); 542 return; 543 } 544 545 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 546 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 547 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 548 EmittedInsns[InsertIntoBB] = NewMI; 549 replaceRegOpWith(MRI, UseMO, NewDstReg); 550 }; 551 552 Observer.changingInstr(MI); 553 MI.setDesc( 554 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 555 ? TargetOpcode::G_SEXTLOAD 556 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 557 ? TargetOpcode::G_ZEXTLOAD 558 : TargetOpcode::G_LOAD)); 559 560 // Rewrite all the uses to fix up the types. 561 auto &LoadValue = MI.getOperand(0); 562 SmallVector<MachineOperand *, 4> Uses; 563 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 564 Uses.push_back(&UseMO); 565 566 for (auto *UseMO : Uses) { 567 MachineInstr *UseMI = UseMO->getParent(); 568 569 // If the extend is compatible with the preferred extend then we should fix 570 // up the type and extend so that it uses the preferred use. 571 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 572 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 573 Register UseDstReg = UseMI->getOperand(0).getReg(); 574 MachineOperand &UseSrcMO = UseMI->getOperand(1); 575 const LLT UseDstTy = MRI.getType(UseDstReg); 576 if (UseDstReg != ChosenDstReg) { 577 if (Preferred.Ty == UseDstTy) { 578 // If the use has the same type as the preferred use, then merge 579 // the vregs and erase the extend. For example: 580 // %1:_(s8) = G_LOAD ... 581 // %2:_(s32) = G_SEXT %1(s8) 582 // %3:_(s32) = G_ANYEXT %1(s8) 583 // ... = ... %3(s32) 584 // rewrites to: 585 // %2:_(s32) = G_SEXTLOAD ... 586 // ... = ... %2(s32) 587 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 588 Observer.erasingInstr(*UseMO->getParent()); 589 UseMO->getParent()->eraseFromParent(); 590 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 591 // If the preferred size is smaller, then keep the extend but extend 592 // from the result of the extending load. For example: 593 // %1:_(s8) = G_LOAD ... 594 // %2:_(s32) = G_SEXT %1(s8) 595 // %3:_(s64) = G_ANYEXT %1(s8) 596 // ... = ... %3(s64) 597 /// rewrites to: 598 // %2:_(s32) = G_SEXTLOAD ... 599 // %3:_(s64) = G_ANYEXT %2:_(s32) 600 // ... = ... %3(s64) 601 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 602 } else { 603 // If the preferred size is large, then insert a truncate. For 604 // example: 605 // %1:_(s8) = G_LOAD ... 606 // %2:_(s64) = G_SEXT %1(s8) 607 // %3:_(s32) = G_ZEXT %1(s8) 608 // ... = ... %3(s32) 609 /// rewrites to: 610 // %2:_(s64) = G_SEXTLOAD ... 611 // %4:_(s8) = G_TRUNC %2:_(s32) 612 // %3:_(s64) = G_ZEXT %2:_(s8) 613 // ... = ... %3(s64) 614 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 615 InsertTruncAt); 616 } 617 continue; 618 } 619 // The use is (one of) the uses of the preferred use we chose earlier. 620 // We're going to update the load to def this value later so just erase 621 // the old extend. 622 Observer.erasingInstr(*UseMO->getParent()); 623 UseMO->getParent()->eraseFromParent(); 624 continue; 625 } 626 627 // The use isn't an extend. Truncate back to the type we originally loaded. 628 // This is free on many targets. 629 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 630 } 631 632 MI.getOperand(0).setReg(ChosenDstReg); 633 Observer.changedInstr(MI); 634 } 635 636 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI, 637 BuildFnTy &MatchInfo) { 638 assert(MI.getOpcode() == TargetOpcode::G_AND); 639 640 // If we have the following code: 641 // %mask = G_CONSTANT 255 642 // %ld = G_LOAD %ptr, (load s16) 643 // %and = G_AND %ld, %mask 644 // 645 // Try to fold it into 646 // %ld = G_ZEXTLOAD %ptr, (load s8) 647 648 Register Dst = MI.getOperand(0).getReg(); 649 if (MRI.getType(Dst).isVector()) 650 return false; 651 652 auto MaybeMask = 653 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 654 if (!MaybeMask) 655 return false; 656 657 APInt MaskVal = MaybeMask->Value; 658 659 if (!MaskVal.isMask()) 660 return false; 661 662 Register SrcReg = MI.getOperand(1).getReg(); 663 GAnyLoad *LoadMI = getOpcodeDef<GAnyLoad>(SrcReg, MRI); 664 if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()) || 665 !LoadMI->isSimple()) 666 return false; 667 668 Register LoadReg = LoadMI->getDstReg(); 669 LLT LoadTy = MRI.getType(LoadReg); 670 Register PtrReg = LoadMI->getPointerReg(); 671 uint64_t LoadSizeBits = LoadMI->getMemSizeInBits(); 672 unsigned MaskSizeBits = MaskVal.countTrailingOnes(); 673 674 // The mask may not be larger than the in-memory type, as it might cover sign 675 // extended bits 676 if (MaskSizeBits > LoadSizeBits) 677 return false; 678 679 // If the mask covers the whole destination register, there's nothing to 680 // extend 681 if (MaskSizeBits >= LoadTy.getSizeInBits()) 682 return false; 683 684 // Most targets cannot deal with loads of size < 8 and need to re-legalize to 685 // at least byte loads. Avoid creating such loads here 686 if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits)) 687 return false; 688 689 const MachineMemOperand &MMO = LoadMI->getMMO(); 690 LegalityQuery::MemDesc MemDesc(MMO); 691 MemDesc.MemoryTy = LLT::scalar(MaskSizeBits); 692 if (!isLegalOrBeforeLegalizer( 693 {TargetOpcode::G_ZEXTLOAD, {LoadTy, MRI.getType(PtrReg)}, {MemDesc}})) 694 return false; 695 696 MatchInfo = [=](MachineIRBuilder &B) { 697 B.setInstrAndDebugLoc(*LoadMI); 698 auto &MF = B.getMF(); 699 auto PtrInfo = MMO.getPointerInfo(); 700 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MaskSizeBits / 8); 701 B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO); 702 }; 703 return true; 704 } 705 706 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 707 const MachineInstr &UseMI) { 708 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 709 "shouldn't consider debug uses"); 710 assert(DefMI.getParent() == UseMI.getParent()); 711 if (&DefMI == &UseMI) 712 return true; 713 const MachineBasicBlock &MBB = *DefMI.getParent(); 714 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 715 return &MI == &DefMI || &MI == &UseMI; 716 }); 717 if (DefOrUse == MBB.end()) 718 llvm_unreachable("Block must contain both DefMI and UseMI!"); 719 return &*DefOrUse == &DefMI; 720 } 721 722 bool CombinerHelper::dominates(const MachineInstr &DefMI, 723 const MachineInstr &UseMI) { 724 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 725 "shouldn't consider debug uses"); 726 if (MDT) 727 return MDT->dominates(&DefMI, &UseMI); 728 else if (DefMI.getParent() != UseMI.getParent()) 729 return false; 730 731 return isPredecessor(DefMI, UseMI); 732 } 733 734 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 735 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 736 Register SrcReg = MI.getOperand(1).getReg(); 737 Register LoadUser = SrcReg; 738 739 if (MRI.getType(SrcReg).isVector()) 740 return false; 741 742 Register TruncSrc; 743 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 744 LoadUser = TruncSrc; 745 746 uint64_t SizeInBits = MI.getOperand(2).getImm(); 747 // If the source is a G_SEXTLOAD from the same bit width, then we don't 748 // need any extend at all, just a truncate. 749 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 750 // If truncating more than the original extended value, abort. 751 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 752 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 753 return false; 754 if (LoadSizeBits == SizeInBits) 755 return true; 756 } 757 return false; 758 } 759 760 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 761 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 762 Builder.setInstrAndDebugLoc(MI); 763 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 764 MI.eraseFromParent(); 765 } 766 767 bool CombinerHelper::matchSextInRegOfLoad( 768 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 769 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 770 771 // Only supports scalars for now. 772 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 773 return false; 774 775 Register SrcReg = MI.getOperand(1).getReg(); 776 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 777 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || 778 !LoadDef->isSimple()) 779 return false; 780 781 // If the sign extend extends from a narrower width than the load's width, 782 // then we can narrow the load width when we combine to a G_SEXTLOAD. 783 // Avoid widening the load at all. 784 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), 785 LoadDef->getMemSizeInBits()); 786 787 // Don't generate G_SEXTLOADs with a < 1 byte width. 788 if (NewSizeBits < 8) 789 return false; 790 // Don't bother creating a non-power-2 sextload, it will likely be broken up 791 // anyway for most targets. 792 if (!isPowerOf2_32(NewSizeBits)) 793 return false; 794 795 const MachineMemOperand &MMO = LoadDef->getMMO(); 796 LegalityQuery::MemDesc MMDesc(MMO); 797 MMDesc.MemoryTy = LLT::scalar(NewSizeBits); 798 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, 799 {MRI.getType(LoadDef->getDstReg()), 800 MRI.getType(LoadDef->getPointerReg())}, 801 {MMDesc}})) 802 return false; 803 804 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 805 return true; 806 } 807 808 void CombinerHelper::applySextInRegOfLoad( 809 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 810 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 811 Register LoadReg; 812 unsigned ScalarSizeBits; 813 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 814 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 815 816 // If we have the following: 817 // %ld = G_LOAD %ptr, (load 2) 818 // %ext = G_SEXT_INREG %ld, 8 819 // ==> 820 // %ld = G_SEXTLOAD %ptr (load 1) 821 822 auto &MMO = LoadDef->getMMO(); 823 Builder.setInstrAndDebugLoc(*LoadDef); 824 auto &MF = Builder.getMF(); 825 auto PtrInfo = MMO.getPointerInfo(); 826 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 827 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 828 LoadDef->getPointerReg(), *NewMMO); 829 MI.eraseFromParent(); 830 } 831 832 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 833 Register &Base, Register &Offset) { 834 auto &MF = *MI.getParent()->getParent(); 835 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 836 837 #ifndef NDEBUG 838 unsigned Opcode = MI.getOpcode(); 839 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 840 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 841 #endif 842 843 Base = MI.getOperand(1).getReg(); 844 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 845 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 846 return false; 847 848 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 849 // FIXME: The following use traversal needs a bail out for patholigical cases. 850 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 851 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 852 continue; 853 854 Offset = Use.getOperand(2).getReg(); 855 if (!ForceLegalIndexing && 856 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 857 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 858 << Use); 859 continue; 860 } 861 862 // Make sure the offset calculation is before the potentially indexed op. 863 // FIXME: we really care about dependency here. The offset calculation might 864 // be movable. 865 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 866 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 867 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 868 << Use); 869 continue; 870 } 871 872 // FIXME: check whether all uses of Base are load/store with foldable 873 // addressing modes. If so, using the normal addr-modes is better than 874 // forming an indexed one. 875 876 bool MemOpDominatesAddrUses = true; 877 for (auto &PtrAddUse : 878 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 879 if (!dominates(MI, PtrAddUse)) { 880 MemOpDominatesAddrUses = false; 881 break; 882 } 883 } 884 885 if (!MemOpDominatesAddrUses) { 886 LLVM_DEBUG( 887 dbgs() << " Ignoring candidate as memop does not dominate uses: " 888 << Use); 889 continue; 890 } 891 892 LLVM_DEBUG(dbgs() << " Found match: " << Use); 893 Addr = Use.getOperand(0).getReg(); 894 return true; 895 } 896 897 return false; 898 } 899 900 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 901 Register &Base, Register &Offset) { 902 auto &MF = *MI.getParent()->getParent(); 903 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 904 905 #ifndef NDEBUG 906 unsigned Opcode = MI.getOpcode(); 907 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 908 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 909 #endif 910 911 Addr = MI.getOperand(1).getReg(); 912 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 913 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 914 return false; 915 916 Base = AddrDef->getOperand(1).getReg(); 917 Offset = AddrDef->getOperand(2).getReg(); 918 919 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 920 921 if (!ForceLegalIndexing && 922 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 923 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 924 return false; 925 } 926 927 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 928 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 929 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 930 return false; 931 } 932 933 if (MI.getOpcode() == TargetOpcode::G_STORE) { 934 // Would require a copy. 935 if (Base == MI.getOperand(0).getReg()) { 936 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 937 return false; 938 } 939 940 // We're expecting one use of Addr in MI, but it could also be the 941 // value stored, which isn't actually dominated by the instruction. 942 if (MI.getOperand(0).getReg() == Addr) { 943 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 944 return false; 945 } 946 } 947 948 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 949 // That might allow us to end base's liveness here by adjusting the constant. 950 951 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 952 if (!dominates(MI, UseMI)) { 953 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 954 return false; 955 } 956 } 957 958 return true; 959 } 960 961 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 962 IndexedLoadStoreMatchInfo MatchInfo; 963 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 964 applyCombineIndexedLoadStore(MI, MatchInfo); 965 return true; 966 } 967 return false; 968 } 969 970 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 971 unsigned Opcode = MI.getOpcode(); 972 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 973 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 974 return false; 975 976 // For now, no targets actually support these opcodes so don't waste time 977 // running these unless we're forced to for testing. 978 if (!ForceLegalIndexing) 979 return false; 980 981 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 982 MatchInfo.Offset); 983 if (!MatchInfo.IsPre && 984 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 985 MatchInfo.Offset)) 986 return false; 987 988 return true; 989 } 990 991 void CombinerHelper::applyCombineIndexedLoadStore( 992 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 993 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 994 MachineIRBuilder MIRBuilder(MI); 995 unsigned Opcode = MI.getOpcode(); 996 bool IsStore = Opcode == TargetOpcode::G_STORE; 997 unsigned NewOpcode; 998 switch (Opcode) { 999 case TargetOpcode::G_LOAD: 1000 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 1001 break; 1002 case TargetOpcode::G_SEXTLOAD: 1003 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 1004 break; 1005 case TargetOpcode::G_ZEXTLOAD: 1006 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 1007 break; 1008 case TargetOpcode::G_STORE: 1009 NewOpcode = TargetOpcode::G_INDEXED_STORE; 1010 break; 1011 default: 1012 llvm_unreachable("Unknown load/store opcode"); 1013 } 1014 1015 auto MIB = MIRBuilder.buildInstr(NewOpcode); 1016 if (IsStore) { 1017 MIB.addDef(MatchInfo.Addr); 1018 MIB.addUse(MI.getOperand(0).getReg()); 1019 } else { 1020 MIB.addDef(MI.getOperand(0).getReg()); 1021 MIB.addDef(MatchInfo.Addr); 1022 } 1023 1024 MIB.addUse(MatchInfo.Base); 1025 MIB.addUse(MatchInfo.Offset); 1026 MIB.addImm(MatchInfo.IsPre); 1027 MI.eraseFromParent(); 1028 AddrDef.eraseFromParent(); 1029 1030 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 1031 } 1032 1033 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 1034 MachineInstr *&OtherMI) { 1035 unsigned Opcode = MI.getOpcode(); 1036 bool IsDiv, IsSigned; 1037 1038 switch (Opcode) { 1039 default: 1040 llvm_unreachable("Unexpected opcode!"); 1041 case TargetOpcode::G_SDIV: 1042 case TargetOpcode::G_UDIV: { 1043 IsDiv = true; 1044 IsSigned = Opcode == TargetOpcode::G_SDIV; 1045 break; 1046 } 1047 case TargetOpcode::G_SREM: 1048 case TargetOpcode::G_UREM: { 1049 IsDiv = false; 1050 IsSigned = Opcode == TargetOpcode::G_SREM; 1051 break; 1052 } 1053 } 1054 1055 Register Src1 = MI.getOperand(1).getReg(); 1056 unsigned DivOpcode, RemOpcode, DivremOpcode; 1057 if (IsSigned) { 1058 DivOpcode = TargetOpcode::G_SDIV; 1059 RemOpcode = TargetOpcode::G_SREM; 1060 DivremOpcode = TargetOpcode::G_SDIVREM; 1061 } else { 1062 DivOpcode = TargetOpcode::G_UDIV; 1063 RemOpcode = TargetOpcode::G_UREM; 1064 DivremOpcode = TargetOpcode::G_UDIVREM; 1065 } 1066 1067 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 1068 return false; 1069 1070 // Combine: 1071 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1072 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1073 // into: 1074 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1075 1076 // Combine: 1077 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1078 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1079 // into: 1080 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1081 1082 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1083 if (MI.getParent() == UseMI.getParent() && 1084 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1085 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1086 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1087 OtherMI = &UseMI; 1088 return true; 1089 } 1090 } 1091 1092 return false; 1093 } 1094 1095 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1096 MachineInstr *&OtherMI) { 1097 unsigned Opcode = MI.getOpcode(); 1098 assert(OtherMI && "OtherMI shouldn't be empty."); 1099 1100 Register DestDivReg, DestRemReg; 1101 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1102 DestDivReg = MI.getOperand(0).getReg(); 1103 DestRemReg = OtherMI->getOperand(0).getReg(); 1104 } else { 1105 DestDivReg = OtherMI->getOperand(0).getReg(); 1106 DestRemReg = MI.getOperand(0).getReg(); 1107 } 1108 1109 bool IsSigned = 1110 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1111 1112 // Check which instruction is first in the block so we don't break def-use 1113 // deps by "moving" the instruction incorrectly. 1114 if (dominates(MI, *OtherMI)) 1115 Builder.setInstrAndDebugLoc(MI); 1116 else 1117 Builder.setInstrAndDebugLoc(*OtherMI); 1118 1119 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1120 : TargetOpcode::G_UDIVREM, 1121 {DestDivReg, DestRemReg}, 1122 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1123 MI.eraseFromParent(); 1124 OtherMI->eraseFromParent(); 1125 } 1126 1127 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1128 MachineInstr *&BrCond) { 1129 assert(MI.getOpcode() == TargetOpcode::G_BR); 1130 1131 // Try to match the following: 1132 // bb1: 1133 // G_BRCOND %c1, %bb2 1134 // G_BR %bb3 1135 // bb2: 1136 // ... 1137 // bb3: 1138 1139 // The above pattern does not have a fall through to the successor bb2, always 1140 // resulting in a branch no matter which path is taken. Here we try to find 1141 // and replace that pattern with conditional branch to bb3 and otherwise 1142 // fallthrough to bb2. This is generally better for branch predictors. 1143 1144 MachineBasicBlock *MBB = MI.getParent(); 1145 MachineBasicBlock::iterator BrIt(MI); 1146 if (BrIt == MBB->begin()) 1147 return false; 1148 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1149 1150 BrCond = &*std::prev(BrIt); 1151 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1152 return false; 1153 1154 // Check that the next block is the conditional branch target. Also make sure 1155 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1156 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1157 return BrCondTarget != MI.getOperand(0).getMBB() && 1158 MBB->isLayoutSuccessor(BrCondTarget); 1159 } 1160 1161 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1162 MachineInstr *&BrCond) { 1163 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1164 Builder.setInstrAndDebugLoc(*BrCond); 1165 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1166 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1167 // this to i1 only since we might not know for sure what kind of 1168 // compare generated the condition value. 1169 auto True = Builder.buildConstant( 1170 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1171 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1172 1173 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1174 Observer.changingInstr(MI); 1175 MI.getOperand(0).setMBB(FallthroughBB); 1176 Observer.changedInstr(MI); 1177 1178 // Change the conditional branch to use the inverted condition and 1179 // new target block. 1180 Observer.changingInstr(*BrCond); 1181 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1182 BrCond->getOperand(1).setMBB(BrTarget); 1183 Observer.changedInstr(*BrCond); 1184 } 1185 1186 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1187 if (Ty.isVector()) 1188 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1189 Ty.getNumElements()); 1190 return IntegerType::get(C, Ty.getSizeInBits()); 1191 } 1192 1193 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1194 MachineIRBuilder HelperBuilder(MI); 1195 GISelObserverWrapper DummyObserver; 1196 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1197 return Helper.lowerMemcpyInline(MI) == 1198 LegalizerHelper::LegalizeResult::Legalized; 1199 } 1200 1201 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1202 MachineIRBuilder HelperBuilder(MI); 1203 GISelObserverWrapper DummyObserver; 1204 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1205 return Helper.lowerMemCpyFamily(MI, MaxLen) == 1206 LegalizerHelper::LegalizeResult::Legalized; 1207 } 1208 1209 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1210 const Register Op, 1211 const MachineRegisterInfo &MRI) { 1212 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1213 if (!MaybeCst) 1214 return None; 1215 1216 APFloat V = MaybeCst->getValueAPF(); 1217 switch (Opcode) { 1218 default: 1219 llvm_unreachable("Unexpected opcode!"); 1220 case TargetOpcode::G_FNEG: { 1221 V.changeSign(); 1222 return V; 1223 } 1224 case TargetOpcode::G_FABS: { 1225 V.clearSign(); 1226 return V; 1227 } 1228 case TargetOpcode::G_FPTRUNC: 1229 break; 1230 case TargetOpcode::G_FSQRT: { 1231 bool Unused; 1232 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1233 V = APFloat(sqrt(V.convertToDouble())); 1234 break; 1235 } 1236 case TargetOpcode::G_FLOG2: { 1237 bool Unused; 1238 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1239 V = APFloat(log2(V.convertToDouble())); 1240 break; 1241 } 1242 } 1243 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1244 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1245 // and `G_FLOG2` reach here. 1246 bool Unused; 1247 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1248 return V; 1249 } 1250 1251 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1252 Optional<APFloat> &Cst) { 1253 Register DstReg = MI.getOperand(0).getReg(); 1254 Register SrcReg = MI.getOperand(1).getReg(); 1255 LLT DstTy = MRI.getType(DstReg); 1256 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1257 return Cst.hasValue(); 1258 } 1259 1260 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1261 Optional<APFloat> &Cst) { 1262 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1263 Builder.setInstrAndDebugLoc(MI); 1264 MachineFunction &MF = Builder.getMF(); 1265 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1266 Register DstReg = MI.getOperand(0).getReg(); 1267 Builder.buildFConstant(DstReg, *FPVal); 1268 MI.eraseFromParent(); 1269 } 1270 1271 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1272 PtrAddChain &MatchInfo) { 1273 // We're trying to match the following pattern: 1274 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1275 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1276 // --> 1277 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1278 1279 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1280 return false; 1281 1282 Register Add2 = MI.getOperand(1).getReg(); 1283 Register Imm1 = MI.getOperand(2).getReg(); 1284 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1285 if (!MaybeImmVal) 1286 return false; 1287 1288 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1289 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1290 return false; 1291 1292 Register Base = Add2Def->getOperand(1).getReg(); 1293 Register Imm2 = Add2Def->getOperand(2).getReg(); 1294 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1295 if (!MaybeImm2Val) 1296 return false; 1297 1298 // Check if the new combined immediate forms an illegal addressing mode. 1299 // Do not combine if it was legal before but would get illegal. 1300 // To do so, we need to find a load/store user of the pointer to get 1301 // the access type. 1302 Type *AccessTy = nullptr; 1303 auto &MF = *MI.getMF(); 1304 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1305 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1306 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1307 MF.getFunction().getContext()); 1308 break; 1309 } 1310 } 1311 TargetLoweringBase::AddrMode AMNew; 1312 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1313 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1314 if (AccessTy) { 1315 AMNew.HasBaseReg = true; 1316 TargetLoweringBase::AddrMode AMOld; 1317 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); 1318 AMOld.HasBaseReg = true; 1319 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1320 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1321 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1322 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1323 return false; 1324 } 1325 1326 // Pass the combined immediate to the apply function. 1327 MatchInfo.Imm = AMNew.BaseOffs; 1328 MatchInfo.Base = Base; 1329 MatchInfo.Bank = getRegBank(Imm2); 1330 return true; 1331 } 1332 1333 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1334 PtrAddChain &MatchInfo) { 1335 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1336 MachineIRBuilder MIB(MI); 1337 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1338 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1339 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1340 Observer.changingInstr(MI); 1341 MI.getOperand(1).setReg(MatchInfo.Base); 1342 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1343 Observer.changedInstr(MI); 1344 } 1345 1346 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1347 RegisterImmPair &MatchInfo) { 1348 // We're trying to match the following pattern with any of 1349 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1350 // %t1 = SHIFT %base, G_CONSTANT imm1 1351 // %root = SHIFT %t1, G_CONSTANT imm2 1352 // --> 1353 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1354 1355 unsigned Opcode = MI.getOpcode(); 1356 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1357 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1358 Opcode == TargetOpcode::G_USHLSAT) && 1359 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1360 1361 Register Shl2 = MI.getOperand(1).getReg(); 1362 Register Imm1 = MI.getOperand(2).getReg(); 1363 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1364 if (!MaybeImmVal) 1365 return false; 1366 1367 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1368 if (Shl2Def->getOpcode() != Opcode) 1369 return false; 1370 1371 Register Base = Shl2Def->getOperand(1).getReg(); 1372 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1373 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1374 if (!MaybeImm2Val) 1375 return false; 1376 1377 // Pass the combined immediate to the apply function. 1378 MatchInfo.Imm = 1379 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1380 MatchInfo.Reg = Base; 1381 1382 // There is no simple replacement for a saturating unsigned left shift that 1383 // exceeds the scalar size. 1384 if (Opcode == TargetOpcode::G_USHLSAT && 1385 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1386 return false; 1387 1388 return true; 1389 } 1390 1391 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1392 RegisterImmPair &MatchInfo) { 1393 unsigned Opcode = MI.getOpcode(); 1394 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1395 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1396 Opcode == TargetOpcode::G_USHLSAT) && 1397 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1398 1399 Builder.setInstrAndDebugLoc(MI); 1400 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1401 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1402 auto Imm = MatchInfo.Imm; 1403 1404 if (Imm >= ScalarSizeInBits) { 1405 // Any logical shift that exceeds scalar size will produce zero. 1406 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1407 Builder.buildConstant(MI.getOperand(0), 0); 1408 MI.eraseFromParent(); 1409 return; 1410 } 1411 // Arithmetic shift and saturating signed left shift have no effect beyond 1412 // scalar size. 1413 Imm = ScalarSizeInBits - 1; 1414 } 1415 1416 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1417 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1418 Observer.changingInstr(MI); 1419 MI.getOperand(1).setReg(MatchInfo.Reg); 1420 MI.getOperand(2).setReg(NewImm); 1421 Observer.changedInstr(MI); 1422 } 1423 1424 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1425 ShiftOfShiftedLogic &MatchInfo) { 1426 // We're trying to match the following pattern with any of 1427 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1428 // with any of G_AND/G_OR/G_XOR logic instructions. 1429 // %t1 = SHIFT %X, G_CONSTANT C0 1430 // %t2 = LOGIC %t1, %Y 1431 // %root = SHIFT %t2, G_CONSTANT C1 1432 // --> 1433 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1434 // %t4 = SHIFT %Y, G_CONSTANT C1 1435 // %root = LOGIC %t3, %t4 1436 unsigned ShiftOpcode = MI.getOpcode(); 1437 assert((ShiftOpcode == TargetOpcode::G_SHL || 1438 ShiftOpcode == TargetOpcode::G_ASHR || 1439 ShiftOpcode == TargetOpcode::G_LSHR || 1440 ShiftOpcode == TargetOpcode::G_USHLSAT || 1441 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1442 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1443 1444 // Match a one-use bitwise logic op. 1445 Register LogicDest = MI.getOperand(1).getReg(); 1446 if (!MRI.hasOneNonDBGUse(LogicDest)) 1447 return false; 1448 1449 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1450 unsigned LogicOpcode = LogicMI->getOpcode(); 1451 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1452 LogicOpcode != TargetOpcode::G_XOR) 1453 return false; 1454 1455 // Find a matching one-use shift by constant. 1456 const Register C1 = MI.getOperand(2).getReg(); 1457 auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI); 1458 if (!MaybeImmVal) 1459 return false; 1460 1461 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1462 1463 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1464 // Shift should match previous one and should be a one-use. 1465 if (MI->getOpcode() != ShiftOpcode || 1466 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1467 return false; 1468 1469 // Must be a constant. 1470 auto MaybeImmVal = 1471 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1472 if (!MaybeImmVal) 1473 return false; 1474 1475 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1476 return true; 1477 }; 1478 1479 // Logic ops are commutative, so check each operand for a match. 1480 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1481 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1482 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1483 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1484 uint64_t C0Val; 1485 1486 if (matchFirstShift(LogicMIOp1, C0Val)) { 1487 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1488 MatchInfo.Shift2 = LogicMIOp1; 1489 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1490 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1491 MatchInfo.Shift2 = LogicMIOp2; 1492 } else 1493 return false; 1494 1495 MatchInfo.ValSum = C0Val + C1Val; 1496 1497 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1498 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1499 return false; 1500 1501 MatchInfo.Logic = LogicMI; 1502 return true; 1503 } 1504 1505 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1506 ShiftOfShiftedLogic &MatchInfo) { 1507 unsigned Opcode = MI.getOpcode(); 1508 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1509 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1510 Opcode == TargetOpcode::G_SSHLSAT) && 1511 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1512 1513 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1514 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1515 Builder.setInstrAndDebugLoc(MI); 1516 1517 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1518 1519 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1520 Register Shift1 = 1521 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1522 1523 Register Shift2Const = MI.getOperand(2).getReg(); 1524 Register Shift2 = Builder 1525 .buildInstr(Opcode, {DestType}, 1526 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1527 .getReg(0); 1528 1529 Register Dest = MI.getOperand(0).getReg(); 1530 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1531 1532 // These were one use so it's safe to remove them. 1533 MatchInfo.Shift2->eraseFromParentAndMarkDBGValuesForRemoval(); 1534 MatchInfo.Logic->eraseFromParentAndMarkDBGValuesForRemoval(); 1535 1536 MI.eraseFromParent(); 1537 } 1538 1539 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1540 unsigned &ShiftVal) { 1541 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1542 auto MaybeImmVal = 1543 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1544 if (!MaybeImmVal) 1545 return false; 1546 1547 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1548 return (static_cast<int32_t>(ShiftVal) != -1); 1549 } 1550 1551 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1552 unsigned &ShiftVal) { 1553 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1554 MachineIRBuilder MIB(MI); 1555 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1556 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1557 Observer.changingInstr(MI); 1558 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1559 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1560 Observer.changedInstr(MI); 1561 } 1562 1563 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1564 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1565 RegisterImmPair &MatchData) { 1566 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1567 1568 Register LHS = MI.getOperand(1).getReg(); 1569 1570 Register ExtSrc; 1571 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1572 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1573 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1574 return false; 1575 1576 // TODO: Should handle vector splat. 1577 Register RHS = MI.getOperand(2).getReg(); 1578 auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI); 1579 if (!MaybeShiftAmtVal) 1580 return false; 1581 1582 if (LI) { 1583 LLT SrcTy = MRI.getType(ExtSrc); 1584 1585 // We only really care about the legality with the shifted value. We can 1586 // pick any type the constant shift amount, so ask the target what to 1587 // use. Otherwise we would have to guess and hope it is reported as legal. 1588 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1589 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1590 return false; 1591 } 1592 1593 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1594 MatchData.Reg = ExtSrc; 1595 MatchData.Imm = ShiftAmt; 1596 1597 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1598 return MinLeadingZeros >= ShiftAmt; 1599 } 1600 1601 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1602 const RegisterImmPair &MatchData) { 1603 Register ExtSrcReg = MatchData.Reg; 1604 int64_t ShiftAmtVal = MatchData.Imm; 1605 1606 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1607 Builder.setInstrAndDebugLoc(MI); 1608 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1609 auto NarrowShift = 1610 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1611 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1612 MI.eraseFromParent(); 1613 } 1614 1615 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 1616 Register &MatchInfo) { 1617 GMerge &Merge = cast<GMerge>(MI); 1618 SmallVector<Register, 16> MergedValues; 1619 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 1620 MergedValues.emplace_back(Merge.getSourceReg(I)); 1621 1622 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 1623 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 1624 return false; 1625 1626 for (unsigned I = 0; I < MergedValues.size(); ++I) 1627 if (MergedValues[I] != Unmerge->getReg(I)) 1628 return false; 1629 1630 MatchInfo = Unmerge->getSourceReg(); 1631 return true; 1632 } 1633 1634 static Register peekThroughBitcast(Register Reg, 1635 const MachineRegisterInfo &MRI) { 1636 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1637 ; 1638 1639 return Reg; 1640 } 1641 1642 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1643 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1644 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1645 "Expected an unmerge"); 1646 auto &Unmerge = cast<GUnmerge>(MI); 1647 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 1648 1649 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI); 1650 if (!SrcInstr) 1651 return false; 1652 1653 // Check the source type of the merge. 1654 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 1655 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 1656 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1657 if (SrcMergeTy != Dst0Ty && !SameSize) 1658 return false; 1659 // They are the same now (modulo a bitcast). 1660 // We can collect all the src registers. 1661 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 1662 Operands.push_back(SrcInstr->getSourceReg(Idx)); 1663 return true; 1664 } 1665 1666 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1667 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1668 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1669 "Expected an unmerge"); 1670 assert((MI.getNumOperands() - 1 == Operands.size()) && 1671 "Not enough operands to replace all defs"); 1672 unsigned NumElems = MI.getNumOperands() - 1; 1673 1674 LLT SrcTy = MRI.getType(Operands[0]); 1675 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1676 bool CanReuseInputDirectly = DstTy == SrcTy; 1677 Builder.setInstrAndDebugLoc(MI); 1678 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1679 Register DstReg = MI.getOperand(Idx).getReg(); 1680 Register SrcReg = Operands[Idx]; 1681 if (CanReuseInputDirectly) 1682 replaceRegWith(MRI, DstReg, SrcReg); 1683 else 1684 Builder.buildCast(DstReg, SrcReg); 1685 } 1686 MI.eraseFromParent(); 1687 } 1688 1689 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1690 SmallVectorImpl<APInt> &Csts) { 1691 unsigned SrcIdx = MI.getNumOperands() - 1; 1692 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1693 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1694 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1695 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1696 return false; 1697 // Break down the big constant in smaller ones. 1698 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1699 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1700 ? CstVal.getCImm()->getValue() 1701 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1702 1703 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1704 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1705 // Unmerge a constant. 1706 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1707 Csts.emplace_back(Val.trunc(ShiftAmt)); 1708 Val = Val.lshr(ShiftAmt); 1709 } 1710 1711 return true; 1712 } 1713 1714 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1715 SmallVectorImpl<APInt> &Csts) { 1716 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1717 "Expected an unmerge"); 1718 assert((MI.getNumOperands() - 1 == Csts.size()) && 1719 "Not enough operands to replace all defs"); 1720 unsigned NumElems = MI.getNumOperands() - 1; 1721 Builder.setInstrAndDebugLoc(MI); 1722 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1723 Register DstReg = MI.getOperand(Idx).getReg(); 1724 Builder.buildConstant(DstReg, Csts[Idx]); 1725 } 1726 1727 MI.eraseFromParent(); 1728 } 1729 1730 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1731 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1732 "Expected an unmerge"); 1733 // Check that all the lanes are dead except the first one. 1734 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1735 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1736 return false; 1737 } 1738 return true; 1739 } 1740 1741 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1742 Builder.setInstrAndDebugLoc(MI); 1743 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1744 // Truncating a vector is going to truncate every single lane, 1745 // whereas we want the full lowbits. 1746 // Do the operation on a scalar instead. 1747 LLT SrcTy = MRI.getType(SrcReg); 1748 if (SrcTy.isVector()) 1749 SrcReg = 1750 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1751 1752 Register Dst0Reg = MI.getOperand(0).getReg(); 1753 LLT Dst0Ty = MRI.getType(Dst0Reg); 1754 if (Dst0Ty.isVector()) { 1755 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 1756 Builder.buildCast(Dst0Reg, MIB); 1757 } else 1758 Builder.buildTrunc(Dst0Reg, SrcReg); 1759 MI.eraseFromParent(); 1760 } 1761 1762 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 1763 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1764 "Expected an unmerge"); 1765 Register Dst0Reg = MI.getOperand(0).getReg(); 1766 LLT Dst0Ty = MRI.getType(Dst0Reg); 1767 // G_ZEXT on vector applies to each lane, so it will 1768 // affect all destinations. Therefore we won't be able 1769 // to simplify the unmerge to just the first definition. 1770 if (Dst0Ty.isVector()) 1771 return false; 1772 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1773 LLT SrcTy = MRI.getType(SrcReg); 1774 if (SrcTy.isVector()) 1775 return false; 1776 1777 Register ZExtSrcReg; 1778 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 1779 return false; 1780 1781 // Finally we can replace the first definition with 1782 // a zext of the source if the definition is big enough to hold 1783 // all of ZExtSrc bits. 1784 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1785 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 1786 } 1787 1788 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 1789 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1790 "Expected an unmerge"); 1791 1792 Register Dst0Reg = MI.getOperand(0).getReg(); 1793 1794 MachineInstr *ZExtInstr = 1795 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 1796 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 1797 "Expecting a G_ZEXT"); 1798 1799 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 1800 LLT Dst0Ty = MRI.getType(Dst0Reg); 1801 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1802 1803 Builder.setInstrAndDebugLoc(MI); 1804 1805 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 1806 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 1807 } else { 1808 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 1809 "ZExt src doesn't fit in destination"); 1810 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 1811 } 1812 1813 Register ZeroReg; 1814 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1815 if (!ZeroReg) 1816 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 1817 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 1818 } 1819 MI.eraseFromParent(); 1820 } 1821 1822 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1823 unsigned TargetShiftSize, 1824 unsigned &ShiftVal) { 1825 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1826 MI.getOpcode() == TargetOpcode::G_LSHR || 1827 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1828 1829 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1830 if (Ty.isVector()) // TODO: 1831 return false; 1832 1833 // Don't narrow further than the requested size. 1834 unsigned Size = Ty.getSizeInBits(); 1835 if (Size <= TargetShiftSize) 1836 return false; 1837 1838 auto MaybeImmVal = 1839 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1840 if (!MaybeImmVal) 1841 return false; 1842 1843 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1844 return ShiftVal >= Size / 2 && ShiftVal < Size; 1845 } 1846 1847 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1848 const unsigned &ShiftVal) { 1849 Register DstReg = MI.getOperand(0).getReg(); 1850 Register SrcReg = MI.getOperand(1).getReg(); 1851 LLT Ty = MRI.getType(SrcReg); 1852 unsigned Size = Ty.getSizeInBits(); 1853 unsigned HalfSize = Size / 2; 1854 assert(ShiftVal >= HalfSize); 1855 1856 LLT HalfTy = LLT::scalar(HalfSize); 1857 1858 Builder.setInstr(MI); 1859 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1860 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1861 1862 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1863 Register Narrowed = Unmerge.getReg(1); 1864 1865 // dst = G_LSHR s64:x, C for C >= 32 1866 // => 1867 // lo, hi = G_UNMERGE_VALUES x 1868 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1869 1870 if (NarrowShiftAmt != 0) { 1871 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1872 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1873 } 1874 1875 auto Zero = Builder.buildConstant(HalfTy, 0); 1876 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1877 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1878 Register Narrowed = Unmerge.getReg(0); 1879 // dst = G_SHL s64:x, C for C >= 32 1880 // => 1881 // lo, hi = G_UNMERGE_VALUES x 1882 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1883 if (NarrowShiftAmt != 0) { 1884 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1885 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1886 } 1887 1888 auto Zero = Builder.buildConstant(HalfTy, 0); 1889 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1890 } else { 1891 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1892 auto Hi = Builder.buildAShr( 1893 HalfTy, Unmerge.getReg(1), 1894 Builder.buildConstant(HalfTy, HalfSize - 1)); 1895 1896 if (ShiftVal == HalfSize) { 1897 // (G_ASHR i64:x, 32) -> 1898 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1899 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1900 } else if (ShiftVal == Size - 1) { 1901 // Don't need a second shift. 1902 // (G_ASHR i64:x, 63) -> 1903 // %narrowed = (G_ASHR hi_32(x), 31) 1904 // G_MERGE_VALUES %narrowed, %narrowed 1905 Builder.buildMerge(DstReg, { Hi, Hi }); 1906 } else { 1907 auto Lo = Builder.buildAShr( 1908 HalfTy, Unmerge.getReg(1), 1909 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1910 1911 // (G_ASHR i64:x, C) ->, for C >= 32 1912 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1913 Builder.buildMerge(DstReg, { Lo, Hi }); 1914 } 1915 } 1916 1917 MI.eraseFromParent(); 1918 } 1919 1920 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1921 unsigned TargetShiftAmount) { 1922 unsigned ShiftAmt; 1923 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1924 applyCombineShiftToUnmerge(MI, ShiftAmt); 1925 return true; 1926 } 1927 1928 return false; 1929 } 1930 1931 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1932 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1933 Register DstReg = MI.getOperand(0).getReg(); 1934 LLT DstTy = MRI.getType(DstReg); 1935 Register SrcReg = MI.getOperand(1).getReg(); 1936 return mi_match(SrcReg, MRI, 1937 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 1938 } 1939 1940 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1941 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1942 Register DstReg = MI.getOperand(0).getReg(); 1943 Builder.setInstr(MI); 1944 Builder.buildCopy(DstReg, Reg); 1945 MI.eraseFromParent(); 1946 } 1947 1948 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1949 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1950 Register SrcReg = MI.getOperand(1).getReg(); 1951 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 1952 } 1953 1954 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1955 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1956 Register DstReg = MI.getOperand(0).getReg(); 1957 Builder.setInstr(MI); 1958 Builder.buildZExtOrTrunc(DstReg, Reg); 1959 MI.eraseFromParent(); 1960 } 1961 1962 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 1963 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1964 assert(MI.getOpcode() == TargetOpcode::G_ADD); 1965 Register LHS = MI.getOperand(1).getReg(); 1966 Register RHS = MI.getOperand(2).getReg(); 1967 LLT IntTy = MRI.getType(LHS); 1968 1969 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 1970 // instruction. 1971 PtrReg.second = false; 1972 for (Register SrcReg : {LHS, RHS}) { 1973 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 1974 // Don't handle cases where the integer is implicitly converted to the 1975 // pointer width. 1976 LLT PtrTy = MRI.getType(PtrReg.first); 1977 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 1978 return true; 1979 } 1980 1981 PtrReg.second = true; 1982 } 1983 1984 return false; 1985 } 1986 1987 void CombinerHelper::applyCombineAddP2IToPtrAdd( 1988 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1989 Register Dst = MI.getOperand(0).getReg(); 1990 Register LHS = MI.getOperand(1).getReg(); 1991 Register RHS = MI.getOperand(2).getReg(); 1992 1993 const bool DoCommute = PtrReg.second; 1994 if (DoCommute) 1995 std::swap(LHS, RHS); 1996 LHS = PtrReg.first; 1997 1998 LLT PtrTy = MRI.getType(LHS); 1999 2000 Builder.setInstrAndDebugLoc(MI); 2001 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2002 Builder.buildPtrToInt(Dst, PtrAdd); 2003 MI.eraseFromParent(); 2004 } 2005 2006 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2007 int64_t &NewCst) { 2008 auto &PtrAdd = cast<GPtrAdd>(MI); 2009 Register LHS = PtrAdd.getBaseReg(); 2010 Register RHS = PtrAdd.getOffsetReg(); 2011 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2012 2013 if (auto RHSCst = getIConstantVRegSExtVal(RHS, MRI)) { 2014 int64_t Cst; 2015 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2016 NewCst = Cst + *RHSCst; 2017 return true; 2018 } 2019 } 2020 2021 return false; 2022 } 2023 2024 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2025 int64_t &NewCst) { 2026 auto &PtrAdd = cast<GPtrAdd>(MI); 2027 Register Dst = PtrAdd.getReg(0); 2028 2029 Builder.setInstrAndDebugLoc(MI); 2030 Builder.buildConstant(Dst, NewCst); 2031 PtrAdd.eraseFromParent(); 2032 } 2033 2034 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2035 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2036 Register DstReg = MI.getOperand(0).getReg(); 2037 Register SrcReg = MI.getOperand(1).getReg(); 2038 LLT DstTy = MRI.getType(DstReg); 2039 return mi_match(SrcReg, MRI, 2040 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2041 } 2042 2043 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2044 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2045 Register DstReg = MI.getOperand(0).getReg(); 2046 Register SrcReg = MI.getOperand(1).getReg(); 2047 LLT DstTy = MRI.getType(DstReg); 2048 if (mi_match(SrcReg, MRI, 2049 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2050 unsigned DstSize = DstTy.getScalarSizeInBits(); 2051 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2052 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2053 } 2054 return false; 2055 } 2056 2057 bool CombinerHelper::matchCombineExtOfExt( 2058 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2059 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2060 MI.getOpcode() == TargetOpcode::G_SEXT || 2061 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2062 "Expected a G_[ASZ]EXT"); 2063 Register SrcReg = MI.getOperand(1).getReg(); 2064 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2065 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2066 unsigned Opc = MI.getOpcode(); 2067 unsigned SrcOpc = SrcMI->getOpcode(); 2068 if (Opc == SrcOpc || 2069 (Opc == TargetOpcode::G_ANYEXT && 2070 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2071 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2072 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2073 return true; 2074 } 2075 return false; 2076 } 2077 2078 void CombinerHelper::applyCombineExtOfExt( 2079 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2080 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2081 MI.getOpcode() == TargetOpcode::G_SEXT || 2082 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2083 "Expected a G_[ASZ]EXT"); 2084 2085 Register Reg = std::get<0>(MatchInfo); 2086 unsigned SrcExtOp = std::get<1>(MatchInfo); 2087 2088 // Combine exts with the same opcode. 2089 if (MI.getOpcode() == SrcExtOp) { 2090 Observer.changingInstr(MI); 2091 MI.getOperand(1).setReg(Reg); 2092 Observer.changedInstr(MI); 2093 return; 2094 } 2095 2096 // Combine: 2097 // - anyext([sz]ext x) to [sz]ext x 2098 // - sext(zext x) to zext x 2099 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2100 (MI.getOpcode() == TargetOpcode::G_SEXT && 2101 SrcExtOp == TargetOpcode::G_ZEXT)) { 2102 Register DstReg = MI.getOperand(0).getReg(); 2103 Builder.setInstrAndDebugLoc(MI); 2104 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2105 MI.eraseFromParent(); 2106 } 2107 } 2108 2109 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2110 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2111 Register DstReg = MI.getOperand(0).getReg(); 2112 Register SrcReg = MI.getOperand(1).getReg(); 2113 LLT DstTy = MRI.getType(DstReg); 2114 2115 Builder.setInstrAndDebugLoc(MI); 2116 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2117 MI.getFlags()); 2118 MI.eraseFromParent(); 2119 } 2120 2121 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2122 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2123 Register SrcReg = MI.getOperand(1).getReg(); 2124 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2125 } 2126 2127 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2128 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2129 Src = MI.getOperand(1).getReg(); 2130 Register AbsSrc; 2131 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2132 } 2133 2134 bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI, 2135 BuildFnTy &MatchInfo) { 2136 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2137 Register Src = MI.getOperand(1).getReg(); 2138 Register NegSrc; 2139 2140 if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc)))) 2141 return false; 2142 2143 MatchInfo = [=, &MI](MachineIRBuilder &B) { 2144 Observer.changingInstr(MI); 2145 MI.getOperand(1).setReg(NegSrc); 2146 Observer.changedInstr(MI); 2147 }; 2148 return true; 2149 } 2150 2151 bool CombinerHelper::matchCombineTruncOfExt( 2152 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2153 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2154 Register SrcReg = MI.getOperand(1).getReg(); 2155 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2156 unsigned SrcOpc = SrcMI->getOpcode(); 2157 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2158 SrcOpc == TargetOpcode::G_ZEXT) { 2159 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2160 return true; 2161 } 2162 return false; 2163 } 2164 2165 void CombinerHelper::applyCombineTruncOfExt( 2166 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2167 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2168 Register SrcReg = MatchInfo.first; 2169 unsigned SrcExtOp = MatchInfo.second; 2170 Register DstReg = MI.getOperand(0).getReg(); 2171 LLT SrcTy = MRI.getType(SrcReg); 2172 LLT DstTy = MRI.getType(DstReg); 2173 if (SrcTy == DstTy) { 2174 MI.eraseFromParent(); 2175 replaceRegWith(MRI, DstReg, SrcReg); 2176 return; 2177 } 2178 Builder.setInstrAndDebugLoc(MI); 2179 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2180 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2181 else 2182 Builder.buildTrunc(DstReg, SrcReg); 2183 MI.eraseFromParent(); 2184 } 2185 2186 bool CombinerHelper::matchCombineTruncOfShl( 2187 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2188 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2189 Register DstReg = MI.getOperand(0).getReg(); 2190 Register SrcReg = MI.getOperand(1).getReg(); 2191 LLT DstTy = MRI.getType(DstReg); 2192 Register ShiftSrc; 2193 Register ShiftAmt; 2194 2195 if (MRI.hasOneNonDBGUse(SrcReg) && 2196 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2197 isLegalOrBeforeLegalizer( 2198 {TargetOpcode::G_SHL, 2199 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2200 KnownBits Known = KB->getKnownBits(ShiftAmt); 2201 unsigned Size = DstTy.getSizeInBits(); 2202 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2203 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2204 return true; 2205 } 2206 } 2207 return false; 2208 } 2209 2210 void CombinerHelper::applyCombineTruncOfShl( 2211 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2212 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2213 Register DstReg = MI.getOperand(0).getReg(); 2214 Register SrcReg = MI.getOperand(1).getReg(); 2215 LLT DstTy = MRI.getType(DstReg); 2216 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2217 2218 Register ShiftSrc = MatchInfo.first; 2219 Register ShiftAmt = MatchInfo.second; 2220 Builder.setInstrAndDebugLoc(MI); 2221 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2222 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2223 MI.eraseFromParent(); 2224 } 2225 2226 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2227 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2228 return MO.isReg() && 2229 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2230 }); 2231 } 2232 2233 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2234 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2235 return !MO.isReg() || 2236 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2237 }); 2238 } 2239 2240 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2241 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2242 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2243 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2244 } 2245 2246 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2247 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2248 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2249 MRI); 2250 } 2251 2252 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2253 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2254 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2255 MRI); 2256 } 2257 2258 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2259 GSelect &SelMI = cast<GSelect>(MI); 2260 auto Cst = 2261 isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI); 2262 if (!Cst) 2263 return false; 2264 OpIdx = Cst->isZero() ? 3 : 2; 2265 return true; 2266 } 2267 2268 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2269 MI.eraseFromParent(); 2270 return true; 2271 } 2272 2273 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2274 const MachineOperand &MOP2) { 2275 if (!MOP1.isReg() || !MOP2.isReg()) 2276 return false; 2277 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2278 if (!InstAndDef1) 2279 return false; 2280 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2281 if (!InstAndDef2) 2282 return false; 2283 MachineInstr *I1 = InstAndDef1->MI; 2284 MachineInstr *I2 = InstAndDef2->MI; 2285 2286 // Handle a case like this: 2287 // 2288 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2289 // 2290 // Even though %0 and %1 are produced by the same instruction they are not 2291 // the same values. 2292 if (I1 == I2) 2293 return MOP1.getReg() == MOP2.getReg(); 2294 2295 // If we have an instruction which loads or stores, we can't guarantee that 2296 // it is identical. 2297 // 2298 // For example, we may have 2299 // 2300 // %x1 = G_LOAD %addr (load N from @somewhere) 2301 // ... 2302 // call @foo 2303 // ... 2304 // %x2 = G_LOAD %addr (load N from @somewhere) 2305 // ... 2306 // %or = G_OR %x1, %x2 2307 // 2308 // It's possible that @foo will modify whatever lives at the address we're 2309 // loading from. To be safe, let's just assume that all loads and stores 2310 // are different (unless we have something which is guaranteed to not 2311 // change.) 2312 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2313 return false; 2314 2315 // Check for physical registers on the instructions first to avoid cases 2316 // like this: 2317 // 2318 // %a = COPY $physreg 2319 // ... 2320 // SOMETHING implicit-def $physreg 2321 // ... 2322 // %b = COPY $physreg 2323 // 2324 // These copies are not equivalent. 2325 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2326 return MO.isReg() && MO.getReg().isPhysical(); 2327 })) { 2328 // Check if we have a case like this: 2329 // 2330 // %a = COPY $physreg 2331 // %b = COPY %a 2332 // 2333 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2334 // From that, we know that they must have the same value, since they must 2335 // have come from the same COPY. 2336 return I1->isIdenticalTo(*I2); 2337 } 2338 2339 // We don't have any physical registers, so we don't necessarily need the 2340 // same vreg defs. 2341 // 2342 // On the off-chance that there's some target instruction feeding into the 2343 // instruction, let's use produceSameValue instead of isIdenticalTo. 2344 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2345 // Handle instructions with multiple defs that produce same values. Values 2346 // are same for operands with same index. 2347 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2348 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2349 // I1 and I2 are different instructions but produce same values, 2350 // %1 and %6 are same, %1 and %7 are not the same value. 2351 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2352 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2353 } 2354 return false; 2355 } 2356 2357 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2358 if (!MOP.isReg()) 2359 return false; 2360 auto *MI = MRI.getVRegDef(MOP.getReg()); 2361 auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI); 2362 return MaybeCst.hasValue() && MaybeCst->getSExtValue() == C; 2363 } 2364 2365 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2366 unsigned OpIdx) { 2367 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2368 Register OldReg = MI.getOperand(0).getReg(); 2369 Register Replacement = MI.getOperand(OpIdx).getReg(); 2370 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2371 MI.eraseFromParent(); 2372 replaceRegWith(MRI, OldReg, Replacement); 2373 return true; 2374 } 2375 2376 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2377 Register Replacement) { 2378 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2379 Register OldReg = MI.getOperand(0).getReg(); 2380 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2381 MI.eraseFromParent(); 2382 replaceRegWith(MRI, OldReg, Replacement); 2383 return true; 2384 } 2385 2386 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2387 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2388 // Match (cond ? x : x) 2389 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2390 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2391 MRI); 2392 } 2393 2394 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2395 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2396 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2397 MRI); 2398 } 2399 2400 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2401 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2402 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2403 MRI); 2404 } 2405 2406 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2407 MachineOperand &MO = MI.getOperand(OpIdx); 2408 return MO.isReg() && 2409 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2410 } 2411 2412 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2413 unsigned OpIdx) { 2414 MachineOperand &MO = MI.getOperand(OpIdx); 2415 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2416 } 2417 2418 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2419 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2420 Builder.setInstr(MI); 2421 Builder.buildFConstant(MI.getOperand(0), C); 2422 MI.eraseFromParent(); 2423 return true; 2424 } 2425 2426 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2427 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2428 Builder.setInstr(MI); 2429 Builder.buildConstant(MI.getOperand(0), C); 2430 MI.eraseFromParent(); 2431 return true; 2432 } 2433 2434 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2435 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2436 Builder.setInstr(MI); 2437 Builder.buildConstant(MI.getOperand(0), C); 2438 MI.eraseFromParent(); 2439 return true; 2440 } 2441 2442 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2443 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2444 Builder.setInstr(MI); 2445 Builder.buildUndef(MI.getOperand(0)); 2446 MI.eraseFromParent(); 2447 return true; 2448 } 2449 2450 bool CombinerHelper::matchSimplifyAddToSub( 2451 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2452 Register LHS = MI.getOperand(1).getReg(); 2453 Register RHS = MI.getOperand(2).getReg(); 2454 Register &NewLHS = std::get<0>(MatchInfo); 2455 Register &NewRHS = std::get<1>(MatchInfo); 2456 2457 // Helper lambda to check for opportunities for 2458 // ((0-A) + B) -> B - A 2459 // (A + (0-B)) -> A - B 2460 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2461 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2462 return false; 2463 NewLHS = MaybeNewLHS; 2464 return true; 2465 }; 2466 2467 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2468 } 2469 2470 bool CombinerHelper::matchCombineInsertVecElts( 2471 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2472 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2473 "Invalid opcode"); 2474 Register DstReg = MI.getOperand(0).getReg(); 2475 LLT DstTy = MRI.getType(DstReg); 2476 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2477 unsigned NumElts = DstTy.getNumElements(); 2478 // If this MI is part of a sequence of insert_vec_elts, then 2479 // don't do the combine in the middle of the sequence. 2480 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2481 TargetOpcode::G_INSERT_VECTOR_ELT) 2482 return false; 2483 MachineInstr *CurrInst = &MI; 2484 MachineInstr *TmpInst; 2485 int64_t IntImm; 2486 Register TmpReg; 2487 MatchInfo.resize(NumElts); 2488 while (mi_match( 2489 CurrInst->getOperand(0).getReg(), MRI, 2490 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2491 if (IntImm >= NumElts) 2492 return false; 2493 if (!MatchInfo[IntImm]) 2494 MatchInfo[IntImm] = TmpReg; 2495 CurrInst = TmpInst; 2496 } 2497 // Variable index. 2498 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2499 return false; 2500 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2501 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2502 if (!MatchInfo[I - 1].isValid()) 2503 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2504 } 2505 return true; 2506 } 2507 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2508 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2509 } 2510 2511 void CombinerHelper::applyCombineInsertVecElts( 2512 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2513 Builder.setInstr(MI); 2514 Register UndefReg; 2515 auto GetUndef = [&]() { 2516 if (UndefReg) 2517 return UndefReg; 2518 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2519 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2520 return UndefReg; 2521 }; 2522 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2523 if (!MatchInfo[I]) 2524 MatchInfo[I] = GetUndef(); 2525 } 2526 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2527 MI.eraseFromParent(); 2528 } 2529 2530 void CombinerHelper::applySimplifyAddToSub( 2531 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2532 Builder.setInstr(MI); 2533 Register SubLHS, SubRHS; 2534 std::tie(SubLHS, SubRHS) = MatchInfo; 2535 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2536 MI.eraseFromParent(); 2537 } 2538 2539 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2540 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2541 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2542 // 2543 // Creates the new hand + logic instruction (but does not insert them.) 2544 // 2545 // On success, MatchInfo is populated with the new instructions. These are 2546 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2547 unsigned LogicOpcode = MI.getOpcode(); 2548 assert(LogicOpcode == TargetOpcode::G_AND || 2549 LogicOpcode == TargetOpcode::G_OR || 2550 LogicOpcode == TargetOpcode::G_XOR); 2551 MachineIRBuilder MIB(MI); 2552 Register Dst = MI.getOperand(0).getReg(); 2553 Register LHSReg = MI.getOperand(1).getReg(); 2554 Register RHSReg = MI.getOperand(2).getReg(); 2555 2556 // Don't recompute anything. 2557 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2558 return false; 2559 2560 // Make sure we have (hand x, ...), (hand y, ...) 2561 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2562 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2563 if (!LeftHandInst || !RightHandInst) 2564 return false; 2565 unsigned HandOpcode = LeftHandInst->getOpcode(); 2566 if (HandOpcode != RightHandInst->getOpcode()) 2567 return false; 2568 if (!LeftHandInst->getOperand(1).isReg() || 2569 !RightHandInst->getOperand(1).isReg()) 2570 return false; 2571 2572 // Make sure the types match up, and if we're doing this post-legalization, 2573 // we end up with legal types. 2574 Register X = LeftHandInst->getOperand(1).getReg(); 2575 Register Y = RightHandInst->getOperand(1).getReg(); 2576 LLT XTy = MRI.getType(X); 2577 LLT YTy = MRI.getType(Y); 2578 if (XTy != YTy) 2579 return false; 2580 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2581 return false; 2582 2583 // Optional extra source register. 2584 Register ExtraHandOpSrcReg; 2585 switch (HandOpcode) { 2586 default: 2587 return false; 2588 case TargetOpcode::G_ANYEXT: 2589 case TargetOpcode::G_SEXT: 2590 case TargetOpcode::G_ZEXT: { 2591 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2592 break; 2593 } 2594 case TargetOpcode::G_AND: 2595 case TargetOpcode::G_ASHR: 2596 case TargetOpcode::G_LSHR: 2597 case TargetOpcode::G_SHL: { 2598 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2599 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2600 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2601 return false; 2602 ExtraHandOpSrcReg = ZOp.getReg(); 2603 break; 2604 } 2605 } 2606 2607 // Record the steps to build the new instructions. 2608 // 2609 // Steps to build (logic x, y) 2610 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2611 OperandBuildSteps LogicBuildSteps = { 2612 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2613 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2614 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2615 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2616 2617 // Steps to build hand (logic x, y), ...z 2618 OperandBuildSteps HandBuildSteps = { 2619 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2620 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2621 if (ExtraHandOpSrcReg.isValid()) 2622 HandBuildSteps.push_back( 2623 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2624 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2625 2626 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2627 return true; 2628 } 2629 2630 void CombinerHelper::applyBuildInstructionSteps( 2631 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2632 assert(MatchInfo.InstrsToBuild.size() && 2633 "Expected at least one instr to build?"); 2634 Builder.setInstr(MI); 2635 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2636 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2637 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2638 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2639 for (auto &OperandFn : InstrToBuild.OperandFns) 2640 OperandFn(Instr); 2641 } 2642 MI.eraseFromParent(); 2643 } 2644 2645 bool CombinerHelper::matchAshrShlToSextInreg( 2646 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2647 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2648 int64_t ShlCst, AshrCst; 2649 Register Src; 2650 // FIXME: detect splat constant vectors. 2651 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2652 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2653 return false; 2654 if (ShlCst != AshrCst) 2655 return false; 2656 if (!isLegalOrBeforeLegalizer( 2657 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2658 return false; 2659 MatchInfo = std::make_tuple(Src, ShlCst); 2660 return true; 2661 } 2662 2663 void CombinerHelper::applyAshShlToSextInreg( 2664 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2665 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2666 Register Src; 2667 int64_t ShiftAmt; 2668 std::tie(Src, ShiftAmt) = MatchInfo; 2669 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2670 Builder.setInstrAndDebugLoc(MI); 2671 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2672 MI.eraseFromParent(); 2673 } 2674 2675 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 2676 bool CombinerHelper::matchOverlappingAnd( 2677 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 2678 assert(MI.getOpcode() == TargetOpcode::G_AND); 2679 2680 Register Dst = MI.getOperand(0).getReg(); 2681 LLT Ty = MRI.getType(Dst); 2682 2683 Register R; 2684 int64_t C1; 2685 int64_t C2; 2686 if (!mi_match( 2687 Dst, MRI, 2688 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 2689 return false; 2690 2691 MatchInfo = [=](MachineIRBuilder &B) { 2692 if (C1 & C2) { 2693 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 2694 return; 2695 } 2696 auto Zero = B.buildConstant(Ty, 0); 2697 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 2698 }; 2699 return true; 2700 } 2701 2702 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2703 Register &Replacement) { 2704 // Given 2705 // 2706 // %y:_(sN) = G_SOMETHING 2707 // %x:_(sN) = G_SOMETHING 2708 // %res:_(sN) = G_AND %x, %y 2709 // 2710 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 2711 // 2712 // Patterns like this can appear as a result of legalization. E.g. 2713 // 2714 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2715 // %one:_(s32) = G_CONSTANT i32 1 2716 // %and:_(s32) = G_AND %cmp, %one 2717 // 2718 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2719 assert(MI.getOpcode() == TargetOpcode::G_AND); 2720 if (!KB) 2721 return false; 2722 2723 Register AndDst = MI.getOperand(0).getReg(); 2724 LLT DstTy = MRI.getType(AndDst); 2725 2726 // FIXME: This should be removed once GISelKnownBits supports vectors. 2727 if (DstTy.isVector()) 2728 return false; 2729 2730 Register LHS = MI.getOperand(1).getReg(); 2731 Register RHS = MI.getOperand(2).getReg(); 2732 KnownBits LHSBits = KB->getKnownBits(LHS); 2733 KnownBits RHSBits = KB->getKnownBits(RHS); 2734 2735 // Check that x & Mask == x. 2736 // x & 1 == x, always 2737 // x & 0 == x, only if x is also 0 2738 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 2739 // 2740 // Check if we can replace AndDst with the LHS of the G_AND 2741 if (canReplaceReg(AndDst, LHS, MRI) && 2742 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2743 Replacement = LHS; 2744 return true; 2745 } 2746 2747 // Check if we can replace AndDst with the RHS of the G_AND 2748 if (canReplaceReg(AndDst, RHS, MRI) && 2749 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2750 Replacement = RHS; 2751 return true; 2752 } 2753 2754 return false; 2755 } 2756 2757 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 2758 // Given 2759 // 2760 // %y:_(sN) = G_SOMETHING 2761 // %x:_(sN) = G_SOMETHING 2762 // %res:_(sN) = G_OR %x, %y 2763 // 2764 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 2765 assert(MI.getOpcode() == TargetOpcode::G_OR); 2766 if (!KB) 2767 return false; 2768 2769 Register OrDst = MI.getOperand(0).getReg(); 2770 LLT DstTy = MRI.getType(OrDst); 2771 2772 // FIXME: This should be removed once GISelKnownBits supports vectors. 2773 if (DstTy.isVector()) 2774 return false; 2775 2776 Register LHS = MI.getOperand(1).getReg(); 2777 Register RHS = MI.getOperand(2).getReg(); 2778 KnownBits LHSBits = KB->getKnownBits(LHS); 2779 KnownBits RHSBits = KB->getKnownBits(RHS); 2780 2781 // Check that x | Mask == x. 2782 // x | 0 == x, always 2783 // x | 1 == x, only if x is also 1 2784 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 2785 // 2786 // Check if we can replace OrDst with the LHS of the G_OR 2787 if (canReplaceReg(OrDst, LHS, MRI) && 2788 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2789 Replacement = LHS; 2790 return true; 2791 } 2792 2793 // Check if we can replace OrDst with the RHS of the G_OR 2794 if (canReplaceReg(OrDst, RHS, MRI) && 2795 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2796 Replacement = RHS; 2797 return true; 2798 } 2799 2800 return false; 2801 } 2802 2803 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 2804 // If the input is already sign extended, just drop the extension. 2805 Register Src = MI.getOperand(1).getReg(); 2806 unsigned ExtBits = MI.getOperand(2).getImm(); 2807 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 2808 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 2809 } 2810 2811 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 2812 int64_t Cst, bool IsVector, bool IsFP) { 2813 // For i1, Cst will always be -1 regardless of boolean contents. 2814 return (ScalarSizeBits == 1 && Cst == -1) || 2815 isConstTrueVal(TLI, Cst, IsVector, IsFP); 2816 } 2817 2818 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 2819 SmallVectorImpl<Register> &RegsToNegate) { 2820 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2821 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2822 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 2823 Register XorSrc; 2824 Register CstReg; 2825 // We match xor(src, true) here. 2826 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2827 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 2828 return false; 2829 2830 if (!MRI.hasOneNonDBGUse(XorSrc)) 2831 return false; 2832 2833 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 2834 // and ORs. The suffix of RegsToNegate starting from index I is used a work 2835 // list of tree nodes to visit. 2836 RegsToNegate.push_back(XorSrc); 2837 // Remember whether the comparisons are all integer or all floating point. 2838 bool IsInt = false; 2839 bool IsFP = false; 2840 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 2841 Register Reg = RegsToNegate[I]; 2842 if (!MRI.hasOneNonDBGUse(Reg)) 2843 return false; 2844 MachineInstr *Def = MRI.getVRegDef(Reg); 2845 switch (Def->getOpcode()) { 2846 default: 2847 // Don't match if the tree contains anything other than ANDs, ORs and 2848 // comparisons. 2849 return false; 2850 case TargetOpcode::G_ICMP: 2851 if (IsFP) 2852 return false; 2853 IsInt = true; 2854 // When we apply the combine we will invert the predicate. 2855 break; 2856 case TargetOpcode::G_FCMP: 2857 if (IsInt) 2858 return false; 2859 IsFP = true; 2860 // When we apply the combine we will invert the predicate. 2861 break; 2862 case TargetOpcode::G_AND: 2863 case TargetOpcode::G_OR: 2864 // Implement De Morgan's laws: 2865 // ~(x & y) -> ~x | ~y 2866 // ~(x | y) -> ~x & ~y 2867 // When we apply the combine we will change the opcode and recursively 2868 // negate the operands. 2869 RegsToNegate.push_back(Def->getOperand(1).getReg()); 2870 RegsToNegate.push_back(Def->getOperand(2).getReg()); 2871 break; 2872 } 2873 } 2874 2875 // Now we know whether the comparisons are integer or floating point, check 2876 // the constant in the xor. 2877 int64_t Cst; 2878 if (Ty.isVector()) { 2879 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 2880 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 2881 if (!MaybeCst) 2882 return false; 2883 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 2884 return false; 2885 } else { 2886 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 2887 return false; 2888 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 2889 return false; 2890 } 2891 2892 return true; 2893 } 2894 2895 void CombinerHelper::applyNotCmp(MachineInstr &MI, 2896 SmallVectorImpl<Register> &RegsToNegate) { 2897 for (Register Reg : RegsToNegate) { 2898 MachineInstr *Def = MRI.getVRegDef(Reg); 2899 Observer.changingInstr(*Def); 2900 // For each comparison, invert the opcode. For each AND and OR, change the 2901 // opcode. 2902 switch (Def->getOpcode()) { 2903 default: 2904 llvm_unreachable("Unexpected opcode"); 2905 case TargetOpcode::G_ICMP: 2906 case TargetOpcode::G_FCMP: { 2907 MachineOperand &PredOp = Def->getOperand(1); 2908 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 2909 (CmpInst::Predicate)PredOp.getPredicate()); 2910 PredOp.setPredicate(NewP); 2911 break; 2912 } 2913 case TargetOpcode::G_AND: 2914 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 2915 break; 2916 case TargetOpcode::G_OR: 2917 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2918 break; 2919 } 2920 Observer.changedInstr(*Def); 2921 } 2922 2923 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 2924 MI.eraseFromParent(); 2925 } 2926 2927 bool CombinerHelper::matchXorOfAndWithSameReg( 2928 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2929 // Match (xor (and x, y), y) (or any of its commuted cases) 2930 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2931 Register &X = MatchInfo.first; 2932 Register &Y = MatchInfo.second; 2933 Register AndReg = MI.getOperand(1).getReg(); 2934 Register SharedReg = MI.getOperand(2).getReg(); 2935 2936 // Find a G_AND on either side of the G_XOR. 2937 // Look for one of 2938 // 2939 // (xor (and x, y), SharedReg) 2940 // (xor SharedReg, (and x, y)) 2941 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 2942 std::swap(AndReg, SharedReg); 2943 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 2944 return false; 2945 } 2946 2947 // Only do this if we'll eliminate the G_AND. 2948 if (!MRI.hasOneNonDBGUse(AndReg)) 2949 return false; 2950 2951 // We can combine if SharedReg is the same as either the LHS or RHS of the 2952 // G_AND. 2953 if (Y != SharedReg) 2954 std::swap(X, Y); 2955 return Y == SharedReg; 2956 } 2957 2958 void CombinerHelper::applyXorOfAndWithSameReg( 2959 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2960 // Fold (xor (and x, y), y) -> (and (not x), y) 2961 Builder.setInstrAndDebugLoc(MI); 2962 Register X, Y; 2963 std::tie(X, Y) = MatchInfo; 2964 auto Not = Builder.buildNot(MRI.getType(X), X); 2965 Observer.changingInstr(MI); 2966 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2967 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 2968 MI.getOperand(2).setReg(Y); 2969 Observer.changedInstr(MI); 2970 } 2971 2972 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 2973 auto &PtrAdd = cast<GPtrAdd>(MI); 2974 Register DstReg = PtrAdd.getReg(0); 2975 LLT Ty = MRI.getType(DstReg); 2976 const DataLayout &DL = Builder.getMF().getDataLayout(); 2977 2978 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 2979 return false; 2980 2981 if (Ty.isPointer()) { 2982 auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI); 2983 return ConstVal && *ConstVal == 0; 2984 } 2985 2986 assert(Ty.isVector() && "Expecting a vector type"); 2987 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 2988 return isBuildVectorAllZeros(*VecMI, MRI); 2989 } 2990 2991 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 2992 auto &PtrAdd = cast<GPtrAdd>(MI); 2993 Builder.setInstrAndDebugLoc(PtrAdd); 2994 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 2995 PtrAdd.eraseFromParent(); 2996 } 2997 2998 /// The second source operand is known to be a power of 2. 2999 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3000 Register DstReg = MI.getOperand(0).getReg(); 3001 Register Src0 = MI.getOperand(1).getReg(); 3002 Register Pow2Src1 = MI.getOperand(2).getReg(); 3003 LLT Ty = MRI.getType(DstReg); 3004 Builder.setInstrAndDebugLoc(MI); 3005 3006 // Fold (urem x, pow2) -> (and x, pow2-1) 3007 auto NegOne = Builder.buildConstant(Ty, -1); 3008 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3009 Builder.buildAnd(DstReg, Src0, Add); 3010 MI.eraseFromParent(); 3011 } 3012 3013 Optional<SmallVector<Register, 8>> 3014 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3015 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3016 // We want to detect if Root is part of a tree which represents a bunch 3017 // of loads being merged into a larger load. We'll try to recognize patterns 3018 // like, for example: 3019 // 3020 // Reg Reg 3021 // \ / 3022 // OR_1 Reg 3023 // \ / 3024 // OR_2 3025 // \ Reg 3026 // .. / 3027 // Root 3028 // 3029 // Reg Reg Reg Reg 3030 // \ / \ / 3031 // OR_1 OR_2 3032 // \ / 3033 // \ / 3034 // ... 3035 // Root 3036 // 3037 // Each "Reg" may have been produced by a load + some arithmetic. This 3038 // function will save each of them. 3039 SmallVector<Register, 8> RegsToVisit; 3040 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3041 3042 // In the "worst" case, we're dealing with a load for each byte. So, there 3043 // are at most #bytes - 1 ORs. 3044 const unsigned MaxIter = 3045 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3046 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3047 if (Ors.empty()) 3048 break; 3049 const MachineInstr *Curr = Ors.pop_back_val(); 3050 Register OrLHS = Curr->getOperand(1).getReg(); 3051 Register OrRHS = Curr->getOperand(2).getReg(); 3052 3053 // In the combine, we want to elimate the entire tree. 3054 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3055 return None; 3056 3057 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3058 // something that may be a load + arithmetic. 3059 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3060 Ors.push_back(Or); 3061 else 3062 RegsToVisit.push_back(OrLHS); 3063 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3064 Ors.push_back(Or); 3065 else 3066 RegsToVisit.push_back(OrRHS); 3067 } 3068 3069 // We're going to try and merge each register into a wider power-of-2 type, 3070 // so we ought to have an even number of registers. 3071 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3072 return None; 3073 return RegsToVisit; 3074 } 3075 3076 /// Helper function for findLoadOffsetsForLoadOrCombine. 3077 /// 3078 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3079 /// and then moving that value into a specific byte offset. 3080 /// 3081 /// e.g. x[i] << 24 3082 /// 3083 /// \returns The load instruction and the byte offset it is moved into. 3084 static Optional<std::pair<GZExtLoad *, int64_t>> 3085 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3086 const MachineRegisterInfo &MRI) { 3087 assert(MRI.hasOneNonDBGUse(Reg) && 3088 "Expected Reg to only have one non-debug use?"); 3089 Register MaybeLoad; 3090 int64_t Shift; 3091 if (!mi_match(Reg, MRI, 3092 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3093 Shift = 0; 3094 MaybeLoad = Reg; 3095 } 3096 3097 if (Shift % MemSizeInBits != 0) 3098 return None; 3099 3100 // TODO: Handle other types of loads. 3101 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3102 if (!Load) 3103 return None; 3104 3105 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3106 return None; 3107 3108 return std::make_pair(Load, Shift / MemSizeInBits); 3109 } 3110 3111 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3112 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3113 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3114 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3115 3116 // Each load found for the pattern. There should be one for each RegsToVisit. 3117 SmallSetVector<const MachineInstr *, 8> Loads; 3118 3119 // The lowest index used in any load. (The lowest "i" for each x[i].) 3120 int64_t LowestIdx = INT64_MAX; 3121 3122 // The load which uses the lowest index. 3123 GZExtLoad *LowestIdxLoad = nullptr; 3124 3125 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3126 SmallSet<int64_t, 8> SeenIdx; 3127 3128 // Ensure each load is in the same MBB. 3129 // TODO: Support multiple MachineBasicBlocks. 3130 MachineBasicBlock *MBB = nullptr; 3131 const MachineMemOperand *MMO = nullptr; 3132 3133 // Earliest instruction-order load in the pattern. 3134 GZExtLoad *EarliestLoad = nullptr; 3135 3136 // Latest instruction-order load in the pattern. 3137 GZExtLoad *LatestLoad = nullptr; 3138 3139 // Base pointer which every load should share. 3140 Register BasePtr; 3141 3142 // We want to find a load for each register. Each load should have some 3143 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3144 // track of the load which uses the lowest index. Later, we will check if we 3145 // can use its pointer in the final, combined load. 3146 for (auto Reg : RegsToVisit) { 3147 // Find the load, and find the position that it will end up in (e.g. a 3148 // shifted) value. 3149 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3150 if (!LoadAndPos) 3151 return None; 3152 GZExtLoad *Load; 3153 int64_t DstPos; 3154 std::tie(Load, DstPos) = *LoadAndPos; 3155 3156 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3157 // it is difficult to check for stores/calls/etc between loads. 3158 MachineBasicBlock *LoadMBB = Load->getParent(); 3159 if (!MBB) 3160 MBB = LoadMBB; 3161 if (LoadMBB != MBB) 3162 return None; 3163 3164 // Make sure that the MachineMemOperands of every seen load are compatible. 3165 auto &LoadMMO = Load->getMMO(); 3166 if (!MMO) 3167 MMO = &LoadMMO; 3168 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3169 return None; 3170 3171 // Find out what the base pointer and index for the load is. 3172 Register LoadPtr; 3173 int64_t Idx; 3174 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3175 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3176 LoadPtr = Load->getOperand(1).getReg(); 3177 Idx = 0; 3178 } 3179 3180 // Don't combine things like a[i], a[i] -> a bigger load. 3181 if (!SeenIdx.insert(Idx).second) 3182 return None; 3183 3184 // Every load must share the same base pointer; don't combine things like: 3185 // 3186 // a[i], b[i + 1] -> a bigger load. 3187 if (!BasePtr.isValid()) 3188 BasePtr = LoadPtr; 3189 if (BasePtr != LoadPtr) 3190 return None; 3191 3192 if (Idx < LowestIdx) { 3193 LowestIdx = Idx; 3194 LowestIdxLoad = Load; 3195 } 3196 3197 // Keep track of the byte offset that this load ends up at. If we have seen 3198 // the byte offset, then stop here. We do not want to combine: 3199 // 3200 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3201 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3202 return None; 3203 Loads.insert(Load); 3204 3205 // Keep track of the position of the earliest/latest loads in the pattern. 3206 // We will check that there are no load fold barriers between them later 3207 // on. 3208 // 3209 // FIXME: Is there a better way to check for load fold barriers? 3210 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3211 EarliestLoad = Load; 3212 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3213 LatestLoad = Load; 3214 } 3215 3216 // We found a load for each register. Let's check if each load satisfies the 3217 // pattern. 3218 assert(Loads.size() == RegsToVisit.size() && 3219 "Expected to find a load for each register?"); 3220 assert(EarliestLoad != LatestLoad && EarliestLoad && 3221 LatestLoad && "Expected at least two loads?"); 3222 3223 // Check if there are any stores, calls, etc. between any of the loads. If 3224 // there are, then we can't safely perform the combine. 3225 // 3226 // MaxIter is chosen based off the (worst case) number of iterations it 3227 // typically takes to succeed in the LLVM test suite plus some padding. 3228 // 3229 // FIXME: Is there a better way to check for load fold barriers? 3230 const unsigned MaxIter = 20; 3231 unsigned Iter = 0; 3232 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3233 LatestLoad->getIterator())) { 3234 if (Loads.count(&MI)) 3235 continue; 3236 if (MI.isLoadFoldBarrier()) 3237 return None; 3238 if (Iter++ == MaxIter) 3239 return None; 3240 } 3241 3242 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3243 } 3244 3245 bool CombinerHelper::matchLoadOrCombine( 3246 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3247 assert(MI.getOpcode() == TargetOpcode::G_OR); 3248 MachineFunction &MF = *MI.getMF(); 3249 // Assuming a little-endian target, transform: 3250 // s8 *a = ... 3251 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3252 // => 3253 // s32 val = *((i32)a) 3254 // 3255 // s8 *a = ... 3256 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3257 // => 3258 // s32 val = BSWAP(*((s32)a)) 3259 Register Dst = MI.getOperand(0).getReg(); 3260 LLT Ty = MRI.getType(Dst); 3261 if (Ty.isVector()) 3262 return false; 3263 3264 // We need to combine at least two loads into this type. Since the smallest 3265 // possible load is into a byte, we need at least a 16-bit wide type. 3266 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3267 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3268 return false; 3269 3270 // Match a collection of non-OR instructions in the pattern. 3271 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3272 if (!RegsToVisit) 3273 return false; 3274 3275 // We have a collection of non-OR instructions. Figure out how wide each of 3276 // the small loads should be based off of the number of potential loads we 3277 // found. 3278 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3279 if (NarrowMemSizeInBits % 8 != 0) 3280 return false; 3281 3282 // Check if each register feeding into each OR is a load from the same 3283 // base pointer + some arithmetic. 3284 // 3285 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3286 // 3287 // Also verify that each of these ends up putting a[i] into the same memory 3288 // offset as a load into a wide type would. 3289 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3290 GZExtLoad *LowestIdxLoad, *LatestLoad; 3291 int64_t LowestIdx; 3292 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3293 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3294 if (!MaybeLoadInfo) 3295 return false; 3296 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3297 3298 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3299 // we found before, check if this corresponds to a big or little endian byte 3300 // pattern. If it does, then we can represent it using a load + possibly a 3301 // BSWAP. 3302 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3303 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3304 if (!IsBigEndian.hasValue()) 3305 return false; 3306 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3307 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3308 return false; 3309 3310 // Make sure that the load from the lowest index produces offset 0 in the 3311 // final value. 3312 // 3313 // This ensures that we won't combine something like this: 3314 // 3315 // load x[i] -> byte 2 3316 // load x[i+1] -> byte 0 ---> wide_load x[i] 3317 // load x[i+2] -> byte 1 3318 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3319 const unsigned ZeroByteOffset = 3320 *IsBigEndian 3321 ? bigEndianByteAt(NumLoadsInTy, 0) 3322 : littleEndianByteAt(NumLoadsInTy, 0); 3323 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3324 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3325 ZeroOffsetIdx->second != LowestIdx) 3326 return false; 3327 3328 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3329 // may not use index 0. 3330 Register Ptr = LowestIdxLoad->getPointerReg(); 3331 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3332 LegalityQuery::MemDesc MMDesc(MMO); 3333 MMDesc.MemoryTy = Ty; 3334 if (!isLegalOrBeforeLegalizer( 3335 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3336 return false; 3337 auto PtrInfo = MMO.getPointerInfo(); 3338 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3339 3340 // Load must be allowed and fast on the target. 3341 LLVMContext &C = MF.getFunction().getContext(); 3342 auto &DL = MF.getDataLayout(); 3343 bool Fast = false; 3344 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3345 !Fast) 3346 return false; 3347 3348 MatchInfo = [=](MachineIRBuilder &MIB) { 3349 MIB.setInstrAndDebugLoc(*LatestLoad); 3350 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3351 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3352 if (NeedsBSwap) 3353 MIB.buildBSwap(Dst, LoadDst); 3354 }; 3355 return true; 3356 } 3357 3358 /// Check if the store \p Store is a truncstore that can be merged. That is, 3359 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty 3360 /// Register then it does not need to match and SrcVal is set to the source 3361 /// value found. 3362 /// On match, returns the start byte offset of the \p SrcVal that is being 3363 /// stored. 3364 static Optional<int64_t> getTruncStoreByteOffset(GStore &Store, Register &SrcVal, 3365 MachineRegisterInfo &MRI) { 3366 Register TruncVal; 3367 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) 3368 return None; 3369 3370 // The shift amount must be a constant multiple of the narrow type. 3371 // It is translated to the offset address in the wide source value "y". 3372 // 3373 // x = G_LSHR y, ShiftAmtC 3374 // s8 z = G_TRUNC x 3375 // store z, ... 3376 Register FoundSrcVal; 3377 int64_t ShiftAmt; 3378 if (!mi_match(TruncVal, MRI, 3379 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), 3380 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { 3381 if (!SrcVal.isValid() || TruncVal == SrcVal) { 3382 if (!SrcVal.isValid()) 3383 SrcVal = TruncVal; 3384 return 0; // If it's the lowest index store. 3385 } 3386 return None; 3387 } 3388 3389 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); 3390 if (ShiftAmt % NarrowBits!= 0) 3391 return None; 3392 const unsigned Offset = ShiftAmt / NarrowBits; 3393 3394 if (SrcVal.isValid() && FoundSrcVal != SrcVal) 3395 return None; 3396 3397 if (!SrcVal.isValid()) 3398 SrcVal = FoundSrcVal; 3399 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) 3400 return None; 3401 return Offset; 3402 } 3403 3404 /// Match a pattern where a wide type scalar value is stored by several narrow 3405 /// stores. Fold it into a single store or a BSWAP and a store if the targets 3406 /// supports it. 3407 /// 3408 /// Assuming little endian target: 3409 /// i8 *p = ... 3410 /// i32 val = ... 3411 /// p[0] = (val >> 0) & 0xFF; 3412 /// p[1] = (val >> 8) & 0xFF; 3413 /// p[2] = (val >> 16) & 0xFF; 3414 /// p[3] = (val >> 24) & 0xFF; 3415 /// => 3416 /// *((i32)p) = val; 3417 /// 3418 /// i8 *p = ... 3419 /// i32 val = ... 3420 /// p[0] = (val >> 24) & 0xFF; 3421 /// p[1] = (val >> 16) & 0xFF; 3422 /// p[2] = (val >> 8) & 0xFF; 3423 /// p[3] = (val >> 0) & 0xFF; 3424 /// => 3425 /// *((i32)p) = BSWAP(val); 3426 bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI, 3427 MergeTruncStoresInfo &MatchInfo) { 3428 auto &StoreMI = cast<GStore>(MI); 3429 LLT MemTy = StoreMI.getMMO().getMemoryType(); 3430 3431 // We only handle merging simple stores of 1-4 bytes. 3432 if (!MemTy.isScalar()) 3433 return false; 3434 switch (MemTy.getSizeInBits()) { 3435 case 8: 3436 case 16: 3437 case 32: 3438 break; 3439 default: 3440 return false; 3441 } 3442 if (!StoreMI.isSimple()) 3443 return false; 3444 3445 // We do a simple search for mergeable stores prior to this one. 3446 // Any potential alias hazard along the way terminates the search. 3447 SmallVector<GStore *> FoundStores; 3448 3449 // We're looking for: 3450 // 1) a (store(trunc(...))) 3451 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get 3452 // the partial value stored. 3453 // 3) where the offsets form either a little or big-endian sequence. 3454 3455 auto &LastStore = StoreMI; 3456 3457 // The single base pointer that all stores must use. 3458 Register BaseReg; 3459 int64_t LastOffset; 3460 if (!mi_match(LastStore.getPointerReg(), MRI, 3461 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { 3462 BaseReg = LastStore.getPointerReg(); 3463 LastOffset = 0; 3464 } 3465 3466 GStore *LowestIdxStore = &LastStore; 3467 int64_t LowestIdxOffset = LastOffset; 3468 3469 Register WideSrcVal; 3470 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI); 3471 if (!LowestShiftAmt) 3472 return false; // Didn't match a trunc. 3473 assert(WideSrcVal.isValid()); 3474 3475 LLT WideStoreTy = MRI.getType(WideSrcVal); 3476 const unsigned NumStoresRequired = 3477 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); 3478 3479 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); 3480 OffsetMap[*LowestShiftAmt] = LastOffset; 3481 FoundStores.emplace_back(&LastStore); 3482 3483 // Search the block up for more stores. 3484 // We use a search threshold of 10 instructions here because the combiner 3485 // works top-down within a block, and we don't want to search an unbounded 3486 // number of predecessor instructions trying to find matching stores. 3487 // If we moved this optimization into a separate pass then we could probably 3488 // use a more efficient search without having a hard-coded threshold. 3489 const int MaxInstsToCheck = 10; 3490 int NumInstsChecked = 0; 3491 for (auto II = ++LastStore.getReverseIterator(); 3492 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; 3493 ++II) { 3494 NumInstsChecked++; 3495 GStore *NewStore; 3496 if ((NewStore = dyn_cast<GStore>(&*II))) { 3497 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) 3498 break; 3499 } else if (II->isLoadFoldBarrier() || II->mayLoad()) { 3500 break; 3501 } else { 3502 continue; // This is a safe instruction we can look past. 3503 } 3504 3505 Register NewBaseReg; 3506 int64_t MemOffset; 3507 // Check we're storing to the same base + some offset. 3508 if (!mi_match(NewStore->getPointerReg(), MRI, 3509 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { 3510 NewBaseReg = NewStore->getPointerReg(); 3511 MemOffset = 0; 3512 } 3513 if (BaseReg != NewBaseReg) 3514 break; 3515 3516 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI); 3517 if (!ShiftByteOffset) 3518 break; 3519 if (MemOffset < LowestIdxOffset) { 3520 LowestIdxOffset = MemOffset; 3521 LowestIdxStore = NewStore; 3522 } 3523 3524 // Map the offset in the store and the offset in the combined value, and 3525 // early return if it has been set before. 3526 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || 3527 OffsetMap[*ShiftByteOffset] != INT64_MAX) 3528 break; 3529 OffsetMap[*ShiftByteOffset] = MemOffset; 3530 3531 FoundStores.emplace_back(NewStore); 3532 // Reset counter since we've found a matching inst. 3533 NumInstsChecked = 0; 3534 if (FoundStores.size() == NumStoresRequired) 3535 break; 3536 } 3537 3538 if (FoundStores.size() != NumStoresRequired) { 3539 return false; 3540 } 3541 3542 const auto &DL = LastStore.getMF()->getDataLayout(); 3543 auto &C = LastStore.getMF()->getFunction().getContext(); 3544 // Check that a store of the wide type is both allowed and fast on the target 3545 bool Fast = false; 3546 bool Allowed = getTargetLowering().allowsMemoryAccess( 3547 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); 3548 if (!Allowed || !Fast) 3549 return false; 3550 3551 // Check if the pieces of the value are going to the expected places in memory 3552 // to merge the stores. 3553 unsigned NarrowBits = MemTy.getScalarSizeInBits(); 3554 auto checkOffsets = [&](bool MatchLittleEndian) { 3555 if (MatchLittleEndian) { 3556 for (unsigned i = 0; i != NumStoresRequired; ++i) 3557 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) 3558 return false; 3559 } else { // MatchBigEndian by reversing loop counter. 3560 for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired; 3561 ++i, --j) 3562 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) 3563 return false; 3564 } 3565 return true; 3566 }; 3567 3568 // Check if the offsets line up for the native data layout of this target. 3569 bool NeedBswap = false; 3570 bool NeedRotate = false; 3571 if (!checkOffsets(DL.isLittleEndian())) { 3572 // Special-case: check if byte offsets line up for the opposite endian. 3573 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) 3574 NeedBswap = true; 3575 else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian())) 3576 NeedRotate = true; 3577 else 3578 return false; 3579 } 3580 3581 if (NeedBswap && 3582 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}})) 3583 return false; 3584 if (NeedRotate && 3585 !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}})) 3586 return false; 3587 3588 MatchInfo.NeedBSwap = NeedBswap; 3589 MatchInfo.NeedRotate = NeedRotate; 3590 MatchInfo.LowestIdxStore = LowestIdxStore; 3591 MatchInfo.WideSrcVal = WideSrcVal; 3592 MatchInfo.FoundStores = std::move(FoundStores); 3593 return true; 3594 } 3595 3596 void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI, 3597 MergeTruncStoresInfo &MatchInfo) { 3598 3599 Builder.setInstrAndDebugLoc(MI); 3600 Register WideSrcVal = MatchInfo.WideSrcVal; 3601 LLT WideStoreTy = MRI.getType(WideSrcVal); 3602 3603 if (MatchInfo.NeedBSwap) { 3604 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); 3605 } else if (MatchInfo.NeedRotate) { 3606 assert(WideStoreTy.getSizeInBits() % 2 == 0 && 3607 "Unexpected type for rotate"); 3608 auto RotAmt = 3609 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); 3610 WideSrcVal = 3611 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); 3612 } 3613 3614 Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(), 3615 MatchInfo.LowestIdxStore->getMMO().getPointerInfo(), 3616 MatchInfo.LowestIdxStore->getMMO().getAlign()); 3617 3618 // Erase the old stores. 3619 for (auto *ST : MatchInfo.FoundStores) 3620 ST->eraseFromParent(); 3621 } 3622 3623 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3624 MachineInstr *&ExtMI) { 3625 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3626 3627 Register DstReg = MI.getOperand(0).getReg(); 3628 3629 // TODO: Extending a vector may be expensive, don't do this until heuristics 3630 // are better. 3631 if (MRI.getType(DstReg).isVector()) 3632 return false; 3633 3634 // Try to match a phi, whose only use is an extend. 3635 if (!MRI.hasOneNonDBGUse(DstReg)) 3636 return false; 3637 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3638 switch (ExtMI->getOpcode()) { 3639 case TargetOpcode::G_ANYEXT: 3640 return true; // G_ANYEXT is usually free. 3641 case TargetOpcode::G_ZEXT: 3642 case TargetOpcode::G_SEXT: 3643 break; 3644 default: 3645 return false; 3646 } 3647 3648 // If the target is likely to fold this extend away, don't propagate. 3649 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3650 return false; 3651 3652 // We don't want to propagate the extends unless there's a good chance that 3653 // they'll be optimized in some way. 3654 // Collect the unique incoming values. 3655 SmallPtrSet<MachineInstr *, 4> InSrcs; 3656 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3657 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3658 switch (DefMI->getOpcode()) { 3659 case TargetOpcode::G_LOAD: 3660 case TargetOpcode::G_TRUNC: 3661 case TargetOpcode::G_SEXT: 3662 case TargetOpcode::G_ZEXT: 3663 case TargetOpcode::G_ANYEXT: 3664 case TargetOpcode::G_CONSTANT: 3665 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3666 // Don't try to propagate if there are too many places to create new 3667 // extends, chances are it'll increase code size. 3668 if (InSrcs.size() > 2) 3669 return false; 3670 break; 3671 default: 3672 return false; 3673 } 3674 } 3675 return true; 3676 } 3677 3678 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3679 MachineInstr *&ExtMI) { 3680 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3681 Register DstReg = ExtMI->getOperand(0).getReg(); 3682 LLT ExtTy = MRI.getType(DstReg); 3683 3684 // Propagate the extension into the block of each incoming reg's block. 3685 // Use a SetVector here because PHIs can have duplicate edges, and we want 3686 // deterministic iteration order. 3687 SmallSetVector<MachineInstr *, 8> SrcMIs; 3688 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3689 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3690 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3691 if (!SrcMIs.insert(SrcMI)) 3692 continue; 3693 3694 // Build an extend after each src inst. 3695 auto *MBB = SrcMI->getParent(); 3696 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3697 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3698 InsertPt = MBB->getFirstNonPHI(); 3699 3700 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3701 Builder.setDebugLoc(MI.getDebugLoc()); 3702 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3703 SrcMI->getOperand(0).getReg()); 3704 OldToNewSrcMap[SrcMI] = NewExt; 3705 } 3706 3707 // Create a new phi with the extended inputs. 3708 Builder.setInstrAndDebugLoc(MI); 3709 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3710 NewPhi.addDef(DstReg); 3711 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3712 auto &MO = MI.getOperand(SrcIdx); 3713 if (!MO.isReg()) { 3714 NewPhi.addMBB(MO.getMBB()); 3715 continue; 3716 } 3717 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3718 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3719 } 3720 Builder.insertInstr(NewPhi); 3721 ExtMI->eraseFromParent(); 3722 } 3723 3724 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3725 Register &Reg) { 3726 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3727 // If we have a constant index, look for a G_BUILD_VECTOR source 3728 // and find the source register that the index maps to. 3729 Register SrcVec = MI.getOperand(1).getReg(); 3730 LLT SrcTy = MRI.getType(SrcVec); 3731 if (!isLegalOrBeforeLegalizer( 3732 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3733 return false; 3734 3735 auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3736 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3737 return false; 3738 3739 unsigned VecIdx = Cst->Value.getZExtValue(); 3740 MachineInstr *BuildVecMI = 3741 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3742 if (!BuildVecMI) { 3743 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3744 if (!BuildVecMI) 3745 return false; 3746 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3747 if (!isLegalOrBeforeLegalizer( 3748 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3749 return false; 3750 } 3751 3752 EVT Ty(getMVTForLLT(SrcTy)); 3753 if (!MRI.hasOneNonDBGUse(SrcVec) && 3754 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3755 return false; 3756 3757 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3758 return true; 3759 } 3760 3761 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3762 Register &Reg) { 3763 // Check the type of the register, since it may have come from a 3764 // G_BUILD_VECTOR_TRUNC. 3765 LLT ScalarTy = MRI.getType(Reg); 3766 Register DstReg = MI.getOperand(0).getReg(); 3767 LLT DstTy = MRI.getType(DstReg); 3768 3769 Builder.setInstrAndDebugLoc(MI); 3770 if (ScalarTy != DstTy) { 3771 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3772 Builder.buildTrunc(DstReg, Reg); 3773 MI.eraseFromParent(); 3774 return; 3775 } 3776 replaceSingleDefInstWithReg(MI, Reg); 3777 } 3778 3779 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3780 MachineInstr &MI, 3781 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3782 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3783 // This combine tries to find build_vector's which have every source element 3784 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3785 // the masked load scalarization is run late in the pipeline. There's already 3786 // a combine for a similar pattern starting from the extract, but that 3787 // doesn't attempt to do it if there are multiple uses of the build_vector, 3788 // which in this case is true. Starting the combine from the build_vector 3789 // feels more natural than trying to find sibling nodes of extracts. 3790 // E.g. 3791 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3792 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3793 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3794 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3795 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3796 // ==> 3797 // replace ext{1,2,3,4} with %s{1,2,3,4} 3798 3799 Register DstReg = MI.getOperand(0).getReg(); 3800 LLT DstTy = MRI.getType(DstReg); 3801 unsigned NumElts = DstTy.getNumElements(); 3802 3803 SmallBitVector ExtractedElts(NumElts); 3804 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), 3805 MRI.use_instr_nodbg_end())) { 3806 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3807 return false; 3808 auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI); 3809 if (!Cst) 3810 return false; 3811 unsigned Idx = Cst.getValue().getZExtValue(); 3812 if (Idx >= NumElts) 3813 return false; // Out of range. 3814 ExtractedElts.set(Idx); 3815 SrcDstPairs.emplace_back( 3816 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3817 } 3818 // Match if every element was extracted. 3819 return ExtractedElts.all(); 3820 } 3821 3822 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3823 MachineInstr &MI, 3824 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3825 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3826 for (auto &Pair : SrcDstPairs) { 3827 auto *ExtMI = Pair.second; 3828 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3829 ExtMI->eraseFromParent(); 3830 } 3831 MI.eraseFromParent(); 3832 } 3833 3834 void CombinerHelper::applyBuildFn( 3835 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3836 Builder.setInstrAndDebugLoc(MI); 3837 MatchInfo(Builder); 3838 MI.eraseFromParent(); 3839 } 3840 3841 void CombinerHelper::applyBuildFnNoErase( 3842 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3843 Builder.setInstrAndDebugLoc(MI); 3844 MatchInfo(Builder); 3845 } 3846 3847 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3848 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3849 unsigned Opc = MI.getOpcode(); 3850 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3851 Register X = MI.getOperand(1).getReg(); 3852 Register Y = MI.getOperand(2).getReg(); 3853 if (X != Y) 3854 return false; 3855 unsigned RotateOpc = 3856 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3857 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3858 } 3859 3860 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3861 unsigned Opc = MI.getOpcode(); 3862 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3863 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3864 Observer.changingInstr(MI); 3865 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3866 : TargetOpcode::G_ROTR)); 3867 MI.RemoveOperand(2); 3868 Observer.changedInstr(MI); 3869 } 3870 3871 // Fold (rot x, c) -> (rot x, c % BitSize) 3872 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3873 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3874 MI.getOpcode() == TargetOpcode::G_ROTR); 3875 unsigned Bitsize = 3876 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3877 Register AmtReg = MI.getOperand(2).getReg(); 3878 bool OutOfRange = false; 3879 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 3880 if (auto *CI = dyn_cast<ConstantInt>(C)) 3881 OutOfRange |= CI->getValue().uge(Bitsize); 3882 return true; 3883 }; 3884 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 3885 } 3886 3887 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 3888 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3889 MI.getOpcode() == TargetOpcode::G_ROTR); 3890 unsigned Bitsize = 3891 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3892 Builder.setInstrAndDebugLoc(MI); 3893 Register Amt = MI.getOperand(2).getReg(); 3894 LLT AmtTy = MRI.getType(Amt); 3895 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 3896 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 3897 Observer.changingInstr(MI); 3898 MI.getOperand(2).setReg(Amt); 3899 Observer.changedInstr(MI); 3900 } 3901 3902 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 3903 int64_t &MatchInfo) { 3904 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3905 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3906 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 3907 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 3908 Optional<bool> KnownVal; 3909 switch (Pred) { 3910 default: 3911 llvm_unreachable("Unexpected G_ICMP predicate?"); 3912 case CmpInst::ICMP_EQ: 3913 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 3914 break; 3915 case CmpInst::ICMP_NE: 3916 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 3917 break; 3918 case CmpInst::ICMP_SGE: 3919 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 3920 break; 3921 case CmpInst::ICMP_SGT: 3922 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 3923 break; 3924 case CmpInst::ICMP_SLE: 3925 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 3926 break; 3927 case CmpInst::ICMP_SLT: 3928 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 3929 break; 3930 case CmpInst::ICMP_UGE: 3931 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 3932 break; 3933 case CmpInst::ICMP_UGT: 3934 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 3935 break; 3936 case CmpInst::ICMP_ULE: 3937 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 3938 break; 3939 case CmpInst::ICMP_ULT: 3940 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 3941 break; 3942 } 3943 if (!KnownVal) 3944 return false; 3945 MatchInfo = 3946 *KnownVal 3947 ? getICmpTrueVal(getTargetLowering(), 3948 /*IsVector = */ 3949 MRI.getType(MI.getOperand(0).getReg()).isVector(), 3950 /* IsFP = */ false) 3951 : 0; 3952 return true; 3953 } 3954 3955 bool CombinerHelper::matchICmpToLHSKnownBits( 3956 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3957 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3958 // Given: 3959 // 3960 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 3961 // %cmp = G_ICMP ne %x, 0 3962 // 3963 // Or: 3964 // 3965 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 3966 // %cmp = G_ICMP eq %x, 1 3967 // 3968 // We can replace %cmp with %x assuming true is 1 on the target. 3969 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3970 if (!CmpInst::isEquality(Pred)) 3971 return false; 3972 Register Dst = MI.getOperand(0).getReg(); 3973 LLT DstTy = MRI.getType(Dst); 3974 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), 3975 /* IsFP = */ false) != 1) 3976 return false; 3977 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; 3978 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) 3979 return false; 3980 Register LHS = MI.getOperand(2).getReg(); 3981 auto KnownLHS = KB->getKnownBits(LHS); 3982 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) 3983 return false; 3984 // Make sure replacing Dst with the LHS is a legal operation. 3985 LLT LHSTy = MRI.getType(LHS); 3986 unsigned LHSSize = LHSTy.getSizeInBits(); 3987 unsigned DstSize = DstTy.getSizeInBits(); 3988 unsigned Op = TargetOpcode::COPY; 3989 if (DstSize != LHSSize) 3990 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; 3991 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) 3992 return false; 3993 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; 3994 return true; 3995 } 3996 3997 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 3998 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 3999 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4000 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4001 Register Dst = MI.getOperand(0).getReg(); 4002 Register Src = MI.getOperand(1).getReg(); 4003 LLT Ty = MRI.getType(Src); 4004 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4005 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4006 return false; 4007 int64_t Width = MI.getOperand(2).getImm(); 4008 Register ShiftSrc; 4009 int64_t ShiftImm; 4010 if (!mi_match( 4011 Src, MRI, 4012 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4013 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4014 return false; 4015 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4016 return false; 4017 4018 MatchInfo = [=](MachineIRBuilder &B) { 4019 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4020 auto Cst2 = B.buildConstant(ExtractTy, Width); 4021 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4022 }; 4023 return true; 4024 } 4025 4026 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4027 bool CombinerHelper::matchBitfieldExtractFromAnd( 4028 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4029 assert(MI.getOpcode() == TargetOpcode::G_AND); 4030 Register Dst = MI.getOperand(0).getReg(); 4031 LLT Ty = MRI.getType(Dst); 4032 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 4033 TargetOpcode::G_UBFX, Ty, Ty)) 4034 return false; 4035 4036 int64_t AndImm, LSBImm; 4037 Register ShiftSrc; 4038 const unsigned Size = Ty.getScalarSizeInBits(); 4039 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4040 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4041 m_ICst(AndImm)))) 4042 return false; 4043 4044 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4045 auto MaybeMask = static_cast<uint64_t>(AndImm); 4046 if (MaybeMask & (MaybeMask + 1)) 4047 return false; 4048 4049 // LSB must fit within the register. 4050 if (static_cast<uint64_t>(LSBImm) >= Size) 4051 return false; 4052 4053 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4054 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4055 MatchInfo = [=](MachineIRBuilder &B) { 4056 auto WidthCst = B.buildConstant(ExtractTy, Width); 4057 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4058 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4059 }; 4060 return true; 4061 } 4062 4063 bool CombinerHelper::matchBitfieldExtractFromShr( 4064 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4065 const unsigned Opcode = MI.getOpcode(); 4066 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 4067 4068 const Register Dst = MI.getOperand(0).getReg(); 4069 4070 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 4071 ? TargetOpcode::G_SBFX 4072 : TargetOpcode::G_UBFX; 4073 4074 // Check if the type we would use for the extract is legal 4075 LLT Ty = MRI.getType(Dst); 4076 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4077 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 4078 return false; 4079 4080 Register ShlSrc; 4081 int64_t ShrAmt; 4082 int64_t ShlAmt; 4083 const unsigned Size = Ty.getScalarSizeInBits(); 4084 4085 // Try to match shr (shl x, c1), c2 4086 if (!mi_match(Dst, MRI, 4087 m_BinOp(Opcode, 4088 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4089 m_ICst(ShrAmt)))) 4090 return false; 4091 4092 // Make sure that the shift sizes can fit a bitfield extract 4093 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4094 return false; 4095 4096 // Skip this combine if the G_SEXT_INREG combine could handle it 4097 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4098 return false; 4099 4100 // Calculate start position and width of the extract 4101 const int64_t Pos = ShrAmt - ShlAmt; 4102 const int64_t Width = Size - ShrAmt; 4103 4104 MatchInfo = [=](MachineIRBuilder &B) { 4105 auto WidthCst = B.buildConstant(ExtractTy, Width); 4106 auto PosCst = B.buildConstant(ExtractTy, Pos); 4107 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4108 }; 4109 return true; 4110 } 4111 4112 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4113 MachineInstr &PtrAdd) { 4114 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4115 4116 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4117 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4118 if (!Src1Def) 4119 return false; 4120 4121 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4122 4123 if (MRI.hasOneNonDBGUse(Src1Reg)) 4124 return false; 4125 4126 auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4127 if (!C1) 4128 return false; 4129 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4130 if (!C2) 4131 return false; 4132 4133 const APInt &C1APIntVal = *C1; 4134 const APInt &C2APIntVal = *C2; 4135 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4136 4137 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4138 // This combine may end up running before ptrtoint/inttoptr combines 4139 // manage to eliminate redundant conversions, so try to look through them. 4140 MachineInstr *ConvUseMI = &UseMI; 4141 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4142 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4143 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4144 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4145 if (!MRI.hasOneNonDBGUse(DefReg)) 4146 break; 4147 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4148 ConvUseOpc = ConvUseMI->getOpcode(); 4149 } 4150 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4151 ConvUseOpc == TargetOpcode::G_STORE; 4152 if (!LoadStore) 4153 continue; 4154 // Is x[offset2] already not a legal addressing mode? If so then 4155 // reassociating the constants breaks nothing (we test offset2 because 4156 // that's the one we hope to fold into the load or store). 4157 TargetLoweringBase::AddrMode AM; 4158 AM.HasBaseReg = true; 4159 AM.BaseOffs = C2APIntVal.getSExtValue(); 4160 unsigned AS = 4161 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4162 Type *AccessTy = 4163 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4164 PtrAdd.getMF()->getFunction().getContext()); 4165 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4166 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4167 AccessTy, AS)) 4168 continue; 4169 4170 // Would x[offset1+offset2] still be a legal addressing mode? 4171 AM.BaseOffs = CombinedValue; 4172 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4173 AccessTy, AS)) 4174 return true; 4175 } 4176 4177 return false; 4178 } 4179 4180 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI, 4181 MachineInstr *RHS, 4182 BuildFnTy &MatchInfo) { 4183 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4184 Register Src1Reg = MI.getOperand(1).getReg(); 4185 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4186 return false; 4187 auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4188 if (!C2) 4189 return false; 4190 4191 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4192 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4193 4194 auto NewBase = 4195 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4196 Observer.changingInstr(MI); 4197 MI.getOperand(1).setReg(NewBase.getReg(0)); 4198 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4199 Observer.changedInstr(MI); 4200 }; 4201 return !reassociationCanBreakAddressingModePattern(MI); 4202 } 4203 4204 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI, 4205 MachineInstr *LHS, 4206 MachineInstr *RHS, 4207 BuildFnTy &MatchInfo) { 4208 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C) 4209 // if and only if (G_PTR_ADD X, C) has one use. 4210 Register LHSBase; 4211 Optional<ValueAndVReg> LHSCstOff; 4212 if (!mi_match(MI.getBaseReg(), MRI, 4213 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff))))) 4214 return false; 4215 4216 auto *LHSPtrAdd = cast<GPtrAdd>(LHS); 4217 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4218 // When we change LHSPtrAdd's offset register we might cause it to use a reg 4219 // before its def. Sink the instruction so the outer PTR_ADD to ensure this 4220 // doesn't happen. 4221 LHSPtrAdd->moveBefore(&MI); 4222 Register RHSReg = MI.getOffsetReg(); 4223 Observer.changingInstr(MI); 4224 MI.getOperand(2).setReg(LHSCstOff->VReg); 4225 Observer.changedInstr(MI); 4226 Observer.changingInstr(*LHSPtrAdd); 4227 LHSPtrAdd->getOperand(2).setReg(RHSReg); 4228 Observer.changedInstr(*LHSPtrAdd); 4229 }; 4230 return !reassociationCanBreakAddressingModePattern(MI); 4231 } 4232 4233 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI, 4234 MachineInstr *LHS, 4235 MachineInstr *RHS, 4236 BuildFnTy &MatchInfo) { 4237 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4238 auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS); 4239 if (!LHSPtrAdd) 4240 return false; 4241 4242 Register Src2Reg = MI.getOperand(2).getReg(); 4243 Register LHSSrc1 = LHSPtrAdd->getBaseReg(); 4244 Register LHSSrc2 = LHSPtrAdd->getOffsetReg(); 4245 auto C1 = getIConstantVRegVal(LHSSrc2, MRI); 4246 if (!C1) 4247 return false; 4248 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4249 if (!C2) 4250 return false; 4251 4252 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4253 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4254 Observer.changingInstr(MI); 4255 MI.getOperand(1).setReg(LHSSrc1); 4256 MI.getOperand(2).setReg(NewCst.getReg(0)); 4257 Observer.changedInstr(MI); 4258 }; 4259 return !reassociationCanBreakAddressingModePattern(MI); 4260 } 4261 4262 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI, 4263 BuildFnTy &MatchInfo) { 4264 auto &PtrAdd = cast<GPtrAdd>(MI); 4265 // We're trying to match a few pointer computation patterns here for 4266 // re-association opportunities. 4267 // 1) Isolating a constant operand to be on the RHS, e.g.: 4268 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4269 // 4270 // 2) Folding two constants in each sub-tree as long as such folding 4271 // doesn't break a legal addressing mode. 4272 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4273 // 4274 // 3) Move a constant from the LHS of an inner op to the RHS of the outer. 4275 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C) 4276 // iif (G_PTR_ADD X, C) has one use. 4277 MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg()); 4278 MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg()); 4279 4280 // Try to match example 2. 4281 if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo)) 4282 return true; 4283 4284 // Try to match example 3. 4285 if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo)) 4286 return true; 4287 4288 // Try to match example 1. 4289 if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo)) 4290 return true; 4291 4292 return false; 4293 } 4294 4295 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4296 Register Op1 = MI.getOperand(1).getReg(); 4297 Register Op2 = MI.getOperand(2).getReg(); 4298 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4299 if (!MaybeCst) 4300 return false; 4301 MatchInfo = *MaybeCst; 4302 return true; 4303 } 4304 4305 bool CombinerHelper::matchNarrowBinopFeedingAnd( 4306 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4307 // Look for a binop feeding into an AND with a mask: 4308 // 4309 // %add = G_ADD %lhs, %rhs 4310 // %and = G_AND %add, 000...11111111 4311 // 4312 // Check if it's possible to perform the binop at a narrower width and zext 4313 // back to the original width like so: 4314 // 4315 // %narrow_lhs = G_TRUNC %lhs 4316 // %narrow_rhs = G_TRUNC %rhs 4317 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 4318 // %new_add = G_ZEXT %narrow_add 4319 // %and = G_AND %new_add, 000...11111111 4320 // 4321 // This can allow later combines to eliminate the G_AND if it turns out 4322 // that the mask is irrelevant. 4323 assert(MI.getOpcode() == TargetOpcode::G_AND); 4324 Register Dst = MI.getOperand(0).getReg(); 4325 Register AndLHS = MI.getOperand(1).getReg(); 4326 Register AndRHS = MI.getOperand(2).getReg(); 4327 LLT WideTy = MRI.getType(Dst); 4328 4329 // If the potential binop has more than one use, then it's possible that one 4330 // of those uses will need its full width. 4331 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 4332 return false; 4333 4334 // Check if the LHS feeding the AND is impacted by the high bits that we're 4335 // masking out. 4336 // 4337 // e.g. for 64-bit x, y: 4338 // 4339 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 4340 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 4341 if (!LHSInst) 4342 return false; 4343 unsigned LHSOpc = LHSInst->getOpcode(); 4344 switch (LHSOpc) { 4345 default: 4346 return false; 4347 case TargetOpcode::G_ADD: 4348 case TargetOpcode::G_SUB: 4349 case TargetOpcode::G_MUL: 4350 case TargetOpcode::G_AND: 4351 case TargetOpcode::G_OR: 4352 case TargetOpcode::G_XOR: 4353 break; 4354 } 4355 4356 // Find the mask on the RHS. 4357 auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI); 4358 if (!Cst) 4359 return false; 4360 auto Mask = Cst->Value; 4361 if (!Mask.isMask()) 4362 return false; 4363 4364 // No point in combining if there's nothing to truncate. 4365 unsigned NarrowWidth = Mask.countTrailingOnes(); 4366 if (NarrowWidth == WideTy.getSizeInBits()) 4367 return false; 4368 LLT NarrowTy = LLT::scalar(NarrowWidth); 4369 4370 // Check if adding the zext + truncates could be harmful. 4371 auto &MF = *MI.getMF(); 4372 const auto &TLI = getTargetLowering(); 4373 LLVMContext &Ctx = MF.getFunction().getContext(); 4374 auto &DL = MF.getDataLayout(); 4375 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 4376 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 4377 return false; 4378 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 4379 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 4380 return false; 4381 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 4382 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 4383 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4384 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 4385 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 4386 auto NarrowBinOp = 4387 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 4388 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 4389 Observer.changingInstr(MI); 4390 MI.getOperand(1).setReg(Ext.getReg(0)); 4391 Observer.changedInstr(MI); 4392 }; 4393 return true; 4394 } 4395 4396 bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) { 4397 unsigned Opc = MI.getOpcode(); 4398 assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO); 4399 // Check for a constant 2 or a splat of 2 on the RHS. 4400 auto RHS = MI.getOperand(3).getReg(); 4401 bool IsVector = MRI.getType(RHS).isVector(); 4402 if (!IsVector && !mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(2))) 4403 return false; 4404 if (IsVector) { 4405 // FIXME: There's no mi_match pattern for this yet. 4406 auto *RHSDef = getDefIgnoringCopies(RHS, MRI); 4407 if (!RHSDef) 4408 return false; 4409 auto Splat = getBuildVectorConstantSplat(*RHSDef, MRI); 4410 if (!Splat || *Splat != 2) 4411 return false; 4412 } 4413 4414 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4415 Observer.changingInstr(MI); 4416 unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO 4417 : TargetOpcode::G_SADDO; 4418 MI.setDesc(Builder.getTII().get(NewOpc)); 4419 MI.getOperand(3).setReg(MI.getOperand(2).getReg()); 4420 Observer.changedInstr(MI); 4421 }; 4422 return true; 4423 } 4424 4425 bool CombinerHelper::tryCombine(MachineInstr &MI) { 4426 if (tryCombineCopy(MI)) 4427 return true; 4428 if (tryCombineExtendingLoads(MI)) 4429 return true; 4430 if (tryCombineIndexedLoadStore(MI)) 4431 return true; 4432 return false; 4433 } 4434