1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 17 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 20 #include "llvm/CodeGen/GlobalISel/Utils.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/CodeGen/TargetOpcodes.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/DivisionByConstantInfo.h" 35 #include "llvm/Support/MathExtras.h" 36 #include <tuple> 37 38 #define DEBUG_TYPE "gi-combiner" 39 40 using namespace llvm; 41 using namespace MIPatternMatch; 42 43 // Option to allow testing of the combiner while no targets know about indexed 44 // addressing. 45 static cl::opt<bool> 46 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 47 cl::desc("Force all indexed operations to be " 48 "legal for the GlobalISel combiner")); 49 50 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 51 MachineIRBuilder &B, GISelKnownBits *KB, 52 MachineDominatorTree *MDT, 53 const LegalizerInfo *LI) 54 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 55 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 56 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 57 (void)this->KB; 58 } 59 60 const TargetLowering &CombinerHelper::getTargetLowering() const { 61 return *Builder.getMF().getSubtarget().getTargetLowering(); 62 } 63 64 /// \returns The little endian in-memory byte position of byte \p I in a 65 /// \p ByteWidth bytes wide type. 66 /// 67 /// E.g. Given a 4-byte type x, x[0] -> byte 0 68 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 69 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 70 return I; 71 } 72 73 /// Determines the LogBase2 value for a non-null input value using the 74 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 75 static Register buildLogBase2(Register V, MachineIRBuilder &MIB) { 76 auto &MRI = *MIB.getMRI(); 77 LLT Ty = MRI.getType(V); 78 auto Ctlz = MIB.buildCTLZ(Ty, V); 79 auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1); 80 return MIB.buildSub(Ty, Base, Ctlz).getReg(0); 81 } 82 83 /// \returns The big endian in-memory byte position of byte \p I in a 84 /// \p ByteWidth bytes wide type. 85 /// 86 /// E.g. Given a 4-byte type x, x[0] -> byte 3 87 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 88 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 89 return ByteWidth - I - 1; 90 } 91 92 /// Given a map from byte offsets in memory to indices in a load/store, 93 /// determine if that map corresponds to a little or big endian byte pattern. 94 /// 95 /// \param MemOffset2Idx maps memory offsets to address offsets. 96 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 97 /// 98 /// \returns true if the map corresponds to a big endian byte pattern, false 99 /// if it corresponds to a little endian byte pattern, and None otherwise. 100 /// 101 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 102 /// are as follows: 103 /// 104 /// AddrOffset Little endian Big endian 105 /// 0 0 3 106 /// 1 1 2 107 /// 2 2 1 108 /// 3 3 0 109 static Optional<bool> 110 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 111 int64_t LowestIdx) { 112 // Need at least two byte positions to decide on endianness. 113 unsigned Width = MemOffset2Idx.size(); 114 if (Width < 2) 115 return None; 116 bool BigEndian = true, LittleEndian = true; 117 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 118 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 119 if (MemOffsetAndIdx == MemOffset2Idx.end()) 120 return None; 121 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 122 assert(Idx >= 0 && "Expected non-negative byte offset?"); 123 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 124 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 125 if (!BigEndian && !LittleEndian) 126 return None; 127 } 128 129 assert((BigEndian != LittleEndian) && 130 "Pattern cannot be both big and little endian!"); 131 return BigEndian; 132 } 133 134 bool CombinerHelper::isPreLegalize() const { return !LI; } 135 136 bool CombinerHelper::isLegal(const LegalityQuery &Query) const { 137 assert(LI && "Must have LegalizerInfo to query isLegal!"); 138 return LI->getAction(Query).Action == LegalizeActions::Legal; 139 } 140 141 bool CombinerHelper::isLegalOrBeforeLegalizer( 142 const LegalityQuery &Query) const { 143 return isPreLegalize() || isLegal(Query); 144 } 145 146 bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const { 147 if (!Ty.isVector()) 148 return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}}); 149 // Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs. 150 if (isPreLegalize()) 151 return true; 152 LLT EltTy = Ty.getElementType(); 153 return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) && 154 isLegal({TargetOpcode::G_CONSTANT, {EltTy}}); 155 } 156 157 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 158 Register ToReg) const { 159 Observer.changingAllUsesOfReg(MRI, FromReg); 160 161 if (MRI.constrainRegAttrs(ToReg, FromReg)) 162 MRI.replaceRegWith(FromReg, ToReg); 163 else 164 Builder.buildCopy(ToReg, FromReg); 165 166 Observer.finishedChangingAllUsesOfReg(); 167 } 168 169 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 170 MachineOperand &FromRegOp, 171 Register ToReg) const { 172 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 173 Observer.changingInstr(*FromRegOp.getParent()); 174 175 FromRegOp.setReg(ToReg); 176 177 Observer.changedInstr(*FromRegOp.getParent()); 178 } 179 180 void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI, 181 unsigned ToOpcode) const { 182 Observer.changingInstr(FromMI); 183 184 FromMI.setDesc(Builder.getTII().get(ToOpcode)); 185 186 Observer.changedInstr(FromMI); 187 } 188 189 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 190 return RBI->getRegBank(Reg, MRI, *TRI); 191 } 192 193 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 194 if (RegBank) 195 MRI.setRegBank(Reg, *RegBank); 196 } 197 198 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 199 if (matchCombineCopy(MI)) { 200 applyCombineCopy(MI); 201 return true; 202 } 203 return false; 204 } 205 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 206 if (MI.getOpcode() != TargetOpcode::COPY) 207 return false; 208 Register DstReg = MI.getOperand(0).getReg(); 209 Register SrcReg = MI.getOperand(1).getReg(); 210 return canReplaceReg(DstReg, SrcReg, MRI); 211 } 212 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 213 Register DstReg = MI.getOperand(0).getReg(); 214 Register SrcReg = MI.getOperand(1).getReg(); 215 MI.eraseFromParent(); 216 replaceRegWith(MRI, DstReg, SrcReg); 217 } 218 219 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 220 bool IsUndef = false; 221 SmallVector<Register, 4> Ops; 222 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 223 applyCombineConcatVectors(MI, IsUndef, Ops); 224 return true; 225 } 226 return false; 227 } 228 229 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 230 SmallVectorImpl<Register> &Ops) { 231 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 232 "Invalid instruction"); 233 IsUndef = true; 234 MachineInstr *Undef = nullptr; 235 236 // Walk over all the operands of concat vectors and check if they are 237 // build_vector themselves or undef. 238 // Then collect their operands in Ops. 239 for (const MachineOperand &MO : MI.uses()) { 240 Register Reg = MO.getReg(); 241 MachineInstr *Def = MRI.getVRegDef(Reg); 242 assert(Def && "Operand not defined"); 243 switch (Def->getOpcode()) { 244 case TargetOpcode::G_BUILD_VECTOR: 245 IsUndef = false; 246 // Remember the operands of the build_vector to fold 247 // them into the yet-to-build flattened concat vectors. 248 for (const MachineOperand &BuildVecMO : Def->uses()) 249 Ops.push_back(BuildVecMO.getReg()); 250 break; 251 case TargetOpcode::G_IMPLICIT_DEF: { 252 LLT OpType = MRI.getType(Reg); 253 // Keep one undef value for all the undef operands. 254 if (!Undef) { 255 Builder.setInsertPt(*MI.getParent(), MI); 256 Undef = Builder.buildUndef(OpType.getScalarType()); 257 } 258 assert(MRI.getType(Undef->getOperand(0).getReg()) == 259 OpType.getScalarType() && 260 "All undefs should have the same type"); 261 // Break the undef vector in as many scalar elements as needed 262 // for the flattening. 263 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 264 EltIdx != EltEnd; ++EltIdx) 265 Ops.push_back(Undef->getOperand(0).getReg()); 266 break; 267 } 268 default: 269 return false; 270 } 271 } 272 return true; 273 } 274 void CombinerHelper::applyCombineConcatVectors( 275 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 276 // We determined that the concat_vectors can be flatten. 277 // Generate the flattened build_vector. 278 Register DstReg = MI.getOperand(0).getReg(); 279 Builder.setInsertPt(*MI.getParent(), MI); 280 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 281 282 // Note: IsUndef is sort of redundant. We could have determine it by 283 // checking that at all Ops are undef. Alternatively, we could have 284 // generate a build_vector of undefs and rely on another combine to 285 // clean that up. For now, given we already gather this information 286 // in tryCombineConcatVectors, just save compile time and issue the 287 // right thing. 288 if (IsUndef) 289 Builder.buildUndef(NewDstReg); 290 else 291 Builder.buildBuildVector(NewDstReg, Ops); 292 MI.eraseFromParent(); 293 replaceRegWith(MRI, DstReg, NewDstReg); 294 } 295 296 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 297 SmallVector<Register, 4> Ops; 298 if (matchCombineShuffleVector(MI, Ops)) { 299 applyCombineShuffleVector(MI, Ops); 300 return true; 301 } 302 return false; 303 } 304 305 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 306 SmallVectorImpl<Register> &Ops) { 307 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 308 "Invalid instruction kind"); 309 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 310 Register Src1 = MI.getOperand(1).getReg(); 311 LLT SrcType = MRI.getType(Src1); 312 // As bizarre as it may look, shuffle vector can actually produce 313 // scalar! This is because at the IR level a <1 x ty> shuffle 314 // vector is perfectly valid. 315 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 316 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 317 318 // If the resulting vector is smaller than the size of the source 319 // vectors being concatenated, we won't be able to replace the 320 // shuffle vector into a concat_vectors. 321 // 322 // Note: We may still be able to produce a concat_vectors fed by 323 // extract_vector_elt and so on. It is less clear that would 324 // be better though, so don't bother for now. 325 // 326 // If the destination is a scalar, the size of the sources doesn't 327 // matter. we will lower the shuffle to a plain copy. This will 328 // work only if the source and destination have the same size. But 329 // that's covered by the next condition. 330 // 331 // TODO: If the size between the source and destination don't match 332 // we could still emit an extract vector element in that case. 333 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 334 return false; 335 336 // Check that the shuffle mask can be broken evenly between the 337 // different sources. 338 if (DstNumElts % SrcNumElts != 0) 339 return false; 340 341 // Mask length is a multiple of the source vector length. 342 // Check if the shuffle is some kind of concatenation of the input 343 // vectors. 344 unsigned NumConcat = DstNumElts / SrcNumElts; 345 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 346 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 347 for (unsigned i = 0; i != DstNumElts; ++i) { 348 int Idx = Mask[i]; 349 // Undef value. 350 if (Idx < 0) 351 continue; 352 // Ensure the indices in each SrcType sized piece are sequential and that 353 // the same source is used for the whole piece. 354 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 355 (ConcatSrcs[i / SrcNumElts] >= 0 && 356 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 357 return false; 358 // Remember which source this index came from. 359 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 360 } 361 362 // The shuffle is concatenating multiple vectors together. 363 // Collect the different operands for that. 364 Register UndefReg; 365 Register Src2 = MI.getOperand(2).getReg(); 366 for (auto Src : ConcatSrcs) { 367 if (Src < 0) { 368 if (!UndefReg) { 369 Builder.setInsertPt(*MI.getParent(), MI); 370 UndefReg = Builder.buildUndef(SrcType).getReg(0); 371 } 372 Ops.push_back(UndefReg); 373 } else if (Src == 0) 374 Ops.push_back(Src1); 375 else 376 Ops.push_back(Src2); 377 } 378 return true; 379 } 380 381 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 382 const ArrayRef<Register> Ops) { 383 Register DstReg = MI.getOperand(0).getReg(); 384 Builder.setInsertPt(*MI.getParent(), MI); 385 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 386 387 if (Ops.size() == 1) 388 Builder.buildCopy(NewDstReg, Ops[0]); 389 else 390 Builder.buildMerge(NewDstReg, Ops); 391 392 MI.eraseFromParent(); 393 replaceRegWith(MRI, DstReg, NewDstReg); 394 } 395 396 namespace { 397 398 /// Select a preference between two uses. CurrentUse is the current preference 399 /// while *ForCandidate is attributes of the candidate under consideration. 400 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 401 const LLT TyForCandidate, 402 unsigned OpcodeForCandidate, 403 MachineInstr *MIForCandidate) { 404 if (!CurrentUse.Ty.isValid()) { 405 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 406 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 407 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 408 return CurrentUse; 409 } 410 411 // We permit the extend to hoist through basic blocks but this is only 412 // sensible if the target has extending loads. If you end up lowering back 413 // into a load and extend during the legalizer then the end result is 414 // hoisting the extend up to the load. 415 416 // Prefer defined extensions to undefined extensions as these are more 417 // likely to reduce the number of instructions. 418 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 419 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 420 return CurrentUse; 421 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 422 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 423 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 424 425 // Prefer sign extensions to zero extensions as sign-extensions tend to be 426 // more expensive. 427 if (CurrentUse.Ty == TyForCandidate) { 428 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 429 OpcodeForCandidate == TargetOpcode::G_ZEXT) 430 return CurrentUse; 431 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 432 OpcodeForCandidate == TargetOpcode::G_SEXT) 433 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 434 } 435 436 // This is potentially target specific. We've chosen the largest type 437 // because G_TRUNC is usually free. One potential catch with this is that 438 // some targets have a reduced number of larger registers than smaller 439 // registers and this choice potentially increases the live-range for the 440 // larger value. 441 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 442 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 443 } 444 return CurrentUse; 445 } 446 447 /// Find a suitable place to insert some instructions and insert them. This 448 /// function accounts for special cases like inserting before a PHI node. 449 /// The current strategy for inserting before PHI's is to duplicate the 450 /// instructions for each predecessor. However, while that's ok for G_TRUNC 451 /// on most targets since it generally requires no code, other targets/cases may 452 /// want to try harder to find a dominating block. 453 static void InsertInsnsWithoutSideEffectsBeforeUse( 454 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 455 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 456 MachineOperand &UseMO)> 457 Inserter) { 458 MachineInstr &UseMI = *UseMO.getParent(); 459 460 MachineBasicBlock *InsertBB = UseMI.getParent(); 461 462 // If the use is a PHI then we want the predecessor block instead. 463 if (UseMI.isPHI()) { 464 MachineOperand *PredBB = std::next(&UseMO); 465 InsertBB = PredBB->getMBB(); 466 } 467 468 // If the block is the same block as the def then we want to insert just after 469 // the def instead of at the start of the block. 470 if (InsertBB == DefMI.getParent()) { 471 MachineBasicBlock::iterator InsertPt = &DefMI; 472 Inserter(InsertBB, std::next(InsertPt), UseMO); 473 return; 474 } 475 476 // Otherwise we want the start of the BB 477 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 478 } 479 } // end anonymous namespace 480 481 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 482 PreferredTuple Preferred; 483 if (matchCombineExtendingLoads(MI, Preferred)) { 484 applyCombineExtendingLoads(MI, Preferred); 485 return true; 486 } 487 return false; 488 } 489 490 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 491 PreferredTuple &Preferred) { 492 // We match the loads and follow the uses to the extend instead of matching 493 // the extends and following the def to the load. This is because the load 494 // must remain in the same position for correctness (unless we also add code 495 // to find a safe place to sink it) whereas the extend is freely movable. 496 // It also prevents us from duplicating the load for the volatile case or just 497 // for performance. 498 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 499 if (!LoadMI) 500 return false; 501 502 Register LoadReg = LoadMI->getDstReg(); 503 504 LLT LoadValueTy = MRI.getType(LoadReg); 505 if (!LoadValueTy.isScalar()) 506 return false; 507 508 // Most architectures are going to legalize <s8 loads into at least a 1 byte 509 // load, and the MMOs can only describe memory accesses in multiples of bytes. 510 // If we try to perform extload combining on those, we can end up with 511 // %a(s8) = extload %ptr (load 1 byte from %ptr) 512 // ... which is an illegal extload instruction. 513 if (LoadValueTy.getSizeInBits() < 8) 514 return false; 515 516 // For non power-of-2 types, they will very likely be legalized into multiple 517 // loads. Don't bother trying to match them into extending loads. 518 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 519 return false; 520 521 // Find the preferred type aside from the any-extends (unless it's the only 522 // one) and non-extending ops. We'll emit an extending load to that type and 523 // and emit a variant of (extend (trunc X)) for the others according to the 524 // relative type sizes. At the same time, pick an extend to use based on the 525 // extend involved in the chosen type. 526 unsigned PreferredOpcode = 527 isa<GLoad>(&MI) 528 ? TargetOpcode::G_ANYEXT 529 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 530 Preferred = {LLT(), PreferredOpcode, nullptr}; 531 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 532 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 533 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 534 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 535 const auto &MMO = LoadMI->getMMO(); 536 // For atomics, only form anyextending loads. 537 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 538 continue; 539 // Check for legality. 540 if (LI) { 541 LegalityQuery::MemDesc MMDesc(MMO); 542 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 543 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 544 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 545 .Action != LegalizeActions::Legal) 546 continue; 547 } 548 Preferred = ChoosePreferredUse(Preferred, 549 MRI.getType(UseMI.getOperand(0).getReg()), 550 UseMI.getOpcode(), &UseMI); 551 } 552 } 553 554 // There were no extends 555 if (!Preferred.MI) 556 return false; 557 // It should be impossible to chose an extend without selecting a different 558 // type since by definition the result of an extend is larger. 559 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 560 561 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 562 return true; 563 } 564 565 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 566 PreferredTuple &Preferred) { 567 // Rewrite the load to the chosen extending load. 568 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 569 570 // Inserter to insert a truncate back to the original type at a given point 571 // with some basic CSE to limit truncate duplication to one per BB. 572 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 573 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 574 MachineBasicBlock::iterator InsertBefore, 575 MachineOperand &UseMO) { 576 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 577 if (PreviouslyEmitted) { 578 Observer.changingInstr(*UseMO.getParent()); 579 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 580 Observer.changedInstr(*UseMO.getParent()); 581 return; 582 } 583 584 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 585 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 586 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 587 EmittedInsns[InsertIntoBB] = NewMI; 588 replaceRegOpWith(MRI, UseMO, NewDstReg); 589 }; 590 591 Observer.changingInstr(MI); 592 MI.setDesc( 593 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 594 ? TargetOpcode::G_SEXTLOAD 595 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 596 ? TargetOpcode::G_ZEXTLOAD 597 : TargetOpcode::G_LOAD)); 598 599 // Rewrite all the uses to fix up the types. 600 auto &LoadValue = MI.getOperand(0); 601 SmallVector<MachineOperand *, 4> Uses; 602 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 603 Uses.push_back(&UseMO); 604 605 for (auto *UseMO : Uses) { 606 MachineInstr *UseMI = UseMO->getParent(); 607 608 // If the extend is compatible with the preferred extend then we should fix 609 // up the type and extend so that it uses the preferred use. 610 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 611 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 612 Register UseDstReg = UseMI->getOperand(0).getReg(); 613 MachineOperand &UseSrcMO = UseMI->getOperand(1); 614 const LLT UseDstTy = MRI.getType(UseDstReg); 615 if (UseDstReg != ChosenDstReg) { 616 if (Preferred.Ty == UseDstTy) { 617 // If the use has the same type as the preferred use, then merge 618 // the vregs and erase the extend. For example: 619 // %1:_(s8) = G_LOAD ... 620 // %2:_(s32) = G_SEXT %1(s8) 621 // %3:_(s32) = G_ANYEXT %1(s8) 622 // ... = ... %3(s32) 623 // rewrites to: 624 // %2:_(s32) = G_SEXTLOAD ... 625 // ... = ... %2(s32) 626 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 627 Observer.erasingInstr(*UseMO->getParent()); 628 UseMO->getParent()->eraseFromParent(); 629 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 630 // If the preferred size is smaller, then keep the extend but extend 631 // from the result of the extending load. For example: 632 // %1:_(s8) = G_LOAD ... 633 // %2:_(s32) = G_SEXT %1(s8) 634 // %3:_(s64) = G_ANYEXT %1(s8) 635 // ... = ... %3(s64) 636 /// rewrites to: 637 // %2:_(s32) = G_SEXTLOAD ... 638 // %3:_(s64) = G_ANYEXT %2:_(s32) 639 // ... = ... %3(s64) 640 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 641 } else { 642 // If the preferred size is large, then insert a truncate. For 643 // example: 644 // %1:_(s8) = G_LOAD ... 645 // %2:_(s64) = G_SEXT %1(s8) 646 // %3:_(s32) = G_ZEXT %1(s8) 647 // ... = ... %3(s32) 648 /// rewrites to: 649 // %2:_(s64) = G_SEXTLOAD ... 650 // %4:_(s8) = G_TRUNC %2:_(s32) 651 // %3:_(s64) = G_ZEXT %2:_(s8) 652 // ... = ... %3(s64) 653 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 654 InsertTruncAt); 655 } 656 continue; 657 } 658 // The use is (one of) the uses of the preferred use we chose earlier. 659 // We're going to update the load to def this value later so just erase 660 // the old extend. 661 Observer.erasingInstr(*UseMO->getParent()); 662 UseMO->getParent()->eraseFromParent(); 663 continue; 664 } 665 666 // The use isn't an extend. Truncate back to the type we originally loaded. 667 // This is free on many targets. 668 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 669 } 670 671 MI.getOperand(0).setReg(ChosenDstReg); 672 Observer.changedInstr(MI); 673 } 674 675 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI, 676 BuildFnTy &MatchInfo) { 677 assert(MI.getOpcode() == TargetOpcode::G_AND); 678 679 // If we have the following code: 680 // %mask = G_CONSTANT 255 681 // %ld = G_LOAD %ptr, (load s16) 682 // %and = G_AND %ld, %mask 683 // 684 // Try to fold it into 685 // %ld = G_ZEXTLOAD %ptr, (load s8) 686 687 Register Dst = MI.getOperand(0).getReg(); 688 if (MRI.getType(Dst).isVector()) 689 return false; 690 691 auto MaybeMask = 692 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 693 if (!MaybeMask) 694 return false; 695 696 APInt MaskVal = MaybeMask->Value; 697 698 if (!MaskVal.isMask()) 699 return false; 700 701 Register SrcReg = MI.getOperand(1).getReg(); 702 GAnyLoad *LoadMI = getOpcodeDef<GAnyLoad>(SrcReg, MRI); 703 if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()) || 704 !LoadMI->isSimple()) 705 return false; 706 707 Register LoadReg = LoadMI->getDstReg(); 708 LLT LoadTy = MRI.getType(LoadReg); 709 Register PtrReg = LoadMI->getPointerReg(); 710 uint64_t LoadSizeBits = LoadMI->getMemSizeInBits(); 711 unsigned MaskSizeBits = MaskVal.countTrailingOnes(); 712 713 // The mask may not be larger than the in-memory type, as it might cover sign 714 // extended bits 715 if (MaskSizeBits > LoadSizeBits) 716 return false; 717 718 // If the mask covers the whole destination register, there's nothing to 719 // extend 720 if (MaskSizeBits >= LoadTy.getSizeInBits()) 721 return false; 722 723 // Most targets cannot deal with loads of size < 8 and need to re-legalize to 724 // at least byte loads. Avoid creating such loads here 725 if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits)) 726 return false; 727 728 const MachineMemOperand &MMO = LoadMI->getMMO(); 729 LegalityQuery::MemDesc MemDesc(MMO); 730 MemDesc.MemoryTy = LLT::scalar(MaskSizeBits); 731 if (!isLegalOrBeforeLegalizer( 732 {TargetOpcode::G_ZEXTLOAD, {LoadTy, MRI.getType(PtrReg)}, {MemDesc}})) 733 return false; 734 735 MatchInfo = [=](MachineIRBuilder &B) { 736 B.setInstrAndDebugLoc(*LoadMI); 737 auto &MF = B.getMF(); 738 auto PtrInfo = MMO.getPointerInfo(); 739 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MaskSizeBits / 8); 740 B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO); 741 }; 742 return true; 743 } 744 745 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 746 const MachineInstr &UseMI) { 747 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 748 "shouldn't consider debug uses"); 749 assert(DefMI.getParent() == UseMI.getParent()); 750 if (&DefMI == &UseMI) 751 return true; 752 const MachineBasicBlock &MBB = *DefMI.getParent(); 753 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 754 return &MI == &DefMI || &MI == &UseMI; 755 }); 756 if (DefOrUse == MBB.end()) 757 llvm_unreachable("Block must contain both DefMI and UseMI!"); 758 return &*DefOrUse == &DefMI; 759 } 760 761 bool CombinerHelper::dominates(const MachineInstr &DefMI, 762 const MachineInstr &UseMI) { 763 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 764 "shouldn't consider debug uses"); 765 if (MDT) 766 return MDT->dominates(&DefMI, &UseMI); 767 else if (DefMI.getParent() != UseMI.getParent()) 768 return false; 769 770 return isPredecessor(DefMI, UseMI); 771 } 772 773 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 774 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 775 Register SrcReg = MI.getOperand(1).getReg(); 776 Register LoadUser = SrcReg; 777 778 if (MRI.getType(SrcReg).isVector()) 779 return false; 780 781 Register TruncSrc; 782 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 783 LoadUser = TruncSrc; 784 785 uint64_t SizeInBits = MI.getOperand(2).getImm(); 786 // If the source is a G_SEXTLOAD from the same bit width, then we don't 787 // need any extend at all, just a truncate. 788 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 789 // If truncating more than the original extended value, abort. 790 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 791 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 792 return false; 793 if (LoadSizeBits == SizeInBits) 794 return true; 795 } 796 return false; 797 } 798 799 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 800 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 801 Builder.setInstrAndDebugLoc(MI); 802 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 803 MI.eraseFromParent(); 804 } 805 806 bool CombinerHelper::matchSextInRegOfLoad( 807 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 808 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 809 810 // Only supports scalars for now. 811 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 812 return false; 813 814 Register SrcReg = MI.getOperand(1).getReg(); 815 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 816 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || 817 !LoadDef->isSimple()) 818 return false; 819 820 // If the sign extend extends from a narrower width than the load's width, 821 // then we can narrow the load width when we combine to a G_SEXTLOAD. 822 // Avoid widening the load at all. 823 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), 824 LoadDef->getMemSizeInBits()); 825 826 // Don't generate G_SEXTLOADs with a < 1 byte width. 827 if (NewSizeBits < 8) 828 return false; 829 // Don't bother creating a non-power-2 sextload, it will likely be broken up 830 // anyway for most targets. 831 if (!isPowerOf2_32(NewSizeBits)) 832 return false; 833 834 const MachineMemOperand &MMO = LoadDef->getMMO(); 835 LegalityQuery::MemDesc MMDesc(MMO); 836 MMDesc.MemoryTy = LLT::scalar(NewSizeBits); 837 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, 838 {MRI.getType(LoadDef->getDstReg()), 839 MRI.getType(LoadDef->getPointerReg())}, 840 {MMDesc}})) 841 return false; 842 843 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 844 return true; 845 } 846 847 void CombinerHelper::applySextInRegOfLoad( 848 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 849 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 850 Register LoadReg; 851 unsigned ScalarSizeBits; 852 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 853 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 854 855 // If we have the following: 856 // %ld = G_LOAD %ptr, (load 2) 857 // %ext = G_SEXT_INREG %ld, 8 858 // ==> 859 // %ld = G_SEXTLOAD %ptr (load 1) 860 861 auto &MMO = LoadDef->getMMO(); 862 Builder.setInstrAndDebugLoc(*LoadDef); 863 auto &MF = Builder.getMF(); 864 auto PtrInfo = MMO.getPointerInfo(); 865 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 866 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 867 LoadDef->getPointerReg(), *NewMMO); 868 MI.eraseFromParent(); 869 } 870 871 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 872 Register &Base, Register &Offset) { 873 auto &MF = *MI.getParent()->getParent(); 874 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 875 876 #ifndef NDEBUG 877 unsigned Opcode = MI.getOpcode(); 878 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 879 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 880 #endif 881 882 Base = MI.getOperand(1).getReg(); 883 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 884 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 885 return false; 886 887 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 888 // FIXME: The following use traversal needs a bail out for patholigical cases. 889 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 890 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 891 continue; 892 893 Offset = Use.getOperand(2).getReg(); 894 if (!ForceLegalIndexing && 895 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 896 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 897 << Use); 898 continue; 899 } 900 901 // Make sure the offset calculation is before the potentially indexed op. 902 // FIXME: we really care about dependency here. The offset calculation might 903 // be movable. 904 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 905 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 906 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 907 << Use); 908 continue; 909 } 910 911 // FIXME: check whether all uses of Base are load/store with foldable 912 // addressing modes. If so, using the normal addr-modes is better than 913 // forming an indexed one. 914 915 bool MemOpDominatesAddrUses = true; 916 for (auto &PtrAddUse : 917 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 918 if (!dominates(MI, PtrAddUse)) { 919 MemOpDominatesAddrUses = false; 920 break; 921 } 922 } 923 924 if (!MemOpDominatesAddrUses) { 925 LLVM_DEBUG( 926 dbgs() << " Ignoring candidate as memop does not dominate uses: " 927 << Use); 928 continue; 929 } 930 931 LLVM_DEBUG(dbgs() << " Found match: " << Use); 932 Addr = Use.getOperand(0).getReg(); 933 return true; 934 } 935 936 return false; 937 } 938 939 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 940 Register &Base, Register &Offset) { 941 auto &MF = *MI.getParent()->getParent(); 942 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 943 944 #ifndef NDEBUG 945 unsigned Opcode = MI.getOpcode(); 946 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 947 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 948 #endif 949 950 Addr = MI.getOperand(1).getReg(); 951 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 952 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 953 return false; 954 955 Base = AddrDef->getOperand(1).getReg(); 956 Offset = AddrDef->getOperand(2).getReg(); 957 958 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 959 960 if (!ForceLegalIndexing && 961 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 962 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 963 return false; 964 } 965 966 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 967 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 968 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 969 return false; 970 } 971 972 if (MI.getOpcode() == TargetOpcode::G_STORE) { 973 // Would require a copy. 974 if (Base == MI.getOperand(0).getReg()) { 975 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 976 return false; 977 } 978 979 // We're expecting one use of Addr in MI, but it could also be the 980 // value stored, which isn't actually dominated by the instruction. 981 if (MI.getOperand(0).getReg() == Addr) { 982 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 983 return false; 984 } 985 } 986 987 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 988 // That might allow us to end base's liveness here by adjusting the constant. 989 990 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 991 if (!dominates(MI, UseMI)) { 992 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 993 return false; 994 } 995 } 996 997 return true; 998 } 999 1000 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 1001 IndexedLoadStoreMatchInfo MatchInfo; 1002 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 1003 applyCombineIndexedLoadStore(MI, MatchInfo); 1004 return true; 1005 } 1006 return false; 1007 } 1008 1009 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 1010 unsigned Opcode = MI.getOpcode(); 1011 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 1012 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 1013 return false; 1014 1015 // For now, no targets actually support these opcodes so don't waste time 1016 // running these unless we're forced to for testing. 1017 if (!ForceLegalIndexing) 1018 return false; 1019 1020 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 1021 MatchInfo.Offset); 1022 if (!MatchInfo.IsPre && 1023 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 1024 MatchInfo.Offset)) 1025 return false; 1026 1027 return true; 1028 } 1029 1030 void CombinerHelper::applyCombineIndexedLoadStore( 1031 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 1032 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 1033 MachineIRBuilder MIRBuilder(MI); 1034 unsigned Opcode = MI.getOpcode(); 1035 bool IsStore = Opcode == TargetOpcode::G_STORE; 1036 unsigned NewOpcode; 1037 switch (Opcode) { 1038 case TargetOpcode::G_LOAD: 1039 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 1040 break; 1041 case TargetOpcode::G_SEXTLOAD: 1042 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 1043 break; 1044 case TargetOpcode::G_ZEXTLOAD: 1045 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 1046 break; 1047 case TargetOpcode::G_STORE: 1048 NewOpcode = TargetOpcode::G_INDEXED_STORE; 1049 break; 1050 default: 1051 llvm_unreachable("Unknown load/store opcode"); 1052 } 1053 1054 auto MIB = MIRBuilder.buildInstr(NewOpcode); 1055 if (IsStore) { 1056 MIB.addDef(MatchInfo.Addr); 1057 MIB.addUse(MI.getOperand(0).getReg()); 1058 } else { 1059 MIB.addDef(MI.getOperand(0).getReg()); 1060 MIB.addDef(MatchInfo.Addr); 1061 } 1062 1063 MIB.addUse(MatchInfo.Base); 1064 MIB.addUse(MatchInfo.Offset); 1065 MIB.addImm(MatchInfo.IsPre); 1066 MI.eraseFromParent(); 1067 AddrDef.eraseFromParent(); 1068 1069 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 1070 } 1071 1072 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 1073 MachineInstr *&OtherMI) { 1074 unsigned Opcode = MI.getOpcode(); 1075 bool IsDiv, IsSigned; 1076 1077 switch (Opcode) { 1078 default: 1079 llvm_unreachable("Unexpected opcode!"); 1080 case TargetOpcode::G_SDIV: 1081 case TargetOpcode::G_UDIV: { 1082 IsDiv = true; 1083 IsSigned = Opcode == TargetOpcode::G_SDIV; 1084 break; 1085 } 1086 case TargetOpcode::G_SREM: 1087 case TargetOpcode::G_UREM: { 1088 IsDiv = false; 1089 IsSigned = Opcode == TargetOpcode::G_SREM; 1090 break; 1091 } 1092 } 1093 1094 Register Src1 = MI.getOperand(1).getReg(); 1095 unsigned DivOpcode, RemOpcode, DivremOpcode; 1096 if (IsSigned) { 1097 DivOpcode = TargetOpcode::G_SDIV; 1098 RemOpcode = TargetOpcode::G_SREM; 1099 DivremOpcode = TargetOpcode::G_SDIVREM; 1100 } else { 1101 DivOpcode = TargetOpcode::G_UDIV; 1102 RemOpcode = TargetOpcode::G_UREM; 1103 DivremOpcode = TargetOpcode::G_UDIVREM; 1104 } 1105 1106 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 1107 return false; 1108 1109 // Combine: 1110 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1111 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1112 // into: 1113 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1114 1115 // Combine: 1116 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1117 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1118 // into: 1119 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1120 1121 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1122 if (MI.getParent() == UseMI.getParent() && 1123 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1124 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1125 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1126 OtherMI = &UseMI; 1127 return true; 1128 } 1129 } 1130 1131 return false; 1132 } 1133 1134 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1135 MachineInstr *&OtherMI) { 1136 unsigned Opcode = MI.getOpcode(); 1137 assert(OtherMI && "OtherMI shouldn't be empty."); 1138 1139 Register DestDivReg, DestRemReg; 1140 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1141 DestDivReg = MI.getOperand(0).getReg(); 1142 DestRemReg = OtherMI->getOperand(0).getReg(); 1143 } else { 1144 DestDivReg = OtherMI->getOperand(0).getReg(); 1145 DestRemReg = MI.getOperand(0).getReg(); 1146 } 1147 1148 bool IsSigned = 1149 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1150 1151 // Check which instruction is first in the block so we don't break def-use 1152 // deps by "moving" the instruction incorrectly. 1153 if (dominates(MI, *OtherMI)) 1154 Builder.setInstrAndDebugLoc(MI); 1155 else 1156 Builder.setInstrAndDebugLoc(*OtherMI); 1157 1158 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1159 : TargetOpcode::G_UDIVREM, 1160 {DestDivReg, DestRemReg}, 1161 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1162 MI.eraseFromParent(); 1163 OtherMI->eraseFromParent(); 1164 } 1165 1166 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1167 MachineInstr *&BrCond) { 1168 assert(MI.getOpcode() == TargetOpcode::G_BR); 1169 1170 // Try to match the following: 1171 // bb1: 1172 // G_BRCOND %c1, %bb2 1173 // G_BR %bb3 1174 // bb2: 1175 // ... 1176 // bb3: 1177 1178 // The above pattern does not have a fall through to the successor bb2, always 1179 // resulting in a branch no matter which path is taken. Here we try to find 1180 // and replace that pattern with conditional branch to bb3 and otherwise 1181 // fallthrough to bb2. This is generally better for branch predictors. 1182 1183 MachineBasicBlock *MBB = MI.getParent(); 1184 MachineBasicBlock::iterator BrIt(MI); 1185 if (BrIt == MBB->begin()) 1186 return false; 1187 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1188 1189 BrCond = &*std::prev(BrIt); 1190 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1191 return false; 1192 1193 // Check that the next block is the conditional branch target. Also make sure 1194 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1195 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1196 return BrCondTarget != MI.getOperand(0).getMBB() && 1197 MBB->isLayoutSuccessor(BrCondTarget); 1198 } 1199 1200 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1201 MachineInstr *&BrCond) { 1202 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1203 Builder.setInstrAndDebugLoc(*BrCond); 1204 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1205 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1206 // this to i1 only since we might not know for sure what kind of 1207 // compare generated the condition value. 1208 auto True = Builder.buildConstant( 1209 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1210 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1211 1212 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1213 Observer.changingInstr(MI); 1214 MI.getOperand(0).setMBB(FallthroughBB); 1215 Observer.changedInstr(MI); 1216 1217 // Change the conditional branch to use the inverted condition and 1218 // new target block. 1219 Observer.changingInstr(*BrCond); 1220 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1221 BrCond->getOperand(1).setMBB(BrTarget); 1222 Observer.changedInstr(*BrCond); 1223 } 1224 1225 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1226 if (Ty.isVector()) 1227 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1228 Ty.getNumElements()); 1229 return IntegerType::get(C, Ty.getSizeInBits()); 1230 } 1231 1232 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1233 MachineIRBuilder HelperBuilder(MI); 1234 GISelObserverWrapper DummyObserver; 1235 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1236 return Helper.lowerMemcpyInline(MI) == 1237 LegalizerHelper::LegalizeResult::Legalized; 1238 } 1239 1240 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1241 MachineIRBuilder HelperBuilder(MI); 1242 GISelObserverWrapper DummyObserver; 1243 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1244 return Helper.lowerMemCpyFamily(MI, MaxLen) == 1245 LegalizerHelper::LegalizeResult::Legalized; 1246 } 1247 1248 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1249 const Register Op, 1250 const MachineRegisterInfo &MRI) { 1251 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1252 if (!MaybeCst) 1253 return None; 1254 1255 APFloat V = MaybeCst->getValueAPF(); 1256 switch (Opcode) { 1257 default: 1258 llvm_unreachable("Unexpected opcode!"); 1259 case TargetOpcode::G_FNEG: { 1260 V.changeSign(); 1261 return V; 1262 } 1263 case TargetOpcode::G_FABS: { 1264 V.clearSign(); 1265 return V; 1266 } 1267 case TargetOpcode::G_FPTRUNC: 1268 break; 1269 case TargetOpcode::G_FSQRT: { 1270 bool Unused; 1271 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1272 V = APFloat(sqrt(V.convertToDouble())); 1273 break; 1274 } 1275 case TargetOpcode::G_FLOG2: { 1276 bool Unused; 1277 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1278 V = APFloat(log2(V.convertToDouble())); 1279 break; 1280 } 1281 } 1282 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1283 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1284 // and `G_FLOG2` reach here. 1285 bool Unused; 1286 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1287 return V; 1288 } 1289 1290 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1291 Optional<APFloat> &Cst) { 1292 Register DstReg = MI.getOperand(0).getReg(); 1293 Register SrcReg = MI.getOperand(1).getReg(); 1294 LLT DstTy = MRI.getType(DstReg); 1295 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1296 return Cst.hasValue(); 1297 } 1298 1299 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1300 Optional<APFloat> &Cst) { 1301 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1302 Builder.setInstrAndDebugLoc(MI); 1303 MachineFunction &MF = Builder.getMF(); 1304 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1305 Register DstReg = MI.getOperand(0).getReg(); 1306 Builder.buildFConstant(DstReg, *FPVal); 1307 MI.eraseFromParent(); 1308 } 1309 1310 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1311 PtrAddChain &MatchInfo) { 1312 // We're trying to match the following pattern: 1313 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1314 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1315 // --> 1316 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1317 1318 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1319 return false; 1320 1321 Register Add2 = MI.getOperand(1).getReg(); 1322 Register Imm1 = MI.getOperand(2).getReg(); 1323 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1324 if (!MaybeImmVal) 1325 return false; 1326 1327 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1328 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1329 return false; 1330 1331 Register Base = Add2Def->getOperand(1).getReg(); 1332 Register Imm2 = Add2Def->getOperand(2).getReg(); 1333 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1334 if (!MaybeImm2Val) 1335 return false; 1336 1337 // Check if the new combined immediate forms an illegal addressing mode. 1338 // Do not combine if it was legal before but would get illegal. 1339 // To do so, we need to find a load/store user of the pointer to get 1340 // the access type. 1341 Type *AccessTy = nullptr; 1342 auto &MF = *MI.getMF(); 1343 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1344 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1345 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1346 MF.getFunction().getContext()); 1347 break; 1348 } 1349 } 1350 TargetLoweringBase::AddrMode AMNew; 1351 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1352 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1353 if (AccessTy) { 1354 AMNew.HasBaseReg = true; 1355 TargetLoweringBase::AddrMode AMOld; 1356 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); 1357 AMOld.HasBaseReg = true; 1358 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1359 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1360 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1361 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1362 return false; 1363 } 1364 1365 // Pass the combined immediate to the apply function. 1366 MatchInfo.Imm = AMNew.BaseOffs; 1367 MatchInfo.Base = Base; 1368 MatchInfo.Bank = getRegBank(Imm2); 1369 return true; 1370 } 1371 1372 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1373 PtrAddChain &MatchInfo) { 1374 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1375 MachineIRBuilder MIB(MI); 1376 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1377 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1378 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1379 Observer.changingInstr(MI); 1380 MI.getOperand(1).setReg(MatchInfo.Base); 1381 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1382 Observer.changedInstr(MI); 1383 } 1384 1385 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1386 RegisterImmPair &MatchInfo) { 1387 // We're trying to match the following pattern with any of 1388 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1389 // %t1 = SHIFT %base, G_CONSTANT imm1 1390 // %root = SHIFT %t1, G_CONSTANT imm2 1391 // --> 1392 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1393 1394 unsigned Opcode = MI.getOpcode(); 1395 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1396 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1397 Opcode == TargetOpcode::G_USHLSAT) && 1398 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1399 1400 Register Shl2 = MI.getOperand(1).getReg(); 1401 Register Imm1 = MI.getOperand(2).getReg(); 1402 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1403 if (!MaybeImmVal) 1404 return false; 1405 1406 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1407 if (Shl2Def->getOpcode() != Opcode) 1408 return false; 1409 1410 Register Base = Shl2Def->getOperand(1).getReg(); 1411 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1412 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1413 if (!MaybeImm2Val) 1414 return false; 1415 1416 // Pass the combined immediate to the apply function. 1417 MatchInfo.Imm = 1418 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1419 MatchInfo.Reg = Base; 1420 1421 // There is no simple replacement for a saturating unsigned left shift that 1422 // exceeds the scalar size. 1423 if (Opcode == TargetOpcode::G_USHLSAT && 1424 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1425 return false; 1426 1427 return true; 1428 } 1429 1430 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1431 RegisterImmPair &MatchInfo) { 1432 unsigned Opcode = MI.getOpcode(); 1433 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1434 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1435 Opcode == TargetOpcode::G_USHLSAT) && 1436 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1437 1438 Builder.setInstrAndDebugLoc(MI); 1439 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1440 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1441 auto Imm = MatchInfo.Imm; 1442 1443 if (Imm >= ScalarSizeInBits) { 1444 // Any logical shift that exceeds scalar size will produce zero. 1445 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1446 Builder.buildConstant(MI.getOperand(0), 0); 1447 MI.eraseFromParent(); 1448 return; 1449 } 1450 // Arithmetic shift and saturating signed left shift have no effect beyond 1451 // scalar size. 1452 Imm = ScalarSizeInBits - 1; 1453 } 1454 1455 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1456 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1457 Observer.changingInstr(MI); 1458 MI.getOperand(1).setReg(MatchInfo.Reg); 1459 MI.getOperand(2).setReg(NewImm); 1460 Observer.changedInstr(MI); 1461 } 1462 1463 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1464 ShiftOfShiftedLogic &MatchInfo) { 1465 // We're trying to match the following pattern with any of 1466 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1467 // with any of G_AND/G_OR/G_XOR logic instructions. 1468 // %t1 = SHIFT %X, G_CONSTANT C0 1469 // %t2 = LOGIC %t1, %Y 1470 // %root = SHIFT %t2, G_CONSTANT C1 1471 // --> 1472 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1473 // %t4 = SHIFT %Y, G_CONSTANT C1 1474 // %root = LOGIC %t3, %t4 1475 unsigned ShiftOpcode = MI.getOpcode(); 1476 assert((ShiftOpcode == TargetOpcode::G_SHL || 1477 ShiftOpcode == TargetOpcode::G_ASHR || 1478 ShiftOpcode == TargetOpcode::G_LSHR || 1479 ShiftOpcode == TargetOpcode::G_USHLSAT || 1480 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1481 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1482 1483 // Match a one-use bitwise logic op. 1484 Register LogicDest = MI.getOperand(1).getReg(); 1485 if (!MRI.hasOneNonDBGUse(LogicDest)) 1486 return false; 1487 1488 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1489 unsigned LogicOpcode = LogicMI->getOpcode(); 1490 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1491 LogicOpcode != TargetOpcode::G_XOR) 1492 return false; 1493 1494 // Find a matching one-use shift by constant. 1495 const Register C1 = MI.getOperand(2).getReg(); 1496 auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI); 1497 if (!MaybeImmVal) 1498 return false; 1499 1500 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1501 1502 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1503 // Shift should match previous one and should be a one-use. 1504 if (MI->getOpcode() != ShiftOpcode || 1505 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1506 return false; 1507 1508 // Must be a constant. 1509 auto MaybeImmVal = 1510 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1511 if (!MaybeImmVal) 1512 return false; 1513 1514 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1515 return true; 1516 }; 1517 1518 // Logic ops are commutative, so check each operand for a match. 1519 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1520 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1521 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1522 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1523 uint64_t C0Val; 1524 1525 if (matchFirstShift(LogicMIOp1, C0Val)) { 1526 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1527 MatchInfo.Shift2 = LogicMIOp1; 1528 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1529 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1530 MatchInfo.Shift2 = LogicMIOp2; 1531 } else 1532 return false; 1533 1534 MatchInfo.ValSum = C0Val + C1Val; 1535 1536 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1537 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1538 return false; 1539 1540 MatchInfo.Logic = LogicMI; 1541 return true; 1542 } 1543 1544 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1545 ShiftOfShiftedLogic &MatchInfo) { 1546 unsigned Opcode = MI.getOpcode(); 1547 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1548 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1549 Opcode == TargetOpcode::G_SSHLSAT) && 1550 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1551 1552 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1553 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1554 Builder.setInstrAndDebugLoc(MI); 1555 1556 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1557 1558 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1559 Register Shift1 = 1560 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1561 1562 Register Shift2Const = MI.getOperand(2).getReg(); 1563 Register Shift2 = Builder 1564 .buildInstr(Opcode, {DestType}, 1565 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1566 .getReg(0); 1567 1568 Register Dest = MI.getOperand(0).getReg(); 1569 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1570 1571 // These were one use so it's safe to remove them. 1572 MatchInfo.Shift2->eraseFromParent(); 1573 MatchInfo.Logic->eraseFromParent(); 1574 1575 MI.eraseFromParent(); 1576 } 1577 1578 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1579 unsigned &ShiftVal) { 1580 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1581 auto MaybeImmVal = 1582 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1583 if (!MaybeImmVal) 1584 return false; 1585 1586 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1587 return (static_cast<int32_t>(ShiftVal) != -1); 1588 } 1589 1590 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1591 unsigned &ShiftVal) { 1592 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1593 MachineIRBuilder MIB(MI); 1594 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1595 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1596 Observer.changingInstr(MI); 1597 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1598 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1599 Observer.changedInstr(MI); 1600 } 1601 1602 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1603 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1604 RegisterImmPair &MatchData) { 1605 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1606 1607 Register LHS = MI.getOperand(1).getReg(); 1608 1609 Register ExtSrc; 1610 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1611 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1612 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1613 return false; 1614 1615 // TODO: Should handle vector splat. 1616 Register RHS = MI.getOperand(2).getReg(); 1617 auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI); 1618 if (!MaybeShiftAmtVal) 1619 return false; 1620 1621 if (LI) { 1622 LLT SrcTy = MRI.getType(ExtSrc); 1623 1624 // We only really care about the legality with the shifted value. We can 1625 // pick any type the constant shift amount, so ask the target what to 1626 // use. Otherwise we would have to guess and hope it is reported as legal. 1627 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1628 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1629 return false; 1630 } 1631 1632 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1633 MatchData.Reg = ExtSrc; 1634 MatchData.Imm = ShiftAmt; 1635 1636 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1637 return MinLeadingZeros >= ShiftAmt; 1638 } 1639 1640 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1641 const RegisterImmPair &MatchData) { 1642 Register ExtSrcReg = MatchData.Reg; 1643 int64_t ShiftAmtVal = MatchData.Imm; 1644 1645 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1646 Builder.setInstrAndDebugLoc(MI); 1647 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1648 auto NarrowShift = 1649 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1650 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1651 MI.eraseFromParent(); 1652 } 1653 1654 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 1655 Register &MatchInfo) { 1656 GMerge &Merge = cast<GMerge>(MI); 1657 SmallVector<Register, 16> MergedValues; 1658 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 1659 MergedValues.emplace_back(Merge.getSourceReg(I)); 1660 1661 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 1662 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 1663 return false; 1664 1665 for (unsigned I = 0; I < MergedValues.size(); ++I) 1666 if (MergedValues[I] != Unmerge->getReg(I)) 1667 return false; 1668 1669 MatchInfo = Unmerge->getSourceReg(); 1670 return true; 1671 } 1672 1673 static Register peekThroughBitcast(Register Reg, 1674 const MachineRegisterInfo &MRI) { 1675 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1676 ; 1677 1678 return Reg; 1679 } 1680 1681 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1682 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1683 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1684 "Expected an unmerge"); 1685 auto &Unmerge = cast<GUnmerge>(MI); 1686 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 1687 1688 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI); 1689 if (!SrcInstr) 1690 return false; 1691 1692 // Check the source type of the merge. 1693 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 1694 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 1695 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1696 if (SrcMergeTy != Dst0Ty && !SameSize) 1697 return false; 1698 // They are the same now (modulo a bitcast). 1699 // We can collect all the src registers. 1700 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 1701 Operands.push_back(SrcInstr->getSourceReg(Idx)); 1702 return true; 1703 } 1704 1705 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1706 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1707 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1708 "Expected an unmerge"); 1709 assert((MI.getNumOperands() - 1 == Operands.size()) && 1710 "Not enough operands to replace all defs"); 1711 unsigned NumElems = MI.getNumOperands() - 1; 1712 1713 LLT SrcTy = MRI.getType(Operands[0]); 1714 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1715 bool CanReuseInputDirectly = DstTy == SrcTy; 1716 Builder.setInstrAndDebugLoc(MI); 1717 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1718 Register DstReg = MI.getOperand(Idx).getReg(); 1719 Register SrcReg = Operands[Idx]; 1720 if (CanReuseInputDirectly) 1721 replaceRegWith(MRI, DstReg, SrcReg); 1722 else 1723 Builder.buildCast(DstReg, SrcReg); 1724 } 1725 MI.eraseFromParent(); 1726 } 1727 1728 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1729 SmallVectorImpl<APInt> &Csts) { 1730 unsigned SrcIdx = MI.getNumOperands() - 1; 1731 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1732 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1733 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1734 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1735 return false; 1736 // Break down the big constant in smaller ones. 1737 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1738 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1739 ? CstVal.getCImm()->getValue() 1740 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1741 1742 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1743 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1744 // Unmerge a constant. 1745 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1746 Csts.emplace_back(Val.trunc(ShiftAmt)); 1747 Val = Val.lshr(ShiftAmt); 1748 } 1749 1750 return true; 1751 } 1752 1753 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1754 SmallVectorImpl<APInt> &Csts) { 1755 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1756 "Expected an unmerge"); 1757 assert((MI.getNumOperands() - 1 == Csts.size()) && 1758 "Not enough operands to replace all defs"); 1759 unsigned NumElems = MI.getNumOperands() - 1; 1760 Builder.setInstrAndDebugLoc(MI); 1761 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1762 Register DstReg = MI.getOperand(Idx).getReg(); 1763 Builder.buildConstant(DstReg, Csts[Idx]); 1764 } 1765 1766 MI.eraseFromParent(); 1767 } 1768 1769 bool CombinerHelper::matchCombineUnmergeUndef( 1770 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 1771 unsigned SrcIdx = MI.getNumOperands() - 1; 1772 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1773 MatchInfo = [&MI](MachineIRBuilder &B) { 1774 unsigned NumElems = MI.getNumOperands() - 1; 1775 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1776 Register DstReg = MI.getOperand(Idx).getReg(); 1777 B.buildUndef(DstReg); 1778 } 1779 }; 1780 return isa<GImplicitDef>(MRI.getVRegDef(SrcReg)); 1781 } 1782 1783 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1784 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1785 "Expected an unmerge"); 1786 // Check that all the lanes are dead except the first one. 1787 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1788 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1789 return false; 1790 } 1791 return true; 1792 } 1793 1794 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1795 Builder.setInstrAndDebugLoc(MI); 1796 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1797 // Truncating a vector is going to truncate every single lane, 1798 // whereas we want the full lowbits. 1799 // Do the operation on a scalar instead. 1800 LLT SrcTy = MRI.getType(SrcReg); 1801 if (SrcTy.isVector()) 1802 SrcReg = 1803 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1804 1805 Register Dst0Reg = MI.getOperand(0).getReg(); 1806 LLT Dst0Ty = MRI.getType(Dst0Reg); 1807 if (Dst0Ty.isVector()) { 1808 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 1809 Builder.buildCast(Dst0Reg, MIB); 1810 } else 1811 Builder.buildTrunc(Dst0Reg, SrcReg); 1812 MI.eraseFromParent(); 1813 } 1814 1815 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 1816 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1817 "Expected an unmerge"); 1818 Register Dst0Reg = MI.getOperand(0).getReg(); 1819 LLT Dst0Ty = MRI.getType(Dst0Reg); 1820 // G_ZEXT on vector applies to each lane, so it will 1821 // affect all destinations. Therefore we won't be able 1822 // to simplify the unmerge to just the first definition. 1823 if (Dst0Ty.isVector()) 1824 return false; 1825 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1826 LLT SrcTy = MRI.getType(SrcReg); 1827 if (SrcTy.isVector()) 1828 return false; 1829 1830 Register ZExtSrcReg; 1831 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 1832 return false; 1833 1834 // Finally we can replace the first definition with 1835 // a zext of the source if the definition is big enough to hold 1836 // all of ZExtSrc bits. 1837 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1838 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 1839 } 1840 1841 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 1842 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1843 "Expected an unmerge"); 1844 1845 Register Dst0Reg = MI.getOperand(0).getReg(); 1846 1847 MachineInstr *ZExtInstr = 1848 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 1849 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 1850 "Expecting a G_ZEXT"); 1851 1852 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 1853 LLT Dst0Ty = MRI.getType(Dst0Reg); 1854 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1855 1856 Builder.setInstrAndDebugLoc(MI); 1857 1858 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 1859 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 1860 } else { 1861 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 1862 "ZExt src doesn't fit in destination"); 1863 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 1864 } 1865 1866 Register ZeroReg; 1867 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1868 if (!ZeroReg) 1869 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 1870 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 1871 } 1872 MI.eraseFromParent(); 1873 } 1874 1875 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1876 unsigned TargetShiftSize, 1877 unsigned &ShiftVal) { 1878 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1879 MI.getOpcode() == TargetOpcode::G_LSHR || 1880 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1881 1882 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1883 if (Ty.isVector()) // TODO: 1884 return false; 1885 1886 // Don't narrow further than the requested size. 1887 unsigned Size = Ty.getSizeInBits(); 1888 if (Size <= TargetShiftSize) 1889 return false; 1890 1891 auto MaybeImmVal = 1892 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1893 if (!MaybeImmVal) 1894 return false; 1895 1896 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1897 return ShiftVal >= Size / 2 && ShiftVal < Size; 1898 } 1899 1900 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1901 const unsigned &ShiftVal) { 1902 Register DstReg = MI.getOperand(0).getReg(); 1903 Register SrcReg = MI.getOperand(1).getReg(); 1904 LLT Ty = MRI.getType(SrcReg); 1905 unsigned Size = Ty.getSizeInBits(); 1906 unsigned HalfSize = Size / 2; 1907 assert(ShiftVal >= HalfSize); 1908 1909 LLT HalfTy = LLT::scalar(HalfSize); 1910 1911 Builder.setInstr(MI); 1912 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1913 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1914 1915 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1916 Register Narrowed = Unmerge.getReg(1); 1917 1918 // dst = G_LSHR s64:x, C for C >= 32 1919 // => 1920 // lo, hi = G_UNMERGE_VALUES x 1921 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1922 1923 if (NarrowShiftAmt != 0) { 1924 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1925 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1926 } 1927 1928 auto Zero = Builder.buildConstant(HalfTy, 0); 1929 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1930 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1931 Register Narrowed = Unmerge.getReg(0); 1932 // dst = G_SHL s64:x, C for C >= 32 1933 // => 1934 // lo, hi = G_UNMERGE_VALUES x 1935 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1936 if (NarrowShiftAmt != 0) { 1937 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1938 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1939 } 1940 1941 auto Zero = Builder.buildConstant(HalfTy, 0); 1942 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1943 } else { 1944 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1945 auto Hi = Builder.buildAShr( 1946 HalfTy, Unmerge.getReg(1), 1947 Builder.buildConstant(HalfTy, HalfSize - 1)); 1948 1949 if (ShiftVal == HalfSize) { 1950 // (G_ASHR i64:x, 32) -> 1951 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1952 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1953 } else if (ShiftVal == Size - 1) { 1954 // Don't need a second shift. 1955 // (G_ASHR i64:x, 63) -> 1956 // %narrowed = (G_ASHR hi_32(x), 31) 1957 // G_MERGE_VALUES %narrowed, %narrowed 1958 Builder.buildMerge(DstReg, { Hi, Hi }); 1959 } else { 1960 auto Lo = Builder.buildAShr( 1961 HalfTy, Unmerge.getReg(1), 1962 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1963 1964 // (G_ASHR i64:x, C) ->, for C >= 32 1965 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1966 Builder.buildMerge(DstReg, { Lo, Hi }); 1967 } 1968 } 1969 1970 MI.eraseFromParent(); 1971 } 1972 1973 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1974 unsigned TargetShiftAmount) { 1975 unsigned ShiftAmt; 1976 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1977 applyCombineShiftToUnmerge(MI, ShiftAmt); 1978 return true; 1979 } 1980 1981 return false; 1982 } 1983 1984 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1985 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1986 Register DstReg = MI.getOperand(0).getReg(); 1987 LLT DstTy = MRI.getType(DstReg); 1988 Register SrcReg = MI.getOperand(1).getReg(); 1989 return mi_match(SrcReg, MRI, 1990 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 1991 } 1992 1993 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1994 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1995 Register DstReg = MI.getOperand(0).getReg(); 1996 Builder.setInstr(MI); 1997 Builder.buildCopy(DstReg, Reg); 1998 MI.eraseFromParent(); 1999 } 2000 2001 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2002 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2003 Register SrcReg = MI.getOperand(1).getReg(); 2004 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2005 } 2006 2007 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2008 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2009 Register DstReg = MI.getOperand(0).getReg(); 2010 Builder.setInstr(MI); 2011 Builder.buildZExtOrTrunc(DstReg, Reg); 2012 MI.eraseFromParent(); 2013 } 2014 2015 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2016 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2017 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2018 Register LHS = MI.getOperand(1).getReg(); 2019 Register RHS = MI.getOperand(2).getReg(); 2020 LLT IntTy = MRI.getType(LHS); 2021 2022 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2023 // instruction. 2024 PtrReg.second = false; 2025 for (Register SrcReg : {LHS, RHS}) { 2026 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2027 // Don't handle cases where the integer is implicitly converted to the 2028 // pointer width. 2029 LLT PtrTy = MRI.getType(PtrReg.first); 2030 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2031 return true; 2032 } 2033 2034 PtrReg.second = true; 2035 } 2036 2037 return false; 2038 } 2039 2040 void CombinerHelper::applyCombineAddP2IToPtrAdd( 2041 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2042 Register Dst = MI.getOperand(0).getReg(); 2043 Register LHS = MI.getOperand(1).getReg(); 2044 Register RHS = MI.getOperand(2).getReg(); 2045 2046 const bool DoCommute = PtrReg.second; 2047 if (DoCommute) 2048 std::swap(LHS, RHS); 2049 LHS = PtrReg.first; 2050 2051 LLT PtrTy = MRI.getType(LHS); 2052 2053 Builder.setInstrAndDebugLoc(MI); 2054 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2055 Builder.buildPtrToInt(Dst, PtrAdd); 2056 MI.eraseFromParent(); 2057 } 2058 2059 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2060 APInt &NewCst) { 2061 auto &PtrAdd = cast<GPtrAdd>(MI); 2062 Register LHS = PtrAdd.getBaseReg(); 2063 Register RHS = PtrAdd.getOffsetReg(); 2064 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2065 2066 if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) { 2067 APInt Cst; 2068 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2069 auto DstTy = MRI.getType(PtrAdd.getReg(0)); 2070 // G_INTTOPTR uses zero-extension 2071 NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits()); 2072 NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits()); 2073 return true; 2074 } 2075 } 2076 2077 return false; 2078 } 2079 2080 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2081 APInt &NewCst) { 2082 auto &PtrAdd = cast<GPtrAdd>(MI); 2083 Register Dst = PtrAdd.getReg(0); 2084 2085 Builder.setInstrAndDebugLoc(MI); 2086 Builder.buildConstant(Dst, NewCst); 2087 PtrAdd.eraseFromParent(); 2088 } 2089 2090 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2091 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2092 Register DstReg = MI.getOperand(0).getReg(); 2093 Register SrcReg = MI.getOperand(1).getReg(); 2094 LLT DstTy = MRI.getType(DstReg); 2095 return mi_match(SrcReg, MRI, 2096 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2097 } 2098 2099 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2100 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2101 Register DstReg = MI.getOperand(0).getReg(); 2102 Register SrcReg = MI.getOperand(1).getReg(); 2103 LLT DstTy = MRI.getType(DstReg); 2104 if (mi_match(SrcReg, MRI, 2105 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2106 unsigned DstSize = DstTy.getScalarSizeInBits(); 2107 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2108 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2109 } 2110 return false; 2111 } 2112 2113 bool CombinerHelper::matchCombineExtOfExt( 2114 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2115 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2116 MI.getOpcode() == TargetOpcode::G_SEXT || 2117 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2118 "Expected a G_[ASZ]EXT"); 2119 Register SrcReg = MI.getOperand(1).getReg(); 2120 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2121 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2122 unsigned Opc = MI.getOpcode(); 2123 unsigned SrcOpc = SrcMI->getOpcode(); 2124 if (Opc == SrcOpc || 2125 (Opc == TargetOpcode::G_ANYEXT && 2126 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2127 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2128 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2129 return true; 2130 } 2131 return false; 2132 } 2133 2134 void CombinerHelper::applyCombineExtOfExt( 2135 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2136 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2137 MI.getOpcode() == TargetOpcode::G_SEXT || 2138 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2139 "Expected a G_[ASZ]EXT"); 2140 2141 Register Reg = std::get<0>(MatchInfo); 2142 unsigned SrcExtOp = std::get<1>(MatchInfo); 2143 2144 // Combine exts with the same opcode. 2145 if (MI.getOpcode() == SrcExtOp) { 2146 Observer.changingInstr(MI); 2147 MI.getOperand(1).setReg(Reg); 2148 Observer.changedInstr(MI); 2149 return; 2150 } 2151 2152 // Combine: 2153 // - anyext([sz]ext x) to [sz]ext x 2154 // - sext(zext x) to zext x 2155 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2156 (MI.getOpcode() == TargetOpcode::G_SEXT && 2157 SrcExtOp == TargetOpcode::G_ZEXT)) { 2158 Register DstReg = MI.getOperand(0).getReg(); 2159 Builder.setInstrAndDebugLoc(MI); 2160 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2161 MI.eraseFromParent(); 2162 } 2163 } 2164 2165 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2166 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2167 Register DstReg = MI.getOperand(0).getReg(); 2168 Register SrcReg = MI.getOperand(1).getReg(); 2169 LLT DstTy = MRI.getType(DstReg); 2170 2171 Builder.setInstrAndDebugLoc(MI); 2172 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2173 MI.getFlags()); 2174 MI.eraseFromParent(); 2175 } 2176 2177 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2178 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2179 Register SrcReg = MI.getOperand(1).getReg(); 2180 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2181 } 2182 2183 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2184 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2185 Src = MI.getOperand(1).getReg(); 2186 Register AbsSrc; 2187 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2188 } 2189 2190 bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI, 2191 BuildFnTy &MatchInfo) { 2192 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2193 Register Src = MI.getOperand(1).getReg(); 2194 Register NegSrc; 2195 2196 if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc)))) 2197 return false; 2198 2199 MatchInfo = [=, &MI](MachineIRBuilder &B) { 2200 Observer.changingInstr(MI); 2201 MI.getOperand(1).setReg(NegSrc); 2202 Observer.changedInstr(MI); 2203 }; 2204 return true; 2205 } 2206 2207 bool CombinerHelper::matchCombineTruncOfExt( 2208 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2209 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2210 Register SrcReg = MI.getOperand(1).getReg(); 2211 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2212 unsigned SrcOpc = SrcMI->getOpcode(); 2213 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2214 SrcOpc == TargetOpcode::G_ZEXT) { 2215 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2216 return true; 2217 } 2218 return false; 2219 } 2220 2221 void CombinerHelper::applyCombineTruncOfExt( 2222 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2223 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2224 Register SrcReg = MatchInfo.first; 2225 unsigned SrcExtOp = MatchInfo.second; 2226 Register DstReg = MI.getOperand(0).getReg(); 2227 LLT SrcTy = MRI.getType(SrcReg); 2228 LLT DstTy = MRI.getType(DstReg); 2229 if (SrcTy == DstTy) { 2230 MI.eraseFromParent(); 2231 replaceRegWith(MRI, DstReg, SrcReg); 2232 return; 2233 } 2234 Builder.setInstrAndDebugLoc(MI); 2235 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2236 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2237 else 2238 Builder.buildTrunc(DstReg, SrcReg); 2239 MI.eraseFromParent(); 2240 } 2241 2242 bool CombinerHelper::matchCombineTruncOfShl( 2243 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2244 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2245 Register DstReg = MI.getOperand(0).getReg(); 2246 Register SrcReg = MI.getOperand(1).getReg(); 2247 LLT DstTy = MRI.getType(DstReg); 2248 Register ShiftSrc; 2249 Register ShiftAmt; 2250 2251 if (MRI.hasOneNonDBGUse(SrcReg) && 2252 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2253 isLegalOrBeforeLegalizer( 2254 {TargetOpcode::G_SHL, 2255 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2256 KnownBits Known = KB->getKnownBits(ShiftAmt); 2257 unsigned Size = DstTy.getSizeInBits(); 2258 if (Known.countMaxActiveBits() <= Log2_32(Size)) { 2259 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2260 return true; 2261 } 2262 } 2263 return false; 2264 } 2265 2266 void CombinerHelper::applyCombineTruncOfShl( 2267 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2268 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2269 Register DstReg = MI.getOperand(0).getReg(); 2270 Register SrcReg = MI.getOperand(1).getReg(); 2271 LLT DstTy = MRI.getType(DstReg); 2272 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2273 2274 Register ShiftSrc = MatchInfo.first; 2275 Register ShiftAmt = MatchInfo.second; 2276 Builder.setInstrAndDebugLoc(MI); 2277 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2278 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2279 MI.eraseFromParent(); 2280 } 2281 2282 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2283 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2284 return MO.isReg() && 2285 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2286 }); 2287 } 2288 2289 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2290 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2291 return !MO.isReg() || 2292 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2293 }); 2294 } 2295 2296 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2297 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2298 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2299 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2300 } 2301 2302 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2303 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2304 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2305 MRI); 2306 } 2307 2308 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2309 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2310 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2311 MRI); 2312 } 2313 2314 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2315 GSelect &SelMI = cast<GSelect>(MI); 2316 auto Cst = 2317 isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI); 2318 if (!Cst) 2319 return false; 2320 OpIdx = Cst->isZero() ? 3 : 2; 2321 return true; 2322 } 2323 2324 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2325 MI.eraseFromParent(); 2326 return true; 2327 } 2328 2329 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2330 const MachineOperand &MOP2) { 2331 if (!MOP1.isReg() || !MOP2.isReg()) 2332 return false; 2333 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2334 if (!InstAndDef1) 2335 return false; 2336 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2337 if (!InstAndDef2) 2338 return false; 2339 MachineInstr *I1 = InstAndDef1->MI; 2340 MachineInstr *I2 = InstAndDef2->MI; 2341 2342 // Handle a case like this: 2343 // 2344 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2345 // 2346 // Even though %0 and %1 are produced by the same instruction they are not 2347 // the same values. 2348 if (I1 == I2) 2349 return MOP1.getReg() == MOP2.getReg(); 2350 2351 // If we have an instruction which loads or stores, we can't guarantee that 2352 // it is identical. 2353 // 2354 // For example, we may have 2355 // 2356 // %x1 = G_LOAD %addr (load N from @somewhere) 2357 // ... 2358 // call @foo 2359 // ... 2360 // %x2 = G_LOAD %addr (load N from @somewhere) 2361 // ... 2362 // %or = G_OR %x1, %x2 2363 // 2364 // It's possible that @foo will modify whatever lives at the address we're 2365 // loading from. To be safe, let's just assume that all loads and stores 2366 // are different (unless we have something which is guaranteed to not 2367 // change.) 2368 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2369 return false; 2370 2371 // If both instructions are loads or stores, they are equal only if both 2372 // are dereferenceable invariant loads with the same number of bits. 2373 if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) { 2374 GLoadStore *LS1 = dyn_cast<GLoadStore>(I1); 2375 GLoadStore *LS2 = dyn_cast<GLoadStore>(I2); 2376 if (!LS1 || !LS2) 2377 return false; 2378 2379 if (!I2->isDereferenceableInvariantLoad(nullptr) || 2380 (LS1->getMemSizeInBits() != LS2->getMemSizeInBits())) 2381 return false; 2382 } 2383 2384 // Check for physical registers on the instructions first to avoid cases 2385 // like this: 2386 // 2387 // %a = COPY $physreg 2388 // ... 2389 // SOMETHING implicit-def $physreg 2390 // ... 2391 // %b = COPY $physreg 2392 // 2393 // These copies are not equivalent. 2394 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2395 return MO.isReg() && MO.getReg().isPhysical(); 2396 })) { 2397 // Check if we have a case like this: 2398 // 2399 // %a = COPY $physreg 2400 // %b = COPY %a 2401 // 2402 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2403 // From that, we know that they must have the same value, since they must 2404 // have come from the same COPY. 2405 return I1->isIdenticalTo(*I2); 2406 } 2407 2408 // We don't have any physical registers, so we don't necessarily need the 2409 // same vreg defs. 2410 // 2411 // On the off-chance that there's some target instruction feeding into the 2412 // instruction, let's use produceSameValue instead of isIdenticalTo. 2413 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2414 // Handle instructions with multiple defs that produce same values. Values 2415 // are same for operands with same index. 2416 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2417 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2418 // I1 and I2 are different instructions but produce same values, 2419 // %1 and %6 are same, %1 and %7 are not the same value. 2420 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2421 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2422 } 2423 return false; 2424 } 2425 2426 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2427 if (!MOP.isReg()) 2428 return false; 2429 auto *MI = MRI.getVRegDef(MOP.getReg()); 2430 auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI); 2431 return MaybeCst.hasValue() && MaybeCst->getBitWidth() <= 64 && 2432 MaybeCst->getSExtValue() == C; 2433 } 2434 2435 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2436 unsigned OpIdx) { 2437 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2438 Register OldReg = MI.getOperand(0).getReg(); 2439 Register Replacement = MI.getOperand(OpIdx).getReg(); 2440 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2441 MI.eraseFromParent(); 2442 replaceRegWith(MRI, OldReg, Replacement); 2443 return true; 2444 } 2445 2446 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2447 Register Replacement) { 2448 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2449 Register OldReg = MI.getOperand(0).getReg(); 2450 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2451 MI.eraseFromParent(); 2452 replaceRegWith(MRI, OldReg, Replacement); 2453 return true; 2454 } 2455 2456 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2457 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2458 // Match (cond ? x : x) 2459 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2460 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2461 MRI); 2462 } 2463 2464 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2465 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2466 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2467 MRI); 2468 } 2469 2470 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2471 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2472 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2473 MRI); 2474 } 2475 2476 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2477 MachineOperand &MO = MI.getOperand(OpIdx); 2478 return MO.isReg() && 2479 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2480 } 2481 2482 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2483 unsigned OpIdx) { 2484 MachineOperand &MO = MI.getOperand(OpIdx); 2485 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2486 } 2487 2488 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2489 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2490 Builder.setInstr(MI); 2491 Builder.buildFConstant(MI.getOperand(0), C); 2492 MI.eraseFromParent(); 2493 return true; 2494 } 2495 2496 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2497 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2498 Builder.setInstr(MI); 2499 Builder.buildConstant(MI.getOperand(0), C); 2500 MI.eraseFromParent(); 2501 return true; 2502 } 2503 2504 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2505 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2506 Builder.setInstr(MI); 2507 Builder.buildConstant(MI.getOperand(0), C); 2508 MI.eraseFromParent(); 2509 return true; 2510 } 2511 2512 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2513 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2514 Builder.setInstr(MI); 2515 Builder.buildUndef(MI.getOperand(0)); 2516 MI.eraseFromParent(); 2517 return true; 2518 } 2519 2520 bool CombinerHelper::matchSimplifyAddToSub( 2521 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2522 Register LHS = MI.getOperand(1).getReg(); 2523 Register RHS = MI.getOperand(2).getReg(); 2524 Register &NewLHS = std::get<0>(MatchInfo); 2525 Register &NewRHS = std::get<1>(MatchInfo); 2526 2527 // Helper lambda to check for opportunities for 2528 // ((0-A) + B) -> B - A 2529 // (A + (0-B)) -> A - B 2530 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2531 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2532 return false; 2533 NewLHS = MaybeNewLHS; 2534 return true; 2535 }; 2536 2537 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2538 } 2539 2540 bool CombinerHelper::matchCombineInsertVecElts( 2541 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2542 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2543 "Invalid opcode"); 2544 Register DstReg = MI.getOperand(0).getReg(); 2545 LLT DstTy = MRI.getType(DstReg); 2546 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2547 unsigned NumElts = DstTy.getNumElements(); 2548 // If this MI is part of a sequence of insert_vec_elts, then 2549 // don't do the combine in the middle of the sequence. 2550 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2551 TargetOpcode::G_INSERT_VECTOR_ELT) 2552 return false; 2553 MachineInstr *CurrInst = &MI; 2554 MachineInstr *TmpInst; 2555 int64_t IntImm; 2556 Register TmpReg; 2557 MatchInfo.resize(NumElts); 2558 while (mi_match( 2559 CurrInst->getOperand(0).getReg(), MRI, 2560 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2561 if (IntImm >= NumElts) 2562 return false; 2563 if (!MatchInfo[IntImm]) 2564 MatchInfo[IntImm] = TmpReg; 2565 CurrInst = TmpInst; 2566 } 2567 // Variable index. 2568 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2569 return false; 2570 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2571 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2572 if (!MatchInfo[I - 1].isValid()) 2573 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2574 } 2575 return true; 2576 } 2577 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2578 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2579 } 2580 2581 void CombinerHelper::applyCombineInsertVecElts( 2582 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2583 Builder.setInstr(MI); 2584 Register UndefReg; 2585 auto GetUndef = [&]() { 2586 if (UndefReg) 2587 return UndefReg; 2588 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2589 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2590 return UndefReg; 2591 }; 2592 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2593 if (!MatchInfo[I]) 2594 MatchInfo[I] = GetUndef(); 2595 } 2596 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2597 MI.eraseFromParent(); 2598 } 2599 2600 void CombinerHelper::applySimplifyAddToSub( 2601 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2602 Builder.setInstr(MI); 2603 Register SubLHS, SubRHS; 2604 std::tie(SubLHS, SubRHS) = MatchInfo; 2605 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2606 MI.eraseFromParent(); 2607 } 2608 2609 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2610 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2611 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2612 // 2613 // Creates the new hand + logic instruction (but does not insert them.) 2614 // 2615 // On success, MatchInfo is populated with the new instructions. These are 2616 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2617 unsigned LogicOpcode = MI.getOpcode(); 2618 assert(LogicOpcode == TargetOpcode::G_AND || 2619 LogicOpcode == TargetOpcode::G_OR || 2620 LogicOpcode == TargetOpcode::G_XOR); 2621 MachineIRBuilder MIB(MI); 2622 Register Dst = MI.getOperand(0).getReg(); 2623 Register LHSReg = MI.getOperand(1).getReg(); 2624 Register RHSReg = MI.getOperand(2).getReg(); 2625 2626 // Don't recompute anything. 2627 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2628 return false; 2629 2630 // Make sure we have (hand x, ...), (hand y, ...) 2631 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2632 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2633 if (!LeftHandInst || !RightHandInst) 2634 return false; 2635 unsigned HandOpcode = LeftHandInst->getOpcode(); 2636 if (HandOpcode != RightHandInst->getOpcode()) 2637 return false; 2638 if (!LeftHandInst->getOperand(1).isReg() || 2639 !RightHandInst->getOperand(1).isReg()) 2640 return false; 2641 2642 // Make sure the types match up, and if we're doing this post-legalization, 2643 // we end up with legal types. 2644 Register X = LeftHandInst->getOperand(1).getReg(); 2645 Register Y = RightHandInst->getOperand(1).getReg(); 2646 LLT XTy = MRI.getType(X); 2647 LLT YTy = MRI.getType(Y); 2648 if (XTy != YTy) 2649 return false; 2650 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2651 return false; 2652 2653 // Optional extra source register. 2654 Register ExtraHandOpSrcReg; 2655 switch (HandOpcode) { 2656 default: 2657 return false; 2658 case TargetOpcode::G_ANYEXT: 2659 case TargetOpcode::G_SEXT: 2660 case TargetOpcode::G_ZEXT: { 2661 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2662 break; 2663 } 2664 case TargetOpcode::G_AND: 2665 case TargetOpcode::G_ASHR: 2666 case TargetOpcode::G_LSHR: 2667 case TargetOpcode::G_SHL: { 2668 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2669 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2670 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2671 return false; 2672 ExtraHandOpSrcReg = ZOp.getReg(); 2673 break; 2674 } 2675 } 2676 2677 // Record the steps to build the new instructions. 2678 // 2679 // Steps to build (logic x, y) 2680 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2681 OperandBuildSteps LogicBuildSteps = { 2682 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2683 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2684 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2685 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2686 2687 // Steps to build hand (logic x, y), ...z 2688 OperandBuildSteps HandBuildSteps = { 2689 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2690 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2691 if (ExtraHandOpSrcReg.isValid()) 2692 HandBuildSteps.push_back( 2693 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2694 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2695 2696 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2697 return true; 2698 } 2699 2700 void CombinerHelper::applyBuildInstructionSteps( 2701 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2702 assert(MatchInfo.InstrsToBuild.size() && 2703 "Expected at least one instr to build?"); 2704 Builder.setInstr(MI); 2705 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2706 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2707 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2708 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2709 for (auto &OperandFn : InstrToBuild.OperandFns) 2710 OperandFn(Instr); 2711 } 2712 MI.eraseFromParent(); 2713 } 2714 2715 bool CombinerHelper::matchAshrShlToSextInreg( 2716 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2717 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2718 int64_t ShlCst, AshrCst; 2719 Register Src; 2720 // FIXME: detect splat constant vectors. 2721 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2722 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2723 return false; 2724 if (ShlCst != AshrCst) 2725 return false; 2726 if (!isLegalOrBeforeLegalizer( 2727 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2728 return false; 2729 MatchInfo = std::make_tuple(Src, ShlCst); 2730 return true; 2731 } 2732 2733 void CombinerHelper::applyAshShlToSextInreg( 2734 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2735 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2736 Register Src; 2737 int64_t ShiftAmt; 2738 std::tie(Src, ShiftAmt) = MatchInfo; 2739 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2740 Builder.setInstrAndDebugLoc(MI); 2741 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2742 MI.eraseFromParent(); 2743 } 2744 2745 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 2746 bool CombinerHelper::matchOverlappingAnd( 2747 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 2748 assert(MI.getOpcode() == TargetOpcode::G_AND); 2749 2750 Register Dst = MI.getOperand(0).getReg(); 2751 LLT Ty = MRI.getType(Dst); 2752 2753 Register R; 2754 int64_t C1; 2755 int64_t C2; 2756 if (!mi_match( 2757 Dst, MRI, 2758 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 2759 return false; 2760 2761 MatchInfo = [=](MachineIRBuilder &B) { 2762 if (C1 & C2) { 2763 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 2764 return; 2765 } 2766 auto Zero = B.buildConstant(Ty, 0); 2767 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 2768 }; 2769 return true; 2770 } 2771 2772 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2773 Register &Replacement) { 2774 // Given 2775 // 2776 // %y:_(sN) = G_SOMETHING 2777 // %x:_(sN) = G_SOMETHING 2778 // %res:_(sN) = G_AND %x, %y 2779 // 2780 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 2781 // 2782 // Patterns like this can appear as a result of legalization. E.g. 2783 // 2784 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2785 // %one:_(s32) = G_CONSTANT i32 1 2786 // %and:_(s32) = G_AND %cmp, %one 2787 // 2788 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2789 assert(MI.getOpcode() == TargetOpcode::G_AND); 2790 if (!KB) 2791 return false; 2792 2793 Register AndDst = MI.getOperand(0).getReg(); 2794 LLT DstTy = MRI.getType(AndDst); 2795 2796 // FIXME: This should be removed once GISelKnownBits supports vectors. 2797 if (DstTy.isVector()) 2798 return false; 2799 2800 Register LHS = MI.getOperand(1).getReg(); 2801 Register RHS = MI.getOperand(2).getReg(); 2802 KnownBits LHSBits = KB->getKnownBits(LHS); 2803 KnownBits RHSBits = KB->getKnownBits(RHS); 2804 2805 // Check that x & Mask == x. 2806 // x & 1 == x, always 2807 // x & 0 == x, only if x is also 0 2808 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 2809 // 2810 // Check if we can replace AndDst with the LHS of the G_AND 2811 if (canReplaceReg(AndDst, LHS, MRI) && 2812 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2813 Replacement = LHS; 2814 return true; 2815 } 2816 2817 // Check if we can replace AndDst with the RHS of the G_AND 2818 if (canReplaceReg(AndDst, RHS, MRI) && 2819 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2820 Replacement = RHS; 2821 return true; 2822 } 2823 2824 return false; 2825 } 2826 2827 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 2828 // Given 2829 // 2830 // %y:_(sN) = G_SOMETHING 2831 // %x:_(sN) = G_SOMETHING 2832 // %res:_(sN) = G_OR %x, %y 2833 // 2834 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 2835 assert(MI.getOpcode() == TargetOpcode::G_OR); 2836 if (!KB) 2837 return false; 2838 2839 Register OrDst = MI.getOperand(0).getReg(); 2840 LLT DstTy = MRI.getType(OrDst); 2841 2842 // FIXME: This should be removed once GISelKnownBits supports vectors. 2843 if (DstTy.isVector()) 2844 return false; 2845 2846 Register LHS = MI.getOperand(1).getReg(); 2847 Register RHS = MI.getOperand(2).getReg(); 2848 KnownBits LHSBits = KB->getKnownBits(LHS); 2849 KnownBits RHSBits = KB->getKnownBits(RHS); 2850 2851 // Check that x | Mask == x. 2852 // x | 0 == x, always 2853 // x | 1 == x, only if x is also 1 2854 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 2855 // 2856 // Check if we can replace OrDst with the LHS of the G_OR 2857 if (canReplaceReg(OrDst, LHS, MRI) && 2858 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2859 Replacement = LHS; 2860 return true; 2861 } 2862 2863 // Check if we can replace OrDst with the RHS of the G_OR 2864 if (canReplaceReg(OrDst, RHS, MRI) && 2865 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2866 Replacement = RHS; 2867 return true; 2868 } 2869 2870 return false; 2871 } 2872 2873 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 2874 // If the input is already sign extended, just drop the extension. 2875 Register Src = MI.getOperand(1).getReg(); 2876 unsigned ExtBits = MI.getOperand(2).getImm(); 2877 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 2878 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 2879 } 2880 2881 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 2882 int64_t Cst, bool IsVector, bool IsFP) { 2883 // For i1, Cst will always be -1 regardless of boolean contents. 2884 return (ScalarSizeBits == 1 && Cst == -1) || 2885 isConstTrueVal(TLI, Cst, IsVector, IsFP); 2886 } 2887 2888 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 2889 SmallVectorImpl<Register> &RegsToNegate) { 2890 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2891 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2892 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 2893 Register XorSrc; 2894 Register CstReg; 2895 // We match xor(src, true) here. 2896 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2897 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 2898 return false; 2899 2900 if (!MRI.hasOneNonDBGUse(XorSrc)) 2901 return false; 2902 2903 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 2904 // and ORs. The suffix of RegsToNegate starting from index I is used a work 2905 // list of tree nodes to visit. 2906 RegsToNegate.push_back(XorSrc); 2907 // Remember whether the comparisons are all integer or all floating point. 2908 bool IsInt = false; 2909 bool IsFP = false; 2910 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 2911 Register Reg = RegsToNegate[I]; 2912 if (!MRI.hasOneNonDBGUse(Reg)) 2913 return false; 2914 MachineInstr *Def = MRI.getVRegDef(Reg); 2915 switch (Def->getOpcode()) { 2916 default: 2917 // Don't match if the tree contains anything other than ANDs, ORs and 2918 // comparisons. 2919 return false; 2920 case TargetOpcode::G_ICMP: 2921 if (IsFP) 2922 return false; 2923 IsInt = true; 2924 // When we apply the combine we will invert the predicate. 2925 break; 2926 case TargetOpcode::G_FCMP: 2927 if (IsInt) 2928 return false; 2929 IsFP = true; 2930 // When we apply the combine we will invert the predicate. 2931 break; 2932 case TargetOpcode::G_AND: 2933 case TargetOpcode::G_OR: 2934 // Implement De Morgan's laws: 2935 // ~(x & y) -> ~x | ~y 2936 // ~(x | y) -> ~x & ~y 2937 // When we apply the combine we will change the opcode and recursively 2938 // negate the operands. 2939 RegsToNegate.push_back(Def->getOperand(1).getReg()); 2940 RegsToNegate.push_back(Def->getOperand(2).getReg()); 2941 break; 2942 } 2943 } 2944 2945 // Now we know whether the comparisons are integer or floating point, check 2946 // the constant in the xor. 2947 int64_t Cst; 2948 if (Ty.isVector()) { 2949 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 2950 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 2951 if (!MaybeCst) 2952 return false; 2953 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 2954 return false; 2955 } else { 2956 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 2957 return false; 2958 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 2959 return false; 2960 } 2961 2962 return true; 2963 } 2964 2965 void CombinerHelper::applyNotCmp(MachineInstr &MI, 2966 SmallVectorImpl<Register> &RegsToNegate) { 2967 for (Register Reg : RegsToNegate) { 2968 MachineInstr *Def = MRI.getVRegDef(Reg); 2969 Observer.changingInstr(*Def); 2970 // For each comparison, invert the opcode. For each AND and OR, change the 2971 // opcode. 2972 switch (Def->getOpcode()) { 2973 default: 2974 llvm_unreachable("Unexpected opcode"); 2975 case TargetOpcode::G_ICMP: 2976 case TargetOpcode::G_FCMP: { 2977 MachineOperand &PredOp = Def->getOperand(1); 2978 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 2979 (CmpInst::Predicate)PredOp.getPredicate()); 2980 PredOp.setPredicate(NewP); 2981 break; 2982 } 2983 case TargetOpcode::G_AND: 2984 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 2985 break; 2986 case TargetOpcode::G_OR: 2987 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2988 break; 2989 } 2990 Observer.changedInstr(*Def); 2991 } 2992 2993 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 2994 MI.eraseFromParent(); 2995 } 2996 2997 bool CombinerHelper::matchXorOfAndWithSameReg( 2998 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2999 // Match (xor (and x, y), y) (or any of its commuted cases) 3000 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3001 Register &X = MatchInfo.first; 3002 Register &Y = MatchInfo.second; 3003 Register AndReg = MI.getOperand(1).getReg(); 3004 Register SharedReg = MI.getOperand(2).getReg(); 3005 3006 // Find a G_AND on either side of the G_XOR. 3007 // Look for one of 3008 // 3009 // (xor (and x, y), SharedReg) 3010 // (xor SharedReg, (and x, y)) 3011 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3012 std::swap(AndReg, SharedReg); 3013 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3014 return false; 3015 } 3016 3017 // Only do this if we'll eliminate the G_AND. 3018 if (!MRI.hasOneNonDBGUse(AndReg)) 3019 return false; 3020 3021 // We can combine if SharedReg is the same as either the LHS or RHS of the 3022 // G_AND. 3023 if (Y != SharedReg) 3024 std::swap(X, Y); 3025 return Y == SharedReg; 3026 } 3027 3028 void CombinerHelper::applyXorOfAndWithSameReg( 3029 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3030 // Fold (xor (and x, y), y) -> (and (not x), y) 3031 Builder.setInstrAndDebugLoc(MI); 3032 Register X, Y; 3033 std::tie(X, Y) = MatchInfo; 3034 auto Not = Builder.buildNot(MRI.getType(X), X); 3035 Observer.changingInstr(MI); 3036 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3037 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3038 MI.getOperand(2).setReg(Y); 3039 Observer.changedInstr(MI); 3040 } 3041 3042 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3043 auto &PtrAdd = cast<GPtrAdd>(MI); 3044 Register DstReg = PtrAdd.getReg(0); 3045 LLT Ty = MRI.getType(DstReg); 3046 const DataLayout &DL = Builder.getMF().getDataLayout(); 3047 3048 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3049 return false; 3050 3051 if (Ty.isPointer()) { 3052 auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI); 3053 return ConstVal && *ConstVal == 0; 3054 } 3055 3056 assert(Ty.isVector() && "Expecting a vector type"); 3057 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 3058 return isBuildVectorAllZeros(*VecMI, MRI); 3059 } 3060 3061 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3062 auto &PtrAdd = cast<GPtrAdd>(MI); 3063 Builder.setInstrAndDebugLoc(PtrAdd); 3064 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 3065 PtrAdd.eraseFromParent(); 3066 } 3067 3068 /// The second source operand is known to be a power of 2. 3069 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3070 Register DstReg = MI.getOperand(0).getReg(); 3071 Register Src0 = MI.getOperand(1).getReg(); 3072 Register Pow2Src1 = MI.getOperand(2).getReg(); 3073 LLT Ty = MRI.getType(DstReg); 3074 Builder.setInstrAndDebugLoc(MI); 3075 3076 // Fold (urem x, pow2) -> (and x, pow2-1) 3077 auto NegOne = Builder.buildConstant(Ty, -1); 3078 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3079 Builder.buildAnd(DstReg, Src0, Add); 3080 MI.eraseFromParent(); 3081 } 3082 3083 Optional<SmallVector<Register, 8>> 3084 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3085 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3086 // We want to detect if Root is part of a tree which represents a bunch 3087 // of loads being merged into a larger load. We'll try to recognize patterns 3088 // like, for example: 3089 // 3090 // Reg Reg 3091 // \ / 3092 // OR_1 Reg 3093 // \ / 3094 // OR_2 3095 // \ Reg 3096 // .. / 3097 // Root 3098 // 3099 // Reg Reg Reg Reg 3100 // \ / \ / 3101 // OR_1 OR_2 3102 // \ / 3103 // \ / 3104 // ... 3105 // Root 3106 // 3107 // Each "Reg" may have been produced by a load + some arithmetic. This 3108 // function will save each of them. 3109 SmallVector<Register, 8> RegsToVisit; 3110 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3111 3112 // In the "worst" case, we're dealing with a load for each byte. So, there 3113 // are at most #bytes - 1 ORs. 3114 const unsigned MaxIter = 3115 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3116 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3117 if (Ors.empty()) 3118 break; 3119 const MachineInstr *Curr = Ors.pop_back_val(); 3120 Register OrLHS = Curr->getOperand(1).getReg(); 3121 Register OrRHS = Curr->getOperand(2).getReg(); 3122 3123 // In the combine, we want to elimate the entire tree. 3124 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3125 return None; 3126 3127 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3128 // something that may be a load + arithmetic. 3129 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3130 Ors.push_back(Or); 3131 else 3132 RegsToVisit.push_back(OrLHS); 3133 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3134 Ors.push_back(Or); 3135 else 3136 RegsToVisit.push_back(OrRHS); 3137 } 3138 3139 // We're going to try and merge each register into a wider power-of-2 type, 3140 // so we ought to have an even number of registers. 3141 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3142 return None; 3143 return RegsToVisit; 3144 } 3145 3146 /// Helper function for findLoadOffsetsForLoadOrCombine. 3147 /// 3148 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3149 /// and then moving that value into a specific byte offset. 3150 /// 3151 /// e.g. x[i] << 24 3152 /// 3153 /// \returns The load instruction and the byte offset it is moved into. 3154 static Optional<std::pair<GZExtLoad *, int64_t>> 3155 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3156 const MachineRegisterInfo &MRI) { 3157 assert(MRI.hasOneNonDBGUse(Reg) && 3158 "Expected Reg to only have one non-debug use?"); 3159 Register MaybeLoad; 3160 int64_t Shift; 3161 if (!mi_match(Reg, MRI, 3162 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3163 Shift = 0; 3164 MaybeLoad = Reg; 3165 } 3166 3167 if (Shift % MemSizeInBits != 0) 3168 return None; 3169 3170 // TODO: Handle other types of loads. 3171 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3172 if (!Load) 3173 return None; 3174 3175 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3176 return None; 3177 3178 return std::make_pair(Load, Shift / MemSizeInBits); 3179 } 3180 3181 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3182 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3183 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3184 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3185 3186 // Each load found for the pattern. There should be one for each RegsToVisit. 3187 SmallSetVector<const MachineInstr *, 8> Loads; 3188 3189 // The lowest index used in any load. (The lowest "i" for each x[i].) 3190 int64_t LowestIdx = INT64_MAX; 3191 3192 // The load which uses the lowest index. 3193 GZExtLoad *LowestIdxLoad = nullptr; 3194 3195 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3196 SmallSet<int64_t, 8> SeenIdx; 3197 3198 // Ensure each load is in the same MBB. 3199 // TODO: Support multiple MachineBasicBlocks. 3200 MachineBasicBlock *MBB = nullptr; 3201 const MachineMemOperand *MMO = nullptr; 3202 3203 // Earliest instruction-order load in the pattern. 3204 GZExtLoad *EarliestLoad = nullptr; 3205 3206 // Latest instruction-order load in the pattern. 3207 GZExtLoad *LatestLoad = nullptr; 3208 3209 // Base pointer which every load should share. 3210 Register BasePtr; 3211 3212 // We want to find a load for each register. Each load should have some 3213 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3214 // track of the load which uses the lowest index. Later, we will check if we 3215 // can use its pointer in the final, combined load. 3216 for (auto Reg : RegsToVisit) { 3217 // Find the load, and find the position that it will end up in (e.g. a 3218 // shifted) value. 3219 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3220 if (!LoadAndPos) 3221 return None; 3222 GZExtLoad *Load; 3223 int64_t DstPos; 3224 std::tie(Load, DstPos) = *LoadAndPos; 3225 3226 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3227 // it is difficult to check for stores/calls/etc between loads. 3228 MachineBasicBlock *LoadMBB = Load->getParent(); 3229 if (!MBB) 3230 MBB = LoadMBB; 3231 if (LoadMBB != MBB) 3232 return None; 3233 3234 // Make sure that the MachineMemOperands of every seen load are compatible. 3235 auto &LoadMMO = Load->getMMO(); 3236 if (!MMO) 3237 MMO = &LoadMMO; 3238 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3239 return None; 3240 3241 // Find out what the base pointer and index for the load is. 3242 Register LoadPtr; 3243 int64_t Idx; 3244 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3245 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3246 LoadPtr = Load->getOperand(1).getReg(); 3247 Idx = 0; 3248 } 3249 3250 // Don't combine things like a[i], a[i] -> a bigger load. 3251 if (!SeenIdx.insert(Idx).second) 3252 return None; 3253 3254 // Every load must share the same base pointer; don't combine things like: 3255 // 3256 // a[i], b[i + 1] -> a bigger load. 3257 if (!BasePtr.isValid()) 3258 BasePtr = LoadPtr; 3259 if (BasePtr != LoadPtr) 3260 return None; 3261 3262 if (Idx < LowestIdx) { 3263 LowestIdx = Idx; 3264 LowestIdxLoad = Load; 3265 } 3266 3267 // Keep track of the byte offset that this load ends up at. If we have seen 3268 // the byte offset, then stop here. We do not want to combine: 3269 // 3270 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3271 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3272 return None; 3273 Loads.insert(Load); 3274 3275 // Keep track of the position of the earliest/latest loads in the pattern. 3276 // We will check that there are no load fold barriers between them later 3277 // on. 3278 // 3279 // FIXME: Is there a better way to check for load fold barriers? 3280 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3281 EarliestLoad = Load; 3282 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3283 LatestLoad = Load; 3284 } 3285 3286 // We found a load for each register. Let's check if each load satisfies the 3287 // pattern. 3288 assert(Loads.size() == RegsToVisit.size() && 3289 "Expected to find a load for each register?"); 3290 assert(EarliestLoad != LatestLoad && EarliestLoad && 3291 LatestLoad && "Expected at least two loads?"); 3292 3293 // Check if there are any stores, calls, etc. between any of the loads. If 3294 // there are, then we can't safely perform the combine. 3295 // 3296 // MaxIter is chosen based off the (worst case) number of iterations it 3297 // typically takes to succeed in the LLVM test suite plus some padding. 3298 // 3299 // FIXME: Is there a better way to check for load fold barriers? 3300 const unsigned MaxIter = 20; 3301 unsigned Iter = 0; 3302 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3303 LatestLoad->getIterator())) { 3304 if (Loads.count(&MI)) 3305 continue; 3306 if (MI.isLoadFoldBarrier()) 3307 return None; 3308 if (Iter++ == MaxIter) 3309 return None; 3310 } 3311 3312 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3313 } 3314 3315 bool CombinerHelper::matchLoadOrCombine( 3316 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3317 assert(MI.getOpcode() == TargetOpcode::G_OR); 3318 MachineFunction &MF = *MI.getMF(); 3319 // Assuming a little-endian target, transform: 3320 // s8 *a = ... 3321 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3322 // => 3323 // s32 val = *((i32)a) 3324 // 3325 // s8 *a = ... 3326 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3327 // => 3328 // s32 val = BSWAP(*((s32)a)) 3329 Register Dst = MI.getOperand(0).getReg(); 3330 LLT Ty = MRI.getType(Dst); 3331 if (Ty.isVector()) 3332 return false; 3333 3334 // We need to combine at least two loads into this type. Since the smallest 3335 // possible load is into a byte, we need at least a 16-bit wide type. 3336 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3337 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3338 return false; 3339 3340 // Match a collection of non-OR instructions in the pattern. 3341 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3342 if (!RegsToVisit) 3343 return false; 3344 3345 // We have a collection of non-OR instructions. Figure out how wide each of 3346 // the small loads should be based off of the number of potential loads we 3347 // found. 3348 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3349 if (NarrowMemSizeInBits % 8 != 0) 3350 return false; 3351 3352 // Check if each register feeding into each OR is a load from the same 3353 // base pointer + some arithmetic. 3354 // 3355 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3356 // 3357 // Also verify that each of these ends up putting a[i] into the same memory 3358 // offset as a load into a wide type would. 3359 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3360 GZExtLoad *LowestIdxLoad, *LatestLoad; 3361 int64_t LowestIdx; 3362 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3363 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3364 if (!MaybeLoadInfo) 3365 return false; 3366 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3367 3368 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3369 // we found before, check if this corresponds to a big or little endian byte 3370 // pattern. If it does, then we can represent it using a load + possibly a 3371 // BSWAP. 3372 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3373 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3374 if (!IsBigEndian.hasValue()) 3375 return false; 3376 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3377 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3378 return false; 3379 3380 // Make sure that the load from the lowest index produces offset 0 in the 3381 // final value. 3382 // 3383 // This ensures that we won't combine something like this: 3384 // 3385 // load x[i] -> byte 2 3386 // load x[i+1] -> byte 0 ---> wide_load x[i] 3387 // load x[i+2] -> byte 1 3388 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3389 const unsigned ZeroByteOffset = 3390 *IsBigEndian 3391 ? bigEndianByteAt(NumLoadsInTy, 0) 3392 : littleEndianByteAt(NumLoadsInTy, 0); 3393 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3394 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3395 ZeroOffsetIdx->second != LowestIdx) 3396 return false; 3397 3398 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3399 // may not use index 0. 3400 Register Ptr = LowestIdxLoad->getPointerReg(); 3401 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3402 LegalityQuery::MemDesc MMDesc(MMO); 3403 MMDesc.MemoryTy = Ty; 3404 if (!isLegalOrBeforeLegalizer( 3405 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3406 return false; 3407 auto PtrInfo = MMO.getPointerInfo(); 3408 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3409 3410 // Load must be allowed and fast on the target. 3411 LLVMContext &C = MF.getFunction().getContext(); 3412 auto &DL = MF.getDataLayout(); 3413 bool Fast = false; 3414 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3415 !Fast) 3416 return false; 3417 3418 MatchInfo = [=](MachineIRBuilder &MIB) { 3419 MIB.setInstrAndDebugLoc(*LatestLoad); 3420 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3421 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3422 if (NeedsBSwap) 3423 MIB.buildBSwap(Dst, LoadDst); 3424 }; 3425 return true; 3426 } 3427 3428 /// Check if the store \p Store is a truncstore that can be merged. That is, 3429 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty 3430 /// Register then it does not need to match and SrcVal is set to the source 3431 /// value found. 3432 /// On match, returns the start byte offset of the \p SrcVal that is being 3433 /// stored. 3434 static Optional<int64_t> getTruncStoreByteOffset(GStore &Store, Register &SrcVal, 3435 MachineRegisterInfo &MRI) { 3436 Register TruncVal; 3437 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) 3438 return None; 3439 3440 // The shift amount must be a constant multiple of the narrow type. 3441 // It is translated to the offset address in the wide source value "y". 3442 // 3443 // x = G_LSHR y, ShiftAmtC 3444 // s8 z = G_TRUNC x 3445 // store z, ... 3446 Register FoundSrcVal; 3447 int64_t ShiftAmt; 3448 if (!mi_match(TruncVal, MRI, 3449 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), 3450 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { 3451 if (!SrcVal.isValid() || TruncVal == SrcVal) { 3452 if (!SrcVal.isValid()) 3453 SrcVal = TruncVal; 3454 return 0; // If it's the lowest index store. 3455 } 3456 return None; 3457 } 3458 3459 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); 3460 if (ShiftAmt % NarrowBits!= 0) 3461 return None; 3462 const unsigned Offset = ShiftAmt / NarrowBits; 3463 3464 if (SrcVal.isValid() && FoundSrcVal != SrcVal) 3465 return None; 3466 3467 if (!SrcVal.isValid()) 3468 SrcVal = FoundSrcVal; 3469 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) 3470 return None; 3471 return Offset; 3472 } 3473 3474 /// Match a pattern where a wide type scalar value is stored by several narrow 3475 /// stores. Fold it into a single store or a BSWAP and a store if the targets 3476 /// supports it. 3477 /// 3478 /// Assuming little endian target: 3479 /// i8 *p = ... 3480 /// i32 val = ... 3481 /// p[0] = (val >> 0) & 0xFF; 3482 /// p[1] = (val >> 8) & 0xFF; 3483 /// p[2] = (val >> 16) & 0xFF; 3484 /// p[3] = (val >> 24) & 0xFF; 3485 /// => 3486 /// *((i32)p) = val; 3487 /// 3488 /// i8 *p = ... 3489 /// i32 val = ... 3490 /// p[0] = (val >> 24) & 0xFF; 3491 /// p[1] = (val >> 16) & 0xFF; 3492 /// p[2] = (val >> 8) & 0xFF; 3493 /// p[3] = (val >> 0) & 0xFF; 3494 /// => 3495 /// *((i32)p) = BSWAP(val); 3496 bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI, 3497 MergeTruncStoresInfo &MatchInfo) { 3498 auto &StoreMI = cast<GStore>(MI); 3499 LLT MemTy = StoreMI.getMMO().getMemoryType(); 3500 3501 // We only handle merging simple stores of 1-4 bytes. 3502 if (!MemTy.isScalar()) 3503 return false; 3504 switch (MemTy.getSizeInBits()) { 3505 case 8: 3506 case 16: 3507 case 32: 3508 break; 3509 default: 3510 return false; 3511 } 3512 if (!StoreMI.isSimple()) 3513 return false; 3514 3515 // We do a simple search for mergeable stores prior to this one. 3516 // Any potential alias hazard along the way terminates the search. 3517 SmallVector<GStore *> FoundStores; 3518 3519 // We're looking for: 3520 // 1) a (store(trunc(...))) 3521 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get 3522 // the partial value stored. 3523 // 3) where the offsets form either a little or big-endian sequence. 3524 3525 auto &LastStore = StoreMI; 3526 3527 // The single base pointer that all stores must use. 3528 Register BaseReg; 3529 int64_t LastOffset; 3530 if (!mi_match(LastStore.getPointerReg(), MRI, 3531 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { 3532 BaseReg = LastStore.getPointerReg(); 3533 LastOffset = 0; 3534 } 3535 3536 GStore *LowestIdxStore = &LastStore; 3537 int64_t LowestIdxOffset = LastOffset; 3538 3539 Register WideSrcVal; 3540 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI); 3541 if (!LowestShiftAmt) 3542 return false; // Didn't match a trunc. 3543 assert(WideSrcVal.isValid()); 3544 3545 LLT WideStoreTy = MRI.getType(WideSrcVal); 3546 // The wide type might not be a multiple of the memory type, e.g. s48 and s32. 3547 if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0) 3548 return false; 3549 const unsigned NumStoresRequired = 3550 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); 3551 3552 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); 3553 OffsetMap[*LowestShiftAmt] = LastOffset; 3554 FoundStores.emplace_back(&LastStore); 3555 3556 // Search the block up for more stores. 3557 // We use a search threshold of 10 instructions here because the combiner 3558 // works top-down within a block, and we don't want to search an unbounded 3559 // number of predecessor instructions trying to find matching stores. 3560 // If we moved this optimization into a separate pass then we could probably 3561 // use a more efficient search without having a hard-coded threshold. 3562 const int MaxInstsToCheck = 10; 3563 int NumInstsChecked = 0; 3564 for (auto II = ++LastStore.getReverseIterator(); 3565 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; 3566 ++II) { 3567 NumInstsChecked++; 3568 GStore *NewStore; 3569 if ((NewStore = dyn_cast<GStore>(&*II))) { 3570 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) 3571 break; 3572 } else if (II->isLoadFoldBarrier() || II->mayLoad()) { 3573 break; 3574 } else { 3575 continue; // This is a safe instruction we can look past. 3576 } 3577 3578 Register NewBaseReg; 3579 int64_t MemOffset; 3580 // Check we're storing to the same base + some offset. 3581 if (!mi_match(NewStore->getPointerReg(), MRI, 3582 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { 3583 NewBaseReg = NewStore->getPointerReg(); 3584 MemOffset = 0; 3585 } 3586 if (BaseReg != NewBaseReg) 3587 break; 3588 3589 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI); 3590 if (!ShiftByteOffset) 3591 break; 3592 if (MemOffset < LowestIdxOffset) { 3593 LowestIdxOffset = MemOffset; 3594 LowestIdxStore = NewStore; 3595 } 3596 3597 // Map the offset in the store and the offset in the combined value, and 3598 // early return if it has been set before. 3599 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || 3600 OffsetMap[*ShiftByteOffset] != INT64_MAX) 3601 break; 3602 OffsetMap[*ShiftByteOffset] = MemOffset; 3603 3604 FoundStores.emplace_back(NewStore); 3605 // Reset counter since we've found a matching inst. 3606 NumInstsChecked = 0; 3607 if (FoundStores.size() == NumStoresRequired) 3608 break; 3609 } 3610 3611 if (FoundStores.size() != NumStoresRequired) { 3612 return false; 3613 } 3614 3615 const auto &DL = LastStore.getMF()->getDataLayout(); 3616 auto &C = LastStore.getMF()->getFunction().getContext(); 3617 // Check that a store of the wide type is both allowed and fast on the target 3618 bool Fast = false; 3619 bool Allowed = getTargetLowering().allowsMemoryAccess( 3620 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); 3621 if (!Allowed || !Fast) 3622 return false; 3623 3624 // Check if the pieces of the value are going to the expected places in memory 3625 // to merge the stores. 3626 unsigned NarrowBits = MemTy.getScalarSizeInBits(); 3627 auto checkOffsets = [&](bool MatchLittleEndian) { 3628 if (MatchLittleEndian) { 3629 for (unsigned i = 0; i != NumStoresRequired; ++i) 3630 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) 3631 return false; 3632 } else { // MatchBigEndian by reversing loop counter. 3633 for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired; 3634 ++i, --j) 3635 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) 3636 return false; 3637 } 3638 return true; 3639 }; 3640 3641 // Check if the offsets line up for the native data layout of this target. 3642 bool NeedBswap = false; 3643 bool NeedRotate = false; 3644 if (!checkOffsets(DL.isLittleEndian())) { 3645 // Special-case: check if byte offsets line up for the opposite endian. 3646 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) 3647 NeedBswap = true; 3648 else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian())) 3649 NeedRotate = true; 3650 else 3651 return false; 3652 } 3653 3654 if (NeedBswap && 3655 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}})) 3656 return false; 3657 if (NeedRotate && 3658 !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}})) 3659 return false; 3660 3661 MatchInfo.NeedBSwap = NeedBswap; 3662 MatchInfo.NeedRotate = NeedRotate; 3663 MatchInfo.LowestIdxStore = LowestIdxStore; 3664 MatchInfo.WideSrcVal = WideSrcVal; 3665 MatchInfo.FoundStores = std::move(FoundStores); 3666 return true; 3667 } 3668 3669 void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI, 3670 MergeTruncStoresInfo &MatchInfo) { 3671 3672 Builder.setInstrAndDebugLoc(MI); 3673 Register WideSrcVal = MatchInfo.WideSrcVal; 3674 LLT WideStoreTy = MRI.getType(WideSrcVal); 3675 3676 if (MatchInfo.NeedBSwap) { 3677 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); 3678 } else if (MatchInfo.NeedRotate) { 3679 assert(WideStoreTy.getSizeInBits() % 2 == 0 && 3680 "Unexpected type for rotate"); 3681 auto RotAmt = 3682 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); 3683 WideSrcVal = 3684 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); 3685 } 3686 3687 Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(), 3688 MatchInfo.LowestIdxStore->getMMO().getPointerInfo(), 3689 MatchInfo.LowestIdxStore->getMMO().getAlign()); 3690 3691 // Erase the old stores. 3692 for (auto *ST : MatchInfo.FoundStores) 3693 ST->eraseFromParent(); 3694 } 3695 3696 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3697 MachineInstr *&ExtMI) { 3698 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3699 3700 Register DstReg = MI.getOperand(0).getReg(); 3701 3702 // TODO: Extending a vector may be expensive, don't do this until heuristics 3703 // are better. 3704 if (MRI.getType(DstReg).isVector()) 3705 return false; 3706 3707 // Try to match a phi, whose only use is an extend. 3708 if (!MRI.hasOneNonDBGUse(DstReg)) 3709 return false; 3710 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3711 switch (ExtMI->getOpcode()) { 3712 case TargetOpcode::G_ANYEXT: 3713 return true; // G_ANYEXT is usually free. 3714 case TargetOpcode::G_ZEXT: 3715 case TargetOpcode::G_SEXT: 3716 break; 3717 default: 3718 return false; 3719 } 3720 3721 // If the target is likely to fold this extend away, don't propagate. 3722 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3723 return false; 3724 3725 // We don't want to propagate the extends unless there's a good chance that 3726 // they'll be optimized in some way. 3727 // Collect the unique incoming values. 3728 SmallPtrSet<MachineInstr *, 4> InSrcs; 3729 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3730 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3731 switch (DefMI->getOpcode()) { 3732 case TargetOpcode::G_LOAD: 3733 case TargetOpcode::G_TRUNC: 3734 case TargetOpcode::G_SEXT: 3735 case TargetOpcode::G_ZEXT: 3736 case TargetOpcode::G_ANYEXT: 3737 case TargetOpcode::G_CONSTANT: 3738 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3739 // Don't try to propagate if there are too many places to create new 3740 // extends, chances are it'll increase code size. 3741 if (InSrcs.size() > 2) 3742 return false; 3743 break; 3744 default: 3745 return false; 3746 } 3747 } 3748 return true; 3749 } 3750 3751 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3752 MachineInstr *&ExtMI) { 3753 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3754 Register DstReg = ExtMI->getOperand(0).getReg(); 3755 LLT ExtTy = MRI.getType(DstReg); 3756 3757 // Propagate the extension into the block of each incoming reg's block. 3758 // Use a SetVector here because PHIs can have duplicate edges, and we want 3759 // deterministic iteration order. 3760 SmallSetVector<MachineInstr *, 8> SrcMIs; 3761 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3762 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3763 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3764 if (!SrcMIs.insert(SrcMI)) 3765 continue; 3766 3767 // Build an extend after each src inst. 3768 auto *MBB = SrcMI->getParent(); 3769 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3770 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3771 InsertPt = MBB->getFirstNonPHI(); 3772 3773 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3774 Builder.setDebugLoc(MI.getDebugLoc()); 3775 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3776 SrcMI->getOperand(0).getReg()); 3777 OldToNewSrcMap[SrcMI] = NewExt; 3778 } 3779 3780 // Create a new phi with the extended inputs. 3781 Builder.setInstrAndDebugLoc(MI); 3782 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3783 NewPhi.addDef(DstReg); 3784 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 3785 if (!MO.isReg()) { 3786 NewPhi.addMBB(MO.getMBB()); 3787 continue; 3788 } 3789 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3790 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3791 } 3792 Builder.insertInstr(NewPhi); 3793 ExtMI->eraseFromParent(); 3794 } 3795 3796 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3797 Register &Reg) { 3798 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3799 // If we have a constant index, look for a G_BUILD_VECTOR source 3800 // and find the source register that the index maps to. 3801 Register SrcVec = MI.getOperand(1).getReg(); 3802 LLT SrcTy = MRI.getType(SrcVec); 3803 if (!isLegalOrBeforeLegalizer( 3804 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3805 return false; 3806 3807 auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3808 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3809 return false; 3810 3811 unsigned VecIdx = Cst->Value.getZExtValue(); 3812 MachineInstr *BuildVecMI = 3813 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3814 if (!BuildVecMI) { 3815 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3816 if (!BuildVecMI) 3817 return false; 3818 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3819 if (!isLegalOrBeforeLegalizer( 3820 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3821 return false; 3822 } 3823 3824 EVT Ty(getMVTForLLT(SrcTy)); 3825 if (!MRI.hasOneNonDBGUse(SrcVec) && 3826 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3827 return false; 3828 3829 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3830 return true; 3831 } 3832 3833 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3834 Register &Reg) { 3835 // Check the type of the register, since it may have come from a 3836 // G_BUILD_VECTOR_TRUNC. 3837 LLT ScalarTy = MRI.getType(Reg); 3838 Register DstReg = MI.getOperand(0).getReg(); 3839 LLT DstTy = MRI.getType(DstReg); 3840 3841 Builder.setInstrAndDebugLoc(MI); 3842 if (ScalarTy != DstTy) { 3843 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3844 Builder.buildTrunc(DstReg, Reg); 3845 MI.eraseFromParent(); 3846 return; 3847 } 3848 replaceSingleDefInstWithReg(MI, Reg); 3849 } 3850 3851 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3852 MachineInstr &MI, 3853 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3854 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3855 // This combine tries to find build_vector's which have every source element 3856 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3857 // the masked load scalarization is run late in the pipeline. There's already 3858 // a combine for a similar pattern starting from the extract, but that 3859 // doesn't attempt to do it if there are multiple uses of the build_vector, 3860 // which in this case is true. Starting the combine from the build_vector 3861 // feels more natural than trying to find sibling nodes of extracts. 3862 // E.g. 3863 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3864 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3865 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3866 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3867 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3868 // ==> 3869 // replace ext{1,2,3,4} with %s{1,2,3,4} 3870 3871 Register DstReg = MI.getOperand(0).getReg(); 3872 LLT DstTy = MRI.getType(DstReg); 3873 unsigned NumElts = DstTy.getNumElements(); 3874 3875 SmallBitVector ExtractedElts(NumElts); 3876 for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) { 3877 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3878 return false; 3879 auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI); 3880 if (!Cst) 3881 return false; 3882 unsigned Idx = Cst.getValue().getZExtValue(); 3883 if (Idx >= NumElts) 3884 return false; // Out of range. 3885 ExtractedElts.set(Idx); 3886 SrcDstPairs.emplace_back( 3887 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3888 } 3889 // Match if every element was extracted. 3890 return ExtractedElts.all(); 3891 } 3892 3893 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3894 MachineInstr &MI, 3895 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3896 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3897 for (auto &Pair : SrcDstPairs) { 3898 auto *ExtMI = Pair.second; 3899 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3900 ExtMI->eraseFromParent(); 3901 } 3902 MI.eraseFromParent(); 3903 } 3904 3905 void CombinerHelper::applyBuildFn( 3906 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3907 Builder.setInstrAndDebugLoc(MI); 3908 MatchInfo(Builder); 3909 MI.eraseFromParent(); 3910 } 3911 3912 void CombinerHelper::applyBuildFnNoErase( 3913 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3914 Builder.setInstrAndDebugLoc(MI); 3915 MatchInfo(Builder); 3916 } 3917 3918 bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI, 3919 BuildFnTy &MatchInfo) { 3920 assert(MI.getOpcode() == TargetOpcode::G_OR); 3921 3922 Register Dst = MI.getOperand(0).getReg(); 3923 LLT Ty = MRI.getType(Dst); 3924 unsigned BitWidth = Ty.getScalarSizeInBits(); 3925 3926 Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt; 3927 unsigned FshOpc = 0; 3928 3929 // Match (or (shl ...), (lshr ...)). 3930 if (!mi_match(Dst, MRI, 3931 // m_GOr() handles the commuted version as well. 3932 m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)), 3933 m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt))))) 3934 return false; 3935 3936 // Given constants C0 and C1 such that C0 + C1 is bit-width: 3937 // (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1) 3938 // TODO: Match constant splat. 3939 int64_t CstShlAmt, CstLShrAmt; 3940 if (mi_match(ShlAmt, MRI, m_ICst(CstShlAmt)) && 3941 mi_match(LShrAmt, MRI, m_ICst(CstLShrAmt)) && 3942 CstShlAmt + CstLShrAmt == BitWidth) { 3943 FshOpc = TargetOpcode::G_FSHR; 3944 Amt = LShrAmt; 3945 3946 } else if (mi_match(LShrAmt, MRI, 3947 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && 3948 ShlAmt == Amt) { 3949 // (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt) 3950 FshOpc = TargetOpcode::G_FSHL; 3951 3952 } else if (mi_match(ShlAmt, MRI, 3953 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && 3954 LShrAmt == Amt) { 3955 // (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt) 3956 FshOpc = TargetOpcode::G_FSHR; 3957 3958 } else { 3959 return false; 3960 } 3961 3962 LLT AmtTy = MRI.getType(Amt); 3963 if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}})) 3964 return false; 3965 3966 MatchInfo = [=](MachineIRBuilder &B) { 3967 B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt}); 3968 }; 3969 return true; 3970 } 3971 3972 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3973 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3974 unsigned Opc = MI.getOpcode(); 3975 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3976 Register X = MI.getOperand(1).getReg(); 3977 Register Y = MI.getOperand(2).getReg(); 3978 if (X != Y) 3979 return false; 3980 unsigned RotateOpc = 3981 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3982 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3983 } 3984 3985 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3986 unsigned Opc = MI.getOpcode(); 3987 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3988 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3989 Observer.changingInstr(MI); 3990 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3991 : TargetOpcode::G_ROTR)); 3992 MI.RemoveOperand(2); 3993 Observer.changedInstr(MI); 3994 } 3995 3996 // Fold (rot x, c) -> (rot x, c % BitSize) 3997 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3998 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3999 MI.getOpcode() == TargetOpcode::G_ROTR); 4000 unsigned Bitsize = 4001 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4002 Register AmtReg = MI.getOperand(2).getReg(); 4003 bool OutOfRange = false; 4004 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 4005 if (auto *CI = dyn_cast<ConstantInt>(C)) 4006 OutOfRange |= CI->getValue().uge(Bitsize); 4007 return true; 4008 }; 4009 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 4010 } 4011 4012 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 4013 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4014 MI.getOpcode() == TargetOpcode::G_ROTR); 4015 unsigned Bitsize = 4016 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4017 Builder.setInstrAndDebugLoc(MI); 4018 Register Amt = MI.getOperand(2).getReg(); 4019 LLT AmtTy = MRI.getType(Amt); 4020 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 4021 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 4022 Observer.changingInstr(MI); 4023 MI.getOperand(2).setReg(Amt); 4024 Observer.changedInstr(MI); 4025 } 4026 4027 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 4028 int64_t &MatchInfo) { 4029 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4030 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4031 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 4032 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 4033 Optional<bool> KnownVal; 4034 switch (Pred) { 4035 default: 4036 llvm_unreachable("Unexpected G_ICMP predicate?"); 4037 case CmpInst::ICMP_EQ: 4038 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 4039 break; 4040 case CmpInst::ICMP_NE: 4041 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 4042 break; 4043 case CmpInst::ICMP_SGE: 4044 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 4045 break; 4046 case CmpInst::ICMP_SGT: 4047 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 4048 break; 4049 case CmpInst::ICMP_SLE: 4050 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 4051 break; 4052 case CmpInst::ICMP_SLT: 4053 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 4054 break; 4055 case CmpInst::ICMP_UGE: 4056 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 4057 break; 4058 case CmpInst::ICMP_UGT: 4059 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 4060 break; 4061 case CmpInst::ICMP_ULE: 4062 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 4063 break; 4064 case CmpInst::ICMP_ULT: 4065 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 4066 break; 4067 } 4068 if (!KnownVal) 4069 return false; 4070 MatchInfo = 4071 *KnownVal 4072 ? getICmpTrueVal(getTargetLowering(), 4073 /*IsVector = */ 4074 MRI.getType(MI.getOperand(0).getReg()).isVector(), 4075 /* IsFP = */ false) 4076 : 0; 4077 return true; 4078 } 4079 4080 bool CombinerHelper::matchICmpToLHSKnownBits( 4081 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4082 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4083 // Given: 4084 // 4085 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4086 // %cmp = G_ICMP ne %x, 0 4087 // 4088 // Or: 4089 // 4090 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4091 // %cmp = G_ICMP eq %x, 1 4092 // 4093 // We can replace %cmp with %x assuming true is 1 on the target. 4094 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4095 if (!CmpInst::isEquality(Pred)) 4096 return false; 4097 Register Dst = MI.getOperand(0).getReg(); 4098 LLT DstTy = MRI.getType(Dst); 4099 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), 4100 /* IsFP = */ false) != 1) 4101 return false; 4102 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; 4103 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) 4104 return false; 4105 Register LHS = MI.getOperand(2).getReg(); 4106 auto KnownLHS = KB->getKnownBits(LHS); 4107 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) 4108 return false; 4109 // Make sure replacing Dst with the LHS is a legal operation. 4110 LLT LHSTy = MRI.getType(LHS); 4111 unsigned LHSSize = LHSTy.getSizeInBits(); 4112 unsigned DstSize = DstTy.getSizeInBits(); 4113 unsigned Op = TargetOpcode::COPY; 4114 if (DstSize != LHSSize) 4115 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; 4116 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) 4117 return false; 4118 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; 4119 return true; 4120 } 4121 4122 // Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0 4123 bool CombinerHelper::matchAndOrDisjointMask( 4124 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4125 assert(MI.getOpcode() == TargetOpcode::G_AND); 4126 4127 // Ignore vector types to simplify matching the two constants. 4128 // TODO: do this for vectors and scalars via a demanded bits analysis. 4129 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 4130 if (Ty.isVector()) 4131 return false; 4132 4133 Register Src; 4134 int64_t MaskAnd; 4135 int64_t MaskOr; 4136 if (!mi_match(MI, MRI, 4137 m_GAnd(m_GOr(m_Reg(Src), m_ICst(MaskOr)), m_ICst(MaskAnd)))) 4138 return false; 4139 4140 // Check if MaskOr could turn on any bits in Src. 4141 if (MaskAnd & MaskOr) 4142 return false; 4143 4144 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4145 Observer.changingInstr(MI); 4146 MI.getOperand(1).setReg(Src); 4147 Observer.changedInstr(MI); 4148 }; 4149 return true; 4150 } 4151 4152 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4153 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4154 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4155 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4156 Register Dst = MI.getOperand(0).getReg(); 4157 Register Src = MI.getOperand(1).getReg(); 4158 LLT Ty = MRI.getType(Src); 4159 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4160 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4161 return false; 4162 int64_t Width = MI.getOperand(2).getImm(); 4163 Register ShiftSrc; 4164 int64_t ShiftImm; 4165 if (!mi_match( 4166 Src, MRI, 4167 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4168 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4169 return false; 4170 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4171 return false; 4172 4173 MatchInfo = [=](MachineIRBuilder &B) { 4174 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4175 auto Cst2 = B.buildConstant(ExtractTy, Width); 4176 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4177 }; 4178 return true; 4179 } 4180 4181 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4182 bool CombinerHelper::matchBitfieldExtractFromAnd( 4183 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4184 assert(MI.getOpcode() == TargetOpcode::G_AND); 4185 Register Dst = MI.getOperand(0).getReg(); 4186 LLT Ty = MRI.getType(Dst); 4187 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4188 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( 4189 TargetOpcode::G_UBFX, Ty, ExtractTy)) 4190 return false; 4191 4192 int64_t AndImm, LSBImm; 4193 Register ShiftSrc; 4194 const unsigned Size = Ty.getScalarSizeInBits(); 4195 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4196 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4197 m_ICst(AndImm)))) 4198 return false; 4199 4200 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4201 auto MaybeMask = static_cast<uint64_t>(AndImm); 4202 if (MaybeMask & (MaybeMask + 1)) 4203 return false; 4204 4205 // LSB must fit within the register. 4206 if (static_cast<uint64_t>(LSBImm) >= Size) 4207 return false; 4208 4209 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4210 MatchInfo = [=](MachineIRBuilder &B) { 4211 auto WidthCst = B.buildConstant(ExtractTy, Width); 4212 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4213 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4214 }; 4215 return true; 4216 } 4217 4218 bool CombinerHelper::matchBitfieldExtractFromShr( 4219 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4220 const unsigned Opcode = MI.getOpcode(); 4221 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 4222 4223 const Register Dst = MI.getOperand(0).getReg(); 4224 4225 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 4226 ? TargetOpcode::G_SBFX 4227 : TargetOpcode::G_UBFX; 4228 4229 // Check if the type we would use for the extract is legal 4230 LLT Ty = MRI.getType(Dst); 4231 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4232 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 4233 return false; 4234 4235 Register ShlSrc; 4236 int64_t ShrAmt; 4237 int64_t ShlAmt; 4238 const unsigned Size = Ty.getScalarSizeInBits(); 4239 4240 // Try to match shr (shl x, c1), c2 4241 if (!mi_match(Dst, MRI, 4242 m_BinOp(Opcode, 4243 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4244 m_ICst(ShrAmt)))) 4245 return false; 4246 4247 // Make sure that the shift sizes can fit a bitfield extract 4248 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4249 return false; 4250 4251 // Skip this combine if the G_SEXT_INREG combine could handle it 4252 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4253 return false; 4254 4255 // Calculate start position and width of the extract 4256 const int64_t Pos = ShrAmt - ShlAmt; 4257 const int64_t Width = Size - ShrAmt; 4258 4259 MatchInfo = [=](MachineIRBuilder &B) { 4260 auto WidthCst = B.buildConstant(ExtractTy, Width); 4261 auto PosCst = B.buildConstant(ExtractTy, Pos); 4262 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4263 }; 4264 return true; 4265 } 4266 4267 bool CombinerHelper::matchBitfieldExtractFromShrAnd( 4268 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4269 const unsigned Opcode = MI.getOpcode(); 4270 assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR); 4271 4272 const Register Dst = MI.getOperand(0).getReg(); 4273 LLT Ty = MRI.getType(Dst); 4274 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4275 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( 4276 TargetOpcode::G_UBFX, Ty, ExtractTy)) 4277 return false; 4278 4279 // Try to match shr (and x, c1), c2 4280 Register AndSrc; 4281 int64_t ShrAmt; 4282 int64_t SMask; 4283 if (!mi_match(Dst, MRI, 4284 m_BinOp(Opcode, 4285 m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))), 4286 m_ICst(ShrAmt)))) 4287 return false; 4288 4289 const unsigned Size = Ty.getScalarSizeInBits(); 4290 if (ShrAmt < 0 || ShrAmt >= Size) 4291 return false; 4292 4293 // Check that ubfx can do the extraction, with no holes in the mask. 4294 uint64_t UMask = SMask; 4295 UMask |= maskTrailingOnes<uint64_t>(ShrAmt); 4296 UMask &= maskTrailingOnes<uint64_t>(Size); 4297 if (!isMask_64(UMask)) 4298 return false; 4299 4300 // Calculate start position and width of the extract. 4301 const int64_t Pos = ShrAmt; 4302 const int64_t Width = countTrailingOnes(UMask) - ShrAmt; 4303 4304 // It's preferable to keep the shift, rather than form G_SBFX. 4305 // TODO: remove the G_AND via demanded bits analysis. 4306 if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size) 4307 return false; 4308 4309 MatchInfo = [=](MachineIRBuilder &B) { 4310 auto WidthCst = B.buildConstant(ExtractTy, Width); 4311 auto PosCst = B.buildConstant(ExtractTy, Pos); 4312 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst}); 4313 }; 4314 return true; 4315 } 4316 4317 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4318 MachineInstr &PtrAdd) { 4319 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4320 4321 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4322 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4323 if (!Src1Def) 4324 return false; 4325 4326 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4327 4328 if (MRI.hasOneNonDBGUse(Src1Reg)) 4329 return false; 4330 4331 auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4332 if (!C1) 4333 return false; 4334 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4335 if (!C2) 4336 return false; 4337 4338 const APInt &C1APIntVal = *C1; 4339 const APInt &C2APIntVal = *C2; 4340 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4341 4342 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4343 // This combine may end up running before ptrtoint/inttoptr combines 4344 // manage to eliminate redundant conversions, so try to look through them. 4345 MachineInstr *ConvUseMI = &UseMI; 4346 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4347 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4348 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4349 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4350 if (!MRI.hasOneNonDBGUse(DefReg)) 4351 break; 4352 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4353 ConvUseOpc = ConvUseMI->getOpcode(); 4354 } 4355 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4356 ConvUseOpc == TargetOpcode::G_STORE; 4357 if (!LoadStore) 4358 continue; 4359 // Is x[offset2] already not a legal addressing mode? If so then 4360 // reassociating the constants breaks nothing (we test offset2 because 4361 // that's the one we hope to fold into the load or store). 4362 TargetLoweringBase::AddrMode AM; 4363 AM.HasBaseReg = true; 4364 AM.BaseOffs = C2APIntVal.getSExtValue(); 4365 unsigned AS = 4366 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4367 Type *AccessTy = 4368 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4369 PtrAdd.getMF()->getFunction().getContext()); 4370 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4371 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4372 AccessTy, AS)) 4373 continue; 4374 4375 // Would x[offset1+offset2] still be a legal addressing mode? 4376 AM.BaseOffs = CombinedValue; 4377 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4378 AccessTy, AS)) 4379 return true; 4380 } 4381 4382 return false; 4383 } 4384 4385 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI, 4386 MachineInstr *RHS, 4387 BuildFnTy &MatchInfo) { 4388 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4389 Register Src1Reg = MI.getOperand(1).getReg(); 4390 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4391 return false; 4392 auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4393 if (!C2) 4394 return false; 4395 4396 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4397 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4398 4399 auto NewBase = 4400 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4401 Observer.changingInstr(MI); 4402 MI.getOperand(1).setReg(NewBase.getReg(0)); 4403 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4404 Observer.changedInstr(MI); 4405 }; 4406 return !reassociationCanBreakAddressingModePattern(MI); 4407 } 4408 4409 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI, 4410 MachineInstr *LHS, 4411 MachineInstr *RHS, 4412 BuildFnTy &MatchInfo) { 4413 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C) 4414 // if and only if (G_PTR_ADD X, C) has one use. 4415 Register LHSBase; 4416 Optional<ValueAndVReg> LHSCstOff; 4417 if (!mi_match(MI.getBaseReg(), MRI, 4418 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff))))) 4419 return false; 4420 4421 auto *LHSPtrAdd = cast<GPtrAdd>(LHS); 4422 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4423 // When we change LHSPtrAdd's offset register we might cause it to use a reg 4424 // before its def. Sink the instruction so the outer PTR_ADD to ensure this 4425 // doesn't happen. 4426 LHSPtrAdd->moveBefore(&MI); 4427 Register RHSReg = MI.getOffsetReg(); 4428 Observer.changingInstr(MI); 4429 MI.getOperand(2).setReg(LHSCstOff->VReg); 4430 Observer.changedInstr(MI); 4431 Observer.changingInstr(*LHSPtrAdd); 4432 LHSPtrAdd->getOperand(2).setReg(RHSReg); 4433 Observer.changedInstr(*LHSPtrAdd); 4434 }; 4435 return !reassociationCanBreakAddressingModePattern(MI); 4436 } 4437 4438 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI, 4439 MachineInstr *LHS, 4440 MachineInstr *RHS, 4441 BuildFnTy &MatchInfo) { 4442 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4443 auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS); 4444 if (!LHSPtrAdd) 4445 return false; 4446 4447 Register Src2Reg = MI.getOperand(2).getReg(); 4448 Register LHSSrc1 = LHSPtrAdd->getBaseReg(); 4449 Register LHSSrc2 = LHSPtrAdd->getOffsetReg(); 4450 auto C1 = getIConstantVRegVal(LHSSrc2, MRI); 4451 if (!C1) 4452 return false; 4453 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4454 if (!C2) 4455 return false; 4456 4457 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4458 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4459 Observer.changingInstr(MI); 4460 MI.getOperand(1).setReg(LHSSrc1); 4461 MI.getOperand(2).setReg(NewCst.getReg(0)); 4462 Observer.changedInstr(MI); 4463 }; 4464 return !reassociationCanBreakAddressingModePattern(MI); 4465 } 4466 4467 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI, 4468 BuildFnTy &MatchInfo) { 4469 auto &PtrAdd = cast<GPtrAdd>(MI); 4470 // We're trying to match a few pointer computation patterns here for 4471 // re-association opportunities. 4472 // 1) Isolating a constant operand to be on the RHS, e.g.: 4473 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4474 // 4475 // 2) Folding two constants in each sub-tree as long as such folding 4476 // doesn't break a legal addressing mode. 4477 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4478 // 4479 // 3) Move a constant from the LHS of an inner op to the RHS of the outer. 4480 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C) 4481 // iif (G_PTR_ADD X, C) has one use. 4482 MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg()); 4483 MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg()); 4484 4485 // Try to match example 2. 4486 if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo)) 4487 return true; 4488 4489 // Try to match example 3. 4490 if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo)) 4491 return true; 4492 4493 // Try to match example 1. 4494 if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo)) 4495 return true; 4496 4497 return false; 4498 } 4499 4500 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4501 Register Op1 = MI.getOperand(1).getReg(); 4502 Register Op2 = MI.getOperand(2).getReg(); 4503 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4504 if (!MaybeCst) 4505 return false; 4506 MatchInfo = *MaybeCst; 4507 return true; 4508 } 4509 4510 bool CombinerHelper::matchNarrowBinopFeedingAnd( 4511 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4512 // Look for a binop feeding into an AND with a mask: 4513 // 4514 // %add = G_ADD %lhs, %rhs 4515 // %and = G_AND %add, 000...11111111 4516 // 4517 // Check if it's possible to perform the binop at a narrower width and zext 4518 // back to the original width like so: 4519 // 4520 // %narrow_lhs = G_TRUNC %lhs 4521 // %narrow_rhs = G_TRUNC %rhs 4522 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 4523 // %new_add = G_ZEXT %narrow_add 4524 // %and = G_AND %new_add, 000...11111111 4525 // 4526 // This can allow later combines to eliminate the G_AND if it turns out 4527 // that the mask is irrelevant. 4528 assert(MI.getOpcode() == TargetOpcode::G_AND); 4529 Register Dst = MI.getOperand(0).getReg(); 4530 Register AndLHS = MI.getOperand(1).getReg(); 4531 Register AndRHS = MI.getOperand(2).getReg(); 4532 LLT WideTy = MRI.getType(Dst); 4533 4534 // If the potential binop has more than one use, then it's possible that one 4535 // of those uses will need its full width. 4536 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 4537 return false; 4538 4539 // Check if the LHS feeding the AND is impacted by the high bits that we're 4540 // masking out. 4541 // 4542 // e.g. for 64-bit x, y: 4543 // 4544 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 4545 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 4546 if (!LHSInst) 4547 return false; 4548 unsigned LHSOpc = LHSInst->getOpcode(); 4549 switch (LHSOpc) { 4550 default: 4551 return false; 4552 case TargetOpcode::G_ADD: 4553 case TargetOpcode::G_SUB: 4554 case TargetOpcode::G_MUL: 4555 case TargetOpcode::G_AND: 4556 case TargetOpcode::G_OR: 4557 case TargetOpcode::G_XOR: 4558 break; 4559 } 4560 4561 // Find the mask on the RHS. 4562 auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI); 4563 if (!Cst) 4564 return false; 4565 auto Mask = Cst->Value; 4566 if (!Mask.isMask()) 4567 return false; 4568 4569 // No point in combining if there's nothing to truncate. 4570 unsigned NarrowWidth = Mask.countTrailingOnes(); 4571 if (NarrowWidth == WideTy.getSizeInBits()) 4572 return false; 4573 LLT NarrowTy = LLT::scalar(NarrowWidth); 4574 4575 // Check if adding the zext + truncates could be harmful. 4576 auto &MF = *MI.getMF(); 4577 const auto &TLI = getTargetLowering(); 4578 LLVMContext &Ctx = MF.getFunction().getContext(); 4579 auto &DL = MF.getDataLayout(); 4580 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 4581 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 4582 return false; 4583 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 4584 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 4585 return false; 4586 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 4587 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 4588 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4589 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 4590 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 4591 auto NarrowBinOp = 4592 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 4593 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 4594 Observer.changingInstr(MI); 4595 MI.getOperand(1).setReg(Ext.getReg(0)); 4596 Observer.changedInstr(MI); 4597 }; 4598 return true; 4599 } 4600 4601 bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) { 4602 unsigned Opc = MI.getOpcode(); 4603 assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO); 4604 4605 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2))) 4606 return false; 4607 4608 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4609 Observer.changingInstr(MI); 4610 unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO 4611 : TargetOpcode::G_SADDO; 4612 MI.setDesc(Builder.getTII().get(NewOpc)); 4613 MI.getOperand(3).setReg(MI.getOperand(2).getReg()); 4614 Observer.changedInstr(MI); 4615 }; 4616 return true; 4617 } 4618 4619 bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { 4620 // (G_*MULO x, 0) -> 0 + no carry out 4621 assert(MI.getOpcode() == TargetOpcode::G_UMULO || 4622 MI.getOpcode() == TargetOpcode::G_SMULO); 4623 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) 4624 return false; 4625 Register Dst = MI.getOperand(0).getReg(); 4626 Register Carry = MI.getOperand(1).getReg(); 4627 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) || 4628 !isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) 4629 return false; 4630 MatchInfo = [=](MachineIRBuilder &B) { 4631 B.buildConstant(Dst, 0); 4632 B.buildConstant(Carry, 0); 4633 }; 4634 return true; 4635 } 4636 4637 bool CombinerHelper::matchAddOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { 4638 // (G_*ADDO x, 0) -> x + no carry out 4639 assert(MI.getOpcode() == TargetOpcode::G_UADDO || 4640 MI.getOpcode() == TargetOpcode::G_SADDO); 4641 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) 4642 return false; 4643 Register Carry = MI.getOperand(1).getReg(); 4644 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) 4645 return false; 4646 Register Dst = MI.getOperand(0).getReg(); 4647 Register LHS = MI.getOperand(2).getReg(); 4648 MatchInfo = [=](MachineIRBuilder &B) { 4649 B.buildCopy(Dst, LHS); 4650 B.buildConstant(Carry, 0); 4651 }; 4652 return true; 4653 } 4654 4655 MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) { 4656 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4657 auto &UDiv = cast<GenericMachineInstr>(MI); 4658 Register Dst = UDiv.getReg(0); 4659 Register LHS = UDiv.getReg(1); 4660 Register RHS = UDiv.getReg(2); 4661 LLT Ty = MRI.getType(Dst); 4662 LLT ScalarTy = Ty.getScalarType(); 4663 const unsigned EltBits = ScalarTy.getScalarSizeInBits(); 4664 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4665 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); 4666 auto &MIB = Builder; 4667 MIB.setInstrAndDebugLoc(MI); 4668 4669 bool UseNPQ = false; 4670 SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4671 4672 auto BuildUDIVPattern = [&](const Constant *C) { 4673 auto *CI = cast<ConstantInt>(C); 4674 const APInt &Divisor = CI->getValue(); 4675 UnsignedDivisonByConstantInfo magics = 4676 UnsignedDivisonByConstantInfo::get(Divisor); 4677 unsigned PreShift = 0, PostShift = 0; 4678 4679 // If the divisor is even, we can avoid using the expensive fixup by 4680 // shifting the divided value upfront. 4681 if (magics.IsAdd != 0 && !Divisor[0]) { 4682 PreShift = Divisor.countTrailingZeros(); 4683 // Get magic number for the shifted divisor. 4684 magics = 4685 UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 4686 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 4687 } 4688 4689 APInt Magic = magics.Magic; 4690 4691 unsigned SelNPQ; 4692 if (magics.IsAdd == 0 || Divisor.isOneValue()) { 4693 assert(magics.ShiftAmount < Divisor.getBitWidth() && 4694 "We shouldn't generate an undefined shift!"); 4695 PostShift = magics.ShiftAmount; 4696 SelNPQ = false; 4697 } else { 4698 PostShift = magics.ShiftAmount - 1; 4699 SelNPQ = true; 4700 } 4701 4702 PreShifts.push_back( 4703 MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0)); 4704 MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0)); 4705 NPQFactors.push_back( 4706 MIB.buildConstant(ScalarTy, 4707 SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4708 : APInt::getZero(EltBits)) 4709 .getReg(0)); 4710 PostShifts.push_back( 4711 MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0)); 4712 UseNPQ |= SelNPQ; 4713 return true; 4714 }; 4715 4716 // Collect the shifts/magic values from each element. 4717 bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern); 4718 (void)Matched; 4719 assert(Matched && "Expected unary predicate match to succeed"); 4720 4721 Register PreShift, PostShift, MagicFactor, NPQFactor; 4722 auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI); 4723 if (RHSDef) { 4724 PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0); 4725 MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0); 4726 NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0); 4727 PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0); 4728 } else { 4729 assert(MRI.getType(RHS).isScalar() && 4730 "Non-build_vector operation should have been a scalar"); 4731 PreShift = PreShifts[0]; 4732 MagicFactor = MagicFactors[0]; 4733 PostShift = PostShifts[0]; 4734 } 4735 4736 Register Q = LHS; 4737 Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0); 4738 4739 // Multiply the numerator (operand 0) by the magic value. 4740 Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0); 4741 4742 if (UseNPQ) { 4743 Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0); 4744 4745 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4746 // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero. 4747 if (Ty.isVector()) 4748 NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0); 4749 else 4750 NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0); 4751 4752 Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0); 4753 } 4754 4755 Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0); 4756 auto One = MIB.buildConstant(Ty, 1); 4757 auto IsOne = MIB.buildICmp( 4758 CmpInst::Predicate::ICMP_EQ, 4759 Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One); 4760 return MIB.buildSelect(Ty, IsOne, LHS, Q); 4761 } 4762 4763 bool CombinerHelper::matchUDivByConst(MachineInstr &MI) { 4764 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4765 Register Dst = MI.getOperand(0).getReg(); 4766 Register RHS = MI.getOperand(2).getReg(); 4767 LLT DstTy = MRI.getType(Dst); 4768 auto *RHSDef = MRI.getVRegDef(RHS); 4769 if (!isConstantOrConstantVector(*RHSDef, MRI)) 4770 return false; 4771 4772 auto &MF = *MI.getMF(); 4773 AttributeList Attr = MF.getFunction().getAttributes(); 4774 const auto &TLI = getTargetLowering(); 4775 LLVMContext &Ctx = MF.getFunction().getContext(); 4776 auto &DL = MF.getDataLayout(); 4777 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) 4778 return false; 4779 4780 // Don't do this for minsize because the instruction sequence is usually 4781 // larger. 4782 if (MF.getFunction().hasMinSize()) 4783 return false; 4784 4785 // Don't do this if the types are not going to be legal. 4786 if (LI) { 4787 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}})) 4788 return false; 4789 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}})) 4790 return false; 4791 if (!isLegalOrBeforeLegalizer( 4792 {TargetOpcode::G_ICMP, 4793 {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1), 4794 DstTy}})) 4795 return false; 4796 } 4797 4798 auto CheckEltValue = [&](const Constant *C) { 4799 if (auto *CI = dyn_cast_or_null<ConstantInt>(C)) 4800 return !CI->isZero(); 4801 return false; 4802 }; 4803 return matchUnaryPredicate(MRI, RHS, CheckEltValue); 4804 } 4805 4806 void CombinerHelper::applyUDivByConst(MachineInstr &MI) { 4807 auto *NewMI = buildUDivUsingMul(MI); 4808 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); 4809 } 4810 4811 bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) { 4812 assert(MI.getOpcode() == TargetOpcode::G_UMULH); 4813 Register RHS = MI.getOperand(2).getReg(); 4814 Register Dst = MI.getOperand(0).getReg(); 4815 LLT Ty = MRI.getType(Dst); 4816 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4817 auto MatchPow2ExceptOne = [&](const Constant *C) { 4818 if (auto *CI = dyn_cast<ConstantInt>(C)) 4819 return CI->getValue().isPowerOf2() && !CI->getValue().isOne(); 4820 return false; 4821 }; 4822 if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false)) 4823 return false; 4824 return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}}); 4825 } 4826 4827 void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) { 4828 Register LHS = MI.getOperand(1).getReg(); 4829 Register RHS = MI.getOperand(2).getReg(); 4830 Register Dst = MI.getOperand(0).getReg(); 4831 LLT Ty = MRI.getType(Dst); 4832 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4833 unsigned NumEltBits = Ty.getScalarSizeInBits(); 4834 4835 Builder.setInstrAndDebugLoc(MI); 4836 auto LogBase2 = buildLogBase2(RHS, Builder); 4837 auto ShiftAmt = 4838 Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2); 4839 auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt); 4840 Builder.buildLShr(Dst, LHS, Trunc); 4841 MI.eraseFromParent(); 4842 } 4843 4844 bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI, 4845 BuildFnTy &MatchInfo) { 4846 unsigned Opc = MI.getOpcode(); 4847 assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB || 4848 Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 4849 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA); 4850 4851 Register Dst = MI.getOperand(0).getReg(); 4852 Register X = MI.getOperand(1).getReg(); 4853 Register Y = MI.getOperand(2).getReg(); 4854 LLT Type = MRI.getType(Dst); 4855 4856 // fold (fadd x, fneg(y)) -> (fsub x, y) 4857 // fold (fadd fneg(y), x) -> (fsub x, y) 4858 // G_ADD is commutative so both cases are checked by m_GFAdd 4859 if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 4860 isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) { 4861 Opc = TargetOpcode::G_FSUB; 4862 } 4863 /// fold (fsub x, fneg(y)) -> (fadd x, y) 4864 else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 4865 isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) { 4866 Opc = TargetOpcode::G_FADD; 4867 } 4868 // fold (fmul fneg(x), fneg(y)) -> (fmul x, y) 4869 // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y) 4870 // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z) 4871 // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z) 4872 else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 4873 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) && 4874 mi_match(X, MRI, m_GFNeg(m_Reg(X))) && 4875 mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) { 4876 // no opcode change 4877 } else 4878 return false; 4879 4880 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4881 Observer.changingInstr(MI); 4882 MI.setDesc(B.getTII().get(Opc)); 4883 MI.getOperand(1).setReg(X); 4884 MI.getOperand(2).setReg(Y); 4885 Observer.changedInstr(MI); 4886 }; 4887 return true; 4888 } 4889 4890 /// Checks if \p MI is TargetOpcode::G_FMUL and contractable either 4891 /// due to global flags or MachineInstr flags. 4892 static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) { 4893 if (MI.getOpcode() != TargetOpcode::G_FMUL) 4894 return false; 4895 return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract); 4896 } 4897 4898 static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1, 4899 const MachineRegisterInfo &MRI) { 4900 return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()), 4901 MRI.use_instr_nodbg_end()) > 4902 std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()), 4903 MRI.use_instr_nodbg_end()); 4904 } 4905 4906 bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI, 4907 bool &AllowFusionGlobally, 4908 bool &HasFMAD, bool &Aggressive, 4909 bool CanReassociate) { 4910 4911 auto *MF = MI.getMF(); 4912 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 4913 const TargetOptions &Options = MF->getTarget().Options; 4914 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 4915 4916 if (CanReassociate && 4917 !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc))) 4918 return false; 4919 4920 // Floating-point multiply-add with intermediate rounding. 4921 HasFMAD = (LI && TLI.isFMADLegal(MI, DstType)); 4922 // Floating-point multiply-add without intermediate rounding. 4923 bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) && 4924 isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}}); 4925 // No valid opcode, do not combine. 4926 if (!HasFMAD && !HasFMA) 4927 return false; 4928 4929 AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast || 4930 Options.UnsafeFPMath || HasFMAD; 4931 // If the addition is not contractable, do not combine. 4932 if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract)) 4933 return false; 4934 4935 Aggressive = TLI.enableAggressiveFMAFusion(DstType); 4936 return true; 4937 } 4938 4939 bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA( 4940 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4941 assert(MI.getOpcode() == TargetOpcode::G_FADD); 4942 4943 bool AllowFusionGlobally, HasFMAD, Aggressive; 4944 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 4945 return false; 4946 4947 Register Op1 = MI.getOperand(1).getReg(); 4948 Register Op2 = MI.getOperand(2).getReg(); 4949 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 4950 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 4951 unsigned PreferredFusedOpcode = 4952 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 4953 4954 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 4955 // prefer to fold the multiply with fewer uses. 4956 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 4957 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 4958 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 4959 std::swap(LHS, RHS); 4960 } 4961 4962 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 4963 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 4964 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) { 4965 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4966 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 4967 {LHS.MI->getOperand(1).getReg(), 4968 LHS.MI->getOperand(2).getReg(), RHS.Reg}); 4969 }; 4970 return true; 4971 } 4972 4973 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 4974 if (isContractableFMul(*RHS.MI, AllowFusionGlobally) && 4975 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) { 4976 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4977 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 4978 {RHS.MI->getOperand(1).getReg(), 4979 RHS.MI->getOperand(2).getReg(), LHS.Reg}); 4980 }; 4981 return true; 4982 } 4983 4984 return false; 4985 } 4986 4987 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA( 4988 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4989 assert(MI.getOpcode() == TargetOpcode::G_FADD); 4990 4991 bool AllowFusionGlobally, HasFMAD, Aggressive; 4992 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 4993 return false; 4994 4995 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 4996 Register Op1 = MI.getOperand(1).getReg(); 4997 Register Op2 = MI.getOperand(2).getReg(); 4998 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 4999 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5000 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5001 5002 unsigned PreferredFusedOpcode = 5003 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5004 5005 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5006 // prefer to fold the multiply with fewer uses. 5007 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5008 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5009 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5010 std::swap(LHS, RHS); 5011 } 5012 5013 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 5014 MachineInstr *FpExtSrc; 5015 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && 5016 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 5017 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5018 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 5019 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5020 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 5021 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 5022 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5023 {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg}); 5024 }; 5025 return true; 5026 } 5027 5028 // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z) 5029 // Note: Commutes FADD operands. 5030 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && 5031 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 5032 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5033 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 5034 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5035 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 5036 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 5037 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5038 {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg}); 5039 }; 5040 return true; 5041 } 5042 5043 return false; 5044 } 5045 5046 bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA( 5047 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5048 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5049 5050 bool AllowFusionGlobally, HasFMAD, Aggressive; 5051 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true)) 5052 return false; 5053 5054 Register Op1 = MI.getOperand(1).getReg(); 5055 Register Op2 = MI.getOperand(2).getReg(); 5056 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5057 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5058 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5059 5060 unsigned PreferredFusedOpcode = 5061 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5062 5063 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5064 // prefer to fold the multiply with fewer uses. 5065 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5066 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5067 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5068 std::swap(LHS, RHS); 5069 } 5070 5071 MachineInstr *FMA = nullptr; 5072 Register Z; 5073 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z)) 5074 if (LHS.MI->getOpcode() == PreferredFusedOpcode && 5075 (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() == 5076 TargetOpcode::G_FMUL) && 5077 MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) && 5078 MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) { 5079 FMA = LHS.MI; 5080 Z = RHS.Reg; 5081 } 5082 // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z)) 5083 else if (RHS.MI->getOpcode() == PreferredFusedOpcode && 5084 (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() == 5085 TargetOpcode::G_FMUL) && 5086 MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) && 5087 MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) { 5088 Z = LHS.Reg; 5089 FMA = RHS.MI; 5090 } 5091 5092 if (FMA) { 5093 MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg()); 5094 Register X = FMA->getOperand(1).getReg(); 5095 Register Y = FMA->getOperand(2).getReg(); 5096 Register U = FMulMI->getOperand(1).getReg(); 5097 Register V = FMulMI->getOperand(2).getReg(); 5098 5099 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5100 Register InnerFMA = MRI.createGenericVirtualRegister(DstTy); 5101 B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z}); 5102 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5103 {X, Y, InnerFMA}); 5104 }; 5105 return true; 5106 } 5107 5108 return false; 5109 } 5110 5111 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive( 5112 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5113 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5114 5115 bool AllowFusionGlobally, HasFMAD, Aggressive; 5116 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5117 return false; 5118 5119 if (!Aggressive) 5120 return false; 5121 5122 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5123 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5124 Register Op1 = MI.getOperand(1).getReg(); 5125 Register Op2 = MI.getOperand(2).getReg(); 5126 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5127 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5128 5129 unsigned PreferredFusedOpcode = 5130 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5131 5132 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5133 // prefer to fold the multiply with fewer uses. 5134 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5135 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5136 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5137 std::swap(LHS, RHS); 5138 } 5139 5140 // Builds: (fma x, y, (fma (fpext u), (fpext v), z)) 5141 auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X, 5142 Register Y, MachineIRBuilder &B) { 5143 Register FpExtU = B.buildFPExt(DstType, U).getReg(0); 5144 Register FpExtV = B.buildFPExt(DstType, V).getReg(0); 5145 Register InnerFMA = 5146 B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z}) 5147 .getReg(0); 5148 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5149 {X, Y, InnerFMA}); 5150 }; 5151 5152 MachineInstr *FMulMI, *FMAMI; 5153 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 5154 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5155 if (LHS.MI->getOpcode() == PreferredFusedOpcode && 5156 mi_match(LHS.MI->getOperand(3).getReg(), MRI, 5157 m_GFPExt(m_MInstr(FMulMI))) && 5158 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5159 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5160 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5161 MatchInfo = [=](MachineIRBuilder &B) { 5162 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5163 FMulMI->getOperand(2).getReg(), RHS.Reg, 5164 LHS.MI->getOperand(1).getReg(), 5165 LHS.MI->getOperand(2).getReg(), B); 5166 }; 5167 return true; 5168 } 5169 5170 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 5171 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5172 // FIXME: This turns two single-precision and one double-precision 5173 // operation into two double-precision operations, which might not be 5174 // interesting for all targets, especially GPUs. 5175 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && 5176 FMAMI->getOpcode() == PreferredFusedOpcode) { 5177 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 5178 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 5179 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5180 MRI.getType(FMAMI->getOperand(0).getReg()))) { 5181 MatchInfo = [=](MachineIRBuilder &B) { 5182 Register X = FMAMI->getOperand(1).getReg(); 5183 Register Y = FMAMI->getOperand(2).getReg(); 5184 X = B.buildFPExt(DstType, X).getReg(0); 5185 Y = B.buildFPExt(DstType, Y).getReg(0); 5186 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5187 FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B); 5188 }; 5189 5190 return true; 5191 } 5192 } 5193 5194 // fold (fadd z, (fma x, y, (fpext (fmul u, v))) 5195 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5196 if (RHS.MI->getOpcode() == PreferredFusedOpcode && 5197 mi_match(RHS.MI->getOperand(3).getReg(), MRI, 5198 m_GFPExt(m_MInstr(FMulMI))) && 5199 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5200 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5201 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5202 MatchInfo = [=](MachineIRBuilder &B) { 5203 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5204 FMulMI->getOperand(2).getReg(), LHS.Reg, 5205 RHS.MI->getOperand(1).getReg(), 5206 RHS.MI->getOperand(2).getReg(), B); 5207 }; 5208 return true; 5209 } 5210 5211 // fold (fadd z, (fpext (fma x, y, (fmul u, v))) 5212 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5213 // FIXME: This turns two single-precision and one double-precision 5214 // operation into two double-precision operations, which might not be 5215 // interesting for all targets, especially GPUs. 5216 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && 5217 FMAMI->getOpcode() == PreferredFusedOpcode) { 5218 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 5219 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 5220 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5221 MRI.getType(FMAMI->getOperand(0).getReg()))) { 5222 MatchInfo = [=](MachineIRBuilder &B) { 5223 Register X = FMAMI->getOperand(1).getReg(); 5224 Register Y = FMAMI->getOperand(2).getReg(); 5225 X = B.buildFPExt(DstType, X).getReg(0); 5226 Y = B.buildFPExt(DstType, Y).getReg(0); 5227 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5228 FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B); 5229 }; 5230 return true; 5231 } 5232 } 5233 5234 return false; 5235 } 5236 5237 bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA( 5238 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5239 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5240 5241 bool AllowFusionGlobally, HasFMAD, Aggressive; 5242 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5243 return false; 5244 5245 Register Op1 = MI.getOperand(1).getReg(); 5246 Register Op2 = MI.getOperand(2).getReg(); 5247 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5248 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5249 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5250 5251 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5252 // prefer to fold the multiply with fewer uses. 5253 int FirstMulHasFewerUses = true; 5254 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5255 isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5256 hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5257 FirstMulHasFewerUses = false; 5258 5259 unsigned PreferredFusedOpcode = 5260 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5261 5262 // fold (fsub (fmul x, y), z) -> (fma x, y, -z) 5263 if (FirstMulHasFewerUses && 5264 (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5265 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) { 5266 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5267 Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0); 5268 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5269 {LHS.MI->getOperand(1).getReg(), 5270 LHS.MI->getOperand(2).getReg(), NegZ}); 5271 }; 5272 return true; 5273 } 5274 // fold (fsub x, (fmul y, z)) -> (fma -y, z, x) 5275 else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5276 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) { 5277 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5278 Register NegY = 5279 B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0); 5280 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5281 {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg}); 5282 }; 5283 return true; 5284 } 5285 5286 return false; 5287 } 5288 5289 bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA( 5290 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5291 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5292 5293 bool AllowFusionGlobally, HasFMAD, Aggressive; 5294 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5295 return false; 5296 5297 Register LHSReg = MI.getOperand(1).getReg(); 5298 Register RHSReg = MI.getOperand(2).getReg(); 5299 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5300 5301 unsigned PreferredFusedOpcode = 5302 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5303 5304 MachineInstr *FMulMI; 5305 // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z)) 5306 if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 5307 (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) && 5308 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 5309 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 5310 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5311 Register NegX = 5312 B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5313 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 5314 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5315 {NegX, FMulMI->getOperand(2).getReg(), NegZ}); 5316 }; 5317 return true; 5318 } 5319 5320 // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x) 5321 if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 5322 (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) && 5323 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 5324 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 5325 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5326 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5327 {FMulMI->getOperand(1).getReg(), 5328 FMulMI->getOperand(2).getReg(), LHSReg}); 5329 }; 5330 return true; 5331 } 5332 5333 return false; 5334 } 5335 5336 bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA( 5337 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5338 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5339 5340 bool AllowFusionGlobally, HasFMAD, Aggressive; 5341 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5342 return false; 5343 5344 Register LHSReg = MI.getOperand(1).getReg(); 5345 Register RHSReg = MI.getOperand(2).getReg(); 5346 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5347 5348 unsigned PreferredFusedOpcode = 5349 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5350 5351 MachineInstr *FMulMI; 5352 // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z)) 5353 if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 5354 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5355 (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) { 5356 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5357 Register FpExtX = 5358 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5359 Register FpExtY = 5360 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 5361 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 5362 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5363 {FpExtX, FpExtY, NegZ}); 5364 }; 5365 return true; 5366 } 5367 5368 // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x) 5369 if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 5370 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5371 (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) { 5372 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5373 Register FpExtY = 5374 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5375 Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0); 5376 Register FpExtZ = 5377 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 5378 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5379 {NegY, FpExtZ, LHSReg}); 5380 }; 5381 return true; 5382 } 5383 5384 return false; 5385 } 5386 5387 bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA( 5388 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5389 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5390 5391 bool AllowFusionGlobally, HasFMAD, Aggressive; 5392 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5393 return false; 5394 5395 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5396 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5397 Register LHSReg = MI.getOperand(1).getReg(); 5398 Register RHSReg = MI.getOperand(2).getReg(); 5399 5400 unsigned PreferredFusedOpcode = 5401 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5402 5403 auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z, 5404 MachineIRBuilder &B) { 5405 Register FpExtX = B.buildFPExt(DstTy, X).getReg(0); 5406 Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0); 5407 B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z}); 5408 }; 5409 5410 MachineInstr *FMulMI; 5411 // fold (fsub (fpext (fneg (fmul x, y))), z) -> 5412 // (fneg (fma (fpext x), (fpext y), z)) 5413 // fold (fsub (fneg (fpext (fmul x, y))), z) -> 5414 // (fneg (fma (fpext x), (fpext y), z)) 5415 if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 5416 mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 5417 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5418 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 5419 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5420 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5421 Register FMAReg = MRI.createGenericVirtualRegister(DstTy); 5422 buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(), 5423 FMulMI->getOperand(2).getReg(), RHSReg, B); 5424 B.buildFNeg(MI.getOperand(0).getReg(), FMAReg); 5425 }; 5426 return true; 5427 } 5428 5429 // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 5430 // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 5431 if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 5432 mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 5433 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5434 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 5435 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5436 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5437 buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(), 5438 FMulMI->getOperand(2).getReg(), LHSReg, B); 5439 }; 5440 return true; 5441 } 5442 5443 return false; 5444 } 5445 5446 bool CombinerHelper::tryCombine(MachineInstr &MI) { 5447 if (tryCombineCopy(MI)) 5448 return true; 5449 if (tryCombineExtendingLoads(MI)) 5450 return true; 5451 if (tryCombineIndexedLoadStore(MI)) 5452 return true; 5453 return false; 5454 } 5455