1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 15 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 16 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 17 #include "llvm/CodeGen/GlobalISel/Utils.h" 18 #include "llvm/CodeGen/LowLevelType.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineDominators.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineMemOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/TargetInstrInfo.h" 26 #include "llvm/CodeGen/TargetLowering.h" 27 #include "llvm/CodeGen/TargetOpcodes.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Target/TargetMachine.h" 30 31 #define DEBUG_TYPE "gi-combiner" 32 33 using namespace llvm; 34 using namespace MIPatternMatch; 35 36 // Option to allow testing of the combiner while no targets know about indexed 37 // addressing. 38 static cl::opt<bool> 39 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 40 cl::desc("Force all indexed operations to be " 41 "legal for the GlobalISel combiner")); 42 43 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 44 MachineIRBuilder &B, GISelKnownBits *KB, 45 MachineDominatorTree *MDT, 46 const LegalizerInfo *LI) 47 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 48 KB(KB), MDT(MDT), LI(LI) { 49 (void)this->KB; 50 } 51 52 const TargetLowering &CombinerHelper::getTargetLowering() const { 53 return *Builder.getMF().getSubtarget().getTargetLowering(); 54 } 55 56 /// \returns The little endian in-memory byte position of byte \p I in a 57 /// \p ByteWidth bytes wide type. 58 /// 59 /// E.g. Given a 4-byte type x, x[0] -> byte 0 60 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 61 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 62 return I; 63 } 64 65 /// \returns The big endian in-memory byte position of byte \p I in a 66 /// \p ByteWidth bytes wide type. 67 /// 68 /// E.g. Given a 4-byte type x, x[0] -> byte 3 69 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 70 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 71 return ByteWidth - I - 1; 72 } 73 74 /// Given a map from byte offsets in memory to indices in a load/store, 75 /// determine if that map corresponds to a little or big endian byte pattern. 76 /// 77 /// \param MemOffset2Idx maps memory offsets to address offsets. 78 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 79 /// 80 /// \returns true if the map corresponds to a big endian byte pattern, false 81 /// if it corresponds to a little endian byte pattern, and None otherwise. 82 /// 83 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 84 /// are as follows: 85 /// 86 /// AddrOffset Little endian Big endian 87 /// 0 0 3 88 /// 1 1 2 89 /// 2 2 1 90 /// 3 3 0 91 static Optional<bool> 92 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 93 int64_t LowestIdx) { 94 // Need at least two byte positions to decide on endianness. 95 unsigned Width = MemOffset2Idx.size(); 96 if (Width < 2) 97 return None; 98 bool BigEndian = true, LittleEndian = true; 99 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 100 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 101 if (MemOffsetAndIdx == MemOffset2Idx.end()) 102 return None; 103 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 104 assert(Idx >= 0 && "Expected non-negative byte offset?"); 105 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 106 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 107 if (!BigEndian && !LittleEndian) 108 return None; 109 } 110 111 assert((BigEndian != LittleEndian) && 112 "Pattern cannot be both big and little endian!"); 113 return BigEndian; 114 } 115 116 bool CombinerHelper::isLegalOrBeforeLegalizer( 117 const LegalityQuery &Query) const { 118 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 119 } 120 121 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 122 Register ToReg) const { 123 Observer.changingAllUsesOfReg(MRI, FromReg); 124 125 if (MRI.constrainRegAttrs(ToReg, FromReg)) 126 MRI.replaceRegWith(FromReg, ToReg); 127 else 128 Builder.buildCopy(ToReg, FromReg); 129 130 Observer.finishedChangingAllUsesOfReg(); 131 } 132 133 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 134 MachineOperand &FromRegOp, 135 Register ToReg) const { 136 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 137 Observer.changingInstr(*FromRegOp.getParent()); 138 139 FromRegOp.setReg(ToReg); 140 141 Observer.changedInstr(*FromRegOp.getParent()); 142 } 143 144 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 145 if (matchCombineCopy(MI)) { 146 applyCombineCopy(MI); 147 return true; 148 } 149 return false; 150 } 151 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 152 if (MI.getOpcode() != TargetOpcode::COPY) 153 return false; 154 Register DstReg = MI.getOperand(0).getReg(); 155 Register SrcReg = MI.getOperand(1).getReg(); 156 return canReplaceReg(DstReg, SrcReg, MRI); 157 } 158 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 159 Register DstReg = MI.getOperand(0).getReg(); 160 Register SrcReg = MI.getOperand(1).getReg(); 161 MI.eraseFromParent(); 162 replaceRegWith(MRI, DstReg, SrcReg); 163 } 164 165 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 166 bool IsUndef = false; 167 SmallVector<Register, 4> Ops; 168 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 169 applyCombineConcatVectors(MI, IsUndef, Ops); 170 return true; 171 } 172 return false; 173 } 174 175 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 176 SmallVectorImpl<Register> &Ops) { 177 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 178 "Invalid instruction"); 179 IsUndef = true; 180 MachineInstr *Undef = nullptr; 181 182 // Walk over all the operands of concat vectors and check if they are 183 // build_vector themselves or undef. 184 // Then collect their operands in Ops. 185 for (const MachineOperand &MO : MI.uses()) { 186 Register Reg = MO.getReg(); 187 MachineInstr *Def = MRI.getVRegDef(Reg); 188 assert(Def && "Operand not defined"); 189 switch (Def->getOpcode()) { 190 case TargetOpcode::G_BUILD_VECTOR: 191 IsUndef = false; 192 // Remember the operands of the build_vector to fold 193 // them into the yet-to-build flattened concat vectors. 194 for (const MachineOperand &BuildVecMO : Def->uses()) 195 Ops.push_back(BuildVecMO.getReg()); 196 break; 197 case TargetOpcode::G_IMPLICIT_DEF: { 198 LLT OpType = MRI.getType(Reg); 199 // Keep one undef value for all the undef operands. 200 if (!Undef) { 201 Builder.setInsertPt(*MI.getParent(), MI); 202 Undef = Builder.buildUndef(OpType.getScalarType()); 203 } 204 assert(MRI.getType(Undef->getOperand(0).getReg()) == 205 OpType.getScalarType() && 206 "All undefs should have the same type"); 207 // Break the undef vector in as many scalar elements as needed 208 // for the flattening. 209 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 210 EltIdx != EltEnd; ++EltIdx) 211 Ops.push_back(Undef->getOperand(0).getReg()); 212 break; 213 } 214 default: 215 return false; 216 } 217 } 218 return true; 219 } 220 void CombinerHelper::applyCombineConcatVectors( 221 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 222 // We determined that the concat_vectors can be flatten. 223 // Generate the flattened build_vector. 224 Register DstReg = MI.getOperand(0).getReg(); 225 Builder.setInsertPt(*MI.getParent(), MI); 226 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 227 228 // Note: IsUndef is sort of redundant. We could have determine it by 229 // checking that at all Ops are undef. Alternatively, we could have 230 // generate a build_vector of undefs and rely on another combine to 231 // clean that up. For now, given we already gather this information 232 // in tryCombineConcatVectors, just save compile time and issue the 233 // right thing. 234 if (IsUndef) 235 Builder.buildUndef(NewDstReg); 236 else 237 Builder.buildBuildVector(NewDstReg, Ops); 238 MI.eraseFromParent(); 239 replaceRegWith(MRI, DstReg, NewDstReg); 240 } 241 242 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 243 SmallVector<Register, 4> Ops; 244 if (matchCombineShuffleVector(MI, Ops)) { 245 applyCombineShuffleVector(MI, Ops); 246 return true; 247 } 248 return false; 249 } 250 251 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 252 SmallVectorImpl<Register> &Ops) { 253 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 254 "Invalid instruction kind"); 255 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 256 Register Src1 = MI.getOperand(1).getReg(); 257 LLT SrcType = MRI.getType(Src1); 258 // As bizarre as it may look, shuffle vector can actually produce 259 // scalar! This is because at the IR level a <1 x ty> shuffle 260 // vector is perfectly valid. 261 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 262 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 263 264 // If the resulting vector is smaller than the size of the source 265 // vectors being concatenated, we won't be able to replace the 266 // shuffle vector into a concat_vectors. 267 // 268 // Note: We may still be able to produce a concat_vectors fed by 269 // extract_vector_elt and so on. It is less clear that would 270 // be better though, so don't bother for now. 271 // 272 // If the destination is a scalar, the size of the sources doesn't 273 // matter. we will lower the shuffle to a plain copy. This will 274 // work only if the source and destination have the same size. But 275 // that's covered by the next condition. 276 // 277 // TODO: If the size between the source and destination don't match 278 // we could still emit an extract vector element in that case. 279 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 280 return false; 281 282 // Check that the shuffle mask can be broken evenly between the 283 // different sources. 284 if (DstNumElts % SrcNumElts != 0) 285 return false; 286 287 // Mask length is a multiple of the source vector length. 288 // Check if the shuffle is some kind of concatenation of the input 289 // vectors. 290 unsigned NumConcat = DstNumElts / SrcNumElts; 291 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 292 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 293 for (unsigned i = 0; i != DstNumElts; ++i) { 294 int Idx = Mask[i]; 295 // Undef value. 296 if (Idx < 0) 297 continue; 298 // Ensure the indices in each SrcType sized piece are sequential and that 299 // the same source is used for the whole piece. 300 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 301 (ConcatSrcs[i / SrcNumElts] >= 0 && 302 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 303 return false; 304 // Remember which source this index came from. 305 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 306 } 307 308 // The shuffle is concatenating multiple vectors together. 309 // Collect the different operands for that. 310 Register UndefReg; 311 Register Src2 = MI.getOperand(2).getReg(); 312 for (auto Src : ConcatSrcs) { 313 if (Src < 0) { 314 if (!UndefReg) { 315 Builder.setInsertPt(*MI.getParent(), MI); 316 UndefReg = Builder.buildUndef(SrcType).getReg(0); 317 } 318 Ops.push_back(UndefReg); 319 } else if (Src == 0) 320 Ops.push_back(Src1); 321 else 322 Ops.push_back(Src2); 323 } 324 return true; 325 } 326 327 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 328 const ArrayRef<Register> Ops) { 329 Register DstReg = MI.getOperand(0).getReg(); 330 Builder.setInsertPt(*MI.getParent(), MI); 331 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 332 333 if (Ops.size() == 1) 334 Builder.buildCopy(NewDstReg, Ops[0]); 335 else 336 Builder.buildMerge(NewDstReg, Ops); 337 338 MI.eraseFromParent(); 339 replaceRegWith(MRI, DstReg, NewDstReg); 340 } 341 342 namespace { 343 344 /// Select a preference between two uses. CurrentUse is the current preference 345 /// while *ForCandidate is attributes of the candidate under consideration. 346 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 347 const LLT TyForCandidate, 348 unsigned OpcodeForCandidate, 349 MachineInstr *MIForCandidate) { 350 if (!CurrentUse.Ty.isValid()) { 351 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 352 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 353 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 354 return CurrentUse; 355 } 356 357 // We permit the extend to hoist through basic blocks but this is only 358 // sensible if the target has extending loads. If you end up lowering back 359 // into a load and extend during the legalizer then the end result is 360 // hoisting the extend up to the load. 361 362 // Prefer defined extensions to undefined extensions as these are more 363 // likely to reduce the number of instructions. 364 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 365 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 366 return CurrentUse; 367 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 368 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 369 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 370 371 // Prefer sign extensions to zero extensions as sign-extensions tend to be 372 // more expensive. 373 if (CurrentUse.Ty == TyForCandidate) { 374 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 375 OpcodeForCandidate == TargetOpcode::G_ZEXT) 376 return CurrentUse; 377 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 378 OpcodeForCandidate == TargetOpcode::G_SEXT) 379 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 380 } 381 382 // This is potentially target specific. We've chosen the largest type 383 // because G_TRUNC is usually free. One potential catch with this is that 384 // some targets have a reduced number of larger registers than smaller 385 // registers and this choice potentially increases the live-range for the 386 // larger value. 387 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 388 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 389 } 390 return CurrentUse; 391 } 392 393 /// Find a suitable place to insert some instructions and insert them. This 394 /// function accounts for special cases like inserting before a PHI node. 395 /// The current strategy for inserting before PHI's is to duplicate the 396 /// instructions for each predecessor. However, while that's ok for G_TRUNC 397 /// on most targets since it generally requires no code, other targets/cases may 398 /// want to try harder to find a dominating block. 399 static void InsertInsnsWithoutSideEffectsBeforeUse( 400 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 401 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 402 MachineOperand &UseMO)> 403 Inserter) { 404 MachineInstr &UseMI = *UseMO.getParent(); 405 406 MachineBasicBlock *InsertBB = UseMI.getParent(); 407 408 // If the use is a PHI then we want the predecessor block instead. 409 if (UseMI.isPHI()) { 410 MachineOperand *PredBB = std::next(&UseMO); 411 InsertBB = PredBB->getMBB(); 412 } 413 414 // If the block is the same block as the def then we want to insert just after 415 // the def instead of at the start of the block. 416 if (InsertBB == DefMI.getParent()) { 417 MachineBasicBlock::iterator InsertPt = &DefMI; 418 Inserter(InsertBB, std::next(InsertPt), UseMO); 419 return; 420 } 421 422 // Otherwise we want the start of the BB 423 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 424 } 425 } // end anonymous namespace 426 427 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 428 PreferredTuple Preferred; 429 if (matchCombineExtendingLoads(MI, Preferred)) { 430 applyCombineExtendingLoads(MI, Preferred); 431 return true; 432 } 433 return false; 434 } 435 436 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 437 PreferredTuple &Preferred) { 438 // We match the loads and follow the uses to the extend instead of matching 439 // the extends and following the def to the load. This is because the load 440 // must remain in the same position for correctness (unless we also add code 441 // to find a safe place to sink it) whereas the extend is freely movable. 442 // It also prevents us from duplicating the load for the volatile case or just 443 // for performance. 444 445 if (MI.getOpcode() != TargetOpcode::G_LOAD && 446 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 447 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 448 return false; 449 450 auto &LoadValue = MI.getOperand(0); 451 assert(LoadValue.isReg() && "Result wasn't a register?"); 452 453 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 454 if (!LoadValueTy.isScalar()) 455 return false; 456 457 // Most architectures are going to legalize <s8 loads into at least a 1 byte 458 // load, and the MMOs can only describe memory accesses in multiples of bytes. 459 // If we try to perform extload combining on those, we can end up with 460 // %a(s8) = extload %ptr (load 1 byte from %ptr) 461 // ... which is an illegal extload instruction. 462 if (LoadValueTy.getSizeInBits() < 8) 463 return false; 464 465 // For non power-of-2 types, they will very likely be legalized into multiple 466 // loads. Don't bother trying to match them into extending loads. 467 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 468 return false; 469 470 // Find the preferred type aside from the any-extends (unless it's the only 471 // one) and non-extending ops. We'll emit an extending load to that type and 472 // and emit a variant of (extend (trunc X)) for the others according to the 473 // relative type sizes. At the same time, pick an extend to use based on the 474 // extend involved in the chosen type. 475 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 476 ? TargetOpcode::G_ANYEXT 477 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 478 ? TargetOpcode::G_SEXT 479 : TargetOpcode::G_ZEXT; 480 Preferred = {LLT(), PreferredOpcode, nullptr}; 481 for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) { 482 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 483 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 484 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 485 const auto &MMO = **MI.memoperands_begin(); 486 // For atomics, only form anyextending loads. 487 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 488 continue; 489 // Check for legality. 490 if (LI) { 491 LegalityQuery::MemDesc MMDesc; 492 MMDesc.MemoryTy = MMO.getMemoryType(); 493 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 494 MMDesc.Ordering = MMO.getSuccessOrdering(); 495 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 496 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 497 if (LI->getAction({MI.getOpcode(), {UseTy, SrcTy}, {MMDesc}}).Action != 498 LegalizeActions::Legal) 499 continue; 500 } 501 Preferred = ChoosePreferredUse(Preferred, 502 MRI.getType(UseMI.getOperand(0).getReg()), 503 UseMI.getOpcode(), &UseMI); 504 } 505 } 506 507 // There were no extends 508 if (!Preferred.MI) 509 return false; 510 // It should be impossible to chose an extend without selecting a different 511 // type since by definition the result of an extend is larger. 512 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 513 514 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 515 return true; 516 } 517 518 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 519 PreferredTuple &Preferred) { 520 // Rewrite the load to the chosen extending load. 521 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 522 523 // Inserter to insert a truncate back to the original type at a given point 524 // with some basic CSE to limit truncate duplication to one per BB. 525 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 526 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 527 MachineBasicBlock::iterator InsertBefore, 528 MachineOperand &UseMO) { 529 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 530 if (PreviouslyEmitted) { 531 Observer.changingInstr(*UseMO.getParent()); 532 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 533 Observer.changedInstr(*UseMO.getParent()); 534 return; 535 } 536 537 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 538 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 539 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 540 EmittedInsns[InsertIntoBB] = NewMI; 541 replaceRegOpWith(MRI, UseMO, NewDstReg); 542 }; 543 544 Observer.changingInstr(MI); 545 MI.setDesc( 546 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 547 ? TargetOpcode::G_SEXTLOAD 548 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 549 ? TargetOpcode::G_ZEXTLOAD 550 : TargetOpcode::G_LOAD)); 551 552 // Rewrite all the uses to fix up the types. 553 auto &LoadValue = MI.getOperand(0); 554 SmallVector<MachineOperand *, 4> Uses; 555 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 556 Uses.push_back(&UseMO); 557 558 for (auto *UseMO : Uses) { 559 MachineInstr *UseMI = UseMO->getParent(); 560 561 // If the extend is compatible with the preferred extend then we should fix 562 // up the type and extend so that it uses the preferred use. 563 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 564 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 565 Register UseDstReg = UseMI->getOperand(0).getReg(); 566 MachineOperand &UseSrcMO = UseMI->getOperand(1); 567 const LLT UseDstTy = MRI.getType(UseDstReg); 568 if (UseDstReg != ChosenDstReg) { 569 if (Preferred.Ty == UseDstTy) { 570 // If the use has the same type as the preferred use, then merge 571 // the vregs and erase the extend. For example: 572 // %1:_(s8) = G_LOAD ... 573 // %2:_(s32) = G_SEXT %1(s8) 574 // %3:_(s32) = G_ANYEXT %1(s8) 575 // ... = ... %3(s32) 576 // rewrites to: 577 // %2:_(s32) = G_SEXTLOAD ... 578 // ... = ... %2(s32) 579 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 580 Observer.erasingInstr(*UseMO->getParent()); 581 UseMO->getParent()->eraseFromParent(); 582 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 583 // If the preferred size is smaller, then keep the extend but extend 584 // from the result of the extending load. For example: 585 // %1:_(s8) = G_LOAD ... 586 // %2:_(s32) = G_SEXT %1(s8) 587 // %3:_(s64) = G_ANYEXT %1(s8) 588 // ... = ... %3(s64) 589 /// rewrites to: 590 // %2:_(s32) = G_SEXTLOAD ... 591 // %3:_(s64) = G_ANYEXT %2:_(s32) 592 // ... = ... %3(s64) 593 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 594 } else { 595 // If the preferred size is large, then insert a truncate. For 596 // example: 597 // %1:_(s8) = G_LOAD ... 598 // %2:_(s64) = G_SEXT %1(s8) 599 // %3:_(s32) = G_ZEXT %1(s8) 600 // ... = ... %3(s32) 601 /// rewrites to: 602 // %2:_(s64) = G_SEXTLOAD ... 603 // %4:_(s8) = G_TRUNC %2:_(s32) 604 // %3:_(s64) = G_ZEXT %2:_(s8) 605 // ... = ... %3(s64) 606 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 607 InsertTruncAt); 608 } 609 continue; 610 } 611 // The use is (one of) the uses of the preferred use we chose earlier. 612 // We're going to update the load to def this value later so just erase 613 // the old extend. 614 Observer.erasingInstr(*UseMO->getParent()); 615 UseMO->getParent()->eraseFromParent(); 616 continue; 617 } 618 619 // The use isn't an extend. Truncate back to the type we originally loaded. 620 // This is free on many targets. 621 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 622 } 623 624 MI.getOperand(0).setReg(ChosenDstReg); 625 Observer.changedInstr(MI); 626 } 627 628 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 629 const MachineInstr &UseMI) { 630 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 631 "shouldn't consider debug uses"); 632 assert(DefMI.getParent() == UseMI.getParent()); 633 if (&DefMI == &UseMI) 634 return false; 635 const MachineBasicBlock &MBB = *DefMI.getParent(); 636 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 637 return &MI == &DefMI || &MI == &UseMI; 638 }); 639 if (DefOrUse == MBB.end()) 640 llvm_unreachable("Block must contain both DefMI and UseMI!"); 641 return &*DefOrUse == &DefMI; 642 } 643 644 bool CombinerHelper::dominates(const MachineInstr &DefMI, 645 const MachineInstr &UseMI) { 646 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 647 "shouldn't consider debug uses"); 648 if (MDT) 649 return MDT->dominates(&DefMI, &UseMI); 650 else if (DefMI.getParent() != UseMI.getParent()) 651 return false; 652 653 return isPredecessor(DefMI, UseMI); 654 } 655 656 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 657 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 658 Register SrcReg = MI.getOperand(1).getReg(); 659 Register LoadUser = SrcReg; 660 661 if (MRI.getType(SrcReg).isVector()) 662 return false; 663 664 Register TruncSrc; 665 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 666 LoadUser = TruncSrc; 667 668 uint64_t SizeInBits = MI.getOperand(2).getImm(); 669 // If the source is a G_SEXTLOAD from the same bit width, then we don't 670 // need any extend at all, just a truncate. 671 if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) { 672 const auto &MMO = **LoadMI->memoperands_begin(); 673 // If truncating more than the original extended value, abort. 674 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits()) 675 return false; 676 if (MMO.getSizeInBits() == SizeInBits) 677 return true; 678 } 679 return false; 680 } 681 682 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 683 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 684 Builder.setInstrAndDebugLoc(MI); 685 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 686 MI.eraseFromParent(); 687 } 688 689 bool CombinerHelper::matchSextInRegOfLoad( 690 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 691 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 692 693 // Only supports scalars for now. 694 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 695 return false; 696 697 Register SrcReg = MI.getOperand(1).getReg(); 698 MachineInstr *LoadDef = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI); 699 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg())) 700 return false; 701 702 // If the sign extend extends from a narrower width than the load's width, 703 // then we can narrow the load width when we combine to a G_SEXTLOAD. 704 auto &MMO = **LoadDef->memoperands_begin(); 705 // Don't do this for non-simple loads. 706 if (MMO.isAtomic() || MMO.isVolatile()) 707 return false; 708 709 // Avoid widening the load at all. 710 unsigned NewSizeBits = 711 std::min((uint64_t)MI.getOperand(2).getImm(), MMO.getSizeInBits()); 712 713 // Don't generate G_SEXTLOADs with a < 1 byte width. 714 if (NewSizeBits < 8) 715 return false; 716 // Don't bother creating a non-power-2 sextload, it will likely be broken up 717 // anyway for most targets. 718 if (!isPowerOf2_32(NewSizeBits)) 719 return false; 720 MatchInfo = std::make_tuple(LoadDef->getOperand(0).getReg(), NewSizeBits); 721 return true; 722 } 723 724 void CombinerHelper::applySextInRegOfLoad( 725 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 726 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 727 Register LoadReg; 728 unsigned ScalarSizeBits; 729 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 730 auto *LoadDef = MRI.getVRegDef(LoadReg); 731 assert(LoadDef && "Expected a load reg"); 732 733 // If we have the following: 734 // %ld = G_LOAD %ptr, (load 2) 735 // %ext = G_SEXT_INREG %ld, 8 736 // ==> 737 // %ld = G_SEXTLOAD %ptr (load 1) 738 739 auto &MMO = **LoadDef->memoperands_begin(); 740 Builder.setInstrAndDebugLoc(*LoadDef); 741 auto &MF = Builder.getMF(); 742 auto PtrInfo = MMO.getPointerInfo(); 743 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 744 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 745 LoadDef->getOperand(1).getReg(), *NewMMO); 746 MI.eraseFromParent(); 747 } 748 749 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 750 Register &Base, Register &Offset) { 751 auto &MF = *MI.getParent()->getParent(); 752 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 753 754 #ifndef NDEBUG 755 unsigned Opcode = MI.getOpcode(); 756 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 757 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 758 #endif 759 760 Base = MI.getOperand(1).getReg(); 761 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 762 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 763 return false; 764 765 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 766 // FIXME: The following use traversal needs a bail out for patholigical cases. 767 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 768 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 769 continue; 770 771 Offset = Use.getOperand(2).getReg(); 772 if (!ForceLegalIndexing && 773 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 774 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 775 << Use); 776 continue; 777 } 778 779 // Make sure the offset calculation is before the potentially indexed op. 780 // FIXME: we really care about dependency here. The offset calculation might 781 // be movable. 782 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 783 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 784 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 785 << Use); 786 continue; 787 } 788 789 // FIXME: check whether all uses of Base are load/store with foldable 790 // addressing modes. If so, using the normal addr-modes is better than 791 // forming an indexed one. 792 793 bool MemOpDominatesAddrUses = true; 794 for (auto &PtrAddUse : 795 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 796 if (!dominates(MI, PtrAddUse)) { 797 MemOpDominatesAddrUses = false; 798 break; 799 } 800 } 801 802 if (!MemOpDominatesAddrUses) { 803 LLVM_DEBUG( 804 dbgs() << " Ignoring candidate as memop does not dominate uses: " 805 << Use); 806 continue; 807 } 808 809 LLVM_DEBUG(dbgs() << " Found match: " << Use); 810 Addr = Use.getOperand(0).getReg(); 811 return true; 812 } 813 814 return false; 815 } 816 817 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 818 Register &Base, Register &Offset) { 819 auto &MF = *MI.getParent()->getParent(); 820 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 821 822 #ifndef NDEBUG 823 unsigned Opcode = MI.getOpcode(); 824 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 825 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 826 #endif 827 828 Addr = MI.getOperand(1).getReg(); 829 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 830 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 831 return false; 832 833 Base = AddrDef->getOperand(1).getReg(); 834 Offset = AddrDef->getOperand(2).getReg(); 835 836 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 837 838 if (!ForceLegalIndexing && 839 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 840 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 841 return false; 842 } 843 844 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 845 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 846 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 847 return false; 848 } 849 850 if (MI.getOpcode() == TargetOpcode::G_STORE) { 851 // Would require a copy. 852 if (Base == MI.getOperand(0).getReg()) { 853 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 854 return false; 855 } 856 857 // We're expecting one use of Addr in MI, but it could also be the 858 // value stored, which isn't actually dominated by the instruction. 859 if (MI.getOperand(0).getReg() == Addr) { 860 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 861 return false; 862 } 863 } 864 865 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 866 // That might allow us to end base's liveness here by adjusting the constant. 867 868 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 869 if (!dominates(MI, UseMI)) { 870 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 871 return false; 872 } 873 } 874 875 return true; 876 } 877 878 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 879 IndexedLoadStoreMatchInfo MatchInfo; 880 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 881 applyCombineIndexedLoadStore(MI, MatchInfo); 882 return true; 883 } 884 return false; 885 } 886 887 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 888 unsigned Opcode = MI.getOpcode(); 889 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 890 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 891 return false; 892 893 // For now, no targets actually support these opcodes so don't waste time 894 // running these unless we're forced to for testing. 895 if (!ForceLegalIndexing) 896 return false; 897 898 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 899 MatchInfo.Offset); 900 if (!MatchInfo.IsPre && 901 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 902 MatchInfo.Offset)) 903 return false; 904 905 return true; 906 } 907 908 void CombinerHelper::applyCombineIndexedLoadStore( 909 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 910 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 911 MachineIRBuilder MIRBuilder(MI); 912 unsigned Opcode = MI.getOpcode(); 913 bool IsStore = Opcode == TargetOpcode::G_STORE; 914 unsigned NewOpcode; 915 switch (Opcode) { 916 case TargetOpcode::G_LOAD: 917 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 918 break; 919 case TargetOpcode::G_SEXTLOAD: 920 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 921 break; 922 case TargetOpcode::G_ZEXTLOAD: 923 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 924 break; 925 case TargetOpcode::G_STORE: 926 NewOpcode = TargetOpcode::G_INDEXED_STORE; 927 break; 928 default: 929 llvm_unreachable("Unknown load/store opcode"); 930 } 931 932 auto MIB = MIRBuilder.buildInstr(NewOpcode); 933 if (IsStore) { 934 MIB.addDef(MatchInfo.Addr); 935 MIB.addUse(MI.getOperand(0).getReg()); 936 } else { 937 MIB.addDef(MI.getOperand(0).getReg()); 938 MIB.addDef(MatchInfo.Addr); 939 } 940 941 MIB.addUse(MatchInfo.Base); 942 MIB.addUse(MatchInfo.Offset); 943 MIB.addImm(MatchInfo.IsPre); 944 MI.eraseFromParent(); 945 AddrDef.eraseFromParent(); 946 947 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 948 } 949 950 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 951 MachineInstr *&OtherMI) { 952 unsigned Opcode = MI.getOpcode(); 953 bool IsDiv, IsSigned; 954 955 switch (Opcode) { 956 default: 957 llvm_unreachable("Unexpected opcode!"); 958 case TargetOpcode::G_SDIV: 959 case TargetOpcode::G_UDIV: { 960 IsDiv = true; 961 IsSigned = Opcode == TargetOpcode::G_SDIV; 962 break; 963 } 964 case TargetOpcode::G_SREM: 965 case TargetOpcode::G_UREM: { 966 IsDiv = false; 967 IsSigned = Opcode == TargetOpcode::G_SREM; 968 break; 969 } 970 } 971 972 Register Src1 = MI.getOperand(1).getReg(); 973 unsigned DivOpcode, RemOpcode, DivremOpcode; 974 if (IsSigned) { 975 DivOpcode = TargetOpcode::G_SDIV; 976 RemOpcode = TargetOpcode::G_SREM; 977 DivremOpcode = TargetOpcode::G_SDIVREM; 978 } else { 979 DivOpcode = TargetOpcode::G_UDIV; 980 RemOpcode = TargetOpcode::G_UREM; 981 DivremOpcode = TargetOpcode::G_UDIVREM; 982 } 983 984 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 985 return false; 986 987 // Combine: 988 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 989 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 990 // into: 991 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 992 993 // Combine: 994 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 995 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 996 // into: 997 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 998 999 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1000 if (MI.getParent() == UseMI.getParent() && 1001 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1002 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1003 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1004 OtherMI = &UseMI; 1005 return true; 1006 } 1007 } 1008 1009 return false; 1010 } 1011 1012 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1013 MachineInstr *&OtherMI) { 1014 unsigned Opcode = MI.getOpcode(); 1015 assert(OtherMI && "OtherMI shouldn't be empty."); 1016 1017 Register DestDivReg, DestRemReg; 1018 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1019 DestDivReg = MI.getOperand(0).getReg(); 1020 DestRemReg = OtherMI->getOperand(0).getReg(); 1021 } else { 1022 DestDivReg = OtherMI->getOperand(0).getReg(); 1023 DestRemReg = MI.getOperand(0).getReg(); 1024 } 1025 1026 bool IsSigned = 1027 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1028 1029 // Check which instruction is first in the block so we don't break def-use 1030 // deps by "moving" the instruction incorrectly. 1031 if (dominates(MI, *OtherMI)) 1032 Builder.setInstrAndDebugLoc(MI); 1033 else 1034 Builder.setInstrAndDebugLoc(*OtherMI); 1035 1036 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1037 : TargetOpcode::G_UDIVREM, 1038 {DestDivReg, DestRemReg}, 1039 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1040 MI.eraseFromParent(); 1041 OtherMI->eraseFromParent(); 1042 } 1043 1044 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1045 MachineInstr *&BrCond) { 1046 assert(MI.getOpcode() == TargetOpcode::G_BR); 1047 1048 // Try to match the following: 1049 // bb1: 1050 // G_BRCOND %c1, %bb2 1051 // G_BR %bb3 1052 // bb2: 1053 // ... 1054 // bb3: 1055 1056 // The above pattern does not have a fall through to the successor bb2, always 1057 // resulting in a branch no matter which path is taken. Here we try to find 1058 // and replace that pattern with conditional branch to bb3 and otherwise 1059 // fallthrough to bb2. This is generally better for branch predictors. 1060 1061 MachineBasicBlock *MBB = MI.getParent(); 1062 MachineBasicBlock::iterator BrIt(MI); 1063 if (BrIt == MBB->begin()) 1064 return false; 1065 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1066 1067 BrCond = &*std::prev(BrIt); 1068 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1069 return false; 1070 1071 // Check that the next block is the conditional branch target. Also make sure 1072 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1073 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1074 return BrCondTarget != MI.getOperand(0).getMBB() && 1075 MBB->isLayoutSuccessor(BrCondTarget); 1076 } 1077 1078 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1079 MachineInstr *&BrCond) { 1080 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1081 Builder.setInstrAndDebugLoc(*BrCond); 1082 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1083 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1084 // this to i1 only since we might not know for sure what kind of 1085 // compare generated the condition value. 1086 auto True = Builder.buildConstant( 1087 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1088 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1089 1090 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1091 Observer.changingInstr(MI); 1092 MI.getOperand(0).setMBB(FallthroughBB); 1093 Observer.changedInstr(MI); 1094 1095 // Change the conditional branch to use the inverted condition and 1096 // new target block. 1097 Observer.changingInstr(*BrCond); 1098 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1099 BrCond->getOperand(1).setMBB(BrTarget); 1100 Observer.changedInstr(*BrCond); 1101 } 1102 1103 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 1104 // On Darwin, -Os means optimize for size without hurting performance, so 1105 // only really optimize for size when -Oz (MinSize) is used. 1106 if (MF.getTarget().getTargetTriple().isOSDarwin()) 1107 return MF.getFunction().hasMinSize(); 1108 return MF.getFunction().hasOptSize(); 1109 } 1110 1111 // Returns a list of types to use for memory op lowering in MemOps. A partial 1112 // port of findOptimalMemOpLowering in TargetLowering. 1113 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 1114 unsigned Limit, const MemOp &Op, 1115 unsigned DstAS, unsigned SrcAS, 1116 const AttributeList &FuncAttributes, 1117 const TargetLowering &TLI) { 1118 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 1119 return false; 1120 1121 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 1122 1123 if (Ty == LLT()) { 1124 // Use the largest scalar type whose alignment constraints are satisfied. 1125 // We only need to check DstAlign here as SrcAlign is always greater or 1126 // equal to DstAlign (or zero). 1127 Ty = LLT::scalar(64); 1128 if (Op.isFixedDstAlign()) 1129 while (Op.getDstAlign() < Ty.getSizeInBytes() && 1130 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 1131 Ty = LLT::scalar(Ty.getSizeInBytes()); 1132 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 1133 // FIXME: check for the largest legal type we can load/store to. 1134 } 1135 1136 unsigned NumMemOps = 0; 1137 uint64_t Size = Op.size(); 1138 while (Size) { 1139 unsigned TySize = Ty.getSizeInBytes(); 1140 while (TySize > Size) { 1141 // For now, only use non-vector load / store's for the left-over pieces. 1142 LLT NewTy = Ty; 1143 // FIXME: check for mem op safety and legality of the types. Not all of 1144 // SDAGisms map cleanly to GISel concepts. 1145 if (NewTy.isVector()) 1146 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 1147 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 1148 unsigned NewTySize = NewTy.getSizeInBytes(); 1149 assert(NewTySize > 0 && "Could not find appropriate type"); 1150 1151 // If the new LLT cannot cover all of the remaining bits, then consider 1152 // issuing a (or a pair of) unaligned and overlapping load / store. 1153 bool Fast; 1154 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 1155 MVT VT = getMVTForLLT(Ty); 1156 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 1157 TLI.allowsMisalignedMemoryAccesses( 1158 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 1159 MachineMemOperand::MONone, &Fast) && 1160 Fast) 1161 TySize = Size; 1162 else { 1163 Ty = NewTy; 1164 TySize = NewTySize; 1165 } 1166 } 1167 1168 if (++NumMemOps > Limit) 1169 return false; 1170 1171 MemOps.push_back(Ty); 1172 Size -= TySize; 1173 } 1174 1175 return true; 1176 } 1177 1178 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1179 if (Ty.isVector()) 1180 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1181 Ty.getNumElements()); 1182 return IntegerType::get(C, Ty.getSizeInBits()); 1183 } 1184 1185 // Get a vectorized representation of the memset value operand, GISel edition. 1186 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 1187 MachineRegisterInfo &MRI = *MIB.getMRI(); 1188 unsigned NumBits = Ty.getScalarSizeInBits(); 1189 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1190 if (!Ty.isVector() && ValVRegAndVal) { 1191 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 1192 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 1193 return MIB.buildConstant(Ty, SplatVal).getReg(0); 1194 } 1195 1196 // Extend the byte value to the larger type, and then multiply by a magic 1197 // value 0x010101... in order to replicate it across every byte. 1198 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 1199 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 1200 return MIB.buildConstant(Ty, 0).getReg(0); 1201 } 1202 1203 LLT ExtType = Ty.getScalarType(); 1204 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 1205 if (NumBits > 8) { 1206 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 1207 auto MagicMI = MIB.buildConstant(ExtType, Magic); 1208 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 1209 } 1210 1211 // For vector types create a G_BUILD_VECTOR. 1212 if (Ty.isVector()) 1213 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 1214 1215 return Val; 1216 } 1217 1218 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 1219 Register Val, uint64_t KnownLen, 1220 Align Alignment, bool IsVolatile) { 1221 auto &MF = *MI.getParent()->getParent(); 1222 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1223 auto &DL = MF.getDataLayout(); 1224 LLVMContext &C = MF.getFunction().getContext(); 1225 1226 assert(KnownLen != 0 && "Have a zero length memset length!"); 1227 1228 bool DstAlignCanChange = false; 1229 MachineFrameInfo &MFI = MF.getFrameInfo(); 1230 bool OptSize = shouldLowerMemFuncForSize(MF); 1231 1232 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1233 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1234 DstAlignCanChange = true; 1235 1236 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1237 std::vector<LLT> MemOps; 1238 1239 const auto &DstMMO = **MI.memoperands_begin(); 1240 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1241 1242 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1243 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1244 1245 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1246 MemOp::Set(KnownLen, DstAlignCanChange, 1247 Alignment, 1248 /*IsZeroMemset=*/IsZeroVal, 1249 /*IsVolatile=*/IsVolatile), 1250 DstPtrInfo.getAddrSpace(), ~0u, 1251 MF.getFunction().getAttributes(), TLI)) 1252 return false; 1253 1254 if (DstAlignCanChange) { 1255 // Get an estimate of the type from the LLT. 1256 Type *IRTy = getTypeForLLT(MemOps[0], C); 1257 Align NewAlign = DL.getABITypeAlign(IRTy); 1258 if (NewAlign > Alignment) { 1259 Alignment = NewAlign; 1260 unsigned FI = FIDef->getOperand(1).getIndex(); 1261 // Give the stack frame object a larger alignment if needed. 1262 if (MFI.getObjectAlign(FI) < Alignment) 1263 MFI.setObjectAlignment(FI, Alignment); 1264 } 1265 } 1266 1267 MachineIRBuilder MIB(MI); 1268 // Find the largest store and generate the bit pattern for it. 1269 LLT LargestTy = MemOps[0]; 1270 for (unsigned i = 1; i < MemOps.size(); i++) 1271 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1272 LargestTy = MemOps[i]; 1273 1274 // The memset stored value is always defined as an s8, so in order to make it 1275 // work with larger store types we need to repeat the bit pattern across the 1276 // wider type. 1277 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1278 1279 if (!MemSetValue) 1280 return false; 1281 1282 // Generate the stores. For each store type in the list, we generate the 1283 // matching store of that type to the destination address. 1284 LLT PtrTy = MRI.getType(Dst); 1285 unsigned DstOff = 0; 1286 unsigned Size = KnownLen; 1287 for (unsigned I = 0; I < MemOps.size(); I++) { 1288 LLT Ty = MemOps[I]; 1289 unsigned TySize = Ty.getSizeInBytes(); 1290 if (TySize > Size) { 1291 // Issuing an unaligned load / store pair that overlaps with the previous 1292 // pair. Adjust the offset accordingly. 1293 assert(I == MemOps.size() - 1 && I != 0); 1294 DstOff -= TySize - Size; 1295 } 1296 1297 // If this store is smaller than the largest store see whether we can get 1298 // the smaller value for free with a truncate. 1299 Register Value = MemSetValue; 1300 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1301 MVT VT = getMVTForLLT(Ty); 1302 MVT LargestVT = getMVTForLLT(LargestTy); 1303 if (!LargestTy.isVector() && !Ty.isVector() && 1304 TLI.isTruncateFree(LargestVT, VT)) 1305 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1306 else 1307 Value = getMemsetValue(Val, Ty, MIB); 1308 if (!Value) 1309 return false; 1310 } 1311 1312 auto *StoreMMO = 1313 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1314 1315 Register Ptr = Dst; 1316 if (DstOff != 0) { 1317 auto Offset = 1318 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1319 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1320 } 1321 1322 MIB.buildStore(Value, Ptr, *StoreMMO); 1323 DstOff += Ty.getSizeInBytes(); 1324 Size -= TySize; 1325 } 1326 1327 MI.eraseFromParent(); 1328 return true; 1329 } 1330 1331 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1332 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 1333 1334 Register Dst = MI.getOperand(0).getReg(); 1335 Register Src = MI.getOperand(1).getReg(); 1336 Register Len = MI.getOperand(2).getReg(); 1337 1338 const auto *MMOIt = MI.memoperands_begin(); 1339 const MachineMemOperand *MemOp = *MMOIt; 1340 bool IsVolatile = MemOp->isVolatile(); 1341 1342 // See if this is a constant length copy 1343 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1344 // FIXME: support dynamically sized G_MEMCPY_INLINE 1345 assert(LenVRegAndVal.hasValue() && 1346 "inline memcpy with dynamic size is not yet supported"); 1347 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 1348 if (KnownLen == 0) { 1349 MI.eraseFromParent(); 1350 return true; 1351 } 1352 1353 const auto &DstMMO = **MI.memoperands_begin(); 1354 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1355 Align DstAlign = DstMMO.getBaseAlign(); 1356 Align SrcAlign = SrcMMO.getBaseAlign(); 1357 1358 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 1359 IsVolatile); 1360 } 1361 1362 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI, Register Dst, 1363 Register Src, uint64_t KnownLen, 1364 Align DstAlign, Align SrcAlign, 1365 bool IsVolatile) { 1366 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 1367 return optimizeMemcpy(MI, Dst, Src, KnownLen, 1368 std::numeric_limits<uint64_t>::max(), DstAlign, 1369 SrcAlign, IsVolatile); 1370 } 1371 1372 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1373 Register Src, uint64_t KnownLen, 1374 uint64_t Limit, Align DstAlign, 1375 Align SrcAlign, bool IsVolatile) { 1376 auto &MF = *MI.getParent()->getParent(); 1377 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1378 auto &DL = MF.getDataLayout(); 1379 LLVMContext &C = MF.getFunction().getContext(); 1380 1381 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1382 1383 bool DstAlignCanChange = false; 1384 MachineFrameInfo &MFI = MF.getFrameInfo(); 1385 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1386 1387 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1388 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1389 DstAlignCanChange = true; 1390 1391 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1392 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1393 // if the memcpy is in a tail call position. 1394 1395 std::vector<LLT> MemOps; 1396 1397 const auto &DstMMO = **MI.memoperands_begin(); 1398 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1399 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1400 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1401 1402 if (!findGISelOptimalMemOpLowering( 1403 MemOps, Limit, 1404 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1405 IsVolatile), 1406 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1407 MF.getFunction().getAttributes(), TLI)) 1408 return false; 1409 1410 if (DstAlignCanChange) { 1411 // Get an estimate of the type from the LLT. 1412 Type *IRTy = getTypeForLLT(MemOps[0], C); 1413 Align NewAlign = DL.getABITypeAlign(IRTy); 1414 1415 // Don't promote to an alignment that would require dynamic stack 1416 // realignment. 1417 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1418 if (!TRI->hasStackRealignment(MF)) 1419 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1420 NewAlign = NewAlign / 2; 1421 1422 if (NewAlign > Alignment) { 1423 Alignment = NewAlign; 1424 unsigned FI = FIDef->getOperand(1).getIndex(); 1425 // Give the stack frame object a larger alignment if needed. 1426 if (MFI.getObjectAlign(FI) < Alignment) 1427 MFI.setObjectAlignment(FI, Alignment); 1428 } 1429 } 1430 1431 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1432 1433 MachineIRBuilder MIB(MI); 1434 // Now we need to emit a pair of load and stores for each of the types we've 1435 // collected. I.e. for each type, generate a load from the source pointer of 1436 // that type width, and then generate a corresponding store to the dest buffer 1437 // of that value loaded. This can result in a sequence of loads and stores 1438 // mixed types, depending on what the target specifies as good types to use. 1439 unsigned CurrOffset = 0; 1440 LLT PtrTy = MRI.getType(Src); 1441 unsigned Size = KnownLen; 1442 for (auto CopyTy : MemOps) { 1443 // Issuing an unaligned load / store pair that overlaps with the previous 1444 // pair. Adjust the offset accordingly. 1445 if (CopyTy.getSizeInBytes() > Size) 1446 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1447 1448 // Construct MMOs for the accesses. 1449 auto *LoadMMO = 1450 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1451 auto *StoreMMO = 1452 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1453 1454 // Create the load. 1455 Register LoadPtr = Src; 1456 Register Offset; 1457 if (CurrOffset != 0) { 1458 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1459 .getReg(0); 1460 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1461 } 1462 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1463 1464 // Create the store. 1465 Register StorePtr = 1466 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1467 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1468 CurrOffset += CopyTy.getSizeInBytes(); 1469 Size -= CopyTy.getSizeInBytes(); 1470 } 1471 1472 MI.eraseFromParent(); 1473 return true; 1474 } 1475 1476 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1477 Register Src, uint64_t KnownLen, 1478 Align DstAlign, Align SrcAlign, 1479 bool IsVolatile) { 1480 auto &MF = *MI.getParent()->getParent(); 1481 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1482 auto &DL = MF.getDataLayout(); 1483 LLVMContext &C = MF.getFunction().getContext(); 1484 1485 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1486 1487 bool DstAlignCanChange = false; 1488 MachineFrameInfo &MFI = MF.getFrameInfo(); 1489 bool OptSize = shouldLowerMemFuncForSize(MF); 1490 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1491 1492 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1493 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1494 DstAlignCanChange = true; 1495 1496 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1497 std::vector<LLT> MemOps; 1498 1499 const auto &DstMMO = **MI.memoperands_begin(); 1500 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1501 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1502 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1503 1504 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1505 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1506 // same thing here. 1507 if (!findGISelOptimalMemOpLowering( 1508 MemOps, Limit, 1509 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1510 /*IsVolatile*/ true), 1511 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1512 MF.getFunction().getAttributes(), TLI)) 1513 return false; 1514 1515 if (DstAlignCanChange) { 1516 // Get an estimate of the type from the LLT. 1517 Type *IRTy = getTypeForLLT(MemOps[0], C); 1518 Align NewAlign = DL.getABITypeAlign(IRTy); 1519 1520 // Don't promote to an alignment that would require dynamic stack 1521 // realignment. 1522 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1523 if (!TRI->hasStackRealignment(MF)) 1524 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1525 NewAlign = NewAlign / 2; 1526 1527 if (NewAlign > Alignment) { 1528 Alignment = NewAlign; 1529 unsigned FI = FIDef->getOperand(1).getIndex(); 1530 // Give the stack frame object a larger alignment if needed. 1531 if (MFI.getObjectAlign(FI) < Alignment) 1532 MFI.setObjectAlignment(FI, Alignment); 1533 } 1534 } 1535 1536 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1537 1538 MachineIRBuilder MIB(MI); 1539 // Memmove requires that we perform the loads first before issuing the stores. 1540 // Apart from that, this loop is pretty much doing the same thing as the 1541 // memcpy codegen function. 1542 unsigned CurrOffset = 0; 1543 LLT PtrTy = MRI.getType(Src); 1544 SmallVector<Register, 16> LoadVals; 1545 for (auto CopyTy : MemOps) { 1546 // Construct MMO for the load. 1547 auto *LoadMMO = 1548 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1549 1550 // Create the load. 1551 Register LoadPtr = Src; 1552 if (CurrOffset != 0) { 1553 auto Offset = 1554 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1555 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1556 } 1557 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1558 CurrOffset += CopyTy.getSizeInBytes(); 1559 } 1560 1561 CurrOffset = 0; 1562 for (unsigned I = 0; I < MemOps.size(); ++I) { 1563 LLT CopyTy = MemOps[I]; 1564 // Now store the values loaded. 1565 auto *StoreMMO = 1566 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1567 1568 Register StorePtr = Dst; 1569 if (CurrOffset != 0) { 1570 auto Offset = 1571 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1572 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1573 } 1574 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1575 CurrOffset += CopyTy.getSizeInBytes(); 1576 } 1577 MI.eraseFromParent(); 1578 return true; 1579 } 1580 1581 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1582 const unsigned Opc = MI.getOpcode(); 1583 // This combine is fairly complex so it's not written with a separate 1584 // matcher function. 1585 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 1586 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); 1587 1588 auto MMOIt = MI.memoperands_begin(); 1589 const MachineMemOperand *MemOp = *MMOIt; 1590 1591 Align DstAlign = MemOp->getBaseAlign(); 1592 Align SrcAlign; 1593 Register Dst = MI.getOperand(0).getReg(); 1594 Register Src = MI.getOperand(1).getReg(); 1595 Register Len = MI.getOperand(2).getReg(); 1596 1597 if (Opc != TargetOpcode::G_MEMSET) { 1598 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1599 MemOp = *(++MMOIt); 1600 SrcAlign = MemOp->getBaseAlign(); 1601 } 1602 1603 // See if this is a constant length copy 1604 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1605 if (!LenVRegAndVal) 1606 return false; // Leave it to the legalizer to lower it to a libcall. 1607 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 1608 1609 if (KnownLen == 0) { 1610 MI.eraseFromParent(); 1611 return true; 1612 } 1613 1614 bool IsVolatile = MemOp->isVolatile(); 1615 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 1616 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 1617 IsVolatile); 1618 1619 // Don't try to optimize volatile. 1620 if (IsVolatile) 1621 return false; 1622 1623 if (MaxLen && KnownLen > MaxLen) 1624 return false; 1625 1626 if (Opc == TargetOpcode::G_MEMCPY) { 1627 auto &MF = *MI.getParent()->getParent(); 1628 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1629 bool OptSize = shouldLowerMemFuncForSize(MF); 1630 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1631 return optimizeMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 1632 IsVolatile); 1633 } 1634 if (Opc == TargetOpcode::G_MEMMOVE) 1635 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1636 if (Opc == TargetOpcode::G_MEMSET) 1637 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1638 return false; 1639 } 1640 1641 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1642 const Register Op, 1643 const MachineRegisterInfo &MRI) { 1644 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1645 if (!MaybeCst) 1646 return None; 1647 1648 APFloat V = MaybeCst->getValueAPF(); 1649 switch (Opcode) { 1650 default: 1651 llvm_unreachable("Unexpected opcode!"); 1652 case TargetOpcode::G_FNEG: { 1653 V.changeSign(); 1654 return V; 1655 } 1656 case TargetOpcode::G_FABS: { 1657 V.clearSign(); 1658 return V; 1659 } 1660 case TargetOpcode::G_FPTRUNC: 1661 break; 1662 case TargetOpcode::G_FSQRT: { 1663 bool Unused; 1664 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1665 V = APFloat(sqrt(V.convertToDouble())); 1666 break; 1667 } 1668 case TargetOpcode::G_FLOG2: { 1669 bool Unused; 1670 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1671 V = APFloat(log2(V.convertToDouble())); 1672 break; 1673 } 1674 } 1675 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1676 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1677 // and `G_FLOG2` reach here. 1678 bool Unused; 1679 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1680 return V; 1681 } 1682 1683 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1684 Optional<APFloat> &Cst) { 1685 Register DstReg = MI.getOperand(0).getReg(); 1686 Register SrcReg = MI.getOperand(1).getReg(); 1687 LLT DstTy = MRI.getType(DstReg); 1688 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1689 return Cst.hasValue(); 1690 } 1691 1692 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1693 Optional<APFloat> &Cst) { 1694 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1695 Builder.setInstrAndDebugLoc(MI); 1696 MachineFunction &MF = Builder.getMF(); 1697 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1698 Register DstReg = MI.getOperand(0).getReg(); 1699 Builder.buildFConstant(DstReg, *FPVal); 1700 MI.eraseFromParent(); 1701 } 1702 1703 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1704 PtrAddChain &MatchInfo) { 1705 // We're trying to match the following pattern: 1706 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1707 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1708 // --> 1709 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1710 1711 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1712 return false; 1713 1714 Register Add2 = MI.getOperand(1).getReg(); 1715 Register Imm1 = MI.getOperand(2).getReg(); 1716 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1717 if (!MaybeImmVal) 1718 return false; 1719 1720 // Don't do this combine if there multiple uses of the first PTR_ADD, 1721 // since we may be able to compute the second PTR_ADD as an immediate 1722 // offset anyway. Folding the first offset into the second may cause us 1723 // to go beyond the bounds of our legal addressing modes. 1724 if (!MRI.hasOneNonDBGUse(Add2)) 1725 return false; 1726 1727 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1728 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1729 return false; 1730 1731 Register Base = Add2Def->getOperand(1).getReg(); 1732 Register Imm2 = Add2Def->getOperand(2).getReg(); 1733 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1734 if (!MaybeImm2Val) 1735 return false; 1736 1737 // Pass the combined immediate to the apply function. 1738 MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue(); 1739 MatchInfo.Base = Base; 1740 return true; 1741 } 1742 1743 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1744 PtrAddChain &MatchInfo) { 1745 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1746 MachineIRBuilder MIB(MI); 1747 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1748 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1749 Observer.changingInstr(MI); 1750 MI.getOperand(1).setReg(MatchInfo.Base); 1751 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1752 Observer.changedInstr(MI); 1753 } 1754 1755 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1756 RegisterImmPair &MatchInfo) { 1757 // We're trying to match the following pattern with any of 1758 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1759 // %t1 = SHIFT %base, G_CONSTANT imm1 1760 // %root = SHIFT %t1, G_CONSTANT imm2 1761 // --> 1762 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1763 1764 unsigned Opcode = MI.getOpcode(); 1765 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1766 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1767 Opcode == TargetOpcode::G_USHLSAT) && 1768 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1769 1770 Register Shl2 = MI.getOperand(1).getReg(); 1771 Register Imm1 = MI.getOperand(2).getReg(); 1772 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1773 if (!MaybeImmVal) 1774 return false; 1775 1776 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1777 if (Shl2Def->getOpcode() != Opcode) 1778 return false; 1779 1780 Register Base = Shl2Def->getOperand(1).getReg(); 1781 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1782 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1783 if (!MaybeImm2Val) 1784 return false; 1785 1786 // Pass the combined immediate to the apply function. 1787 MatchInfo.Imm = 1788 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1789 MatchInfo.Reg = Base; 1790 1791 // There is no simple replacement for a saturating unsigned left shift that 1792 // exceeds the scalar size. 1793 if (Opcode == TargetOpcode::G_USHLSAT && 1794 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1795 return false; 1796 1797 return true; 1798 } 1799 1800 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1801 RegisterImmPair &MatchInfo) { 1802 unsigned Opcode = MI.getOpcode(); 1803 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1804 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1805 Opcode == TargetOpcode::G_USHLSAT) && 1806 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1807 1808 Builder.setInstrAndDebugLoc(MI); 1809 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1810 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1811 auto Imm = MatchInfo.Imm; 1812 1813 if (Imm >= ScalarSizeInBits) { 1814 // Any logical shift that exceeds scalar size will produce zero. 1815 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1816 Builder.buildConstant(MI.getOperand(0), 0); 1817 MI.eraseFromParent(); 1818 return; 1819 } 1820 // Arithmetic shift and saturating signed left shift have no effect beyond 1821 // scalar size. 1822 Imm = ScalarSizeInBits - 1; 1823 } 1824 1825 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1826 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1827 Observer.changingInstr(MI); 1828 MI.getOperand(1).setReg(MatchInfo.Reg); 1829 MI.getOperand(2).setReg(NewImm); 1830 Observer.changedInstr(MI); 1831 } 1832 1833 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1834 ShiftOfShiftedLogic &MatchInfo) { 1835 // We're trying to match the following pattern with any of 1836 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1837 // with any of G_AND/G_OR/G_XOR logic instructions. 1838 // %t1 = SHIFT %X, G_CONSTANT C0 1839 // %t2 = LOGIC %t1, %Y 1840 // %root = SHIFT %t2, G_CONSTANT C1 1841 // --> 1842 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1843 // %t4 = SHIFT %Y, G_CONSTANT C1 1844 // %root = LOGIC %t3, %t4 1845 unsigned ShiftOpcode = MI.getOpcode(); 1846 assert((ShiftOpcode == TargetOpcode::G_SHL || 1847 ShiftOpcode == TargetOpcode::G_ASHR || 1848 ShiftOpcode == TargetOpcode::G_LSHR || 1849 ShiftOpcode == TargetOpcode::G_USHLSAT || 1850 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1851 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1852 1853 // Match a one-use bitwise logic op. 1854 Register LogicDest = MI.getOperand(1).getReg(); 1855 if (!MRI.hasOneNonDBGUse(LogicDest)) 1856 return false; 1857 1858 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1859 unsigned LogicOpcode = LogicMI->getOpcode(); 1860 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1861 LogicOpcode != TargetOpcode::G_XOR) 1862 return false; 1863 1864 // Find a matching one-use shift by constant. 1865 const Register C1 = MI.getOperand(2).getReg(); 1866 auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); 1867 if (!MaybeImmVal) 1868 return false; 1869 1870 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1871 1872 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1873 // Shift should match previous one and should be a one-use. 1874 if (MI->getOpcode() != ShiftOpcode || 1875 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1876 return false; 1877 1878 // Must be a constant. 1879 auto MaybeImmVal = 1880 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1881 if (!MaybeImmVal) 1882 return false; 1883 1884 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1885 return true; 1886 }; 1887 1888 // Logic ops are commutative, so check each operand for a match. 1889 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1890 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1891 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1892 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1893 uint64_t C0Val; 1894 1895 if (matchFirstShift(LogicMIOp1, C0Val)) { 1896 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1897 MatchInfo.Shift2 = LogicMIOp1; 1898 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1899 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1900 MatchInfo.Shift2 = LogicMIOp2; 1901 } else 1902 return false; 1903 1904 MatchInfo.ValSum = C0Val + C1Val; 1905 1906 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1907 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1908 return false; 1909 1910 MatchInfo.Logic = LogicMI; 1911 return true; 1912 } 1913 1914 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1915 ShiftOfShiftedLogic &MatchInfo) { 1916 unsigned Opcode = MI.getOpcode(); 1917 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1918 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1919 Opcode == TargetOpcode::G_SSHLSAT) && 1920 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1921 1922 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1923 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1924 Builder.setInstrAndDebugLoc(MI); 1925 1926 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1927 1928 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1929 Register Shift1 = 1930 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1931 1932 Register Shift2Const = MI.getOperand(2).getReg(); 1933 Register Shift2 = Builder 1934 .buildInstr(Opcode, {DestType}, 1935 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1936 .getReg(0); 1937 1938 Register Dest = MI.getOperand(0).getReg(); 1939 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1940 1941 // These were one use so it's safe to remove them. 1942 MatchInfo.Shift2->eraseFromParent(); 1943 MatchInfo.Logic->eraseFromParent(); 1944 1945 MI.eraseFromParent(); 1946 } 1947 1948 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1949 unsigned &ShiftVal) { 1950 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1951 auto MaybeImmVal = 1952 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1953 if (!MaybeImmVal) 1954 return false; 1955 1956 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1957 return (static_cast<int32_t>(ShiftVal) != -1); 1958 } 1959 1960 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1961 unsigned &ShiftVal) { 1962 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1963 MachineIRBuilder MIB(MI); 1964 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1965 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1966 Observer.changingInstr(MI); 1967 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1968 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1969 Observer.changedInstr(MI); 1970 } 1971 1972 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1973 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1974 RegisterImmPair &MatchData) { 1975 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1976 1977 Register LHS = MI.getOperand(1).getReg(); 1978 1979 Register ExtSrc; 1980 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1981 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1982 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1983 return false; 1984 1985 // TODO: Should handle vector splat. 1986 Register RHS = MI.getOperand(2).getReg(); 1987 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 1988 if (!MaybeShiftAmtVal) 1989 return false; 1990 1991 if (LI) { 1992 LLT SrcTy = MRI.getType(ExtSrc); 1993 1994 // We only really care about the legality with the shifted value. We can 1995 // pick any type the constant shift amount, so ask the target what to 1996 // use. Otherwise we would have to guess and hope it is reported as legal. 1997 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1998 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1999 return false; 2000 } 2001 2002 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 2003 MatchData.Reg = ExtSrc; 2004 MatchData.Imm = ShiftAmt; 2005 2006 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 2007 return MinLeadingZeros >= ShiftAmt; 2008 } 2009 2010 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 2011 const RegisterImmPair &MatchData) { 2012 Register ExtSrcReg = MatchData.Reg; 2013 int64_t ShiftAmtVal = MatchData.Imm; 2014 2015 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 2016 Builder.setInstrAndDebugLoc(MI); 2017 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 2018 auto NarrowShift = 2019 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 2020 Builder.buildZExt(MI.getOperand(0), NarrowShift); 2021 MI.eraseFromParent(); 2022 } 2023 2024 static Register peekThroughBitcast(Register Reg, 2025 const MachineRegisterInfo &MRI) { 2026 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 2027 ; 2028 2029 return Reg; 2030 } 2031 2032 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 2033 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2034 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2035 "Expected an unmerge"); 2036 Register SrcReg = 2037 peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI); 2038 2039 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 2040 if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES && 2041 SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR && 2042 SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS) 2043 return false; 2044 2045 // Check the source type of the merge. 2046 LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg()); 2047 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 2048 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 2049 if (SrcMergeTy != Dst0Ty && !SameSize) 2050 return false; 2051 // They are the same now (modulo a bitcast). 2052 // We can collect all the src registers. 2053 for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx; 2054 ++Idx) 2055 Operands.push_back(SrcInstr->getOperand(Idx).getReg()); 2056 return true; 2057 } 2058 2059 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 2060 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2061 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2062 "Expected an unmerge"); 2063 assert((MI.getNumOperands() - 1 == Operands.size()) && 2064 "Not enough operands to replace all defs"); 2065 unsigned NumElems = MI.getNumOperands() - 1; 2066 2067 LLT SrcTy = MRI.getType(Operands[0]); 2068 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2069 bool CanReuseInputDirectly = DstTy == SrcTy; 2070 Builder.setInstrAndDebugLoc(MI); 2071 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2072 Register DstReg = MI.getOperand(Idx).getReg(); 2073 Register SrcReg = Operands[Idx]; 2074 if (CanReuseInputDirectly) 2075 replaceRegWith(MRI, DstReg, SrcReg); 2076 else 2077 Builder.buildCast(DstReg, SrcReg); 2078 } 2079 MI.eraseFromParent(); 2080 } 2081 2082 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 2083 SmallVectorImpl<APInt> &Csts) { 2084 unsigned SrcIdx = MI.getNumOperands() - 1; 2085 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 2086 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 2087 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 2088 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 2089 return false; 2090 // Break down the big constant in smaller ones. 2091 const MachineOperand &CstVal = SrcInstr->getOperand(1); 2092 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 2093 ? CstVal.getCImm()->getValue() 2094 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 2095 2096 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 2097 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 2098 // Unmerge a constant. 2099 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 2100 Csts.emplace_back(Val.trunc(ShiftAmt)); 2101 Val = Val.lshr(ShiftAmt); 2102 } 2103 2104 return true; 2105 } 2106 2107 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 2108 SmallVectorImpl<APInt> &Csts) { 2109 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2110 "Expected an unmerge"); 2111 assert((MI.getNumOperands() - 1 == Csts.size()) && 2112 "Not enough operands to replace all defs"); 2113 unsigned NumElems = MI.getNumOperands() - 1; 2114 Builder.setInstrAndDebugLoc(MI); 2115 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2116 Register DstReg = MI.getOperand(Idx).getReg(); 2117 Builder.buildConstant(DstReg, Csts[Idx]); 2118 } 2119 2120 MI.eraseFromParent(); 2121 } 2122 2123 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2124 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2125 "Expected an unmerge"); 2126 // Check that all the lanes are dead except the first one. 2127 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2128 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 2129 return false; 2130 } 2131 return true; 2132 } 2133 2134 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2135 Builder.setInstrAndDebugLoc(MI); 2136 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2137 // Truncating a vector is going to truncate every single lane, 2138 // whereas we want the full lowbits. 2139 // Do the operation on a scalar instead. 2140 LLT SrcTy = MRI.getType(SrcReg); 2141 if (SrcTy.isVector()) 2142 SrcReg = 2143 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 2144 2145 Register Dst0Reg = MI.getOperand(0).getReg(); 2146 LLT Dst0Ty = MRI.getType(Dst0Reg); 2147 if (Dst0Ty.isVector()) { 2148 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 2149 Builder.buildCast(Dst0Reg, MIB); 2150 } else 2151 Builder.buildTrunc(Dst0Reg, SrcReg); 2152 MI.eraseFromParent(); 2153 } 2154 2155 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 2156 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2157 "Expected an unmerge"); 2158 Register Dst0Reg = MI.getOperand(0).getReg(); 2159 LLT Dst0Ty = MRI.getType(Dst0Reg); 2160 // G_ZEXT on vector applies to each lane, so it will 2161 // affect all destinations. Therefore we won't be able 2162 // to simplify the unmerge to just the first definition. 2163 if (Dst0Ty.isVector()) 2164 return false; 2165 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2166 LLT SrcTy = MRI.getType(SrcReg); 2167 if (SrcTy.isVector()) 2168 return false; 2169 2170 Register ZExtSrcReg; 2171 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 2172 return false; 2173 2174 // Finally we can replace the first definition with 2175 // a zext of the source if the definition is big enough to hold 2176 // all of ZExtSrc bits. 2177 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2178 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 2179 } 2180 2181 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 2182 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2183 "Expected an unmerge"); 2184 2185 Register Dst0Reg = MI.getOperand(0).getReg(); 2186 2187 MachineInstr *ZExtInstr = 2188 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 2189 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 2190 "Expecting a G_ZEXT"); 2191 2192 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 2193 LLT Dst0Ty = MRI.getType(Dst0Reg); 2194 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2195 2196 Builder.setInstrAndDebugLoc(MI); 2197 2198 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 2199 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 2200 } else { 2201 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 2202 "ZExt src doesn't fit in destination"); 2203 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 2204 } 2205 2206 Register ZeroReg; 2207 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2208 if (!ZeroReg) 2209 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 2210 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 2211 } 2212 MI.eraseFromParent(); 2213 } 2214 2215 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 2216 unsigned TargetShiftSize, 2217 unsigned &ShiftVal) { 2218 assert((MI.getOpcode() == TargetOpcode::G_SHL || 2219 MI.getOpcode() == TargetOpcode::G_LSHR || 2220 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 2221 2222 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2223 if (Ty.isVector()) // TODO: 2224 return false; 2225 2226 // Don't narrow further than the requested size. 2227 unsigned Size = Ty.getSizeInBits(); 2228 if (Size <= TargetShiftSize) 2229 return false; 2230 2231 auto MaybeImmVal = 2232 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 2233 if (!MaybeImmVal) 2234 return false; 2235 2236 ShiftVal = MaybeImmVal->Value.getSExtValue(); 2237 return ShiftVal >= Size / 2 && ShiftVal < Size; 2238 } 2239 2240 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 2241 const unsigned &ShiftVal) { 2242 Register DstReg = MI.getOperand(0).getReg(); 2243 Register SrcReg = MI.getOperand(1).getReg(); 2244 LLT Ty = MRI.getType(SrcReg); 2245 unsigned Size = Ty.getSizeInBits(); 2246 unsigned HalfSize = Size / 2; 2247 assert(ShiftVal >= HalfSize); 2248 2249 LLT HalfTy = LLT::scalar(HalfSize); 2250 2251 Builder.setInstr(MI); 2252 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 2253 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 2254 2255 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2256 Register Narrowed = Unmerge.getReg(1); 2257 2258 // dst = G_LSHR s64:x, C for C >= 32 2259 // => 2260 // lo, hi = G_UNMERGE_VALUES x 2261 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 2262 2263 if (NarrowShiftAmt != 0) { 2264 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 2265 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2266 } 2267 2268 auto Zero = Builder.buildConstant(HalfTy, 0); 2269 Builder.buildMerge(DstReg, { Narrowed, Zero }); 2270 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 2271 Register Narrowed = Unmerge.getReg(0); 2272 // dst = G_SHL s64:x, C for C >= 32 2273 // => 2274 // lo, hi = G_UNMERGE_VALUES x 2275 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 2276 if (NarrowShiftAmt != 0) { 2277 Narrowed = Builder.buildShl(HalfTy, Narrowed, 2278 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2279 } 2280 2281 auto Zero = Builder.buildConstant(HalfTy, 0); 2282 Builder.buildMerge(DstReg, { Zero, Narrowed }); 2283 } else { 2284 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2285 auto Hi = Builder.buildAShr( 2286 HalfTy, Unmerge.getReg(1), 2287 Builder.buildConstant(HalfTy, HalfSize - 1)); 2288 2289 if (ShiftVal == HalfSize) { 2290 // (G_ASHR i64:x, 32) -> 2291 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 2292 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 2293 } else if (ShiftVal == Size - 1) { 2294 // Don't need a second shift. 2295 // (G_ASHR i64:x, 63) -> 2296 // %narrowed = (G_ASHR hi_32(x), 31) 2297 // G_MERGE_VALUES %narrowed, %narrowed 2298 Builder.buildMerge(DstReg, { Hi, Hi }); 2299 } else { 2300 auto Lo = Builder.buildAShr( 2301 HalfTy, Unmerge.getReg(1), 2302 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 2303 2304 // (G_ASHR i64:x, C) ->, for C >= 32 2305 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 2306 Builder.buildMerge(DstReg, { Lo, Hi }); 2307 } 2308 } 2309 2310 MI.eraseFromParent(); 2311 } 2312 2313 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 2314 unsigned TargetShiftAmount) { 2315 unsigned ShiftAmt; 2316 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 2317 applyCombineShiftToUnmerge(MI, ShiftAmt); 2318 return true; 2319 } 2320 2321 return false; 2322 } 2323 2324 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2325 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2326 Register DstReg = MI.getOperand(0).getReg(); 2327 LLT DstTy = MRI.getType(DstReg); 2328 Register SrcReg = MI.getOperand(1).getReg(); 2329 return mi_match(SrcReg, MRI, 2330 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2331 } 2332 2333 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2334 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2335 Register DstReg = MI.getOperand(0).getReg(); 2336 Builder.setInstr(MI); 2337 Builder.buildCopy(DstReg, Reg); 2338 MI.eraseFromParent(); 2339 } 2340 2341 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2342 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2343 Register SrcReg = MI.getOperand(1).getReg(); 2344 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2345 } 2346 2347 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2348 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2349 Register DstReg = MI.getOperand(0).getReg(); 2350 Builder.setInstr(MI); 2351 Builder.buildZExtOrTrunc(DstReg, Reg); 2352 MI.eraseFromParent(); 2353 } 2354 2355 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2356 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2357 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2358 Register LHS = MI.getOperand(1).getReg(); 2359 Register RHS = MI.getOperand(2).getReg(); 2360 LLT IntTy = MRI.getType(LHS); 2361 2362 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2363 // instruction. 2364 PtrReg.second = false; 2365 for (Register SrcReg : {LHS, RHS}) { 2366 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2367 // Don't handle cases where the integer is implicitly converted to the 2368 // pointer width. 2369 LLT PtrTy = MRI.getType(PtrReg.first); 2370 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2371 return true; 2372 } 2373 2374 PtrReg.second = true; 2375 } 2376 2377 return false; 2378 } 2379 2380 void CombinerHelper::applyCombineAddP2IToPtrAdd( 2381 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2382 Register Dst = MI.getOperand(0).getReg(); 2383 Register LHS = MI.getOperand(1).getReg(); 2384 Register RHS = MI.getOperand(2).getReg(); 2385 2386 const bool DoCommute = PtrReg.second; 2387 if (DoCommute) 2388 std::swap(LHS, RHS); 2389 LHS = PtrReg.first; 2390 2391 LLT PtrTy = MRI.getType(LHS); 2392 2393 Builder.setInstrAndDebugLoc(MI); 2394 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2395 Builder.buildPtrToInt(Dst, PtrAdd); 2396 MI.eraseFromParent(); 2397 } 2398 2399 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2400 int64_t &NewCst) { 2401 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2402 Register LHS = MI.getOperand(1).getReg(); 2403 Register RHS = MI.getOperand(2).getReg(); 2404 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2405 2406 if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { 2407 int64_t Cst; 2408 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2409 NewCst = Cst + *RHSCst; 2410 return true; 2411 } 2412 } 2413 2414 return false; 2415 } 2416 2417 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2418 int64_t &NewCst) { 2419 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2420 Register Dst = MI.getOperand(0).getReg(); 2421 2422 Builder.setInstrAndDebugLoc(MI); 2423 Builder.buildConstant(Dst, NewCst); 2424 MI.eraseFromParent(); 2425 } 2426 2427 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2428 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2429 Register DstReg = MI.getOperand(0).getReg(); 2430 Register SrcReg = MI.getOperand(1).getReg(); 2431 LLT DstTy = MRI.getType(DstReg); 2432 return mi_match(SrcReg, MRI, 2433 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2434 } 2435 2436 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2437 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2438 Register DstReg = MI.getOperand(0).getReg(); 2439 Register SrcReg = MI.getOperand(1).getReg(); 2440 LLT DstTy = MRI.getType(DstReg); 2441 if (mi_match(SrcReg, MRI, 2442 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2443 unsigned DstSize = DstTy.getScalarSizeInBits(); 2444 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2445 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2446 } 2447 return false; 2448 } 2449 2450 bool CombinerHelper::matchCombineExtOfExt( 2451 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2452 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2453 MI.getOpcode() == TargetOpcode::G_SEXT || 2454 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2455 "Expected a G_[ASZ]EXT"); 2456 Register SrcReg = MI.getOperand(1).getReg(); 2457 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2458 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2459 unsigned Opc = MI.getOpcode(); 2460 unsigned SrcOpc = SrcMI->getOpcode(); 2461 if (Opc == SrcOpc || 2462 (Opc == TargetOpcode::G_ANYEXT && 2463 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2464 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2465 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2466 return true; 2467 } 2468 return false; 2469 } 2470 2471 void CombinerHelper::applyCombineExtOfExt( 2472 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2473 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2474 MI.getOpcode() == TargetOpcode::G_SEXT || 2475 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2476 "Expected a G_[ASZ]EXT"); 2477 2478 Register Reg = std::get<0>(MatchInfo); 2479 unsigned SrcExtOp = std::get<1>(MatchInfo); 2480 2481 // Combine exts with the same opcode. 2482 if (MI.getOpcode() == SrcExtOp) { 2483 Observer.changingInstr(MI); 2484 MI.getOperand(1).setReg(Reg); 2485 Observer.changedInstr(MI); 2486 return; 2487 } 2488 2489 // Combine: 2490 // - anyext([sz]ext x) to [sz]ext x 2491 // - sext(zext x) to zext x 2492 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2493 (MI.getOpcode() == TargetOpcode::G_SEXT && 2494 SrcExtOp == TargetOpcode::G_ZEXT)) { 2495 Register DstReg = MI.getOperand(0).getReg(); 2496 Builder.setInstrAndDebugLoc(MI); 2497 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2498 MI.eraseFromParent(); 2499 } 2500 } 2501 2502 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2503 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2504 Register DstReg = MI.getOperand(0).getReg(); 2505 Register SrcReg = MI.getOperand(1).getReg(); 2506 LLT DstTy = MRI.getType(DstReg); 2507 2508 Builder.setInstrAndDebugLoc(MI); 2509 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2510 MI.getFlags()); 2511 MI.eraseFromParent(); 2512 } 2513 2514 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2515 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2516 Register SrcReg = MI.getOperand(1).getReg(); 2517 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2518 } 2519 2520 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2521 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2522 Src = MI.getOperand(1).getReg(); 2523 Register AbsSrc; 2524 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2525 } 2526 2527 bool CombinerHelper::matchCombineTruncOfExt( 2528 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2529 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2530 Register SrcReg = MI.getOperand(1).getReg(); 2531 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2532 unsigned SrcOpc = SrcMI->getOpcode(); 2533 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2534 SrcOpc == TargetOpcode::G_ZEXT) { 2535 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2536 return true; 2537 } 2538 return false; 2539 } 2540 2541 void CombinerHelper::applyCombineTruncOfExt( 2542 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2543 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2544 Register SrcReg = MatchInfo.first; 2545 unsigned SrcExtOp = MatchInfo.second; 2546 Register DstReg = MI.getOperand(0).getReg(); 2547 LLT SrcTy = MRI.getType(SrcReg); 2548 LLT DstTy = MRI.getType(DstReg); 2549 if (SrcTy == DstTy) { 2550 MI.eraseFromParent(); 2551 replaceRegWith(MRI, DstReg, SrcReg); 2552 return; 2553 } 2554 Builder.setInstrAndDebugLoc(MI); 2555 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2556 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2557 else 2558 Builder.buildTrunc(DstReg, SrcReg); 2559 MI.eraseFromParent(); 2560 } 2561 2562 bool CombinerHelper::matchCombineTruncOfShl( 2563 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2564 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2565 Register DstReg = MI.getOperand(0).getReg(); 2566 Register SrcReg = MI.getOperand(1).getReg(); 2567 LLT DstTy = MRI.getType(DstReg); 2568 Register ShiftSrc; 2569 Register ShiftAmt; 2570 2571 if (MRI.hasOneNonDBGUse(SrcReg) && 2572 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2573 isLegalOrBeforeLegalizer( 2574 {TargetOpcode::G_SHL, 2575 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2576 KnownBits Known = KB->getKnownBits(ShiftAmt); 2577 unsigned Size = DstTy.getSizeInBits(); 2578 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2579 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2580 return true; 2581 } 2582 } 2583 return false; 2584 } 2585 2586 void CombinerHelper::applyCombineTruncOfShl( 2587 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2588 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2589 Register DstReg = MI.getOperand(0).getReg(); 2590 Register SrcReg = MI.getOperand(1).getReg(); 2591 LLT DstTy = MRI.getType(DstReg); 2592 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2593 2594 Register ShiftSrc = MatchInfo.first; 2595 Register ShiftAmt = MatchInfo.second; 2596 Builder.setInstrAndDebugLoc(MI); 2597 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2598 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2599 MI.eraseFromParent(); 2600 } 2601 2602 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2603 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2604 return MO.isReg() && 2605 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2606 }); 2607 } 2608 2609 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2610 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2611 return !MO.isReg() || 2612 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2613 }); 2614 } 2615 2616 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2617 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2618 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2619 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2620 } 2621 2622 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2623 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2624 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2625 MRI); 2626 } 2627 2628 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2629 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2630 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2631 MRI); 2632 } 2633 2634 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2635 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2636 if (auto MaybeCstCmp = 2637 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2638 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; 2639 return true; 2640 } 2641 return false; 2642 } 2643 2644 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2645 MI.eraseFromParent(); 2646 return true; 2647 } 2648 2649 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2650 const MachineOperand &MOP2) { 2651 if (!MOP1.isReg() || !MOP2.isReg()) 2652 return false; 2653 MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); 2654 if (!I1) 2655 return false; 2656 MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); 2657 if (!I2) 2658 return false; 2659 2660 // Handle a case like this: 2661 // 2662 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2663 // 2664 // Even though %0 and %1 are produced by the same instruction they are not 2665 // the same values. 2666 if (I1 == I2) 2667 return MOP1.getReg() == MOP2.getReg(); 2668 2669 // If we have an instruction which loads or stores, we can't guarantee that 2670 // it is identical. 2671 // 2672 // For example, we may have 2673 // 2674 // %x1 = G_LOAD %addr (load N from @somewhere) 2675 // ... 2676 // call @foo 2677 // ... 2678 // %x2 = G_LOAD %addr (load N from @somewhere) 2679 // ... 2680 // %or = G_OR %x1, %x2 2681 // 2682 // It's possible that @foo will modify whatever lives at the address we're 2683 // loading from. To be safe, let's just assume that all loads and stores 2684 // are different (unless we have something which is guaranteed to not 2685 // change.) 2686 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2687 return false; 2688 2689 // Check for physical registers on the instructions first to avoid cases 2690 // like this: 2691 // 2692 // %a = COPY $physreg 2693 // ... 2694 // SOMETHING implicit-def $physreg 2695 // ... 2696 // %b = COPY $physreg 2697 // 2698 // These copies are not equivalent. 2699 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2700 return MO.isReg() && MO.getReg().isPhysical(); 2701 })) { 2702 // Check if we have a case like this: 2703 // 2704 // %a = COPY $physreg 2705 // %b = COPY %a 2706 // 2707 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2708 // From that, we know that they must have the same value, since they must 2709 // have come from the same COPY. 2710 return I1->isIdenticalTo(*I2); 2711 } 2712 2713 // We don't have any physical registers, so we don't necessarily need the 2714 // same vreg defs. 2715 // 2716 // On the off-chance that there's some target instruction feeding into the 2717 // instruction, let's use produceSameValue instead of isIdenticalTo. 2718 return Builder.getTII().produceSameValue(*I1, *I2, &MRI); 2719 } 2720 2721 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2722 if (!MOP.isReg()) 2723 return false; 2724 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2725 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2726 return ValAndVReg && ValAndVReg->Value == C; 2727 } 2728 2729 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2730 unsigned OpIdx) { 2731 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2732 Register OldReg = MI.getOperand(0).getReg(); 2733 Register Replacement = MI.getOperand(OpIdx).getReg(); 2734 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2735 MI.eraseFromParent(); 2736 replaceRegWith(MRI, OldReg, Replacement); 2737 return true; 2738 } 2739 2740 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2741 Register Replacement) { 2742 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2743 Register OldReg = MI.getOperand(0).getReg(); 2744 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2745 MI.eraseFromParent(); 2746 replaceRegWith(MRI, OldReg, Replacement); 2747 return true; 2748 } 2749 2750 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2751 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2752 // Match (cond ? x : x) 2753 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2754 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2755 MRI); 2756 } 2757 2758 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2759 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2760 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2761 MRI); 2762 } 2763 2764 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2765 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2766 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2767 MRI); 2768 } 2769 2770 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2771 MachineOperand &MO = MI.getOperand(OpIdx); 2772 return MO.isReg() && 2773 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2774 } 2775 2776 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2777 unsigned OpIdx) { 2778 MachineOperand &MO = MI.getOperand(OpIdx); 2779 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2780 } 2781 2782 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2783 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2784 Builder.setInstr(MI); 2785 Builder.buildFConstant(MI.getOperand(0), C); 2786 MI.eraseFromParent(); 2787 return true; 2788 } 2789 2790 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2791 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2792 Builder.setInstr(MI); 2793 Builder.buildConstant(MI.getOperand(0), C); 2794 MI.eraseFromParent(); 2795 return true; 2796 } 2797 2798 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2799 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2800 Builder.setInstr(MI); 2801 Builder.buildUndef(MI.getOperand(0)); 2802 MI.eraseFromParent(); 2803 return true; 2804 } 2805 2806 bool CombinerHelper::matchSimplifyAddToSub( 2807 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2808 Register LHS = MI.getOperand(1).getReg(); 2809 Register RHS = MI.getOperand(2).getReg(); 2810 Register &NewLHS = std::get<0>(MatchInfo); 2811 Register &NewRHS = std::get<1>(MatchInfo); 2812 2813 // Helper lambda to check for opportunities for 2814 // ((0-A) + B) -> B - A 2815 // (A + (0-B)) -> A - B 2816 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2817 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2818 return false; 2819 NewLHS = MaybeNewLHS; 2820 return true; 2821 }; 2822 2823 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2824 } 2825 2826 bool CombinerHelper::matchCombineInsertVecElts( 2827 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2828 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2829 "Invalid opcode"); 2830 Register DstReg = MI.getOperand(0).getReg(); 2831 LLT DstTy = MRI.getType(DstReg); 2832 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2833 unsigned NumElts = DstTy.getNumElements(); 2834 // If this MI is part of a sequence of insert_vec_elts, then 2835 // don't do the combine in the middle of the sequence. 2836 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2837 TargetOpcode::G_INSERT_VECTOR_ELT) 2838 return false; 2839 MachineInstr *CurrInst = &MI; 2840 MachineInstr *TmpInst; 2841 int64_t IntImm; 2842 Register TmpReg; 2843 MatchInfo.resize(NumElts); 2844 while (mi_match( 2845 CurrInst->getOperand(0).getReg(), MRI, 2846 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2847 if (IntImm >= NumElts) 2848 return false; 2849 if (!MatchInfo[IntImm]) 2850 MatchInfo[IntImm] = TmpReg; 2851 CurrInst = TmpInst; 2852 } 2853 // Variable index. 2854 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2855 return false; 2856 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2857 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2858 if (!MatchInfo[I - 1].isValid()) 2859 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2860 } 2861 return true; 2862 } 2863 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2864 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2865 } 2866 2867 void CombinerHelper::applyCombineInsertVecElts( 2868 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2869 Builder.setInstr(MI); 2870 Register UndefReg; 2871 auto GetUndef = [&]() { 2872 if (UndefReg) 2873 return UndefReg; 2874 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2875 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2876 return UndefReg; 2877 }; 2878 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2879 if (!MatchInfo[I]) 2880 MatchInfo[I] = GetUndef(); 2881 } 2882 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2883 MI.eraseFromParent(); 2884 } 2885 2886 void CombinerHelper::applySimplifyAddToSub( 2887 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2888 Builder.setInstr(MI); 2889 Register SubLHS, SubRHS; 2890 std::tie(SubLHS, SubRHS) = MatchInfo; 2891 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2892 MI.eraseFromParent(); 2893 } 2894 2895 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2896 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2897 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2898 // 2899 // Creates the new hand + logic instruction (but does not insert them.) 2900 // 2901 // On success, MatchInfo is populated with the new instructions. These are 2902 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2903 unsigned LogicOpcode = MI.getOpcode(); 2904 assert(LogicOpcode == TargetOpcode::G_AND || 2905 LogicOpcode == TargetOpcode::G_OR || 2906 LogicOpcode == TargetOpcode::G_XOR); 2907 MachineIRBuilder MIB(MI); 2908 Register Dst = MI.getOperand(0).getReg(); 2909 Register LHSReg = MI.getOperand(1).getReg(); 2910 Register RHSReg = MI.getOperand(2).getReg(); 2911 2912 // Don't recompute anything. 2913 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2914 return false; 2915 2916 // Make sure we have (hand x, ...), (hand y, ...) 2917 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2918 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2919 if (!LeftHandInst || !RightHandInst) 2920 return false; 2921 unsigned HandOpcode = LeftHandInst->getOpcode(); 2922 if (HandOpcode != RightHandInst->getOpcode()) 2923 return false; 2924 if (!LeftHandInst->getOperand(1).isReg() || 2925 !RightHandInst->getOperand(1).isReg()) 2926 return false; 2927 2928 // Make sure the types match up, and if we're doing this post-legalization, 2929 // we end up with legal types. 2930 Register X = LeftHandInst->getOperand(1).getReg(); 2931 Register Y = RightHandInst->getOperand(1).getReg(); 2932 LLT XTy = MRI.getType(X); 2933 LLT YTy = MRI.getType(Y); 2934 if (XTy != YTy) 2935 return false; 2936 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2937 return false; 2938 2939 // Optional extra source register. 2940 Register ExtraHandOpSrcReg; 2941 switch (HandOpcode) { 2942 default: 2943 return false; 2944 case TargetOpcode::G_ANYEXT: 2945 case TargetOpcode::G_SEXT: 2946 case TargetOpcode::G_ZEXT: { 2947 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2948 break; 2949 } 2950 case TargetOpcode::G_AND: 2951 case TargetOpcode::G_ASHR: 2952 case TargetOpcode::G_LSHR: 2953 case TargetOpcode::G_SHL: { 2954 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2955 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2956 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2957 return false; 2958 ExtraHandOpSrcReg = ZOp.getReg(); 2959 break; 2960 } 2961 } 2962 2963 // Record the steps to build the new instructions. 2964 // 2965 // Steps to build (logic x, y) 2966 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2967 OperandBuildSteps LogicBuildSteps = { 2968 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2969 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2970 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2971 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2972 2973 // Steps to build hand (logic x, y), ...z 2974 OperandBuildSteps HandBuildSteps = { 2975 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2976 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2977 if (ExtraHandOpSrcReg.isValid()) 2978 HandBuildSteps.push_back( 2979 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2980 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2981 2982 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2983 return true; 2984 } 2985 2986 void CombinerHelper::applyBuildInstructionSteps( 2987 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2988 assert(MatchInfo.InstrsToBuild.size() && 2989 "Expected at least one instr to build?"); 2990 Builder.setInstr(MI); 2991 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2992 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2993 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2994 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2995 for (auto &OperandFn : InstrToBuild.OperandFns) 2996 OperandFn(Instr); 2997 } 2998 MI.eraseFromParent(); 2999 } 3000 3001 bool CombinerHelper::matchAshrShlToSextInreg( 3002 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 3003 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 3004 int64_t ShlCst, AshrCst; 3005 Register Src; 3006 // FIXME: detect splat constant vectors. 3007 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3008 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 3009 return false; 3010 if (ShlCst != AshrCst) 3011 return false; 3012 if (!isLegalOrBeforeLegalizer( 3013 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 3014 return false; 3015 MatchInfo = std::make_tuple(Src, ShlCst); 3016 return true; 3017 } 3018 3019 void CombinerHelper::applyAshShlToSextInreg( 3020 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 3021 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 3022 Register Src; 3023 int64_t ShiftAmt; 3024 std::tie(Src, ShiftAmt) = MatchInfo; 3025 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 3026 Builder.setInstrAndDebugLoc(MI); 3027 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 3028 MI.eraseFromParent(); 3029 } 3030 3031 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 3032 bool CombinerHelper::matchOverlappingAnd( 3033 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3034 assert(MI.getOpcode() == TargetOpcode::G_AND); 3035 3036 Register Dst = MI.getOperand(0).getReg(); 3037 LLT Ty = MRI.getType(Dst); 3038 3039 Register R; 3040 int64_t C1; 3041 int64_t C2; 3042 if (!mi_match( 3043 Dst, MRI, 3044 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 3045 return false; 3046 3047 MatchInfo = [=](MachineIRBuilder &B) { 3048 if (C1 & C2) { 3049 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 3050 return; 3051 } 3052 auto Zero = B.buildConstant(Ty, 0); 3053 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 3054 }; 3055 return true; 3056 } 3057 3058 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 3059 Register &Replacement) { 3060 // Given 3061 // 3062 // %y:_(sN) = G_SOMETHING 3063 // %x:_(sN) = G_SOMETHING 3064 // %res:_(sN) = G_AND %x, %y 3065 // 3066 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 3067 // 3068 // Patterns like this can appear as a result of legalization. E.g. 3069 // 3070 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 3071 // %one:_(s32) = G_CONSTANT i32 1 3072 // %and:_(s32) = G_AND %cmp, %one 3073 // 3074 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 3075 assert(MI.getOpcode() == TargetOpcode::G_AND); 3076 if (!KB) 3077 return false; 3078 3079 Register AndDst = MI.getOperand(0).getReg(); 3080 LLT DstTy = MRI.getType(AndDst); 3081 3082 // FIXME: This should be removed once GISelKnownBits supports vectors. 3083 if (DstTy.isVector()) 3084 return false; 3085 3086 Register LHS = MI.getOperand(1).getReg(); 3087 Register RHS = MI.getOperand(2).getReg(); 3088 KnownBits LHSBits = KB->getKnownBits(LHS); 3089 KnownBits RHSBits = KB->getKnownBits(RHS); 3090 3091 // Check that x & Mask == x. 3092 // x & 1 == x, always 3093 // x & 0 == x, only if x is also 0 3094 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 3095 // 3096 // Check if we can replace AndDst with the LHS of the G_AND 3097 if (canReplaceReg(AndDst, LHS, MRI) && 3098 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3099 Replacement = LHS; 3100 return true; 3101 } 3102 3103 // Check if we can replace AndDst with the RHS of the G_AND 3104 if (canReplaceReg(AndDst, RHS, MRI) && 3105 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3106 Replacement = RHS; 3107 return true; 3108 } 3109 3110 return false; 3111 } 3112 3113 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 3114 // Given 3115 // 3116 // %y:_(sN) = G_SOMETHING 3117 // %x:_(sN) = G_SOMETHING 3118 // %res:_(sN) = G_OR %x, %y 3119 // 3120 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 3121 assert(MI.getOpcode() == TargetOpcode::G_OR); 3122 if (!KB) 3123 return false; 3124 3125 Register OrDst = MI.getOperand(0).getReg(); 3126 LLT DstTy = MRI.getType(OrDst); 3127 3128 // FIXME: This should be removed once GISelKnownBits supports vectors. 3129 if (DstTy.isVector()) 3130 return false; 3131 3132 Register LHS = MI.getOperand(1).getReg(); 3133 Register RHS = MI.getOperand(2).getReg(); 3134 KnownBits LHSBits = KB->getKnownBits(LHS); 3135 KnownBits RHSBits = KB->getKnownBits(RHS); 3136 3137 // Check that x | Mask == x. 3138 // x | 0 == x, always 3139 // x | 1 == x, only if x is also 1 3140 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 3141 // 3142 // Check if we can replace OrDst with the LHS of the G_OR 3143 if (canReplaceReg(OrDst, LHS, MRI) && 3144 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3145 Replacement = LHS; 3146 return true; 3147 } 3148 3149 // Check if we can replace OrDst with the RHS of the G_OR 3150 if (canReplaceReg(OrDst, RHS, MRI) && 3151 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3152 Replacement = RHS; 3153 return true; 3154 } 3155 3156 return false; 3157 } 3158 3159 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 3160 // If the input is already sign extended, just drop the extension. 3161 Register Src = MI.getOperand(1).getReg(); 3162 unsigned ExtBits = MI.getOperand(2).getImm(); 3163 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 3164 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 3165 } 3166 3167 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 3168 int64_t Cst, bool IsVector, bool IsFP) { 3169 // For i1, Cst will always be -1 regardless of boolean contents. 3170 return (ScalarSizeBits == 1 && Cst == -1) || 3171 isConstTrueVal(TLI, Cst, IsVector, IsFP); 3172 } 3173 3174 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 3175 SmallVectorImpl<Register> &RegsToNegate) { 3176 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3177 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3178 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 3179 Register XorSrc; 3180 Register CstReg; 3181 // We match xor(src, true) here. 3182 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3183 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 3184 return false; 3185 3186 if (!MRI.hasOneNonDBGUse(XorSrc)) 3187 return false; 3188 3189 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 3190 // and ORs. The suffix of RegsToNegate starting from index I is used a work 3191 // list of tree nodes to visit. 3192 RegsToNegate.push_back(XorSrc); 3193 // Remember whether the comparisons are all integer or all floating point. 3194 bool IsInt = false; 3195 bool IsFP = false; 3196 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 3197 Register Reg = RegsToNegate[I]; 3198 if (!MRI.hasOneNonDBGUse(Reg)) 3199 return false; 3200 MachineInstr *Def = MRI.getVRegDef(Reg); 3201 switch (Def->getOpcode()) { 3202 default: 3203 // Don't match if the tree contains anything other than ANDs, ORs and 3204 // comparisons. 3205 return false; 3206 case TargetOpcode::G_ICMP: 3207 if (IsFP) 3208 return false; 3209 IsInt = true; 3210 // When we apply the combine we will invert the predicate. 3211 break; 3212 case TargetOpcode::G_FCMP: 3213 if (IsInt) 3214 return false; 3215 IsFP = true; 3216 // When we apply the combine we will invert the predicate. 3217 break; 3218 case TargetOpcode::G_AND: 3219 case TargetOpcode::G_OR: 3220 // Implement De Morgan's laws: 3221 // ~(x & y) -> ~x | ~y 3222 // ~(x | y) -> ~x & ~y 3223 // When we apply the combine we will change the opcode and recursively 3224 // negate the operands. 3225 RegsToNegate.push_back(Def->getOperand(1).getReg()); 3226 RegsToNegate.push_back(Def->getOperand(2).getReg()); 3227 break; 3228 } 3229 } 3230 3231 // Now we know whether the comparisons are integer or floating point, check 3232 // the constant in the xor. 3233 int64_t Cst; 3234 if (Ty.isVector()) { 3235 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 3236 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 3237 if (!MaybeCst) 3238 return false; 3239 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 3240 return false; 3241 } else { 3242 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 3243 return false; 3244 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 3245 return false; 3246 } 3247 3248 return true; 3249 } 3250 3251 void CombinerHelper::applyNotCmp(MachineInstr &MI, 3252 SmallVectorImpl<Register> &RegsToNegate) { 3253 for (Register Reg : RegsToNegate) { 3254 MachineInstr *Def = MRI.getVRegDef(Reg); 3255 Observer.changingInstr(*Def); 3256 // For each comparison, invert the opcode. For each AND and OR, change the 3257 // opcode. 3258 switch (Def->getOpcode()) { 3259 default: 3260 llvm_unreachable("Unexpected opcode"); 3261 case TargetOpcode::G_ICMP: 3262 case TargetOpcode::G_FCMP: { 3263 MachineOperand &PredOp = Def->getOperand(1); 3264 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 3265 (CmpInst::Predicate)PredOp.getPredicate()); 3266 PredOp.setPredicate(NewP); 3267 break; 3268 } 3269 case TargetOpcode::G_AND: 3270 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3271 break; 3272 case TargetOpcode::G_OR: 3273 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3274 break; 3275 } 3276 Observer.changedInstr(*Def); 3277 } 3278 3279 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3280 MI.eraseFromParent(); 3281 } 3282 3283 bool CombinerHelper::matchXorOfAndWithSameReg( 3284 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3285 // Match (xor (and x, y), y) (or any of its commuted cases) 3286 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3287 Register &X = MatchInfo.first; 3288 Register &Y = MatchInfo.second; 3289 Register AndReg = MI.getOperand(1).getReg(); 3290 Register SharedReg = MI.getOperand(2).getReg(); 3291 3292 // Find a G_AND on either side of the G_XOR. 3293 // Look for one of 3294 // 3295 // (xor (and x, y), SharedReg) 3296 // (xor SharedReg, (and x, y)) 3297 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3298 std::swap(AndReg, SharedReg); 3299 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3300 return false; 3301 } 3302 3303 // Only do this if we'll eliminate the G_AND. 3304 if (!MRI.hasOneNonDBGUse(AndReg)) 3305 return false; 3306 3307 // We can combine if SharedReg is the same as either the LHS or RHS of the 3308 // G_AND. 3309 if (Y != SharedReg) 3310 std::swap(X, Y); 3311 return Y == SharedReg; 3312 } 3313 3314 void CombinerHelper::applyXorOfAndWithSameReg( 3315 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3316 // Fold (xor (and x, y), y) -> (and (not x), y) 3317 Builder.setInstrAndDebugLoc(MI); 3318 Register X, Y; 3319 std::tie(X, Y) = MatchInfo; 3320 auto Not = Builder.buildNot(MRI.getType(X), X); 3321 Observer.changingInstr(MI); 3322 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3323 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3324 MI.getOperand(2).setReg(Y); 3325 Observer.changedInstr(MI); 3326 } 3327 3328 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3329 Register DstReg = MI.getOperand(0).getReg(); 3330 LLT Ty = MRI.getType(DstReg); 3331 const DataLayout &DL = Builder.getMF().getDataLayout(); 3332 3333 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3334 return false; 3335 3336 if (Ty.isPointer()) { 3337 auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI); 3338 return ConstVal && *ConstVal == 0; 3339 } 3340 3341 assert(Ty.isVector() && "Expecting a vector type"); 3342 const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg()); 3343 return isBuildVectorAllZeros(*VecMI, MRI); 3344 } 3345 3346 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3347 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 3348 Builder.setInstrAndDebugLoc(MI); 3349 Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2)); 3350 MI.eraseFromParent(); 3351 } 3352 3353 /// The second source operand is known to be a power of 2. 3354 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3355 Register DstReg = MI.getOperand(0).getReg(); 3356 Register Src0 = MI.getOperand(1).getReg(); 3357 Register Pow2Src1 = MI.getOperand(2).getReg(); 3358 LLT Ty = MRI.getType(DstReg); 3359 Builder.setInstrAndDebugLoc(MI); 3360 3361 // Fold (urem x, pow2) -> (and x, pow2-1) 3362 auto NegOne = Builder.buildConstant(Ty, -1); 3363 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3364 Builder.buildAnd(DstReg, Src0, Add); 3365 MI.eraseFromParent(); 3366 } 3367 3368 Optional<SmallVector<Register, 8>> 3369 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3370 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3371 // We want to detect if Root is part of a tree which represents a bunch 3372 // of loads being merged into a larger load. We'll try to recognize patterns 3373 // like, for example: 3374 // 3375 // Reg Reg 3376 // \ / 3377 // OR_1 Reg 3378 // \ / 3379 // OR_2 3380 // \ Reg 3381 // .. / 3382 // Root 3383 // 3384 // Reg Reg Reg Reg 3385 // \ / \ / 3386 // OR_1 OR_2 3387 // \ / 3388 // \ / 3389 // ... 3390 // Root 3391 // 3392 // Each "Reg" may have been produced by a load + some arithmetic. This 3393 // function will save each of them. 3394 SmallVector<Register, 8> RegsToVisit; 3395 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3396 3397 // In the "worst" case, we're dealing with a load for each byte. So, there 3398 // are at most #bytes - 1 ORs. 3399 const unsigned MaxIter = 3400 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3401 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3402 if (Ors.empty()) 3403 break; 3404 const MachineInstr *Curr = Ors.pop_back_val(); 3405 Register OrLHS = Curr->getOperand(1).getReg(); 3406 Register OrRHS = Curr->getOperand(2).getReg(); 3407 3408 // In the combine, we want to elimate the entire tree. 3409 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3410 return None; 3411 3412 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3413 // something that may be a load + arithmetic. 3414 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3415 Ors.push_back(Or); 3416 else 3417 RegsToVisit.push_back(OrLHS); 3418 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3419 Ors.push_back(Or); 3420 else 3421 RegsToVisit.push_back(OrRHS); 3422 } 3423 3424 // We're going to try and merge each register into a wider power-of-2 type, 3425 // so we ought to have an even number of registers. 3426 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3427 return None; 3428 return RegsToVisit; 3429 } 3430 3431 /// Helper function for findLoadOffsetsForLoadOrCombine. 3432 /// 3433 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3434 /// and then moving that value into a specific byte offset. 3435 /// 3436 /// e.g. x[i] << 24 3437 /// 3438 /// \returns The load instruction and the byte offset it is moved into. 3439 static Optional<std::pair<MachineInstr *, int64_t>> 3440 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3441 const MachineRegisterInfo &MRI) { 3442 assert(MRI.hasOneNonDBGUse(Reg) && 3443 "Expected Reg to only have one non-debug use?"); 3444 Register MaybeLoad; 3445 int64_t Shift; 3446 if (!mi_match(Reg, MRI, 3447 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3448 Shift = 0; 3449 MaybeLoad = Reg; 3450 } 3451 3452 if (Shift % MemSizeInBits != 0) 3453 return None; 3454 3455 // TODO: Handle other types of loads. 3456 auto *Load = getOpcodeDef(TargetOpcode::G_ZEXTLOAD, MaybeLoad, MRI); 3457 if (!Load) 3458 return None; 3459 3460 const auto &MMO = **Load->memoperands_begin(); 3461 if (!MMO.isUnordered() || MMO.getSizeInBits() != MemSizeInBits) 3462 return None; 3463 3464 return std::make_pair(Load, Shift / MemSizeInBits); 3465 } 3466 3467 Optional<std::pair<MachineInstr *, int64_t>> 3468 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3469 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3470 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3471 3472 // Each load found for the pattern. There should be one for each RegsToVisit. 3473 SmallSetVector<const MachineInstr *, 8> Loads; 3474 3475 // The lowest index used in any load. (The lowest "i" for each x[i].) 3476 int64_t LowestIdx = INT64_MAX; 3477 3478 // The load which uses the lowest index. 3479 MachineInstr *LowestIdxLoad = nullptr; 3480 3481 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3482 SmallSet<int64_t, 8> SeenIdx; 3483 3484 // Ensure each load is in the same MBB. 3485 // TODO: Support multiple MachineBasicBlocks. 3486 MachineBasicBlock *MBB = nullptr; 3487 const MachineMemOperand *MMO = nullptr; 3488 3489 // Earliest instruction-order load in the pattern. 3490 MachineInstr *EarliestLoad = nullptr; 3491 3492 // Latest instruction-order load in the pattern. 3493 MachineInstr *LatestLoad = nullptr; 3494 3495 // Base pointer which every load should share. 3496 Register BasePtr; 3497 3498 // We want to find a load for each register. Each load should have some 3499 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3500 // track of the load which uses the lowest index. Later, we will check if we 3501 // can use its pointer in the final, combined load. 3502 for (auto Reg : RegsToVisit) { 3503 // Find the load, and find the position that it will end up in (e.g. a 3504 // shifted) value. 3505 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3506 if (!LoadAndPos) 3507 return None; 3508 MachineInstr *Load; 3509 int64_t DstPos; 3510 std::tie(Load, DstPos) = *LoadAndPos; 3511 3512 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3513 // it is difficult to check for stores/calls/etc between loads. 3514 MachineBasicBlock *LoadMBB = Load->getParent(); 3515 if (!MBB) 3516 MBB = LoadMBB; 3517 if (LoadMBB != MBB) 3518 return None; 3519 3520 // Make sure that the MachineMemOperands of every seen load are compatible. 3521 const MachineMemOperand *LoadMMO = *Load->memoperands_begin(); 3522 if (!MMO) 3523 MMO = LoadMMO; 3524 if (MMO->getAddrSpace() != LoadMMO->getAddrSpace()) 3525 return None; 3526 3527 // Find out what the base pointer and index for the load is. 3528 Register LoadPtr; 3529 int64_t Idx; 3530 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3531 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3532 LoadPtr = Load->getOperand(1).getReg(); 3533 Idx = 0; 3534 } 3535 3536 // Don't combine things like a[i], a[i] -> a bigger load. 3537 if (!SeenIdx.insert(Idx).second) 3538 return None; 3539 3540 // Every load must share the same base pointer; don't combine things like: 3541 // 3542 // a[i], b[i + 1] -> a bigger load. 3543 if (!BasePtr.isValid()) 3544 BasePtr = LoadPtr; 3545 if (BasePtr != LoadPtr) 3546 return None; 3547 3548 if (Idx < LowestIdx) { 3549 LowestIdx = Idx; 3550 LowestIdxLoad = Load; 3551 } 3552 3553 // Keep track of the byte offset that this load ends up at. If we have seen 3554 // the byte offset, then stop here. We do not want to combine: 3555 // 3556 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3557 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3558 return None; 3559 Loads.insert(Load); 3560 3561 // Keep track of the position of the earliest/latest loads in the pattern. 3562 // We will check that there are no load fold barriers between them later 3563 // on. 3564 // 3565 // FIXME: Is there a better way to check for load fold barriers? 3566 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3567 EarliestLoad = Load; 3568 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3569 LatestLoad = Load; 3570 } 3571 3572 // We found a load for each register. Let's check if each load satisfies the 3573 // pattern. 3574 assert(Loads.size() == RegsToVisit.size() && 3575 "Expected to find a load for each register?"); 3576 assert(EarliestLoad != LatestLoad && EarliestLoad && 3577 LatestLoad && "Expected at least two loads?"); 3578 3579 // Check if there are any stores, calls, etc. between any of the loads. If 3580 // there are, then we can't safely perform the combine. 3581 // 3582 // MaxIter is chosen based off the (worst case) number of iterations it 3583 // typically takes to succeed in the LLVM test suite plus some padding. 3584 // 3585 // FIXME: Is there a better way to check for load fold barriers? 3586 const unsigned MaxIter = 20; 3587 unsigned Iter = 0; 3588 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3589 LatestLoad->getIterator())) { 3590 if (Loads.count(&MI)) 3591 continue; 3592 if (MI.isLoadFoldBarrier()) 3593 return None; 3594 if (Iter++ == MaxIter) 3595 return None; 3596 } 3597 3598 return std::make_pair(LowestIdxLoad, LowestIdx); 3599 } 3600 3601 bool CombinerHelper::matchLoadOrCombine( 3602 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3603 assert(MI.getOpcode() == TargetOpcode::G_OR); 3604 MachineFunction &MF = *MI.getMF(); 3605 // Assuming a little-endian target, transform: 3606 // s8 *a = ... 3607 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3608 // => 3609 // s32 val = *((i32)a) 3610 // 3611 // s8 *a = ... 3612 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3613 // => 3614 // s32 val = BSWAP(*((s32)a)) 3615 Register Dst = MI.getOperand(0).getReg(); 3616 LLT Ty = MRI.getType(Dst); 3617 if (Ty.isVector()) 3618 return false; 3619 3620 // We need to combine at least two loads into this type. Since the smallest 3621 // possible load is into a byte, we need at least a 16-bit wide type. 3622 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3623 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3624 return false; 3625 3626 // Match a collection of non-OR instructions in the pattern. 3627 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3628 if (!RegsToVisit) 3629 return false; 3630 3631 // We have a collection of non-OR instructions. Figure out how wide each of 3632 // the small loads should be based off of the number of potential loads we 3633 // found. 3634 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3635 if (NarrowMemSizeInBits % 8 != 0) 3636 return false; 3637 3638 // Check if each register feeding into each OR is a load from the same 3639 // base pointer + some arithmetic. 3640 // 3641 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3642 // 3643 // Also verify that each of these ends up putting a[i] into the same memory 3644 // offset as a load into a wide type would. 3645 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3646 MachineInstr *LowestIdxLoad; 3647 int64_t LowestIdx; 3648 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3649 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3650 if (!MaybeLoadInfo) 3651 return false; 3652 std::tie(LowestIdxLoad, LowestIdx) = *MaybeLoadInfo; 3653 3654 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3655 // we found before, check if this corresponds to a big or little endian byte 3656 // pattern. If it does, then we can represent it using a load + possibly a 3657 // BSWAP. 3658 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3659 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3660 if (!IsBigEndian.hasValue()) 3661 return false; 3662 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3663 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3664 return false; 3665 3666 // Make sure that the load from the lowest index produces offset 0 in the 3667 // final value. 3668 // 3669 // This ensures that we won't combine something like this: 3670 // 3671 // load x[i] -> byte 2 3672 // load x[i+1] -> byte 0 ---> wide_load x[i] 3673 // load x[i+2] -> byte 1 3674 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3675 const unsigned ZeroByteOffset = 3676 *IsBigEndian 3677 ? bigEndianByteAt(NumLoadsInTy, 0) 3678 : littleEndianByteAt(NumLoadsInTy, 0); 3679 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3680 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3681 ZeroOffsetIdx->second != LowestIdx) 3682 return false; 3683 3684 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3685 // may not use index 0. 3686 Register Ptr = LowestIdxLoad->getOperand(1).getReg(); 3687 const MachineMemOperand &MMO = **LowestIdxLoad->memoperands_begin(); 3688 LegalityQuery::MemDesc MMDesc; 3689 MMDesc.MemoryTy = Ty; 3690 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 3691 MMDesc.Ordering = MMO.getSuccessOrdering(); 3692 if (!isLegalOrBeforeLegalizer( 3693 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3694 return false; 3695 auto PtrInfo = MMO.getPointerInfo(); 3696 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3697 3698 // Load must be allowed and fast on the target. 3699 LLVMContext &C = MF.getFunction().getContext(); 3700 auto &DL = MF.getDataLayout(); 3701 bool Fast = false; 3702 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3703 !Fast) 3704 return false; 3705 3706 MatchInfo = [=](MachineIRBuilder &MIB) { 3707 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3708 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3709 if (NeedsBSwap) 3710 MIB.buildBSwap(Dst, LoadDst); 3711 }; 3712 return true; 3713 } 3714 3715 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3716 MachineInstr *&ExtMI) { 3717 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3718 3719 Register DstReg = MI.getOperand(0).getReg(); 3720 3721 // TODO: Extending a vector may be expensive, don't do this until heuristics 3722 // are better. 3723 if (MRI.getType(DstReg).isVector()) 3724 return false; 3725 3726 // Try to match a phi, whose only use is an extend. 3727 if (!MRI.hasOneNonDBGUse(DstReg)) 3728 return false; 3729 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3730 switch (ExtMI->getOpcode()) { 3731 case TargetOpcode::G_ANYEXT: 3732 return true; // G_ANYEXT is usually free. 3733 case TargetOpcode::G_ZEXT: 3734 case TargetOpcode::G_SEXT: 3735 break; 3736 default: 3737 return false; 3738 } 3739 3740 // If the target is likely to fold this extend away, don't propagate. 3741 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3742 return false; 3743 3744 // We don't want to propagate the extends unless there's a good chance that 3745 // they'll be optimized in some way. 3746 // Collect the unique incoming values. 3747 SmallPtrSet<MachineInstr *, 4> InSrcs; 3748 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3749 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3750 switch (DefMI->getOpcode()) { 3751 case TargetOpcode::G_LOAD: 3752 case TargetOpcode::G_TRUNC: 3753 case TargetOpcode::G_SEXT: 3754 case TargetOpcode::G_ZEXT: 3755 case TargetOpcode::G_ANYEXT: 3756 case TargetOpcode::G_CONSTANT: 3757 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3758 // Don't try to propagate if there are too many places to create new 3759 // extends, chances are it'll increase code size. 3760 if (InSrcs.size() > 2) 3761 return false; 3762 break; 3763 default: 3764 return false; 3765 } 3766 } 3767 return true; 3768 } 3769 3770 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3771 MachineInstr *&ExtMI) { 3772 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3773 Register DstReg = ExtMI->getOperand(0).getReg(); 3774 LLT ExtTy = MRI.getType(DstReg); 3775 3776 // Propagate the extension into the block of each incoming reg's block. 3777 // Use a SetVector here because PHIs can have duplicate edges, and we want 3778 // deterministic iteration order. 3779 SmallSetVector<MachineInstr *, 8> SrcMIs; 3780 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3781 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3782 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3783 if (!SrcMIs.insert(SrcMI)) 3784 continue; 3785 3786 // Build an extend after each src inst. 3787 auto *MBB = SrcMI->getParent(); 3788 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3789 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3790 InsertPt = MBB->getFirstNonPHI(); 3791 3792 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3793 Builder.setDebugLoc(MI.getDebugLoc()); 3794 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3795 SrcMI->getOperand(0).getReg()); 3796 OldToNewSrcMap[SrcMI] = NewExt; 3797 } 3798 3799 // Create a new phi with the extended inputs. 3800 Builder.setInstrAndDebugLoc(MI); 3801 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3802 NewPhi.addDef(DstReg); 3803 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3804 auto &MO = MI.getOperand(SrcIdx); 3805 if (!MO.isReg()) { 3806 NewPhi.addMBB(MO.getMBB()); 3807 continue; 3808 } 3809 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3810 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3811 } 3812 Builder.insertInstr(NewPhi); 3813 ExtMI->eraseFromParent(); 3814 } 3815 3816 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3817 Register &Reg) { 3818 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3819 // If we have a constant index, look for a G_BUILD_VECTOR source 3820 // and find the source register that the index maps to. 3821 Register SrcVec = MI.getOperand(1).getReg(); 3822 LLT SrcTy = MRI.getType(SrcVec); 3823 if (!isLegalOrBeforeLegalizer( 3824 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3825 return false; 3826 3827 auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3828 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3829 return false; 3830 3831 unsigned VecIdx = Cst->Value.getZExtValue(); 3832 MachineInstr *BuildVecMI = 3833 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3834 if (!BuildVecMI) { 3835 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3836 if (!BuildVecMI) 3837 return false; 3838 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3839 if (!isLegalOrBeforeLegalizer( 3840 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3841 return false; 3842 } 3843 3844 EVT Ty(getMVTForLLT(SrcTy)); 3845 if (!MRI.hasOneNonDBGUse(SrcVec) && 3846 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3847 return false; 3848 3849 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3850 return true; 3851 } 3852 3853 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3854 Register &Reg) { 3855 // Check the type of the register, since it may have come from a 3856 // G_BUILD_VECTOR_TRUNC. 3857 LLT ScalarTy = MRI.getType(Reg); 3858 Register DstReg = MI.getOperand(0).getReg(); 3859 LLT DstTy = MRI.getType(DstReg); 3860 3861 Builder.setInstrAndDebugLoc(MI); 3862 if (ScalarTy != DstTy) { 3863 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3864 Builder.buildTrunc(DstReg, Reg); 3865 MI.eraseFromParent(); 3866 return; 3867 } 3868 replaceSingleDefInstWithReg(MI, Reg); 3869 } 3870 3871 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3872 MachineInstr &MI, 3873 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3874 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3875 // This combine tries to find build_vector's which have every source element 3876 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3877 // the masked load scalarization is run late in the pipeline. There's already 3878 // a combine for a similar pattern starting from the extract, but that 3879 // doesn't attempt to do it if there are multiple uses of the build_vector, 3880 // which in this case is true. Starting the combine from the build_vector 3881 // feels more natural than trying to find sibling nodes of extracts. 3882 // E.g. 3883 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3884 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3885 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3886 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3887 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3888 // ==> 3889 // replace ext{1,2,3,4} with %s{1,2,3,4} 3890 3891 Register DstReg = MI.getOperand(0).getReg(); 3892 LLT DstTy = MRI.getType(DstReg); 3893 unsigned NumElts = DstTy.getNumElements(); 3894 3895 SmallBitVector ExtractedElts(NumElts); 3896 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), 3897 MRI.use_instr_nodbg_end())) { 3898 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3899 return false; 3900 auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI); 3901 if (!Cst) 3902 return false; 3903 unsigned Idx = Cst.getValue().getZExtValue(); 3904 if (Idx >= NumElts) 3905 return false; // Out of range. 3906 ExtractedElts.set(Idx); 3907 SrcDstPairs.emplace_back( 3908 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3909 } 3910 // Match if every element was extracted. 3911 return ExtractedElts.all(); 3912 } 3913 3914 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3915 MachineInstr &MI, 3916 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3917 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3918 for (auto &Pair : SrcDstPairs) { 3919 auto *ExtMI = Pair.second; 3920 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3921 ExtMI->eraseFromParent(); 3922 } 3923 MI.eraseFromParent(); 3924 } 3925 3926 void CombinerHelper::applyBuildFn( 3927 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3928 Builder.setInstrAndDebugLoc(MI); 3929 MatchInfo(Builder); 3930 MI.eraseFromParent(); 3931 } 3932 3933 void CombinerHelper::applyBuildFnNoErase( 3934 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3935 Builder.setInstrAndDebugLoc(MI); 3936 MatchInfo(Builder); 3937 } 3938 3939 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3940 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3941 unsigned Opc = MI.getOpcode(); 3942 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3943 Register X = MI.getOperand(1).getReg(); 3944 Register Y = MI.getOperand(2).getReg(); 3945 if (X != Y) 3946 return false; 3947 unsigned RotateOpc = 3948 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3949 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3950 } 3951 3952 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3953 unsigned Opc = MI.getOpcode(); 3954 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3955 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3956 Observer.changingInstr(MI); 3957 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3958 : TargetOpcode::G_ROTR)); 3959 MI.RemoveOperand(2); 3960 Observer.changedInstr(MI); 3961 } 3962 3963 // Fold (rot x, c) -> (rot x, c % BitSize) 3964 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3965 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3966 MI.getOpcode() == TargetOpcode::G_ROTR); 3967 unsigned Bitsize = 3968 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3969 Register AmtReg = MI.getOperand(2).getReg(); 3970 bool OutOfRange = false; 3971 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 3972 if (auto *CI = dyn_cast<ConstantInt>(C)) 3973 OutOfRange |= CI->getValue().uge(Bitsize); 3974 return true; 3975 }; 3976 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 3977 } 3978 3979 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 3980 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3981 MI.getOpcode() == TargetOpcode::G_ROTR); 3982 unsigned Bitsize = 3983 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3984 Builder.setInstrAndDebugLoc(MI); 3985 Register Amt = MI.getOperand(2).getReg(); 3986 LLT AmtTy = MRI.getType(Amt); 3987 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 3988 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 3989 Observer.changingInstr(MI); 3990 MI.getOperand(2).setReg(Amt); 3991 Observer.changedInstr(MI); 3992 } 3993 3994 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 3995 int64_t &MatchInfo) { 3996 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3997 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3998 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 3999 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 4000 Optional<bool> KnownVal; 4001 switch (Pred) { 4002 default: 4003 llvm_unreachable("Unexpected G_ICMP predicate?"); 4004 case CmpInst::ICMP_EQ: 4005 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 4006 break; 4007 case CmpInst::ICMP_NE: 4008 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 4009 break; 4010 case CmpInst::ICMP_SGE: 4011 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 4012 break; 4013 case CmpInst::ICMP_SGT: 4014 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 4015 break; 4016 case CmpInst::ICMP_SLE: 4017 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 4018 break; 4019 case CmpInst::ICMP_SLT: 4020 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 4021 break; 4022 case CmpInst::ICMP_UGE: 4023 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 4024 break; 4025 case CmpInst::ICMP_UGT: 4026 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 4027 break; 4028 case CmpInst::ICMP_ULE: 4029 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 4030 break; 4031 case CmpInst::ICMP_ULT: 4032 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 4033 break; 4034 } 4035 if (!KnownVal) 4036 return false; 4037 MatchInfo = 4038 *KnownVal 4039 ? getICmpTrueVal(getTargetLowering(), 4040 /*IsVector = */ 4041 MRI.getType(MI.getOperand(0).getReg()).isVector(), 4042 /* IsFP = */ false) 4043 : 0; 4044 return true; 4045 } 4046 4047 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4048 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4049 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4050 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4051 Register Dst = MI.getOperand(0).getReg(); 4052 Register Src = MI.getOperand(1).getReg(); 4053 LLT Ty = MRI.getType(Src); 4054 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4055 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4056 return false; 4057 int64_t Width = MI.getOperand(2).getImm(); 4058 Register ShiftSrc; 4059 int64_t ShiftImm; 4060 if (!mi_match( 4061 Src, MRI, 4062 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4063 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4064 return false; 4065 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4066 return false; 4067 4068 MatchInfo = [=](MachineIRBuilder &B) { 4069 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4070 auto Cst2 = B.buildConstant(ExtractTy, Width); 4071 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4072 }; 4073 return true; 4074 } 4075 4076 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4077 bool CombinerHelper::matchBitfieldExtractFromAnd( 4078 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4079 assert(MI.getOpcode() == TargetOpcode::G_AND); 4080 Register Dst = MI.getOperand(0).getReg(); 4081 LLT Ty = MRI.getType(Dst); 4082 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 4083 TargetOpcode::G_UBFX, Ty, Ty)) 4084 return false; 4085 4086 int64_t AndImm, LSBImm; 4087 Register ShiftSrc; 4088 const unsigned Size = Ty.getScalarSizeInBits(); 4089 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4090 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4091 m_ICst(AndImm)))) 4092 return false; 4093 4094 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4095 auto MaybeMask = static_cast<uint64_t>(AndImm); 4096 if (MaybeMask & (MaybeMask + 1)) 4097 return false; 4098 4099 // LSB must fit within the register. 4100 if (static_cast<uint64_t>(LSBImm) >= Size) 4101 return false; 4102 4103 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4104 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4105 MatchInfo = [=](MachineIRBuilder &B) { 4106 auto WidthCst = B.buildConstant(ExtractTy, Width); 4107 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4108 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4109 }; 4110 return true; 4111 } 4112 4113 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4114 MachineInstr &PtrAdd) { 4115 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4116 4117 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4118 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4119 if (!Src1Def) 4120 return false; 4121 4122 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4123 4124 if (MRI.hasOneNonDBGUse(Src1Reg)) 4125 return false; 4126 4127 auto C1 = getConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4128 if (!C1) 4129 return false; 4130 auto C2 = getConstantVRegVal(Src2Reg, MRI); 4131 if (!C2) 4132 return false; 4133 4134 const APInt &C1APIntVal = *C1; 4135 const APInt &C2APIntVal = *C2; 4136 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4137 4138 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4139 // This combine may end up running before ptrtoint/inttoptr combines 4140 // manage to eliminate redundant conversions, so try to look through them. 4141 MachineInstr *ConvUseMI = &UseMI; 4142 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4143 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4144 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4145 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4146 if (!MRI.hasOneNonDBGUse(DefReg)) 4147 break; 4148 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4149 } 4150 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4151 ConvUseOpc == TargetOpcode::G_STORE; 4152 if (!LoadStore) 4153 continue; 4154 // Is x[offset2] already not a legal addressing mode? If so then 4155 // reassociating the constants breaks nothing (we test offset2 because 4156 // that's the one we hope to fold into the load or store). 4157 TargetLoweringBase::AddrMode AM; 4158 AM.HasBaseReg = true; 4159 AM.BaseOffs = C2APIntVal.getSExtValue(); 4160 unsigned AS = 4161 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4162 Type *AccessTy = 4163 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4164 PtrAdd.getMF()->getFunction().getContext()); 4165 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4166 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4167 AccessTy, AS)) 4168 continue; 4169 4170 // Would x[offset1+offset2] still be a legal addressing mode? 4171 AM.BaseOffs = CombinedValue; 4172 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4173 AccessTy, AS)) 4174 return true; 4175 } 4176 4177 return false; 4178 } 4179 4180 bool CombinerHelper::matchReassocPtrAdd( 4181 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4182 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 4183 // We're trying to match a few pointer computation patterns here for 4184 // re-association opportunities. 4185 // 1) Isolating a constant operand to be on the RHS, e.g.: 4186 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4187 // 4188 // 2) Folding two constants in each sub-tree as long as such folding 4189 // doesn't break a legal addressing mode. 4190 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4191 Register Src1Reg = MI.getOperand(1).getReg(); 4192 Register Src2Reg = MI.getOperand(2).getReg(); 4193 MachineInstr *LHS = MRI.getVRegDef(Src1Reg); 4194 MachineInstr *RHS = MRI.getVRegDef(Src2Reg); 4195 4196 if (LHS->getOpcode() != TargetOpcode::G_PTR_ADD) { 4197 // Try to match example 1). 4198 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4199 return false; 4200 auto C2 = getConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4201 if (!C2) 4202 return false; 4203 4204 MatchInfo = [=,&MI](MachineIRBuilder &B) { 4205 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4206 4207 auto NewBase = 4208 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4209 Observer.changingInstr(MI); 4210 MI.getOperand(1).setReg(NewBase.getReg(0)); 4211 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4212 Observer.changedInstr(MI); 4213 }; 4214 } else { 4215 // Try to match example 2. 4216 Register LHSSrc1 = LHS->getOperand(1).getReg(); 4217 Register LHSSrc2 = LHS->getOperand(2).getReg(); 4218 auto C1 = getConstantVRegVal(LHSSrc2, MRI); 4219 if (!C1) 4220 return false; 4221 auto C2 = getConstantVRegVal(Src2Reg, MRI); 4222 if (!C2) 4223 return false; 4224 4225 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4226 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4227 Observer.changingInstr(MI); 4228 MI.getOperand(1).setReg(LHSSrc1); 4229 MI.getOperand(2).setReg(NewCst.getReg(0)); 4230 Observer.changedInstr(MI); 4231 }; 4232 } 4233 return !reassociationCanBreakAddressingModePattern(MI); 4234 } 4235 4236 bool CombinerHelper::tryCombine(MachineInstr &MI) { 4237 if (tryCombineCopy(MI)) 4238 return true; 4239 if (tryCombineExtendingLoads(MI)) 4240 return true; 4241 if (tryCombineIndexedLoadStore(MI)) 4242 return true; 4243 return false; 4244 } 4245