1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 17 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 20 #include "llvm/CodeGen/GlobalISel/Utils.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/CodeGen/TargetOpcodes.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/DivisionByConstantInfo.h" 35 #include "llvm/Support/MathExtras.h" 36 #include <tuple> 37 38 #define DEBUG_TYPE "gi-combiner" 39 40 using namespace llvm; 41 using namespace MIPatternMatch; 42 43 // Option to allow testing of the combiner while no targets know about indexed 44 // addressing. 45 static cl::opt<bool> 46 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 47 cl::desc("Force all indexed operations to be " 48 "legal for the GlobalISel combiner")); 49 50 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 51 MachineIRBuilder &B, GISelKnownBits *KB, 52 MachineDominatorTree *MDT, 53 const LegalizerInfo *LI) 54 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 55 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 56 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 57 (void)this->KB; 58 } 59 60 const TargetLowering &CombinerHelper::getTargetLowering() const { 61 return *Builder.getMF().getSubtarget().getTargetLowering(); 62 } 63 64 /// \returns The little endian in-memory byte position of byte \p I in a 65 /// \p ByteWidth bytes wide type. 66 /// 67 /// E.g. Given a 4-byte type x, x[0] -> byte 0 68 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 69 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 70 return I; 71 } 72 73 /// Determines the LogBase2 value for a non-null input value using the 74 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 75 static Register buildLogBase2(Register V, MachineIRBuilder &MIB) { 76 auto &MRI = *MIB.getMRI(); 77 LLT Ty = MRI.getType(V); 78 auto Ctlz = MIB.buildCTLZ(Ty, V); 79 auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1); 80 return MIB.buildSub(Ty, Base, Ctlz).getReg(0); 81 } 82 83 /// \returns The big endian in-memory byte position of byte \p I in a 84 /// \p ByteWidth bytes wide type. 85 /// 86 /// E.g. Given a 4-byte type x, x[0] -> byte 3 87 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 88 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 89 return ByteWidth - I - 1; 90 } 91 92 /// Given a map from byte offsets in memory to indices in a load/store, 93 /// determine if that map corresponds to a little or big endian byte pattern. 94 /// 95 /// \param MemOffset2Idx maps memory offsets to address offsets. 96 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 97 /// 98 /// \returns true if the map corresponds to a big endian byte pattern, false 99 /// if it corresponds to a little endian byte pattern, and None otherwise. 100 /// 101 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 102 /// are as follows: 103 /// 104 /// AddrOffset Little endian Big endian 105 /// 0 0 3 106 /// 1 1 2 107 /// 2 2 1 108 /// 3 3 0 109 static Optional<bool> 110 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 111 int64_t LowestIdx) { 112 // Need at least two byte positions to decide on endianness. 113 unsigned Width = MemOffset2Idx.size(); 114 if (Width < 2) 115 return None; 116 bool BigEndian = true, LittleEndian = true; 117 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 118 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 119 if (MemOffsetAndIdx == MemOffset2Idx.end()) 120 return None; 121 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 122 assert(Idx >= 0 && "Expected non-negative byte offset?"); 123 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 124 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 125 if (!BigEndian && !LittleEndian) 126 return None; 127 } 128 129 assert((BigEndian != LittleEndian) && 130 "Pattern cannot be both big and little endian!"); 131 return BigEndian; 132 } 133 134 bool CombinerHelper::isPreLegalize() const { return !LI; } 135 136 bool CombinerHelper::isLegal(const LegalityQuery &Query) const { 137 assert(LI && "Must have LegalizerInfo to query isLegal!"); 138 return LI->getAction(Query).Action == LegalizeActions::Legal; 139 } 140 141 bool CombinerHelper::isLegalOrBeforeLegalizer( 142 const LegalityQuery &Query) const { 143 return isPreLegalize() || isLegal(Query); 144 } 145 146 bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const { 147 if (!Ty.isVector()) 148 return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}}); 149 // Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs. 150 if (isPreLegalize()) 151 return true; 152 LLT EltTy = Ty.getElementType(); 153 return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) && 154 isLegal({TargetOpcode::G_CONSTANT, {EltTy}}); 155 } 156 157 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 158 Register ToReg) const { 159 Observer.changingAllUsesOfReg(MRI, FromReg); 160 161 if (MRI.constrainRegAttrs(ToReg, FromReg)) 162 MRI.replaceRegWith(FromReg, ToReg); 163 else 164 Builder.buildCopy(ToReg, FromReg); 165 166 Observer.finishedChangingAllUsesOfReg(); 167 } 168 169 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 170 MachineOperand &FromRegOp, 171 Register ToReg) const { 172 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 173 Observer.changingInstr(*FromRegOp.getParent()); 174 175 FromRegOp.setReg(ToReg); 176 177 Observer.changedInstr(*FromRegOp.getParent()); 178 } 179 180 void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI, 181 unsigned ToOpcode) const { 182 Observer.changingInstr(FromMI); 183 184 FromMI.setDesc(Builder.getTII().get(ToOpcode)); 185 186 Observer.changedInstr(FromMI); 187 } 188 189 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 190 return RBI->getRegBank(Reg, MRI, *TRI); 191 } 192 193 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 194 if (RegBank) 195 MRI.setRegBank(Reg, *RegBank); 196 } 197 198 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 199 if (matchCombineCopy(MI)) { 200 applyCombineCopy(MI); 201 return true; 202 } 203 return false; 204 } 205 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 206 if (MI.getOpcode() != TargetOpcode::COPY) 207 return false; 208 Register DstReg = MI.getOperand(0).getReg(); 209 Register SrcReg = MI.getOperand(1).getReg(); 210 return canReplaceReg(DstReg, SrcReg, MRI); 211 } 212 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 213 Register DstReg = MI.getOperand(0).getReg(); 214 Register SrcReg = MI.getOperand(1).getReg(); 215 MI.eraseFromParent(); 216 replaceRegWith(MRI, DstReg, SrcReg); 217 } 218 219 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 220 bool IsUndef = false; 221 SmallVector<Register, 4> Ops; 222 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 223 applyCombineConcatVectors(MI, IsUndef, Ops); 224 return true; 225 } 226 return false; 227 } 228 229 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 230 SmallVectorImpl<Register> &Ops) { 231 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 232 "Invalid instruction"); 233 IsUndef = true; 234 MachineInstr *Undef = nullptr; 235 236 // Walk over all the operands of concat vectors and check if they are 237 // build_vector themselves or undef. 238 // Then collect their operands in Ops. 239 for (const MachineOperand &MO : MI.uses()) { 240 Register Reg = MO.getReg(); 241 MachineInstr *Def = MRI.getVRegDef(Reg); 242 assert(Def && "Operand not defined"); 243 switch (Def->getOpcode()) { 244 case TargetOpcode::G_BUILD_VECTOR: 245 IsUndef = false; 246 // Remember the operands of the build_vector to fold 247 // them into the yet-to-build flattened concat vectors. 248 for (const MachineOperand &BuildVecMO : Def->uses()) 249 Ops.push_back(BuildVecMO.getReg()); 250 break; 251 case TargetOpcode::G_IMPLICIT_DEF: { 252 LLT OpType = MRI.getType(Reg); 253 // Keep one undef value for all the undef operands. 254 if (!Undef) { 255 Builder.setInsertPt(*MI.getParent(), MI); 256 Undef = Builder.buildUndef(OpType.getScalarType()); 257 } 258 assert(MRI.getType(Undef->getOperand(0).getReg()) == 259 OpType.getScalarType() && 260 "All undefs should have the same type"); 261 // Break the undef vector in as many scalar elements as needed 262 // for the flattening. 263 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 264 EltIdx != EltEnd; ++EltIdx) 265 Ops.push_back(Undef->getOperand(0).getReg()); 266 break; 267 } 268 default: 269 return false; 270 } 271 } 272 return true; 273 } 274 void CombinerHelper::applyCombineConcatVectors( 275 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 276 // We determined that the concat_vectors can be flatten. 277 // Generate the flattened build_vector. 278 Register DstReg = MI.getOperand(0).getReg(); 279 Builder.setInsertPt(*MI.getParent(), MI); 280 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 281 282 // Note: IsUndef is sort of redundant. We could have determine it by 283 // checking that at all Ops are undef. Alternatively, we could have 284 // generate a build_vector of undefs and rely on another combine to 285 // clean that up. For now, given we already gather this information 286 // in tryCombineConcatVectors, just save compile time and issue the 287 // right thing. 288 if (IsUndef) 289 Builder.buildUndef(NewDstReg); 290 else 291 Builder.buildBuildVector(NewDstReg, Ops); 292 MI.eraseFromParent(); 293 replaceRegWith(MRI, DstReg, NewDstReg); 294 } 295 296 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 297 SmallVector<Register, 4> Ops; 298 if (matchCombineShuffleVector(MI, Ops)) { 299 applyCombineShuffleVector(MI, Ops); 300 return true; 301 } 302 return false; 303 } 304 305 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 306 SmallVectorImpl<Register> &Ops) { 307 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 308 "Invalid instruction kind"); 309 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 310 Register Src1 = MI.getOperand(1).getReg(); 311 LLT SrcType = MRI.getType(Src1); 312 // As bizarre as it may look, shuffle vector can actually produce 313 // scalar! This is because at the IR level a <1 x ty> shuffle 314 // vector is perfectly valid. 315 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 316 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 317 318 // If the resulting vector is smaller than the size of the source 319 // vectors being concatenated, we won't be able to replace the 320 // shuffle vector into a concat_vectors. 321 // 322 // Note: We may still be able to produce a concat_vectors fed by 323 // extract_vector_elt and so on. It is less clear that would 324 // be better though, so don't bother for now. 325 // 326 // If the destination is a scalar, the size of the sources doesn't 327 // matter. we will lower the shuffle to a plain copy. This will 328 // work only if the source and destination have the same size. But 329 // that's covered by the next condition. 330 // 331 // TODO: If the size between the source and destination don't match 332 // we could still emit an extract vector element in that case. 333 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 334 return false; 335 336 // Check that the shuffle mask can be broken evenly between the 337 // different sources. 338 if (DstNumElts % SrcNumElts != 0) 339 return false; 340 341 // Mask length is a multiple of the source vector length. 342 // Check if the shuffle is some kind of concatenation of the input 343 // vectors. 344 unsigned NumConcat = DstNumElts / SrcNumElts; 345 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 346 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 347 for (unsigned i = 0; i != DstNumElts; ++i) { 348 int Idx = Mask[i]; 349 // Undef value. 350 if (Idx < 0) 351 continue; 352 // Ensure the indices in each SrcType sized piece are sequential and that 353 // the same source is used for the whole piece. 354 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 355 (ConcatSrcs[i / SrcNumElts] >= 0 && 356 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 357 return false; 358 // Remember which source this index came from. 359 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 360 } 361 362 // The shuffle is concatenating multiple vectors together. 363 // Collect the different operands for that. 364 Register UndefReg; 365 Register Src2 = MI.getOperand(2).getReg(); 366 for (auto Src : ConcatSrcs) { 367 if (Src < 0) { 368 if (!UndefReg) { 369 Builder.setInsertPt(*MI.getParent(), MI); 370 UndefReg = Builder.buildUndef(SrcType).getReg(0); 371 } 372 Ops.push_back(UndefReg); 373 } else if (Src == 0) 374 Ops.push_back(Src1); 375 else 376 Ops.push_back(Src2); 377 } 378 return true; 379 } 380 381 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 382 const ArrayRef<Register> Ops) { 383 Register DstReg = MI.getOperand(0).getReg(); 384 Builder.setInsertPt(*MI.getParent(), MI); 385 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 386 387 if (Ops.size() == 1) 388 Builder.buildCopy(NewDstReg, Ops[0]); 389 else 390 Builder.buildMerge(NewDstReg, Ops); 391 392 MI.eraseFromParent(); 393 replaceRegWith(MRI, DstReg, NewDstReg); 394 } 395 396 namespace { 397 398 /// Select a preference between two uses. CurrentUse is the current preference 399 /// while *ForCandidate is attributes of the candidate under consideration. 400 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 401 const LLT TyForCandidate, 402 unsigned OpcodeForCandidate, 403 MachineInstr *MIForCandidate) { 404 if (!CurrentUse.Ty.isValid()) { 405 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 406 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 407 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 408 return CurrentUse; 409 } 410 411 // We permit the extend to hoist through basic blocks but this is only 412 // sensible if the target has extending loads. If you end up lowering back 413 // into a load and extend during the legalizer then the end result is 414 // hoisting the extend up to the load. 415 416 // Prefer defined extensions to undefined extensions as these are more 417 // likely to reduce the number of instructions. 418 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 419 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 420 return CurrentUse; 421 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 422 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 423 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 424 425 // Prefer sign extensions to zero extensions as sign-extensions tend to be 426 // more expensive. 427 if (CurrentUse.Ty == TyForCandidate) { 428 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 429 OpcodeForCandidate == TargetOpcode::G_ZEXT) 430 return CurrentUse; 431 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 432 OpcodeForCandidate == TargetOpcode::G_SEXT) 433 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 434 } 435 436 // This is potentially target specific. We've chosen the largest type 437 // because G_TRUNC is usually free. One potential catch with this is that 438 // some targets have a reduced number of larger registers than smaller 439 // registers and this choice potentially increases the live-range for the 440 // larger value. 441 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 442 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 443 } 444 return CurrentUse; 445 } 446 447 /// Find a suitable place to insert some instructions and insert them. This 448 /// function accounts for special cases like inserting before a PHI node. 449 /// The current strategy for inserting before PHI's is to duplicate the 450 /// instructions for each predecessor. However, while that's ok for G_TRUNC 451 /// on most targets since it generally requires no code, other targets/cases may 452 /// want to try harder to find a dominating block. 453 static void InsertInsnsWithoutSideEffectsBeforeUse( 454 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 455 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 456 MachineOperand &UseMO)> 457 Inserter) { 458 MachineInstr &UseMI = *UseMO.getParent(); 459 460 MachineBasicBlock *InsertBB = UseMI.getParent(); 461 462 // If the use is a PHI then we want the predecessor block instead. 463 if (UseMI.isPHI()) { 464 MachineOperand *PredBB = std::next(&UseMO); 465 InsertBB = PredBB->getMBB(); 466 } 467 468 // If the block is the same block as the def then we want to insert just after 469 // the def instead of at the start of the block. 470 if (InsertBB == DefMI.getParent()) { 471 MachineBasicBlock::iterator InsertPt = &DefMI; 472 Inserter(InsertBB, std::next(InsertPt), UseMO); 473 return; 474 } 475 476 // Otherwise we want the start of the BB 477 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 478 } 479 } // end anonymous namespace 480 481 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 482 PreferredTuple Preferred; 483 if (matchCombineExtendingLoads(MI, Preferred)) { 484 applyCombineExtendingLoads(MI, Preferred); 485 return true; 486 } 487 return false; 488 } 489 490 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 491 PreferredTuple &Preferred) { 492 // We match the loads and follow the uses to the extend instead of matching 493 // the extends and following the def to the load. This is because the load 494 // must remain in the same position for correctness (unless we also add code 495 // to find a safe place to sink it) whereas the extend is freely movable. 496 // It also prevents us from duplicating the load for the volatile case or just 497 // for performance. 498 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 499 if (!LoadMI) 500 return false; 501 502 Register LoadReg = LoadMI->getDstReg(); 503 504 LLT LoadValueTy = MRI.getType(LoadReg); 505 if (!LoadValueTy.isScalar()) 506 return false; 507 508 // Most architectures are going to legalize <s8 loads into at least a 1 byte 509 // load, and the MMOs can only describe memory accesses in multiples of bytes. 510 // If we try to perform extload combining on those, we can end up with 511 // %a(s8) = extload %ptr (load 1 byte from %ptr) 512 // ... which is an illegal extload instruction. 513 if (LoadValueTy.getSizeInBits() < 8) 514 return false; 515 516 // For non power-of-2 types, they will very likely be legalized into multiple 517 // loads. Don't bother trying to match them into extending loads. 518 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 519 return false; 520 521 // Find the preferred type aside from the any-extends (unless it's the only 522 // one) and non-extending ops. We'll emit an extending load to that type and 523 // and emit a variant of (extend (trunc X)) for the others according to the 524 // relative type sizes. At the same time, pick an extend to use based on the 525 // extend involved in the chosen type. 526 unsigned PreferredOpcode = 527 isa<GLoad>(&MI) 528 ? TargetOpcode::G_ANYEXT 529 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 530 Preferred = {LLT(), PreferredOpcode, nullptr}; 531 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 532 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 533 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 534 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 535 const auto &MMO = LoadMI->getMMO(); 536 // For atomics, only form anyextending loads. 537 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 538 continue; 539 // Check for legality. 540 if (LI) { 541 LegalityQuery::MemDesc MMDesc(MMO); 542 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 543 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 544 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 545 .Action != LegalizeActions::Legal) 546 continue; 547 } 548 Preferred = ChoosePreferredUse(Preferred, 549 MRI.getType(UseMI.getOperand(0).getReg()), 550 UseMI.getOpcode(), &UseMI); 551 } 552 } 553 554 // There were no extends 555 if (!Preferred.MI) 556 return false; 557 // It should be impossible to chose an extend without selecting a different 558 // type since by definition the result of an extend is larger. 559 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 560 561 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 562 return true; 563 } 564 565 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 566 PreferredTuple &Preferred) { 567 // Rewrite the load to the chosen extending load. 568 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 569 570 // Inserter to insert a truncate back to the original type at a given point 571 // with some basic CSE to limit truncate duplication to one per BB. 572 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 573 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 574 MachineBasicBlock::iterator InsertBefore, 575 MachineOperand &UseMO) { 576 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 577 if (PreviouslyEmitted) { 578 Observer.changingInstr(*UseMO.getParent()); 579 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 580 Observer.changedInstr(*UseMO.getParent()); 581 return; 582 } 583 584 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 585 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 586 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 587 EmittedInsns[InsertIntoBB] = NewMI; 588 replaceRegOpWith(MRI, UseMO, NewDstReg); 589 }; 590 591 Observer.changingInstr(MI); 592 MI.setDesc( 593 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 594 ? TargetOpcode::G_SEXTLOAD 595 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 596 ? TargetOpcode::G_ZEXTLOAD 597 : TargetOpcode::G_LOAD)); 598 599 // Rewrite all the uses to fix up the types. 600 auto &LoadValue = MI.getOperand(0); 601 SmallVector<MachineOperand *, 4> Uses; 602 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 603 Uses.push_back(&UseMO); 604 605 for (auto *UseMO : Uses) { 606 MachineInstr *UseMI = UseMO->getParent(); 607 608 // If the extend is compatible with the preferred extend then we should fix 609 // up the type and extend so that it uses the preferred use. 610 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 611 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 612 Register UseDstReg = UseMI->getOperand(0).getReg(); 613 MachineOperand &UseSrcMO = UseMI->getOperand(1); 614 const LLT UseDstTy = MRI.getType(UseDstReg); 615 if (UseDstReg != ChosenDstReg) { 616 if (Preferred.Ty == UseDstTy) { 617 // If the use has the same type as the preferred use, then merge 618 // the vregs and erase the extend. For example: 619 // %1:_(s8) = G_LOAD ... 620 // %2:_(s32) = G_SEXT %1(s8) 621 // %3:_(s32) = G_ANYEXT %1(s8) 622 // ... = ... %3(s32) 623 // rewrites to: 624 // %2:_(s32) = G_SEXTLOAD ... 625 // ... = ... %2(s32) 626 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 627 Observer.erasingInstr(*UseMO->getParent()); 628 UseMO->getParent()->eraseFromParent(); 629 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 630 // If the preferred size is smaller, then keep the extend but extend 631 // from the result of the extending load. For example: 632 // %1:_(s8) = G_LOAD ... 633 // %2:_(s32) = G_SEXT %1(s8) 634 // %3:_(s64) = G_ANYEXT %1(s8) 635 // ... = ... %3(s64) 636 /// rewrites to: 637 // %2:_(s32) = G_SEXTLOAD ... 638 // %3:_(s64) = G_ANYEXT %2:_(s32) 639 // ... = ... %3(s64) 640 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 641 } else { 642 // If the preferred size is large, then insert a truncate. For 643 // example: 644 // %1:_(s8) = G_LOAD ... 645 // %2:_(s64) = G_SEXT %1(s8) 646 // %3:_(s32) = G_ZEXT %1(s8) 647 // ... = ... %3(s32) 648 /// rewrites to: 649 // %2:_(s64) = G_SEXTLOAD ... 650 // %4:_(s8) = G_TRUNC %2:_(s32) 651 // %3:_(s64) = G_ZEXT %2:_(s8) 652 // ... = ... %3(s64) 653 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 654 InsertTruncAt); 655 } 656 continue; 657 } 658 // The use is (one of) the uses of the preferred use we chose earlier. 659 // We're going to update the load to def this value later so just erase 660 // the old extend. 661 Observer.erasingInstr(*UseMO->getParent()); 662 UseMO->getParent()->eraseFromParent(); 663 continue; 664 } 665 666 // The use isn't an extend. Truncate back to the type we originally loaded. 667 // This is free on many targets. 668 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 669 } 670 671 MI.getOperand(0).setReg(ChosenDstReg); 672 Observer.changedInstr(MI); 673 } 674 675 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI, 676 BuildFnTy &MatchInfo) { 677 assert(MI.getOpcode() == TargetOpcode::G_AND); 678 679 // If we have the following code: 680 // %mask = G_CONSTANT 255 681 // %ld = G_LOAD %ptr, (load s16) 682 // %and = G_AND %ld, %mask 683 // 684 // Try to fold it into 685 // %ld = G_ZEXTLOAD %ptr, (load s8) 686 687 Register Dst = MI.getOperand(0).getReg(); 688 if (MRI.getType(Dst).isVector()) 689 return false; 690 691 auto MaybeMask = 692 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 693 if (!MaybeMask) 694 return false; 695 696 APInt MaskVal = MaybeMask->Value; 697 698 if (!MaskVal.isMask()) 699 return false; 700 701 Register SrcReg = MI.getOperand(1).getReg(); 702 GAnyLoad *LoadMI = getOpcodeDef<GAnyLoad>(SrcReg, MRI); 703 if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()) || 704 !LoadMI->isSimple()) 705 return false; 706 707 Register LoadReg = LoadMI->getDstReg(); 708 LLT LoadTy = MRI.getType(LoadReg); 709 Register PtrReg = LoadMI->getPointerReg(); 710 uint64_t LoadSizeBits = LoadMI->getMemSizeInBits(); 711 unsigned MaskSizeBits = MaskVal.countTrailingOnes(); 712 713 // The mask may not be larger than the in-memory type, as it might cover sign 714 // extended bits 715 if (MaskSizeBits > LoadSizeBits) 716 return false; 717 718 // If the mask covers the whole destination register, there's nothing to 719 // extend 720 if (MaskSizeBits >= LoadTy.getSizeInBits()) 721 return false; 722 723 // Most targets cannot deal with loads of size < 8 and need to re-legalize to 724 // at least byte loads. Avoid creating such loads here 725 if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits)) 726 return false; 727 728 const MachineMemOperand &MMO = LoadMI->getMMO(); 729 LegalityQuery::MemDesc MemDesc(MMO); 730 MemDesc.MemoryTy = LLT::scalar(MaskSizeBits); 731 if (!isLegalOrBeforeLegalizer( 732 {TargetOpcode::G_ZEXTLOAD, {LoadTy, MRI.getType(PtrReg)}, {MemDesc}})) 733 return false; 734 735 MatchInfo = [=](MachineIRBuilder &B) { 736 B.setInstrAndDebugLoc(*LoadMI); 737 auto &MF = B.getMF(); 738 auto PtrInfo = MMO.getPointerInfo(); 739 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MaskSizeBits / 8); 740 B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO); 741 }; 742 return true; 743 } 744 745 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 746 const MachineInstr &UseMI) { 747 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 748 "shouldn't consider debug uses"); 749 assert(DefMI.getParent() == UseMI.getParent()); 750 if (&DefMI == &UseMI) 751 return true; 752 const MachineBasicBlock &MBB = *DefMI.getParent(); 753 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 754 return &MI == &DefMI || &MI == &UseMI; 755 }); 756 if (DefOrUse == MBB.end()) 757 llvm_unreachable("Block must contain both DefMI and UseMI!"); 758 return &*DefOrUse == &DefMI; 759 } 760 761 bool CombinerHelper::dominates(const MachineInstr &DefMI, 762 const MachineInstr &UseMI) { 763 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 764 "shouldn't consider debug uses"); 765 if (MDT) 766 return MDT->dominates(&DefMI, &UseMI); 767 else if (DefMI.getParent() != UseMI.getParent()) 768 return false; 769 770 return isPredecessor(DefMI, UseMI); 771 } 772 773 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 774 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 775 Register SrcReg = MI.getOperand(1).getReg(); 776 Register LoadUser = SrcReg; 777 778 if (MRI.getType(SrcReg).isVector()) 779 return false; 780 781 Register TruncSrc; 782 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 783 LoadUser = TruncSrc; 784 785 uint64_t SizeInBits = MI.getOperand(2).getImm(); 786 // If the source is a G_SEXTLOAD from the same bit width, then we don't 787 // need any extend at all, just a truncate. 788 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 789 // If truncating more than the original extended value, abort. 790 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 791 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 792 return false; 793 if (LoadSizeBits == SizeInBits) 794 return true; 795 } 796 return false; 797 } 798 799 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 800 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 801 Builder.setInstrAndDebugLoc(MI); 802 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 803 MI.eraseFromParent(); 804 } 805 806 bool CombinerHelper::matchSextInRegOfLoad( 807 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 808 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 809 810 // Only supports scalars for now. 811 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 812 return false; 813 814 Register SrcReg = MI.getOperand(1).getReg(); 815 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 816 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || 817 !LoadDef->isSimple()) 818 return false; 819 820 // If the sign extend extends from a narrower width than the load's width, 821 // then we can narrow the load width when we combine to a G_SEXTLOAD. 822 // Avoid widening the load at all. 823 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), 824 LoadDef->getMemSizeInBits()); 825 826 // Don't generate G_SEXTLOADs with a < 1 byte width. 827 if (NewSizeBits < 8) 828 return false; 829 // Don't bother creating a non-power-2 sextload, it will likely be broken up 830 // anyway for most targets. 831 if (!isPowerOf2_32(NewSizeBits)) 832 return false; 833 834 const MachineMemOperand &MMO = LoadDef->getMMO(); 835 LegalityQuery::MemDesc MMDesc(MMO); 836 MMDesc.MemoryTy = LLT::scalar(NewSizeBits); 837 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, 838 {MRI.getType(LoadDef->getDstReg()), 839 MRI.getType(LoadDef->getPointerReg())}, 840 {MMDesc}})) 841 return false; 842 843 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 844 return true; 845 } 846 847 void CombinerHelper::applySextInRegOfLoad( 848 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 849 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 850 Register LoadReg; 851 unsigned ScalarSizeBits; 852 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 853 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 854 855 // If we have the following: 856 // %ld = G_LOAD %ptr, (load 2) 857 // %ext = G_SEXT_INREG %ld, 8 858 // ==> 859 // %ld = G_SEXTLOAD %ptr (load 1) 860 861 auto &MMO = LoadDef->getMMO(); 862 Builder.setInstrAndDebugLoc(*LoadDef); 863 auto &MF = Builder.getMF(); 864 auto PtrInfo = MMO.getPointerInfo(); 865 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 866 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 867 LoadDef->getPointerReg(), *NewMMO); 868 MI.eraseFromParent(); 869 } 870 871 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 872 Register &Base, Register &Offset) { 873 auto &MF = *MI.getParent()->getParent(); 874 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 875 876 #ifndef NDEBUG 877 unsigned Opcode = MI.getOpcode(); 878 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 879 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 880 #endif 881 882 Base = MI.getOperand(1).getReg(); 883 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 884 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 885 return false; 886 887 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 888 // FIXME: The following use traversal needs a bail out for patholigical cases. 889 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 890 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 891 continue; 892 893 Offset = Use.getOperand(2).getReg(); 894 if (!ForceLegalIndexing && 895 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 896 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 897 << Use); 898 continue; 899 } 900 901 // Make sure the offset calculation is before the potentially indexed op. 902 // FIXME: we really care about dependency here. The offset calculation might 903 // be movable. 904 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 905 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 906 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 907 << Use); 908 continue; 909 } 910 911 // FIXME: check whether all uses of Base are load/store with foldable 912 // addressing modes. If so, using the normal addr-modes is better than 913 // forming an indexed one. 914 915 bool MemOpDominatesAddrUses = true; 916 for (auto &PtrAddUse : 917 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 918 if (!dominates(MI, PtrAddUse)) { 919 MemOpDominatesAddrUses = false; 920 break; 921 } 922 } 923 924 if (!MemOpDominatesAddrUses) { 925 LLVM_DEBUG( 926 dbgs() << " Ignoring candidate as memop does not dominate uses: " 927 << Use); 928 continue; 929 } 930 931 LLVM_DEBUG(dbgs() << " Found match: " << Use); 932 Addr = Use.getOperand(0).getReg(); 933 return true; 934 } 935 936 return false; 937 } 938 939 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 940 Register &Base, Register &Offset) { 941 auto &MF = *MI.getParent()->getParent(); 942 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 943 944 #ifndef NDEBUG 945 unsigned Opcode = MI.getOpcode(); 946 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 947 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 948 #endif 949 950 Addr = MI.getOperand(1).getReg(); 951 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 952 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 953 return false; 954 955 Base = AddrDef->getOperand(1).getReg(); 956 Offset = AddrDef->getOperand(2).getReg(); 957 958 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 959 960 if (!ForceLegalIndexing && 961 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 962 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 963 return false; 964 } 965 966 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 967 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 968 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 969 return false; 970 } 971 972 if (MI.getOpcode() == TargetOpcode::G_STORE) { 973 // Would require a copy. 974 if (Base == MI.getOperand(0).getReg()) { 975 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 976 return false; 977 } 978 979 // We're expecting one use of Addr in MI, but it could also be the 980 // value stored, which isn't actually dominated by the instruction. 981 if (MI.getOperand(0).getReg() == Addr) { 982 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 983 return false; 984 } 985 } 986 987 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 988 // That might allow us to end base's liveness here by adjusting the constant. 989 990 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 991 if (!dominates(MI, UseMI)) { 992 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 993 return false; 994 } 995 } 996 997 return true; 998 } 999 1000 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 1001 IndexedLoadStoreMatchInfo MatchInfo; 1002 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 1003 applyCombineIndexedLoadStore(MI, MatchInfo); 1004 return true; 1005 } 1006 return false; 1007 } 1008 1009 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 1010 unsigned Opcode = MI.getOpcode(); 1011 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 1012 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 1013 return false; 1014 1015 // For now, no targets actually support these opcodes so don't waste time 1016 // running these unless we're forced to for testing. 1017 if (!ForceLegalIndexing) 1018 return false; 1019 1020 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 1021 MatchInfo.Offset); 1022 if (!MatchInfo.IsPre && 1023 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 1024 MatchInfo.Offset)) 1025 return false; 1026 1027 return true; 1028 } 1029 1030 void CombinerHelper::applyCombineIndexedLoadStore( 1031 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 1032 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 1033 MachineIRBuilder MIRBuilder(MI); 1034 unsigned Opcode = MI.getOpcode(); 1035 bool IsStore = Opcode == TargetOpcode::G_STORE; 1036 unsigned NewOpcode; 1037 switch (Opcode) { 1038 case TargetOpcode::G_LOAD: 1039 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 1040 break; 1041 case TargetOpcode::G_SEXTLOAD: 1042 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 1043 break; 1044 case TargetOpcode::G_ZEXTLOAD: 1045 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 1046 break; 1047 case TargetOpcode::G_STORE: 1048 NewOpcode = TargetOpcode::G_INDEXED_STORE; 1049 break; 1050 default: 1051 llvm_unreachable("Unknown load/store opcode"); 1052 } 1053 1054 auto MIB = MIRBuilder.buildInstr(NewOpcode); 1055 if (IsStore) { 1056 MIB.addDef(MatchInfo.Addr); 1057 MIB.addUse(MI.getOperand(0).getReg()); 1058 } else { 1059 MIB.addDef(MI.getOperand(0).getReg()); 1060 MIB.addDef(MatchInfo.Addr); 1061 } 1062 1063 MIB.addUse(MatchInfo.Base); 1064 MIB.addUse(MatchInfo.Offset); 1065 MIB.addImm(MatchInfo.IsPre); 1066 MI.eraseFromParent(); 1067 AddrDef.eraseFromParent(); 1068 1069 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 1070 } 1071 1072 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 1073 MachineInstr *&OtherMI) { 1074 unsigned Opcode = MI.getOpcode(); 1075 bool IsDiv, IsSigned; 1076 1077 switch (Opcode) { 1078 default: 1079 llvm_unreachable("Unexpected opcode!"); 1080 case TargetOpcode::G_SDIV: 1081 case TargetOpcode::G_UDIV: { 1082 IsDiv = true; 1083 IsSigned = Opcode == TargetOpcode::G_SDIV; 1084 break; 1085 } 1086 case TargetOpcode::G_SREM: 1087 case TargetOpcode::G_UREM: { 1088 IsDiv = false; 1089 IsSigned = Opcode == TargetOpcode::G_SREM; 1090 break; 1091 } 1092 } 1093 1094 Register Src1 = MI.getOperand(1).getReg(); 1095 unsigned DivOpcode, RemOpcode, DivremOpcode; 1096 if (IsSigned) { 1097 DivOpcode = TargetOpcode::G_SDIV; 1098 RemOpcode = TargetOpcode::G_SREM; 1099 DivremOpcode = TargetOpcode::G_SDIVREM; 1100 } else { 1101 DivOpcode = TargetOpcode::G_UDIV; 1102 RemOpcode = TargetOpcode::G_UREM; 1103 DivremOpcode = TargetOpcode::G_UDIVREM; 1104 } 1105 1106 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 1107 return false; 1108 1109 // Combine: 1110 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1111 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1112 // into: 1113 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1114 1115 // Combine: 1116 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1117 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1118 // into: 1119 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1120 1121 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1122 if (MI.getParent() == UseMI.getParent() && 1123 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1124 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1125 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1126 OtherMI = &UseMI; 1127 return true; 1128 } 1129 } 1130 1131 return false; 1132 } 1133 1134 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1135 MachineInstr *&OtherMI) { 1136 unsigned Opcode = MI.getOpcode(); 1137 assert(OtherMI && "OtherMI shouldn't be empty."); 1138 1139 Register DestDivReg, DestRemReg; 1140 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1141 DestDivReg = MI.getOperand(0).getReg(); 1142 DestRemReg = OtherMI->getOperand(0).getReg(); 1143 } else { 1144 DestDivReg = OtherMI->getOperand(0).getReg(); 1145 DestRemReg = MI.getOperand(0).getReg(); 1146 } 1147 1148 bool IsSigned = 1149 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1150 1151 // Check which instruction is first in the block so we don't break def-use 1152 // deps by "moving" the instruction incorrectly. 1153 if (dominates(MI, *OtherMI)) 1154 Builder.setInstrAndDebugLoc(MI); 1155 else 1156 Builder.setInstrAndDebugLoc(*OtherMI); 1157 1158 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1159 : TargetOpcode::G_UDIVREM, 1160 {DestDivReg, DestRemReg}, 1161 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1162 MI.eraseFromParent(); 1163 OtherMI->eraseFromParent(); 1164 } 1165 1166 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1167 MachineInstr *&BrCond) { 1168 assert(MI.getOpcode() == TargetOpcode::G_BR); 1169 1170 // Try to match the following: 1171 // bb1: 1172 // G_BRCOND %c1, %bb2 1173 // G_BR %bb3 1174 // bb2: 1175 // ... 1176 // bb3: 1177 1178 // The above pattern does not have a fall through to the successor bb2, always 1179 // resulting in a branch no matter which path is taken. Here we try to find 1180 // and replace that pattern with conditional branch to bb3 and otherwise 1181 // fallthrough to bb2. This is generally better for branch predictors. 1182 1183 MachineBasicBlock *MBB = MI.getParent(); 1184 MachineBasicBlock::iterator BrIt(MI); 1185 if (BrIt == MBB->begin()) 1186 return false; 1187 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1188 1189 BrCond = &*std::prev(BrIt); 1190 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1191 return false; 1192 1193 // Check that the next block is the conditional branch target. Also make sure 1194 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1195 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1196 return BrCondTarget != MI.getOperand(0).getMBB() && 1197 MBB->isLayoutSuccessor(BrCondTarget); 1198 } 1199 1200 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1201 MachineInstr *&BrCond) { 1202 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1203 Builder.setInstrAndDebugLoc(*BrCond); 1204 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1205 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1206 // this to i1 only since we might not know for sure what kind of 1207 // compare generated the condition value. 1208 auto True = Builder.buildConstant( 1209 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1210 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1211 1212 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1213 Observer.changingInstr(MI); 1214 MI.getOperand(0).setMBB(FallthroughBB); 1215 Observer.changedInstr(MI); 1216 1217 // Change the conditional branch to use the inverted condition and 1218 // new target block. 1219 Observer.changingInstr(*BrCond); 1220 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1221 BrCond->getOperand(1).setMBB(BrTarget); 1222 Observer.changedInstr(*BrCond); 1223 } 1224 1225 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1226 if (Ty.isVector()) 1227 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1228 Ty.getNumElements()); 1229 return IntegerType::get(C, Ty.getSizeInBits()); 1230 } 1231 1232 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1233 MachineIRBuilder HelperBuilder(MI); 1234 GISelObserverWrapper DummyObserver; 1235 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1236 return Helper.lowerMemcpyInline(MI) == 1237 LegalizerHelper::LegalizeResult::Legalized; 1238 } 1239 1240 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1241 MachineIRBuilder HelperBuilder(MI); 1242 GISelObserverWrapper DummyObserver; 1243 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1244 return Helper.lowerMemCpyFamily(MI, MaxLen) == 1245 LegalizerHelper::LegalizeResult::Legalized; 1246 } 1247 1248 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1249 const Register Op, 1250 const MachineRegisterInfo &MRI) { 1251 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1252 if (!MaybeCst) 1253 return None; 1254 1255 APFloat V = MaybeCst->getValueAPF(); 1256 switch (Opcode) { 1257 default: 1258 llvm_unreachable("Unexpected opcode!"); 1259 case TargetOpcode::G_FNEG: { 1260 V.changeSign(); 1261 return V; 1262 } 1263 case TargetOpcode::G_FABS: { 1264 V.clearSign(); 1265 return V; 1266 } 1267 case TargetOpcode::G_FPTRUNC: 1268 break; 1269 case TargetOpcode::G_FSQRT: { 1270 bool Unused; 1271 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1272 V = APFloat(sqrt(V.convertToDouble())); 1273 break; 1274 } 1275 case TargetOpcode::G_FLOG2: { 1276 bool Unused; 1277 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1278 V = APFloat(log2(V.convertToDouble())); 1279 break; 1280 } 1281 } 1282 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1283 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1284 // and `G_FLOG2` reach here. 1285 bool Unused; 1286 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1287 return V; 1288 } 1289 1290 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1291 Optional<APFloat> &Cst) { 1292 Register DstReg = MI.getOperand(0).getReg(); 1293 Register SrcReg = MI.getOperand(1).getReg(); 1294 LLT DstTy = MRI.getType(DstReg); 1295 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1296 return Cst.hasValue(); 1297 } 1298 1299 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1300 Optional<APFloat> &Cst) { 1301 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1302 Builder.setInstrAndDebugLoc(MI); 1303 MachineFunction &MF = Builder.getMF(); 1304 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1305 Register DstReg = MI.getOperand(0).getReg(); 1306 Builder.buildFConstant(DstReg, *FPVal); 1307 MI.eraseFromParent(); 1308 } 1309 1310 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1311 PtrAddChain &MatchInfo) { 1312 // We're trying to match the following pattern: 1313 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1314 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1315 // --> 1316 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1317 1318 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1319 return false; 1320 1321 Register Add2 = MI.getOperand(1).getReg(); 1322 Register Imm1 = MI.getOperand(2).getReg(); 1323 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1324 if (!MaybeImmVal) 1325 return false; 1326 1327 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1328 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1329 return false; 1330 1331 Register Base = Add2Def->getOperand(1).getReg(); 1332 Register Imm2 = Add2Def->getOperand(2).getReg(); 1333 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1334 if (!MaybeImm2Val) 1335 return false; 1336 1337 // Check if the new combined immediate forms an illegal addressing mode. 1338 // Do not combine if it was legal before but would get illegal. 1339 // To do so, we need to find a load/store user of the pointer to get 1340 // the access type. 1341 Type *AccessTy = nullptr; 1342 auto &MF = *MI.getMF(); 1343 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1344 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1345 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1346 MF.getFunction().getContext()); 1347 break; 1348 } 1349 } 1350 TargetLoweringBase::AddrMode AMNew; 1351 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1352 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1353 if (AccessTy) { 1354 AMNew.HasBaseReg = true; 1355 TargetLoweringBase::AddrMode AMOld; 1356 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); 1357 AMOld.HasBaseReg = true; 1358 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1359 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1360 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1361 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1362 return false; 1363 } 1364 1365 // Pass the combined immediate to the apply function. 1366 MatchInfo.Imm = AMNew.BaseOffs; 1367 MatchInfo.Base = Base; 1368 MatchInfo.Bank = getRegBank(Imm2); 1369 return true; 1370 } 1371 1372 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1373 PtrAddChain &MatchInfo) { 1374 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1375 MachineIRBuilder MIB(MI); 1376 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1377 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1378 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1379 Observer.changingInstr(MI); 1380 MI.getOperand(1).setReg(MatchInfo.Base); 1381 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1382 Observer.changedInstr(MI); 1383 } 1384 1385 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1386 RegisterImmPair &MatchInfo) { 1387 // We're trying to match the following pattern with any of 1388 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1389 // %t1 = SHIFT %base, G_CONSTANT imm1 1390 // %root = SHIFT %t1, G_CONSTANT imm2 1391 // --> 1392 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1393 1394 unsigned Opcode = MI.getOpcode(); 1395 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1396 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1397 Opcode == TargetOpcode::G_USHLSAT) && 1398 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1399 1400 Register Shl2 = MI.getOperand(1).getReg(); 1401 Register Imm1 = MI.getOperand(2).getReg(); 1402 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1403 if (!MaybeImmVal) 1404 return false; 1405 1406 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1407 if (Shl2Def->getOpcode() != Opcode) 1408 return false; 1409 1410 Register Base = Shl2Def->getOperand(1).getReg(); 1411 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1412 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1413 if (!MaybeImm2Val) 1414 return false; 1415 1416 // Pass the combined immediate to the apply function. 1417 MatchInfo.Imm = 1418 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1419 MatchInfo.Reg = Base; 1420 1421 // There is no simple replacement for a saturating unsigned left shift that 1422 // exceeds the scalar size. 1423 if (Opcode == TargetOpcode::G_USHLSAT && 1424 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1425 return false; 1426 1427 return true; 1428 } 1429 1430 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1431 RegisterImmPair &MatchInfo) { 1432 unsigned Opcode = MI.getOpcode(); 1433 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1434 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1435 Opcode == TargetOpcode::G_USHLSAT) && 1436 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1437 1438 Builder.setInstrAndDebugLoc(MI); 1439 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1440 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1441 auto Imm = MatchInfo.Imm; 1442 1443 if (Imm >= ScalarSizeInBits) { 1444 // Any logical shift that exceeds scalar size will produce zero. 1445 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1446 Builder.buildConstant(MI.getOperand(0), 0); 1447 MI.eraseFromParent(); 1448 return; 1449 } 1450 // Arithmetic shift and saturating signed left shift have no effect beyond 1451 // scalar size. 1452 Imm = ScalarSizeInBits - 1; 1453 } 1454 1455 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1456 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1457 Observer.changingInstr(MI); 1458 MI.getOperand(1).setReg(MatchInfo.Reg); 1459 MI.getOperand(2).setReg(NewImm); 1460 Observer.changedInstr(MI); 1461 } 1462 1463 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1464 ShiftOfShiftedLogic &MatchInfo) { 1465 // We're trying to match the following pattern with any of 1466 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1467 // with any of G_AND/G_OR/G_XOR logic instructions. 1468 // %t1 = SHIFT %X, G_CONSTANT C0 1469 // %t2 = LOGIC %t1, %Y 1470 // %root = SHIFT %t2, G_CONSTANT C1 1471 // --> 1472 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1473 // %t4 = SHIFT %Y, G_CONSTANT C1 1474 // %root = LOGIC %t3, %t4 1475 unsigned ShiftOpcode = MI.getOpcode(); 1476 assert((ShiftOpcode == TargetOpcode::G_SHL || 1477 ShiftOpcode == TargetOpcode::G_ASHR || 1478 ShiftOpcode == TargetOpcode::G_LSHR || 1479 ShiftOpcode == TargetOpcode::G_USHLSAT || 1480 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1481 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1482 1483 // Match a one-use bitwise logic op. 1484 Register LogicDest = MI.getOperand(1).getReg(); 1485 if (!MRI.hasOneNonDBGUse(LogicDest)) 1486 return false; 1487 1488 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1489 unsigned LogicOpcode = LogicMI->getOpcode(); 1490 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1491 LogicOpcode != TargetOpcode::G_XOR) 1492 return false; 1493 1494 // Find a matching one-use shift by constant. 1495 const Register C1 = MI.getOperand(2).getReg(); 1496 auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI); 1497 if (!MaybeImmVal) 1498 return false; 1499 1500 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1501 1502 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1503 // Shift should match previous one and should be a one-use. 1504 if (MI->getOpcode() != ShiftOpcode || 1505 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1506 return false; 1507 1508 // Must be a constant. 1509 auto MaybeImmVal = 1510 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1511 if (!MaybeImmVal) 1512 return false; 1513 1514 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1515 return true; 1516 }; 1517 1518 // Logic ops are commutative, so check each operand for a match. 1519 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1520 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1521 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1522 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1523 uint64_t C0Val; 1524 1525 if (matchFirstShift(LogicMIOp1, C0Val)) { 1526 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1527 MatchInfo.Shift2 = LogicMIOp1; 1528 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1529 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1530 MatchInfo.Shift2 = LogicMIOp2; 1531 } else 1532 return false; 1533 1534 MatchInfo.ValSum = C0Val + C1Val; 1535 1536 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1537 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1538 return false; 1539 1540 MatchInfo.Logic = LogicMI; 1541 return true; 1542 } 1543 1544 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1545 ShiftOfShiftedLogic &MatchInfo) { 1546 unsigned Opcode = MI.getOpcode(); 1547 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1548 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1549 Opcode == TargetOpcode::G_SSHLSAT) && 1550 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1551 1552 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1553 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1554 Builder.setInstrAndDebugLoc(MI); 1555 1556 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1557 1558 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1559 Register Shift1 = 1560 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1561 1562 Register Shift2Const = MI.getOperand(2).getReg(); 1563 Register Shift2 = Builder 1564 .buildInstr(Opcode, {DestType}, 1565 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1566 .getReg(0); 1567 1568 Register Dest = MI.getOperand(0).getReg(); 1569 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1570 1571 // These were one use so it's safe to remove them. 1572 MatchInfo.Shift2->eraseFromParent(); 1573 MatchInfo.Logic->eraseFromParent(); 1574 1575 MI.eraseFromParent(); 1576 } 1577 1578 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1579 unsigned &ShiftVal) { 1580 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1581 auto MaybeImmVal = 1582 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1583 if (!MaybeImmVal) 1584 return false; 1585 1586 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1587 return (static_cast<int32_t>(ShiftVal) != -1); 1588 } 1589 1590 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1591 unsigned &ShiftVal) { 1592 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1593 MachineIRBuilder MIB(MI); 1594 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1595 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1596 Observer.changingInstr(MI); 1597 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1598 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1599 Observer.changedInstr(MI); 1600 } 1601 1602 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1603 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1604 RegisterImmPair &MatchData) { 1605 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1606 1607 Register LHS = MI.getOperand(1).getReg(); 1608 1609 Register ExtSrc; 1610 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1611 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1612 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1613 return false; 1614 1615 // TODO: Should handle vector splat. 1616 Register RHS = MI.getOperand(2).getReg(); 1617 auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI); 1618 if (!MaybeShiftAmtVal) 1619 return false; 1620 1621 if (LI) { 1622 LLT SrcTy = MRI.getType(ExtSrc); 1623 1624 // We only really care about the legality with the shifted value. We can 1625 // pick any type the constant shift amount, so ask the target what to 1626 // use. Otherwise we would have to guess and hope it is reported as legal. 1627 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1628 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1629 return false; 1630 } 1631 1632 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1633 MatchData.Reg = ExtSrc; 1634 MatchData.Imm = ShiftAmt; 1635 1636 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1637 return MinLeadingZeros >= ShiftAmt; 1638 } 1639 1640 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1641 const RegisterImmPair &MatchData) { 1642 Register ExtSrcReg = MatchData.Reg; 1643 int64_t ShiftAmtVal = MatchData.Imm; 1644 1645 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1646 Builder.setInstrAndDebugLoc(MI); 1647 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1648 auto NarrowShift = 1649 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1650 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1651 MI.eraseFromParent(); 1652 } 1653 1654 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 1655 Register &MatchInfo) { 1656 GMerge &Merge = cast<GMerge>(MI); 1657 SmallVector<Register, 16> MergedValues; 1658 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 1659 MergedValues.emplace_back(Merge.getSourceReg(I)); 1660 1661 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 1662 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 1663 return false; 1664 1665 for (unsigned I = 0; I < MergedValues.size(); ++I) 1666 if (MergedValues[I] != Unmerge->getReg(I)) 1667 return false; 1668 1669 MatchInfo = Unmerge->getSourceReg(); 1670 return true; 1671 } 1672 1673 static Register peekThroughBitcast(Register Reg, 1674 const MachineRegisterInfo &MRI) { 1675 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1676 ; 1677 1678 return Reg; 1679 } 1680 1681 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1682 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1683 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1684 "Expected an unmerge"); 1685 auto &Unmerge = cast<GUnmerge>(MI); 1686 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 1687 1688 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI); 1689 if (!SrcInstr) 1690 return false; 1691 1692 // Check the source type of the merge. 1693 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 1694 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 1695 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1696 if (SrcMergeTy != Dst0Ty && !SameSize) 1697 return false; 1698 // They are the same now (modulo a bitcast). 1699 // We can collect all the src registers. 1700 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 1701 Operands.push_back(SrcInstr->getSourceReg(Idx)); 1702 return true; 1703 } 1704 1705 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1706 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1707 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1708 "Expected an unmerge"); 1709 assert((MI.getNumOperands() - 1 == Operands.size()) && 1710 "Not enough operands to replace all defs"); 1711 unsigned NumElems = MI.getNumOperands() - 1; 1712 1713 LLT SrcTy = MRI.getType(Operands[0]); 1714 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1715 bool CanReuseInputDirectly = DstTy == SrcTy; 1716 Builder.setInstrAndDebugLoc(MI); 1717 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1718 Register DstReg = MI.getOperand(Idx).getReg(); 1719 Register SrcReg = Operands[Idx]; 1720 if (CanReuseInputDirectly) 1721 replaceRegWith(MRI, DstReg, SrcReg); 1722 else 1723 Builder.buildCast(DstReg, SrcReg); 1724 } 1725 MI.eraseFromParent(); 1726 } 1727 1728 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1729 SmallVectorImpl<APInt> &Csts) { 1730 unsigned SrcIdx = MI.getNumOperands() - 1; 1731 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1732 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1733 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1734 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1735 return false; 1736 // Break down the big constant in smaller ones. 1737 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1738 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1739 ? CstVal.getCImm()->getValue() 1740 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1741 1742 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1743 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1744 // Unmerge a constant. 1745 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1746 Csts.emplace_back(Val.trunc(ShiftAmt)); 1747 Val = Val.lshr(ShiftAmt); 1748 } 1749 1750 return true; 1751 } 1752 1753 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1754 SmallVectorImpl<APInt> &Csts) { 1755 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1756 "Expected an unmerge"); 1757 assert((MI.getNumOperands() - 1 == Csts.size()) && 1758 "Not enough operands to replace all defs"); 1759 unsigned NumElems = MI.getNumOperands() - 1; 1760 Builder.setInstrAndDebugLoc(MI); 1761 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1762 Register DstReg = MI.getOperand(Idx).getReg(); 1763 Builder.buildConstant(DstReg, Csts[Idx]); 1764 } 1765 1766 MI.eraseFromParent(); 1767 } 1768 1769 bool CombinerHelper::matchCombineUnmergeUndef( 1770 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 1771 unsigned SrcIdx = MI.getNumOperands() - 1; 1772 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1773 MatchInfo = [&MI](MachineIRBuilder &B) { 1774 unsigned NumElems = MI.getNumOperands() - 1; 1775 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1776 Register DstReg = MI.getOperand(Idx).getReg(); 1777 B.buildUndef(DstReg); 1778 } 1779 }; 1780 return isa<GImplicitDef>(MRI.getVRegDef(SrcReg)); 1781 } 1782 1783 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1784 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1785 "Expected an unmerge"); 1786 // Check that all the lanes are dead except the first one. 1787 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1788 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1789 return false; 1790 } 1791 return true; 1792 } 1793 1794 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1795 Builder.setInstrAndDebugLoc(MI); 1796 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1797 // Truncating a vector is going to truncate every single lane, 1798 // whereas we want the full lowbits. 1799 // Do the operation on a scalar instead. 1800 LLT SrcTy = MRI.getType(SrcReg); 1801 if (SrcTy.isVector()) 1802 SrcReg = 1803 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1804 1805 Register Dst0Reg = MI.getOperand(0).getReg(); 1806 LLT Dst0Ty = MRI.getType(Dst0Reg); 1807 if (Dst0Ty.isVector()) { 1808 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 1809 Builder.buildCast(Dst0Reg, MIB); 1810 } else 1811 Builder.buildTrunc(Dst0Reg, SrcReg); 1812 MI.eraseFromParent(); 1813 } 1814 1815 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 1816 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1817 "Expected an unmerge"); 1818 Register Dst0Reg = MI.getOperand(0).getReg(); 1819 LLT Dst0Ty = MRI.getType(Dst0Reg); 1820 // G_ZEXT on vector applies to each lane, so it will 1821 // affect all destinations. Therefore we won't be able 1822 // to simplify the unmerge to just the first definition. 1823 if (Dst0Ty.isVector()) 1824 return false; 1825 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1826 LLT SrcTy = MRI.getType(SrcReg); 1827 if (SrcTy.isVector()) 1828 return false; 1829 1830 Register ZExtSrcReg; 1831 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 1832 return false; 1833 1834 // Finally we can replace the first definition with 1835 // a zext of the source if the definition is big enough to hold 1836 // all of ZExtSrc bits. 1837 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1838 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 1839 } 1840 1841 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 1842 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1843 "Expected an unmerge"); 1844 1845 Register Dst0Reg = MI.getOperand(0).getReg(); 1846 1847 MachineInstr *ZExtInstr = 1848 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 1849 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 1850 "Expecting a G_ZEXT"); 1851 1852 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 1853 LLT Dst0Ty = MRI.getType(Dst0Reg); 1854 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1855 1856 Builder.setInstrAndDebugLoc(MI); 1857 1858 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 1859 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 1860 } else { 1861 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 1862 "ZExt src doesn't fit in destination"); 1863 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 1864 } 1865 1866 Register ZeroReg; 1867 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1868 if (!ZeroReg) 1869 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 1870 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 1871 } 1872 MI.eraseFromParent(); 1873 } 1874 1875 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1876 unsigned TargetShiftSize, 1877 unsigned &ShiftVal) { 1878 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1879 MI.getOpcode() == TargetOpcode::G_LSHR || 1880 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1881 1882 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1883 if (Ty.isVector()) // TODO: 1884 return false; 1885 1886 // Don't narrow further than the requested size. 1887 unsigned Size = Ty.getSizeInBits(); 1888 if (Size <= TargetShiftSize) 1889 return false; 1890 1891 auto MaybeImmVal = 1892 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1893 if (!MaybeImmVal) 1894 return false; 1895 1896 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1897 return ShiftVal >= Size / 2 && ShiftVal < Size; 1898 } 1899 1900 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1901 const unsigned &ShiftVal) { 1902 Register DstReg = MI.getOperand(0).getReg(); 1903 Register SrcReg = MI.getOperand(1).getReg(); 1904 LLT Ty = MRI.getType(SrcReg); 1905 unsigned Size = Ty.getSizeInBits(); 1906 unsigned HalfSize = Size / 2; 1907 assert(ShiftVal >= HalfSize); 1908 1909 LLT HalfTy = LLT::scalar(HalfSize); 1910 1911 Builder.setInstr(MI); 1912 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1913 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1914 1915 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1916 Register Narrowed = Unmerge.getReg(1); 1917 1918 // dst = G_LSHR s64:x, C for C >= 32 1919 // => 1920 // lo, hi = G_UNMERGE_VALUES x 1921 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1922 1923 if (NarrowShiftAmt != 0) { 1924 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1925 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1926 } 1927 1928 auto Zero = Builder.buildConstant(HalfTy, 0); 1929 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1930 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1931 Register Narrowed = Unmerge.getReg(0); 1932 // dst = G_SHL s64:x, C for C >= 32 1933 // => 1934 // lo, hi = G_UNMERGE_VALUES x 1935 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1936 if (NarrowShiftAmt != 0) { 1937 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1938 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1939 } 1940 1941 auto Zero = Builder.buildConstant(HalfTy, 0); 1942 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1943 } else { 1944 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1945 auto Hi = Builder.buildAShr( 1946 HalfTy, Unmerge.getReg(1), 1947 Builder.buildConstant(HalfTy, HalfSize - 1)); 1948 1949 if (ShiftVal == HalfSize) { 1950 // (G_ASHR i64:x, 32) -> 1951 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1952 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1953 } else if (ShiftVal == Size - 1) { 1954 // Don't need a second shift. 1955 // (G_ASHR i64:x, 63) -> 1956 // %narrowed = (G_ASHR hi_32(x), 31) 1957 // G_MERGE_VALUES %narrowed, %narrowed 1958 Builder.buildMerge(DstReg, { Hi, Hi }); 1959 } else { 1960 auto Lo = Builder.buildAShr( 1961 HalfTy, Unmerge.getReg(1), 1962 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1963 1964 // (G_ASHR i64:x, C) ->, for C >= 32 1965 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1966 Builder.buildMerge(DstReg, { Lo, Hi }); 1967 } 1968 } 1969 1970 MI.eraseFromParent(); 1971 } 1972 1973 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1974 unsigned TargetShiftAmount) { 1975 unsigned ShiftAmt; 1976 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1977 applyCombineShiftToUnmerge(MI, ShiftAmt); 1978 return true; 1979 } 1980 1981 return false; 1982 } 1983 1984 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1985 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1986 Register DstReg = MI.getOperand(0).getReg(); 1987 LLT DstTy = MRI.getType(DstReg); 1988 Register SrcReg = MI.getOperand(1).getReg(); 1989 return mi_match(SrcReg, MRI, 1990 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 1991 } 1992 1993 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1994 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1995 Register DstReg = MI.getOperand(0).getReg(); 1996 Builder.setInstr(MI); 1997 Builder.buildCopy(DstReg, Reg); 1998 MI.eraseFromParent(); 1999 } 2000 2001 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2002 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2003 Register SrcReg = MI.getOperand(1).getReg(); 2004 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2005 } 2006 2007 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2008 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2009 Register DstReg = MI.getOperand(0).getReg(); 2010 Builder.setInstr(MI); 2011 Builder.buildZExtOrTrunc(DstReg, Reg); 2012 MI.eraseFromParent(); 2013 } 2014 2015 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2016 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2017 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2018 Register LHS = MI.getOperand(1).getReg(); 2019 Register RHS = MI.getOperand(2).getReg(); 2020 LLT IntTy = MRI.getType(LHS); 2021 2022 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2023 // instruction. 2024 PtrReg.second = false; 2025 for (Register SrcReg : {LHS, RHS}) { 2026 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2027 // Don't handle cases where the integer is implicitly converted to the 2028 // pointer width. 2029 LLT PtrTy = MRI.getType(PtrReg.first); 2030 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2031 return true; 2032 } 2033 2034 PtrReg.second = true; 2035 } 2036 2037 return false; 2038 } 2039 2040 void CombinerHelper::applyCombineAddP2IToPtrAdd( 2041 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2042 Register Dst = MI.getOperand(0).getReg(); 2043 Register LHS = MI.getOperand(1).getReg(); 2044 Register RHS = MI.getOperand(2).getReg(); 2045 2046 const bool DoCommute = PtrReg.second; 2047 if (DoCommute) 2048 std::swap(LHS, RHS); 2049 LHS = PtrReg.first; 2050 2051 LLT PtrTy = MRI.getType(LHS); 2052 2053 Builder.setInstrAndDebugLoc(MI); 2054 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2055 Builder.buildPtrToInt(Dst, PtrAdd); 2056 MI.eraseFromParent(); 2057 } 2058 2059 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2060 APInt &NewCst) { 2061 auto &PtrAdd = cast<GPtrAdd>(MI); 2062 Register LHS = PtrAdd.getBaseReg(); 2063 Register RHS = PtrAdd.getOffsetReg(); 2064 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2065 2066 if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) { 2067 APInt Cst; 2068 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2069 auto DstTy = MRI.getType(PtrAdd.getReg(0)); 2070 // G_INTTOPTR uses zero-extension 2071 NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits()); 2072 NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits()); 2073 return true; 2074 } 2075 } 2076 2077 return false; 2078 } 2079 2080 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2081 APInt &NewCst) { 2082 auto &PtrAdd = cast<GPtrAdd>(MI); 2083 Register Dst = PtrAdd.getReg(0); 2084 2085 Builder.setInstrAndDebugLoc(MI); 2086 Builder.buildConstant(Dst, NewCst); 2087 PtrAdd.eraseFromParent(); 2088 } 2089 2090 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2091 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2092 Register DstReg = MI.getOperand(0).getReg(); 2093 Register SrcReg = MI.getOperand(1).getReg(); 2094 LLT DstTy = MRI.getType(DstReg); 2095 return mi_match(SrcReg, MRI, 2096 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2097 } 2098 2099 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2100 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2101 Register DstReg = MI.getOperand(0).getReg(); 2102 Register SrcReg = MI.getOperand(1).getReg(); 2103 LLT DstTy = MRI.getType(DstReg); 2104 if (mi_match(SrcReg, MRI, 2105 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2106 unsigned DstSize = DstTy.getScalarSizeInBits(); 2107 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2108 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2109 } 2110 return false; 2111 } 2112 2113 bool CombinerHelper::matchCombineExtOfExt( 2114 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2115 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2116 MI.getOpcode() == TargetOpcode::G_SEXT || 2117 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2118 "Expected a G_[ASZ]EXT"); 2119 Register SrcReg = MI.getOperand(1).getReg(); 2120 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2121 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2122 unsigned Opc = MI.getOpcode(); 2123 unsigned SrcOpc = SrcMI->getOpcode(); 2124 if (Opc == SrcOpc || 2125 (Opc == TargetOpcode::G_ANYEXT && 2126 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2127 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2128 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2129 return true; 2130 } 2131 return false; 2132 } 2133 2134 void CombinerHelper::applyCombineExtOfExt( 2135 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2136 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2137 MI.getOpcode() == TargetOpcode::G_SEXT || 2138 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2139 "Expected a G_[ASZ]EXT"); 2140 2141 Register Reg = std::get<0>(MatchInfo); 2142 unsigned SrcExtOp = std::get<1>(MatchInfo); 2143 2144 // Combine exts with the same opcode. 2145 if (MI.getOpcode() == SrcExtOp) { 2146 Observer.changingInstr(MI); 2147 MI.getOperand(1).setReg(Reg); 2148 Observer.changedInstr(MI); 2149 return; 2150 } 2151 2152 // Combine: 2153 // - anyext([sz]ext x) to [sz]ext x 2154 // - sext(zext x) to zext x 2155 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2156 (MI.getOpcode() == TargetOpcode::G_SEXT && 2157 SrcExtOp == TargetOpcode::G_ZEXT)) { 2158 Register DstReg = MI.getOperand(0).getReg(); 2159 Builder.setInstrAndDebugLoc(MI); 2160 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2161 MI.eraseFromParent(); 2162 } 2163 } 2164 2165 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2166 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2167 Register DstReg = MI.getOperand(0).getReg(); 2168 Register SrcReg = MI.getOperand(1).getReg(); 2169 LLT DstTy = MRI.getType(DstReg); 2170 2171 Builder.setInstrAndDebugLoc(MI); 2172 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2173 MI.getFlags()); 2174 MI.eraseFromParent(); 2175 } 2176 2177 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2178 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2179 Register SrcReg = MI.getOperand(1).getReg(); 2180 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2181 } 2182 2183 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2184 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2185 Src = MI.getOperand(1).getReg(); 2186 Register AbsSrc; 2187 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2188 } 2189 2190 bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI, 2191 BuildFnTy &MatchInfo) { 2192 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2193 Register Src = MI.getOperand(1).getReg(); 2194 Register NegSrc; 2195 2196 if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc)))) 2197 return false; 2198 2199 MatchInfo = [=, &MI](MachineIRBuilder &B) { 2200 Observer.changingInstr(MI); 2201 MI.getOperand(1).setReg(NegSrc); 2202 Observer.changedInstr(MI); 2203 }; 2204 return true; 2205 } 2206 2207 bool CombinerHelper::matchCombineTruncOfExt( 2208 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2209 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2210 Register SrcReg = MI.getOperand(1).getReg(); 2211 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2212 unsigned SrcOpc = SrcMI->getOpcode(); 2213 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2214 SrcOpc == TargetOpcode::G_ZEXT) { 2215 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2216 return true; 2217 } 2218 return false; 2219 } 2220 2221 void CombinerHelper::applyCombineTruncOfExt( 2222 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2223 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2224 Register SrcReg = MatchInfo.first; 2225 unsigned SrcExtOp = MatchInfo.second; 2226 Register DstReg = MI.getOperand(0).getReg(); 2227 LLT SrcTy = MRI.getType(SrcReg); 2228 LLT DstTy = MRI.getType(DstReg); 2229 if (SrcTy == DstTy) { 2230 MI.eraseFromParent(); 2231 replaceRegWith(MRI, DstReg, SrcReg); 2232 return; 2233 } 2234 Builder.setInstrAndDebugLoc(MI); 2235 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2236 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2237 else 2238 Builder.buildTrunc(DstReg, SrcReg); 2239 MI.eraseFromParent(); 2240 } 2241 2242 bool CombinerHelper::matchCombineTruncOfShl( 2243 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2244 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2245 Register DstReg = MI.getOperand(0).getReg(); 2246 Register SrcReg = MI.getOperand(1).getReg(); 2247 LLT DstTy = MRI.getType(DstReg); 2248 Register ShiftSrc; 2249 Register ShiftAmt; 2250 2251 if (MRI.hasOneNonDBGUse(SrcReg) && 2252 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2253 isLegalOrBeforeLegalizer( 2254 {TargetOpcode::G_SHL, 2255 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2256 KnownBits Known = KB->getKnownBits(ShiftAmt); 2257 unsigned Size = DstTy.getSizeInBits(); 2258 if (Known.countMaxActiveBits() <= Log2_32(Size)) { 2259 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2260 return true; 2261 } 2262 } 2263 return false; 2264 } 2265 2266 void CombinerHelper::applyCombineTruncOfShl( 2267 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2268 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2269 Register DstReg = MI.getOperand(0).getReg(); 2270 Register SrcReg = MI.getOperand(1).getReg(); 2271 LLT DstTy = MRI.getType(DstReg); 2272 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2273 2274 Register ShiftSrc = MatchInfo.first; 2275 Register ShiftAmt = MatchInfo.second; 2276 Builder.setInstrAndDebugLoc(MI); 2277 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2278 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2279 MI.eraseFromParent(); 2280 } 2281 2282 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2283 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2284 return MO.isReg() && 2285 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2286 }); 2287 } 2288 2289 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2290 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2291 return !MO.isReg() || 2292 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2293 }); 2294 } 2295 2296 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2297 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2298 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2299 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2300 } 2301 2302 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2303 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2304 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2305 MRI); 2306 } 2307 2308 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2309 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2310 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2311 MRI); 2312 } 2313 2314 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2315 GSelect &SelMI = cast<GSelect>(MI); 2316 auto Cst = 2317 isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI); 2318 if (!Cst) 2319 return false; 2320 OpIdx = Cst->isZero() ? 3 : 2; 2321 return true; 2322 } 2323 2324 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2325 MI.eraseFromParent(); 2326 return true; 2327 } 2328 2329 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2330 const MachineOperand &MOP2) { 2331 if (!MOP1.isReg() || !MOP2.isReg()) 2332 return false; 2333 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2334 if (!InstAndDef1) 2335 return false; 2336 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2337 if (!InstAndDef2) 2338 return false; 2339 MachineInstr *I1 = InstAndDef1->MI; 2340 MachineInstr *I2 = InstAndDef2->MI; 2341 2342 // Handle a case like this: 2343 // 2344 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2345 // 2346 // Even though %0 and %1 are produced by the same instruction they are not 2347 // the same values. 2348 if (I1 == I2) 2349 return MOP1.getReg() == MOP2.getReg(); 2350 2351 // If we have an instruction which loads or stores, we can't guarantee that 2352 // it is identical. 2353 // 2354 // For example, we may have 2355 // 2356 // %x1 = G_LOAD %addr (load N from @somewhere) 2357 // ... 2358 // call @foo 2359 // ... 2360 // %x2 = G_LOAD %addr (load N from @somewhere) 2361 // ... 2362 // %or = G_OR %x1, %x2 2363 // 2364 // It's possible that @foo will modify whatever lives at the address we're 2365 // loading from. To be safe, let's just assume that all loads and stores 2366 // are different (unless we have something which is guaranteed to not 2367 // change.) 2368 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2369 return false; 2370 2371 // Check for physical registers on the instructions first to avoid cases 2372 // like this: 2373 // 2374 // %a = COPY $physreg 2375 // ... 2376 // SOMETHING implicit-def $physreg 2377 // ... 2378 // %b = COPY $physreg 2379 // 2380 // These copies are not equivalent. 2381 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2382 return MO.isReg() && MO.getReg().isPhysical(); 2383 })) { 2384 // Check if we have a case like this: 2385 // 2386 // %a = COPY $physreg 2387 // %b = COPY %a 2388 // 2389 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2390 // From that, we know that they must have the same value, since they must 2391 // have come from the same COPY. 2392 return I1->isIdenticalTo(*I2); 2393 } 2394 2395 // We don't have any physical registers, so we don't necessarily need the 2396 // same vreg defs. 2397 // 2398 // On the off-chance that there's some target instruction feeding into the 2399 // instruction, let's use produceSameValue instead of isIdenticalTo. 2400 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2401 // Handle instructions with multiple defs that produce same values. Values 2402 // are same for operands with same index. 2403 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2404 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2405 // I1 and I2 are different instructions but produce same values, 2406 // %1 and %6 are same, %1 and %7 are not the same value. 2407 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2408 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2409 } 2410 return false; 2411 } 2412 2413 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2414 if (!MOP.isReg()) 2415 return false; 2416 auto *MI = MRI.getVRegDef(MOP.getReg()); 2417 auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI); 2418 return MaybeCst.hasValue() && MaybeCst->getBitWidth() <= 64 && 2419 MaybeCst->getSExtValue() == C; 2420 } 2421 2422 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2423 unsigned OpIdx) { 2424 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2425 Register OldReg = MI.getOperand(0).getReg(); 2426 Register Replacement = MI.getOperand(OpIdx).getReg(); 2427 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2428 MI.eraseFromParent(); 2429 replaceRegWith(MRI, OldReg, Replacement); 2430 return true; 2431 } 2432 2433 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2434 Register Replacement) { 2435 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2436 Register OldReg = MI.getOperand(0).getReg(); 2437 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2438 MI.eraseFromParent(); 2439 replaceRegWith(MRI, OldReg, Replacement); 2440 return true; 2441 } 2442 2443 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2444 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2445 // Match (cond ? x : x) 2446 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2447 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2448 MRI); 2449 } 2450 2451 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2452 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2453 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2454 MRI); 2455 } 2456 2457 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2458 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2459 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2460 MRI); 2461 } 2462 2463 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2464 MachineOperand &MO = MI.getOperand(OpIdx); 2465 return MO.isReg() && 2466 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2467 } 2468 2469 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2470 unsigned OpIdx) { 2471 MachineOperand &MO = MI.getOperand(OpIdx); 2472 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2473 } 2474 2475 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2476 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2477 Builder.setInstr(MI); 2478 Builder.buildFConstant(MI.getOperand(0), C); 2479 MI.eraseFromParent(); 2480 return true; 2481 } 2482 2483 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2484 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2485 Builder.setInstr(MI); 2486 Builder.buildConstant(MI.getOperand(0), C); 2487 MI.eraseFromParent(); 2488 return true; 2489 } 2490 2491 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2492 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2493 Builder.setInstr(MI); 2494 Builder.buildConstant(MI.getOperand(0), C); 2495 MI.eraseFromParent(); 2496 return true; 2497 } 2498 2499 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2500 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2501 Builder.setInstr(MI); 2502 Builder.buildUndef(MI.getOperand(0)); 2503 MI.eraseFromParent(); 2504 return true; 2505 } 2506 2507 bool CombinerHelper::matchSimplifyAddToSub( 2508 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2509 Register LHS = MI.getOperand(1).getReg(); 2510 Register RHS = MI.getOperand(2).getReg(); 2511 Register &NewLHS = std::get<0>(MatchInfo); 2512 Register &NewRHS = std::get<1>(MatchInfo); 2513 2514 // Helper lambda to check for opportunities for 2515 // ((0-A) + B) -> B - A 2516 // (A + (0-B)) -> A - B 2517 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2518 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2519 return false; 2520 NewLHS = MaybeNewLHS; 2521 return true; 2522 }; 2523 2524 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2525 } 2526 2527 bool CombinerHelper::matchCombineInsertVecElts( 2528 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2529 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2530 "Invalid opcode"); 2531 Register DstReg = MI.getOperand(0).getReg(); 2532 LLT DstTy = MRI.getType(DstReg); 2533 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2534 unsigned NumElts = DstTy.getNumElements(); 2535 // If this MI is part of a sequence of insert_vec_elts, then 2536 // don't do the combine in the middle of the sequence. 2537 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2538 TargetOpcode::G_INSERT_VECTOR_ELT) 2539 return false; 2540 MachineInstr *CurrInst = &MI; 2541 MachineInstr *TmpInst; 2542 int64_t IntImm; 2543 Register TmpReg; 2544 MatchInfo.resize(NumElts); 2545 while (mi_match( 2546 CurrInst->getOperand(0).getReg(), MRI, 2547 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2548 if (IntImm >= NumElts) 2549 return false; 2550 if (!MatchInfo[IntImm]) 2551 MatchInfo[IntImm] = TmpReg; 2552 CurrInst = TmpInst; 2553 } 2554 // Variable index. 2555 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2556 return false; 2557 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2558 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2559 if (!MatchInfo[I - 1].isValid()) 2560 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2561 } 2562 return true; 2563 } 2564 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2565 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2566 } 2567 2568 void CombinerHelper::applyCombineInsertVecElts( 2569 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2570 Builder.setInstr(MI); 2571 Register UndefReg; 2572 auto GetUndef = [&]() { 2573 if (UndefReg) 2574 return UndefReg; 2575 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2576 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2577 return UndefReg; 2578 }; 2579 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2580 if (!MatchInfo[I]) 2581 MatchInfo[I] = GetUndef(); 2582 } 2583 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2584 MI.eraseFromParent(); 2585 } 2586 2587 void CombinerHelper::applySimplifyAddToSub( 2588 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2589 Builder.setInstr(MI); 2590 Register SubLHS, SubRHS; 2591 std::tie(SubLHS, SubRHS) = MatchInfo; 2592 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2593 MI.eraseFromParent(); 2594 } 2595 2596 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2597 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2598 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2599 // 2600 // Creates the new hand + logic instruction (but does not insert them.) 2601 // 2602 // On success, MatchInfo is populated with the new instructions. These are 2603 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2604 unsigned LogicOpcode = MI.getOpcode(); 2605 assert(LogicOpcode == TargetOpcode::G_AND || 2606 LogicOpcode == TargetOpcode::G_OR || 2607 LogicOpcode == TargetOpcode::G_XOR); 2608 MachineIRBuilder MIB(MI); 2609 Register Dst = MI.getOperand(0).getReg(); 2610 Register LHSReg = MI.getOperand(1).getReg(); 2611 Register RHSReg = MI.getOperand(2).getReg(); 2612 2613 // Don't recompute anything. 2614 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2615 return false; 2616 2617 // Make sure we have (hand x, ...), (hand y, ...) 2618 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2619 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2620 if (!LeftHandInst || !RightHandInst) 2621 return false; 2622 unsigned HandOpcode = LeftHandInst->getOpcode(); 2623 if (HandOpcode != RightHandInst->getOpcode()) 2624 return false; 2625 if (!LeftHandInst->getOperand(1).isReg() || 2626 !RightHandInst->getOperand(1).isReg()) 2627 return false; 2628 2629 // Make sure the types match up, and if we're doing this post-legalization, 2630 // we end up with legal types. 2631 Register X = LeftHandInst->getOperand(1).getReg(); 2632 Register Y = RightHandInst->getOperand(1).getReg(); 2633 LLT XTy = MRI.getType(X); 2634 LLT YTy = MRI.getType(Y); 2635 if (XTy != YTy) 2636 return false; 2637 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2638 return false; 2639 2640 // Optional extra source register. 2641 Register ExtraHandOpSrcReg; 2642 switch (HandOpcode) { 2643 default: 2644 return false; 2645 case TargetOpcode::G_ANYEXT: 2646 case TargetOpcode::G_SEXT: 2647 case TargetOpcode::G_ZEXT: { 2648 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2649 break; 2650 } 2651 case TargetOpcode::G_AND: 2652 case TargetOpcode::G_ASHR: 2653 case TargetOpcode::G_LSHR: 2654 case TargetOpcode::G_SHL: { 2655 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2656 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2657 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2658 return false; 2659 ExtraHandOpSrcReg = ZOp.getReg(); 2660 break; 2661 } 2662 } 2663 2664 // Record the steps to build the new instructions. 2665 // 2666 // Steps to build (logic x, y) 2667 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2668 OperandBuildSteps LogicBuildSteps = { 2669 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2670 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2671 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2672 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2673 2674 // Steps to build hand (logic x, y), ...z 2675 OperandBuildSteps HandBuildSteps = { 2676 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2677 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2678 if (ExtraHandOpSrcReg.isValid()) 2679 HandBuildSteps.push_back( 2680 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2681 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2682 2683 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2684 return true; 2685 } 2686 2687 void CombinerHelper::applyBuildInstructionSteps( 2688 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2689 assert(MatchInfo.InstrsToBuild.size() && 2690 "Expected at least one instr to build?"); 2691 Builder.setInstr(MI); 2692 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2693 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2694 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2695 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2696 for (auto &OperandFn : InstrToBuild.OperandFns) 2697 OperandFn(Instr); 2698 } 2699 MI.eraseFromParent(); 2700 } 2701 2702 bool CombinerHelper::matchAshrShlToSextInreg( 2703 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2704 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2705 int64_t ShlCst, AshrCst; 2706 Register Src; 2707 // FIXME: detect splat constant vectors. 2708 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2709 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2710 return false; 2711 if (ShlCst != AshrCst) 2712 return false; 2713 if (!isLegalOrBeforeLegalizer( 2714 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2715 return false; 2716 MatchInfo = std::make_tuple(Src, ShlCst); 2717 return true; 2718 } 2719 2720 void CombinerHelper::applyAshShlToSextInreg( 2721 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2722 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2723 Register Src; 2724 int64_t ShiftAmt; 2725 std::tie(Src, ShiftAmt) = MatchInfo; 2726 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2727 Builder.setInstrAndDebugLoc(MI); 2728 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2729 MI.eraseFromParent(); 2730 } 2731 2732 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 2733 bool CombinerHelper::matchOverlappingAnd( 2734 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 2735 assert(MI.getOpcode() == TargetOpcode::G_AND); 2736 2737 Register Dst = MI.getOperand(0).getReg(); 2738 LLT Ty = MRI.getType(Dst); 2739 2740 Register R; 2741 int64_t C1; 2742 int64_t C2; 2743 if (!mi_match( 2744 Dst, MRI, 2745 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 2746 return false; 2747 2748 MatchInfo = [=](MachineIRBuilder &B) { 2749 if (C1 & C2) { 2750 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 2751 return; 2752 } 2753 auto Zero = B.buildConstant(Ty, 0); 2754 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 2755 }; 2756 return true; 2757 } 2758 2759 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2760 Register &Replacement) { 2761 // Given 2762 // 2763 // %y:_(sN) = G_SOMETHING 2764 // %x:_(sN) = G_SOMETHING 2765 // %res:_(sN) = G_AND %x, %y 2766 // 2767 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 2768 // 2769 // Patterns like this can appear as a result of legalization. E.g. 2770 // 2771 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2772 // %one:_(s32) = G_CONSTANT i32 1 2773 // %and:_(s32) = G_AND %cmp, %one 2774 // 2775 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2776 assert(MI.getOpcode() == TargetOpcode::G_AND); 2777 if (!KB) 2778 return false; 2779 2780 Register AndDst = MI.getOperand(0).getReg(); 2781 LLT DstTy = MRI.getType(AndDst); 2782 2783 // FIXME: This should be removed once GISelKnownBits supports vectors. 2784 if (DstTy.isVector()) 2785 return false; 2786 2787 Register LHS = MI.getOperand(1).getReg(); 2788 Register RHS = MI.getOperand(2).getReg(); 2789 KnownBits LHSBits = KB->getKnownBits(LHS); 2790 KnownBits RHSBits = KB->getKnownBits(RHS); 2791 2792 // Check that x & Mask == x. 2793 // x & 1 == x, always 2794 // x & 0 == x, only if x is also 0 2795 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 2796 // 2797 // Check if we can replace AndDst with the LHS of the G_AND 2798 if (canReplaceReg(AndDst, LHS, MRI) && 2799 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2800 Replacement = LHS; 2801 return true; 2802 } 2803 2804 // Check if we can replace AndDst with the RHS of the G_AND 2805 if (canReplaceReg(AndDst, RHS, MRI) && 2806 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2807 Replacement = RHS; 2808 return true; 2809 } 2810 2811 return false; 2812 } 2813 2814 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 2815 // Given 2816 // 2817 // %y:_(sN) = G_SOMETHING 2818 // %x:_(sN) = G_SOMETHING 2819 // %res:_(sN) = G_OR %x, %y 2820 // 2821 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 2822 assert(MI.getOpcode() == TargetOpcode::G_OR); 2823 if (!KB) 2824 return false; 2825 2826 Register OrDst = MI.getOperand(0).getReg(); 2827 LLT DstTy = MRI.getType(OrDst); 2828 2829 // FIXME: This should be removed once GISelKnownBits supports vectors. 2830 if (DstTy.isVector()) 2831 return false; 2832 2833 Register LHS = MI.getOperand(1).getReg(); 2834 Register RHS = MI.getOperand(2).getReg(); 2835 KnownBits LHSBits = KB->getKnownBits(LHS); 2836 KnownBits RHSBits = KB->getKnownBits(RHS); 2837 2838 // Check that x | Mask == x. 2839 // x | 0 == x, always 2840 // x | 1 == x, only if x is also 1 2841 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 2842 // 2843 // Check if we can replace OrDst with the LHS of the G_OR 2844 if (canReplaceReg(OrDst, LHS, MRI) && 2845 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2846 Replacement = LHS; 2847 return true; 2848 } 2849 2850 // Check if we can replace OrDst with the RHS of the G_OR 2851 if (canReplaceReg(OrDst, RHS, MRI) && 2852 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2853 Replacement = RHS; 2854 return true; 2855 } 2856 2857 return false; 2858 } 2859 2860 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 2861 // If the input is already sign extended, just drop the extension. 2862 Register Src = MI.getOperand(1).getReg(); 2863 unsigned ExtBits = MI.getOperand(2).getImm(); 2864 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 2865 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 2866 } 2867 2868 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 2869 int64_t Cst, bool IsVector, bool IsFP) { 2870 // For i1, Cst will always be -1 regardless of boolean contents. 2871 return (ScalarSizeBits == 1 && Cst == -1) || 2872 isConstTrueVal(TLI, Cst, IsVector, IsFP); 2873 } 2874 2875 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 2876 SmallVectorImpl<Register> &RegsToNegate) { 2877 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2878 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2879 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 2880 Register XorSrc; 2881 Register CstReg; 2882 // We match xor(src, true) here. 2883 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2884 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 2885 return false; 2886 2887 if (!MRI.hasOneNonDBGUse(XorSrc)) 2888 return false; 2889 2890 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 2891 // and ORs. The suffix of RegsToNegate starting from index I is used a work 2892 // list of tree nodes to visit. 2893 RegsToNegate.push_back(XorSrc); 2894 // Remember whether the comparisons are all integer or all floating point. 2895 bool IsInt = false; 2896 bool IsFP = false; 2897 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 2898 Register Reg = RegsToNegate[I]; 2899 if (!MRI.hasOneNonDBGUse(Reg)) 2900 return false; 2901 MachineInstr *Def = MRI.getVRegDef(Reg); 2902 switch (Def->getOpcode()) { 2903 default: 2904 // Don't match if the tree contains anything other than ANDs, ORs and 2905 // comparisons. 2906 return false; 2907 case TargetOpcode::G_ICMP: 2908 if (IsFP) 2909 return false; 2910 IsInt = true; 2911 // When we apply the combine we will invert the predicate. 2912 break; 2913 case TargetOpcode::G_FCMP: 2914 if (IsInt) 2915 return false; 2916 IsFP = true; 2917 // When we apply the combine we will invert the predicate. 2918 break; 2919 case TargetOpcode::G_AND: 2920 case TargetOpcode::G_OR: 2921 // Implement De Morgan's laws: 2922 // ~(x & y) -> ~x | ~y 2923 // ~(x | y) -> ~x & ~y 2924 // When we apply the combine we will change the opcode and recursively 2925 // negate the operands. 2926 RegsToNegate.push_back(Def->getOperand(1).getReg()); 2927 RegsToNegate.push_back(Def->getOperand(2).getReg()); 2928 break; 2929 } 2930 } 2931 2932 // Now we know whether the comparisons are integer or floating point, check 2933 // the constant in the xor. 2934 int64_t Cst; 2935 if (Ty.isVector()) { 2936 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 2937 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 2938 if (!MaybeCst) 2939 return false; 2940 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 2941 return false; 2942 } else { 2943 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 2944 return false; 2945 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 2946 return false; 2947 } 2948 2949 return true; 2950 } 2951 2952 void CombinerHelper::applyNotCmp(MachineInstr &MI, 2953 SmallVectorImpl<Register> &RegsToNegate) { 2954 for (Register Reg : RegsToNegate) { 2955 MachineInstr *Def = MRI.getVRegDef(Reg); 2956 Observer.changingInstr(*Def); 2957 // For each comparison, invert the opcode. For each AND and OR, change the 2958 // opcode. 2959 switch (Def->getOpcode()) { 2960 default: 2961 llvm_unreachable("Unexpected opcode"); 2962 case TargetOpcode::G_ICMP: 2963 case TargetOpcode::G_FCMP: { 2964 MachineOperand &PredOp = Def->getOperand(1); 2965 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 2966 (CmpInst::Predicate)PredOp.getPredicate()); 2967 PredOp.setPredicate(NewP); 2968 break; 2969 } 2970 case TargetOpcode::G_AND: 2971 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 2972 break; 2973 case TargetOpcode::G_OR: 2974 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2975 break; 2976 } 2977 Observer.changedInstr(*Def); 2978 } 2979 2980 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 2981 MI.eraseFromParent(); 2982 } 2983 2984 bool CombinerHelper::matchXorOfAndWithSameReg( 2985 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2986 // Match (xor (and x, y), y) (or any of its commuted cases) 2987 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2988 Register &X = MatchInfo.first; 2989 Register &Y = MatchInfo.second; 2990 Register AndReg = MI.getOperand(1).getReg(); 2991 Register SharedReg = MI.getOperand(2).getReg(); 2992 2993 // Find a G_AND on either side of the G_XOR. 2994 // Look for one of 2995 // 2996 // (xor (and x, y), SharedReg) 2997 // (xor SharedReg, (and x, y)) 2998 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 2999 std::swap(AndReg, SharedReg); 3000 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3001 return false; 3002 } 3003 3004 // Only do this if we'll eliminate the G_AND. 3005 if (!MRI.hasOneNonDBGUse(AndReg)) 3006 return false; 3007 3008 // We can combine if SharedReg is the same as either the LHS or RHS of the 3009 // G_AND. 3010 if (Y != SharedReg) 3011 std::swap(X, Y); 3012 return Y == SharedReg; 3013 } 3014 3015 void CombinerHelper::applyXorOfAndWithSameReg( 3016 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3017 // Fold (xor (and x, y), y) -> (and (not x), y) 3018 Builder.setInstrAndDebugLoc(MI); 3019 Register X, Y; 3020 std::tie(X, Y) = MatchInfo; 3021 auto Not = Builder.buildNot(MRI.getType(X), X); 3022 Observer.changingInstr(MI); 3023 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3024 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3025 MI.getOperand(2).setReg(Y); 3026 Observer.changedInstr(MI); 3027 } 3028 3029 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3030 auto &PtrAdd = cast<GPtrAdd>(MI); 3031 Register DstReg = PtrAdd.getReg(0); 3032 LLT Ty = MRI.getType(DstReg); 3033 const DataLayout &DL = Builder.getMF().getDataLayout(); 3034 3035 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3036 return false; 3037 3038 if (Ty.isPointer()) { 3039 auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI); 3040 return ConstVal && *ConstVal == 0; 3041 } 3042 3043 assert(Ty.isVector() && "Expecting a vector type"); 3044 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 3045 return isBuildVectorAllZeros(*VecMI, MRI); 3046 } 3047 3048 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3049 auto &PtrAdd = cast<GPtrAdd>(MI); 3050 Builder.setInstrAndDebugLoc(PtrAdd); 3051 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 3052 PtrAdd.eraseFromParent(); 3053 } 3054 3055 /// The second source operand is known to be a power of 2. 3056 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3057 Register DstReg = MI.getOperand(0).getReg(); 3058 Register Src0 = MI.getOperand(1).getReg(); 3059 Register Pow2Src1 = MI.getOperand(2).getReg(); 3060 LLT Ty = MRI.getType(DstReg); 3061 Builder.setInstrAndDebugLoc(MI); 3062 3063 // Fold (urem x, pow2) -> (and x, pow2-1) 3064 auto NegOne = Builder.buildConstant(Ty, -1); 3065 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3066 Builder.buildAnd(DstReg, Src0, Add); 3067 MI.eraseFromParent(); 3068 } 3069 3070 Optional<SmallVector<Register, 8>> 3071 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3072 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3073 // We want to detect if Root is part of a tree which represents a bunch 3074 // of loads being merged into a larger load. We'll try to recognize patterns 3075 // like, for example: 3076 // 3077 // Reg Reg 3078 // \ / 3079 // OR_1 Reg 3080 // \ / 3081 // OR_2 3082 // \ Reg 3083 // .. / 3084 // Root 3085 // 3086 // Reg Reg Reg Reg 3087 // \ / \ / 3088 // OR_1 OR_2 3089 // \ / 3090 // \ / 3091 // ... 3092 // Root 3093 // 3094 // Each "Reg" may have been produced by a load + some arithmetic. This 3095 // function will save each of them. 3096 SmallVector<Register, 8> RegsToVisit; 3097 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3098 3099 // In the "worst" case, we're dealing with a load for each byte. So, there 3100 // are at most #bytes - 1 ORs. 3101 const unsigned MaxIter = 3102 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3103 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3104 if (Ors.empty()) 3105 break; 3106 const MachineInstr *Curr = Ors.pop_back_val(); 3107 Register OrLHS = Curr->getOperand(1).getReg(); 3108 Register OrRHS = Curr->getOperand(2).getReg(); 3109 3110 // In the combine, we want to elimate the entire tree. 3111 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3112 return None; 3113 3114 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3115 // something that may be a load + arithmetic. 3116 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3117 Ors.push_back(Or); 3118 else 3119 RegsToVisit.push_back(OrLHS); 3120 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3121 Ors.push_back(Or); 3122 else 3123 RegsToVisit.push_back(OrRHS); 3124 } 3125 3126 // We're going to try and merge each register into a wider power-of-2 type, 3127 // so we ought to have an even number of registers. 3128 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3129 return None; 3130 return RegsToVisit; 3131 } 3132 3133 /// Helper function for findLoadOffsetsForLoadOrCombine. 3134 /// 3135 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3136 /// and then moving that value into a specific byte offset. 3137 /// 3138 /// e.g. x[i] << 24 3139 /// 3140 /// \returns The load instruction and the byte offset it is moved into. 3141 static Optional<std::pair<GZExtLoad *, int64_t>> 3142 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3143 const MachineRegisterInfo &MRI) { 3144 assert(MRI.hasOneNonDBGUse(Reg) && 3145 "Expected Reg to only have one non-debug use?"); 3146 Register MaybeLoad; 3147 int64_t Shift; 3148 if (!mi_match(Reg, MRI, 3149 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3150 Shift = 0; 3151 MaybeLoad = Reg; 3152 } 3153 3154 if (Shift % MemSizeInBits != 0) 3155 return None; 3156 3157 // TODO: Handle other types of loads. 3158 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3159 if (!Load) 3160 return None; 3161 3162 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3163 return None; 3164 3165 return std::make_pair(Load, Shift / MemSizeInBits); 3166 } 3167 3168 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3169 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3170 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3171 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3172 3173 // Each load found for the pattern. There should be one for each RegsToVisit. 3174 SmallSetVector<const MachineInstr *, 8> Loads; 3175 3176 // The lowest index used in any load. (The lowest "i" for each x[i].) 3177 int64_t LowestIdx = INT64_MAX; 3178 3179 // The load which uses the lowest index. 3180 GZExtLoad *LowestIdxLoad = nullptr; 3181 3182 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3183 SmallSet<int64_t, 8> SeenIdx; 3184 3185 // Ensure each load is in the same MBB. 3186 // TODO: Support multiple MachineBasicBlocks. 3187 MachineBasicBlock *MBB = nullptr; 3188 const MachineMemOperand *MMO = nullptr; 3189 3190 // Earliest instruction-order load in the pattern. 3191 GZExtLoad *EarliestLoad = nullptr; 3192 3193 // Latest instruction-order load in the pattern. 3194 GZExtLoad *LatestLoad = nullptr; 3195 3196 // Base pointer which every load should share. 3197 Register BasePtr; 3198 3199 // We want to find a load for each register. Each load should have some 3200 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3201 // track of the load which uses the lowest index. Later, we will check if we 3202 // can use its pointer in the final, combined load. 3203 for (auto Reg : RegsToVisit) { 3204 // Find the load, and find the position that it will end up in (e.g. a 3205 // shifted) value. 3206 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3207 if (!LoadAndPos) 3208 return None; 3209 GZExtLoad *Load; 3210 int64_t DstPos; 3211 std::tie(Load, DstPos) = *LoadAndPos; 3212 3213 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3214 // it is difficult to check for stores/calls/etc between loads. 3215 MachineBasicBlock *LoadMBB = Load->getParent(); 3216 if (!MBB) 3217 MBB = LoadMBB; 3218 if (LoadMBB != MBB) 3219 return None; 3220 3221 // Make sure that the MachineMemOperands of every seen load are compatible. 3222 auto &LoadMMO = Load->getMMO(); 3223 if (!MMO) 3224 MMO = &LoadMMO; 3225 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3226 return None; 3227 3228 // Find out what the base pointer and index for the load is. 3229 Register LoadPtr; 3230 int64_t Idx; 3231 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3232 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3233 LoadPtr = Load->getOperand(1).getReg(); 3234 Idx = 0; 3235 } 3236 3237 // Don't combine things like a[i], a[i] -> a bigger load. 3238 if (!SeenIdx.insert(Idx).second) 3239 return None; 3240 3241 // Every load must share the same base pointer; don't combine things like: 3242 // 3243 // a[i], b[i + 1] -> a bigger load. 3244 if (!BasePtr.isValid()) 3245 BasePtr = LoadPtr; 3246 if (BasePtr != LoadPtr) 3247 return None; 3248 3249 if (Idx < LowestIdx) { 3250 LowestIdx = Idx; 3251 LowestIdxLoad = Load; 3252 } 3253 3254 // Keep track of the byte offset that this load ends up at. If we have seen 3255 // the byte offset, then stop here. We do not want to combine: 3256 // 3257 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3258 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3259 return None; 3260 Loads.insert(Load); 3261 3262 // Keep track of the position of the earliest/latest loads in the pattern. 3263 // We will check that there are no load fold barriers between them later 3264 // on. 3265 // 3266 // FIXME: Is there a better way to check for load fold barriers? 3267 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3268 EarliestLoad = Load; 3269 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3270 LatestLoad = Load; 3271 } 3272 3273 // We found a load for each register. Let's check if each load satisfies the 3274 // pattern. 3275 assert(Loads.size() == RegsToVisit.size() && 3276 "Expected to find a load for each register?"); 3277 assert(EarliestLoad != LatestLoad && EarliestLoad && 3278 LatestLoad && "Expected at least two loads?"); 3279 3280 // Check if there are any stores, calls, etc. between any of the loads. If 3281 // there are, then we can't safely perform the combine. 3282 // 3283 // MaxIter is chosen based off the (worst case) number of iterations it 3284 // typically takes to succeed in the LLVM test suite plus some padding. 3285 // 3286 // FIXME: Is there a better way to check for load fold barriers? 3287 const unsigned MaxIter = 20; 3288 unsigned Iter = 0; 3289 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3290 LatestLoad->getIterator())) { 3291 if (Loads.count(&MI)) 3292 continue; 3293 if (MI.isLoadFoldBarrier()) 3294 return None; 3295 if (Iter++ == MaxIter) 3296 return None; 3297 } 3298 3299 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3300 } 3301 3302 bool CombinerHelper::matchLoadOrCombine( 3303 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3304 assert(MI.getOpcode() == TargetOpcode::G_OR); 3305 MachineFunction &MF = *MI.getMF(); 3306 // Assuming a little-endian target, transform: 3307 // s8 *a = ... 3308 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3309 // => 3310 // s32 val = *((i32)a) 3311 // 3312 // s8 *a = ... 3313 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3314 // => 3315 // s32 val = BSWAP(*((s32)a)) 3316 Register Dst = MI.getOperand(0).getReg(); 3317 LLT Ty = MRI.getType(Dst); 3318 if (Ty.isVector()) 3319 return false; 3320 3321 // We need to combine at least two loads into this type. Since the smallest 3322 // possible load is into a byte, we need at least a 16-bit wide type. 3323 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3324 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3325 return false; 3326 3327 // Match a collection of non-OR instructions in the pattern. 3328 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3329 if (!RegsToVisit) 3330 return false; 3331 3332 // We have a collection of non-OR instructions. Figure out how wide each of 3333 // the small loads should be based off of the number of potential loads we 3334 // found. 3335 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3336 if (NarrowMemSizeInBits % 8 != 0) 3337 return false; 3338 3339 // Check if each register feeding into each OR is a load from the same 3340 // base pointer + some arithmetic. 3341 // 3342 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3343 // 3344 // Also verify that each of these ends up putting a[i] into the same memory 3345 // offset as a load into a wide type would. 3346 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3347 GZExtLoad *LowestIdxLoad, *LatestLoad; 3348 int64_t LowestIdx; 3349 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3350 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3351 if (!MaybeLoadInfo) 3352 return false; 3353 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3354 3355 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3356 // we found before, check if this corresponds to a big or little endian byte 3357 // pattern. If it does, then we can represent it using a load + possibly a 3358 // BSWAP. 3359 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3360 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3361 if (!IsBigEndian.hasValue()) 3362 return false; 3363 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3364 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3365 return false; 3366 3367 // Make sure that the load from the lowest index produces offset 0 in the 3368 // final value. 3369 // 3370 // This ensures that we won't combine something like this: 3371 // 3372 // load x[i] -> byte 2 3373 // load x[i+1] -> byte 0 ---> wide_load x[i] 3374 // load x[i+2] -> byte 1 3375 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3376 const unsigned ZeroByteOffset = 3377 *IsBigEndian 3378 ? bigEndianByteAt(NumLoadsInTy, 0) 3379 : littleEndianByteAt(NumLoadsInTy, 0); 3380 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3381 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3382 ZeroOffsetIdx->second != LowestIdx) 3383 return false; 3384 3385 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3386 // may not use index 0. 3387 Register Ptr = LowestIdxLoad->getPointerReg(); 3388 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3389 LegalityQuery::MemDesc MMDesc(MMO); 3390 MMDesc.MemoryTy = Ty; 3391 if (!isLegalOrBeforeLegalizer( 3392 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3393 return false; 3394 auto PtrInfo = MMO.getPointerInfo(); 3395 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3396 3397 // Load must be allowed and fast on the target. 3398 LLVMContext &C = MF.getFunction().getContext(); 3399 auto &DL = MF.getDataLayout(); 3400 bool Fast = false; 3401 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3402 !Fast) 3403 return false; 3404 3405 MatchInfo = [=](MachineIRBuilder &MIB) { 3406 MIB.setInstrAndDebugLoc(*LatestLoad); 3407 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3408 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3409 if (NeedsBSwap) 3410 MIB.buildBSwap(Dst, LoadDst); 3411 }; 3412 return true; 3413 } 3414 3415 /// Check if the store \p Store is a truncstore that can be merged. That is, 3416 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty 3417 /// Register then it does not need to match and SrcVal is set to the source 3418 /// value found. 3419 /// On match, returns the start byte offset of the \p SrcVal that is being 3420 /// stored. 3421 static Optional<int64_t> getTruncStoreByteOffset(GStore &Store, Register &SrcVal, 3422 MachineRegisterInfo &MRI) { 3423 Register TruncVal; 3424 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) 3425 return None; 3426 3427 // The shift amount must be a constant multiple of the narrow type. 3428 // It is translated to the offset address in the wide source value "y". 3429 // 3430 // x = G_LSHR y, ShiftAmtC 3431 // s8 z = G_TRUNC x 3432 // store z, ... 3433 Register FoundSrcVal; 3434 int64_t ShiftAmt; 3435 if (!mi_match(TruncVal, MRI, 3436 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), 3437 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { 3438 if (!SrcVal.isValid() || TruncVal == SrcVal) { 3439 if (!SrcVal.isValid()) 3440 SrcVal = TruncVal; 3441 return 0; // If it's the lowest index store. 3442 } 3443 return None; 3444 } 3445 3446 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); 3447 if (ShiftAmt % NarrowBits!= 0) 3448 return None; 3449 const unsigned Offset = ShiftAmt / NarrowBits; 3450 3451 if (SrcVal.isValid() && FoundSrcVal != SrcVal) 3452 return None; 3453 3454 if (!SrcVal.isValid()) 3455 SrcVal = FoundSrcVal; 3456 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) 3457 return None; 3458 return Offset; 3459 } 3460 3461 /// Match a pattern where a wide type scalar value is stored by several narrow 3462 /// stores. Fold it into a single store or a BSWAP and a store if the targets 3463 /// supports it. 3464 /// 3465 /// Assuming little endian target: 3466 /// i8 *p = ... 3467 /// i32 val = ... 3468 /// p[0] = (val >> 0) & 0xFF; 3469 /// p[1] = (val >> 8) & 0xFF; 3470 /// p[2] = (val >> 16) & 0xFF; 3471 /// p[3] = (val >> 24) & 0xFF; 3472 /// => 3473 /// *((i32)p) = val; 3474 /// 3475 /// i8 *p = ... 3476 /// i32 val = ... 3477 /// p[0] = (val >> 24) & 0xFF; 3478 /// p[1] = (val >> 16) & 0xFF; 3479 /// p[2] = (val >> 8) & 0xFF; 3480 /// p[3] = (val >> 0) & 0xFF; 3481 /// => 3482 /// *((i32)p) = BSWAP(val); 3483 bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI, 3484 MergeTruncStoresInfo &MatchInfo) { 3485 auto &StoreMI = cast<GStore>(MI); 3486 LLT MemTy = StoreMI.getMMO().getMemoryType(); 3487 3488 // We only handle merging simple stores of 1-4 bytes. 3489 if (!MemTy.isScalar()) 3490 return false; 3491 switch (MemTy.getSizeInBits()) { 3492 case 8: 3493 case 16: 3494 case 32: 3495 break; 3496 default: 3497 return false; 3498 } 3499 if (!StoreMI.isSimple()) 3500 return false; 3501 3502 // We do a simple search for mergeable stores prior to this one. 3503 // Any potential alias hazard along the way terminates the search. 3504 SmallVector<GStore *> FoundStores; 3505 3506 // We're looking for: 3507 // 1) a (store(trunc(...))) 3508 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get 3509 // the partial value stored. 3510 // 3) where the offsets form either a little or big-endian sequence. 3511 3512 auto &LastStore = StoreMI; 3513 3514 // The single base pointer that all stores must use. 3515 Register BaseReg; 3516 int64_t LastOffset; 3517 if (!mi_match(LastStore.getPointerReg(), MRI, 3518 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { 3519 BaseReg = LastStore.getPointerReg(); 3520 LastOffset = 0; 3521 } 3522 3523 GStore *LowestIdxStore = &LastStore; 3524 int64_t LowestIdxOffset = LastOffset; 3525 3526 Register WideSrcVal; 3527 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI); 3528 if (!LowestShiftAmt) 3529 return false; // Didn't match a trunc. 3530 assert(WideSrcVal.isValid()); 3531 3532 LLT WideStoreTy = MRI.getType(WideSrcVal); 3533 // The wide type might not be a multiple of the memory type, e.g. s48 and s32. 3534 if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0) 3535 return false; 3536 const unsigned NumStoresRequired = 3537 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); 3538 3539 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); 3540 OffsetMap[*LowestShiftAmt] = LastOffset; 3541 FoundStores.emplace_back(&LastStore); 3542 3543 // Search the block up for more stores. 3544 // We use a search threshold of 10 instructions here because the combiner 3545 // works top-down within a block, and we don't want to search an unbounded 3546 // number of predecessor instructions trying to find matching stores. 3547 // If we moved this optimization into a separate pass then we could probably 3548 // use a more efficient search without having a hard-coded threshold. 3549 const int MaxInstsToCheck = 10; 3550 int NumInstsChecked = 0; 3551 for (auto II = ++LastStore.getReverseIterator(); 3552 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; 3553 ++II) { 3554 NumInstsChecked++; 3555 GStore *NewStore; 3556 if ((NewStore = dyn_cast<GStore>(&*II))) { 3557 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) 3558 break; 3559 } else if (II->isLoadFoldBarrier() || II->mayLoad()) { 3560 break; 3561 } else { 3562 continue; // This is a safe instruction we can look past. 3563 } 3564 3565 Register NewBaseReg; 3566 int64_t MemOffset; 3567 // Check we're storing to the same base + some offset. 3568 if (!mi_match(NewStore->getPointerReg(), MRI, 3569 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { 3570 NewBaseReg = NewStore->getPointerReg(); 3571 MemOffset = 0; 3572 } 3573 if (BaseReg != NewBaseReg) 3574 break; 3575 3576 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI); 3577 if (!ShiftByteOffset) 3578 break; 3579 if (MemOffset < LowestIdxOffset) { 3580 LowestIdxOffset = MemOffset; 3581 LowestIdxStore = NewStore; 3582 } 3583 3584 // Map the offset in the store and the offset in the combined value, and 3585 // early return if it has been set before. 3586 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || 3587 OffsetMap[*ShiftByteOffset] != INT64_MAX) 3588 break; 3589 OffsetMap[*ShiftByteOffset] = MemOffset; 3590 3591 FoundStores.emplace_back(NewStore); 3592 // Reset counter since we've found a matching inst. 3593 NumInstsChecked = 0; 3594 if (FoundStores.size() == NumStoresRequired) 3595 break; 3596 } 3597 3598 if (FoundStores.size() != NumStoresRequired) { 3599 return false; 3600 } 3601 3602 const auto &DL = LastStore.getMF()->getDataLayout(); 3603 auto &C = LastStore.getMF()->getFunction().getContext(); 3604 // Check that a store of the wide type is both allowed and fast on the target 3605 bool Fast = false; 3606 bool Allowed = getTargetLowering().allowsMemoryAccess( 3607 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); 3608 if (!Allowed || !Fast) 3609 return false; 3610 3611 // Check if the pieces of the value are going to the expected places in memory 3612 // to merge the stores. 3613 unsigned NarrowBits = MemTy.getScalarSizeInBits(); 3614 auto checkOffsets = [&](bool MatchLittleEndian) { 3615 if (MatchLittleEndian) { 3616 for (unsigned i = 0; i != NumStoresRequired; ++i) 3617 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) 3618 return false; 3619 } else { // MatchBigEndian by reversing loop counter. 3620 for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired; 3621 ++i, --j) 3622 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) 3623 return false; 3624 } 3625 return true; 3626 }; 3627 3628 // Check if the offsets line up for the native data layout of this target. 3629 bool NeedBswap = false; 3630 bool NeedRotate = false; 3631 if (!checkOffsets(DL.isLittleEndian())) { 3632 // Special-case: check if byte offsets line up for the opposite endian. 3633 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) 3634 NeedBswap = true; 3635 else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian())) 3636 NeedRotate = true; 3637 else 3638 return false; 3639 } 3640 3641 if (NeedBswap && 3642 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}})) 3643 return false; 3644 if (NeedRotate && 3645 !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}})) 3646 return false; 3647 3648 MatchInfo.NeedBSwap = NeedBswap; 3649 MatchInfo.NeedRotate = NeedRotate; 3650 MatchInfo.LowestIdxStore = LowestIdxStore; 3651 MatchInfo.WideSrcVal = WideSrcVal; 3652 MatchInfo.FoundStores = std::move(FoundStores); 3653 return true; 3654 } 3655 3656 void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI, 3657 MergeTruncStoresInfo &MatchInfo) { 3658 3659 Builder.setInstrAndDebugLoc(MI); 3660 Register WideSrcVal = MatchInfo.WideSrcVal; 3661 LLT WideStoreTy = MRI.getType(WideSrcVal); 3662 3663 if (MatchInfo.NeedBSwap) { 3664 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); 3665 } else if (MatchInfo.NeedRotate) { 3666 assert(WideStoreTy.getSizeInBits() % 2 == 0 && 3667 "Unexpected type for rotate"); 3668 auto RotAmt = 3669 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); 3670 WideSrcVal = 3671 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); 3672 } 3673 3674 Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(), 3675 MatchInfo.LowestIdxStore->getMMO().getPointerInfo(), 3676 MatchInfo.LowestIdxStore->getMMO().getAlign()); 3677 3678 // Erase the old stores. 3679 for (auto *ST : MatchInfo.FoundStores) 3680 ST->eraseFromParent(); 3681 } 3682 3683 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3684 MachineInstr *&ExtMI) { 3685 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3686 3687 Register DstReg = MI.getOperand(0).getReg(); 3688 3689 // TODO: Extending a vector may be expensive, don't do this until heuristics 3690 // are better. 3691 if (MRI.getType(DstReg).isVector()) 3692 return false; 3693 3694 // Try to match a phi, whose only use is an extend. 3695 if (!MRI.hasOneNonDBGUse(DstReg)) 3696 return false; 3697 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3698 switch (ExtMI->getOpcode()) { 3699 case TargetOpcode::G_ANYEXT: 3700 return true; // G_ANYEXT is usually free. 3701 case TargetOpcode::G_ZEXT: 3702 case TargetOpcode::G_SEXT: 3703 break; 3704 default: 3705 return false; 3706 } 3707 3708 // If the target is likely to fold this extend away, don't propagate. 3709 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3710 return false; 3711 3712 // We don't want to propagate the extends unless there's a good chance that 3713 // they'll be optimized in some way. 3714 // Collect the unique incoming values. 3715 SmallPtrSet<MachineInstr *, 4> InSrcs; 3716 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3717 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3718 switch (DefMI->getOpcode()) { 3719 case TargetOpcode::G_LOAD: 3720 case TargetOpcode::G_TRUNC: 3721 case TargetOpcode::G_SEXT: 3722 case TargetOpcode::G_ZEXT: 3723 case TargetOpcode::G_ANYEXT: 3724 case TargetOpcode::G_CONSTANT: 3725 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3726 // Don't try to propagate if there are too many places to create new 3727 // extends, chances are it'll increase code size. 3728 if (InSrcs.size() > 2) 3729 return false; 3730 break; 3731 default: 3732 return false; 3733 } 3734 } 3735 return true; 3736 } 3737 3738 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3739 MachineInstr *&ExtMI) { 3740 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3741 Register DstReg = ExtMI->getOperand(0).getReg(); 3742 LLT ExtTy = MRI.getType(DstReg); 3743 3744 // Propagate the extension into the block of each incoming reg's block. 3745 // Use a SetVector here because PHIs can have duplicate edges, and we want 3746 // deterministic iteration order. 3747 SmallSetVector<MachineInstr *, 8> SrcMIs; 3748 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3749 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3750 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3751 if (!SrcMIs.insert(SrcMI)) 3752 continue; 3753 3754 // Build an extend after each src inst. 3755 auto *MBB = SrcMI->getParent(); 3756 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3757 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3758 InsertPt = MBB->getFirstNonPHI(); 3759 3760 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3761 Builder.setDebugLoc(MI.getDebugLoc()); 3762 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3763 SrcMI->getOperand(0).getReg()); 3764 OldToNewSrcMap[SrcMI] = NewExt; 3765 } 3766 3767 // Create a new phi with the extended inputs. 3768 Builder.setInstrAndDebugLoc(MI); 3769 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3770 NewPhi.addDef(DstReg); 3771 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 3772 if (!MO.isReg()) { 3773 NewPhi.addMBB(MO.getMBB()); 3774 continue; 3775 } 3776 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3777 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3778 } 3779 Builder.insertInstr(NewPhi); 3780 ExtMI->eraseFromParent(); 3781 } 3782 3783 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3784 Register &Reg) { 3785 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3786 // If we have a constant index, look for a G_BUILD_VECTOR source 3787 // and find the source register that the index maps to. 3788 Register SrcVec = MI.getOperand(1).getReg(); 3789 LLT SrcTy = MRI.getType(SrcVec); 3790 if (!isLegalOrBeforeLegalizer( 3791 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3792 return false; 3793 3794 auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3795 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3796 return false; 3797 3798 unsigned VecIdx = Cst->Value.getZExtValue(); 3799 MachineInstr *BuildVecMI = 3800 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3801 if (!BuildVecMI) { 3802 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3803 if (!BuildVecMI) 3804 return false; 3805 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3806 if (!isLegalOrBeforeLegalizer( 3807 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3808 return false; 3809 } 3810 3811 EVT Ty(getMVTForLLT(SrcTy)); 3812 if (!MRI.hasOneNonDBGUse(SrcVec) && 3813 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3814 return false; 3815 3816 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3817 return true; 3818 } 3819 3820 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3821 Register &Reg) { 3822 // Check the type of the register, since it may have come from a 3823 // G_BUILD_VECTOR_TRUNC. 3824 LLT ScalarTy = MRI.getType(Reg); 3825 Register DstReg = MI.getOperand(0).getReg(); 3826 LLT DstTy = MRI.getType(DstReg); 3827 3828 Builder.setInstrAndDebugLoc(MI); 3829 if (ScalarTy != DstTy) { 3830 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3831 Builder.buildTrunc(DstReg, Reg); 3832 MI.eraseFromParent(); 3833 return; 3834 } 3835 replaceSingleDefInstWithReg(MI, Reg); 3836 } 3837 3838 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3839 MachineInstr &MI, 3840 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3841 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3842 // This combine tries to find build_vector's which have every source element 3843 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3844 // the masked load scalarization is run late in the pipeline. There's already 3845 // a combine for a similar pattern starting from the extract, but that 3846 // doesn't attempt to do it if there are multiple uses of the build_vector, 3847 // which in this case is true. Starting the combine from the build_vector 3848 // feels more natural than trying to find sibling nodes of extracts. 3849 // E.g. 3850 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3851 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3852 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3853 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3854 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3855 // ==> 3856 // replace ext{1,2,3,4} with %s{1,2,3,4} 3857 3858 Register DstReg = MI.getOperand(0).getReg(); 3859 LLT DstTy = MRI.getType(DstReg); 3860 unsigned NumElts = DstTy.getNumElements(); 3861 3862 SmallBitVector ExtractedElts(NumElts); 3863 for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) { 3864 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3865 return false; 3866 auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI); 3867 if (!Cst) 3868 return false; 3869 unsigned Idx = Cst.getValue().getZExtValue(); 3870 if (Idx >= NumElts) 3871 return false; // Out of range. 3872 ExtractedElts.set(Idx); 3873 SrcDstPairs.emplace_back( 3874 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3875 } 3876 // Match if every element was extracted. 3877 return ExtractedElts.all(); 3878 } 3879 3880 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3881 MachineInstr &MI, 3882 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3883 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3884 for (auto &Pair : SrcDstPairs) { 3885 auto *ExtMI = Pair.second; 3886 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3887 ExtMI->eraseFromParent(); 3888 } 3889 MI.eraseFromParent(); 3890 } 3891 3892 void CombinerHelper::applyBuildFn( 3893 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3894 Builder.setInstrAndDebugLoc(MI); 3895 MatchInfo(Builder); 3896 MI.eraseFromParent(); 3897 } 3898 3899 void CombinerHelper::applyBuildFnNoErase( 3900 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3901 Builder.setInstrAndDebugLoc(MI); 3902 MatchInfo(Builder); 3903 } 3904 3905 bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI, 3906 BuildFnTy &MatchInfo) { 3907 assert(MI.getOpcode() == TargetOpcode::G_OR); 3908 3909 Register Dst = MI.getOperand(0).getReg(); 3910 LLT Ty = MRI.getType(Dst); 3911 unsigned BitWidth = Ty.getScalarSizeInBits(); 3912 3913 Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt; 3914 unsigned FshOpc = 0; 3915 3916 // Match (or (shl ...), (lshr ...)). 3917 if (!mi_match(Dst, MRI, 3918 // m_GOr() handles the commuted version as well. 3919 m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)), 3920 m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt))))) 3921 return false; 3922 3923 // Given constants C0 and C1 such that C0 + C1 is bit-width: 3924 // (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1) 3925 // TODO: Match constant splat. 3926 int64_t CstShlAmt, CstLShrAmt; 3927 if (mi_match(ShlAmt, MRI, m_ICst(CstShlAmt)) && 3928 mi_match(LShrAmt, MRI, m_ICst(CstLShrAmt)) && 3929 CstShlAmt + CstLShrAmt == BitWidth) { 3930 FshOpc = TargetOpcode::G_FSHR; 3931 Amt = LShrAmt; 3932 3933 } else if (mi_match(LShrAmt, MRI, 3934 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && 3935 ShlAmt == Amt) { 3936 // (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt) 3937 FshOpc = TargetOpcode::G_FSHL; 3938 3939 } else if (mi_match(ShlAmt, MRI, 3940 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && 3941 LShrAmt == Amt) { 3942 // (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt) 3943 FshOpc = TargetOpcode::G_FSHR; 3944 3945 } else { 3946 return false; 3947 } 3948 3949 LLT AmtTy = MRI.getType(Amt); 3950 if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}})) 3951 return false; 3952 3953 MatchInfo = [=](MachineIRBuilder &B) { 3954 B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt}); 3955 }; 3956 return true; 3957 } 3958 3959 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3960 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3961 unsigned Opc = MI.getOpcode(); 3962 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3963 Register X = MI.getOperand(1).getReg(); 3964 Register Y = MI.getOperand(2).getReg(); 3965 if (X != Y) 3966 return false; 3967 unsigned RotateOpc = 3968 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3969 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3970 } 3971 3972 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3973 unsigned Opc = MI.getOpcode(); 3974 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3975 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3976 Observer.changingInstr(MI); 3977 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3978 : TargetOpcode::G_ROTR)); 3979 MI.RemoveOperand(2); 3980 Observer.changedInstr(MI); 3981 } 3982 3983 // Fold (rot x, c) -> (rot x, c % BitSize) 3984 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3985 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3986 MI.getOpcode() == TargetOpcode::G_ROTR); 3987 unsigned Bitsize = 3988 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3989 Register AmtReg = MI.getOperand(2).getReg(); 3990 bool OutOfRange = false; 3991 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 3992 if (auto *CI = dyn_cast<ConstantInt>(C)) 3993 OutOfRange |= CI->getValue().uge(Bitsize); 3994 return true; 3995 }; 3996 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 3997 } 3998 3999 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 4000 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4001 MI.getOpcode() == TargetOpcode::G_ROTR); 4002 unsigned Bitsize = 4003 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4004 Builder.setInstrAndDebugLoc(MI); 4005 Register Amt = MI.getOperand(2).getReg(); 4006 LLT AmtTy = MRI.getType(Amt); 4007 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 4008 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 4009 Observer.changingInstr(MI); 4010 MI.getOperand(2).setReg(Amt); 4011 Observer.changedInstr(MI); 4012 } 4013 4014 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 4015 int64_t &MatchInfo) { 4016 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4017 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4018 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 4019 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 4020 Optional<bool> KnownVal; 4021 switch (Pred) { 4022 default: 4023 llvm_unreachable("Unexpected G_ICMP predicate?"); 4024 case CmpInst::ICMP_EQ: 4025 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 4026 break; 4027 case CmpInst::ICMP_NE: 4028 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 4029 break; 4030 case CmpInst::ICMP_SGE: 4031 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 4032 break; 4033 case CmpInst::ICMP_SGT: 4034 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 4035 break; 4036 case CmpInst::ICMP_SLE: 4037 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 4038 break; 4039 case CmpInst::ICMP_SLT: 4040 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 4041 break; 4042 case CmpInst::ICMP_UGE: 4043 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 4044 break; 4045 case CmpInst::ICMP_UGT: 4046 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 4047 break; 4048 case CmpInst::ICMP_ULE: 4049 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 4050 break; 4051 case CmpInst::ICMP_ULT: 4052 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 4053 break; 4054 } 4055 if (!KnownVal) 4056 return false; 4057 MatchInfo = 4058 *KnownVal 4059 ? getICmpTrueVal(getTargetLowering(), 4060 /*IsVector = */ 4061 MRI.getType(MI.getOperand(0).getReg()).isVector(), 4062 /* IsFP = */ false) 4063 : 0; 4064 return true; 4065 } 4066 4067 bool CombinerHelper::matchICmpToLHSKnownBits( 4068 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4069 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4070 // Given: 4071 // 4072 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4073 // %cmp = G_ICMP ne %x, 0 4074 // 4075 // Or: 4076 // 4077 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4078 // %cmp = G_ICMP eq %x, 1 4079 // 4080 // We can replace %cmp with %x assuming true is 1 on the target. 4081 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4082 if (!CmpInst::isEquality(Pred)) 4083 return false; 4084 Register Dst = MI.getOperand(0).getReg(); 4085 LLT DstTy = MRI.getType(Dst); 4086 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), 4087 /* IsFP = */ false) != 1) 4088 return false; 4089 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; 4090 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) 4091 return false; 4092 Register LHS = MI.getOperand(2).getReg(); 4093 auto KnownLHS = KB->getKnownBits(LHS); 4094 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) 4095 return false; 4096 // Make sure replacing Dst with the LHS is a legal operation. 4097 LLT LHSTy = MRI.getType(LHS); 4098 unsigned LHSSize = LHSTy.getSizeInBits(); 4099 unsigned DstSize = DstTy.getSizeInBits(); 4100 unsigned Op = TargetOpcode::COPY; 4101 if (DstSize != LHSSize) 4102 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; 4103 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) 4104 return false; 4105 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; 4106 return true; 4107 } 4108 4109 // Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0 4110 bool CombinerHelper::matchAndOrDisjointMask( 4111 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4112 assert(MI.getOpcode() == TargetOpcode::G_AND); 4113 4114 // Ignore vector types to simplify matching the two constants. 4115 // TODO: do this for vectors and scalars via a demanded bits analysis. 4116 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 4117 if (Ty.isVector()) 4118 return false; 4119 4120 Register Src; 4121 int64_t MaskAnd; 4122 int64_t MaskOr; 4123 if (!mi_match(MI, MRI, 4124 m_GAnd(m_GOr(m_Reg(Src), m_ICst(MaskOr)), m_ICst(MaskAnd)))) 4125 return false; 4126 4127 // Check if MaskOr could turn on any bits in Src. 4128 if (MaskAnd & MaskOr) 4129 return false; 4130 4131 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4132 Observer.changingInstr(MI); 4133 MI.getOperand(1).setReg(Src); 4134 Observer.changedInstr(MI); 4135 }; 4136 return true; 4137 } 4138 4139 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4140 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4141 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4142 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4143 Register Dst = MI.getOperand(0).getReg(); 4144 Register Src = MI.getOperand(1).getReg(); 4145 LLT Ty = MRI.getType(Src); 4146 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4147 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4148 return false; 4149 int64_t Width = MI.getOperand(2).getImm(); 4150 Register ShiftSrc; 4151 int64_t ShiftImm; 4152 if (!mi_match( 4153 Src, MRI, 4154 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4155 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4156 return false; 4157 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4158 return false; 4159 4160 MatchInfo = [=](MachineIRBuilder &B) { 4161 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4162 auto Cst2 = B.buildConstant(ExtractTy, Width); 4163 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4164 }; 4165 return true; 4166 } 4167 4168 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4169 bool CombinerHelper::matchBitfieldExtractFromAnd( 4170 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4171 assert(MI.getOpcode() == TargetOpcode::G_AND); 4172 Register Dst = MI.getOperand(0).getReg(); 4173 LLT Ty = MRI.getType(Dst); 4174 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4175 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( 4176 TargetOpcode::G_UBFX, Ty, ExtractTy)) 4177 return false; 4178 4179 int64_t AndImm, LSBImm; 4180 Register ShiftSrc; 4181 const unsigned Size = Ty.getScalarSizeInBits(); 4182 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4183 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4184 m_ICst(AndImm)))) 4185 return false; 4186 4187 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4188 auto MaybeMask = static_cast<uint64_t>(AndImm); 4189 if (MaybeMask & (MaybeMask + 1)) 4190 return false; 4191 4192 // LSB must fit within the register. 4193 if (static_cast<uint64_t>(LSBImm) >= Size) 4194 return false; 4195 4196 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4197 MatchInfo = [=](MachineIRBuilder &B) { 4198 auto WidthCst = B.buildConstant(ExtractTy, Width); 4199 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4200 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4201 }; 4202 return true; 4203 } 4204 4205 bool CombinerHelper::matchBitfieldExtractFromShr( 4206 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4207 const unsigned Opcode = MI.getOpcode(); 4208 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 4209 4210 const Register Dst = MI.getOperand(0).getReg(); 4211 4212 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 4213 ? TargetOpcode::G_SBFX 4214 : TargetOpcode::G_UBFX; 4215 4216 // Check if the type we would use for the extract is legal 4217 LLT Ty = MRI.getType(Dst); 4218 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4219 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 4220 return false; 4221 4222 Register ShlSrc; 4223 int64_t ShrAmt; 4224 int64_t ShlAmt; 4225 const unsigned Size = Ty.getScalarSizeInBits(); 4226 4227 // Try to match shr (shl x, c1), c2 4228 if (!mi_match(Dst, MRI, 4229 m_BinOp(Opcode, 4230 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4231 m_ICst(ShrAmt)))) 4232 return false; 4233 4234 // Make sure that the shift sizes can fit a bitfield extract 4235 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4236 return false; 4237 4238 // Skip this combine if the G_SEXT_INREG combine could handle it 4239 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4240 return false; 4241 4242 // Calculate start position and width of the extract 4243 const int64_t Pos = ShrAmt - ShlAmt; 4244 const int64_t Width = Size - ShrAmt; 4245 4246 MatchInfo = [=](MachineIRBuilder &B) { 4247 auto WidthCst = B.buildConstant(ExtractTy, Width); 4248 auto PosCst = B.buildConstant(ExtractTy, Pos); 4249 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4250 }; 4251 return true; 4252 } 4253 4254 bool CombinerHelper::matchBitfieldExtractFromShrAnd( 4255 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4256 const unsigned Opcode = MI.getOpcode(); 4257 assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR); 4258 4259 const Register Dst = MI.getOperand(0).getReg(); 4260 LLT Ty = MRI.getType(Dst); 4261 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4262 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( 4263 TargetOpcode::G_UBFX, Ty, ExtractTy)) 4264 return false; 4265 4266 // Try to match shr (and x, c1), c2 4267 Register AndSrc; 4268 int64_t ShrAmt; 4269 int64_t SMask; 4270 if (!mi_match(Dst, MRI, 4271 m_BinOp(Opcode, 4272 m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))), 4273 m_ICst(ShrAmt)))) 4274 return false; 4275 4276 const unsigned Size = Ty.getScalarSizeInBits(); 4277 if (ShrAmt < 0 || ShrAmt >= Size) 4278 return false; 4279 4280 // Check that ubfx can do the extraction, with no holes in the mask. 4281 uint64_t UMask = SMask; 4282 UMask |= maskTrailingOnes<uint64_t>(ShrAmt); 4283 UMask &= maskTrailingOnes<uint64_t>(Size); 4284 if (!isMask_64(UMask)) 4285 return false; 4286 4287 // Calculate start position and width of the extract. 4288 const int64_t Pos = ShrAmt; 4289 const int64_t Width = countTrailingOnes(UMask) - ShrAmt; 4290 4291 // It's preferable to keep the shift, rather than form G_SBFX. 4292 // TODO: remove the G_AND via demanded bits analysis. 4293 if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size) 4294 return false; 4295 4296 MatchInfo = [=](MachineIRBuilder &B) { 4297 auto WidthCst = B.buildConstant(ExtractTy, Width); 4298 auto PosCst = B.buildConstant(ExtractTy, Pos); 4299 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst}); 4300 }; 4301 return true; 4302 } 4303 4304 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4305 MachineInstr &PtrAdd) { 4306 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4307 4308 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4309 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4310 if (!Src1Def) 4311 return false; 4312 4313 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4314 4315 if (MRI.hasOneNonDBGUse(Src1Reg)) 4316 return false; 4317 4318 auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4319 if (!C1) 4320 return false; 4321 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4322 if (!C2) 4323 return false; 4324 4325 const APInt &C1APIntVal = *C1; 4326 const APInt &C2APIntVal = *C2; 4327 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4328 4329 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4330 // This combine may end up running before ptrtoint/inttoptr combines 4331 // manage to eliminate redundant conversions, so try to look through them. 4332 MachineInstr *ConvUseMI = &UseMI; 4333 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4334 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4335 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4336 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4337 if (!MRI.hasOneNonDBGUse(DefReg)) 4338 break; 4339 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4340 ConvUseOpc = ConvUseMI->getOpcode(); 4341 } 4342 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4343 ConvUseOpc == TargetOpcode::G_STORE; 4344 if (!LoadStore) 4345 continue; 4346 // Is x[offset2] already not a legal addressing mode? If so then 4347 // reassociating the constants breaks nothing (we test offset2 because 4348 // that's the one we hope to fold into the load or store). 4349 TargetLoweringBase::AddrMode AM; 4350 AM.HasBaseReg = true; 4351 AM.BaseOffs = C2APIntVal.getSExtValue(); 4352 unsigned AS = 4353 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4354 Type *AccessTy = 4355 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4356 PtrAdd.getMF()->getFunction().getContext()); 4357 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4358 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4359 AccessTy, AS)) 4360 continue; 4361 4362 // Would x[offset1+offset2] still be a legal addressing mode? 4363 AM.BaseOffs = CombinedValue; 4364 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4365 AccessTy, AS)) 4366 return true; 4367 } 4368 4369 return false; 4370 } 4371 4372 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI, 4373 MachineInstr *RHS, 4374 BuildFnTy &MatchInfo) { 4375 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4376 Register Src1Reg = MI.getOperand(1).getReg(); 4377 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4378 return false; 4379 auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4380 if (!C2) 4381 return false; 4382 4383 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4384 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4385 4386 auto NewBase = 4387 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4388 Observer.changingInstr(MI); 4389 MI.getOperand(1).setReg(NewBase.getReg(0)); 4390 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4391 Observer.changedInstr(MI); 4392 }; 4393 return !reassociationCanBreakAddressingModePattern(MI); 4394 } 4395 4396 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI, 4397 MachineInstr *LHS, 4398 MachineInstr *RHS, 4399 BuildFnTy &MatchInfo) { 4400 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C) 4401 // if and only if (G_PTR_ADD X, C) has one use. 4402 Register LHSBase; 4403 Optional<ValueAndVReg> LHSCstOff; 4404 if (!mi_match(MI.getBaseReg(), MRI, 4405 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff))))) 4406 return false; 4407 4408 auto *LHSPtrAdd = cast<GPtrAdd>(LHS); 4409 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4410 // When we change LHSPtrAdd's offset register we might cause it to use a reg 4411 // before its def. Sink the instruction so the outer PTR_ADD to ensure this 4412 // doesn't happen. 4413 LHSPtrAdd->moveBefore(&MI); 4414 Register RHSReg = MI.getOffsetReg(); 4415 Observer.changingInstr(MI); 4416 MI.getOperand(2).setReg(LHSCstOff->VReg); 4417 Observer.changedInstr(MI); 4418 Observer.changingInstr(*LHSPtrAdd); 4419 LHSPtrAdd->getOperand(2).setReg(RHSReg); 4420 Observer.changedInstr(*LHSPtrAdd); 4421 }; 4422 return !reassociationCanBreakAddressingModePattern(MI); 4423 } 4424 4425 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI, 4426 MachineInstr *LHS, 4427 MachineInstr *RHS, 4428 BuildFnTy &MatchInfo) { 4429 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4430 auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS); 4431 if (!LHSPtrAdd) 4432 return false; 4433 4434 Register Src2Reg = MI.getOperand(2).getReg(); 4435 Register LHSSrc1 = LHSPtrAdd->getBaseReg(); 4436 Register LHSSrc2 = LHSPtrAdd->getOffsetReg(); 4437 auto C1 = getIConstantVRegVal(LHSSrc2, MRI); 4438 if (!C1) 4439 return false; 4440 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4441 if (!C2) 4442 return false; 4443 4444 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4445 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4446 Observer.changingInstr(MI); 4447 MI.getOperand(1).setReg(LHSSrc1); 4448 MI.getOperand(2).setReg(NewCst.getReg(0)); 4449 Observer.changedInstr(MI); 4450 }; 4451 return !reassociationCanBreakAddressingModePattern(MI); 4452 } 4453 4454 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI, 4455 BuildFnTy &MatchInfo) { 4456 auto &PtrAdd = cast<GPtrAdd>(MI); 4457 // We're trying to match a few pointer computation patterns here for 4458 // re-association opportunities. 4459 // 1) Isolating a constant operand to be on the RHS, e.g.: 4460 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4461 // 4462 // 2) Folding two constants in each sub-tree as long as such folding 4463 // doesn't break a legal addressing mode. 4464 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4465 // 4466 // 3) Move a constant from the LHS of an inner op to the RHS of the outer. 4467 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C) 4468 // iif (G_PTR_ADD X, C) has one use. 4469 MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg()); 4470 MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg()); 4471 4472 // Try to match example 2. 4473 if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo)) 4474 return true; 4475 4476 // Try to match example 3. 4477 if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo)) 4478 return true; 4479 4480 // Try to match example 1. 4481 if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo)) 4482 return true; 4483 4484 return false; 4485 } 4486 4487 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4488 Register Op1 = MI.getOperand(1).getReg(); 4489 Register Op2 = MI.getOperand(2).getReg(); 4490 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4491 if (!MaybeCst) 4492 return false; 4493 MatchInfo = *MaybeCst; 4494 return true; 4495 } 4496 4497 bool CombinerHelper::matchNarrowBinopFeedingAnd( 4498 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4499 // Look for a binop feeding into an AND with a mask: 4500 // 4501 // %add = G_ADD %lhs, %rhs 4502 // %and = G_AND %add, 000...11111111 4503 // 4504 // Check if it's possible to perform the binop at a narrower width and zext 4505 // back to the original width like so: 4506 // 4507 // %narrow_lhs = G_TRUNC %lhs 4508 // %narrow_rhs = G_TRUNC %rhs 4509 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 4510 // %new_add = G_ZEXT %narrow_add 4511 // %and = G_AND %new_add, 000...11111111 4512 // 4513 // This can allow later combines to eliminate the G_AND if it turns out 4514 // that the mask is irrelevant. 4515 assert(MI.getOpcode() == TargetOpcode::G_AND); 4516 Register Dst = MI.getOperand(0).getReg(); 4517 Register AndLHS = MI.getOperand(1).getReg(); 4518 Register AndRHS = MI.getOperand(2).getReg(); 4519 LLT WideTy = MRI.getType(Dst); 4520 4521 // If the potential binop has more than one use, then it's possible that one 4522 // of those uses will need its full width. 4523 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 4524 return false; 4525 4526 // Check if the LHS feeding the AND is impacted by the high bits that we're 4527 // masking out. 4528 // 4529 // e.g. for 64-bit x, y: 4530 // 4531 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 4532 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 4533 if (!LHSInst) 4534 return false; 4535 unsigned LHSOpc = LHSInst->getOpcode(); 4536 switch (LHSOpc) { 4537 default: 4538 return false; 4539 case TargetOpcode::G_ADD: 4540 case TargetOpcode::G_SUB: 4541 case TargetOpcode::G_MUL: 4542 case TargetOpcode::G_AND: 4543 case TargetOpcode::G_OR: 4544 case TargetOpcode::G_XOR: 4545 break; 4546 } 4547 4548 // Find the mask on the RHS. 4549 auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI); 4550 if (!Cst) 4551 return false; 4552 auto Mask = Cst->Value; 4553 if (!Mask.isMask()) 4554 return false; 4555 4556 // No point in combining if there's nothing to truncate. 4557 unsigned NarrowWidth = Mask.countTrailingOnes(); 4558 if (NarrowWidth == WideTy.getSizeInBits()) 4559 return false; 4560 LLT NarrowTy = LLT::scalar(NarrowWidth); 4561 4562 // Check if adding the zext + truncates could be harmful. 4563 auto &MF = *MI.getMF(); 4564 const auto &TLI = getTargetLowering(); 4565 LLVMContext &Ctx = MF.getFunction().getContext(); 4566 auto &DL = MF.getDataLayout(); 4567 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 4568 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 4569 return false; 4570 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 4571 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 4572 return false; 4573 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 4574 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 4575 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4576 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 4577 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 4578 auto NarrowBinOp = 4579 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 4580 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 4581 Observer.changingInstr(MI); 4582 MI.getOperand(1).setReg(Ext.getReg(0)); 4583 Observer.changedInstr(MI); 4584 }; 4585 return true; 4586 } 4587 4588 bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) { 4589 unsigned Opc = MI.getOpcode(); 4590 assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO); 4591 4592 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2))) 4593 return false; 4594 4595 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4596 Observer.changingInstr(MI); 4597 unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO 4598 : TargetOpcode::G_SADDO; 4599 MI.setDesc(Builder.getTII().get(NewOpc)); 4600 MI.getOperand(3).setReg(MI.getOperand(2).getReg()); 4601 Observer.changedInstr(MI); 4602 }; 4603 return true; 4604 } 4605 4606 bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { 4607 // (G_*MULO x, 0) -> 0 + no carry out 4608 unsigned Opc = MI.getOpcode(); 4609 assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO); 4610 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) 4611 return false; 4612 Register Dst = MI.getOperand(0).getReg(); 4613 Register Carry = MI.getOperand(1).getReg(); 4614 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) || 4615 !isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) 4616 return false; 4617 MatchInfo = [=](MachineIRBuilder &B) { 4618 B.buildConstant(Dst, 0); 4619 B.buildConstant(Carry, 0); 4620 }; 4621 return true; 4622 } 4623 4624 bool CombinerHelper::matchAddOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { 4625 // (G_*ADDO x, 0) -> x + no carry out 4626 unsigned Opc = MI.getOpcode(); 4627 assert(Opc == TargetOpcode::G_UADDO || Opc == TargetOpcode::G_SADDO); 4628 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) 4629 return false; 4630 Register Carry = MI.getOperand(1).getReg(); 4631 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) 4632 return false; 4633 Register Dst = MI.getOperand(0).getReg(); 4634 Register LHS = MI.getOperand(2).getReg(); 4635 MatchInfo = [=](MachineIRBuilder &B) { 4636 B.buildCopy(Dst, LHS); 4637 B.buildConstant(Carry, 0); 4638 }; 4639 return true; 4640 } 4641 4642 MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) { 4643 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4644 auto &UDiv = cast<GenericMachineInstr>(MI); 4645 Register Dst = UDiv.getReg(0); 4646 Register LHS = UDiv.getReg(1); 4647 Register RHS = UDiv.getReg(2); 4648 LLT Ty = MRI.getType(Dst); 4649 LLT ScalarTy = Ty.getScalarType(); 4650 const unsigned EltBits = ScalarTy.getScalarSizeInBits(); 4651 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4652 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); 4653 auto &MIB = Builder; 4654 MIB.setInstrAndDebugLoc(MI); 4655 4656 bool UseNPQ = false; 4657 SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4658 4659 auto BuildUDIVPattern = [&](const Constant *C) { 4660 auto *CI = cast<ConstantInt>(C); 4661 const APInt &Divisor = CI->getValue(); 4662 UnsignedDivisonByConstantInfo magics = 4663 UnsignedDivisonByConstantInfo::get(Divisor); 4664 unsigned PreShift = 0, PostShift = 0; 4665 4666 // If the divisor is even, we can avoid using the expensive fixup by 4667 // shifting the divided value upfront. 4668 if (magics.IsAdd != 0 && !Divisor[0]) { 4669 PreShift = Divisor.countTrailingZeros(); 4670 // Get magic number for the shifted divisor. 4671 magics = 4672 UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 4673 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 4674 } 4675 4676 APInt Magic = magics.Magic; 4677 4678 unsigned SelNPQ; 4679 if (magics.IsAdd == 0 || Divisor.isOneValue()) { 4680 assert(magics.ShiftAmount < Divisor.getBitWidth() && 4681 "We shouldn't generate an undefined shift!"); 4682 PostShift = magics.ShiftAmount; 4683 SelNPQ = false; 4684 } else { 4685 PostShift = magics.ShiftAmount - 1; 4686 SelNPQ = true; 4687 } 4688 4689 PreShifts.push_back( 4690 MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0)); 4691 MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0)); 4692 NPQFactors.push_back( 4693 MIB.buildConstant(ScalarTy, 4694 SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4695 : APInt::getZero(EltBits)) 4696 .getReg(0)); 4697 PostShifts.push_back( 4698 MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0)); 4699 UseNPQ |= SelNPQ; 4700 return true; 4701 }; 4702 4703 // Collect the shifts/magic values from each element. 4704 bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern); 4705 (void)Matched; 4706 assert(Matched && "Expected unary predicate match to succeed"); 4707 4708 Register PreShift, PostShift, MagicFactor, NPQFactor; 4709 auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI); 4710 if (RHSDef) { 4711 PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0); 4712 MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0); 4713 NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0); 4714 PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0); 4715 } else { 4716 assert(MRI.getType(RHS).isScalar() && 4717 "Non-build_vector operation should have been a scalar"); 4718 PreShift = PreShifts[0]; 4719 MagicFactor = MagicFactors[0]; 4720 PostShift = PostShifts[0]; 4721 } 4722 4723 Register Q = LHS; 4724 Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0); 4725 4726 // Multiply the numerator (operand 0) by the magic value. 4727 Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0); 4728 4729 if (UseNPQ) { 4730 Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0); 4731 4732 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4733 // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero. 4734 if (Ty.isVector()) 4735 NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0); 4736 else 4737 NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0); 4738 4739 Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0); 4740 } 4741 4742 Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0); 4743 auto One = MIB.buildConstant(Ty, 1); 4744 auto IsOne = MIB.buildICmp( 4745 CmpInst::Predicate::ICMP_EQ, 4746 Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One); 4747 return MIB.buildSelect(Ty, IsOne, LHS, Q); 4748 } 4749 4750 bool CombinerHelper::matchUDivByConst(MachineInstr &MI) { 4751 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4752 Register Dst = MI.getOperand(0).getReg(); 4753 Register RHS = MI.getOperand(2).getReg(); 4754 LLT DstTy = MRI.getType(Dst); 4755 auto *RHSDef = MRI.getVRegDef(RHS); 4756 if (!isConstantOrConstantVector(*RHSDef, MRI)) 4757 return false; 4758 4759 auto &MF = *MI.getMF(); 4760 AttributeList Attr = MF.getFunction().getAttributes(); 4761 const auto &TLI = getTargetLowering(); 4762 LLVMContext &Ctx = MF.getFunction().getContext(); 4763 auto &DL = MF.getDataLayout(); 4764 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) 4765 return false; 4766 4767 // Don't do this for minsize because the instruction sequence is usually 4768 // larger. 4769 if (MF.getFunction().hasMinSize()) 4770 return false; 4771 4772 // Don't do this if the types are not going to be legal. 4773 if (LI) { 4774 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}})) 4775 return false; 4776 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}})) 4777 return false; 4778 if (!isLegalOrBeforeLegalizer( 4779 {TargetOpcode::G_ICMP, 4780 {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1), 4781 DstTy}})) 4782 return false; 4783 } 4784 4785 auto CheckEltValue = [&](const Constant *C) { 4786 if (auto *CI = dyn_cast_or_null<ConstantInt>(C)) 4787 return !CI->isZero(); 4788 return false; 4789 }; 4790 return matchUnaryPredicate(MRI, RHS, CheckEltValue); 4791 } 4792 4793 void CombinerHelper::applyUDivByConst(MachineInstr &MI) { 4794 auto *NewMI = buildUDivUsingMul(MI); 4795 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); 4796 } 4797 4798 bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) { 4799 assert(MI.getOpcode() == TargetOpcode::G_UMULH); 4800 Register RHS = MI.getOperand(2).getReg(); 4801 Register Dst = MI.getOperand(0).getReg(); 4802 LLT Ty = MRI.getType(Dst); 4803 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4804 auto MatchPow2ExceptOne = [&](const Constant *C) { 4805 if (auto *CI = dyn_cast<ConstantInt>(C)) 4806 return CI->getValue().isPowerOf2() && !CI->getValue().isOne(); 4807 return false; 4808 }; 4809 if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false)) 4810 return false; 4811 return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}}); 4812 } 4813 4814 void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) { 4815 Register LHS = MI.getOperand(1).getReg(); 4816 Register RHS = MI.getOperand(2).getReg(); 4817 Register Dst = MI.getOperand(0).getReg(); 4818 LLT Ty = MRI.getType(Dst); 4819 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4820 unsigned NumEltBits = Ty.getScalarSizeInBits(); 4821 4822 Builder.setInstrAndDebugLoc(MI); 4823 auto LogBase2 = buildLogBase2(RHS, Builder); 4824 auto ShiftAmt = 4825 Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2); 4826 auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt); 4827 Builder.buildLShr(Dst, LHS, Trunc); 4828 MI.eraseFromParent(); 4829 } 4830 4831 bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI, 4832 BuildFnTy &MatchInfo) { 4833 unsigned Opc = MI.getOpcode(); 4834 assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB || 4835 Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 4836 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA); 4837 4838 Register Dst = MI.getOperand(0).getReg(); 4839 Register X = MI.getOperand(1).getReg(); 4840 Register Y = MI.getOperand(2).getReg(); 4841 LLT Type = MRI.getType(Dst); 4842 4843 // fold (fadd x, fneg(y)) -> (fsub x, y) 4844 // fold (fadd fneg(y), x) -> (fsub x, y) 4845 // G_ADD is commutative so both cases are checked by m_GFAdd 4846 if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 4847 isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) { 4848 Opc = TargetOpcode::G_FSUB; 4849 } 4850 /// fold (fsub x, fneg(y)) -> (fadd x, y) 4851 else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 4852 isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) { 4853 Opc = TargetOpcode::G_FADD; 4854 } 4855 // fold (fmul fneg(x), fneg(y)) -> (fmul x, y) 4856 // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y) 4857 // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z) 4858 // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z) 4859 else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 4860 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) && 4861 mi_match(X, MRI, m_GFNeg(m_Reg(X))) && 4862 mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) { 4863 // no opcode change 4864 } else 4865 return false; 4866 4867 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4868 Observer.changingInstr(MI); 4869 MI.setDesc(B.getTII().get(Opc)); 4870 MI.getOperand(1).setReg(X); 4871 MI.getOperand(2).setReg(Y); 4872 Observer.changedInstr(MI); 4873 }; 4874 return true; 4875 } 4876 4877 /// Checks if \p MI is TargetOpcode::G_FMUL and contractable either 4878 /// due to global flags or MachineInstr flags. 4879 static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) { 4880 if (MI.getOpcode() != TargetOpcode::G_FMUL) 4881 return false; 4882 return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract); 4883 } 4884 4885 static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1, 4886 const MachineRegisterInfo &MRI) { 4887 return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()), 4888 MRI.use_instr_nodbg_end()) > 4889 std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()), 4890 MRI.use_instr_nodbg_end()); 4891 } 4892 4893 bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI, 4894 bool &AllowFusionGlobally, 4895 bool &HasFMAD, bool &Aggressive, 4896 bool CanReassociate) { 4897 4898 auto *MF = MI.getMF(); 4899 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 4900 const TargetOptions &Options = MF->getTarget().Options; 4901 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 4902 4903 if (CanReassociate && 4904 !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc))) 4905 return false; 4906 4907 // Floating-point multiply-add with intermediate rounding. 4908 HasFMAD = (LI && TLI.isFMADLegal(MI, DstType)); 4909 // Floating-point multiply-add without intermediate rounding. 4910 bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) && 4911 isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}}); 4912 // No valid opcode, do not combine. 4913 if (!HasFMAD && !HasFMA) 4914 return false; 4915 4916 AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast || 4917 Options.UnsafeFPMath || HasFMAD; 4918 // If the addition is not contractable, do not combine. 4919 if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract)) 4920 return false; 4921 4922 Aggressive = TLI.enableAggressiveFMAFusion(DstType); 4923 return true; 4924 } 4925 4926 bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA( 4927 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4928 assert(MI.getOpcode() == TargetOpcode::G_FADD); 4929 4930 bool AllowFusionGlobally, HasFMAD, Aggressive; 4931 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 4932 return false; 4933 4934 Register Op1 = MI.getOperand(1).getReg(); 4935 Register Op2 = MI.getOperand(2).getReg(); 4936 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 4937 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 4938 unsigned PreferredFusedOpcode = 4939 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 4940 4941 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 4942 // prefer to fold the multiply with fewer uses. 4943 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 4944 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 4945 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 4946 std::swap(LHS, RHS); 4947 } 4948 4949 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 4950 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 4951 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) { 4952 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4953 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 4954 {LHS.MI->getOperand(1).getReg(), 4955 LHS.MI->getOperand(2).getReg(), RHS.Reg}); 4956 }; 4957 return true; 4958 } 4959 4960 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 4961 if (isContractableFMul(*RHS.MI, AllowFusionGlobally) && 4962 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) { 4963 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4964 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 4965 {RHS.MI->getOperand(1).getReg(), 4966 RHS.MI->getOperand(2).getReg(), LHS.Reg}); 4967 }; 4968 return true; 4969 } 4970 4971 return false; 4972 } 4973 4974 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA( 4975 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4976 assert(MI.getOpcode() == TargetOpcode::G_FADD); 4977 4978 bool AllowFusionGlobally, HasFMAD, Aggressive; 4979 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 4980 return false; 4981 4982 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 4983 Register Op1 = MI.getOperand(1).getReg(); 4984 Register Op2 = MI.getOperand(2).getReg(); 4985 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 4986 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 4987 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 4988 4989 unsigned PreferredFusedOpcode = 4990 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 4991 4992 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 4993 // prefer to fold the multiply with fewer uses. 4994 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 4995 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 4996 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 4997 std::swap(LHS, RHS); 4998 } 4999 5000 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 5001 MachineInstr *FpExtSrc; 5002 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && 5003 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 5004 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5005 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 5006 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5007 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 5008 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 5009 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5010 {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg}); 5011 }; 5012 return true; 5013 } 5014 5015 // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z) 5016 // Note: Commutes FADD operands. 5017 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && 5018 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 5019 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5020 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 5021 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5022 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 5023 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 5024 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5025 {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg}); 5026 }; 5027 return true; 5028 } 5029 5030 return false; 5031 } 5032 5033 bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA( 5034 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5035 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5036 5037 bool AllowFusionGlobally, HasFMAD, Aggressive; 5038 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true)) 5039 return false; 5040 5041 Register Op1 = MI.getOperand(1).getReg(); 5042 Register Op2 = MI.getOperand(2).getReg(); 5043 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5044 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5045 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5046 5047 unsigned PreferredFusedOpcode = 5048 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5049 5050 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5051 // prefer to fold the multiply with fewer uses. 5052 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5053 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5054 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5055 std::swap(LHS, RHS); 5056 } 5057 5058 MachineInstr *FMA = nullptr; 5059 Register Z; 5060 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z)) 5061 if (LHS.MI->getOpcode() == PreferredFusedOpcode && 5062 (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() == 5063 TargetOpcode::G_FMUL) && 5064 MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) && 5065 MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) { 5066 FMA = LHS.MI; 5067 Z = RHS.Reg; 5068 } 5069 // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z)) 5070 else if (RHS.MI->getOpcode() == PreferredFusedOpcode && 5071 (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() == 5072 TargetOpcode::G_FMUL) && 5073 MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) && 5074 MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) { 5075 Z = LHS.Reg; 5076 FMA = RHS.MI; 5077 } 5078 5079 if (FMA) { 5080 MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg()); 5081 Register X = FMA->getOperand(1).getReg(); 5082 Register Y = FMA->getOperand(2).getReg(); 5083 Register U = FMulMI->getOperand(1).getReg(); 5084 Register V = FMulMI->getOperand(2).getReg(); 5085 5086 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5087 Register InnerFMA = MRI.createGenericVirtualRegister(DstTy); 5088 B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z}); 5089 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5090 {X, Y, InnerFMA}); 5091 }; 5092 return true; 5093 } 5094 5095 return false; 5096 } 5097 5098 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive( 5099 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5100 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5101 5102 bool AllowFusionGlobally, HasFMAD, Aggressive; 5103 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5104 return false; 5105 5106 if (!Aggressive) 5107 return false; 5108 5109 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5110 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5111 Register Op1 = MI.getOperand(1).getReg(); 5112 Register Op2 = MI.getOperand(2).getReg(); 5113 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5114 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5115 5116 unsigned PreferredFusedOpcode = 5117 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5118 5119 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5120 // prefer to fold the multiply with fewer uses. 5121 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5122 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5123 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5124 std::swap(LHS, RHS); 5125 } 5126 5127 // Builds: (fma x, y, (fma (fpext u), (fpext v), z)) 5128 auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X, 5129 Register Y, MachineIRBuilder &B) { 5130 Register FpExtU = B.buildFPExt(DstType, U).getReg(0); 5131 Register FpExtV = B.buildFPExt(DstType, V).getReg(0); 5132 Register InnerFMA = 5133 B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z}) 5134 .getReg(0); 5135 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5136 {X, Y, InnerFMA}); 5137 }; 5138 5139 MachineInstr *FMulMI, *FMAMI; 5140 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 5141 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5142 if (LHS.MI->getOpcode() == PreferredFusedOpcode && 5143 mi_match(LHS.MI->getOperand(3).getReg(), MRI, 5144 m_GFPExt(m_MInstr(FMulMI))) && 5145 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5146 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5147 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5148 MatchInfo = [=](MachineIRBuilder &B) { 5149 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5150 FMulMI->getOperand(2).getReg(), RHS.Reg, 5151 LHS.MI->getOperand(1).getReg(), 5152 LHS.MI->getOperand(2).getReg(), B); 5153 }; 5154 return true; 5155 } 5156 5157 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 5158 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5159 // FIXME: This turns two single-precision and one double-precision 5160 // operation into two double-precision operations, which might not be 5161 // interesting for all targets, especially GPUs. 5162 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && 5163 FMAMI->getOpcode() == PreferredFusedOpcode) { 5164 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 5165 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 5166 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5167 MRI.getType(FMAMI->getOperand(0).getReg()))) { 5168 MatchInfo = [=](MachineIRBuilder &B) { 5169 Register X = FMAMI->getOperand(1).getReg(); 5170 Register Y = FMAMI->getOperand(2).getReg(); 5171 X = B.buildFPExt(DstType, X).getReg(0); 5172 Y = B.buildFPExt(DstType, Y).getReg(0); 5173 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5174 FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B); 5175 }; 5176 5177 return true; 5178 } 5179 } 5180 5181 // fold (fadd z, (fma x, y, (fpext (fmul u, v))) 5182 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5183 if (RHS.MI->getOpcode() == PreferredFusedOpcode && 5184 mi_match(RHS.MI->getOperand(3).getReg(), MRI, 5185 m_GFPExt(m_MInstr(FMulMI))) && 5186 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5187 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5188 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5189 MatchInfo = [=](MachineIRBuilder &B) { 5190 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5191 FMulMI->getOperand(2).getReg(), LHS.Reg, 5192 RHS.MI->getOperand(1).getReg(), 5193 RHS.MI->getOperand(2).getReg(), B); 5194 }; 5195 return true; 5196 } 5197 5198 // fold (fadd z, (fpext (fma x, y, (fmul u, v))) 5199 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5200 // FIXME: This turns two single-precision and one double-precision 5201 // operation into two double-precision operations, which might not be 5202 // interesting for all targets, especially GPUs. 5203 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && 5204 FMAMI->getOpcode() == PreferredFusedOpcode) { 5205 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 5206 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 5207 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5208 MRI.getType(FMAMI->getOperand(0).getReg()))) { 5209 MatchInfo = [=](MachineIRBuilder &B) { 5210 Register X = FMAMI->getOperand(1).getReg(); 5211 Register Y = FMAMI->getOperand(2).getReg(); 5212 X = B.buildFPExt(DstType, X).getReg(0); 5213 Y = B.buildFPExt(DstType, Y).getReg(0); 5214 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5215 FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B); 5216 }; 5217 return true; 5218 } 5219 } 5220 5221 return false; 5222 } 5223 5224 bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA( 5225 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5226 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5227 5228 bool AllowFusionGlobally, HasFMAD, Aggressive; 5229 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5230 return false; 5231 5232 Register Op1 = MI.getOperand(1).getReg(); 5233 Register Op2 = MI.getOperand(2).getReg(); 5234 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5235 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5236 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5237 5238 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5239 // prefer to fold the multiply with fewer uses. 5240 int FirstMulHasFewerUses = true; 5241 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5242 isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5243 hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5244 FirstMulHasFewerUses = false; 5245 5246 unsigned PreferredFusedOpcode = 5247 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5248 5249 // fold (fsub (fmul x, y), z) -> (fma x, y, -z) 5250 if (FirstMulHasFewerUses && 5251 (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5252 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) { 5253 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5254 Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0); 5255 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5256 {LHS.MI->getOperand(1).getReg(), 5257 LHS.MI->getOperand(2).getReg(), NegZ}); 5258 }; 5259 return true; 5260 } 5261 // fold (fsub x, (fmul y, z)) -> (fma -y, z, x) 5262 else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5263 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) { 5264 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5265 Register NegY = 5266 B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0); 5267 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5268 {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg}); 5269 }; 5270 return true; 5271 } 5272 5273 return false; 5274 } 5275 5276 bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA( 5277 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5278 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5279 5280 bool AllowFusionGlobally, HasFMAD, Aggressive; 5281 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5282 return false; 5283 5284 Register LHSReg = MI.getOperand(1).getReg(); 5285 Register RHSReg = MI.getOperand(2).getReg(); 5286 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5287 5288 unsigned PreferredFusedOpcode = 5289 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5290 5291 MachineInstr *FMulMI; 5292 // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z)) 5293 if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 5294 (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) && 5295 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 5296 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 5297 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5298 Register NegX = 5299 B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5300 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 5301 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5302 {NegX, FMulMI->getOperand(2).getReg(), NegZ}); 5303 }; 5304 return true; 5305 } 5306 5307 // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x) 5308 if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 5309 (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) && 5310 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 5311 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 5312 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5313 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5314 {FMulMI->getOperand(1).getReg(), 5315 FMulMI->getOperand(2).getReg(), LHSReg}); 5316 }; 5317 return true; 5318 } 5319 5320 return false; 5321 } 5322 5323 bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA( 5324 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5325 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5326 5327 bool AllowFusionGlobally, HasFMAD, Aggressive; 5328 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5329 return false; 5330 5331 Register LHSReg = MI.getOperand(1).getReg(); 5332 Register RHSReg = MI.getOperand(2).getReg(); 5333 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5334 5335 unsigned PreferredFusedOpcode = 5336 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5337 5338 MachineInstr *FMulMI; 5339 // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z)) 5340 if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 5341 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5342 (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) { 5343 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5344 Register FpExtX = 5345 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5346 Register FpExtY = 5347 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 5348 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 5349 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5350 {FpExtX, FpExtY, NegZ}); 5351 }; 5352 return true; 5353 } 5354 5355 // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x) 5356 if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 5357 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5358 (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) { 5359 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5360 Register FpExtY = 5361 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5362 Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0); 5363 Register FpExtZ = 5364 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 5365 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5366 {NegY, FpExtZ, LHSReg}); 5367 }; 5368 return true; 5369 } 5370 5371 return false; 5372 } 5373 5374 bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA( 5375 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5376 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5377 5378 bool AllowFusionGlobally, HasFMAD, Aggressive; 5379 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5380 return false; 5381 5382 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5383 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5384 Register LHSReg = MI.getOperand(1).getReg(); 5385 Register RHSReg = MI.getOperand(2).getReg(); 5386 5387 unsigned PreferredFusedOpcode = 5388 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5389 5390 auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z, 5391 MachineIRBuilder &B) { 5392 Register FpExtX = B.buildFPExt(DstTy, X).getReg(0); 5393 Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0); 5394 B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z}); 5395 }; 5396 5397 MachineInstr *FMulMI; 5398 // fold (fsub (fpext (fneg (fmul x, y))), z) -> 5399 // (fneg (fma (fpext x), (fpext y), z)) 5400 // fold (fsub (fneg (fpext (fmul x, y))), z) -> 5401 // (fneg (fma (fpext x), (fpext y), z)) 5402 if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 5403 mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 5404 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5405 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 5406 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5407 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5408 Register FMAReg = MRI.createGenericVirtualRegister(DstTy); 5409 buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(), 5410 FMulMI->getOperand(2).getReg(), RHSReg, B); 5411 B.buildFNeg(MI.getOperand(0).getReg(), FMAReg); 5412 }; 5413 return true; 5414 } 5415 5416 // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 5417 // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 5418 if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 5419 mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 5420 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5421 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 5422 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5423 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5424 buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(), 5425 FMulMI->getOperand(2).getReg(), LHSReg, B); 5426 }; 5427 return true; 5428 } 5429 5430 return false; 5431 } 5432 5433 bool CombinerHelper::tryCombine(MachineInstr &MI) { 5434 if (tryCombineCopy(MI)) 5435 return true; 5436 if (tryCombineExtendingLoads(MI)) 5437 return true; 5438 if (tryCombineIndexedLoadStore(MI)) 5439 return true; 5440 return false; 5441 } 5442