1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 16 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 19 #include "llvm/CodeGen/GlobalISel/Utils.h" 20 #include "llvm/CodeGen/LowLevelType.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetInstrInfo.h" 28 #include "llvm/CodeGen/TargetLowering.h" 29 #include "llvm/CodeGen/TargetOpcodes.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetMachine.h" 32 #include <tuple> 33 34 #define DEBUG_TYPE "gi-combiner" 35 36 using namespace llvm; 37 using namespace MIPatternMatch; 38 39 // Option to allow testing of the combiner while no targets know about indexed 40 // addressing. 41 static cl::opt<bool> 42 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 43 cl::desc("Force all indexed operations to be " 44 "legal for the GlobalISel combiner")); 45 46 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 47 MachineIRBuilder &B, GISelKnownBits *KB, 48 MachineDominatorTree *MDT, 49 const LegalizerInfo *LI) 50 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 51 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 52 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 53 (void)this->KB; 54 } 55 56 const TargetLowering &CombinerHelper::getTargetLowering() const { 57 return *Builder.getMF().getSubtarget().getTargetLowering(); 58 } 59 60 /// \returns The little endian in-memory byte position of byte \p I in a 61 /// \p ByteWidth bytes wide type. 62 /// 63 /// E.g. Given a 4-byte type x, x[0] -> byte 0 64 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 65 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 66 return I; 67 } 68 69 /// \returns The big endian in-memory byte position of byte \p I in a 70 /// \p ByteWidth bytes wide type. 71 /// 72 /// E.g. Given a 4-byte type x, x[0] -> byte 3 73 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 74 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 75 return ByteWidth - I - 1; 76 } 77 78 /// Given a map from byte offsets in memory to indices in a load/store, 79 /// determine if that map corresponds to a little or big endian byte pattern. 80 /// 81 /// \param MemOffset2Idx maps memory offsets to address offsets. 82 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 83 /// 84 /// \returns true if the map corresponds to a big endian byte pattern, false 85 /// if it corresponds to a little endian byte pattern, and None otherwise. 86 /// 87 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 88 /// are as follows: 89 /// 90 /// AddrOffset Little endian Big endian 91 /// 0 0 3 92 /// 1 1 2 93 /// 2 2 1 94 /// 3 3 0 95 static Optional<bool> 96 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 97 int64_t LowestIdx) { 98 // Need at least two byte positions to decide on endianness. 99 unsigned Width = MemOffset2Idx.size(); 100 if (Width < 2) 101 return None; 102 bool BigEndian = true, LittleEndian = true; 103 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 104 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 105 if (MemOffsetAndIdx == MemOffset2Idx.end()) 106 return None; 107 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 108 assert(Idx >= 0 && "Expected non-negative byte offset?"); 109 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 110 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 111 if (!BigEndian && !LittleEndian) 112 return None; 113 } 114 115 assert((BigEndian != LittleEndian) && 116 "Pattern cannot be both big and little endian!"); 117 return BigEndian; 118 } 119 120 bool CombinerHelper::isLegalOrBeforeLegalizer( 121 const LegalityQuery &Query) const { 122 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 123 } 124 125 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 126 Register ToReg) const { 127 Observer.changingAllUsesOfReg(MRI, FromReg); 128 129 if (MRI.constrainRegAttrs(ToReg, FromReg)) 130 MRI.replaceRegWith(FromReg, ToReg); 131 else 132 Builder.buildCopy(ToReg, FromReg); 133 134 Observer.finishedChangingAllUsesOfReg(); 135 } 136 137 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 138 MachineOperand &FromRegOp, 139 Register ToReg) const { 140 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 141 Observer.changingInstr(*FromRegOp.getParent()); 142 143 FromRegOp.setReg(ToReg); 144 145 Observer.changedInstr(*FromRegOp.getParent()); 146 } 147 148 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 149 return RBI->getRegBank(Reg, MRI, *TRI); 150 } 151 152 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 153 if (RegBank) 154 MRI.setRegBank(Reg, *RegBank); 155 } 156 157 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 158 if (matchCombineCopy(MI)) { 159 applyCombineCopy(MI); 160 return true; 161 } 162 return false; 163 } 164 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 165 if (MI.getOpcode() != TargetOpcode::COPY) 166 return false; 167 Register DstReg = MI.getOperand(0).getReg(); 168 Register SrcReg = MI.getOperand(1).getReg(); 169 return canReplaceReg(DstReg, SrcReg, MRI); 170 } 171 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 172 Register DstReg = MI.getOperand(0).getReg(); 173 Register SrcReg = MI.getOperand(1).getReg(); 174 MI.eraseFromParent(); 175 replaceRegWith(MRI, DstReg, SrcReg); 176 } 177 178 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 179 bool IsUndef = false; 180 SmallVector<Register, 4> Ops; 181 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 182 applyCombineConcatVectors(MI, IsUndef, Ops); 183 return true; 184 } 185 return false; 186 } 187 188 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 189 SmallVectorImpl<Register> &Ops) { 190 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 191 "Invalid instruction"); 192 IsUndef = true; 193 MachineInstr *Undef = nullptr; 194 195 // Walk over all the operands of concat vectors and check if they are 196 // build_vector themselves or undef. 197 // Then collect their operands in Ops. 198 for (const MachineOperand &MO : MI.uses()) { 199 Register Reg = MO.getReg(); 200 MachineInstr *Def = MRI.getVRegDef(Reg); 201 assert(Def && "Operand not defined"); 202 switch (Def->getOpcode()) { 203 case TargetOpcode::G_BUILD_VECTOR: 204 IsUndef = false; 205 // Remember the operands of the build_vector to fold 206 // them into the yet-to-build flattened concat vectors. 207 for (const MachineOperand &BuildVecMO : Def->uses()) 208 Ops.push_back(BuildVecMO.getReg()); 209 break; 210 case TargetOpcode::G_IMPLICIT_DEF: { 211 LLT OpType = MRI.getType(Reg); 212 // Keep one undef value for all the undef operands. 213 if (!Undef) { 214 Builder.setInsertPt(*MI.getParent(), MI); 215 Undef = Builder.buildUndef(OpType.getScalarType()); 216 } 217 assert(MRI.getType(Undef->getOperand(0).getReg()) == 218 OpType.getScalarType() && 219 "All undefs should have the same type"); 220 // Break the undef vector in as many scalar elements as needed 221 // for the flattening. 222 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 223 EltIdx != EltEnd; ++EltIdx) 224 Ops.push_back(Undef->getOperand(0).getReg()); 225 break; 226 } 227 default: 228 return false; 229 } 230 } 231 return true; 232 } 233 void CombinerHelper::applyCombineConcatVectors( 234 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 235 // We determined that the concat_vectors can be flatten. 236 // Generate the flattened build_vector. 237 Register DstReg = MI.getOperand(0).getReg(); 238 Builder.setInsertPt(*MI.getParent(), MI); 239 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 240 241 // Note: IsUndef is sort of redundant. We could have determine it by 242 // checking that at all Ops are undef. Alternatively, we could have 243 // generate a build_vector of undefs and rely on another combine to 244 // clean that up. For now, given we already gather this information 245 // in tryCombineConcatVectors, just save compile time and issue the 246 // right thing. 247 if (IsUndef) 248 Builder.buildUndef(NewDstReg); 249 else 250 Builder.buildBuildVector(NewDstReg, Ops); 251 MI.eraseFromParent(); 252 replaceRegWith(MRI, DstReg, NewDstReg); 253 } 254 255 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 256 SmallVector<Register, 4> Ops; 257 if (matchCombineShuffleVector(MI, Ops)) { 258 applyCombineShuffleVector(MI, Ops); 259 return true; 260 } 261 return false; 262 } 263 264 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 265 SmallVectorImpl<Register> &Ops) { 266 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 267 "Invalid instruction kind"); 268 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 269 Register Src1 = MI.getOperand(1).getReg(); 270 LLT SrcType = MRI.getType(Src1); 271 // As bizarre as it may look, shuffle vector can actually produce 272 // scalar! This is because at the IR level a <1 x ty> shuffle 273 // vector is perfectly valid. 274 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 275 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 276 277 // If the resulting vector is smaller than the size of the source 278 // vectors being concatenated, we won't be able to replace the 279 // shuffle vector into a concat_vectors. 280 // 281 // Note: We may still be able to produce a concat_vectors fed by 282 // extract_vector_elt and so on. It is less clear that would 283 // be better though, so don't bother for now. 284 // 285 // If the destination is a scalar, the size of the sources doesn't 286 // matter. we will lower the shuffle to a plain copy. This will 287 // work only if the source and destination have the same size. But 288 // that's covered by the next condition. 289 // 290 // TODO: If the size between the source and destination don't match 291 // we could still emit an extract vector element in that case. 292 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 293 return false; 294 295 // Check that the shuffle mask can be broken evenly between the 296 // different sources. 297 if (DstNumElts % SrcNumElts != 0) 298 return false; 299 300 // Mask length is a multiple of the source vector length. 301 // Check if the shuffle is some kind of concatenation of the input 302 // vectors. 303 unsigned NumConcat = DstNumElts / SrcNumElts; 304 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 305 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 306 for (unsigned i = 0; i != DstNumElts; ++i) { 307 int Idx = Mask[i]; 308 // Undef value. 309 if (Idx < 0) 310 continue; 311 // Ensure the indices in each SrcType sized piece are sequential and that 312 // the same source is used for the whole piece. 313 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 314 (ConcatSrcs[i / SrcNumElts] >= 0 && 315 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 316 return false; 317 // Remember which source this index came from. 318 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 319 } 320 321 // The shuffle is concatenating multiple vectors together. 322 // Collect the different operands for that. 323 Register UndefReg; 324 Register Src2 = MI.getOperand(2).getReg(); 325 for (auto Src : ConcatSrcs) { 326 if (Src < 0) { 327 if (!UndefReg) { 328 Builder.setInsertPt(*MI.getParent(), MI); 329 UndefReg = Builder.buildUndef(SrcType).getReg(0); 330 } 331 Ops.push_back(UndefReg); 332 } else if (Src == 0) 333 Ops.push_back(Src1); 334 else 335 Ops.push_back(Src2); 336 } 337 return true; 338 } 339 340 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 341 const ArrayRef<Register> Ops) { 342 Register DstReg = MI.getOperand(0).getReg(); 343 Builder.setInsertPt(*MI.getParent(), MI); 344 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 345 346 if (Ops.size() == 1) 347 Builder.buildCopy(NewDstReg, Ops[0]); 348 else 349 Builder.buildMerge(NewDstReg, Ops); 350 351 MI.eraseFromParent(); 352 replaceRegWith(MRI, DstReg, NewDstReg); 353 } 354 355 namespace { 356 357 /// Select a preference between two uses. CurrentUse is the current preference 358 /// while *ForCandidate is attributes of the candidate under consideration. 359 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 360 const LLT TyForCandidate, 361 unsigned OpcodeForCandidate, 362 MachineInstr *MIForCandidate) { 363 if (!CurrentUse.Ty.isValid()) { 364 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 365 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 366 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 367 return CurrentUse; 368 } 369 370 // We permit the extend to hoist through basic blocks but this is only 371 // sensible if the target has extending loads. If you end up lowering back 372 // into a load and extend during the legalizer then the end result is 373 // hoisting the extend up to the load. 374 375 // Prefer defined extensions to undefined extensions as these are more 376 // likely to reduce the number of instructions. 377 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 378 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 379 return CurrentUse; 380 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 381 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 382 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 383 384 // Prefer sign extensions to zero extensions as sign-extensions tend to be 385 // more expensive. 386 if (CurrentUse.Ty == TyForCandidate) { 387 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 388 OpcodeForCandidate == TargetOpcode::G_ZEXT) 389 return CurrentUse; 390 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 391 OpcodeForCandidate == TargetOpcode::G_SEXT) 392 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 393 } 394 395 // This is potentially target specific. We've chosen the largest type 396 // because G_TRUNC is usually free. One potential catch with this is that 397 // some targets have a reduced number of larger registers than smaller 398 // registers and this choice potentially increases the live-range for the 399 // larger value. 400 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 401 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 402 } 403 return CurrentUse; 404 } 405 406 /// Find a suitable place to insert some instructions and insert them. This 407 /// function accounts for special cases like inserting before a PHI node. 408 /// The current strategy for inserting before PHI's is to duplicate the 409 /// instructions for each predecessor. However, while that's ok for G_TRUNC 410 /// on most targets since it generally requires no code, other targets/cases may 411 /// want to try harder to find a dominating block. 412 static void InsertInsnsWithoutSideEffectsBeforeUse( 413 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 414 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 415 MachineOperand &UseMO)> 416 Inserter) { 417 MachineInstr &UseMI = *UseMO.getParent(); 418 419 MachineBasicBlock *InsertBB = UseMI.getParent(); 420 421 // If the use is a PHI then we want the predecessor block instead. 422 if (UseMI.isPHI()) { 423 MachineOperand *PredBB = std::next(&UseMO); 424 InsertBB = PredBB->getMBB(); 425 } 426 427 // If the block is the same block as the def then we want to insert just after 428 // the def instead of at the start of the block. 429 if (InsertBB == DefMI.getParent()) { 430 MachineBasicBlock::iterator InsertPt = &DefMI; 431 Inserter(InsertBB, std::next(InsertPt), UseMO); 432 return; 433 } 434 435 // Otherwise we want the start of the BB 436 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 437 } 438 } // end anonymous namespace 439 440 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 441 PreferredTuple Preferred; 442 if (matchCombineExtendingLoads(MI, Preferred)) { 443 applyCombineExtendingLoads(MI, Preferred); 444 return true; 445 } 446 return false; 447 } 448 449 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 450 PreferredTuple &Preferred) { 451 // We match the loads and follow the uses to the extend instead of matching 452 // the extends and following the def to the load. This is because the load 453 // must remain in the same position for correctness (unless we also add code 454 // to find a safe place to sink it) whereas the extend is freely movable. 455 // It also prevents us from duplicating the load for the volatile case or just 456 // for performance. 457 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 458 if (!LoadMI) 459 return false; 460 461 Register LoadReg = LoadMI->getDstReg(); 462 463 LLT LoadValueTy = MRI.getType(LoadReg); 464 if (!LoadValueTy.isScalar()) 465 return false; 466 467 // Most architectures are going to legalize <s8 loads into at least a 1 byte 468 // load, and the MMOs can only describe memory accesses in multiples of bytes. 469 // If we try to perform extload combining on those, we can end up with 470 // %a(s8) = extload %ptr (load 1 byte from %ptr) 471 // ... which is an illegal extload instruction. 472 if (LoadValueTy.getSizeInBits() < 8) 473 return false; 474 475 // For non power-of-2 types, they will very likely be legalized into multiple 476 // loads. Don't bother trying to match them into extending loads. 477 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 478 return false; 479 480 // Find the preferred type aside from the any-extends (unless it's the only 481 // one) and non-extending ops. We'll emit an extending load to that type and 482 // and emit a variant of (extend (trunc X)) for the others according to the 483 // relative type sizes. At the same time, pick an extend to use based on the 484 // extend involved in the chosen type. 485 unsigned PreferredOpcode = 486 isa<GLoad>(&MI) 487 ? TargetOpcode::G_ANYEXT 488 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 489 Preferred = {LLT(), PreferredOpcode, nullptr}; 490 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 491 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 492 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 493 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 494 const auto &MMO = LoadMI->getMMO(); 495 // For atomics, only form anyextending loads. 496 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 497 continue; 498 // Check for legality. 499 if (LI) { 500 LegalityQuery::MemDesc MMDesc; 501 MMDesc.MemoryTy = MMO.getMemoryType(); 502 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 503 MMDesc.Ordering = MMO.getSuccessOrdering(); 504 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 505 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 506 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 507 .Action != LegalizeActions::Legal) 508 continue; 509 } 510 Preferred = ChoosePreferredUse(Preferred, 511 MRI.getType(UseMI.getOperand(0).getReg()), 512 UseMI.getOpcode(), &UseMI); 513 } 514 } 515 516 // There were no extends 517 if (!Preferred.MI) 518 return false; 519 // It should be impossible to chose an extend without selecting a different 520 // type since by definition the result of an extend is larger. 521 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 522 523 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 524 return true; 525 } 526 527 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 528 PreferredTuple &Preferred) { 529 // Rewrite the load to the chosen extending load. 530 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 531 532 // Inserter to insert a truncate back to the original type at a given point 533 // with some basic CSE to limit truncate duplication to one per BB. 534 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 535 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 536 MachineBasicBlock::iterator InsertBefore, 537 MachineOperand &UseMO) { 538 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 539 if (PreviouslyEmitted) { 540 Observer.changingInstr(*UseMO.getParent()); 541 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 542 Observer.changedInstr(*UseMO.getParent()); 543 return; 544 } 545 546 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 547 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 548 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 549 EmittedInsns[InsertIntoBB] = NewMI; 550 replaceRegOpWith(MRI, UseMO, NewDstReg); 551 }; 552 553 Observer.changingInstr(MI); 554 MI.setDesc( 555 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 556 ? TargetOpcode::G_SEXTLOAD 557 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 558 ? TargetOpcode::G_ZEXTLOAD 559 : TargetOpcode::G_LOAD)); 560 561 // Rewrite all the uses to fix up the types. 562 auto &LoadValue = MI.getOperand(0); 563 SmallVector<MachineOperand *, 4> Uses; 564 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 565 Uses.push_back(&UseMO); 566 567 for (auto *UseMO : Uses) { 568 MachineInstr *UseMI = UseMO->getParent(); 569 570 // If the extend is compatible with the preferred extend then we should fix 571 // up the type and extend so that it uses the preferred use. 572 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 573 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 574 Register UseDstReg = UseMI->getOperand(0).getReg(); 575 MachineOperand &UseSrcMO = UseMI->getOperand(1); 576 const LLT UseDstTy = MRI.getType(UseDstReg); 577 if (UseDstReg != ChosenDstReg) { 578 if (Preferred.Ty == UseDstTy) { 579 // If the use has the same type as the preferred use, then merge 580 // the vregs and erase the extend. For example: 581 // %1:_(s8) = G_LOAD ... 582 // %2:_(s32) = G_SEXT %1(s8) 583 // %3:_(s32) = G_ANYEXT %1(s8) 584 // ... = ... %3(s32) 585 // rewrites to: 586 // %2:_(s32) = G_SEXTLOAD ... 587 // ... = ... %2(s32) 588 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 589 Observer.erasingInstr(*UseMO->getParent()); 590 UseMO->getParent()->eraseFromParent(); 591 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 592 // If the preferred size is smaller, then keep the extend but extend 593 // from the result of the extending load. For example: 594 // %1:_(s8) = G_LOAD ... 595 // %2:_(s32) = G_SEXT %1(s8) 596 // %3:_(s64) = G_ANYEXT %1(s8) 597 // ... = ... %3(s64) 598 /// rewrites to: 599 // %2:_(s32) = G_SEXTLOAD ... 600 // %3:_(s64) = G_ANYEXT %2:_(s32) 601 // ... = ... %3(s64) 602 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 603 } else { 604 // If the preferred size is large, then insert a truncate. For 605 // example: 606 // %1:_(s8) = G_LOAD ... 607 // %2:_(s64) = G_SEXT %1(s8) 608 // %3:_(s32) = G_ZEXT %1(s8) 609 // ... = ... %3(s32) 610 /// rewrites to: 611 // %2:_(s64) = G_SEXTLOAD ... 612 // %4:_(s8) = G_TRUNC %2:_(s32) 613 // %3:_(s64) = G_ZEXT %2:_(s8) 614 // ... = ... %3(s64) 615 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 616 InsertTruncAt); 617 } 618 continue; 619 } 620 // The use is (one of) the uses of the preferred use we chose earlier. 621 // We're going to update the load to def this value later so just erase 622 // the old extend. 623 Observer.erasingInstr(*UseMO->getParent()); 624 UseMO->getParent()->eraseFromParent(); 625 continue; 626 } 627 628 // The use isn't an extend. Truncate back to the type we originally loaded. 629 // This is free on many targets. 630 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 631 } 632 633 MI.getOperand(0).setReg(ChosenDstReg); 634 Observer.changedInstr(MI); 635 } 636 637 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 638 const MachineInstr &UseMI) { 639 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 640 "shouldn't consider debug uses"); 641 assert(DefMI.getParent() == UseMI.getParent()); 642 if (&DefMI == &UseMI) 643 return false; 644 const MachineBasicBlock &MBB = *DefMI.getParent(); 645 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 646 return &MI == &DefMI || &MI == &UseMI; 647 }); 648 if (DefOrUse == MBB.end()) 649 llvm_unreachable("Block must contain both DefMI and UseMI!"); 650 return &*DefOrUse == &DefMI; 651 } 652 653 bool CombinerHelper::dominates(const MachineInstr &DefMI, 654 const MachineInstr &UseMI) { 655 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 656 "shouldn't consider debug uses"); 657 if (MDT) 658 return MDT->dominates(&DefMI, &UseMI); 659 else if (DefMI.getParent() != UseMI.getParent()) 660 return false; 661 662 return isPredecessor(DefMI, UseMI); 663 } 664 665 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 666 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 667 Register SrcReg = MI.getOperand(1).getReg(); 668 Register LoadUser = SrcReg; 669 670 if (MRI.getType(SrcReg).isVector()) 671 return false; 672 673 Register TruncSrc; 674 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 675 LoadUser = TruncSrc; 676 677 uint64_t SizeInBits = MI.getOperand(2).getImm(); 678 // If the source is a G_SEXTLOAD from the same bit width, then we don't 679 // need any extend at all, just a truncate. 680 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 681 // If truncating more than the original extended value, abort. 682 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 683 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 684 return false; 685 if (LoadSizeBits == SizeInBits) 686 return true; 687 } 688 return false; 689 } 690 691 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 692 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 693 Builder.setInstrAndDebugLoc(MI); 694 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 695 MI.eraseFromParent(); 696 } 697 698 bool CombinerHelper::matchSextInRegOfLoad( 699 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 700 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 701 702 // Only supports scalars for now. 703 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 704 return false; 705 706 Register SrcReg = MI.getOperand(1).getReg(); 707 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 708 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || 709 !LoadDef->isSimple()) 710 return false; 711 712 // If the sign extend extends from a narrower width than the load's width, 713 // then we can narrow the load width when we combine to a G_SEXTLOAD. 714 // Avoid widening the load at all. 715 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), 716 LoadDef->getMemSizeInBits()); 717 718 // Don't generate G_SEXTLOADs with a < 1 byte width. 719 if (NewSizeBits < 8) 720 return false; 721 // Don't bother creating a non-power-2 sextload, it will likely be broken up 722 // anyway for most targets. 723 if (!isPowerOf2_32(NewSizeBits)) 724 return false; 725 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 726 return true; 727 } 728 729 void CombinerHelper::applySextInRegOfLoad( 730 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 731 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 732 Register LoadReg; 733 unsigned ScalarSizeBits; 734 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 735 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 736 737 // If we have the following: 738 // %ld = G_LOAD %ptr, (load 2) 739 // %ext = G_SEXT_INREG %ld, 8 740 // ==> 741 // %ld = G_SEXTLOAD %ptr (load 1) 742 743 auto &MMO = LoadDef->getMMO(); 744 Builder.setInstrAndDebugLoc(*LoadDef); 745 auto &MF = Builder.getMF(); 746 auto PtrInfo = MMO.getPointerInfo(); 747 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 748 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 749 LoadDef->getPointerReg(), *NewMMO); 750 MI.eraseFromParent(); 751 } 752 753 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 754 Register &Base, Register &Offset) { 755 auto &MF = *MI.getParent()->getParent(); 756 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 757 758 #ifndef NDEBUG 759 unsigned Opcode = MI.getOpcode(); 760 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 761 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 762 #endif 763 764 Base = MI.getOperand(1).getReg(); 765 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 766 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 767 return false; 768 769 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 770 // FIXME: The following use traversal needs a bail out for patholigical cases. 771 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 772 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 773 continue; 774 775 Offset = Use.getOperand(2).getReg(); 776 if (!ForceLegalIndexing && 777 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 778 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 779 << Use); 780 continue; 781 } 782 783 // Make sure the offset calculation is before the potentially indexed op. 784 // FIXME: we really care about dependency here. The offset calculation might 785 // be movable. 786 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 787 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 788 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 789 << Use); 790 continue; 791 } 792 793 // FIXME: check whether all uses of Base are load/store with foldable 794 // addressing modes. If so, using the normal addr-modes is better than 795 // forming an indexed one. 796 797 bool MemOpDominatesAddrUses = true; 798 for (auto &PtrAddUse : 799 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 800 if (!dominates(MI, PtrAddUse)) { 801 MemOpDominatesAddrUses = false; 802 break; 803 } 804 } 805 806 if (!MemOpDominatesAddrUses) { 807 LLVM_DEBUG( 808 dbgs() << " Ignoring candidate as memop does not dominate uses: " 809 << Use); 810 continue; 811 } 812 813 LLVM_DEBUG(dbgs() << " Found match: " << Use); 814 Addr = Use.getOperand(0).getReg(); 815 return true; 816 } 817 818 return false; 819 } 820 821 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 822 Register &Base, Register &Offset) { 823 auto &MF = *MI.getParent()->getParent(); 824 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 825 826 #ifndef NDEBUG 827 unsigned Opcode = MI.getOpcode(); 828 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 829 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 830 #endif 831 832 Addr = MI.getOperand(1).getReg(); 833 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 834 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 835 return false; 836 837 Base = AddrDef->getOperand(1).getReg(); 838 Offset = AddrDef->getOperand(2).getReg(); 839 840 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 841 842 if (!ForceLegalIndexing && 843 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 844 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 845 return false; 846 } 847 848 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 849 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 850 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 851 return false; 852 } 853 854 if (MI.getOpcode() == TargetOpcode::G_STORE) { 855 // Would require a copy. 856 if (Base == MI.getOperand(0).getReg()) { 857 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 858 return false; 859 } 860 861 // We're expecting one use of Addr in MI, but it could also be the 862 // value stored, which isn't actually dominated by the instruction. 863 if (MI.getOperand(0).getReg() == Addr) { 864 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 865 return false; 866 } 867 } 868 869 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 870 // That might allow us to end base's liveness here by adjusting the constant. 871 872 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 873 if (!dominates(MI, UseMI)) { 874 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 875 return false; 876 } 877 } 878 879 return true; 880 } 881 882 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 883 IndexedLoadStoreMatchInfo MatchInfo; 884 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 885 applyCombineIndexedLoadStore(MI, MatchInfo); 886 return true; 887 } 888 return false; 889 } 890 891 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 892 unsigned Opcode = MI.getOpcode(); 893 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 894 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 895 return false; 896 897 // For now, no targets actually support these opcodes so don't waste time 898 // running these unless we're forced to for testing. 899 if (!ForceLegalIndexing) 900 return false; 901 902 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 903 MatchInfo.Offset); 904 if (!MatchInfo.IsPre && 905 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 906 MatchInfo.Offset)) 907 return false; 908 909 return true; 910 } 911 912 void CombinerHelper::applyCombineIndexedLoadStore( 913 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 914 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 915 MachineIRBuilder MIRBuilder(MI); 916 unsigned Opcode = MI.getOpcode(); 917 bool IsStore = Opcode == TargetOpcode::G_STORE; 918 unsigned NewOpcode; 919 switch (Opcode) { 920 case TargetOpcode::G_LOAD: 921 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 922 break; 923 case TargetOpcode::G_SEXTLOAD: 924 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 925 break; 926 case TargetOpcode::G_ZEXTLOAD: 927 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 928 break; 929 case TargetOpcode::G_STORE: 930 NewOpcode = TargetOpcode::G_INDEXED_STORE; 931 break; 932 default: 933 llvm_unreachable("Unknown load/store opcode"); 934 } 935 936 auto MIB = MIRBuilder.buildInstr(NewOpcode); 937 if (IsStore) { 938 MIB.addDef(MatchInfo.Addr); 939 MIB.addUse(MI.getOperand(0).getReg()); 940 } else { 941 MIB.addDef(MI.getOperand(0).getReg()); 942 MIB.addDef(MatchInfo.Addr); 943 } 944 945 MIB.addUse(MatchInfo.Base); 946 MIB.addUse(MatchInfo.Offset); 947 MIB.addImm(MatchInfo.IsPre); 948 MI.eraseFromParent(); 949 AddrDef.eraseFromParent(); 950 951 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 952 } 953 954 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 955 MachineInstr *&OtherMI) { 956 unsigned Opcode = MI.getOpcode(); 957 bool IsDiv, IsSigned; 958 959 switch (Opcode) { 960 default: 961 llvm_unreachable("Unexpected opcode!"); 962 case TargetOpcode::G_SDIV: 963 case TargetOpcode::G_UDIV: { 964 IsDiv = true; 965 IsSigned = Opcode == TargetOpcode::G_SDIV; 966 break; 967 } 968 case TargetOpcode::G_SREM: 969 case TargetOpcode::G_UREM: { 970 IsDiv = false; 971 IsSigned = Opcode == TargetOpcode::G_SREM; 972 break; 973 } 974 } 975 976 Register Src1 = MI.getOperand(1).getReg(); 977 unsigned DivOpcode, RemOpcode, DivremOpcode; 978 if (IsSigned) { 979 DivOpcode = TargetOpcode::G_SDIV; 980 RemOpcode = TargetOpcode::G_SREM; 981 DivremOpcode = TargetOpcode::G_SDIVREM; 982 } else { 983 DivOpcode = TargetOpcode::G_UDIV; 984 RemOpcode = TargetOpcode::G_UREM; 985 DivremOpcode = TargetOpcode::G_UDIVREM; 986 } 987 988 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 989 return false; 990 991 // Combine: 992 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 993 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 994 // into: 995 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 996 997 // Combine: 998 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 999 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1000 // into: 1001 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1002 1003 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1004 if (MI.getParent() == UseMI.getParent() && 1005 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1006 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1007 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1008 OtherMI = &UseMI; 1009 return true; 1010 } 1011 } 1012 1013 return false; 1014 } 1015 1016 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1017 MachineInstr *&OtherMI) { 1018 unsigned Opcode = MI.getOpcode(); 1019 assert(OtherMI && "OtherMI shouldn't be empty."); 1020 1021 Register DestDivReg, DestRemReg; 1022 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1023 DestDivReg = MI.getOperand(0).getReg(); 1024 DestRemReg = OtherMI->getOperand(0).getReg(); 1025 } else { 1026 DestDivReg = OtherMI->getOperand(0).getReg(); 1027 DestRemReg = MI.getOperand(0).getReg(); 1028 } 1029 1030 bool IsSigned = 1031 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1032 1033 // Check which instruction is first in the block so we don't break def-use 1034 // deps by "moving" the instruction incorrectly. 1035 if (dominates(MI, *OtherMI)) 1036 Builder.setInstrAndDebugLoc(MI); 1037 else 1038 Builder.setInstrAndDebugLoc(*OtherMI); 1039 1040 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1041 : TargetOpcode::G_UDIVREM, 1042 {DestDivReg, DestRemReg}, 1043 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1044 MI.eraseFromParent(); 1045 OtherMI->eraseFromParent(); 1046 } 1047 1048 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1049 MachineInstr *&BrCond) { 1050 assert(MI.getOpcode() == TargetOpcode::G_BR); 1051 1052 // Try to match the following: 1053 // bb1: 1054 // G_BRCOND %c1, %bb2 1055 // G_BR %bb3 1056 // bb2: 1057 // ... 1058 // bb3: 1059 1060 // The above pattern does not have a fall through to the successor bb2, always 1061 // resulting in a branch no matter which path is taken. Here we try to find 1062 // and replace that pattern with conditional branch to bb3 and otherwise 1063 // fallthrough to bb2. This is generally better for branch predictors. 1064 1065 MachineBasicBlock *MBB = MI.getParent(); 1066 MachineBasicBlock::iterator BrIt(MI); 1067 if (BrIt == MBB->begin()) 1068 return false; 1069 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1070 1071 BrCond = &*std::prev(BrIt); 1072 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1073 return false; 1074 1075 // Check that the next block is the conditional branch target. Also make sure 1076 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1077 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1078 return BrCondTarget != MI.getOperand(0).getMBB() && 1079 MBB->isLayoutSuccessor(BrCondTarget); 1080 } 1081 1082 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1083 MachineInstr *&BrCond) { 1084 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1085 Builder.setInstrAndDebugLoc(*BrCond); 1086 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1087 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1088 // this to i1 only since we might not know for sure what kind of 1089 // compare generated the condition value. 1090 auto True = Builder.buildConstant( 1091 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1092 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1093 1094 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1095 Observer.changingInstr(MI); 1096 MI.getOperand(0).setMBB(FallthroughBB); 1097 Observer.changedInstr(MI); 1098 1099 // Change the conditional branch to use the inverted condition and 1100 // new target block. 1101 Observer.changingInstr(*BrCond); 1102 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1103 BrCond->getOperand(1).setMBB(BrTarget); 1104 Observer.changedInstr(*BrCond); 1105 } 1106 1107 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 1108 // On Darwin, -Os means optimize for size without hurting performance, so 1109 // only really optimize for size when -Oz (MinSize) is used. 1110 if (MF.getTarget().getTargetTriple().isOSDarwin()) 1111 return MF.getFunction().hasMinSize(); 1112 return MF.getFunction().hasOptSize(); 1113 } 1114 1115 // Returns a list of types to use for memory op lowering in MemOps. A partial 1116 // port of findOptimalMemOpLowering in TargetLowering. 1117 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 1118 unsigned Limit, const MemOp &Op, 1119 unsigned DstAS, unsigned SrcAS, 1120 const AttributeList &FuncAttributes, 1121 const TargetLowering &TLI) { 1122 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 1123 return false; 1124 1125 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 1126 1127 if (Ty == LLT()) { 1128 // Use the largest scalar type whose alignment constraints are satisfied. 1129 // We only need to check DstAlign here as SrcAlign is always greater or 1130 // equal to DstAlign (or zero). 1131 Ty = LLT::scalar(64); 1132 if (Op.isFixedDstAlign()) 1133 while (Op.getDstAlign() < Ty.getSizeInBytes() && 1134 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 1135 Ty = LLT::scalar(Ty.getSizeInBytes()); 1136 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 1137 // FIXME: check for the largest legal type we can load/store to. 1138 } 1139 1140 unsigned NumMemOps = 0; 1141 uint64_t Size = Op.size(); 1142 while (Size) { 1143 unsigned TySize = Ty.getSizeInBytes(); 1144 while (TySize > Size) { 1145 // For now, only use non-vector load / store's for the left-over pieces. 1146 LLT NewTy = Ty; 1147 // FIXME: check for mem op safety and legality of the types. Not all of 1148 // SDAGisms map cleanly to GISel concepts. 1149 if (NewTy.isVector()) 1150 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 1151 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 1152 unsigned NewTySize = NewTy.getSizeInBytes(); 1153 assert(NewTySize > 0 && "Could not find appropriate type"); 1154 1155 // If the new LLT cannot cover all of the remaining bits, then consider 1156 // issuing a (or a pair of) unaligned and overlapping load / store. 1157 bool Fast; 1158 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 1159 MVT VT = getMVTForLLT(Ty); 1160 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 1161 TLI.allowsMisalignedMemoryAccesses( 1162 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 1163 MachineMemOperand::MONone, &Fast) && 1164 Fast) 1165 TySize = Size; 1166 else { 1167 Ty = NewTy; 1168 TySize = NewTySize; 1169 } 1170 } 1171 1172 if (++NumMemOps > Limit) 1173 return false; 1174 1175 MemOps.push_back(Ty); 1176 Size -= TySize; 1177 } 1178 1179 return true; 1180 } 1181 1182 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1183 if (Ty.isVector()) 1184 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1185 Ty.getNumElements()); 1186 return IntegerType::get(C, Ty.getSizeInBits()); 1187 } 1188 1189 // Get a vectorized representation of the memset value operand, GISel edition. 1190 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 1191 MachineRegisterInfo &MRI = *MIB.getMRI(); 1192 unsigned NumBits = Ty.getScalarSizeInBits(); 1193 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1194 if (!Ty.isVector() && ValVRegAndVal) { 1195 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 1196 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 1197 return MIB.buildConstant(Ty, SplatVal).getReg(0); 1198 } 1199 1200 // Extend the byte value to the larger type, and then multiply by a magic 1201 // value 0x010101... in order to replicate it across every byte. 1202 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 1203 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 1204 return MIB.buildConstant(Ty, 0).getReg(0); 1205 } 1206 1207 LLT ExtType = Ty.getScalarType(); 1208 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 1209 if (NumBits > 8) { 1210 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 1211 auto MagicMI = MIB.buildConstant(ExtType, Magic); 1212 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 1213 } 1214 1215 // For vector types create a G_BUILD_VECTOR. 1216 if (Ty.isVector()) 1217 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 1218 1219 return Val; 1220 } 1221 1222 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 1223 Register Val, uint64_t KnownLen, 1224 Align Alignment, bool IsVolatile) { 1225 auto &MF = *MI.getParent()->getParent(); 1226 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1227 auto &DL = MF.getDataLayout(); 1228 LLVMContext &C = MF.getFunction().getContext(); 1229 1230 assert(KnownLen != 0 && "Have a zero length memset length!"); 1231 1232 bool DstAlignCanChange = false; 1233 MachineFrameInfo &MFI = MF.getFrameInfo(); 1234 bool OptSize = shouldLowerMemFuncForSize(MF); 1235 1236 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1237 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1238 DstAlignCanChange = true; 1239 1240 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1241 std::vector<LLT> MemOps; 1242 1243 const auto &DstMMO = **MI.memoperands_begin(); 1244 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1245 1246 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1247 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1248 1249 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1250 MemOp::Set(KnownLen, DstAlignCanChange, 1251 Alignment, 1252 /*IsZeroMemset=*/IsZeroVal, 1253 /*IsVolatile=*/IsVolatile), 1254 DstPtrInfo.getAddrSpace(), ~0u, 1255 MF.getFunction().getAttributes(), TLI)) 1256 return false; 1257 1258 if (DstAlignCanChange) { 1259 // Get an estimate of the type from the LLT. 1260 Type *IRTy = getTypeForLLT(MemOps[0], C); 1261 Align NewAlign = DL.getABITypeAlign(IRTy); 1262 if (NewAlign > Alignment) { 1263 Alignment = NewAlign; 1264 unsigned FI = FIDef->getOperand(1).getIndex(); 1265 // Give the stack frame object a larger alignment if needed. 1266 if (MFI.getObjectAlign(FI) < Alignment) 1267 MFI.setObjectAlignment(FI, Alignment); 1268 } 1269 } 1270 1271 MachineIRBuilder MIB(MI); 1272 // Find the largest store and generate the bit pattern for it. 1273 LLT LargestTy = MemOps[0]; 1274 for (unsigned i = 1; i < MemOps.size(); i++) 1275 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1276 LargestTy = MemOps[i]; 1277 1278 // The memset stored value is always defined as an s8, so in order to make it 1279 // work with larger store types we need to repeat the bit pattern across the 1280 // wider type. 1281 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1282 1283 if (!MemSetValue) 1284 return false; 1285 1286 // Generate the stores. For each store type in the list, we generate the 1287 // matching store of that type to the destination address. 1288 LLT PtrTy = MRI.getType(Dst); 1289 unsigned DstOff = 0; 1290 unsigned Size = KnownLen; 1291 for (unsigned I = 0; I < MemOps.size(); I++) { 1292 LLT Ty = MemOps[I]; 1293 unsigned TySize = Ty.getSizeInBytes(); 1294 if (TySize > Size) { 1295 // Issuing an unaligned load / store pair that overlaps with the previous 1296 // pair. Adjust the offset accordingly. 1297 assert(I == MemOps.size() - 1 && I != 0); 1298 DstOff -= TySize - Size; 1299 } 1300 1301 // If this store is smaller than the largest store see whether we can get 1302 // the smaller value for free with a truncate. 1303 Register Value = MemSetValue; 1304 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1305 MVT VT = getMVTForLLT(Ty); 1306 MVT LargestVT = getMVTForLLT(LargestTy); 1307 if (!LargestTy.isVector() && !Ty.isVector() && 1308 TLI.isTruncateFree(LargestVT, VT)) 1309 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1310 else 1311 Value = getMemsetValue(Val, Ty, MIB); 1312 if (!Value) 1313 return false; 1314 } 1315 1316 auto *StoreMMO = 1317 MF.getMachineMemOperand(&DstMMO, DstOff, Ty); 1318 1319 Register Ptr = Dst; 1320 if (DstOff != 0) { 1321 auto Offset = 1322 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1323 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1324 } 1325 1326 MIB.buildStore(Value, Ptr, *StoreMMO); 1327 DstOff += Ty.getSizeInBytes(); 1328 Size -= TySize; 1329 } 1330 1331 MI.eraseFromParent(); 1332 return true; 1333 } 1334 1335 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1336 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 1337 1338 Register Dst = MI.getOperand(0).getReg(); 1339 Register Src = MI.getOperand(1).getReg(); 1340 Register Len = MI.getOperand(2).getReg(); 1341 1342 const auto *MMOIt = MI.memoperands_begin(); 1343 const MachineMemOperand *MemOp = *MMOIt; 1344 bool IsVolatile = MemOp->isVolatile(); 1345 1346 // See if this is a constant length copy 1347 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1348 // FIXME: support dynamically sized G_MEMCPY_INLINE 1349 assert(LenVRegAndVal.hasValue() && 1350 "inline memcpy with dynamic size is not yet supported"); 1351 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 1352 if (KnownLen == 0) { 1353 MI.eraseFromParent(); 1354 return true; 1355 } 1356 1357 const auto &DstMMO = **MI.memoperands_begin(); 1358 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1359 Align DstAlign = DstMMO.getBaseAlign(); 1360 Align SrcAlign = SrcMMO.getBaseAlign(); 1361 1362 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 1363 IsVolatile); 1364 } 1365 1366 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI, Register Dst, 1367 Register Src, uint64_t KnownLen, 1368 Align DstAlign, Align SrcAlign, 1369 bool IsVolatile) { 1370 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 1371 return optimizeMemcpy(MI, Dst, Src, KnownLen, 1372 std::numeric_limits<uint64_t>::max(), DstAlign, 1373 SrcAlign, IsVolatile); 1374 } 1375 1376 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1377 Register Src, uint64_t KnownLen, 1378 uint64_t Limit, Align DstAlign, 1379 Align SrcAlign, bool IsVolatile) { 1380 auto &MF = *MI.getParent()->getParent(); 1381 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1382 auto &DL = MF.getDataLayout(); 1383 LLVMContext &C = MF.getFunction().getContext(); 1384 1385 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1386 1387 bool DstAlignCanChange = false; 1388 MachineFrameInfo &MFI = MF.getFrameInfo(); 1389 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1390 1391 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1392 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1393 DstAlignCanChange = true; 1394 1395 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1396 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1397 // if the memcpy is in a tail call position. 1398 1399 std::vector<LLT> MemOps; 1400 1401 const auto &DstMMO = **MI.memoperands_begin(); 1402 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1403 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1404 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1405 1406 if (!findGISelOptimalMemOpLowering( 1407 MemOps, Limit, 1408 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1409 IsVolatile), 1410 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1411 MF.getFunction().getAttributes(), TLI)) 1412 return false; 1413 1414 if (DstAlignCanChange) { 1415 // Get an estimate of the type from the LLT. 1416 Type *IRTy = getTypeForLLT(MemOps[0], C); 1417 Align NewAlign = DL.getABITypeAlign(IRTy); 1418 1419 // Don't promote to an alignment that would require dynamic stack 1420 // realignment. 1421 if (!TRI->hasStackRealignment(MF)) 1422 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1423 NewAlign = NewAlign / 2; 1424 1425 if (NewAlign > Alignment) { 1426 Alignment = NewAlign; 1427 unsigned FI = FIDef->getOperand(1).getIndex(); 1428 // Give the stack frame object a larger alignment if needed. 1429 if (MFI.getObjectAlign(FI) < Alignment) 1430 MFI.setObjectAlignment(FI, Alignment); 1431 } 1432 } 1433 1434 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1435 1436 MachineIRBuilder MIB(MI); 1437 // Now we need to emit a pair of load and stores for each of the types we've 1438 // collected. I.e. for each type, generate a load from the source pointer of 1439 // that type width, and then generate a corresponding store to the dest buffer 1440 // of that value loaded. This can result in a sequence of loads and stores 1441 // mixed types, depending on what the target specifies as good types to use. 1442 unsigned CurrOffset = 0; 1443 LLT PtrTy = MRI.getType(Src); 1444 unsigned Size = KnownLen; 1445 for (auto CopyTy : MemOps) { 1446 // Issuing an unaligned load / store pair that overlaps with the previous 1447 // pair. Adjust the offset accordingly. 1448 if (CopyTy.getSizeInBytes() > Size) 1449 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1450 1451 // Construct MMOs for the accesses. 1452 auto *LoadMMO = 1453 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1454 auto *StoreMMO = 1455 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1456 1457 // Create the load. 1458 Register LoadPtr = Src; 1459 Register Offset; 1460 if (CurrOffset != 0) { 1461 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1462 .getReg(0); 1463 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1464 } 1465 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1466 1467 // Create the store. 1468 Register StorePtr = 1469 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1470 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1471 CurrOffset += CopyTy.getSizeInBytes(); 1472 Size -= CopyTy.getSizeInBytes(); 1473 } 1474 1475 MI.eraseFromParent(); 1476 return true; 1477 } 1478 1479 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1480 Register Src, uint64_t KnownLen, 1481 Align DstAlign, Align SrcAlign, 1482 bool IsVolatile) { 1483 auto &MF = *MI.getParent()->getParent(); 1484 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1485 auto &DL = MF.getDataLayout(); 1486 LLVMContext &C = MF.getFunction().getContext(); 1487 1488 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1489 1490 bool DstAlignCanChange = false; 1491 MachineFrameInfo &MFI = MF.getFrameInfo(); 1492 bool OptSize = shouldLowerMemFuncForSize(MF); 1493 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1494 1495 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1496 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1497 DstAlignCanChange = true; 1498 1499 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1500 std::vector<LLT> MemOps; 1501 1502 const auto &DstMMO = **MI.memoperands_begin(); 1503 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1504 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1505 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1506 1507 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1508 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1509 // same thing here. 1510 if (!findGISelOptimalMemOpLowering( 1511 MemOps, Limit, 1512 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1513 /*IsVolatile*/ true), 1514 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1515 MF.getFunction().getAttributes(), TLI)) 1516 return false; 1517 1518 if (DstAlignCanChange) { 1519 // Get an estimate of the type from the LLT. 1520 Type *IRTy = getTypeForLLT(MemOps[0], C); 1521 Align NewAlign = DL.getABITypeAlign(IRTy); 1522 1523 // Don't promote to an alignment that would require dynamic stack 1524 // realignment. 1525 if (!TRI->hasStackRealignment(MF)) 1526 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1527 NewAlign = NewAlign / 2; 1528 1529 if (NewAlign > Alignment) { 1530 Alignment = NewAlign; 1531 unsigned FI = FIDef->getOperand(1).getIndex(); 1532 // Give the stack frame object a larger alignment if needed. 1533 if (MFI.getObjectAlign(FI) < Alignment) 1534 MFI.setObjectAlignment(FI, Alignment); 1535 } 1536 } 1537 1538 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1539 1540 MachineIRBuilder MIB(MI); 1541 // Memmove requires that we perform the loads first before issuing the stores. 1542 // Apart from that, this loop is pretty much doing the same thing as the 1543 // memcpy codegen function. 1544 unsigned CurrOffset = 0; 1545 LLT PtrTy = MRI.getType(Src); 1546 SmallVector<Register, 16> LoadVals; 1547 for (auto CopyTy : MemOps) { 1548 // Construct MMO for the load. 1549 auto *LoadMMO = 1550 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1551 1552 // Create the load. 1553 Register LoadPtr = Src; 1554 if (CurrOffset != 0) { 1555 auto Offset = 1556 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1557 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1558 } 1559 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1560 CurrOffset += CopyTy.getSizeInBytes(); 1561 } 1562 1563 CurrOffset = 0; 1564 for (unsigned I = 0; I < MemOps.size(); ++I) { 1565 LLT CopyTy = MemOps[I]; 1566 // Now store the values loaded. 1567 auto *StoreMMO = 1568 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1569 1570 Register StorePtr = Dst; 1571 if (CurrOffset != 0) { 1572 auto Offset = 1573 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1574 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1575 } 1576 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1577 CurrOffset += CopyTy.getSizeInBytes(); 1578 } 1579 MI.eraseFromParent(); 1580 return true; 1581 } 1582 1583 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1584 const unsigned Opc = MI.getOpcode(); 1585 // This combine is fairly complex so it's not written with a separate 1586 // matcher function. 1587 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 1588 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); 1589 1590 auto MMOIt = MI.memoperands_begin(); 1591 const MachineMemOperand *MemOp = *MMOIt; 1592 1593 Align DstAlign = MemOp->getBaseAlign(); 1594 Align SrcAlign; 1595 Register Dst = MI.getOperand(0).getReg(); 1596 Register Src = MI.getOperand(1).getReg(); 1597 Register Len = MI.getOperand(2).getReg(); 1598 1599 if (Opc != TargetOpcode::G_MEMSET) { 1600 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1601 MemOp = *(++MMOIt); 1602 SrcAlign = MemOp->getBaseAlign(); 1603 } 1604 1605 // See if this is a constant length copy 1606 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1607 if (!LenVRegAndVal) 1608 return false; // Leave it to the legalizer to lower it to a libcall. 1609 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 1610 1611 if (KnownLen == 0) { 1612 MI.eraseFromParent(); 1613 return true; 1614 } 1615 1616 bool IsVolatile = MemOp->isVolatile(); 1617 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 1618 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 1619 IsVolatile); 1620 1621 // Don't try to optimize volatile. 1622 if (IsVolatile) 1623 return false; 1624 1625 if (MaxLen && KnownLen > MaxLen) 1626 return false; 1627 1628 if (Opc == TargetOpcode::G_MEMCPY) { 1629 auto &MF = *MI.getParent()->getParent(); 1630 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1631 bool OptSize = shouldLowerMemFuncForSize(MF); 1632 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1633 return optimizeMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 1634 IsVolatile); 1635 } 1636 if (Opc == TargetOpcode::G_MEMMOVE) 1637 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1638 if (Opc == TargetOpcode::G_MEMSET) 1639 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1640 return false; 1641 } 1642 1643 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1644 const Register Op, 1645 const MachineRegisterInfo &MRI) { 1646 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1647 if (!MaybeCst) 1648 return None; 1649 1650 APFloat V = MaybeCst->getValueAPF(); 1651 switch (Opcode) { 1652 default: 1653 llvm_unreachable("Unexpected opcode!"); 1654 case TargetOpcode::G_FNEG: { 1655 V.changeSign(); 1656 return V; 1657 } 1658 case TargetOpcode::G_FABS: { 1659 V.clearSign(); 1660 return V; 1661 } 1662 case TargetOpcode::G_FPTRUNC: 1663 break; 1664 case TargetOpcode::G_FSQRT: { 1665 bool Unused; 1666 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1667 V = APFloat(sqrt(V.convertToDouble())); 1668 break; 1669 } 1670 case TargetOpcode::G_FLOG2: { 1671 bool Unused; 1672 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1673 V = APFloat(log2(V.convertToDouble())); 1674 break; 1675 } 1676 } 1677 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1678 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1679 // and `G_FLOG2` reach here. 1680 bool Unused; 1681 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1682 return V; 1683 } 1684 1685 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1686 Optional<APFloat> &Cst) { 1687 Register DstReg = MI.getOperand(0).getReg(); 1688 Register SrcReg = MI.getOperand(1).getReg(); 1689 LLT DstTy = MRI.getType(DstReg); 1690 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1691 return Cst.hasValue(); 1692 } 1693 1694 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1695 Optional<APFloat> &Cst) { 1696 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1697 Builder.setInstrAndDebugLoc(MI); 1698 MachineFunction &MF = Builder.getMF(); 1699 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1700 Register DstReg = MI.getOperand(0).getReg(); 1701 Builder.buildFConstant(DstReg, *FPVal); 1702 MI.eraseFromParent(); 1703 } 1704 1705 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1706 PtrAddChain &MatchInfo) { 1707 // We're trying to match the following pattern: 1708 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1709 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1710 // --> 1711 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1712 1713 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1714 return false; 1715 1716 Register Add2 = MI.getOperand(1).getReg(); 1717 Register Imm1 = MI.getOperand(2).getReg(); 1718 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1719 if (!MaybeImmVal) 1720 return false; 1721 1722 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1723 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1724 return false; 1725 1726 Register Base = Add2Def->getOperand(1).getReg(); 1727 Register Imm2 = Add2Def->getOperand(2).getReg(); 1728 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1729 if (!MaybeImm2Val) 1730 return false; 1731 1732 // Check if the new combined immediate forms an illegal addressing mode. 1733 // Do not combine if it was legal before but would get illegal. 1734 // To do so, we need to find a load/store user of the pointer to get 1735 // the access type. 1736 Type *AccessTy = nullptr; 1737 auto &MF = *MI.getMF(); 1738 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1739 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1740 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1741 MF.getFunction().getContext()); 1742 break; 1743 } 1744 } 1745 TargetLoweringBase::AddrMode AMNew; 1746 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1747 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1748 if (AccessTy) { 1749 AMNew.HasBaseReg = true; 1750 TargetLoweringBase::AddrMode AMOld; 1751 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); 1752 AMOld.HasBaseReg = true; 1753 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1754 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1755 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1756 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1757 return false; 1758 } 1759 1760 // Pass the combined immediate to the apply function. 1761 MatchInfo.Imm = AMNew.BaseOffs; 1762 MatchInfo.Base = Base; 1763 MatchInfo.Bank = getRegBank(Imm2); 1764 return true; 1765 } 1766 1767 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1768 PtrAddChain &MatchInfo) { 1769 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1770 MachineIRBuilder MIB(MI); 1771 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1772 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1773 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1774 Observer.changingInstr(MI); 1775 MI.getOperand(1).setReg(MatchInfo.Base); 1776 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1777 Observer.changedInstr(MI); 1778 } 1779 1780 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1781 RegisterImmPair &MatchInfo) { 1782 // We're trying to match the following pattern with any of 1783 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1784 // %t1 = SHIFT %base, G_CONSTANT imm1 1785 // %root = SHIFT %t1, G_CONSTANT imm2 1786 // --> 1787 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1788 1789 unsigned Opcode = MI.getOpcode(); 1790 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1791 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1792 Opcode == TargetOpcode::G_USHLSAT) && 1793 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1794 1795 Register Shl2 = MI.getOperand(1).getReg(); 1796 Register Imm1 = MI.getOperand(2).getReg(); 1797 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1798 if (!MaybeImmVal) 1799 return false; 1800 1801 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1802 if (Shl2Def->getOpcode() != Opcode) 1803 return false; 1804 1805 Register Base = Shl2Def->getOperand(1).getReg(); 1806 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1807 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1808 if (!MaybeImm2Val) 1809 return false; 1810 1811 // Pass the combined immediate to the apply function. 1812 MatchInfo.Imm = 1813 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1814 MatchInfo.Reg = Base; 1815 1816 // There is no simple replacement for a saturating unsigned left shift that 1817 // exceeds the scalar size. 1818 if (Opcode == TargetOpcode::G_USHLSAT && 1819 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1820 return false; 1821 1822 return true; 1823 } 1824 1825 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1826 RegisterImmPair &MatchInfo) { 1827 unsigned Opcode = MI.getOpcode(); 1828 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1829 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1830 Opcode == TargetOpcode::G_USHLSAT) && 1831 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1832 1833 Builder.setInstrAndDebugLoc(MI); 1834 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1835 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1836 auto Imm = MatchInfo.Imm; 1837 1838 if (Imm >= ScalarSizeInBits) { 1839 // Any logical shift that exceeds scalar size will produce zero. 1840 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1841 Builder.buildConstant(MI.getOperand(0), 0); 1842 MI.eraseFromParent(); 1843 return; 1844 } 1845 // Arithmetic shift and saturating signed left shift have no effect beyond 1846 // scalar size. 1847 Imm = ScalarSizeInBits - 1; 1848 } 1849 1850 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1851 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1852 Observer.changingInstr(MI); 1853 MI.getOperand(1).setReg(MatchInfo.Reg); 1854 MI.getOperand(2).setReg(NewImm); 1855 Observer.changedInstr(MI); 1856 } 1857 1858 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1859 ShiftOfShiftedLogic &MatchInfo) { 1860 // We're trying to match the following pattern with any of 1861 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1862 // with any of G_AND/G_OR/G_XOR logic instructions. 1863 // %t1 = SHIFT %X, G_CONSTANT C0 1864 // %t2 = LOGIC %t1, %Y 1865 // %root = SHIFT %t2, G_CONSTANT C1 1866 // --> 1867 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1868 // %t4 = SHIFT %Y, G_CONSTANT C1 1869 // %root = LOGIC %t3, %t4 1870 unsigned ShiftOpcode = MI.getOpcode(); 1871 assert((ShiftOpcode == TargetOpcode::G_SHL || 1872 ShiftOpcode == TargetOpcode::G_ASHR || 1873 ShiftOpcode == TargetOpcode::G_LSHR || 1874 ShiftOpcode == TargetOpcode::G_USHLSAT || 1875 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1876 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1877 1878 // Match a one-use bitwise logic op. 1879 Register LogicDest = MI.getOperand(1).getReg(); 1880 if (!MRI.hasOneNonDBGUse(LogicDest)) 1881 return false; 1882 1883 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1884 unsigned LogicOpcode = LogicMI->getOpcode(); 1885 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1886 LogicOpcode != TargetOpcode::G_XOR) 1887 return false; 1888 1889 // Find a matching one-use shift by constant. 1890 const Register C1 = MI.getOperand(2).getReg(); 1891 auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); 1892 if (!MaybeImmVal) 1893 return false; 1894 1895 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1896 1897 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1898 // Shift should match previous one and should be a one-use. 1899 if (MI->getOpcode() != ShiftOpcode || 1900 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1901 return false; 1902 1903 // Must be a constant. 1904 auto MaybeImmVal = 1905 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1906 if (!MaybeImmVal) 1907 return false; 1908 1909 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1910 return true; 1911 }; 1912 1913 // Logic ops are commutative, so check each operand for a match. 1914 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1915 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1916 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1917 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1918 uint64_t C0Val; 1919 1920 if (matchFirstShift(LogicMIOp1, C0Val)) { 1921 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1922 MatchInfo.Shift2 = LogicMIOp1; 1923 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1924 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1925 MatchInfo.Shift2 = LogicMIOp2; 1926 } else 1927 return false; 1928 1929 MatchInfo.ValSum = C0Val + C1Val; 1930 1931 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1932 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1933 return false; 1934 1935 MatchInfo.Logic = LogicMI; 1936 return true; 1937 } 1938 1939 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1940 ShiftOfShiftedLogic &MatchInfo) { 1941 unsigned Opcode = MI.getOpcode(); 1942 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1943 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1944 Opcode == TargetOpcode::G_SSHLSAT) && 1945 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1946 1947 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1948 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1949 Builder.setInstrAndDebugLoc(MI); 1950 1951 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1952 1953 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1954 Register Shift1 = 1955 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1956 1957 Register Shift2Const = MI.getOperand(2).getReg(); 1958 Register Shift2 = Builder 1959 .buildInstr(Opcode, {DestType}, 1960 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1961 .getReg(0); 1962 1963 Register Dest = MI.getOperand(0).getReg(); 1964 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1965 1966 // These were one use so it's safe to remove them. 1967 MatchInfo.Shift2->eraseFromParentAndMarkDBGValuesForRemoval(); 1968 MatchInfo.Logic->eraseFromParentAndMarkDBGValuesForRemoval(); 1969 1970 MI.eraseFromParent(); 1971 } 1972 1973 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1974 unsigned &ShiftVal) { 1975 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1976 auto MaybeImmVal = 1977 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1978 if (!MaybeImmVal) 1979 return false; 1980 1981 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1982 return (static_cast<int32_t>(ShiftVal) != -1); 1983 } 1984 1985 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1986 unsigned &ShiftVal) { 1987 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1988 MachineIRBuilder MIB(MI); 1989 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1990 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1991 Observer.changingInstr(MI); 1992 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1993 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1994 Observer.changedInstr(MI); 1995 } 1996 1997 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1998 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1999 RegisterImmPair &MatchData) { 2000 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 2001 2002 Register LHS = MI.getOperand(1).getReg(); 2003 2004 Register ExtSrc; 2005 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 2006 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 2007 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 2008 return false; 2009 2010 // TODO: Should handle vector splat. 2011 Register RHS = MI.getOperand(2).getReg(); 2012 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 2013 if (!MaybeShiftAmtVal) 2014 return false; 2015 2016 if (LI) { 2017 LLT SrcTy = MRI.getType(ExtSrc); 2018 2019 // We only really care about the legality with the shifted value. We can 2020 // pick any type the constant shift amount, so ask the target what to 2021 // use. Otherwise we would have to guess and hope it is reported as legal. 2022 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 2023 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 2024 return false; 2025 } 2026 2027 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 2028 MatchData.Reg = ExtSrc; 2029 MatchData.Imm = ShiftAmt; 2030 2031 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 2032 return MinLeadingZeros >= ShiftAmt; 2033 } 2034 2035 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 2036 const RegisterImmPair &MatchData) { 2037 Register ExtSrcReg = MatchData.Reg; 2038 int64_t ShiftAmtVal = MatchData.Imm; 2039 2040 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 2041 Builder.setInstrAndDebugLoc(MI); 2042 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 2043 auto NarrowShift = 2044 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 2045 Builder.buildZExt(MI.getOperand(0), NarrowShift); 2046 MI.eraseFromParent(); 2047 } 2048 2049 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 2050 Register &MatchInfo) { 2051 GMerge &Merge = cast<GMerge>(MI); 2052 SmallVector<Register, 16> MergedValues; 2053 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 2054 MergedValues.emplace_back(Merge.getSourceReg(I)); 2055 2056 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 2057 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 2058 return false; 2059 2060 for (unsigned I = 0; I < MergedValues.size(); ++I) 2061 if (MergedValues[I] != Unmerge->getReg(I)) 2062 return false; 2063 2064 MatchInfo = Unmerge->getSourceReg(); 2065 return true; 2066 } 2067 2068 static Register peekThroughBitcast(Register Reg, 2069 const MachineRegisterInfo &MRI) { 2070 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 2071 ; 2072 2073 return Reg; 2074 } 2075 2076 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 2077 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2078 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2079 "Expected an unmerge"); 2080 auto &Unmerge = cast<GUnmerge>(MI); 2081 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 2082 2083 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI); 2084 if (!SrcInstr) 2085 return false; 2086 2087 // Check the source type of the merge. 2088 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 2089 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 2090 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 2091 if (SrcMergeTy != Dst0Ty && !SameSize) 2092 return false; 2093 // They are the same now (modulo a bitcast). 2094 // We can collect all the src registers. 2095 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 2096 Operands.push_back(SrcInstr->getSourceReg(Idx)); 2097 return true; 2098 } 2099 2100 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 2101 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2102 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2103 "Expected an unmerge"); 2104 assert((MI.getNumOperands() - 1 == Operands.size()) && 2105 "Not enough operands to replace all defs"); 2106 unsigned NumElems = MI.getNumOperands() - 1; 2107 2108 LLT SrcTy = MRI.getType(Operands[0]); 2109 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2110 bool CanReuseInputDirectly = DstTy == SrcTy; 2111 Builder.setInstrAndDebugLoc(MI); 2112 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2113 Register DstReg = MI.getOperand(Idx).getReg(); 2114 Register SrcReg = Operands[Idx]; 2115 if (CanReuseInputDirectly) 2116 replaceRegWith(MRI, DstReg, SrcReg); 2117 else 2118 Builder.buildCast(DstReg, SrcReg); 2119 } 2120 MI.eraseFromParent(); 2121 } 2122 2123 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 2124 SmallVectorImpl<APInt> &Csts) { 2125 unsigned SrcIdx = MI.getNumOperands() - 1; 2126 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 2127 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 2128 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 2129 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 2130 return false; 2131 // Break down the big constant in smaller ones. 2132 const MachineOperand &CstVal = SrcInstr->getOperand(1); 2133 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 2134 ? CstVal.getCImm()->getValue() 2135 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 2136 2137 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 2138 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 2139 // Unmerge a constant. 2140 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 2141 Csts.emplace_back(Val.trunc(ShiftAmt)); 2142 Val = Val.lshr(ShiftAmt); 2143 } 2144 2145 return true; 2146 } 2147 2148 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 2149 SmallVectorImpl<APInt> &Csts) { 2150 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2151 "Expected an unmerge"); 2152 assert((MI.getNumOperands() - 1 == Csts.size()) && 2153 "Not enough operands to replace all defs"); 2154 unsigned NumElems = MI.getNumOperands() - 1; 2155 Builder.setInstrAndDebugLoc(MI); 2156 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2157 Register DstReg = MI.getOperand(Idx).getReg(); 2158 Builder.buildConstant(DstReg, Csts[Idx]); 2159 } 2160 2161 MI.eraseFromParent(); 2162 } 2163 2164 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2165 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2166 "Expected an unmerge"); 2167 // Check that all the lanes are dead except the first one. 2168 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2169 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 2170 return false; 2171 } 2172 return true; 2173 } 2174 2175 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2176 Builder.setInstrAndDebugLoc(MI); 2177 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2178 // Truncating a vector is going to truncate every single lane, 2179 // whereas we want the full lowbits. 2180 // Do the operation on a scalar instead. 2181 LLT SrcTy = MRI.getType(SrcReg); 2182 if (SrcTy.isVector()) 2183 SrcReg = 2184 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 2185 2186 Register Dst0Reg = MI.getOperand(0).getReg(); 2187 LLT Dst0Ty = MRI.getType(Dst0Reg); 2188 if (Dst0Ty.isVector()) { 2189 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 2190 Builder.buildCast(Dst0Reg, MIB); 2191 } else 2192 Builder.buildTrunc(Dst0Reg, SrcReg); 2193 MI.eraseFromParent(); 2194 } 2195 2196 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 2197 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2198 "Expected an unmerge"); 2199 Register Dst0Reg = MI.getOperand(0).getReg(); 2200 LLT Dst0Ty = MRI.getType(Dst0Reg); 2201 // G_ZEXT on vector applies to each lane, so it will 2202 // affect all destinations. Therefore we won't be able 2203 // to simplify the unmerge to just the first definition. 2204 if (Dst0Ty.isVector()) 2205 return false; 2206 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2207 LLT SrcTy = MRI.getType(SrcReg); 2208 if (SrcTy.isVector()) 2209 return false; 2210 2211 Register ZExtSrcReg; 2212 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 2213 return false; 2214 2215 // Finally we can replace the first definition with 2216 // a zext of the source if the definition is big enough to hold 2217 // all of ZExtSrc bits. 2218 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2219 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 2220 } 2221 2222 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 2223 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2224 "Expected an unmerge"); 2225 2226 Register Dst0Reg = MI.getOperand(0).getReg(); 2227 2228 MachineInstr *ZExtInstr = 2229 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 2230 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 2231 "Expecting a G_ZEXT"); 2232 2233 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 2234 LLT Dst0Ty = MRI.getType(Dst0Reg); 2235 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2236 2237 Builder.setInstrAndDebugLoc(MI); 2238 2239 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 2240 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 2241 } else { 2242 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 2243 "ZExt src doesn't fit in destination"); 2244 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 2245 } 2246 2247 Register ZeroReg; 2248 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2249 if (!ZeroReg) 2250 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 2251 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 2252 } 2253 MI.eraseFromParent(); 2254 } 2255 2256 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 2257 unsigned TargetShiftSize, 2258 unsigned &ShiftVal) { 2259 assert((MI.getOpcode() == TargetOpcode::G_SHL || 2260 MI.getOpcode() == TargetOpcode::G_LSHR || 2261 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 2262 2263 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2264 if (Ty.isVector()) // TODO: 2265 return false; 2266 2267 // Don't narrow further than the requested size. 2268 unsigned Size = Ty.getSizeInBits(); 2269 if (Size <= TargetShiftSize) 2270 return false; 2271 2272 auto MaybeImmVal = 2273 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 2274 if (!MaybeImmVal) 2275 return false; 2276 2277 ShiftVal = MaybeImmVal->Value.getSExtValue(); 2278 return ShiftVal >= Size / 2 && ShiftVal < Size; 2279 } 2280 2281 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 2282 const unsigned &ShiftVal) { 2283 Register DstReg = MI.getOperand(0).getReg(); 2284 Register SrcReg = MI.getOperand(1).getReg(); 2285 LLT Ty = MRI.getType(SrcReg); 2286 unsigned Size = Ty.getSizeInBits(); 2287 unsigned HalfSize = Size / 2; 2288 assert(ShiftVal >= HalfSize); 2289 2290 LLT HalfTy = LLT::scalar(HalfSize); 2291 2292 Builder.setInstr(MI); 2293 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 2294 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 2295 2296 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2297 Register Narrowed = Unmerge.getReg(1); 2298 2299 // dst = G_LSHR s64:x, C for C >= 32 2300 // => 2301 // lo, hi = G_UNMERGE_VALUES x 2302 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 2303 2304 if (NarrowShiftAmt != 0) { 2305 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 2306 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2307 } 2308 2309 auto Zero = Builder.buildConstant(HalfTy, 0); 2310 Builder.buildMerge(DstReg, { Narrowed, Zero }); 2311 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 2312 Register Narrowed = Unmerge.getReg(0); 2313 // dst = G_SHL s64:x, C for C >= 32 2314 // => 2315 // lo, hi = G_UNMERGE_VALUES x 2316 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 2317 if (NarrowShiftAmt != 0) { 2318 Narrowed = Builder.buildShl(HalfTy, Narrowed, 2319 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2320 } 2321 2322 auto Zero = Builder.buildConstant(HalfTy, 0); 2323 Builder.buildMerge(DstReg, { Zero, Narrowed }); 2324 } else { 2325 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2326 auto Hi = Builder.buildAShr( 2327 HalfTy, Unmerge.getReg(1), 2328 Builder.buildConstant(HalfTy, HalfSize - 1)); 2329 2330 if (ShiftVal == HalfSize) { 2331 // (G_ASHR i64:x, 32) -> 2332 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 2333 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 2334 } else if (ShiftVal == Size - 1) { 2335 // Don't need a second shift. 2336 // (G_ASHR i64:x, 63) -> 2337 // %narrowed = (G_ASHR hi_32(x), 31) 2338 // G_MERGE_VALUES %narrowed, %narrowed 2339 Builder.buildMerge(DstReg, { Hi, Hi }); 2340 } else { 2341 auto Lo = Builder.buildAShr( 2342 HalfTy, Unmerge.getReg(1), 2343 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 2344 2345 // (G_ASHR i64:x, C) ->, for C >= 32 2346 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 2347 Builder.buildMerge(DstReg, { Lo, Hi }); 2348 } 2349 } 2350 2351 MI.eraseFromParent(); 2352 } 2353 2354 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 2355 unsigned TargetShiftAmount) { 2356 unsigned ShiftAmt; 2357 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 2358 applyCombineShiftToUnmerge(MI, ShiftAmt); 2359 return true; 2360 } 2361 2362 return false; 2363 } 2364 2365 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2366 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2367 Register DstReg = MI.getOperand(0).getReg(); 2368 LLT DstTy = MRI.getType(DstReg); 2369 Register SrcReg = MI.getOperand(1).getReg(); 2370 return mi_match(SrcReg, MRI, 2371 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2372 } 2373 2374 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2375 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2376 Register DstReg = MI.getOperand(0).getReg(); 2377 Builder.setInstr(MI); 2378 Builder.buildCopy(DstReg, Reg); 2379 MI.eraseFromParent(); 2380 } 2381 2382 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2383 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2384 Register SrcReg = MI.getOperand(1).getReg(); 2385 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2386 } 2387 2388 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2389 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2390 Register DstReg = MI.getOperand(0).getReg(); 2391 Builder.setInstr(MI); 2392 Builder.buildZExtOrTrunc(DstReg, Reg); 2393 MI.eraseFromParent(); 2394 } 2395 2396 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2397 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2398 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2399 Register LHS = MI.getOperand(1).getReg(); 2400 Register RHS = MI.getOperand(2).getReg(); 2401 LLT IntTy = MRI.getType(LHS); 2402 2403 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2404 // instruction. 2405 PtrReg.second = false; 2406 for (Register SrcReg : {LHS, RHS}) { 2407 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2408 // Don't handle cases where the integer is implicitly converted to the 2409 // pointer width. 2410 LLT PtrTy = MRI.getType(PtrReg.first); 2411 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2412 return true; 2413 } 2414 2415 PtrReg.second = true; 2416 } 2417 2418 return false; 2419 } 2420 2421 void CombinerHelper::applyCombineAddP2IToPtrAdd( 2422 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2423 Register Dst = MI.getOperand(0).getReg(); 2424 Register LHS = MI.getOperand(1).getReg(); 2425 Register RHS = MI.getOperand(2).getReg(); 2426 2427 const bool DoCommute = PtrReg.second; 2428 if (DoCommute) 2429 std::swap(LHS, RHS); 2430 LHS = PtrReg.first; 2431 2432 LLT PtrTy = MRI.getType(LHS); 2433 2434 Builder.setInstrAndDebugLoc(MI); 2435 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2436 Builder.buildPtrToInt(Dst, PtrAdd); 2437 MI.eraseFromParent(); 2438 } 2439 2440 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2441 int64_t &NewCst) { 2442 auto &PtrAdd = cast<GPtrAdd>(MI); 2443 Register LHS = PtrAdd.getBaseReg(); 2444 Register RHS = PtrAdd.getOffsetReg(); 2445 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2446 2447 if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { 2448 int64_t Cst; 2449 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2450 NewCst = Cst + *RHSCst; 2451 return true; 2452 } 2453 } 2454 2455 return false; 2456 } 2457 2458 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2459 int64_t &NewCst) { 2460 auto &PtrAdd = cast<GPtrAdd>(MI); 2461 Register Dst = PtrAdd.getReg(0); 2462 2463 Builder.setInstrAndDebugLoc(MI); 2464 Builder.buildConstant(Dst, NewCst); 2465 PtrAdd.eraseFromParent(); 2466 } 2467 2468 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2469 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2470 Register DstReg = MI.getOperand(0).getReg(); 2471 Register SrcReg = MI.getOperand(1).getReg(); 2472 LLT DstTy = MRI.getType(DstReg); 2473 return mi_match(SrcReg, MRI, 2474 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2475 } 2476 2477 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2478 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2479 Register DstReg = MI.getOperand(0).getReg(); 2480 Register SrcReg = MI.getOperand(1).getReg(); 2481 LLT DstTy = MRI.getType(DstReg); 2482 if (mi_match(SrcReg, MRI, 2483 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2484 unsigned DstSize = DstTy.getScalarSizeInBits(); 2485 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2486 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2487 } 2488 return false; 2489 } 2490 2491 bool CombinerHelper::matchCombineExtOfExt( 2492 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2493 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2494 MI.getOpcode() == TargetOpcode::G_SEXT || 2495 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2496 "Expected a G_[ASZ]EXT"); 2497 Register SrcReg = MI.getOperand(1).getReg(); 2498 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2499 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2500 unsigned Opc = MI.getOpcode(); 2501 unsigned SrcOpc = SrcMI->getOpcode(); 2502 if (Opc == SrcOpc || 2503 (Opc == TargetOpcode::G_ANYEXT && 2504 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2505 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2506 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2507 return true; 2508 } 2509 return false; 2510 } 2511 2512 void CombinerHelper::applyCombineExtOfExt( 2513 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2514 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2515 MI.getOpcode() == TargetOpcode::G_SEXT || 2516 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2517 "Expected a G_[ASZ]EXT"); 2518 2519 Register Reg = std::get<0>(MatchInfo); 2520 unsigned SrcExtOp = std::get<1>(MatchInfo); 2521 2522 // Combine exts with the same opcode. 2523 if (MI.getOpcode() == SrcExtOp) { 2524 Observer.changingInstr(MI); 2525 MI.getOperand(1).setReg(Reg); 2526 Observer.changedInstr(MI); 2527 return; 2528 } 2529 2530 // Combine: 2531 // - anyext([sz]ext x) to [sz]ext x 2532 // - sext(zext x) to zext x 2533 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2534 (MI.getOpcode() == TargetOpcode::G_SEXT && 2535 SrcExtOp == TargetOpcode::G_ZEXT)) { 2536 Register DstReg = MI.getOperand(0).getReg(); 2537 Builder.setInstrAndDebugLoc(MI); 2538 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2539 MI.eraseFromParent(); 2540 } 2541 } 2542 2543 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2544 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2545 Register DstReg = MI.getOperand(0).getReg(); 2546 Register SrcReg = MI.getOperand(1).getReg(); 2547 LLT DstTy = MRI.getType(DstReg); 2548 2549 Builder.setInstrAndDebugLoc(MI); 2550 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2551 MI.getFlags()); 2552 MI.eraseFromParent(); 2553 } 2554 2555 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2556 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2557 Register SrcReg = MI.getOperand(1).getReg(); 2558 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2559 } 2560 2561 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2562 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2563 Src = MI.getOperand(1).getReg(); 2564 Register AbsSrc; 2565 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2566 } 2567 2568 bool CombinerHelper::matchCombineTruncOfExt( 2569 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2570 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2571 Register SrcReg = MI.getOperand(1).getReg(); 2572 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2573 unsigned SrcOpc = SrcMI->getOpcode(); 2574 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2575 SrcOpc == TargetOpcode::G_ZEXT) { 2576 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2577 return true; 2578 } 2579 return false; 2580 } 2581 2582 void CombinerHelper::applyCombineTruncOfExt( 2583 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2584 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2585 Register SrcReg = MatchInfo.first; 2586 unsigned SrcExtOp = MatchInfo.second; 2587 Register DstReg = MI.getOperand(0).getReg(); 2588 LLT SrcTy = MRI.getType(SrcReg); 2589 LLT DstTy = MRI.getType(DstReg); 2590 if (SrcTy == DstTy) { 2591 MI.eraseFromParent(); 2592 replaceRegWith(MRI, DstReg, SrcReg); 2593 return; 2594 } 2595 Builder.setInstrAndDebugLoc(MI); 2596 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2597 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2598 else 2599 Builder.buildTrunc(DstReg, SrcReg); 2600 MI.eraseFromParent(); 2601 } 2602 2603 bool CombinerHelper::matchCombineTruncOfShl( 2604 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2605 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2606 Register DstReg = MI.getOperand(0).getReg(); 2607 Register SrcReg = MI.getOperand(1).getReg(); 2608 LLT DstTy = MRI.getType(DstReg); 2609 Register ShiftSrc; 2610 Register ShiftAmt; 2611 2612 if (MRI.hasOneNonDBGUse(SrcReg) && 2613 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2614 isLegalOrBeforeLegalizer( 2615 {TargetOpcode::G_SHL, 2616 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2617 KnownBits Known = KB->getKnownBits(ShiftAmt); 2618 unsigned Size = DstTy.getSizeInBits(); 2619 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2620 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2621 return true; 2622 } 2623 } 2624 return false; 2625 } 2626 2627 void CombinerHelper::applyCombineTruncOfShl( 2628 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2629 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2630 Register DstReg = MI.getOperand(0).getReg(); 2631 Register SrcReg = MI.getOperand(1).getReg(); 2632 LLT DstTy = MRI.getType(DstReg); 2633 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2634 2635 Register ShiftSrc = MatchInfo.first; 2636 Register ShiftAmt = MatchInfo.second; 2637 Builder.setInstrAndDebugLoc(MI); 2638 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2639 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2640 MI.eraseFromParent(); 2641 } 2642 2643 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2644 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2645 return MO.isReg() && 2646 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2647 }); 2648 } 2649 2650 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2651 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2652 return !MO.isReg() || 2653 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2654 }); 2655 } 2656 2657 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2658 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2659 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2660 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2661 } 2662 2663 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2664 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2665 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2666 MRI); 2667 } 2668 2669 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2670 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2671 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2672 MRI); 2673 } 2674 2675 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2676 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2677 if (auto MaybeCstCmp = 2678 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2679 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; 2680 return true; 2681 } 2682 return false; 2683 } 2684 2685 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2686 MI.eraseFromParent(); 2687 return true; 2688 } 2689 2690 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2691 const MachineOperand &MOP2) { 2692 if (!MOP1.isReg() || !MOP2.isReg()) 2693 return false; 2694 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2695 if (!InstAndDef1) 2696 return false; 2697 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2698 if (!InstAndDef2) 2699 return false; 2700 MachineInstr *I1 = InstAndDef1->MI; 2701 MachineInstr *I2 = InstAndDef2->MI; 2702 2703 // Handle a case like this: 2704 // 2705 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2706 // 2707 // Even though %0 and %1 are produced by the same instruction they are not 2708 // the same values. 2709 if (I1 == I2) 2710 return MOP1.getReg() == MOP2.getReg(); 2711 2712 // If we have an instruction which loads or stores, we can't guarantee that 2713 // it is identical. 2714 // 2715 // For example, we may have 2716 // 2717 // %x1 = G_LOAD %addr (load N from @somewhere) 2718 // ... 2719 // call @foo 2720 // ... 2721 // %x2 = G_LOAD %addr (load N from @somewhere) 2722 // ... 2723 // %or = G_OR %x1, %x2 2724 // 2725 // It's possible that @foo will modify whatever lives at the address we're 2726 // loading from. To be safe, let's just assume that all loads and stores 2727 // are different (unless we have something which is guaranteed to not 2728 // change.) 2729 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2730 return false; 2731 2732 // Check for physical registers on the instructions first to avoid cases 2733 // like this: 2734 // 2735 // %a = COPY $physreg 2736 // ... 2737 // SOMETHING implicit-def $physreg 2738 // ... 2739 // %b = COPY $physreg 2740 // 2741 // These copies are not equivalent. 2742 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2743 return MO.isReg() && MO.getReg().isPhysical(); 2744 })) { 2745 // Check if we have a case like this: 2746 // 2747 // %a = COPY $physreg 2748 // %b = COPY %a 2749 // 2750 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2751 // From that, we know that they must have the same value, since they must 2752 // have come from the same COPY. 2753 return I1->isIdenticalTo(*I2); 2754 } 2755 2756 // We don't have any physical registers, so we don't necessarily need the 2757 // same vreg defs. 2758 // 2759 // On the off-chance that there's some target instruction feeding into the 2760 // instruction, let's use produceSameValue instead of isIdenticalTo. 2761 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2762 // Handle instructions with multiple defs that produce same values. Values 2763 // are same for operands with same index. 2764 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2765 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2766 // I1 and I2 are different instructions but produce same values, 2767 // %1 and %6 are same, %1 and %7 are not the same value. 2768 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2769 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2770 } 2771 return false; 2772 } 2773 2774 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2775 if (!MOP.isReg()) 2776 return false; 2777 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2778 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2779 return ValAndVReg && ValAndVReg->Value == C; 2780 } 2781 2782 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2783 unsigned OpIdx) { 2784 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2785 Register OldReg = MI.getOperand(0).getReg(); 2786 Register Replacement = MI.getOperand(OpIdx).getReg(); 2787 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2788 MI.eraseFromParent(); 2789 replaceRegWith(MRI, OldReg, Replacement); 2790 return true; 2791 } 2792 2793 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2794 Register Replacement) { 2795 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2796 Register OldReg = MI.getOperand(0).getReg(); 2797 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2798 MI.eraseFromParent(); 2799 replaceRegWith(MRI, OldReg, Replacement); 2800 return true; 2801 } 2802 2803 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2804 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2805 // Match (cond ? x : x) 2806 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2807 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2808 MRI); 2809 } 2810 2811 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2812 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2813 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2814 MRI); 2815 } 2816 2817 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2818 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2819 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2820 MRI); 2821 } 2822 2823 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2824 MachineOperand &MO = MI.getOperand(OpIdx); 2825 return MO.isReg() && 2826 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2827 } 2828 2829 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2830 unsigned OpIdx) { 2831 MachineOperand &MO = MI.getOperand(OpIdx); 2832 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2833 } 2834 2835 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2836 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2837 Builder.setInstr(MI); 2838 Builder.buildFConstant(MI.getOperand(0), C); 2839 MI.eraseFromParent(); 2840 return true; 2841 } 2842 2843 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2844 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2845 Builder.setInstr(MI); 2846 Builder.buildConstant(MI.getOperand(0), C); 2847 MI.eraseFromParent(); 2848 return true; 2849 } 2850 2851 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2852 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2853 Builder.setInstr(MI); 2854 Builder.buildConstant(MI.getOperand(0), C); 2855 MI.eraseFromParent(); 2856 return true; 2857 } 2858 2859 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2860 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2861 Builder.setInstr(MI); 2862 Builder.buildUndef(MI.getOperand(0)); 2863 MI.eraseFromParent(); 2864 return true; 2865 } 2866 2867 bool CombinerHelper::matchSimplifyAddToSub( 2868 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2869 Register LHS = MI.getOperand(1).getReg(); 2870 Register RHS = MI.getOperand(2).getReg(); 2871 Register &NewLHS = std::get<0>(MatchInfo); 2872 Register &NewRHS = std::get<1>(MatchInfo); 2873 2874 // Helper lambda to check for opportunities for 2875 // ((0-A) + B) -> B - A 2876 // (A + (0-B)) -> A - B 2877 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2878 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2879 return false; 2880 NewLHS = MaybeNewLHS; 2881 return true; 2882 }; 2883 2884 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2885 } 2886 2887 bool CombinerHelper::matchCombineInsertVecElts( 2888 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2889 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2890 "Invalid opcode"); 2891 Register DstReg = MI.getOperand(0).getReg(); 2892 LLT DstTy = MRI.getType(DstReg); 2893 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2894 unsigned NumElts = DstTy.getNumElements(); 2895 // If this MI is part of a sequence of insert_vec_elts, then 2896 // don't do the combine in the middle of the sequence. 2897 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2898 TargetOpcode::G_INSERT_VECTOR_ELT) 2899 return false; 2900 MachineInstr *CurrInst = &MI; 2901 MachineInstr *TmpInst; 2902 int64_t IntImm; 2903 Register TmpReg; 2904 MatchInfo.resize(NumElts); 2905 while (mi_match( 2906 CurrInst->getOperand(0).getReg(), MRI, 2907 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2908 if (IntImm >= NumElts) 2909 return false; 2910 if (!MatchInfo[IntImm]) 2911 MatchInfo[IntImm] = TmpReg; 2912 CurrInst = TmpInst; 2913 } 2914 // Variable index. 2915 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2916 return false; 2917 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2918 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2919 if (!MatchInfo[I - 1].isValid()) 2920 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2921 } 2922 return true; 2923 } 2924 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2925 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2926 } 2927 2928 void CombinerHelper::applyCombineInsertVecElts( 2929 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2930 Builder.setInstr(MI); 2931 Register UndefReg; 2932 auto GetUndef = [&]() { 2933 if (UndefReg) 2934 return UndefReg; 2935 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2936 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2937 return UndefReg; 2938 }; 2939 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2940 if (!MatchInfo[I]) 2941 MatchInfo[I] = GetUndef(); 2942 } 2943 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2944 MI.eraseFromParent(); 2945 } 2946 2947 void CombinerHelper::applySimplifyAddToSub( 2948 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2949 Builder.setInstr(MI); 2950 Register SubLHS, SubRHS; 2951 std::tie(SubLHS, SubRHS) = MatchInfo; 2952 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2953 MI.eraseFromParent(); 2954 } 2955 2956 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2957 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2958 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2959 // 2960 // Creates the new hand + logic instruction (but does not insert them.) 2961 // 2962 // On success, MatchInfo is populated with the new instructions. These are 2963 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2964 unsigned LogicOpcode = MI.getOpcode(); 2965 assert(LogicOpcode == TargetOpcode::G_AND || 2966 LogicOpcode == TargetOpcode::G_OR || 2967 LogicOpcode == TargetOpcode::G_XOR); 2968 MachineIRBuilder MIB(MI); 2969 Register Dst = MI.getOperand(0).getReg(); 2970 Register LHSReg = MI.getOperand(1).getReg(); 2971 Register RHSReg = MI.getOperand(2).getReg(); 2972 2973 // Don't recompute anything. 2974 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2975 return false; 2976 2977 // Make sure we have (hand x, ...), (hand y, ...) 2978 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2979 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2980 if (!LeftHandInst || !RightHandInst) 2981 return false; 2982 unsigned HandOpcode = LeftHandInst->getOpcode(); 2983 if (HandOpcode != RightHandInst->getOpcode()) 2984 return false; 2985 if (!LeftHandInst->getOperand(1).isReg() || 2986 !RightHandInst->getOperand(1).isReg()) 2987 return false; 2988 2989 // Make sure the types match up, and if we're doing this post-legalization, 2990 // we end up with legal types. 2991 Register X = LeftHandInst->getOperand(1).getReg(); 2992 Register Y = RightHandInst->getOperand(1).getReg(); 2993 LLT XTy = MRI.getType(X); 2994 LLT YTy = MRI.getType(Y); 2995 if (XTy != YTy) 2996 return false; 2997 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2998 return false; 2999 3000 // Optional extra source register. 3001 Register ExtraHandOpSrcReg; 3002 switch (HandOpcode) { 3003 default: 3004 return false; 3005 case TargetOpcode::G_ANYEXT: 3006 case TargetOpcode::G_SEXT: 3007 case TargetOpcode::G_ZEXT: { 3008 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 3009 break; 3010 } 3011 case TargetOpcode::G_AND: 3012 case TargetOpcode::G_ASHR: 3013 case TargetOpcode::G_LSHR: 3014 case TargetOpcode::G_SHL: { 3015 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 3016 MachineOperand &ZOp = LeftHandInst->getOperand(2); 3017 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 3018 return false; 3019 ExtraHandOpSrcReg = ZOp.getReg(); 3020 break; 3021 } 3022 } 3023 3024 // Record the steps to build the new instructions. 3025 // 3026 // Steps to build (logic x, y) 3027 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 3028 OperandBuildSteps LogicBuildSteps = { 3029 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 3030 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 3031 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 3032 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 3033 3034 // Steps to build hand (logic x, y), ...z 3035 OperandBuildSteps HandBuildSteps = { 3036 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 3037 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 3038 if (ExtraHandOpSrcReg.isValid()) 3039 HandBuildSteps.push_back( 3040 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 3041 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 3042 3043 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 3044 return true; 3045 } 3046 3047 void CombinerHelper::applyBuildInstructionSteps( 3048 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 3049 assert(MatchInfo.InstrsToBuild.size() && 3050 "Expected at least one instr to build?"); 3051 Builder.setInstr(MI); 3052 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 3053 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 3054 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 3055 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 3056 for (auto &OperandFn : InstrToBuild.OperandFns) 3057 OperandFn(Instr); 3058 } 3059 MI.eraseFromParent(); 3060 } 3061 3062 bool CombinerHelper::matchAshrShlToSextInreg( 3063 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 3064 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 3065 int64_t ShlCst, AshrCst; 3066 Register Src; 3067 // FIXME: detect splat constant vectors. 3068 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3069 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 3070 return false; 3071 if (ShlCst != AshrCst) 3072 return false; 3073 if (!isLegalOrBeforeLegalizer( 3074 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 3075 return false; 3076 MatchInfo = std::make_tuple(Src, ShlCst); 3077 return true; 3078 } 3079 3080 void CombinerHelper::applyAshShlToSextInreg( 3081 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 3082 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 3083 Register Src; 3084 int64_t ShiftAmt; 3085 std::tie(Src, ShiftAmt) = MatchInfo; 3086 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 3087 Builder.setInstrAndDebugLoc(MI); 3088 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 3089 MI.eraseFromParent(); 3090 } 3091 3092 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 3093 bool CombinerHelper::matchOverlappingAnd( 3094 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3095 assert(MI.getOpcode() == TargetOpcode::G_AND); 3096 3097 Register Dst = MI.getOperand(0).getReg(); 3098 LLT Ty = MRI.getType(Dst); 3099 3100 Register R; 3101 int64_t C1; 3102 int64_t C2; 3103 if (!mi_match( 3104 Dst, MRI, 3105 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 3106 return false; 3107 3108 MatchInfo = [=](MachineIRBuilder &B) { 3109 if (C1 & C2) { 3110 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 3111 return; 3112 } 3113 auto Zero = B.buildConstant(Ty, 0); 3114 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 3115 }; 3116 return true; 3117 } 3118 3119 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 3120 Register &Replacement) { 3121 // Given 3122 // 3123 // %y:_(sN) = G_SOMETHING 3124 // %x:_(sN) = G_SOMETHING 3125 // %res:_(sN) = G_AND %x, %y 3126 // 3127 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 3128 // 3129 // Patterns like this can appear as a result of legalization. E.g. 3130 // 3131 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 3132 // %one:_(s32) = G_CONSTANT i32 1 3133 // %and:_(s32) = G_AND %cmp, %one 3134 // 3135 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 3136 assert(MI.getOpcode() == TargetOpcode::G_AND); 3137 if (!KB) 3138 return false; 3139 3140 Register AndDst = MI.getOperand(0).getReg(); 3141 LLT DstTy = MRI.getType(AndDst); 3142 3143 // FIXME: This should be removed once GISelKnownBits supports vectors. 3144 if (DstTy.isVector()) 3145 return false; 3146 3147 Register LHS = MI.getOperand(1).getReg(); 3148 Register RHS = MI.getOperand(2).getReg(); 3149 KnownBits LHSBits = KB->getKnownBits(LHS); 3150 KnownBits RHSBits = KB->getKnownBits(RHS); 3151 3152 // Check that x & Mask == x. 3153 // x & 1 == x, always 3154 // x & 0 == x, only if x is also 0 3155 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 3156 // 3157 // Check if we can replace AndDst with the LHS of the G_AND 3158 if (canReplaceReg(AndDst, LHS, MRI) && 3159 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3160 Replacement = LHS; 3161 return true; 3162 } 3163 3164 // Check if we can replace AndDst with the RHS of the G_AND 3165 if (canReplaceReg(AndDst, RHS, MRI) && 3166 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3167 Replacement = RHS; 3168 return true; 3169 } 3170 3171 return false; 3172 } 3173 3174 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 3175 // Given 3176 // 3177 // %y:_(sN) = G_SOMETHING 3178 // %x:_(sN) = G_SOMETHING 3179 // %res:_(sN) = G_OR %x, %y 3180 // 3181 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 3182 assert(MI.getOpcode() == TargetOpcode::G_OR); 3183 if (!KB) 3184 return false; 3185 3186 Register OrDst = MI.getOperand(0).getReg(); 3187 LLT DstTy = MRI.getType(OrDst); 3188 3189 // FIXME: This should be removed once GISelKnownBits supports vectors. 3190 if (DstTy.isVector()) 3191 return false; 3192 3193 Register LHS = MI.getOperand(1).getReg(); 3194 Register RHS = MI.getOperand(2).getReg(); 3195 KnownBits LHSBits = KB->getKnownBits(LHS); 3196 KnownBits RHSBits = KB->getKnownBits(RHS); 3197 3198 // Check that x | Mask == x. 3199 // x | 0 == x, always 3200 // x | 1 == x, only if x is also 1 3201 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 3202 // 3203 // Check if we can replace OrDst with the LHS of the G_OR 3204 if (canReplaceReg(OrDst, LHS, MRI) && 3205 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3206 Replacement = LHS; 3207 return true; 3208 } 3209 3210 // Check if we can replace OrDst with the RHS of the G_OR 3211 if (canReplaceReg(OrDst, RHS, MRI) && 3212 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3213 Replacement = RHS; 3214 return true; 3215 } 3216 3217 return false; 3218 } 3219 3220 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 3221 // If the input is already sign extended, just drop the extension. 3222 Register Src = MI.getOperand(1).getReg(); 3223 unsigned ExtBits = MI.getOperand(2).getImm(); 3224 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 3225 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 3226 } 3227 3228 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 3229 int64_t Cst, bool IsVector, bool IsFP) { 3230 // For i1, Cst will always be -1 regardless of boolean contents. 3231 return (ScalarSizeBits == 1 && Cst == -1) || 3232 isConstTrueVal(TLI, Cst, IsVector, IsFP); 3233 } 3234 3235 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 3236 SmallVectorImpl<Register> &RegsToNegate) { 3237 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3238 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3239 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 3240 Register XorSrc; 3241 Register CstReg; 3242 // We match xor(src, true) here. 3243 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3244 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 3245 return false; 3246 3247 if (!MRI.hasOneNonDBGUse(XorSrc)) 3248 return false; 3249 3250 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 3251 // and ORs. The suffix of RegsToNegate starting from index I is used a work 3252 // list of tree nodes to visit. 3253 RegsToNegate.push_back(XorSrc); 3254 // Remember whether the comparisons are all integer or all floating point. 3255 bool IsInt = false; 3256 bool IsFP = false; 3257 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 3258 Register Reg = RegsToNegate[I]; 3259 if (!MRI.hasOneNonDBGUse(Reg)) 3260 return false; 3261 MachineInstr *Def = MRI.getVRegDef(Reg); 3262 switch (Def->getOpcode()) { 3263 default: 3264 // Don't match if the tree contains anything other than ANDs, ORs and 3265 // comparisons. 3266 return false; 3267 case TargetOpcode::G_ICMP: 3268 if (IsFP) 3269 return false; 3270 IsInt = true; 3271 // When we apply the combine we will invert the predicate. 3272 break; 3273 case TargetOpcode::G_FCMP: 3274 if (IsInt) 3275 return false; 3276 IsFP = true; 3277 // When we apply the combine we will invert the predicate. 3278 break; 3279 case TargetOpcode::G_AND: 3280 case TargetOpcode::G_OR: 3281 // Implement De Morgan's laws: 3282 // ~(x & y) -> ~x | ~y 3283 // ~(x | y) -> ~x & ~y 3284 // When we apply the combine we will change the opcode and recursively 3285 // negate the operands. 3286 RegsToNegate.push_back(Def->getOperand(1).getReg()); 3287 RegsToNegate.push_back(Def->getOperand(2).getReg()); 3288 break; 3289 } 3290 } 3291 3292 // Now we know whether the comparisons are integer or floating point, check 3293 // the constant in the xor. 3294 int64_t Cst; 3295 if (Ty.isVector()) { 3296 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 3297 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 3298 if (!MaybeCst) 3299 return false; 3300 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 3301 return false; 3302 } else { 3303 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 3304 return false; 3305 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 3306 return false; 3307 } 3308 3309 return true; 3310 } 3311 3312 void CombinerHelper::applyNotCmp(MachineInstr &MI, 3313 SmallVectorImpl<Register> &RegsToNegate) { 3314 for (Register Reg : RegsToNegate) { 3315 MachineInstr *Def = MRI.getVRegDef(Reg); 3316 Observer.changingInstr(*Def); 3317 // For each comparison, invert the opcode. For each AND and OR, change the 3318 // opcode. 3319 switch (Def->getOpcode()) { 3320 default: 3321 llvm_unreachable("Unexpected opcode"); 3322 case TargetOpcode::G_ICMP: 3323 case TargetOpcode::G_FCMP: { 3324 MachineOperand &PredOp = Def->getOperand(1); 3325 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 3326 (CmpInst::Predicate)PredOp.getPredicate()); 3327 PredOp.setPredicate(NewP); 3328 break; 3329 } 3330 case TargetOpcode::G_AND: 3331 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3332 break; 3333 case TargetOpcode::G_OR: 3334 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3335 break; 3336 } 3337 Observer.changedInstr(*Def); 3338 } 3339 3340 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3341 MI.eraseFromParent(); 3342 } 3343 3344 bool CombinerHelper::matchXorOfAndWithSameReg( 3345 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3346 // Match (xor (and x, y), y) (or any of its commuted cases) 3347 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3348 Register &X = MatchInfo.first; 3349 Register &Y = MatchInfo.second; 3350 Register AndReg = MI.getOperand(1).getReg(); 3351 Register SharedReg = MI.getOperand(2).getReg(); 3352 3353 // Find a G_AND on either side of the G_XOR. 3354 // Look for one of 3355 // 3356 // (xor (and x, y), SharedReg) 3357 // (xor SharedReg, (and x, y)) 3358 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3359 std::swap(AndReg, SharedReg); 3360 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3361 return false; 3362 } 3363 3364 // Only do this if we'll eliminate the G_AND. 3365 if (!MRI.hasOneNonDBGUse(AndReg)) 3366 return false; 3367 3368 // We can combine if SharedReg is the same as either the LHS or RHS of the 3369 // G_AND. 3370 if (Y != SharedReg) 3371 std::swap(X, Y); 3372 return Y == SharedReg; 3373 } 3374 3375 void CombinerHelper::applyXorOfAndWithSameReg( 3376 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3377 // Fold (xor (and x, y), y) -> (and (not x), y) 3378 Builder.setInstrAndDebugLoc(MI); 3379 Register X, Y; 3380 std::tie(X, Y) = MatchInfo; 3381 auto Not = Builder.buildNot(MRI.getType(X), X); 3382 Observer.changingInstr(MI); 3383 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3384 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3385 MI.getOperand(2).setReg(Y); 3386 Observer.changedInstr(MI); 3387 } 3388 3389 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3390 auto &PtrAdd = cast<GPtrAdd>(MI); 3391 Register DstReg = PtrAdd.getReg(0); 3392 LLT Ty = MRI.getType(DstReg); 3393 const DataLayout &DL = Builder.getMF().getDataLayout(); 3394 3395 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3396 return false; 3397 3398 if (Ty.isPointer()) { 3399 auto ConstVal = getConstantVRegVal(PtrAdd.getBaseReg(), MRI); 3400 return ConstVal && *ConstVal == 0; 3401 } 3402 3403 assert(Ty.isVector() && "Expecting a vector type"); 3404 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 3405 return isBuildVectorAllZeros(*VecMI, MRI); 3406 } 3407 3408 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3409 auto &PtrAdd = cast<GPtrAdd>(MI); 3410 Builder.setInstrAndDebugLoc(PtrAdd); 3411 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 3412 PtrAdd.eraseFromParent(); 3413 } 3414 3415 /// The second source operand is known to be a power of 2. 3416 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3417 Register DstReg = MI.getOperand(0).getReg(); 3418 Register Src0 = MI.getOperand(1).getReg(); 3419 Register Pow2Src1 = MI.getOperand(2).getReg(); 3420 LLT Ty = MRI.getType(DstReg); 3421 Builder.setInstrAndDebugLoc(MI); 3422 3423 // Fold (urem x, pow2) -> (and x, pow2-1) 3424 auto NegOne = Builder.buildConstant(Ty, -1); 3425 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3426 Builder.buildAnd(DstReg, Src0, Add); 3427 MI.eraseFromParent(); 3428 } 3429 3430 Optional<SmallVector<Register, 8>> 3431 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3432 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3433 // We want to detect if Root is part of a tree which represents a bunch 3434 // of loads being merged into a larger load. We'll try to recognize patterns 3435 // like, for example: 3436 // 3437 // Reg Reg 3438 // \ / 3439 // OR_1 Reg 3440 // \ / 3441 // OR_2 3442 // \ Reg 3443 // .. / 3444 // Root 3445 // 3446 // Reg Reg Reg Reg 3447 // \ / \ / 3448 // OR_1 OR_2 3449 // \ / 3450 // \ / 3451 // ... 3452 // Root 3453 // 3454 // Each "Reg" may have been produced by a load + some arithmetic. This 3455 // function will save each of them. 3456 SmallVector<Register, 8> RegsToVisit; 3457 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3458 3459 // In the "worst" case, we're dealing with a load for each byte. So, there 3460 // are at most #bytes - 1 ORs. 3461 const unsigned MaxIter = 3462 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3463 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3464 if (Ors.empty()) 3465 break; 3466 const MachineInstr *Curr = Ors.pop_back_val(); 3467 Register OrLHS = Curr->getOperand(1).getReg(); 3468 Register OrRHS = Curr->getOperand(2).getReg(); 3469 3470 // In the combine, we want to elimate the entire tree. 3471 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3472 return None; 3473 3474 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3475 // something that may be a load + arithmetic. 3476 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3477 Ors.push_back(Or); 3478 else 3479 RegsToVisit.push_back(OrLHS); 3480 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3481 Ors.push_back(Or); 3482 else 3483 RegsToVisit.push_back(OrRHS); 3484 } 3485 3486 // We're going to try and merge each register into a wider power-of-2 type, 3487 // so we ought to have an even number of registers. 3488 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3489 return None; 3490 return RegsToVisit; 3491 } 3492 3493 /// Helper function for findLoadOffsetsForLoadOrCombine. 3494 /// 3495 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3496 /// and then moving that value into a specific byte offset. 3497 /// 3498 /// e.g. x[i] << 24 3499 /// 3500 /// \returns The load instruction and the byte offset it is moved into. 3501 static Optional<std::pair<GZExtLoad *, int64_t>> 3502 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3503 const MachineRegisterInfo &MRI) { 3504 assert(MRI.hasOneNonDBGUse(Reg) && 3505 "Expected Reg to only have one non-debug use?"); 3506 Register MaybeLoad; 3507 int64_t Shift; 3508 if (!mi_match(Reg, MRI, 3509 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3510 Shift = 0; 3511 MaybeLoad = Reg; 3512 } 3513 3514 if (Shift % MemSizeInBits != 0) 3515 return None; 3516 3517 // TODO: Handle other types of loads. 3518 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3519 if (!Load) 3520 return None; 3521 3522 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3523 return None; 3524 3525 return std::make_pair(Load, Shift / MemSizeInBits); 3526 } 3527 3528 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3529 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3530 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3531 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3532 3533 // Each load found for the pattern. There should be one for each RegsToVisit. 3534 SmallSetVector<const MachineInstr *, 8> Loads; 3535 3536 // The lowest index used in any load. (The lowest "i" for each x[i].) 3537 int64_t LowestIdx = INT64_MAX; 3538 3539 // The load which uses the lowest index. 3540 GZExtLoad *LowestIdxLoad = nullptr; 3541 3542 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3543 SmallSet<int64_t, 8> SeenIdx; 3544 3545 // Ensure each load is in the same MBB. 3546 // TODO: Support multiple MachineBasicBlocks. 3547 MachineBasicBlock *MBB = nullptr; 3548 const MachineMemOperand *MMO = nullptr; 3549 3550 // Earliest instruction-order load in the pattern. 3551 GZExtLoad *EarliestLoad = nullptr; 3552 3553 // Latest instruction-order load in the pattern. 3554 GZExtLoad *LatestLoad = nullptr; 3555 3556 // Base pointer which every load should share. 3557 Register BasePtr; 3558 3559 // We want to find a load for each register. Each load should have some 3560 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3561 // track of the load which uses the lowest index. Later, we will check if we 3562 // can use its pointer in the final, combined load. 3563 for (auto Reg : RegsToVisit) { 3564 // Find the load, and find the position that it will end up in (e.g. a 3565 // shifted) value. 3566 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3567 if (!LoadAndPos) 3568 return None; 3569 GZExtLoad *Load; 3570 int64_t DstPos; 3571 std::tie(Load, DstPos) = *LoadAndPos; 3572 3573 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3574 // it is difficult to check for stores/calls/etc between loads. 3575 MachineBasicBlock *LoadMBB = Load->getParent(); 3576 if (!MBB) 3577 MBB = LoadMBB; 3578 if (LoadMBB != MBB) 3579 return None; 3580 3581 // Make sure that the MachineMemOperands of every seen load are compatible. 3582 auto &LoadMMO = Load->getMMO(); 3583 if (!MMO) 3584 MMO = &LoadMMO; 3585 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3586 return None; 3587 3588 // Find out what the base pointer and index for the load is. 3589 Register LoadPtr; 3590 int64_t Idx; 3591 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3592 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3593 LoadPtr = Load->getOperand(1).getReg(); 3594 Idx = 0; 3595 } 3596 3597 // Don't combine things like a[i], a[i] -> a bigger load. 3598 if (!SeenIdx.insert(Idx).second) 3599 return None; 3600 3601 // Every load must share the same base pointer; don't combine things like: 3602 // 3603 // a[i], b[i + 1] -> a bigger load. 3604 if (!BasePtr.isValid()) 3605 BasePtr = LoadPtr; 3606 if (BasePtr != LoadPtr) 3607 return None; 3608 3609 if (Idx < LowestIdx) { 3610 LowestIdx = Idx; 3611 LowestIdxLoad = Load; 3612 } 3613 3614 // Keep track of the byte offset that this load ends up at. If we have seen 3615 // the byte offset, then stop here. We do not want to combine: 3616 // 3617 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3618 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3619 return None; 3620 Loads.insert(Load); 3621 3622 // Keep track of the position of the earliest/latest loads in the pattern. 3623 // We will check that there are no load fold barriers between them later 3624 // on. 3625 // 3626 // FIXME: Is there a better way to check for load fold barriers? 3627 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3628 EarliestLoad = Load; 3629 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3630 LatestLoad = Load; 3631 } 3632 3633 // We found a load for each register. Let's check if each load satisfies the 3634 // pattern. 3635 assert(Loads.size() == RegsToVisit.size() && 3636 "Expected to find a load for each register?"); 3637 assert(EarliestLoad != LatestLoad && EarliestLoad && 3638 LatestLoad && "Expected at least two loads?"); 3639 3640 // Check if there are any stores, calls, etc. between any of the loads. If 3641 // there are, then we can't safely perform the combine. 3642 // 3643 // MaxIter is chosen based off the (worst case) number of iterations it 3644 // typically takes to succeed in the LLVM test suite plus some padding. 3645 // 3646 // FIXME: Is there a better way to check for load fold barriers? 3647 const unsigned MaxIter = 20; 3648 unsigned Iter = 0; 3649 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3650 LatestLoad->getIterator())) { 3651 if (Loads.count(&MI)) 3652 continue; 3653 if (MI.isLoadFoldBarrier()) 3654 return None; 3655 if (Iter++ == MaxIter) 3656 return None; 3657 } 3658 3659 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3660 } 3661 3662 bool CombinerHelper::matchLoadOrCombine( 3663 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3664 assert(MI.getOpcode() == TargetOpcode::G_OR); 3665 MachineFunction &MF = *MI.getMF(); 3666 // Assuming a little-endian target, transform: 3667 // s8 *a = ... 3668 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3669 // => 3670 // s32 val = *((i32)a) 3671 // 3672 // s8 *a = ... 3673 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3674 // => 3675 // s32 val = BSWAP(*((s32)a)) 3676 Register Dst = MI.getOperand(0).getReg(); 3677 LLT Ty = MRI.getType(Dst); 3678 if (Ty.isVector()) 3679 return false; 3680 3681 // We need to combine at least two loads into this type. Since the smallest 3682 // possible load is into a byte, we need at least a 16-bit wide type. 3683 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3684 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3685 return false; 3686 3687 // Match a collection of non-OR instructions in the pattern. 3688 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3689 if (!RegsToVisit) 3690 return false; 3691 3692 // We have a collection of non-OR instructions. Figure out how wide each of 3693 // the small loads should be based off of the number of potential loads we 3694 // found. 3695 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3696 if (NarrowMemSizeInBits % 8 != 0) 3697 return false; 3698 3699 // Check if each register feeding into each OR is a load from the same 3700 // base pointer + some arithmetic. 3701 // 3702 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3703 // 3704 // Also verify that each of these ends up putting a[i] into the same memory 3705 // offset as a load into a wide type would. 3706 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3707 GZExtLoad *LowestIdxLoad, *LatestLoad; 3708 int64_t LowestIdx; 3709 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3710 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3711 if (!MaybeLoadInfo) 3712 return false; 3713 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3714 3715 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3716 // we found before, check if this corresponds to a big or little endian byte 3717 // pattern. If it does, then we can represent it using a load + possibly a 3718 // BSWAP. 3719 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3720 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3721 if (!IsBigEndian.hasValue()) 3722 return false; 3723 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3724 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3725 return false; 3726 3727 // Make sure that the load from the lowest index produces offset 0 in the 3728 // final value. 3729 // 3730 // This ensures that we won't combine something like this: 3731 // 3732 // load x[i] -> byte 2 3733 // load x[i+1] -> byte 0 ---> wide_load x[i] 3734 // load x[i+2] -> byte 1 3735 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3736 const unsigned ZeroByteOffset = 3737 *IsBigEndian 3738 ? bigEndianByteAt(NumLoadsInTy, 0) 3739 : littleEndianByteAt(NumLoadsInTy, 0); 3740 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3741 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3742 ZeroOffsetIdx->second != LowestIdx) 3743 return false; 3744 3745 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3746 // may not use index 0. 3747 Register Ptr = LowestIdxLoad->getPointerReg(); 3748 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3749 LegalityQuery::MemDesc MMDesc; 3750 MMDesc.MemoryTy = Ty; 3751 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 3752 MMDesc.Ordering = MMO.getSuccessOrdering(); 3753 if (!isLegalOrBeforeLegalizer( 3754 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3755 return false; 3756 auto PtrInfo = MMO.getPointerInfo(); 3757 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3758 3759 // Load must be allowed and fast on the target. 3760 LLVMContext &C = MF.getFunction().getContext(); 3761 auto &DL = MF.getDataLayout(); 3762 bool Fast = false; 3763 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3764 !Fast) 3765 return false; 3766 3767 MatchInfo = [=](MachineIRBuilder &MIB) { 3768 MIB.setInstrAndDebugLoc(*LatestLoad); 3769 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3770 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3771 if (NeedsBSwap) 3772 MIB.buildBSwap(Dst, LoadDst); 3773 }; 3774 return true; 3775 } 3776 3777 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3778 MachineInstr *&ExtMI) { 3779 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3780 3781 Register DstReg = MI.getOperand(0).getReg(); 3782 3783 // TODO: Extending a vector may be expensive, don't do this until heuristics 3784 // are better. 3785 if (MRI.getType(DstReg).isVector()) 3786 return false; 3787 3788 // Try to match a phi, whose only use is an extend. 3789 if (!MRI.hasOneNonDBGUse(DstReg)) 3790 return false; 3791 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3792 switch (ExtMI->getOpcode()) { 3793 case TargetOpcode::G_ANYEXT: 3794 return true; // G_ANYEXT is usually free. 3795 case TargetOpcode::G_ZEXT: 3796 case TargetOpcode::G_SEXT: 3797 break; 3798 default: 3799 return false; 3800 } 3801 3802 // If the target is likely to fold this extend away, don't propagate. 3803 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3804 return false; 3805 3806 // We don't want to propagate the extends unless there's a good chance that 3807 // they'll be optimized in some way. 3808 // Collect the unique incoming values. 3809 SmallPtrSet<MachineInstr *, 4> InSrcs; 3810 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3811 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3812 switch (DefMI->getOpcode()) { 3813 case TargetOpcode::G_LOAD: 3814 case TargetOpcode::G_TRUNC: 3815 case TargetOpcode::G_SEXT: 3816 case TargetOpcode::G_ZEXT: 3817 case TargetOpcode::G_ANYEXT: 3818 case TargetOpcode::G_CONSTANT: 3819 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3820 // Don't try to propagate if there are too many places to create new 3821 // extends, chances are it'll increase code size. 3822 if (InSrcs.size() > 2) 3823 return false; 3824 break; 3825 default: 3826 return false; 3827 } 3828 } 3829 return true; 3830 } 3831 3832 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3833 MachineInstr *&ExtMI) { 3834 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3835 Register DstReg = ExtMI->getOperand(0).getReg(); 3836 LLT ExtTy = MRI.getType(DstReg); 3837 3838 // Propagate the extension into the block of each incoming reg's block. 3839 // Use a SetVector here because PHIs can have duplicate edges, and we want 3840 // deterministic iteration order. 3841 SmallSetVector<MachineInstr *, 8> SrcMIs; 3842 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3843 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3844 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3845 if (!SrcMIs.insert(SrcMI)) 3846 continue; 3847 3848 // Build an extend after each src inst. 3849 auto *MBB = SrcMI->getParent(); 3850 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3851 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3852 InsertPt = MBB->getFirstNonPHI(); 3853 3854 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3855 Builder.setDebugLoc(MI.getDebugLoc()); 3856 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3857 SrcMI->getOperand(0).getReg()); 3858 OldToNewSrcMap[SrcMI] = NewExt; 3859 } 3860 3861 // Create a new phi with the extended inputs. 3862 Builder.setInstrAndDebugLoc(MI); 3863 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3864 NewPhi.addDef(DstReg); 3865 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3866 auto &MO = MI.getOperand(SrcIdx); 3867 if (!MO.isReg()) { 3868 NewPhi.addMBB(MO.getMBB()); 3869 continue; 3870 } 3871 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3872 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3873 } 3874 Builder.insertInstr(NewPhi); 3875 ExtMI->eraseFromParent(); 3876 } 3877 3878 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3879 Register &Reg) { 3880 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3881 // If we have a constant index, look for a G_BUILD_VECTOR source 3882 // and find the source register that the index maps to. 3883 Register SrcVec = MI.getOperand(1).getReg(); 3884 LLT SrcTy = MRI.getType(SrcVec); 3885 if (!isLegalOrBeforeLegalizer( 3886 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3887 return false; 3888 3889 auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3890 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3891 return false; 3892 3893 unsigned VecIdx = Cst->Value.getZExtValue(); 3894 MachineInstr *BuildVecMI = 3895 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3896 if (!BuildVecMI) { 3897 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3898 if (!BuildVecMI) 3899 return false; 3900 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3901 if (!isLegalOrBeforeLegalizer( 3902 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3903 return false; 3904 } 3905 3906 EVT Ty(getMVTForLLT(SrcTy)); 3907 if (!MRI.hasOneNonDBGUse(SrcVec) && 3908 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3909 return false; 3910 3911 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3912 return true; 3913 } 3914 3915 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3916 Register &Reg) { 3917 // Check the type of the register, since it may have come from a 3918 // G_BUILD_VECTOR_TRUNC. 3919 LLT ScalarTy = MRI.getType(Reg); 3920 Register DstReg = MI.getOperand(0).getReg(); 3921 LLT DstTy = MRI.getType(DstReg); 3922 3923 Builder.setInstrAndDebugLoc(MI); 3924 if (ScalarTy != DstTy) { 3925 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3926 Builder.buildTrunc(DstReg, Reg); 3927 MI.eraseFromParent(); 3928 return; 3929 } 3930 replaceSingleDefInstWithReg(MI, Reg); 3931 } 3932 3933 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3934 MachineInstr &MI, 3935 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3936 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3937 // This combine tries to find build_vector's which have every source element 3938 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3939 // the masked load scalarization is run late in the pipeline. There's already 3940 // a combine for a similar pattern starting from the extract, but that 3941 // doesn't attempt to do it if there are multiple uses of the build_vector, 3942 // which in this case is true. Starting the combine from the build_vector 3943 // feels more natural than trying to find sibling nodes of extracts. 3944 // E.g. 3945 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3946 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3947 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3948 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3949 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3950 // ==> 3951 // replace ext{1,2,3,4} with %s{1,2,3,4} 3952 3953 Register DstReg = MI.getOperand(0).getReg(); 3954 LLT DstTy = MRI.getType(DstReg); 3955 unsigned NumElts = DstTy.getNumElements(); 3956 3957 SmallBitVector ExtractedElts(NumElts); 3958 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), 3959 MRI.use_instr_nodbg_end())) { 3960 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3961 return false; 3962 auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI); 3963 if (!Cst) 3964 return false; 3965 unsigned Idx = Cst.getValue().getZExtValue(); 3966 if (Idx >= NumElts) 3967 return false; // Out of range. 3968 ExtractedElts.set(Idx); 3969 SrcDstPairs.emplace_back( 3970 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3971 } 3972 // Match if every element was extracted. 3973 return ExtractedElts.all(); 3974 } 3975 3976 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3977 MachineInstr &MI, 3978 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3979 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3980 for (auto &Pair : SrcDstPairs) { 3981 auto *ExtMI = Pair.second; 3982 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3983 ExtMI->eraseFromParent(); 3984 } 3985 MI.eraseFromParent(); 3986 } 3987 3988 void CombinerHelper::applyBuildFn( 3989 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3990 Builder.setInstrAndDebugLoc(MI); 3991 MatchInfo(Builder); 3992 MI.eraseFromParent(); 3993 } 3994 3995 void CombinerHelper::applyBuildFnNoErase( 3996 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3997 Builder.setInstrAndDebugLoc(MI); 3998 MatchInfo(Builder); 3999 } 4000 4001 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 4002 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 4003 unsigned Opc = MI.getOpcode(); 4004 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 4005 Register X = MI.getOperand(1).getReg(); 4006 Register Y = MI.getOperand(2).getReg(); 4007 if (X != Y) 4008 return false; 4009 unsigned RotateOpc = 4010 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 4011 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 4012 } 4013 4014 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 4015 unsigned Opc = MI.getOpcode(); 4016 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 4017 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 4018 Observer.changingInstr(MI); 4019 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 4020 : TargetOpcode::G_ROTR)); 4021 MI.RemoveOperand(2); 4022 Observer.changedInstr(MI); 4023 } 4024 4025 // Fold (rot x, c) -> (rot x, c % BitSize) 4026 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 4027 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4028 MI.getOpcode() == TargetOpcode::G_ROTR); 4029 unsigned Bitsize = 4030 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4031 Register AmtReg = MI.getOperand(2).getReg(); 4032 bool OutOfRange = false; 4033 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 4034 if (auto *CI = dyn_cast<ConstantInt>(C)) 4035 OutOfRange |= CI->getValue().uge(Bitsize); 4036 return true; 4037 }; 4038 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 4039 } 4040 4041 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 4042 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4043 MI.getOpcode() == TargetOpcode::G_ROTR); 4044 unsigned Bitsize = 4045 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4046 Builder.setInstrAndDebugLoc(MI); 4047 Register Amt = MI.getOperand(2).getReg(); 4048 LLT AmtTy = MRI.getType(Amt); 4049 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 4050 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 4051 Observer.changingInstr(MI); 4052 MI.getOperand(2).setReg(Amt); 4053 Observer.changedInstr(MI); 4054 } 4055 4056 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 4057 int64_t &MatchInfo) { 4058 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4059 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4060 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 4061 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 4062 Optional<bool> KnownVal; 4063 switch (Pred) { 4064 default: 4065 llvm_unreachable("Unexpected G_ICMP predicate?"); 4066 case CmpInst::ICMP_EQ: 4067 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 4068 break; 4069 case CmpInst::ICMP_NE: 4070 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 4071 break; 4072 case CmpInst::ICMP_SGE: 4073 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 4074 break; 4075 case CmpInst::ICMP_SGT: 4076 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 4077 break; 4078 case CmpInst::ICMP_SLE: 4079 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 4080 break; 4081 case CmpInst::ICMP_SLT: 4082 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 4083 break; 4084 case CmpInst::ICMP_UGE: 4085 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 4086 break; 4087 case CmpInst::ICMP_UGT: 4088 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 4089 break; 4090 case CmpInst::ICMP_ULE: 4091 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 4092 break; 4093 case CmpInst::ICMP_ULT: 4094 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 4095 break; 4096 } 4097 if (!KnownVal) 4098 return false; 4099 MatchInfo = 4100 *KnownVal 4101 ? getICmpTrueVal(getTargetLowering(), 4102 /*IsVector = */ 4103 MRI.getType(MI.getOperand(0).getReg()).isVector(), 4104 /* IsFP = */ false) 4105 : 0; 4106 return true; 4107 } 4108 4109 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4110 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4111 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4112 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4113 Register Dst = MI.getOperand(0).getReg(); 4114 Register Src = MI.getOperand(1).getReg(); 4115 LLT Ty = MRI.getType(Src); 4116 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4117 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4118 return false; 4119 int64_t Width = MI.getOperand(2).getImm(); 4120 Register ShiftSrc; 4121 int64_t ShiftImm; 4122 if (!mi_match( 4123 Src, MRI, 4124 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4125 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4126 return false; 4127 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4128 return false; 4129 4130 MatchInfo = [=](MachineIRBuilder &B) { 4131 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4132 auto Cst2 = B.buildConstant(ExtractTy, Width); 4133 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4134 }; 4135 return true; 4136 } 4137 4138 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4139 bool CombinerHelper::matchBitfieldExtractFromAnd( 4140 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4141 assert(MI.getOpcode() == TargetOpcode::G_AND); 4142 Register Dst = MI.getOperand(0).getReg(); 4143 LLT Ty = MRI.getType(Dst); 4144 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 4145 TargetOpcode::G_UBFX, Ty, Ty)) 4146 return false; 4147 4148 int64_t AndImm, LSBImm; 4149 Register ShiftSrc; 4150 const unsigned Size = Ty.getScalarSizeInBits(); 4151 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4152 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4153 m_ICst(AndImm)))) 4154 return false; 4155 4156 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4157 auto MaybeMask = static_cast<uint64_t>(AndImm); 4158 if (MaybeMask & (MaybeMask + 1)) 4159 return false; 4160 4161 // LSB must fit within the register. 4162 if (static_cast<uint64_t>(LSBImm) >= Size) 4163 return false; 4164 4165 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4166 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4167 MatchInfo = [=](MachineIRBuilder &B) { 4168 auto WidthCst = B.buildConstant(ExtractTy, Width); 4169 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4170 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4171 }; 4172 return true; 4173 } 4174 4175 bool CombinerHelper::matchBitfieldExtractFromShr( 4176 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4177 const unsigned Opcode = MI.getOpcode(); 4178 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 4179 4180 const Register Dst = MI.getOperand(0).getReg(); 4181 4182 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 4183 ? TargetOpcode::G_SBFX 4184 : TargetOpcode::G_UBFX; 4185 4186 // Check if the type we would use for the extract is legal 4187 LLT Ty = MRI.getType(Dst); 4188 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4189 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 4190 return false; 4191 4192 Register ShlSrc; 4193 int64_t ShrAmt; 4194 int64_t ShlAmt; 4195 const unsigned Size = Ty.getScalarSizeInBits(); 4196 4197 // Try to match shr (shl x, c1), c2 4198 if (!mi_match(Dst, MRI, 4199 m_BinOp(Opcode, 4200 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4201 m_ICst(ShrAmt)))) 4202 return false; 4203 4204 // Make sure that the shift sizes can fit a bitfield extract 4205 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4206 return false; 4207 4208 // Skip this combine if the G_SEXT_INREG combine could handle it 4209 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4210 return false; 4211 4212 // Calculate start position and width of the extract 4213 const int64_t Pos = ShrAmt - ShlAmt; 4214 const int64_t Width = Size - ShrAmt; 4215 4216 MatchInfo = [=](MachineIRBuilder &B) { 4217 auto WidthCst = B.buildConstant(ExtractTy, Width); 4218 auto PosCst = B.buildConstant(ExtractTy, Pos); 4219 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4220 }; 4221 return true; 4222 } 4223 4224 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4225 MachineInstr &PtrAdd) { 4226 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4227 4228 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4229 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4230 if (!Src1Def) 4231 return false; 4232 4233 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4234 4235 if (MRI.hasOneNonDBGUse(Src1Reg)) 4236 return false; 4237 4238 auto C1 = getConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4239 if (!C1) 4240 return false; 4241 auto C2 = getConstantVRegVal(Src2Reg, MRI); 4242 if (!C2) 4243 return false; 4244 4245 const APInt &C1APIntVal = *C1; 4246 const APInt &C2APIntVal = *C2; 4247 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4248 4249 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4250 // This combine may end up running before ptrtoint/inttoptr combines 4251 // manage to eliminate redundant conversions, so try to look through them. 4252 MachineInstr *ConvUseMI = &UseMI; 4253 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4254 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4255 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4256 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4257 if (!MRI.hasOneNonDBGUse(DefReg)) 4258 break; 4259 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4260 ConvUseOpc = ConvUseMI->getOpcode(); 4261 } 4262 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4263 ConvUseOpc == TargetOpcode::G_STORE; 4264 if (!LoadStore) 4265 continue; 4266 // Is x[offset2] already not a legal addressing mode? If so then 4267 // reassociating the constants breaks nothing (we test offset2 because 4268 // that's the one we hope to fold into the load or store). 4269 TargetLoweringBase::AddrMode AM; 4270 AM.HasBaseReg = true; 4271 AM.BaseOffs = C2APIntVal.getSExtValue(); 4272 unsigned AS = 4273 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4274 Type *AccessTy = 4275 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4276 PtrAdd.getMF()->getFunction().getContext()); 4277 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4278 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4279 AccessTy, AS)) 4280 continue; 4281 4282 // Would x[offset1+offset2] still be a legal addressing mode? 4283 AM.BaseOffs = CombinedValue; 4284 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4285 AccessTy, AS)) 4286 return true; 4287 } 4288 4289 return false; 4290 } 4291 4292 bool CombinerHelper::matchReassocPtrAdd( 4293 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4294 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 4295 // We're trying to match a few pointer computation patterns here for 4296 // re-association opportunities. 4297 // 1) Isolating a constant operand to be on the RHS, e.g.: 4298 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4299 // 4300 // 2) Folding two constants in each sub-tree as long as such folding 4301 // doesn't break a legal addressing mode. 4302 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4303 Register Src1Reg = MI.getOperand(1).getReg(); 4304 Register Src2Reg = MI.getOperand(2).getReg(); 4305 MachineInstr *LHS = MRI.getVRegDef(Src1Reg); 4306 MachineInstr *RHS = MRI.getVRegDef(Src2Reg); 4307 4308 if (LHS->getOpcode() != TargetOpcode::G_PTR_ADD) { 4309 // Try to match example 1). 4310 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4311 return false; 4312 auto C2 = getConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4313 if (!C2) 4314 return false; 4315 4316 MatchInfo = [=,&MI](MachineIRBuilder &B) { 4317 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4318 4319 auto NewBase = 4320 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4321 Observer.changingInstr(MI); 4322 MI.getOperand(1).setReg(NewBase.getReg(0)); 4323 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4324 Observer.changedInstr(MI); 4325 }; 4326 } else { 4327 // Try to match example 2. 4328 Register LHSSrc1 = LHS->getOperand(1).getReg(); 4329 Register LHSSrc2 = LHS->getOperand(2).getReg(); 4330 auto C1 = getConstantVRegVal(LHSSrc2, MRI); 4331 if (!C1) 4332 return false; 4333 auto C2 = getConstantVRegVal(Src2Reg, MRI); 4334 if (!C2) 4335 return false; 4336 4337 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4338 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4339 Observer.changingInstr(MI); 4340 MI.getOperand(1).setReg(LHSSrc1); 4341 MI.getOperand(2).setReg(NewCst.getReg(0)); 4342 Observer.changedInstr(MI); 4343 }; 4344 } 4345 return !reassociationCanBreakAddressingModePattern(MI); 4346 } 4347 4348 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4349 Register Op1 = MI.getOperand(1).getReg(); 4350 Register Op2 = MI.getOperand(2).getReg(); 4351 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4352 if (!MaybeCst) 4353 return false; 4354 MatchInfo = *MaybeCst; 4355 return true; 4356 } 4357 4358 bool CombinerHelper::matchNarrowBinopFeedingAnd( 4359 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4360 // Look for a binop feeding into an AND with a mask: 4361 // 4362 // %add = G_ADD %lhs, %rhs 4363 // %and = G_AND %add, 000...11111111 4364 // 4365 // Check if it's possible to perform the binop at a narrower width and zext 4366 // back to the original width like so: 4367 // 4368 // %narrow_lhs = G_TRUNC %lhs 4369 // %narrow_rhs = G_TRUNC %rhs 4370 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 4371 // %new_add = G_ZEXT %narrow_add 4372 // %and = G_AND %new_add, 000...11111111 4373 // 4374 // This can allow later combines to eliminate the G_AND if it turns out 4375 // that the mask is irrelevant. 4376 assert(MI.getOpcode() == TargetOpcode::G_AND); 4377 Register Dst = MI.getOperand(0).getReg(); 4378 Register AndLHS = MI.getOperand(1).getReg(); 4379 Register AndRHS = MI.getOperand(2).getReg(); 4380 LLT WideTy = MRI.getType(Dst); 4381 4382 // If the potential binop has more than one use, then it's possible that one 4383 // of those uses will need its full width. 4384 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 4385 return false; 4386 4387 // Check if the LHS feeding the AND is impacted by the high bits that we're 4388 // masking out. 4389 // 4390 // e.g. for 64-bit x, y: 4391 // 4392 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 4393 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 4394 if (!LHSInst) 4395 return false; 4396 unsigned LHSOpc = LHSInst->getOpcode(); 4397 switch (LHSOpc) { 4398 default: 4399 return false; 4400 case TargetOpcode::G_ADD: 4401 case TargetOpcode::G_SUB: 4402 case TargetOpcode::G_MUL: 4403 case TargetOpcode::G_AND: 4404 case TargetOpcode::G_OR: 4405 case TargetOpcode::G_XOR: 4406 break; 4407 } 4408 4409 // Find the mask on the RHS. 4410 auto Cst = getConstantVRegValWithLookThrough(AndRHS, MRI); 4411 if (!Cst) 4412 return false; 4413 auto Mask = Cst->Value; 4414 if (!Mask.isMask()) 4415 return false; 4416 4417 // No point in combining if there's nothing to truncate. 4418 unsigned NarrowWidth = Mask.countTrailingOnes(); 4419 if (NarrowWidth == WideTy.getSizeInBits()) 4420 return false; 4421 LLT NarrowTy = LLT::scalar(NarrowWidth); 4422 4423 // Check if adding the zext + truncates could be harmful. 4424 auto &MF = *MI.getMF(); 4425 const auto &TLI = getTargetLowering(); 4426 LLVMContext &Ctx = MF.getFunction().getContext(); 4427 auto &DL = MF.getDataLayout(); 4428 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 4429 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 4430 return false; 4431 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 4432 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 4433 return false; 4434 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 4435 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 4436 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4437 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 4438 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 4439 auto NarrowBinOp = 4440 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 4441 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 4442 Observer.changingInstr(MI); 4443 MI.getOperand(1).setReg(Ext.getReg(0)); 4444 Observer.changedInstr(MI); 4445 }; 4446 return true; 4447 } 4448 4449 bool CombinerHelper::tryCombine(MachineInstr &MI) { 4450 if (tryCombineCopy(MI)) 4451 return true; 4452 if (tryCombineExtendingLoads(MI)) 4453 return true; 4454 if (tryCombineIndexedLoadStore(MI)) 4455 return true; 4456 return false; 4457 } 4458