1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 15 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 16 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 17 #include "llvm/CodeGen/GlobalISel/Utils.h" 18 #include "llvm/CodeGen/LowLevelType.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineDominators.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineMemOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/TargetInstrInfo.h" 26 #include "llvm/CodeGen/TargetLowering.h" 27 #include "llvm/CodeGen/TargetOpcodes.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Target/TargetMachine.h" 30 31 #define DEBUG_TYPE "gi-combiner" 32 33 using namespace llvm; 34 using namespace MIPatternMatch; 35 36 // Option to allow testing of the combiner while no targets know about indexed 37 // addressing. 38 static cl::opt<bool> 39 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 40 cl::desc("Force all indexed operations to be " 41 "legal for the GlobalISel combiner")); 42 43 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 44 MachineIRBuilder &B, GISelKnownBits *KB, 45 MachineDominatorTree *MDT, 46 const LegalizerInfo *LI) 47 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 48 KB(KB), MDT(MDT), LI(LI) { 49 (void)this->KB; 50 } 51 52 const TargetLowering &CombinerHelper::getTargetLowering() const { 53 return *Builder.getMF().getSubtarget().getTargetLowering(); 54 } 55 56 /// \returns The little endian in-memory byte position of byte \p I in a 57 /// \p ByteWidth bytes wide type. 58 /// 59 /// E.g. Given a 4-byte type x, x[0] -> byte 0 60 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 61 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 62 return I; 63 } 64 65 /// \returns The big endian in-memory byte position of byte \p I in a 66 /// \p ByteWidth bytes wide type. 67 /// 68 /// E.g. Given a 4-byte type x, x[0] -> byte 3 69 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 70 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 71 return ByteWidth - I - 1; 72 } 73 74 /// Given a map from byte offsets in memory to indices in a load/store, 75 /// determine if that map corresponds to a little or big endian byte pattern. 76 /// 77 /// \param MemOffset2Idx maps memory offsets to address offsets. 78 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 79 /// 80 /// \returns true if the map corresponds to a big endian byte pattern, false 81 /// if it corresponds to a little endian byte pattern, and None otherwise. 82 /// 83 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 84 /// are as follows: 85 /// 86 /// AddrOffset Little endian Big endian 87 /// 0 0 3 88 /// 1 1 2 89 /// 2 2 1 90 /// 3 3 0 91 static Optional<bool> 92 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 93 int64_t LowestIdx) { 94 // Need at least two byte positions to decide on endianness. 95 unsigned Width = MemOffset2Idx.size(); 96 if (Width < 2) 97 return None; 98 bool BigEndian = true, LittleEndian = true; 99 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 100 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 101 if (MemOffsetAndIdx == MemOffset2Idx.end()) 102 return None; 103 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 104 assert(Idx >= 0 && "Expected non-negative byte offset?"); 105 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 106 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 107 if (!BigEndian && !LittleEndian) 108 return None; 109 } 110 111 assert((BigEndian != LittleEndian) && 112 "Pattern cannot be both big and little endian!"); 113 return BigEndian; 114 } 115 116 bool CombinerHelper::isLegalOrBeforeLegalizer( 117 const LegalityQuery &Query) const { 118 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 119 } 120 121 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 122 Register ToReg) const { 123 Observer.changingAllUsesOfReg(MRI, FromReg); 124 125 if (MRI.constrainRegAttrs(ToReg, FromReg)) 126 MRI.replaceRegWith(FromReg, ToReg); 127 else 128 Builder.buildCopy(ToReg, FromReg); 129 130 Observer.finishedChangingAllUsesOfReg(); 131 } 132 133 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 134 MachineOperand &FromRegOp, 135 Register ToReg) const { 136 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 137 Observer.changingInstr(*FromRegOp.getParent()); 138 139 FromRegOp.setReg(ToReg); 140 141 Observer.changedInstr(*FromRegOp.getParent()); 142 } 143 144 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 145 if (matchCombineCopy(MI)) { 146 applyCombineCopy(MI); 147 return true; 148 } 149 return false; 150 } 151 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 152 if (MI.getOpcode() != TargetOpcode::COPY) 153 return false; 154 Register DstReg = MI.getOperand(0).getReg(); 155 Register SrcReg = MI.getOperand(1).getReg(); 156 return canReplaceReg(DstReg, SrcReg, MRI); 157 } 158 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 159 Register DstReg = MI.getOperand(0).getReg(); 160 Register SrcReg = MI.getOperand(1).getReg(); 161 MI.eraseFromParent(); 162 replaceRegWith(MRI, DstReg, SrcReg); 163 } 164 165 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 166 bool IsUndef = false; 167 SmallVector<Register, 4> Ops; 168 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 169 applyCombineConcatVectors(MI, IsUndef, Ops); 170 return true; 171 } 172 return false; 173 } 174 175 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 176 SmallVectorImpl<Register> &Ops) { 177 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 178 "Invalid instruction"); 179 IsUndef = true; 180 MachineInstr *Undef = nullptr; 181 182 // Walk over all the operands of concat vectors and check if they are 183 // build_vector themselves or undef. 184 // Then collect their operands in Ops. 185 for (const MachineOperand &MO : MI.uses()) { 186 Register Reg = MO.getReg(); 187 MachineInstr *Def = MRI.getVRegDef(Reg); 188 assert(Def && "Operand not defined"); 189 switch (Def->getOpcode()) { 190 case TargetOpcode::G_BUILD_VECTOR: 191 IsUndef = false; 192 // Remember the operands of the build_vector to fold 193 // them into the yet-to-build flattened concat vectors. 194 for (const MachineOperand &BuildVecMO : Def->uses()) 195 Ops.push_back(BuildVecMO.getReg()); 196 break; 197 case TargetOpcode::G_IMPLICIT_DEF: { 198 LLT OpType = MRI.getType(Reg); 199 // Keep one undef value for all the undef operands. 200 if (!Undef) { 201 Builder.setInsertPt(*MI.getParent(), MI); 202 Undef = Builder.buildUndef(OpType.getScalarType()); 203 } 204 assert(MRI.getType(Undef->getOperand(0).getReg()) == 205 OpType.getScalarType() && 206 "All undefs should have the same type"); 207 // Break the undef vector in as many scalar elements as needed 208 // for the flattening. 209 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 210 EltIdx != EltEnd; ++EltIdx) 211 Ops.push_back(Undef->getOperand(0).getReg()); 212 break; 213 } 214 default: 215 return false; 216 } 217 } 218 return true; 219 } 220 void CombinerHelper::applyCombineConcatVectors( 221 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 222 // We determined that the concat_vectors can be flatten. 223 // Generate the flattened build_vector. 224 Register DstReg = MI.getOperand(0).getReg(); 225 Builder.setInsertPt(*MI.getParent(), MI); 226 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 227 228 // Note: IsUndef is sort of redundant. We could have determine it by 229 // checking that at all Ops are undef. Alternatively, we could have 230 // generate a build_vector of undefs and rely on another combine to 231 // clean that up. For now, given we already gather this information 232 // in tryCombineConcatVectors, just save compile time and issue the 233 // right thing. 234 if (IsUndef) 235 Builder.buildUndef(NewDstReg); 236 else 237 Builder.buildBuildVector(NewDstReg, Ops); 238 MI.eraseFromParent(); 239 replaceRegWith(MRI, DstReg, NewDstReg); 240 } 241 242 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 243 SmallVector<Register, 4> Ops; 244 if (matchCombineShuffleVector(MI, Ops)) { 245 applyCombineShuffleVector(MI, Ops); 246 return true; 247 } 248 return false; 249 } 250 251 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 252 SmallVectorImpl<Register> &Ops) { 253 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 254 "Invalid instruction kind"); 255 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 256 Register Src1 = MI.getOperand(1).getReg(); 257 LLT SrcType = MRI.getType(Src1); 258 // As bizarre as it may look, shuffle vector can actually produce 259 // scalar! This is because at the IR level a <1 x ty> shuffle 260 // vector is perfectly valid. 261 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 262 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 263 264 // If the resulting vector is smaller than the size of the source 265 // vectors being concatenated, we won't be able to replace the 266 // shuffle vector into a concat_vectors. 267 // 268 // Note: We may still be able to produce a concat_vectors fed by 269 // extract_vector_elt and so on. It is less clear that would 270 // be better though, so don't bother for now. 271 // 272 // If the destination is a scalar, the size of the sources doesn't 273 // matter. we will lower the shuffle to a plain copy. This will 274 // work only if the source and destination have the same size. But 275 // that's covered by the next condition. 276 // 277 // TODO: If the size between the source and destination don't match 278 // we could still emit an extract vector element in that case. 279 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 280 return false; 281 282 // Check that the shuffle mask can be broken evenly between the 283 // different sources. 284 if (DstNumElts % SrcNumElts != 0) 285 return false; 286 287 // Mask length is a multiple of the source vector length. 288 // Check if the shuffle is some kind of concatenation of the input 289 // vectors. 290 unsigned NumConcat = DstNumElts / SrcNumElts; 291 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 292 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 293 for (unsigned i = 0; i != DstNumElts; ++i) { 294 int Idx = Mask[i]; 295 // Undef value. 296 if (Idx < 0) 297 continue; 298 // Ensure the indices in each SrcType sized piece are sequential and that 299 // the same source is used for the whole piece. 300 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 301 (ConcatSrcs[i / SrcNumElts] >= 0 && 302 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 303 return false; 304 // Remember which source this index came from. 305 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 306 } 307 308 // The shuffle is concatenating multiple vectors together. 309 // Collect the different operands for that. 310 Register UndefReg; 311 Register Src2 = MI.getOperand(2).getReg(); 312 for (auto Src : ConcatSrcs) { 313 if (Src < 0) { 314 if (!UndefReg) { 315 Builder.setInsertPt(*MI.getParent(), MI); 316 UndefReg = Builder.buildUndef(SrcType).getReg(0); 317 } 318 Ops.push_back(UndefReg); 319 } else if (Src == 0) 320 Ops.push_back(Src1); 321 else 322 Ops.push_back(Src2); 323 } 324 return true; 325 } 326 327 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 328 const ArrayRef<Register> Ops) { 329 Register DstReg = MI.getOperand(0).getReg(); 330 Builder.setInsertPt(*MI.getParent(), MI); 331 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 332 333 if (Ops.size() == 1) 334 Builder.buildCopy(NewDstReg, Ops[0]); 335 else 336 Builder.buildMerge(NewDstReg, Ops); 337 338 MI.eraseFromParent(); 339 replaceRegWith(MRI, DstReg, NewDstReg); 340 } 341 342 namespace { 343 344 /// Select a preference between two uses. CurrentUse is the current preference 345 /// while *ForCandidate is attributes of the candidate under consideration. 346 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 347 const LLT TyForCandidate, 348 unsigned OpcodeForCandidate, 349 MachineInstr *MIForCandidate) { 350 if (!CurrentUse.Ty.isValid()) { 351 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 352 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 353 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 354 return CurrentUse; 355 } 356 357 // We permit the extend to hoist through basic blocks but this is only 358 // sensible if the target has extending loads. If you end up lowering back 359 // into a load and extend during the legalizer then the end result is 360 // hoisting the extend up to the load. 361 362 // Prefer defined extensions to undefined extensions as these are more 363 // likely to reduce the number of instructions. 364 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 365 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 366 return CurrentUse; 367 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 368 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 369 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 370 371 // Prefer sign extensions to zero extensions as sign-extensions tend to be 372 // more expensive. 373 if (CurrentUse.Ty == TyForCandidate) { 374 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 375 OpcodeForCandidate == TargetOpcode::G_ZEXT) 376 return CurrentUse; 377 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 378 OpcodeForCandidate == TargetOpcode::G_SEXT) 379 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 380 } 381 382 // This is potentially target specific. We've chosen the largest type 383 // because G_TRUNC is usually free. One potential catch with this is that 384 // some targets have a reduced number of larger registers than smaller 385 // registers and this choice potentially increases the live-range for the 386 // larger value. 387 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 388 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 389 } 390 return CurrentUse; 391 } 392 393 /// Find a suitable place to insert some instructions and insert them. This 394 /// function accounts for special cases like inserting before a PHI node. 395 /// The current strategy for inserting before PHI's is to duplicate the 396 /// instructions for each predecessor. However, while that's ok for G_TRUNC 397 /// on most targets since it generally requires no code, other targets/cases may 398 /// want to try harder to find a dominating block. 399 static void InsertInsnsWithoutSideEffectsBeforeUse( 400 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 401 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 402 MachineOperand &UseMO)> 403 Inserter) { 404 MachineInstr &UseMI = *UseMO.getParent(); 405 406 MachineBasicBlock *InsertBB = UseMI.getParent(); 407 408 // If the use is a PHI then we want the predecessor block instead. 409 if (UseMI.isPHI()) { 410 MachineOperand *PredBB = std::next(&UseMO); 411 InsertBB = PredBB->getMBB(); 412 } 413 414 // If the block is the same block as the def then we want to insert just after 415 // the def instead of at the start of the block. 416 if (InsertBB == DefMI.getParent()) { 417 MachineBasicBlock::iterator InsertPt = &DefMI; 418 Inserter(InsertBB, std::next(InsertPt), UseMO); 419 return; 420 } 421 422 // Otherwise we want the start of the BB 423 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 424 } 425 } // end anonymous namespace 426 427 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 428 PreferredTuple Preferred; 429 if (matchCombineExtendingLoads(MI, Preferred)) { 430 applyCombineExtendingLoads(MI, Preferred); 431 return true; 432 } 433 return false; 434 } 435 436 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 437 PreferredTuple &Preferred) { 438 // We match the loads and follow the uses to the extend instead of matching 439 // the extends and following the def to the load. This is because the load 440 // must remain in the same position for correctness (unless we also add code 441 // to find a safe place to sink it) whereas the extend is freely movable. 442 // It also prevents us from duplicating the load for the volatile case or just 443 // for performance. 444 445 if (MI.getOpcode() != TargetOpcode::G_LOAD && 446 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 447 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 448 return false; 449 450 auto &LoadValue = MI.getOperand(0); 451 assert(LoadValue.isReg() && "Result wasn't a register?"); 452 453 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 454 if (!LoadValueTy.isScalar()) 455 return false; 456 457 // Most architectures are going to legalize <s8 loads into at least a 1 byte 458 // load, and the MMOs can only describe memory accesses in multiples of bytes. 459 // If we try to perform extload combining on those, we can end up with 460 // %a(s8) = extload %ptr (load 1 byte from %ptr) 461 // ... which is an illegal extload instruction. 462 if (LoadValueTy.getSizeInBits() < 8) 463 return false; 464 465 // For non power-of-2 types, they will very likely be legalized into multiple 466 // loads. Don't bother trying to match them into extending loads. 467 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 468 return false; 469 470 // Find the preferred type aside from the any-extends (unless it's the only 471 // one) and non-extending ops. We'll emit an extending load to that type and 472 // and emit a variant of (extend (trunc X)) for the others according to the 473 // relative type sizes. At the same time, pick an extend to use based on the 474 // extend involved in the chosen type. 475 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 476 ? TargetOpcode::G_ANYEXT 477 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 478 ? TargetOpcode::G_SEXT 479 : TargetOpcode::G_ZEXT; 480 Preferred = {LLT(), PreferredOpcode, nullptr}; 481 for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) { 482 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 483 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 484 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 485 const auto &MMO = **MI.memoperands_begin(); 486 // For atomics, only form anyextending loads. 487 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 488 continue; 489 // Check for legality. 490 if (LI) { 491 LegalityQuery::MemDesc MMDesc; 492 MMDesc.SizeInBits = MMO.getSizeInBits(); 493 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 494 MMDesc.Ordering = MMO.getOrdering(); 495 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 496 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 497 if (LI->getAction({MI.getOpcode(), {UseTy, SrcTy}, {MMDesc}}).Action != 498 LegalizeActions::Legal) 499 continue; 500 } 501 Preferred = ChoosePreferredUse(Preferred, 502 MRI.getType(UseMI.getOperand(0).getReg()), 503 UseMI.getOpcode(), &UseMI); 504 } 505 } 506 507 // There were no extends 508 if (!Preferred.MI) 509 return false; 510 // It should be impossible to chose an extend without selecting a different 511 // type since by definition the result of an extend is larger. 512 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 513 514 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 515 return true; 516 } 517 518 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 519 PreferredTuple &Preferred) { 520 // Rewrite the load to the chosen extending load. 521 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 522 523 // Inserter to insert a truncate back to the original type at a given point 524 // with some basic CSE to limit truncate duplication to one per BB. 525 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 526 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 527 MachineBasicBlock::iterator InsertBefore, 528 MachineOperand &UseMO) { 529 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 530 if (PreviouslyEmitted) { 531 Observer.changingInstr(*UseMO.getParent()); 532 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 533 Observer.changedInstr(*UseMO.getParent()); 534 return; 535 } 536 537 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 538 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 539 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 540 EmittedInsns[InsertIntoBB] = NewMI; 541 replaceRegOpWith(MRI, UseMO, NewDstReg); 542 }; 543 544 Observer.changingInstr(MI); 545 MI.setDesc( 546 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 547 ? TargetOpcode::G_SEXTLOAD 548 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 549 ? TargetOpcode::G_ZEXTLOAD 550 : TargetOpcode::G_LOAD)); 551 552 // Rewrite all the uses to fix up the types. 553 auto &LoadValue = MI.getOperand(0); 554 SmallVector<MachineOperand *, 4> Uses; 555 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 556 Uses.push_back(&UseMO); 557 558 for (auto *UseMO : Uses) { 559 MachineInstr *UseMI = UseMO->getParent(); 560 561 // If the extend is compatible with the preferred extend then we should fix 562 // up the type and extend so that it uses the preferred use. 563 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 564 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 565 Register UseDstReg = UseMI->getOperand(0).getReg(); 566 MachineOperand &UseSrcMO = UseMI->getOperand(1); 567 const LLT UseDstTy = MRI.getType(UseDstReg); 568 if (UseDstReg != ChosenDstReg) { 569 if (Preferred.Ty == UseDstTy) { 570 // If the use has the same type as the preferred use, then merge 571 // the vregs and erase the extend. For example: 572 // %1:_(s8) = G_LOAD ... 573 // %2:_(s32) = G_SEXT %1(s8) 574 // %3:_(s32) = G_ANYEXT %1(s8) 575 // ... = ... %3(s32) 576 // rewrites to: 577 // %2:_(s32) = G_SEXTLOAD ... 578 // ... = ... %2(s32) 579 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 580 Observer.erasingInstr(*UseMO->getParent()); 581 UseMO->getParent()->eraseFromParent(); 582 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 583 // If the preferred size is smaller, then keep the extend but extend 584 // from the result of the extending load. For example: 585 // %1:_(s8) = G_LOAD ... 586 // %2:_(s32) = G_SEXT %1(s8) 587 // %3:_(s64) = G_ANYEXT %1(s8) 588 // ... = ... %3(s64) 589 /// rewrites to: 590 // %2:_(s32) = G_SEXTLOAD ... 591 // %3:_(s64) = G_ANYEXT %2:_(s32) 592 // ... = ... %3(s64) 593 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 594 } else { 595 // If the preferred size is large, then insert a truncate. For 596 // example: 597 // %1:_(s8) = G_LOAD ... 598 // %2:_(s64) = G_SEXT %1(s8) 599 // %3:_(s32) = G_ZEXT %1(s8) 600 // ... = ... %3(s32) 601 /// rewrites to: 602 // %2:_(s64) = G_SEXTLOAD ... 603 // %4:_(s8) = G_TRUNC %2:_(s32) 604 // %3:_(s64) = G_ZEXT %2:_(s8) 605 // ... = ... %3(s64) 606 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 607 InsertTruncAt); 608 } 609 continue; 610 } 611 // The use is (one of) the uses of the preferred use we chose earlier. 612 // We're going to update the load to def this value later so just erase 613 // the old extend. 614 Observer.erasingInstr(*UseMO->getParent()); 615 UseMO->getParent()->eraseFromParent(); 616 continue; 617 } 618 619 // The use isn't an extend. Truncate back to the type we originally loaded. 620 // This is free on many targets. 621 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 622 } 623 624 MI.getOperand(0).setReg(ChosenDstReg); 625 Observer.changedInstr(MI); 626 } 627 628 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 629 const MachineInstr &UseMI) { 630 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 631 "shouldn't consider debug uses"); 632 assert(DefMI.getParent() == UseMI.getParent()); 633 if (&DefMI == &UseMI) 634 return false; 635 const MachineBasicBlock &MBB = *DefMI.getParent(); 636 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 637 return &MI == &DefMI || &MI == &UseMI; 638 }); 639 if (DefOrUse == MBB.end()) 640 llvm_unreachable("Block must contain both DefMI and UseMI!"); 641 return &*DefOrUse == &DefMI; 642 } 643 644 bool CombinerHelper::dominates(const MachineInstr &DefMI, 645 const MachineInstr &UseMI) { 646 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 647 "shouldn't consider debug uses"); 648 if (MDT) 649 return MDT->dominates(&DefMI, &UseMI); 650 else if (DefMI.getParent() != UseMI.getParent()) 651 return false; 652 653 return isPredecessor(DefMI, UseMI); 654 } 655 656 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 657 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 658 Register SrcReg = MI.getOperand(1).getReg(); 659 Register LoadUser = SrcReg; 660 661 if (MRI.getType(SrcReg).isVector()) 662 return false; 663 664 Register TruncSrc; 665 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 666 LoadUser = TruncSrc; 667 668 uint64_t SizeInBits = MI.getOperand(2).getImm(); 669 // If the source is a G_SEXTLOAD from the same bit width, then we don't 670 // need any extend at all, just a truncate. 671 if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) { 672 const auto &MMO = **LoadMI->memoperands_begin(); 673 // If truncating more than the original extended value, abort. 674 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits()) 675 return false; 676 if (MMO.getSizeInBits() == SizeInBits) 677 return true; 678 } 679 return false; 680 } 681 682 bool CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 683 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 684 Builder.setInstrAndDebugLoc(MI); 685 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 686 MI.eraseFromParent(); 687 return true; 688 } 689 690 bool CombinerHelper::matchSextInRegOfLoad( 691 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 692 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 693 694 // Only supports scalars for now. 695 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 696 return false; 697 698 Register SrcReg = MI.getOperand(1).getReg(); 699 MachineInstr *LoadDef = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI); 700 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg())) 701 return false; 702 703 // If the sign extend extends from a narrower width than the load's width, 704 // then we can narrow the load width when we combine to a G_SEXTLOAD. 705 auto &MMO = **LoadDef->memoperands_begin(); 706 // Don't do this for non-simple loads. 707 if (MMO.isAtomic() || MMO.isVolatile()) 708 return false; 709 710 // Avoid widening the load at all. 711 unsigned NewSizeBits = 712 std::min((uint64_t)MI.getOperand(2).getImm(), MMO.getSizeInBits()); 713 714 // Don't generate G_SEXTLOADs with a < 1 byte width. 715 if (NewSizeBits < 8) 716 return false; 717 // Don't bother creating a non-power-2 sextload, it will likely be broken up 718 // anyway for most targets. 719 if (!isPowerOf2_32(NewSizeBits)) 720 return false; 721 MatchInfo = std::make_tuple(LoadDef->getOperand(0).getReg(), NewSizeBits); 722 return true; 723 } 724 725 bool CombinerHelper::applySextInRegOfLoad( 726 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 727 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 728 Register LoadReg; 729 unsigned ScalarSizeBits; 730 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 731 auto *LoadDef = MRI.getVRegDef(LoadReg); 732 assert(LoadDef && "Expected a load reg"); 733 734 // If we have the following: 735 // %ld = G_LOAD %ptr, (load 2) 736 // %ext = G_SEXT_INREG %ld, 8 737 // ==> 738 // %ld = G_SEXTLOAD %ptr (load 1) 739 740 auto &MMO = **LoadDef->memoperands_begin(); 741 Builder.setInstrAndDebugLoc(*LoadDef); 742 auto &MF = Builder.getMF(); 743 auto PtrInfo = MMO.getPointerInfo(); 744 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 745 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 746 LoadDef->getOperand(1).getReg(), *NewMMO); 747 MI.eraseFromParent(); 748 return true; 749 } 750 751 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 752 Register &Base, Register &Offset) { 753 auto &MF = *MI.getParent()->getParent(); 754 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 755 756 #ifndef NDEBUG 757 unsigned Opcode = MI.getOpcode(); 758 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 759 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 760 #endif 761 762 Base = MI.getOperand(1).getReg(); 763 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 764 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 765 return false; 766 767 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 768 // FIXME: The following use traversal needs a bail out for patholigical cases. 769 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 770 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 771 continue; 772 773 Offset = Use.getOperand(2).getReg(); 774 if (!ForceLegalIndexing && 775 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 776 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 777 << Use); 778 continue; 779 } 780 781 // Make sure the offset calculation is before the potentially indexed op. 782 // FIXME: we really care about dependency here. The offset calculation might 783 // be movable. 784 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 785 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 786 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 787 << Use); 788 continue; 789 } 790 791 // FIXME: check whether all uses of Base are load/store with foldable 792 // addressing modes. If so, using the normal addr-modes is better than 793 // forming an indexed one. 794 795 bool MemOpDominatesAddrUses = true; 796 for (auto &PtrAddUse : 797 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 798 if (!dominates(MI, PtrAddUse)) { 799 MemOpDominatesAddrUses = false; 800 break; 801 } 802 } 803 804 if (!MemOpDominatesAddrUses) { 805 LLVM_DEBUG( 806 dbgs() << " Ignoring candidate as memop does not dominate uses: " 807 << Use); 808 continue; 809 } 810 811 LLVM_DEBUG(dbgs() << " Found match: " << Use); 812 Addr = Use.getOperand(0).getReg(); 813 return true; 814 } 815 816 return false; 817 } 818 819 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 820 Register &Base, Register &Offset) { 821 auto &MF = *MI.getParent()->getParent(); 822 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 823 824 #ifndef NDEBUG 825 unsigned Opcode = MI.getOpcode(); 826 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 827 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 828 #endif 829 830 Addr = MI.getOperand(1).getReg(); 831 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 832 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 833 return false; 834 835 Base = AddrDef->getOperand(1).getReg(); 836 Offset = AddrDef->getOperand(2).getReg(); 837 838 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 839 840 if (!ForceLegalIndexing && 841 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 842 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 843 return false; 844 } 845 846 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 847 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 848 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 849 return false; 850 } 851 852 if (MI.getOpcode() == TargetOpcode::G_STORE) { 853 // Would require a copy. 854 if (Base == MI.getOperand(0).getReg()) { 855 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 856 return false; 857 } 858 859 // We're expecting one use of Addr in MI, but it could also be the 860 // value stored, which isn't actually dominated by the instruction. 861 if (MI.getOperand(0).getReg() == Addr) { 862 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 863 return false; 864 } 865 } 866 867 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 868 // That might allow us to end base's liveness here by adjusting the constant. 869 870 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 871 if (!dominates(MI, UseMI)) { 872 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 873 return false; 874 } 875 } 876 877 return true; 878 } 879 880 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 881 IndexedLoadStoreMatchInfo MatchInfo; 882 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 883 applyCombineIndexedLoadStore(MI, MatchInfo); 884 return true; 885 } 886 return false; 887 } 888 889 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 890 unsigned Opcode = MI.getOpcode(); 891 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 892 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 893 return false; 894 895 // For now, no targets actually support these opcodes so don't waste time 896 // running these unless we're forced to for testing. 897 if (!ForceLegalIndexing) 898 return false; 899 900 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 901 MatchInfo.Offset); 902 if (!MatchInfo.IsPre && 903 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 904 MatchInfo.Offset)) 905 return false; 906 907 return true; 908 } 909 910 void CombinerHelper::applyCombineIndexedLoadStore( 911 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 912 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 913 MachineIRBuilder MIRBuilder(MI); 914 unsigned Opcode = MI.getOpcode(); 915 bool IsStore = Opcode == TargetOpcode::G_STORE; 916 unsigned NewOpcode; 917 switch (Opcode) { 918 case TargetOpcode::G_LOAD: 919 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 920 break; 921 case TargetOpcode::G_SEXTLOAD: 922 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 923 break; 924 case TargetOpcode::G_ZEXTLOAD: 925 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 926 break; 927 case TargetOpcode::G_STORE: 928 NewOpcode = TargetOpcode::G_INDEXED_STORE; 929 break; 930 default: 931 llvm_unreachable("Unknown load/store opcode"); 932 } 933 934 auto MIB = MIRBuilder.buildInstr(NewOpcode); 935 if (IsStore) { 936 MIB.addDef(MatchInfo.Addr); 937 MIB.addUse(MI.getOperand(0).getReg()); 938 } else { 939 MIB.addDef(MI.getOperand(0).getReg()); 940 MIB.addDef(MatchInfo.Addr); 941 } 942 943 MIB.addUse(MatchInfo.Base); 944 MIB.addUse(MatchInfo.Offset); 945 MIB.addImm(MatchInfo.IsPre); 946 MI.eraseFromParent(); 947 AddrDef.eraseFromParent(); 948 949 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 950 } 951 952 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 953 MachineInstr *&OtherMI) { 954 unsigned Opcode = MI.getOpcode(); 955 bool IsDiv, IsSigned; 956 957 switch (Opcode) { 958 default: 959 llvm_unreachable("Unexpected opcode!"); 960 case TargetOpcode::G_SDIV: 961 case TargetOpcode::G_UDIV: { 962 IsDiv = true; 963 IsSigned = Opcode == TargetOpcode::G_SDIV; 964 break; 965 } 966 case TargetOpcode::G_SREM: 967 case TargetOpcode::G_UREM: { 968 IsDiv = false; 969 IsSigned = Opcode == TargetOpcode::G_SREM; 970 break; 971 } 972 } 973 974 Register Src1 = MI.getOperand(1).getReg(); 975 unsigned DivOpcode, RemOpcode, DivremOpcode; 976 if (IsSigned) { 977 DivOpcode = TargetOpcode::G_SDIV; 978 RemOpcode = TargetOpcode::G_SREM; 979 DivremOpcode = TargetOpcode::G_SDIVREM; 980 } else { 981 DivOpcode = TargetOpcode::G_UDIV; 982 RemOpcode = TargetOpcode::G_UREM; 983 DivremOpcode = TargetOpcode::G_UDIVREM; 984 } 985 986 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 987 return false; 988 989 // Combine: 990 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 991 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 992 // into: 993 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 994 995 // Combine: 996 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 997 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 998 // into: 999 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1000 1001 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1002 if (MI.getParent() == UseMI.getParent() && 1003 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1004 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1005 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1006 OtherMI = &UseMI; 1007 return true; 1008 } 1009 } 1010 1011 return false; 1012 } 1013 1014 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1015 MachineInstr *&OtherMI) { 1016 unsigned Opcode = MI.getOpcode(); 1017 assert(OtherMI && "OtherMI shouldn't be empty."); 1018 1019 Register DestDivReg, DestRemReg; 1020 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1021 DestDivReg = MI.getOperand(0).getReg(); 1022 DestRemReg = OtherMI->getOperand(0).getReg(); 1023 } else { 1024 DestDivReg = OtherMI->getOperand(0).getReg(); 1025 DestRemReg = MI.getOperand(0).getReg(); 1026 } 1027 1028 bool IsSigned = 1029 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1030 1031 // Check which instruction is first in the block so we don't break def-use 1032 // deps by "moving" the instruction incorrectly. 1033 if (dominates(MI, *OtherMI)) 1034 Builder.setInstrAndDebugLoc(MI); 1035 else 1036 Builder.setInstrAndDebugLoc(*OtherMI); 1037 1038 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1039 : TargetOpcode::G_UDIVREM, 1040 {DestDivReg, DestRemReg}, 1041 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1042 MI.eraseFromParent(); 1043 OtherMI->eraseFromParent(); 1044 } 1045 1046 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1047 MachineInstr *&BrCond) { 1048 assert(MI.getOpcode() == TargetOpcode::G_BR); 1049 1050 // Try to match the following: 1051 // bb1: 1052 // G_BRCOND %c1, %bb2 1053 // G_BR %bb3 1054 // bb2: 1055 // ... 1056 // bb3: 1057 1058 // The above pattern does not have a fall through to the successor bb2, always 1059 // resulting in a branch no matter which path is taken. Here we try to find 1060 // and replace that pattern with conditional branch to bb3 and otherwise 1061 // fallthrough to bb2. This is generally better for branch predictors. 1062 1063 MachineBasicBlock *MBB = MI.getParent(); 1064 MachineBasicBlock::iterator BrIt(MI); 1065 if (BrIt == MBB->begin()) 1066 return false; 1067 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1068 1069 BrCond = &*std::prev(BrIt); 1070 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1071 return false; 1072 1073 // Check that the next block is the conditional branch target. Also make sure 1074 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1075 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1076 return BrCondTarget != MI.getOperand(0).getMBB() && 1077 MBB->isLayoutSuccessor(BrCondTarget); 1078 } 1079 1080 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1081 MachineInstr *&BrCond) { 1082 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1083 Builder.setInstrAndDebugLoc(*BrCond); 1084 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1085 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1086 // this to i1 only since we might not know for sure what kind of 1087 // compare generated the condition value. 1088 auto True = Builder.buildConstant( 1089 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1090 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1091 1092 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1093 Observer.changingInstr(MI); 1094 MI.getOperand(0).setMBB(FallthroughBB); 1095 Observer.changedInstr(MI); 1096 1097 // Change the conditional branch to use the inverted condition and 1098 // new target block. 1099 Observer.changingInstr(*BrCond); 1100 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1101 BrCond->getOperand(1).setMBB(BrTarget); 1102 Observer.changedInstr(*BrCond); 1103 } 1104 1105 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 1106 // On Darwin, -Os means optimize for size without hurting performance, so 1107 // only really optimize for size when -Oz (MinSize) is used. 1108 if (MF.getTarget().getTargetTriple().isOSDarwin()) 1109 return MF.getFunction().hasMinSize(); 1110 return MF.getFunction().hasOptSize(); 1111 } 1112 1113 // Returns a list of types to use for memory op lowering in MemOps. A partial 1114 // port of findOptimalMemOpLowering in TargetLowering. 1115 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 1116 unsigned Limit, const MemOp &Op, 1117 unsigned DstAS, unsigned SrcAS, 1118 const AttributeList &FuncAttributes, 1119 const TargetLowering &TLI) { 1120 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 1121 return false; 1122 1123 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 1124 1125 if (Ty == LLT()) { 1126 // Use the largest scalar type whose alignment constraints are satisfied. 1127 // We only need to check DstAlign here as SrcAlign is always greater or 1128 // equal to DstAlign (or zero). 1129 Ty = LLT::scalar(64); 1130 if (Op.isFixedDstAlign()) 1131 while (Op.getDstAlign() < Ty.getSizeInBytes() && 1132 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 1133 Ty = LLT::scalar(Ty.getSizeInBytes()); 1134 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 1135 // FIXME: check for the largest legal type we can load/store to. 1136 } 1137 1138 unsigned NumMemOps = 0; 1139 uint64_t Size = Op.size(); 1140 while (Size) { 1141 unsigned TySize = Ty.getSizeInBytes(); 1142 while (TySize > Size) { 1143 // For now, only use non-vector load / store's for the left-over pieces. 1144 LLT NewTy = Ty; 1145 // FIXME: check for mem op safety and legality of the types. Not all of 1146 // SDAGisms map cleanly to GISel concepts. 1147 if (NewTy.isVector()) 1148 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 1149 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 1150 unsigned NewTySize = NewTy.getSizeInBytes(); 1151 assert(NewTySize > 0 && "Could not find appropriate type"); 1152 1153 // If the new LLT cannot cover all of the remaining bits, then consider 1154 // issuing a (or a pair of) unaligned and overlapping load / store. 1155 bool Fast; 1156 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 1157 MVT VT = getMVTForLLT(Ty); 1158 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 1159 TLI.allowsMisalignedMemoryAccesses( 1160 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 1161 MachineMemOperand::MONone, &Fast) && 1162 Fast) 1163 TySize = Size; 1164 else { 1165 Ty = NewTy; 1166 TySize = NewTySize; 1167 } 1168 } 1169 1170 if (++NumMemOps > Limit) 1171 return false; 1172 1173 MemOps.push_back(Ty); 1174 Size -= TySize; 1175 } 1176 1177 return true; 1178 } 1179 1180 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1181 if (Ty.isVector()) 1182 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1183 Ty.getNumElements()); 1184 return IntegerType::get(C, Ty.getSizeInBits()); 1185 } 1186 1187 // Get a vectorized representation of the memset value operand, GISel edition. 1188 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 1189 MachineRegisterInfo &MRI = *MIB.getMRI(); 1190 unsigned NumBits = Ty.getScalarSizeInBits(); 1191 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1192 if (!Ty.isVector() && ValVRegAndVal) { 1193 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 1194 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 1195 return MIB.buildConstant(Ty, SplatVal).getReg(0); 1196 } 1197 1198 // Extend the byte value to the larger type, and then multiply by a magic 1199 // value 0x010101... in order to replicate it across every byte. 1200 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 1201 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 1202 return MIB.buildConstant(Ty, 0).getReg(0); 1203 } 1204 1205 LLT ExtType = Ty.getScalarType(); 1206 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 1207 if (NumBits > 8) { 1208 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 1209 auto MagicMI = MIB.buildConstant(ExtType, Magic); 1210 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 1211 } 1212 1213 // For vector types create a G_BUILD_VECTOR. 1214 if (Ty.isVector()) 1215 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 1216 1217 return Val; 1218 } 1219 1220 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 1221 Register Val, unsigned KnownLen, 1222 Align Alignment, bool IsVolatile) { 1223 auto &MF = *MI.getParent()->getParent(); 1224 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1225 auto &DL = MF.getDataLayout(); 1226 LLVMContext &C = MF.getFunction().getContext(); 1227 1228 assert(KnownLen != 0 && "Have a zero length memset length!"); 1229 1230 bool DstAlignCanChange = false; 1231 MachineFrameInfo &MFI = MF.getFrameInfo(); 1232 bool OptSize = shouldLowerMemFuncForSize(MF); 1233 1234 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1235 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1236 DstAlignCanChange = true; 1237 1238 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1239 std::vector<LLT> MemOps; 1240 1241 const auto &DstMMO = **MI.memoperands_begin(); 1242 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1243 1244 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1245 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1246 1247 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1248 MemOp::Set(KnownLen, DstAlignCanChange, 1249 Alignment, 1250 /*IsZeroMemset=*/IsZeroVal, 1251 /*IsVolatile=*/IsVolatile), 1252 DstPtrInfo.getAddrSpace(), ~0u, 1253 MF.getFunction().getAttributes(), TLI)) 1254 return false; 1255 1256 if (DstAlignCanChange) { 1257 // Get an estimate of the type from the LLT. 1258 Type *IRTy = getTypeForLLT(MemOps[0], C); 1259 Align NewAlign = DL.getABITypeAlign(IRTy); 1260 if (NewAlign > Alignment) { 1261 Alignment = NewAlign; 1262 unsigned FI = FIDef->getOperand(1).getIndex(); 1263 // Give the stack frame object a larger alignment if needed. 1264 if (MFI.getObjectAlign(FI) < Alignment) 1265 MFI.setObjectAlignment(FI, Alignment); 1266 } 1267 } 1268 1269 MachineIRBuilder MIB(MI); 1270 // Find the largest store and generate the bit pattern for it. 1271 LLT LargestTy = MemOps[0]; 1272 for (unsigned i = 1; i < MemOps.size(); i++) 1273 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1274 LargestTy = MemOps[i]; 1275 1276 // The memset stored value is always defined as an s8, so in order to make it 1277 // work with larger store types we need to repeat the bit pattern across the 1278 // wider type. 1279 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1280 1281 if (!MemSetValue) 1282 return false; 1283 1284 // Generate the stores. For each store type in the list, we generate the 1285 // matching store of that type to the destination address. 1286 LLT PtrTy = MRI.getType(Dst); 1287 unsigned DstOff = 0; 1288 unsigned Size = KnownLen; 1289 for (unsigned I = 0; I < MemOps.size(); I++) { 1290 LLT Ty = MemOps[I]; 1291 unsigned TySize = Ty.getSizeInBytes(); 1292 if (TySize > Size) { 1293 // Issuing an unaligned load / store pair that overlaps with the previous 1294 // pair. Adjust the offset accordingly. 1295 assert(I == MemOps.size() - 1 && I != 0); 1296 DstOff -= TySize - Size; 1297 } 1298 1299 // If this store is smaller than the largest store see whether we can get 1300 // the smaller value for free with a truncate. 1301 Register Value = MemSetValue; 1302 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1303 MVT VT = getMVTForLLT(Ty); 1304 MVT LargestVT = getMVTForLLT(LargestTy); 1305 if (!LargestTy.isVector() && !Ty.isVector() && 1306 TLI.isTruncateFree(LargestVT, VT)) 1307 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1308 else 1309 Value = getMemsetValue(Val, Ty, MIB); 1310 if (!Value) 1311 return false; 1312 } 1313 1314 auto *StoreMMO = 1315 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1316 1317 Register Ptr = Dst; 1318 if (DstOff != 0) { 1319 auto Offset = 1320 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1321 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1322 } 1323 1324 MIB.buildStore(Value, Ptr, *StoreMMO); 1325 DstOff += Ty.getSizeInBytes(); 1326 Size -= TySize; 1327 } 1328 1329 MI.eraseFromParent(); 1330 return true; 1331 } 1332 1333 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1334 Register Src, unsigned KnownLen, 1335 Align DstAlign, Align SrcAlign, 1336 bool IsVolatile) { 1337 auto &MF = *MI.getParent()->getParent(); 1338 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1339 auto &DL = MF.getDataLayout(); 1340 LLVMContext &C = MF.getFunction().getContext(); 1341 1342 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1343 1344 bool DstAlignCanChange = false; 1345 MachineFrameInfo &MFI = MF.getFrameInfo(); 1346 bool OptSize = shouldLowerMemFuncForSize(MF); 1347 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1348 1349 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1350 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1351 DstAlignCanChange = true; 1352 1353 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1354 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1355 // if the memcpy is in a tail call position. 1356 1357 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1358 std::vector<LLT> MemOps; 1359 1360 const auto &DstMMO = **MI.memoperands_begin(); 1361 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1362 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1363 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1364 1365 if (!findGISelOptimalMemOpLowering( 1366 MemOps, Limit, 1367 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1368 IsVolatile), 1369 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1370 MF.getFunction().getAttributes(), TLI)) 1371 return false; 1372 1373 if (DstAlignCanChange) { 1374 // Get an estimate of the type from the LLT. 1375 Type *IRTy = getTypeForLLT(MemOps[0], C); 1376 Align NewAlign = DL.getABITypeAlign(IRTy); 1377 1378 // Don't promote to an alignment that would require dynamic stack 1379 // realignment. 1380 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1381 if (!TRI->hasStackRealignment(MF)) 1382 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1383 NewAlign = NewAlign / 2; 1384 1385 if (NewAlign > Alignment) { 1386 Alignment = NewAlign; 1387 unsigned FI = FIDef->getOperand(1).getIndex(); 1388 // Give the stack frame object a larger alignment if needed. 1389 if (MFI.getObjectAlign(FI) < Alignment) 1390 MFI.setObjectAlignment(FI, Alignment); 1391 } 1392 } 1393 1394 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1395 1396 MachineIRBuilder MIB(MI); 1397 // Now we need to emit a pair of load and stores for each of the types we've 1398 // collected. I.e. for each type, generate a load from the source pointer of 1399 // that type width, and then generate a corresponding store to the dest buffer 1400 // of that value loaded. This can result in a sequence of loads and stores 1401 // mixed types, depending on what the target specifies as good types to use. 1402 unsigned CurrOffset = 0; 1403 LLT PtrTy = MRI.getType(Src); 1404 unsigned Size = KnownLen; 1405 for (auto CopyTy : MemOps) { 1406 // Issuing an unaligned load / store pair that overlaps with the previous 1407 // pair. Adjust the offset accordingly. 1408 if (CopyTy.getSizeInBytes() > Size) 1409 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1410 1411 // Construct MMOs for the accesses. 1412 auto *LoadMMO = 1413 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1414 auto *StoreMMO = 1415 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1416 1417 // Create the load. 1418 Register LoadPtr = Src; 1419 Register Offset; 1420 if (CurrOffset != 0) { 1421 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1422 .getReg(0); 1423 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1424 } 1425 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1426 1427 // Create the store. 1428 Register StorePtr = 1429 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1430 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1431 CurrOffset += CopyTy.getSizeInBytes(); 1432 Size -= CopyTy.getSizeInBytes(); 1433 } 1434 1435 MI.eraseFromParent(); 1436 return true; 1437 } 1438 1439 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1440 Register Src, unsigned KnownLen, 1441 Align DstAlign, Align SrcAlign, 1442 bool IsVolatile) { 1443 auto &MF = *MI.getParent()->getParent(); 1444 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1445 auto &DL = MF.getDataLayout(); 1446 LLVMContext &C = MF.getFunction().getContext(); 1447 1448 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1449 1450 bool DstAlignCanChange = false; 1451 MachineFrameInfo &MFI = MF.getFrameInfo(); 1452 bool OptSize = shouldLowerMemFuncForSize(MF); 1453 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1454 1455 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1456 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1457 DstAlignCanChange = true; 1458 1459 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1460 std::vector<LLT> MemOps; 1461 1462 const auto &DstMMO = **MI.memoperands_begin(); 1463 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1464 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1465 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1466 1467 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1468 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1469 // same thing here. 1470 if (!findGISelOptimalMemOpLowering( 1471 MemOps, Limit, 1472 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1473 /*IsVolatile*/ true), 1474 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1475 MF.getFunction().getAttributes(), TLI)) 1476 return false; 1477 1478 if (DstAlignCanChange) { 1479 // Get an estimate of the type from the LLT. 1480 Type *IRTy = getTypeForLLT(MemOps[0], C); 1481 Align NewAlign = DL.getABITypeAlign(IRTy); 1482 1483 // Don't promote to an alignment that would require dynamic stack 1484 // realignment. 1485 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1486 if (!TRI->hasStackRealignment(MF)) 1487 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1488 NewAlign = NewAlign / 2; 1489 1490 if (NewAlign > Alignment) { 1491 Alignment = NewAlign; 1492 unsigned FI = FIDef->getOperand(1).getIndex(); 1493 // Give the stack frame object a larger alignment if needed. 1494 if (MFI.getObjectAlign(FI) < Alignment) 1495 MFI.setObjectAlignment(FI, Alignment); 1496 } 1497 } 1498 1499 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1500 1501 MachineIRBuilder MIB(MI); 1502 // Memmove requires that we perform the loads first before issuing the stores. 1503 // Apart from that, this loop is pretty much doing the same thing as the 1504 // memcpy codegen function. 1505 unsigned CurrOffset = 0; 1506 LLT PtrTy = MRI.getType(Src); 1507 SmallVector<Register, 16> LoadVals; 1508 for (auto CopyTy : MemOps) { 1509 // Construct MMO for the load. 1510 auto *LoadMMO = 1511 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1512 1513 // Create the load. 1514 Register LoadPtr = Src; 1515 if (CurrOffset != 0) { 1516 auto Offset = 1517 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1518 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1519 } 1520 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1521 CurrOffset += CopyTy.getSizeInBytes(); 1522 } 1523 1524 CurrOffset = 0; 1525 for (unsigned I = 0; I < MemOps.size(); ++I) { 1526 LLT CopyTy = MemOps[I]; 1527 // Now store the values loaded. 1528 auto *StoreMMO = 1529 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1530 1531 Register StorePtr = Dst; 1532 if (CurrOffset != 0) { 1533 auto Offset = 1534 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1535 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1536 } 1537 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1538 CurrOffset += CopyTy.getSizeInBytes(); 1539 } 1540 MI.eraseFromParent(); 1541 return true; 1542 } 1543 1544 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1545 const unsigned Opc = MI.getOpcode(); 1546 // This combine is fairly complex so it's not written with a separate 1547 // matcher function. 1548 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 1549 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); 1550 1551 auto MMOIt = MI.memoperands_begin(); 1552 const MachineMemOperand *MemOp = *MMOIt; 1553 bool IsVolatile = MemOp->isVolatile(); 1554 // Don't try to optimize volatile. 1555 if (IsVolatile) 1556 return false; 1557 1558 Align DstAlign = MemOp->getBaseAlign(); 1559 Align SrcAlign; 1560 Register Dst = MI.getOperand(0).getReg(); 1561 Register Src = MI.getOperand(1).getReg(); 1562 Register Len = MI.getOperand(2).getReg(); 1563 1564 if (Opc != TargetOpcode::G_MEMSET) { 1565 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1566 MemOp = *(++MMOIt); 1567 SrcAlign = MemOp->getBaseAlign(); 1568 } 1569 1570 // See if this is a constant length copy 1571 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1572 if (!LenVRegAndVal) 1573 return false; // Leave it to the legalizer to lower it to a libcall. 1574 unsigned KnownLen = LenVRegAndVal->Value.getZExtValue(); 1575 1576 if (KnownLen == 0) { 1577 MI.eraseFromParent(); 1578 return true; 1579 } 1580 1581 if (MaxLen && KnownLen > MaxLen) 1582 return false; 1583 1584 if (Opc == TargetOpcode::G_MEMCPY) 1585 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1586 if (Opc == TargetOpcode::G_MEMMOVE) 1587 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1588 if (Opc == TargetOpcode::G_MEMSET) 1589 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1590 return false; 1591 } 1592 1593 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1594 const Register Op, 1595 const MachineRegisterInfo &MRI) { 1596 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1597 if (!MaybeCst) 1598 return None; 1599 1600 APFloat V = MaybeCst->getValueAPF(); 1601 switch (Opcode) { 1602 default: 1603 llvm_unreachable("Unexpected opcode!"); 1604 case TargetOpcode::G_FNEG: { 1605 V.changeSign(); 1606 return V; 1607 } 1608 case TargetOpcode::G_FABS: { 1609 V.clearSign(); 1610 return V; 1611 } 1612 case TargetOpcode::G_FPTRUNC: 1613 break; 1614 case TargetOpcode::G_FSQRT: { 1615 bool Unused; 1616 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1617 V = APFloat(sqrt(V.convertToDouble())); 1618 break; 1619 } 1620 case TargetOpcode::G_FLOG2: { 1621 bool Unused; 1622 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1623 V = APFloat(log2(V.convertToDouble())); 1624 break; 1625 } 1626 } 1627 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1628 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1629 // and `G_FLOG2` reach here. 1630 bool Unused; 1631 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1632 return V; 1633 } 1634 1635 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1636 Optional<APFloat> &Cst) { 1637 Register DstReg = MI.getOperand(0).getReg(); 1638 Register SrcReg = MI.getOperand(1).getReg(); 1639 LLT DstTy = MRI.getType(DstReg); 1640 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1641 return Cst.hasValue(); 1642 } 1643 1644 bool CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1645 Optional<APFloat> &Cst) { 1646 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1647 Builder.setInstrAndDebugLoc(MI); 1648 MachineFunction &MF = Builder.getMF(); 1649 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1650 Register DstReg = MI.getOperand(0).getReg(); 1651 Builder.buildFConstant(DstReg, *FPVal); 1652 MI.eraseFromParent(); 1653 return true; 1654 } 1655 1656 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1657 PtrAddChain &MatchInfo) { 1658 // We're trying to match the following pattern: 1659 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1660 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1661 // --> 1662 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1663 1664 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1665 return false; 1666 1667 Register Add2 = MI.getOperand(1).getReg(); 1668 Register Imm1 = MI.getOperand(2).getReg(); 1669 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1670 if (!MaybeImmVal) 1671 return false; 1672 1673 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1674 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1675 return false; 1676 1677 Register Base = Add2Def->getOperand(1).getReg(); 1678 Register Imm2 = Add2Def->getOperand(2).getReg(); 1679 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1680 if (!MaybeImm2Val) 1681 return false; 1682 1683 // Pass the combined immediate to the apply function. 1684 MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue(); 1685 MatchInfo.Base = Base; 1686 return true; 1687 } 1688 1689 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1690 PtrAddChain &MatchInfo) { 1691 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1692 MachineIRBuilder MIB(MI); 1693 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1694 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1695 Observer.changingInstr(MI); 1696 MI.getOperand(1).setReg(MatchInfo.Base); 1697 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1698 Observer.changedInstr(MI); 1699 return true; 1700 } 1701 1702 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1703 RegisterImmPair &MatchInfo) { 1704 // We're trying to match the following pattern with any of 1705 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1706 // %t1 = SHIFT %base, G_CONSTANT imm1 1707 // %root = SHIFT %t1, G_CONSTANT imm2 1708 // --> 1709 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1710 1711 unsigned Opcode = MI.getOpcode(); 1712 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1713 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1714 Opcode == TargetOpcode::G_USHLSAT) && 1715 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1716 1717 Register Shl2 = MI.getOperand(1).getReg(); 1718 Register Imm1 = MI.getOperand(2).getReg(); 1719 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1720 if (!MaybeImmVal) 1721 return false; 1722 1723 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1724 if (Shl2Def->getOpcode() != Opcode) 1725 return false; 1726 1727 Register Base = Shl2Def->getOperand(1).getReg(); 1728 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1729 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1730 if (!MaybeImm2Val) 1731 return false; 1732 1733 // Pass the combined immediate to the apply function. 1734 MatchInfo.Imm = 1735 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1736 MatchInfo.Reg = Base; 1737 1738 // There is no simple replacement for a saturating unsigned left shift that 1739 // exceeds the scalar size. 1740 if (Opcode == TargetOpcode::G_USHLSAT && 1741 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1742 return false; 1743 1744 return true; 1745 } 1746 1747 bool CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1748 RegisterImmPair &MatchInfo) { 1749 unsigned Opcode = MI.getOpcode(); 1750 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1751 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1752 Opcode == TargetOpcode::G_USHLSAT) && 1753 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1754 1755 Builder.setInstrAndDebugLoc(MI); 1756 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1757 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1758 auto Imm = MatchInfo.Imm; 1759 1760 if (Imm >= ScalarSizeInBits) { 1761 // Any logical shift that exceeds scalar size will produce zero. 1762 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1763 Builder.buildConstant(MI.getOperand(0), 0); 1764 MI.eraseFromParent(); 1765 return true; 1766 } 1767 // Arithmetic shift and saturating signed left shift have no effect beyond 1768 // scalar size. 1769 Imm = ScalarSizeInBits - 1; 1770 } 1771 1772 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1773 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1774 Observer.changingInstr(MI); 1775 MI.getOperand(1).setReg(MatchInfo.Reg); 1776 MI.getOperand(2).setReg(NewImm); 1777 Observer.changedInstr(MI); 1778 return true; 1779 } 1780 1781 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1782 ShiftOfShiftedLogic &MatchInfo) { 1783 // We're trying to match the following pattern with any of 1784 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1785 // with any of G_AND/G_OR/G_XOR logic instructions. 1786 // %t1 = SHIFT %X, G_CONSTANT C0 1787 // %t2 = LOGIC %t1, %Y 1788 // %root = SHIFT %t2, G_CONSTANT C1 1789 // --> 1790 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1791 // %t4 = SHIFT %Y, G_CONSTANT C1 1792 // %root = LOGIC %t3, %t4 1793 unsigned ShiftOpcode = MI.getOpcode(); 1794 assert((ShiftOpcode == TargetOpcode::G_SHL || 1795 ShiftOpcode == TargetOpcode::G_ASHR || 1796 ShiftOpcode == TargetOpcode::G_LSHR || 1797 ShiftOpcode == TargetOpcode::G_USHLSAT || 1798 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1799 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1800 1801 // Match a one-use bitwise logic op. 1802 Register LogicDest = MI.getOperand(1).getReg(); 1803 if (!MRI.hasOneNonDBGUse(LogicDest)) 1804 return false; 1805 1806 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1807 unsigned LogicOpcode = LogicMI->getOpcode(); 1808 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1809 LogicOpcode != TargetOpcode::G_XOR) 1810 return false; 1811 1812 // Find a matching one-use shift by constant. 1813 const Register C1 = MI.getOperand(2).getReg(); 1814 auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); 1815 if (!MaybeImmVal) 1816 return false; 1817 1818 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1819 1820 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1821 // Shift should match previous one and should be a one-use. 1822 if (MI->getOpcode() != ShiftOpcode || 1823 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1824 return false; 1825 1826 // Must be a constant. 1827 auto MaybeImmVal = 1828 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1829 if (!MaybeImmVal) 1830 return false; 1831 1832 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1833 return true; 1834 }; 1835 1836 // Logic ops are commutative, so check each operand for a match. 1837 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1838 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1839 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1840 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1841 uint64_t C0Val; 1842 1843 if (matchFirstShift(LogicMIOp1, C0Val)) { 1844 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1845 MatchInfo.Shift2 = LogicMIOp1; 1846 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1847 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1848 MatchInfo.Shift2 = LogicMIOp2; 1849 } else 1850 return false; 1851 1852 MatchInfo.ValSum = C0Val + C1Val; 1853 1854 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1855 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1856 return false; 1857 1858 MatchInfo.Logic = LogicMI; 1859 return true; 1860 } 1861 1862 bool CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1863 ShiftOfShiftedLogic &MatchInfo) { 1864 unsigned Opcode = MI.getOpcode(); 1865 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1866 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1867 Opcode == TargetOpcode::G_SSHLSAT) && 1868 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1869 1870 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1871 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1872 Builder.setInstrAndDebugLoc(MI); 1873 1874 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1875 1876 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1877 Register Shift1 = 1878 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1879 1880 Register Shift2Const = MI.getOperand(2).getReg(); 1881 Register Shift2 = Builder 1882 .buildInstr(Opcode, {DestType}, 1883 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1884 .getReg(0); 1885 1886 Register Dest = MI.getOperand(0).getReg(); 1887 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1888 1889 // These were one use so it's safe to remove them. 1890 MatchInfo.Shift2->eraseFromParent(); 1891 MatchInfo.Logic->eraseFromParent(); 1892 1893 MI.eraseFromParent(); 1894 return true; 1895 } 1896 1897 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1898 unsigned &ShiftVal) { 1899 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1900 auto MaybeImmVal = 1901 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1902 if (!MaybeImmVal) 1903 return false; 1904 1905 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1906 return (static_cast<int32_t>(ShiftVal) != -1); 1907 } 1908 1909 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1910 unsigned &ShiftVal) { 1911 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1912 MachineIRBuilder MIB(MI); 1913 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1914 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1915 Observer.changingInstr(MI); 1916 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1917 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1918 Observer.changedInstr(MI); 1919 return true; 1920 } 1921 1922 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1923 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1924 RegisterImmPair &MatchData) { 1925 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1926 1927 Register LHS = MI.getOperand(1).getReg(); 1928 1929 Register ExtSrc; 1930 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1931 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1932 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1933 return false; 1934 1935 // TODO: Should handle vector splat. 1936 Register RHS = MI.getOperand(2).getReg(); 1937 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 1938 if (!MaybeShiftAmtVal) 1939 return false; 1940 1941 if (LI) { 1942 LLT SrcTy = MRI.getType(ExtSrc); 1943 1944 // We only really care about the legality with the shifted value. We can 1945 // pick any type the constant shift amount, so ask the target what to 1946 // use. Otherwise we would have to guess and hope it is reported as legal. 1947 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1948 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1949 return false; 1950 } 1951 1952 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1953 MatchData.Reg = ExtSrc; 1954 MatchData.Imm = ShiftAmt; 1955 1956 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1957 return MinLeadingZeros >= ShiftAmt; 1958 } 1959 1960 bool CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1961 const RegisterImmPair &MatchData) { 1962 Register ExtSrcReg = MatchData.Reg; 1963 int64_t ShiftAmtVal = MatchData.Imm; 1964 1965 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1966 Builder.setInstrAndDebugLoc(MI); 1967 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1968 auto NarrowShift = 1969 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1970 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1971 MI.eraseFromParent(); 1972 return true; 1973 } 1974 1975 static Register peekThroughBitcast(Register Reg, 1976 const MachineRegisterInfo &MRI) { 1977 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1978 ; 1979 1980 return Reg; 1981 } 1982 1983 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1984 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1985 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1986 "Expected an unmerge"); 1987 Register SrcReg = 1988 peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI); 1989 1990 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1991 if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES && 1992 SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR && 1993 SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS) 1994 return false; 1995 1996 // Check the source type of the merge. 1997 LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg()); 1998 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1999 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 2000 if (SrcMergeTy != Dst0Ty && !SameSize) 2001 return false; 2002 // They are the same now (modulo a bitcast). 2003 // We can collect all the src registers. 2004 for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx; 2005 ++Idx) 2006 Operands.push_back(SrcInstr->getOperand(Idx).getReg()); 2007 return true; 2008 } 2009 2010 bool CombinerHelper::applyCombineUnmergeMergeToPlainValues( 2011 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2012 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2013 "Expected an unmerge"); 2014 assert((MI.getNumOperands() - 1 == Operands.size()) && 2015 "Not enough operands to replace all defs"); 2016 unsigned NumElems = MI.getNumOperands() - 1; 2017 2018 LLT SrcTy = MRI.getType(Operands[0]); 2019 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2020 bool CanReuseInputDirectly = DstTy == SrcTy; 2021 Builder.setInstrAndDebugLoc(MI); 2022 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2023 Register DstReg = MI.getOperand(Idx).getReg(); 2024 Register SrcReg = Operands[Idx]; 2025 if (CanReuseInputDirectly) 2026 replaceRegWith(MRI, DstReg, SrcReg); 2027 else 2028 Builder.buildCast(DstReg, SrcReg); 2029 } 2030 MI.eraseFromParent(); 2031 return true; 2032 } 2033 2034 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 2035 SmallVectorImpl<APInt> &Csts) { 2036 unsigned SrcIdx = MI.getNumOperands() - 1; 2037 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 2038 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 2039 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 2040 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 2041 return false; 2042 // Break down the big constant in smaller ones. 2043 const MachineOperand &CstVal = SrcInstr->getOperand(1); 2044 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 2045 ? CstVal.getCImm()->getValue() 2046 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 2047 2048 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 2049 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 2050 // Unmerge a constant. 2051 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 2052 Csts.emplace_back(Val.trunc(ShiftAmt)); 2053 Val = Val.lshr(ShiftAmt); 2054 } 2055 2056 return true; 2057 } 2058 2059 bool CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 2060 SmallVectorImpl<APInt> &Csts) { 2061 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2062 "Expected an unmerge"); 2063 assert((MI.getNumOperands() - 1 == Csts.size()) && 2064 "Not enough operands to replace all defs"); 2065 unsigned NumElems = MI.getNumOperands() - 1; 2066 Builder.setInstrAndDebugLoc(MI); 2067 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2068 Register DstReg = MI.getOperand(Idx).getReg(); 2069 Builder.buildConstant(DstReg, Csts[Idx]); 2070 } 2071 2072 MI.eraseFromParent(); 2073 return true; 2074 } 2075 2076 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2077 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2078 "Expected an unmerge"); 2079 // Check that all the lanes are dead except the first one. 2080 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2081 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 2082 return false; 2083 } 2084 return true; 2085 } 2086 2087 bool CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2088 Builder.setInstrAndDebugLoc(MI); 2089 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2090 // Truncating a vector is going to truncate every single lane, 2091 // whereas we want the full lowbits. 2092 // Do the operation on a scalar instead. 2093 LLT SrcTy = MRI.getType(SrcReg); 2094 if (SrcTy.isVector()) 2095 SrcReg = 2096 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 2097 2098 Register Dst0Reg = MI.getOperand(0).getReg(); 2099 LLT Dst0Ty = MRI.getType(Dst0Reg); 2100 if (Dst0Ty.isVector()) { 2101 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 2102 Builder.buildCast(Dst0Reg, MIB); 2103 } else 2104 Builder.buildTrunc(Dst0Reg, SrcReg); 2105 MI.eraseFromParent(); 2106 return true; 2107 } 2108 2109 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 2110 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2111 "Expected an unmerge"); 2112 Register Dst0Reg = MI.getOperand(0).getReg(); 2113 LLT Dst0Ty = MRI.getType(Dst0Reg); 2114 // G_ZEXT on vector applies to each lane, so it will 2115 // affect all destinations. Therefore we won't be able 2116 // to simplify the unmerge to just the first definition. 2117 if (Dst0Ty.isVector()) 2118 return false; 2119 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2120 LLT SrcTy = MRI.getType(SrcReg); 2121 if (SrcTy.isVector()) 2122 return false; 2123 2124 Register ZExtSrcReg; 2125 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 2126 return false; 2127 2128 // Finally we can replace the first definition with 2129 // a zext of the source if the definition is big enough to hold 2130 // all of ZExtSrc bits. 2131 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2132 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 2133 } 2134 2135 bool CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 2136 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2137 "Expected an unmerge"); 2138 2139 Register Dst0Reg = MI.getOperand(0).getReg(); 2140 2141 MachineInstr *ZExtInstr = 2142 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 2143 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 2144 "Expecting a G_ZEXT"); 2145 2146 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 2147 LLT Dst0Ty = MRI.getType(Dst0Reg); 2148 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2149 2150 Builder.setInstrAndDebugLoc(MI); 2151 2152 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 2153 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 2154 } else { 2155 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 2156 "ZExt src doesn't fit in destination"); 2157 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 2158 } 2159 2160 Register ZeroReg; 2161 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2162 if (!ZeroReg) 2163 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 2164 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 2165 } 2166 MI.eraseFromParent(); 2167 return true; 2168 } 2169 2170 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 2171 unsigned TargetShiftSize, 2172 unsigned &ShiftVal) { 2173 assert((MI.getOpcode() == TargetOpcode::G_SHL || 2174 MI.getOpcode() == TargetOpcode::G_LSHR || 2175 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 2176 2177 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2178 if (Ty.isVector()) // TODO: 2179 return false; 2180 2181 // Don't narrow further than the requested size. 2182 unsigned Size = Ty.getSizeInBits(); 2183 if (Size <= TargetShiftSize) 2184 return false; 2185 2186 auto MaybeImmVal = 2187 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 2188 if (!MaybeImmVal) 2189 return false; 2190 2191 ShiftVal = MaybeImmVal->Value.getSExtValue(); 2192 return ShiftVal >= Size / 2 && ShiftVal < Size; 2193 } 2194 2195 bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 2196 const unsigned &ShiftVal) { 2197 Register DstReg = MI.getOperand(0).getReg(); 2198 Register SrcReg = MI.getOperand(1).getReg(); 2199 LLT Ty = MRI.getType(SrcReg); 2200 unsigned Size = Ty.getSizeInBits(); 2201 unsigned HalfSize = Size / 2; 2202 assert(ShiftVal >= HalfSize); 2203 2204 LLT HalfTy = LLT::scalar(HalfSize); 2205 2206 Builder.setInstr(MI); 2207 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 2208 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 2209 2210 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2211 Register Narrowed = Unmerge.getReg(1); 2212 2213 // dst = G_LSHR s64:x, C for C >= 32 2214 // => 2215 // lo, hi = G_UNMERGE_VALUES x 2216 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 2217 2218 if (NarrowShiftAmt != 0) { 2219 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 2220 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2221 } 2222 2223 auto Zero = Builder.buildConstant(HalfTy, 0); 2224 Builder.buildMerge(DstReg, { Narrowed, Zero }); 2225 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 2226 Register Narrowed = Unmerge.getReg(0); 2227 // dst = G_SHL s64:x, C for C >= 32 2228 // => 2229 // lo, hi = G_UNMERGE_VALUES x 2230 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 2231 if (NarrowShiftAmt != 0) { 2232 Narrowed = Builder.buildShl(HalfTy, Narrowed, 2233 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2234 } 2235 2236 auto Zero = Builder.buildConstant(HalfTy, 0); 2237 Builder.buildMerge(DstReg, { Zero, Narrowed }); 2238 } else { 2239 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2240 auto Hi = Builder.buildAShr( 2241 HalfTy, Unmerge.getReg(1), 2242 Builder.buildConstant(HalfTy, HalfSize - 1)); 2243 2244 if (ShiftVal == HalfSize) { 2245 // (G_ASHR i64:x, 32) -> 2246 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 2247 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 2248 } else if (ShiftVal == Size - 1) { 2249 // Don't need a second shift. 2250 // (G_ASHR i64:x, 63) -> 2251 // %narrowed = (G_ASHR hi_32(x), 31) 2252 // G_MERGE_VALUES %narrowed, %narrowed 2253 Builder.buildMerge(DstReg, { Hi, Hi }); 2254 } else { 2255 auto Lo = Builder.buildAShr( 2256 HalfTy, Unmerge.getReg(1), 2257 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 2258 2259 // (G_ASHR i64:x, C) ->, for C >= 32 2260 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 2261 Builder.buildMerge(DstReg, { Lo, Hi }); 2262 } 2263 } 2264 2265 MI.eraseFromParent(); 2266 return true; 2267 } 2268 2269 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 2270 unsigned TargetShiftAmount) { 2271 unsigned ShiftAmt; 2272 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 2273 applyCombineShiftToUnmerge(MI, ShiftAmt); 2274 return true; 2275 } 2276 2277 return false; 2278 } 2279 2280 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2281 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2282 Register DstReg = MI.getOperand(0).getReg(); 2283 LLT DstTy = MRI.getType(DstReg); 2284 Register SrcReg = MI.getOperand(1).getReg(); 2285 return mi_match(SrcReg, MRI, 2286 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2287 } 2288 2289 bool CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2290 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2291 Register DstReg = MI.getOperand(0).getReg(); 2292 Builder.setInstr(MI); 2293 Builder.buildCopy(DstReg, Reg); 2294 MI.eraseFromParent(); 2295 return true; 2296 } 2297 2298 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2299 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2300 Register SrcReg = MI.getOperand(1).getReg(); 2301 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2302 } 2303 2304 bool CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2305 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2306 Register DstReg = MI.getOperand(0).getReg(); 2307 Builder.setInstr(MI); 2308 Builder.buildZExtOrTrunc(DstReg, Reg); 2309 MI.eraseFromParent(); 2310 return true; 2311 } 2312 2313 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2314 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2315 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2316 Register LHS = MI.getOperand(1).getReg(); 2317 Register RHS = MI.getOperand(2).getReg(); 2318 LLT IntTy = MRI.getType(LHS); 2319 2320 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2321 // instruction. 2322 PtrReg.second = false; 2323 for (Register SrcReg : {LHS, RHS}) { 2324 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2325 // Don't handle cases where the integer is implicitly converted to the 2326 // pointer width. 2327 LLT PtrTy = MRI.getType(PtrReg.first); 2328 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2329 return true; 2330 } 2331 2332 PtrReg.second = true; 2333 } 2334 2335 return false; 2336 } 2337 2338 bool CombinerHelper::applyCombineAddP2IToPtrAdd( 2339 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2340 Register Dst = MI.getOperand(0).getReg(); 2341 Register LHS = MI.getOperand(1).getReg(); 2342 Register RHS = MI.getOperand(2).getReg(); 2343 2344 const bool DoCommute = PtrReg.second; 2345 if (DoCommute) 2346 std::swap(LHS, RHS); 2347 LHS = PtrReg.first; 2348 2349 LLT PtrTy = MRI.getType(LHS); 2350 2351 Builder.setInstrAndDebugLoc(MI); 2352 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2353 Builder.buildPtrToInt(Dst, PtrAdd); 2354 MI.eraseFromParent(); 2355 return true; 2356 } 2357 2358 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2359 int64_t &NewCst) { 2360 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2361 Register LHS = MI.getOperand(1).getReg(); 2362 Register RHS = MI.getOperand(2).getReg(); 2363 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2364 2365 if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { 2366 int64_t Cst; 2367 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2368 NewCst = Cst + *RHSCst; 2369 return true; 2370 } 2371 } 2372 2373 return false; 2374 } 2375 2376 bool CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2377 int64_t &NewCst) { 2378 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2379 Register Dst = MI.getOperand(0).getReg(); 2380 2381 Builder.setInstrAndDebugLoc(MI); 2382 Builder.buildConstant(Dst, NewCst); 2383 MI.eraseFromParent(); 2384 return true; 2385 } 2386 2387 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2388 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2389 Register DstReg = MI.getOperand(0).getReg(); 2390 Register SrcReg = MI.getOperand(1).getReg(); 2391 LLT DstTy = MRI.getType(DstReg); 2392 return mi_match(SrcReg, MRI, 2393 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2394 } 2395 2396 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2397 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2398 Register DstReg = MI.getOperand(0).getReg(); 2399 Register SrcReg = MI.getOperand(1).getReg(); 2400 LLT DstTy = MRI.getType(DstReg); 2401 if (mi_match(SrcReg, MRI, 2402 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2403 unsigned DstSize = DstTy.getScalarSizeInBits(); 2404 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2405 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2406 } 2407 return false; 2408 } 2409 2410 bool CombinerHelper::matchCombineExtOfExt( 2411 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2412 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2413 MI.getOpcode() == TargetOpcode::G_SEXT || 2414 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2415 "Expected a G_[ASZ]EXT"); 2416 Register SrcReg = MI.getOperand(1).getReg(); 2417 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2418 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2419 unsigned Opc = MI.getOpcode(); 2420 unsigned SrcOpc = SrcMI->getOpcode(); 2421 if (Opc == SrcOpc || 2422 (Opc == TargetOpcode::G_ANYEXT && 2423 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2424 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2425 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2426 return true; 2427 } 2428 return false; 2429 } 2430 2431 bool CombinerHelper::applyCombineExtOfExt( 2432 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2433 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2434 MI.getOpcode() == TargetOpcode::G_SEXT || 2435 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2436 "Expected a G_[ASZ]EXT"); 2437 2438 Register Reg = std::get<0>(MatchInfo); 2439 unsigned SrcExtOp = std::get<1>(MatchInfo); 2440 2441 // Combine exts with the same opcode. 2442 if (MI.getOpcode() == SrcExtOp) { 2443 Observer.changingInstr(MI); 2444 MI.getOperand(1).setReg(Reg); 2445 Observer.changedInstr(MI); 2446 return true; 2447 } 2448 2449 // Combine: 2450 // - anyext([sz]ext x) to [sz]ext x 2451 // - sext(zext x) to zext x 2452 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2453 (MI.getOpcode() == TargetOpcode::G_SEXT && 2454 SrcExtOp == TargetOpcode::G_ZEXT)) { 2455 Register DstReg = MI.getOperand(0).getReg(); 2456 Builder.setInstrAndDebugLoc(MI); 2457 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2458 MI.eraseFromParent(); 2459 return true; 2460 } 2461 2462 return false; 2463 } 2464 2465 bool CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2466 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2467 Register DstReg = MI.getOperand(0).getReg(); 2468 Register SrcReg = MI.getOperand(1).getReg(); 2469 LLT DstTy = MRI.getType(DstReg); 2470 2471 Builder.setInstrAndDebugLoc(MI); 2472 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2473 MI.getFlags()); 2474 MI.eraseFromParent(); 2475 return true; 2476 } 2477 2478 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2479 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2480 Register SrcReg = MI.getOperand(1).getReg(); 2481 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2482 } 2483 2484 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2485 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2486 Src = MI.getOperand(1).getReg(); 2487 Register AbsSrc; 2488 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2489 } 2490 2491 bool CombinerHelper::matchCombineTruncOfExt( 2492 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2493 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2494 Register SrcReg = MI.getOperand(1).getReg(); 2495 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2496 unsigned SrcOpc = SrcMI->getOpcode(); 2497 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2498 SrcOpc == TargetOpcode::G_ZEXT) { 2499 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2500 return true; 2501 } 2502 return false; 2503 } 2504 2505 bool CombinerHelper::applyCombineTruncOfExt( 2506 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2507 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2508 Register SrcReg = MatchInfo.first; 2509 unsigned SrcExtOp = MatchInfo.second; 2510 Register DstReg = MI.getOperand(0).getReg(); 2511 LLT SrcTy = MRI.getType(SrcReg); 2512 LLT DstTy = MRI.getType(DstReg); 2513 if (SrcTy == DstTy) { 2514 MI.eraseFromParent(); 2515 replaceRegWith(MRI, DstReg, SrcReg); 2516 return true; 2517 } 2518 Builder.setInstrAndDebugLoc(MI); 2519 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2520 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2521 else 2522 Builder.buildTrunc(DstReg, SrcReg); 2523 MI.eraseFromParent(); 2524 return true; 2525 } 2526 2527 bool CombinerHelper::matchCombineTruncOfShl( 2528 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2529 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2530 Register DstReg = MI.getOperand(0).getReg(); 2531 Register SrcReg = MI.getOperand(1).getReg(); 2532 LLT DstTy = MRI.getType(DstReg); 2533 Register ShiftSrc; 2534 Register ShiftAmt; 2535 2536 if (MRI.hasOneNonDBGUse(SrcReg) && 2537 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2538 isLegalOrBeforeLegalizer( 2539 {TargetOpcode::G_SHL, 2540 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2541 KnownBits Known = KB->getKnownBits(ShiftAmt); 2542 unsigned Size = DstTy.getSizeInBits(); 2543 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2544 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2545 return true; 2546 } 2547 } 2548 return false; 2549 } 2550 2551 bool CombinerHelper::applyCombineTruncOfShl( 2552 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2553 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2554 Register DstReg = MI.getOperand(0).getReg(); 2555 Register SrcReg = MI.getOperand(1).getReg(); 2556 LLT DstTy = MRI.getType(DstReg); 2557 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2558 2559 Register ShiftSrc = MatchInfo.first; 2560 Register ShiftAmt = MatchInfo.second; 2561 Builder.setInstrAndDebugLoc(MI); 2562 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2563 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2564 MI.eraseFromParent(); 2565 return true; 2566 } 2567 2568 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2569 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2570 return MO.isReg() && 2571 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2572 }); 2573 } 2574 2575 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2576 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2577 return !MO.isReg() || 2578 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2579 }); 2580 } 2581 2582 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2583 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2584 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2585 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2586 } 2587 2588 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2589 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2590 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2591 MRI); 2592 } 2593 2594 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2595 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2596 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2597 MRI); 2598 } 2599 2600 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2601 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2602 if (auto MaybeCstCmp = 2603 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2604 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; 2605 return true; 2606 } 2607 return false; 2608 } 2609 2610 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2611 MI.eraseFromParent(); 2612 return true; 2613 } 2614 2615 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2616 const MachineOperand &MOP2) { 2617 if (!MOP1.isReg() || !MOP2.isReg()) 2618 return false; 2619 MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); 2620 if (!I1) 2621 return false; 2622 MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); 2623 if (!I2) 2624 return false; 2625 2626 // Handle a case like this: 2627 // 2628 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2629 // 2630 // Even though %0 and %1 are produced by the same instruction they are not 2631 // the same values. 2632 if (I1 == I2) 2633 return MOP1.getReg() == MOP2.getReg(); 2634 2635 // If we have an instruction which loads or stores, we can't guarantee that 2636 // it is identical. 2637 // 2638 // For example, we may have 2639 // 2640 // %x1 = G_LOAD %addr (load N from @somewhere) 2641 // ... 2642 // call @foo 2643 // ... 2644 // %x2 = G_LOAD %addr (load N from @somewhere) 2645 // ... 2646 // %or = G_OR %x1, %x2 2647 // 2648 // It's possible that @foo will modify whatever lives at the address we're 2649 // loading from. To be safe, let's just assume that all loads and stores 2650 // are different (unless we have something which is guaranteed to not 2651 // change.) 2652 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2653 return false; 2654 2655 // Check for physical registers on the instructions first to avoid cases 2656 // like this: 2657 // 2658 // %a = COPY $physreg 2659 // ... 2660 // SOMETHING implicit-def $physreg 2661 // ... 2662 // %b = COPY $physreg 2663 // 2664 // These copies are not equivalent. 2665 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2666 return MO.isReg() && MO.getReg().isPhysical(); 2667 })) { 2668 // Check if we have a case like this: 2669 // 2670 // %a = COPY $physreg 2671 // %b = COPY %a 2672 // 2673 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2674 // From that, we know that they must have the same value, since they must 2675 // have come from the same COPY. 2676 return I1->isIdenticalTo(*I2); 2677 } 2678 2679 // We don't have any physical registers, so we don't necessarily need the 2680 // same vreg defs. 2681 // 2682 // On the off-chance that there's some target instruction feeding into the 2683 // instruction, let's use produceSameValue instead of isIdenticalTo. 2684 return Builder.getTII().produceSameValue(*I1, *I2, &MRI); 2685 } 2686 2687 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2688 if (!MOP.isReg()) 2689 return false; 2690 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2691 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2692 return ValAndVReg && ValAndVReg->Value == C; 2693 } 2694 2695 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2696 unsigned OpIdx) { 2697 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2698 Register OldReg = MI.getOperand(0).getReg(); 2699 Register Replacement = MI.getOperand(OpIdx).getReg(); 2700 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2701 MI.eraseFromParent(); 2702 replaceRegWith(MRI, OldReg, Replacement); 2703 return true; 2704 } 2705 2706 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2707 Register Replacement) { 2708 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2709 Register OldReg = MI.getOperand(0).getReg(); 2710 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2711 MI.eraseFromParent(); 2712 replaceRegWith(MRI, OldReg, Replacement); 2713 return true; 2714 } 2715 2716 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2717 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2718 // Match (cond ? x : x) 2719 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2720 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2721 MRI); 2722 } 2723 2724 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2725 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2726 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2727 MRI); 2728 } 2729 2730 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2731 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2732 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2733 MRI); 2734 } 2735 2736 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2737 MachineOperand &MO = MI.getOperand(OpIdx); 2738 return MO.isReg() && 2739 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2740 } 2741 2742 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2743 unsigned OpIdx) { 2744 MachineOperand &MO = MI.getOperand(OpIdx); 2745 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2746 } 2747 2748 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2749 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2750 Builder.setInstr(MI); 2751 Builder.buildFConstant(MI.getOperand(0), C); 2752 MI.eraseFromParent(); 2753 return true; 2754 } 2755 2756 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2757 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2758 Builder.setInstr(MI); 2759 Builder.buildConstant(MI.getOperand(0), C); 2760 MI.eraseFromParent(); 2761 return true; 2762 } 2763 2764 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2765 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2766 Builder.setInstr(MI); 2767 Builder.buildUndef(MI.getOperand(0)); 2768 MI.eraseFromParent(); 2769 return true; 2770 } 2771 2772 bool CombinerHelper::matchSimplifyAddToSub( 2773 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2774 Register LHS = MI.getOperand(1).getReg(); 2775 Register RHS = MI.getOperand(2).getReg(); 2776 Register &NewLHS = std::get<0>(MatchInfo); 2777 Register &NewRHS = std::get<1>(MatchInfo); 2778 2779 // Helper lambda to check for opportunities for 2780 // ((0-A) + B) -> B - A 2781 // (A + (0-B)) -> A - B 2782 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2783 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2784 return false; 2785 NewLHS = MaybeNewLHS; 2786 return true; 2787 }; 2788 2789 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2790 } 2791 2792 bool CombinerHelper::matchCombineInsertVecElts( 2793 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2794 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2795 "Invalid opcode"); 2796 Register DstReg = MI.getOperand(0).getReg(); 2797 LLT DstTy = MRI.getType(DstReg); 2798 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2799 unsigned NumElts = DstTy.getNumElements(); 2800 // If this MI is part of a sequence of insert_vec_elts, then 2801 // don't do the combine in the middle of the sequence. 2802 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2803 TargetOpcode::G_INSERT_VECTOR_ELT) 2804 return false; 2805 MachineInstr *CurrInst = &MI; 2806 MachineInstr *TmpInst; 2807 int64_t IntImm; 2808 Register TmpReg; 2809 MatchInfo.resize(NumElts); 2810 while (mi_match( 2811 CurrInst->getOperand(0).getReg(), MRI, 2812 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2813 if (IntImm >= NumElts) 2814 return false; 2815 if (!MatchInfo[IntImm]) 2816 MatchInfo[IntImm] = TmpReg; 2817 CurrInst = TmpInst; 2818 } 2819 // Variable index. 2820 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2821 return false; 2822 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2823 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2824 if (!MatchInfo[I - 1].isValid()) 2825 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2826 } 2827 return true; 2828 } 2829 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2830 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2831 } 2832 2833 bool CombinerHelper::applyCombineInsertVecElts( 2834 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2835 Builder.setInstr(MI); 2836 Register UndefReg; 2837 auto GetUndef = [&]() { 2838 if (UndefReg) 2839 return UndefReg; 2840 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2841 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2842 return UndefReg; 2843 }; 2844 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2845 if (!MatchInfo[I]) 2846 MatchInfo[I] = GetUndef(); 2847 } 2848 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2849 MI.eraseFromParent(); 2850 return true; 2851 } 2852 2853 bool CombinerHelper::applySimplifyAddToSub( 2854 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2855 Builder.setInstr(MI); 2856 Register SubLHS, SubRHS; 2857 std::tie(SubLHS, SubRHS) = MatchInfo; 2858 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2859 MI.eraseFromParent(); 2860 return true; 2861 } 2862 2863 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2864 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2865 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2866 // 2867 // Creates the new hand + logic instruction (but does not insert them.) 2868 // 2869 // On success, MatchInfo is populated with the new instructions. These are 2870 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2871 unsigned LogicOpcode = MI.getOpcode(); 2872 assert(LogicOpcode == TargetOpcode::G_AND || 2873 LogicOpcode == TargetOpcode::G_OR || 2874 LogicOpcode == TargetOpcode::G_XOR); 2875 MachineIRBuilder MIB(MI); 2876 Register Dst = MI.getOperand(0).getReg(); 2877 Register LHSReg = MI.getOperand(1).getReg(); 2878 Register RHSReg = MI.getOperand(2).getReg(); 2879 2880 // Don't recompute anything. 2881 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2882 return false; 2883 2884 // Make sure we have (hand x, ...), (hand y, ...) 2885 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2886 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2887 if (!LeftHandInst || !RightHandInst) 2888 return false; 2889 unsigned HandOpcode = LeftHandInst->getOpcode(); 2890 if (HandOpcode != RightHandInst->getOpcode()) 2891 return false; 2892 if (!LeftHandInst->getOperand(1).isReg() || 2893 !RightHandInst->getOperand(1).isReg()) 2894 return false; 2895 2896 // Make sure the types match up, and if we're doing this post-legalization, 2897 // we end up with legal types. 2898 Register X = LeftHandInst->getOperand(1).getReg(); 2899 Register Y = RightHandInst->getOperand(1).getReg(); 2900 LLT XTy = MRI.getType(X); 2901 LLT YTy = MRI.getType(Y); 2902 if (XTy != YTy) 2903 return false; 2904 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2905 return false; 2906 2907 // Optional extra source register. 2908 Register ExtraHandOpSrcReg; 2909 switch (HandOpcode) { 2910 default: 2911 return false; 2912 case TargetOpcode::G_ANYEXT: 2913 case TargetOpcode::G_SEXT: 2914 case TargetOpcode::G_ZEXT: { 2915 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2916 break; 2917 } 2918 case TargetOpcode::G_AND: 2919 case TargetOpcode::G_ASHR: 2920 case TargetOpcode::G_LSHR: 2921 case TargetOpcode::G_SHL: { 2922 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2923 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2924 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2925 return false; 2926 ExtraHandOpSrcReg = ZOp.getReg(); 2927 break; 2928 } 2929 } 2930 2931 // Record the steps to build the new instructions. 2932 // 2933 // Steps to build (logic x, y) 2934 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2935 OperandBuildSteps LogicBuildSteps = { 2936 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2937 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2938 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2939 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2940 2941 // Steps to build hand (logic x, y), ...z 2942 OperandBuildSteps HandBuildSteps = { 2943 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2944 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2945 if (ExtraHandOpSrcReg.isValid()) 2946 HandBuildSteps.push_back( 2947 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2948 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2949 2950 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2951 return true; 2952 } 2953 2954 bool CombinerHelper::applyBuildInstructionSteps( 2955 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2956 assert(MatchInfo.InstrsToBuild.size() && 2957 "Expected at least one instr to build?"); 2958 Builder.setInstr(MI); 2959 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2960 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2961 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2962 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2963 for (auto &OperandFn : InstrToBuild.OperandFns) 2964 OperandFn(Instr); 2965 } 2966 MI.eraseFromParent(); 2967 return true; 2968 } 2969 2970 bool CombinerHelper::matchAshrShlToSextInreg( 2971 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2972 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2973 int64_t ShlCst, AshrCst; 2974 Register Src; 2975 // FIXME: detect splat constant vectors. 2976 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2977 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2978 return false; 2979 if (ShlCst != AshrCst) 2980 return false; 2981 if (!isLegalOrBeforeLegalizer( 2982 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2983 return false; 2984 MatchInfo = std::make_tuple(Src, ShlCst); 2985 return true; 2986 } 2987 bool CombinerHelper::applyAshShlToSextInreg( 2988 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2989 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2990 Register Src; 2991 int64_t ShiftAmt; 2992 std::tie(Src, ShiftAmt) = MatchInfo; 2993 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2994 Builder.setInstrAndDebugLoc(MI); 2995 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2996 MI.eraseFromParent(); 2997 return true; 2998 } 2999 3000 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 3001 Register &Replacement) { 3002 // Given 3003 // 3004 // %y:_(sN) = G_SOMETHING 3005 // %x:_(sN) = G_SOMETHING 3006 // %res:_(sN) = G_AND %x, %y 3007 // 3008 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 3009 // 3010 // Patterns like this can appear as a result of legalization. E.g. 3011 // 3012 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 3013 // %one:_(s32) = G_CONSTANT i32 1 3014 // %and:_(s32) = G_AND %cmp, %one 3015 // 3016 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 3017 assert(MI.getOpcode() == TargetOpcode::G_AND); 3018 if (!KB) 3019 return false; 3020 3021 Register AndDst = MI.getOperand(0).getReg(); 3022 LLT DstTy = MRI.getType(AndDst); 3023 3024 // FIXME: This should be removed once GISelKnownBits supports vectors. 3025 if (DstTy.isVector()) 3026 return false; 3027 3028 Register LHS = MI.getOperand(1).getReg(); 3029 Register RHS = MI.getOperand(2).getReg(); 3030 KnownBits LHSBits = KB->getKnownBits(LHS); 3031 KnownBits RHSBits = KB->getKnownBits(RHS); 3032 3033 // Check that x & Mask == x. 3034 // x & 1 == x, always 3035 // x & 0 == x, only if x is also 0 3036 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 3037 // 3038 // Check if we can replace AndDst with the LHS of the G_AND 3039 if (canReplaceReg(AndDst, LHS, MRI) && 3040 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3041 Replacement = LHS; 3042 return true; 3043 } 3044 3045 // Check if we can replace AndDst with the RHS of the G_AND 3046 if (canReplaceReg(AndDst, RHS, MRI) && 3047 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3048 Replacement = RHS; 3049 return true; 3050 } 3051 3052 return false; 3053 } 3054 3055 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 3056 // Given 3057 // 3058 // %y:_(sN) = G_SOMETHING 3059 // %x:_(sN) = G_SOMETHING 3060 // %res:_(sN) = G_OR %x, %y 3061 // 3062 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 3063 assert(MI.getOpcode() == TargetOpcode::G_OR); 3064 if (!KB) 3065 return false; 3066 3067 Register OrDst = MI.getOperand(0).getReg(); 3068 LLT DstTy = MRI.getType(OrDst); 3069 3070 // FIXME: This should be removed once GISelKnownBits supports vectors. 3071 if (DstTy.isVector()) 3072 return false; 3073 3074 Register LHS = MI.getOperand(1).getReg(); 3075 Register RHS = MI.getOperand(2).getReg(); 3076 KnownBits LHSBits = KB->getKnownBits(LHS); 3077 KnownBits RHSBits = KB->getKnownBits(RHS); 3078 3079 // Check that x | Mask == x. 3080 // x | 0 == x, always 3081 // x | 1 == x, only if x is also 1 3082 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 3083 // 3084 // Check if we can replace OrDst with the LHS of the G_OR 3085 if (canReplaceReg(OrDst, LHS, MRI) && 3086 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3087 Replacement = LHS; 3088 return true; 3089 } 3090 3091 // Check if we can replace OrDst with the RHS of the G_OR 3092 if (canReplaceReg(OrDst, RHS, MRI) && 3093 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3094 Replacement = RHS; 3095 return true; 3096 } 3097 3098 return false; 3099 } 3100 3101 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 3102 // If the input is already sign extended, just drop the extension. 3103 Register Src = MI.getOperand(1).getReg(); 3104 unsigned ExtBits = MI.getOperand(2).getImm(); 3105 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 3106 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 3107 } 3108 3109 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 3110 int64_t Cst, bool IsVector, bool IsFP) { 3111 // For i1, Cst will always be -1 regardless of boolean contents. 3112 return (ScalarSizeBits == 1 && Cst == -1) || 3113 isConstTrueVal(TLI, Cst, IsVector, IsFP); 3114 } 3115 3116 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 3117 SmallVectorImpl<Register> &RegsToNegate) { 3118 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3119 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3120 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 3121 Register XorSrc; 3122 Register CstReg; 3123 // We match xor(src, true) here. 3124 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3125 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 3126 return false; 3127 3128 if (!MRI.hasOneNonDBGUse(XorSrc)) 3129 return false; 3130 3131 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 3132 // and ORs. The suffix of RegsToNegate starting from index I is used a work 3133 // list of tree nodes to visit. 3134 RegsToNegate.push_back(XorSrc); 3135 // Remember whether the comparisons are all integer or all floating point. 3136 bool IsInt = false; 3137 bool IsFP = false; 3138 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 3139 Register Reg = RegsToNegate[I]; 3140 if (!MRI.hasOneNonDBGUse(Reg)) 3141 return false; 3142 MachineInstr *Def = MRI.getVRegDef(Reg); 3143 switch (Def->getOpcode()) { 3144 default: 3145 // Don't match if the tree contains anything other than ANDs, ORs and 3146 // comparisons. 3147 return false; 3148 case TargetOpcode::G_ICMP: 3149 if (IsFP) 3150 return false; 3151 IsInt = true; 3152 // When we apply the combine we will invert the predicate. 3153 break; 3154 case TargetOpcode::G_FCMP: 3155 if (IsInt) 3156 return false; 3157 IsFP = true; 3158 // When we apply the combine we will invert the predicate. 3159 break; 3160 case TargetOpcode::G_AND: 3161 case TargetOpcode::G_OR: 3162 // Implement De Morgan's laws: 3163 // ~(x & y) -> ~x | ~y 3164 // ~(x | y) -> ~x & ~y 3165 // When we apply the combine we will change the opcode and recursively 3166 // negate the operands. 3167 RegsToNegate.push_back(Def->getOperand(1).getReg()); 3168 RegsToNegate.push_back(Def->getOperand(2).getReg()); 3169 break; 3170 } 3171 } 3172 3173 // Now we know whether the comparisons are integer or floating point, check 3174 // the constant in the xor. 3175 int64_t Cst; 3176 if (Ty.isVector()) { 3177 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 3178 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 3179 if (!MaybeCst) 3180 return false; 3181 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 3182 return false; 3183 } else { 3184 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 3185 return false; 3186 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 3187 return false; 3188 } 3189 3190 return true; 3191 } 3192 3193 bool CombinerHelper::applyNotCmp(MachineInstr &MI, 3194 SmallVectorImpl<Register> &RegsToNegate) { 3195 for (Register Reg : RegsToNegate) { 3196 MachineInstr *Def = MRI.getVRegDef(Reg); 3197 Observer.changingInstr(*Def); 3198 // For each comparison, invert the opcode. For each AND and OR, change the 3199 // opcode. 3200 switch (Def->getOpcode()) { 3201 default: 3202 llvm_unreachable("Unexpected opcode"); 3203 case TargetOpcode::G_ICMP: 3204 case TargetOpcode::G_FCMP: { 3205 MachineOperand &PredOp = Def->getOperand(1); 3206 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 3207 (CmpInst::Predicate)PredOp.getPredicate()); 3208 PredOp.setPredicate(NewP); 3209 break; 3210 } 3211 case TargetOpcode::G_AND: 3212 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3213 break; 3214 case TargetOpcode::G_OR: 3215 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3216 break; 3217 } 3218 Observer.changedInstr(*Def); 3219 } 3220 3221 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3222 MI.eraseFromParent(); 3223 return true; 3224 } 3225 3226 bool CombinerHelper::matchXorOfAndWithSameReg( 3227 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3228 // Match (xor (and x, y), y) (or any of its commuted cases) 3229 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3230 Register &X = MatchInfo.first; 3231 Register &Y = MatchInfo.second; 3232 Register AndReg = MI.getOperand(1).getReg(); 3233 Register SharedReg = MI.getOperand(2).getReg(); 3234 3235 // Find a G_AND on either side of the G_XOR. 3236 // Look for one of 3237 // 3238 // (xor (and x, y), SharedReg) 3239 // (xor SharedReg, (and x, y)) 3240 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3241 std::swap(AndReg, SharedReg); 3242 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3243 return false; 3244 } 3245 3246 // Only do this if we'll eliminate the G_AND. 3247 if (!MRI.hasOneNonDBGUse(AndReg)) 3248 return false; 3249 3250 // We can combine if SharedReg is the same as either the LHS or RHS of the 3251 // G_AND. 3252 if (Y != SharedReg) 3253 std::swap(X, Y); 3254 return Y == SharedReg; 3255 } 3256 3257 bool CombinerHelper::applyXorOfAndWithSameReg( 3258 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3259 // Fold (xor (and x, y), y) -> (and (not x), y) 3260 Builder.setInstrAndDebugLoc(MI); 3261 Register X, Y; 3262 std::tie(X, Y) = MatchInfo; 3263 auto Not = Builder.buildNot(MRI.getType(X), X); 3264 Observer.changingInstr(MI); 3265 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3266 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3267 MI.getOperand(2).setReg(Y); 3268 Observer.changedInstr(MI); 3269 return true; 3270 } 3271 3272 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3273 Register DstReg = MI.getOperand(0).getReg(); 3274 LLT Ty = MRI.getType(DstReg); 3275 const DataLayout &DL = Builder.getMF().getDataLayout(); 3276 3277 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3278 return false; 3279 3280 if (Ty.isPointer()) { 3281 auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI); 3282 return ConstVal && *ConstVal == 0; 3283 } 3284 3285 assert(Ty.isVector() && "Expecting a vector type"); 3286 const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg()); 3287 return isBuildVectorAllZeros(*VecMI, MRI); 3288 } 3289 3290 bool CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3291 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 3292 Builder.setInstrAndDebugLoc(MI); 3293 Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2)); 3294 MI.eraseFromParent(); 3295 return true; 3296 } 3297 3298 /// The second source operand is known to be a power of 2. 3299 bool CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3300 Register DstReg = MI.getOperand(0).getReg(); 3301 Register Src0 = MI.getOperand(1).getReg(); 3302 Register Pow2Src1 = MI.getOperand(2).getReg(); 3303 LLT Ty = MRI.getType(DstReg); 3304 Builder.setInstrAndDebugLoc(MI); 3305 3306 // Fold (urem x, pow2) -> (and x, pow2-1) 3307 auto NegOne = Builder.buildConstant(Ty, -1); 3308 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3309 Builder.buildAnd(DstReg, Src0, Add); 3310 MI.eraseFromParent(); 3311 return true; 3312 } 3313 3314 Optional<SmallVector<Register, 8>> 3315 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3316 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3317 // We want to detect if Root is part of a tree which represents a bunch 3318 // of loads being merged into a larger load. We'll try to recognize patterns 3319 // like, for example: 3320 // 3321 // Reg Reg 3322 // \ / 3323 // OR_1 Reg 3324 // \ / 3325 // OR_2 3326 // \ Reg 3327 // .. / 3328 // Root 3329 // 3330 // Reg Reg Reg Reg 3331 // \ / \ / 3332 // OR_1 OR_2 3333 // \ / 3334 // \ / 3335 // ... 3336 // Root 3337 // 3338 // Each "Reg" may have been produced by a load + some arithmetic. This 3339 // function will save each of them. 3340 SmallVector<Register, 8> RegsToVisit; 3341 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3342 3343 // In the "worst" case, we're dealing with a load for each byte. So, there 3344 // are at most #bytes - 1 ORs. 3345 const unsigned MaxIter = 3346 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3347 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3348 if (Ors.empty()) 3349 break; 3350 const MachineInstr *Curr = Ors.pop_back_val(); 3351 Register OrLHS = Curr->getOperand(1).getReg(); 3352 Register OrRHS = Curr->getOperand(2).getReg(); 3353 3354 // In the combine, we want to elimate the entire tree. 3355 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3356 return None; 3357 3358 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3359 // something that may be a load + arithmetic. 3360 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3361 Ors.push_back(Or); 3362 else 3363 RegsToVisit.push_back(OrLHS); 3364 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3365 Ors.push_back(Or); 3366 else 3367 RegsToVisit.push_back(OrRHS); 3368 } 3369 3370 // We're going to try and merge each register into a wider power-of-2 type, 3371 // so we ought to have an even number of registers. 3372 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3373 return None; 3374 return RegsToVisit; 3375 } 3376 3377 /// Helper function for findLoadOffsetsForLoadOrCombine. 3378 /// 3379 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3380 /// and then moving that value into a specific byte offset. 3381 /// 3382 /// e.g. x[i] << 24 3383 /// 3384 /// \returns The load instruction and the byte offset it is moved into. 3385 static Optional<std::pair<MachineInstr *, int64_t>> 3386 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3387 const MachineRegisterInfo &MRI) { 3388 assert(MRI.hasOneNonDBGUse(Reg) && 3389 "Expected Reg to only have one non-debug use?"); 3390 Register MaybeLoad; 3391 int64_t Shift; 3392 if (!mi_match(Reg, MRI, 3393 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3394 Shift = 0; 3395 MaybeLoad = Reg; 3396 } 3397 3398 if (Shift % MemSizeInBits != 0) 3399 return None; 3400 3401 // TODO: Handle other types of loads. 3402 auto *Load = getOpcodeDef(TargetOpcode::G_ZEXTLOAD, MaybeLoad, MRI); 3403 if (!Load) 3404 return None; 3405 3406 const auto &MMO = **Load->memoperands_begin(); 3407 if (!MMO.isUnordered() || MMO.getSizeInBits() != MemSizeInBits) 3408 return None; 3409 3410 return std::make_pair(Load, Shift / MemSizeInBits); 3411 } 3412 3413 Optional<std::pair<MachineInstr *, int64_t>> 3414 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3415 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3416 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3417 3418 // Each load found for the pattern. There should be one for each RegsToVisit. 3419 SmallSetVector<const MachineInstr *, 8> Loads; 3420 3421 // The lowest index used in any load. (The lowest "i" for each x[i].) 3422 int64_t LowestIdx = INT64_MAX; 3423 3424 // The load which uses the lowest index. 3425 MachineInstr *LowestIdxLoad = nullptr; 3426 3427 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3428 SmallSet<int64_t, 8> SeenIdx; 3429 3430 // Ensure each load is in the same MBB. 3431 // TODO: Support multiple MachineBasicBlocks. 3432 MachineBasicBlock *MBB = nullptr; 3433 const MachineMemOperand *MMO = nullptr; 3434 3435 // Earliest instruction-order load in the pattern. 3436 MachineInstr *EarliestLoad = nullptr; 3437 3438 // Latest instruction-order load in the pattern. 3439 MachineInstr *LatestLoad = nullptr; 3440 3441 // Base pointer which every load should share. 3442 Register BasePtr; 3443 3444 // We want to find a load for each register. Each load should have some 3445 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3446 // track of the load which uses the lowest index. Later, we will check if we 3447 // can use its pointer in the final, combined load. 3448 for (auto Reg : RegsToVisit) { 3449 // Find the load, and find the position that it will end up in (e.g. a 3450 // shifted) value. 3451 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3452 if (!LoadAndPos) 3453 return None; 3454 MachineInstr *Load; 3455 int64_t DstPos; 3456 std::tie(Load, DstPos) = *LoadAndPos; 3457 3458 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3459 // it is difficult to check for stores/calls/etc between loads. 3460 MachineBasicBlock *LoadMBB = Load->getParent(); 3461 if (!MBB) 3462 MBB = LoadMBB; 3463 if (LoadMBB != MBB) 3464 return None; 3465 3466 // Make sure that the MachineMemOperands of every seen load are compatible. 3467 const MachineMemOperand *LoadMMO = *Load->memoperands_begin(); 3468 if (!MMO) 3469 MMO = LoadMMO; 3470 if (MMO->getAddrSpace() != LoadMMO->getAddrSpace()) 3471 return None; 3472 3473 // Find out what the base pointer and index for the load is. 3474 Register LoadPtr; 3475 int64_t Idx; 3476 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3477 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3478 LoadPtr = Load->getOperand(1).getReg(); 3479 Idx = 0; 3480 } 3481 3482 // Don't combine things like a[i], a[i] -> a bigger load. 3483 if (!SeenIdx.insert(Idx).second) 3484 return None; 3485 3486 // Every load must share the same base pointer; don't combine things like: 3487 // 3488 // a[i], b[i + 1] -> a bigger load. 3489 if (!BasePtr.isValid()) 3490 BasePtr = LoadPtr; 3491 if (BasePtr != LoadPtr) 3492 return None; 3493 3494 if (Idx < LowestIdx) { 3495 LowestIdx = Idx; 3496 LowestIdxLoad = Load; 3497 } 3498 3499 // Keep track of the byte offset that this load ends up at. If we have seen 3500 // the byte offset, then stop here. We do not want to combine: 3501 // 3502 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3503 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3504 return None; 3505 Loads.insert(Load); 3506 3507 // Keep track of the position of the earliest/latest loads in the pattern. 3508 // We will check that there are no load fold barriers between them later 3509 // on. 3510 // 3511 // FIXME: Is there a better way to check for load fold barriers? 3512 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3513 EarliestLoad = Load; 3514 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3515 LatestLoad = Load; 3516 } 3517 3518 // We found a load for each register. Let's check if each load satisfies the 3519 // pattern. 3520 assert(Loads.size() == RegsToVisit.size() && 3521 "Expected to find a load for each register?"); 3522 assert(EarliestLoad != LatestLoad && EarliestLoad && 3523 LatestLoad && "Expected at least two loads?"); 3524 3525 // Check if there are any stores, calls, etc. between any of the loads. If 3526 // there are, then we can't safely perform the combine. 3527 // 3528 // MaxIter is chosen based off the (worst case) number of iterations it 3529 // typically takes to succeed in the LLVM test suite plus some padding. 3530 // 3531 // FIXME: Is there a better way to check for load fold barriers? 3532 const unsigned MaxIter = 20; 3533 unsigned Iter = 0; 3534 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3535 LatestLoad->getIterator())) { 3536 if (Loads.count(&MI)) 3537 continue; 3538 if (MI.isLoadFoldBarrier()) 3539 return None; 3540 if (Iter++ == MaxIter) 3541 return None; 3542 } 3543 3544 return std::make_pair(LowestIdxLoad, LowestIdx); 3545 } 3546 3547 bool CombinerHelper::matchLoadOrCombine( 3548 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3549 assert(MI.getOpcode() == TargetOpcode::G_OR); 3550 MachineFunction &MF = *MI.getMF(); 3551 // Assuming a little-endian target, transform: 3552 // s8 *a = ... 3553 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3554 // => 3555 // s32 val = *((i32)a) 3556 // 3557 // s8 *a = ... 3558 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3559 // => 3560 // s32 val = BSWAP(*((s32)a)) 3561 Register Dst = MI.getOperand(0).getReg(); 3562 LLT Ty = MRI.getType(Dst); 3563 if (Ty.isVector()) 3564 return false; 3565 3566 // We need to combine at least two loads into this type. Since the smallest 3567 // possible load is into a byte, we need at least a 16-bit wide type. 3568 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3569 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3570 return false; 3571 3572 // Match a collection of non-OR instructions in the pattern. 3573 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3574 if (!RegsToVisit) 3575 return false; 3576 3577 // We have a collection of non-OR instructions. Figure out how wide each of 3578 // the small loads should be based off of the number of potential loads we 3579 // found. 3580 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3581 if (NarrowMemSizeInBits % 8 != 0) 3582 return false; 3583 3584 // Check if each register feeding into each OR is a load from the same 3585 // base pointer + some arithmetic. 3586 // 3587 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3588 // 3589 // Also verify that each of these ends up putting a[i] into the same memory 3590 // offset as a load into a wide type would. 3591 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3592 MachineInstr *LowestIdxLoad; 3593 int64_t LowestIdx; 3594 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3595 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3596 if (!MaybeLoadInfo) 3597 return false; 3598 std::tie(LowestIdxLoad, LowestIdx) = *MaybeLoadInfo; 3599 3600 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3601 // we found before, check if this corresponds to a big or little endian byte 3602 // pattern. If it does, then we can represent it using a load + possibly a 3603 // BSWAP. 3604 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3605 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3606 if (!IsBigEndian.hasValue()) 3607 return false; 3608 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3609 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3610 return false; 3611 3612 // Make sure that the load from the lowest index produces offset 0 in the 3613 // final value. 3614 // 3615 // This ensures that we won't combine something like this: 3616 // 3617 // load x[i] -> byte 2 3618 // load x[i+1] -> byte 0 ---> wide_load x[i] 3619 // load x[i+2] -> byte 1 3620 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3621 const unsigned ZeroByteOffset = 3622 *IsBigEndian 3623 ? bigEndianByteAt(NumLoadsInTy, 0) 3624 : littleEndianByteAt(NumLoadsInTy, 0); 3625 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3626 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3627 ZeroOffsetIdx->second != LowestIdx) 3628 return false; 3629 3630 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3631 // may not use index 0. 3632 Register Ptr = LowestIdxLoad->getOperand(1).getReg(); 3633 const MachineMemOperand &MMO = **LowestIdxLoad->memoperands_begin(); 3634 LegalityQuery::MemDesc MMDesc; 3635 MMDesc.SizeInBits = WideMemSizeInBits; 3636 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 3637 MMDesc.Ordering = MMO.getOrdering(); 3638 if (!isLegalOrBeforeLegalizer( 3639 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3640 return false; 3641 auto PtrInfo = MMO.getPointerInfo(); 3642 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3643 3644 // Load must be allowed and fast on the target. 3645 LLVMContext &C = MF.getFunction().getContext(); 3646 auto &DL = MF.getDataLayout(); 3647 bool Fast = false; 3648 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3649 !Fast) 3650 return false; 3651 3652 MatchInfo = [=](MachineIRBuilder &MIB) { 3653 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3654 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3655 if (NeedsBSwap) 3656 MIB.buildBSwap(Dst, LoadDst); 3657 }; 3658 return true; 3659 } 3660 3661 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3662 MachineInstr *&ExtMI) { 3663 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3664 3665 Register DstReg = MI.getOperand(0).getReg(); 3666 3667 // TODO: Extending a vector may be expensive, don't do this until heuristics 3668 // are better. 3669 if (MRI.getType(DstReg).isVector()) 3670 return false; 3671 3672 // Try to match a phi, whose only use is an extend. 3673 if (!MRI.hasOneNonDBGUse(DstReg)) 3674 return false; 3675 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3676 switch (ExtMI->getOpcode()) { 3677 case TargetOpcode::G_ANYEXT: 3678 return true; // G_ANYEXT is usually free. 3679 case TargetOpcode::G_ZEXT: 3680 case TargetOpcode::G_SEXT: 3681 break; 3682 default: 3683 return false; 3684 } 3685 3686 // If the target is likely to fold this extend away, don't propagate. 3687 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3688 return false; 3689 3690 // We don't want to propagate the extends unless there's a good chance that 3691 // they'll be optimized in some way. 3692 // Collect the unique incoming values. 3693 SmallPtrSet<MachineInstr *, 4> InSrcs; 3694 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3695 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3696 switch (DefMI->getOpcode()) { 3697 case TargetOpcode::G_LOAD: 3698 case TargetOpcode::G_TRUNC: 3699 case TargetOpcode::G_SEXT: 3700 case TargetOpcode::G_ZEXT: 3701 case TargetOpcode::G_ANYEXT: 3702 case TargetOpcode::G_CONSTANT: 3703 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3704 // Don't try to propagate if there are too many places to create new 3705 // extends, chances are it'll increase code size. 3706 if (InSrcs.size() > 2) 3707 return false; 3708 break; 3709 default: 3710 return false; 3711 } 3712 } 3713 return true; 3714 } 3715 3716 bool CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3717 MachineInstr *&ExtMI) { 3718 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3719 Register DstReg = ExtMI->getOperand(0).getReg(); 3720 LLT ExtTy = MRI.getType(DstReg); 3721 3722 // Propagate the extension into the block of each incoming reg's block. 3723 // Use a SetVector here because PHIs can have duplicate edges, and we want 3724 // deterministic iteration order. 3725 SmallSetVector<MachineInstr *, 8> SrcMIs; 3726 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3727 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3728 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3729 if (!SrcMIs.insert(SrcMI)) 3730 continue; 3731 3732 // Build an extend after each src inst. 3733 auto *MBB = SrcMI->getParent(); 3734 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3735 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3736 InsertPt = MBB->getFirstNonPHI(); 3737 3738 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3739 Builder.setDebugLoc(MI.getDebugLoc()); 3740 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3741 SrcMI->getOperand(0).getReg()); 3742 OldToNewSrcMap[SrcMI] = NewExt; 3743 } 3744 3745 // Create a new phi with the extended inputs. 3746 Builder.setInstrAndDebugLoc(MI); 3747 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3748 NewPhi.addDef(DstReg); 3749 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3750 auto &MO = MI.getOperand(SrcIdx); 3751 if (!MO.isReg()) { 3752 NewPhi.addMBB(MO.getMBB()); 3753 continue; 3754 } 3755 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3756 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3757 } 3758 Builder.insertInstr(NewPhi); 3759 ExtMI->eraseFromParent(); 3760 return true; 3761 } 3762 3763 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3764 Register &Reg) { 3765 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3766 // If we have a constant index, look for a G_BUILD_VECTOR source 3767 // and find the source register that the index maps to. 3768 Register SrcVec = MI.getOperand(1).getReg(); 3769 LLT SrcTy = MRI.getType(SrcVec); 3770 if (!isLegalOrBeforeLegalizer( 3771 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3772 return false; 3773 3774 auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3775 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3776 return false; 3777 3778 unsigned VecIdx = Cst->Value.getZExtValue(); 3779 MachineInstr *BuildVecMI = 3780 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3781 if (!BuildVecMI) { 3782 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3783 if (!BuildVecMI) 3784 return false; 3785 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3786 if (!isLegalOrBeforeLegalizer( 3787 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3788 return false; 3789 } 3790 3791 EVT Ty(getMVTForLLT(SrcTy)); 3792 if (!MRI.hasOneNonDBGUse(SrcVec) && 3793 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3794 return false; 3795 3796 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3797 return true; 3798 } 3799 3800 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3801 Register &Reg) { 3802 // Check the type of the register, since it may have come from a 3803 // G_BUILD_VECTOR_TRUNC. 3804 LLT ScalarTy = MRI.getType(Reg); 3805 Register DstReg = MI.getOperand(0).getReg(); 3806 LLT DstTy = MRI.getType(DstReg); 3807 3808 Builder.setInstrAndDebugLoc(MI); 3809 if (ScalarTy != DstTy) { 3810 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3811 Builder.buildTrunc(DstReg, Reg); 3812 MI.eraseFromParent(); 3813 return; 3814 } 3815 replaceSingleDefInstWithReg(MI, Reg); 3816 } 3817 3818 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3819 MachineInstr &MI, 3820 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3821 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3822 // This combine tries to find build_vector's which have every source element 3823 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3824 // the masked load scalarization is run late in the pipeline. There's already 3825 // a combine for a similar pattern starting from the extract, but that 3826 // doesn't attempt to do it if there are multiple uses of the build_vector, 3827 // which in this case is true. Starting the combine from the build_vector 3828 // feels more natural than trying to find sibling nodes of extracts. 3829 // E.g. 3830 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3831 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3832 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3833 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3834 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3835 // ==> 3836 // replace ext{1,2,3,4} with %s{1,2,3,4} 3837 3838 Register DstReg = MI.getOperand(0).getReg(); 3839 LLT DstTy = MRI.getType(DstReg); 3840 unsigned NumElts = DstTy.getNumElements(); 3841 3842 SmallBitVector ExtractedElts(NumElts); 3843 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), 3844 MRI.use_instr_nodbg_end())) { 3845 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3846 return false; 3847 auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI); 3848 if (!Cst) 3849 return false; 3850 unsigned Idx = Cst.getValue().getZExtValue(); 3851 if (Idx >= NumElts) 3852 return false; // Out of range. 3853 ExtractedElts.set(Idx); 3854 SrcDstPairs.emplace_back( 3855 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3856 } 3857 // Match if every element was extracted. 3858 return ExtractedElts.all(); 3859 } 3860 3861 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3862 MachineInstr &MI, 3863 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3864 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3865 for (auto &Pair : SrcDstPairs) { 3866 auto *ExtMI = Pair.second; 3867 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3868 ExtMI->eraseFromParent(); 3869 } 3870 MI.eraseFromParent(); 3871 } 3872 3873 bool CombinerHelper::applyBuildFn( 3874 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3875 Builder.setInstrAndDebugLoc(MI); 3876 MatchInfo(Builder); 3877 MI.eraseFromParent(); 3878 return true; 3879 } 3880 3881 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3882 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3883 unsigned Opc = MI.getOpcode(); 3884 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3885 Register X = MI.getOperand(1).getReg(); 3886 Register Y = MI.getOperand(2).getReg(); 3887 if (X != Y) 3888 return false; 3889 unsigned RotateOpc = 3890 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3891 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3892 } 3893 3894 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3895 unsigned Opc = MI.getOpcode(); 3896 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3897 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3898 Observer.changingInstr(MI); 3899 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3900 : TargetOpcode::G_ROTR)); 3901 MI.RemoveOperand(2); 3902 Observer.changedInstr(MI); 3903 } 3904 3905 // Fold (rot x, c) -> (rot x, c % BitSize) 3906 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3907 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3908 MI.getOpcode() == TargetOpcode::G_ROTR); 3909 unsigned Bitsize = 3910 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3911 Register AmtReg = MI.getOperand(2).getReg(); 3912 bool OutOfRange = false; 3913 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 3914 if (auto *CI = dyn_cast<ConstantInt>(C)) 3915 OutOfRange |= CI->getValue().uge(Bitsize); 3916 return true; 3917 }; 3918 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 3919 } 3920 3921 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 3922 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3923 MI.getOpcode() == TargetOpcode::G_ROTR); 3924 unsigned Bitsize = 3925 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3926 Builder.setInstrAndDebugLoc(MI); 3927 Register Amt = MI.getOperand(2).getReg(); 3928 LLT AmtTy = MRI.getType(Amt); 3929 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 3930 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 3931 Observer.changingInstr(MI); 3932 MI.getOperand(2).setReg(Amt); 3933 Observer.changedInstr(MI); 3934 } 3935 3936 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 3937 int64_t &MatchInfo) { 3938 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3939 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3940 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 3941 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 3942 Optional<bool> KnownVal; 3943 switch (Pred) { 3944 default: 3945 llvm_unreachable("Unexpected G_ICMP predicate?"); 3946 case CmpInst::ICMP_EQ: 3947 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 3948 break; 3949 case CmpInst::ICMP_NE: 3950 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 3951 break; 3952 case CmpInst::ICMP_SGE: 3953 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 3954 break; 3955 case CmpInst::ICMP_SGT: 3956 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 3957 break; 3958 case CmpInst::ICMP_SLE: 3959 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 3960 break; 3961 case CmpInst::ICMP_SLT: 3962 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 3963 break; 3964 case CmpInst::ICMP_UGE: 3965 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 3966 break; 3967 case CmpInst::ICMP_UGT: 3968 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 3969 break; 3970 case CmpInst::ICMP_ULE: 3971 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 3972 break; 3973 case CmpInst::ICMP_ULT: 3974 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 3975 break; 3976 } 3977 if (!KnownVal) 3978 return false; 3979 MatchInfo = 3980 *KnownVal 3981 ? getICmpTrueVal(getTargetLowering(), 3982 /*IsVector = */ 3983 MRI.getType(MI.getOperand(0).getReg()).isVector(), 3984 /* IsFP = */ false) 3985 : 0; 3986 return true; 3987 } 3988 3989 bool CombinerHelper::matchBitfieldExtractFromAnd( 3990 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3991 assert(MI.getOpcode() == TargetOpcode::G_AND); 3992 Register Dst = MI.getOperand(0).getReg(); 3993 LLT Ty = MRI.getType(Dst); 3994 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 3995 TargetOpcode::G_UBFX, Ty, Ty)) 3996 return false; 3997 3998 int64_t AndImm, LSBImm; 3999 Register ShiftSrc; 4000 const unsigned Size = Ty.getScalarSizeInBits(); 4001 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4002 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4003 m_ICst(AndImm)))) 4004 return false; 4005 4006 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4007 auto MaybeMask = static_cast<uint64_t>(AndImm); 4008 if (MaybeMask & (MaybeMask + 1)) 4009 return false; 4010 4011 // LSB must fit within the register. 4012 if (static_cast<uint64_t>(LSBImm) >= Size) 4013 return false; 4014 4015 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4016 MatchInfo = [=](MachineIRBuilder &B) { 4017 auto WidthCst = B.buildConstant(Ty, Width); 4018 auto LSBCst = B.buildConstant(Ty, LSBImm); 4019 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4020 }; 4021 return true; 4022 } 4023 4024 bool CombinerHelper::tryCombine(MachineInstr &MI) { 4025 if (tryCombineCopy(MI)) 4026 return true; 4027 if (tryCombineExtendingLoads(MI)) 4028 return true; 4029 if (tryCombineIndexedLoadStore(MI)) 4030 return true; 4031 return false; 4032 } 4033