1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
9 #include "llvm/CodeGen/GlobalISel/Combiner.h"
10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
12 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
13 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
14 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
15 #include "llvm/CodeGen/GlobalISel/Utils.h"
16 #include "llvm/CodeGen/MachineDominators.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineInstr.h"
19 #include "llvm/CodeGen/MachineMemOperand.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/Support/MathExtras.h"
24 #include "llvm/Target/TargetMachine.h"
25 
26 #define DEBUG_TYPE "gi-combiner"
27 
28 using namespace llvm;
29 using namespace MIPatternMatch;
30 
31 // Option to allow testing of the combiner while no targets know about indexed
32 // addressing.
33 static cl::opt<bool>
34     ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
35                        cl::desc("Force all indexed operations to be "
36                                 "legal for the GlobalISel combiner"));
37 
38 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
39                                MachineIRBuilder &B, GISelKnownBits *KB,
40                                MachineDominatorTree *MDT,
41                                const LegalizerInfo *LI)
42     : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer),
43       KB(KB), MDT(MDT), LI(LI) {
44   (void)this->KB;
45 }
46 
47 const TargetLowering &CombinerHelper::getTargetLowering() const {
48   return *Builder.getMF().getSubtarget().getTargetLowering();
49 }
50 
51 bool CombinerHelper::isLegalOrBeforeLegalizer(
52     const LegalityQuery &Query) const {
53   return !LI || LI->getAction(Query).Action == LegalizeActions::Legal;
54 }
55 
56 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
57                                     Register ToReg) const {
58   Observer.changingAllUsesOfReg(MRI, FromReg);
59 
60   if (MRI.constrainRegAttrs(ToReg, FromReg))
61     MRI.replaceRegWith(FromReg, ToReg);
62   else
63     Builder.buildCopy(ToReg, FromReg);
64 
65   Observer.finishedChangingAllUsesOfReg();
66 }
67 
68 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
69                                       MachineOperand &FromRegOp,
70                                       Register ToReg) const {
71   assert(FromRegOp.getParent() && "Expected an operand in an MI");
72   Observer.changingInstr(*FromRegOp.getParent());
73 
74   FromRegOp.setReg(ToReg);
75 
76   Observer.changedInstr(*FromRegOp.getParent());
77 }
78 
79 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
80   if (matchCombineCopy(MI)) {
81     applyCombineCopy(MI);
82     return true;
83   }
84   return false;
85 }
86 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
87   if (MI.getOpcode() != TargetOpcode::COPY)
88     return false;
89   Register DstReg = MI.getOperand(0).getReg();
90   Register SrcReg = MI.getOperand(1).getReg();
91   return canReplaceReg(DstReg, SrcReg, MRI);
92 }
93 void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
94   Register DstReg = MI.getOperand(0).getReg();
95   Register SrcReg = MI.getOperand(1).getReg();
96   MI.eraseFromParent();
97   replaceRegWith(MRI, DstReg, SrcReg);
98 }
99 
100 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) {
101   bool IsUndef = false;
102   SmallVector<Register, 4> Ops;
103   if (matchCombineConcatVectors(MI, IsUndef, Ops)) {
104     applyCombineConcatVectors(MI, IsUndef, Ops);
105     return true;
106   }
107   return false;
108 }
109 
110 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef,
111                                                SmallVectorImpl<Register> &Ops) {
112   assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
113          "Invalid instruction");
114   IsUndef = true;
115   MachineInstr *Undef = nullptr;
116 
117   // Walk over all the operands of concat vectors and check if they are
118   // build_vector themselves or undef.
119   // Then collect their operands in Ops.
120   for (const MachineOperand &MO : MI.uses()) {
121     Register Reg = MO.getReg();
122     MachineInstr *Def = MRI.getVRegDef(Reg);
123     assert(Def && "Operand not defined");
124     switch (Def->getOpcode()) {
125     case TargetOpcode::G_BUILD_VECTOR:
126       IsUndef = false;
127       // Remember the operands of the build_vector to fold
128       // them into the yet-to-build flattened concat vectors.
129       for (const MachineOperand &BuildVecMO : Def->uses())
130         Ops.push_back(BuildVecMO.getReg());
131       break;
132     case TargetOpcode::G_IMPLICIT_DEF: {
133       LLT OpType = MRI.getType(Reg);
134       // Keep one undef value for all the undef operands.
135       if (!Undef) {
136         Builder.setInsertPt(*MI.getParent(), MI);
137         Undef = Builder.buildUndef(OpType.getScalarType());
138       }
139       assert(MRI.getType(Undef->getOperand(0).getReg()) ==
140                  OpType.getScalarType() &&
141              "All undefs should have the same type");
142       // Break the undef vector in as many scalar elements as needed
143       // for the flattening.
144       for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
145            EltIdx != EltEnd; ++EltIdx)
146         Ops.push_back(Undef->getOperand(0).getReg());
147       break;
148     }
149     default:
150       return false;
151     }
152   }
153   return true;
154 }
155 void CombinerHelper::applyCombineConcatVectors(
156     MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) {
157   // We determined that the concat_vectors can be flatten.
158   // Generate the flattened build_vector.
159   Register DstReg = MI.getOperand(0).getReg();
160   Builder.setInsertPt(*MI.getParent(), MI);
161   Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
162 
163   // Note: IsUndef is sort of redundant. We could have determine it by
164   // checking that at all Ops are undef.  Alternatively, we could have
165   // generate a build_vector of undefs and rely on another combine to
166   // clean that up.  For now, given we already gather this information
167   // in tryCombineConcatVectors, just save compile time and issue the
168   // right thing.
169   if (IsUndef)
170     Builder.buildUndef(NewDstReg);
171   else
172     Builder.buildBuildVector(NewDstReg, Ops);
173   MI.eraseFromParent();
174   replaceRegWith(MRI, DstReg, NewDstReg);
175 }
176 
177 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
178   SmallVector<Register, 4> Ops;
179   if (matchCombineShuffleVector(MI, Ops)) {
180     applyCombineShuffleVector(MI, Ops);
181     return true;
182   }
183   return false;
184 }
185 
186 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
187                                                SmallVectorImpl<Register> &Ops) {
188   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
189          "Invalid instruction kind");
190   LLT DstType = MRI.getType(MI.getOperand(0).getReg());
191   Register Src1 = MI.getOperand(1).getReg();
192   LLT SrcType = MRI.getType(Src1);
193   // As bizarre as it may look, shuffle vector can actually produce
194   // scalar! This is because at the IR level a <1 x ty> shuffle
195   // vector is perfectly valid.
196   unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1;
197   unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1;
198 
199   // If the resulting vector is smaller than the size of the source
200   // vectors being concatenated, we won't be able to replace the
201   // shuffle vector into a concat_vectors.
202   //
203   // Note: We may still be able to produce a concat_vectors fed by
204   //       extract_vector_elt and so on. It is less clear that would
205   //       be better though, so don't bother for now.
206   //
207   // If the destination is a scalar, the size of the sources doesn't
208   // matter. we will lower the shuffle to a plain copy. This will
209   // work only if the source and destination have the same size. But
210   // that's covered by the next condition.
211   //
212   // TODO: If the size between the source and destination don't match
213   //       we could still emit an extract vector element in that case.
214   if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1)
215     return false;
216 
217   // Check that the shuffle mask can be broken evenly between the
218   // different sources.
219   if (DstNumElts % SrcNumElts != 0)
220     return false;
221 
222   // Mask length is a multiple of the source vector length.
223   // Check if the shuffle is some kind of concatenation of the input
224   // vectors.
225   unsigned NumConcat = DstNumElts / SrcNumElts;
226   SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
227   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
228   for (unsigned i = 0; i != DstNumElts; ++i) {
229     int Idx = Mask[i];
230     // Undef value.
231     if (Idx < 0)
232       continue;
233     // Ensure the indices in each SrcType sized piece are sequential and that
234     // the same source is used for the whole piece.
235     if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
236         (ConcatSrcs[i / SrcNumElts] >= 0 &&
237          ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
238       return false;
239     // Remember which source this index came from.
240     ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
241   }
242 
243   // The shuffle is concatenating multiple vectors together.
244   // Collect the different operands for that.
245   Register UndefReg;
246   Register Src2 = MI.getOperand(2).getReg();
247   for (auto Src : ConcatSrcs) {
248     if (Src < 0) {
249       if (!UndefReg) {
250         Builder.setInsertPt(*MI.getParent(), MI);
251         UndefReg = Builder.buildUndef(SrcType).getReg(0);
252       }
253       Ops.push_back(UndefReg);
254     } else if (Src == 0)
255       Ops.push_back(Src1);
256     else
257       Ops.push_back(Src2);
258   }
259   return true;
260 }
261 
262 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
263                                                const ArrayRef<Register> Ops) {
264   Register DstReg = MI.getOperand(0).getReg();
265   Builder.setInsertPt(*MI.getParent(), MI);
266   Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
267 
268   if (Ops.size() == 1)
269     Builder.buildCopy(NewDstReg, Ops[0]);
270   else
271     Builder.buildMerge(NewDstReg, Ops);
272 
273   MI.eraseFromParent();
274   replaceRegWith(MRI, DstReg, NewDstReg);
275 }
276 
277 namespace {
278 
279 /// Select a preference between two uses. CurrentUse is the current preference
280 /// while *ForCandidate is attributes of the candidate under consideration.
281 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse,
282                                   const LLT TyForCandidate,
283                                   unsigned OpcodeForCandidate,
284                                   MachineInstr *MIForCandidate) {
285   if (!CurrentUse.Ty.isValid()) {
286     if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
287         CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
288       return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
289     return CurrentUse;
290   }
291 
292   // We permit the extend to hoist through basic blocks but this is only
293   // sensible if the target has extending loads. If you end up lowering back
294   // into a load and extend during the legalizer then the end result is
295   // hoisting the extend up to the load.
296 
297   // Prefer defined extensions to undefined extensions as these are more
298   // likely to reduce the number of instructions.
299   if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
300       CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
301     return CurrentUse;
302   else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
303            OpcodeForCandidate != TargetOpcode::G_ANYEXT)
304     return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
305 
306   // Prefer sign extensions to zero extensions as sign-extensions tend to be
307   // more expensive.
308   if (CurrentUse.Ty == TyForCandidate) {
309     if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
310         OpcodeForCandidate == TargetOpcode::G_ZEXT)
311       return CurrentUse;
312     else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
313              OpcodeForCandidate == TargetOpcode::G_SEXT)
314       return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
315   }
316 
317   // This is potentially target specific. We've chosen the largest type
318   // because G_TRUNC is usually free. One potential catch with this is that
319   // some targets have a reduced number of larger registers than smaller
320   // registers and this choice potentially increases the live-range for the
321   // larger value.
322   if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
323     return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
324   }
325   return CurrentUse;
326 }
327 
328 /// Find a suitable place to insert some instructions and insert them. This
329 /// function accounts for special cases like inserting before a PHI node.
330 /// The current strategy for inserting before PHI's is to duplicate the
331 /// instructions for each predecessor. However, while that's ok for G_TRUNC
332 /// on most targets since it generally requires no code, other targets/cases may
333 /// want to try harder to find a dominating block.
334 static void InsertInsnsWithoutSideEffectsBeforeUse(
335     MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
336     std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
337                        MachineOperand &UseMO)>
338         Inserter) {
339   MachineInstr &UseMI = *UseMO.getParent();
340 
341   MachineBasicBlock *InsertBB = UseMI.getParent();
342 
343   // If the use is a PHI then we want the predecessor block instead.
344   if (UseMI.isPHI()) {
345     MachineOperand *PredBB = std::next(&UseMO);
346     InsertBB = PredBB->getMBB();
347   }
348 
349   // If the block is the same block as the def then we want to insert just after
350   // the def instead of at the start of the block.
351   if (InsertBB == DefMI.getParent()) {
352     MachineBasicBlock::iterator InsertPt = &DefMI;
353     Inserter(InsertBB, std::next(InsertPt), UseMO);
354     return;
355   }
356 
357   // Otherwise we want the start of the BB
358   Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
359 }
360 } // end anonymous namespace
361 
362 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
363   PreferredTuple Preferred;
364   if (matchCombineExtendingLoads(MI, Preferred)) {
365     applyCombineExtendingLoads(MI, Preferred);
366     return true;
367   }
368   return false;
369 }
370 
371 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
372                                                 PreferredTuple &Preferred) {
373   // We match the loads and follow the uses to the extend instead of matching
374   // the extends and following the def to the load. This is because the load
375   // must remain in the same position for correctness (unless we also add code
376   // to find a safe place to sink it) whereas the extend is freely movable.
377   // It also prevents us from duplicating the load for the volatile case or just
378   // for performance.
379 
380   if (MI.getOpcode() != TargetOpcode::G_LOAD &&
381       MI.getOpcode() != TargetOpcode::G_SEXTLOAD &&
382       MI.getOpcode() != TargetOpcode::G_ZEXTLOAD)
383     return false;
384 
385   auto &LoadValue = MI.getOperand(0);
386   assert(LoadValue.isReg() && "Result wasn't a register?");
387 
388   LLT LoadValueTy = MRI.getType(LoadValue.getReg());
389   if (!LoadValueTy.isScalar())
390     return false;
391 
392   // Most architectures are going to legalize <s8 loads into at least a 1 byte
393   // load, and the MMOs can only describe memory accesses in multiples of bytes.
394   // If we try to perform extload combining on those, we can end up with
395   // %a(s8) = extload %ptr (load 1 byte from %ptr)
396   // ... which is an illegal extload instruction.
397   if (LoadValueTy.getSizeInBits() < 8)
398     return false;
399 
400   // For non power-of-2 types, they will very likely be legalized into multiple
401   // loads. Don't bother trying to match them into extending loads.
402   if (!isPowerOf2_32(LoadValueTy.getSizeInBits()))
403     return false;
404 
405   // Find the preferred type aside from the any-extends (unless it's the only
406   // one) and non-extending ops. We'll emit an extending load to that type and
407   // and emit a variant of (extend (trunc X)) for the others according to the
408   // relative type sizes. At the same time, pick an extend to use based on the
409   // extend involved in the chosen type.
410   unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD
411                                  ? TargetOpcode::G_ANYEXT
412                                  : MI.getOpcode() == TargetOpcode::G_SEXTLOAD
413                                        ? TargetOpcode::G_SEXT
414                                        : TargetOpcode::G_ZEXT;
415   Preferred = {LLT(), PreferredOpcode, nullptr};
416   for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) {
417     if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
418         UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
419         (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) {
420       // Check for legality.
421       if (LI) {
422         LegalityQuery::MemDesc MMDesc;
423         const auto &MMO = **MI.memoperands_begin();
424         MMDesc.SizeInBits = MMO.getSizeInBits();
425         MMDesc.AlignInBits = MMO.getAlign().value() * 8;
426         MMDesc.Ordering = MMO.getOrdering();
427         LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg());
428         LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
429         if (LI->getAction({MI.getOpcode(), {UseTy, SrcTy}, {MMDesc}}).Action !=
430             LegalizeActions::Legal)
431           continue;
432       }
433       Preferred = ChoosePreferredUse(Preferred,
434                                      MRI.getType(UseMI.getOperand(0).getReg()),
435                                      UseMI.getOpcode(), &UseMI);
436     }
437   }
438 
439   // There were no extends
440   if (!Preferred.MI)
441     return false;
442   // It should be impossible to chose an extend without selecting a different
443   // type since by definition the result of an extend is larger.
444   assert(Preferred.Ty != LoadValueTy && "Extending to same type?");
445 
446   LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI);
447   return true;
448 }
449 
450 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
451                                                 PreferredTuple &Preferred) {
452   // Rewrite the load to the chosen extending load.
453   Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
454 
455   // Inserter to insert a truncate back to the original type at a given point
456   // with some basic CSE to limit truncate duplication to one per BB.
457   DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
458   auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
459                            MachineBasicBlock::iterator InsertBefore,
460                            MachineOperand &UseMO) {
461     MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
462     if (PreviouslyEmitted) {
463       Observer.changingInstr(*UseMO.getParent());
464       UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
465       Observer.changedInstr(*UseMO.getParent());
466       return;
467     }
468 
469     Builder.setInsertPt(*InsertIntoBB, InsertBefore);
470     Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
471     MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
472     EmittedInsns[InsertIntoBB] = NewMI;
473     replaceRegOpWith(MRI, UseMO, NewDstReg);
474   };
475 
476   Observer.changingInstr(MI);
477   MI.setDesc(
478       Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT
479                                ? TargetOpcode::G_SEXTLOAD
480                                : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT
481                                      ? TargetOpcode::G_ZEXTLOAD
482                                      : TargetOpcode::G_LOAD));
483 
484   // Rewrite all the uses to fix up the types.
485   auto &LoadValue = MI.getOperand(0);
486   SmallVector<MachineOperand *, 4> Uses;
487   for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
488     Uses.push_back(&UseMO);
489 
490   for (auto *UseMO : Uses) {
491     MachineInstr *UseMI = UseMO->getParent();
492 
493     // If the extend is compatible with the preferred extend then we should fix
494     // up the type and extend so that it uses the preferred use.
495     if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
496         UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
497       Register UseDstReg = UseMI->getOperand(0).getReg();
498       MachineOperand &UseSrcMO = UseMI->getOperand(1);
499       const LLT UseDstTy = MRI.getType(UseDstReg);
500       if (UseDstReg != ChosenDstReg) {
501         if (Preferred.Ty == UseDstTy) {
502           // If the use has the same type as the preferred use, then merge
503           // the vregs and erase the extend. For example:
504           //    %1:_(s8) = G_LOAD ...
505           //    %2:_(s32) = G_SEXT %1(s8)
506           //    %3:_(s32) = G_ANYEXT %1(s8)
507           //    ... = ... %3(s32)
508           // rewrites to:
509           //    %2:_(s32) = G_SEXTLOAD ...
510           //    ... = ... %2(s32)
511           replaceRegWith(MRI, UseDstReg, ChosenDstReg);
512           Observer.erasingInstr(*UseMO->getParent());
513           UseMO->getParent()->eraseFromParent();
514         } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
515           // If the preferred size is smaller, then keep the extend but extend
516           // from the result of the extending load. For example:
517           //    %1:_(s8) = G_LOAD ...
518           //    %2:_(s32) = G_SEXT %1(s8)
519           //    %3:_(s64) = G_ANYEXT %1(s8)
520           //    ... = ... %3(s64)
521           /// rewrites to:
522           //    %2:_(s32) = G_SEXTLOAD ...
523           //    %3:_(s64) = G_ANYEXT %2:_(s32)
524           //    ... = ... %3(s64)
525           replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
526         } else {
527           // If the preferred size is large, then insert a truncate. For
528           // example:
529           //    %1:_(s8) = G_LOAD ...
530           //    %2:_(s64) = G_SEXT %1(s8)
531           //    %3:_(s32) = G_ZEXT %1(s8)
532           //    ... = ... %3(s32)
533           /// rewrites to:
534           //    %2:_(s64) = G_SEXTLOAD ...
535           //    %4:_(s8) = G_TRUNC %2:_(s32)
536           //    %3:_(s64) = G_ZEXT %2:_(s8)
537           //    ... = ... %3(s64)
538           InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
539                                                  InsertTruncAt);
540         }
541         continue;
542       }
543       // The use is (one of) the uses of the preferred use we chose earlier.
544       // We're going to update the load to def this value later so just erase
545       // the old extend.
546       Observer.erasingInstr(*UseMO->getParent());
547       UseMO->getParent()->eraseFromParent();
548       continue;
549     }
550 
551     // The use isn't an extend. Truncate back to the type we originally loaded.
552     // This is free on many targets.
553     InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
554   }
555 
556   MI.getOperand(0).setReg(ChosenDstReg);
557   Observer.changedInstr(MI);
558 }
559 
560 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI,
561                                    const MachineInstr &UseMI) {
562   assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
563          "shouldn't consider debug uses");
564   assert(DefMI.getParent() == UseMI.getParent());
565   if (&DefMI == &UseMI)
566     return false;
567 
568   // Loop through the basic block until we find one of the instructions.
569   MachineBasicBlock::const_iterator I = DefMI.getParent()->begin();
570   for (; &*I != &DefMI && &*I != &UseMI; ++I)
571     return &*I == &DefMI;
572 
573   llvm_unreachable("Block must contain instructions");
574 }
575 
576 bool CombinerHelper::dominates(const MachineInstr &DefMI,
577                                const MachineInstr &UseMI) {
578   assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
579          "shouldn't consider debug uses");
580   if (MDT)
581     return MDT->dominates(&DefMI, &UseMI);
582   else if (DefMI.getParent() != UseMI.getParent())
583     return false;
584 
585   return isPredecessor(DefMI, UseMI);
586 }
587 
588 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) {
589   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
590   Register SrcReg = MI.getOperand(1).getReg();
591   Register LoadUser = SrcReg;
592 
593   if (MRI.getType(SrcReg).isVector())
594     return false;
595 
596   Register TruncSrc;
597   if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))))
598     LoadUser = TruncSrc;
599 
600   uint64_t SizeInBits = MI.getOperand(2).getImm();
601   // If the source is a G_SEXTLOAD from the same bit width, then we don't
602   // need any extend at all, just a truncate.
603   if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) {
604     const auto &MMO = **LoadMI->memoperands_begin();
605     // If truncating more than the original extended value, abort.
606     if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits())
607       return false;
608     if (MMO.getSizeInBits() == SizeInBits)
609       return true;
610   }
611   return false;
612 }
613 
614 bool CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) {
615   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
616   Builder.setInstrAndDebugLoc(MI);
617   Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
618   MI.eraseFromParent();
619   return true;
620 }
621 
622 bool CombinerHelper::matchSextInRegOfLoad(
623     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
624   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
625 
626   // Only supports scalars for now.
627   if (MRI.getType(MI.getOperand(0).getReg()).isVector())
628     return false;
629 
630   Register SrcReg = MI.getOperand(1).getReg();
631   MachineInstr *LoadDef = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI);
632   if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()))
633     return false;
634 
635   // If the sign extend extends from a narrower width than the load's width,
636   // then we can narrow the load width when we combine to a G_SEXTLOAD.
637   auto &MMO = **LoadDef->memoperands_begin();
638   // Don't do this for non-simple loads.
639   if (MMO.isAtomic() || MMO.isVolatile())
640     return false;
641 
642   // Avoid widening the load at all.
643   unsigned NewSizeBits =
644       std::min((uint64_t)MI.getOperand(2).getImm(), MMO.getSizeInBits());
645 
646   // Don't generate G_SEXTLOADs with a < 1 byte width.
647   if (NewSizeBits < 8)
648     return false;
649   // Don't bother creating a non-power-2 sextload, it will likely be broken up
650   // anyway for most targets.
651   if (!isPowerOf2_32(NewSizeBits))
652     return false;
653   MatchInfo = std::make_tuple(LoadDef->getOperand(0).getReg(), NewSizeBits);
654   return true;
655 }
656 
657 bool CombinerHelper::applySextInRegOfLoad(
658     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
659   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
660   Register LoadReg;
661   unsigned ScalarSizeBits;
662   std::tie(LoadReg, ScalarSizeBits) = MatchInfo;
663   auto *LoadDef = MRI.getVRegDef(LoadReg);
664   assert(LoadDef && "Expected a load reg");
665 
666   // If we have the following:
667   // %ld = G_LOAD %ptr, (load 2)
668   // %ext = G_SEXT_INREG %ld, 8
669   //    ==>
670   // %ld = G_SEXTLOAD %ptr (load 1)
671 
672   auto &MMO = **LoadDef->memoperands_begin();
673   Builder.setInstrAndDebugLoc(MI);
674   auto &MF = Builder.getMF();
675   auto PtrInfo = MMO.getPointerInfo();
676   auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8);
677   Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(),
678                          LoadDef->getOperand(1).getReg(), *NewMMO);
679   MI.eraseFromParent();
680   return true;
681 }
682 
683 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr,
684                                             Register &Base, Register &Offset) {
685   auto &MF = *MI.getParent()->getParent();
686   const auto &TLI = *MF.getSubtarget().getTargetLowering();
687 
688 #ifndef NDEBUG
689   unsigned Opcode = MI.getOpcode();
690   assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
691          Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
692 #endif
693 
694   Base = MI.getOperand(1).getReg();
695   MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base);
696   if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
697     return false;
698 
699   LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI);
700   // FIXME: The following use traversal needs a bail out for patholigical cases.
701   for (auto &Use : MRI.use_nodbg_instructions(Base)) {
702     if (Use.getOpcode() != TargetOpcode::G_PTR_ADD)
703       continue;
704 
705     Offset = Use.getOperand(2).getReg();
706     if (!ForceLegalIndexing &&
707         !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) {
708       LLVM_DEBUG(dbgs() << "    Ignoring candidate with illegal addrmode: "
709                         << Use);
710       continue;
711     }
712 
713     // Make sure the offset calculation is before the potentially indexed op.
714     // FIXME: we really care about dependency here. The offset calculation might
715     // be movable.
716     MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset);
717     if (!OffsetDef || !dominates(*OffsetDef, MI)) {
718       LLVM_DEBUG(dbgs() << "    Ignoring candidate with offset after mem-op: "
719                         << Use);
720       continue;
721     }
722 
723     // FIXME: check whether all uses of Base are load/store with foldable
724     // addressing modes. If so, using the normal addr-modes is better than
725     // forming an indexed one.
726 
727     bool MemOpDominatesAddrUses = true;
728     for (auto &PtrAddUse :
729          MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) {
730       if (!dominates(MI, PtrAddUse)) {
731         MemOpDominatesAddrUses = false;
732         break;
733       }
734     }
735 
736     if (!MemOpDominatesAddrUses) {
737       LLVM_DEBUG(
738           dbgs() << "    Ignoring candidate as memop does not dominate uses: "
739                  << Use);
740       continue;
741     }
742 
743     LLVM_DEBUG(dbgs() << "    Found match: " << Use);
744     Addr = Use.getOperand(0).getReg();
745     return true;
746   }
747 
748   return false;
749 }
750 
751 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr,
752                                            Register &Base, Register &Offset) {
753   auto &MF = *MI.getParent()->getParent();
754   const auto &TLI = *MF.getSubtarget().getTargetLowering();
755 
756 #ifndef NDEBUG
757   unsigned Opcode = MI.getOpcode();
758   assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
759          Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
760 #endif
761 
762   Addr = MI.getOperand(1).getReg();
763   MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI);
764   if (!AddrDef || MRI.hasOneNonDBGUse(Addr))
765     return false;
766 
767   Base = AddrDef->getOperand(1).getReg();
768   Offset = AddrDef->getOperand(2).getReg();
769 
770   LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI);
771 
772   if (!ForceLegalIndexing &&
773       !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) {
774     LLVM_DEBUG(dbgs() << "    Skipping, not legal for target");
775     return false;
776   }
777 
778   MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
779   if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
780     LLVM_DEBUG(dbgs() << "    Skipping, frame index would need copy anyway.");
781     return false;
782   }
783 
784   if (MI.getOpcode() == TargetOpcode::G_STORE) {
785     // Would require a copy.
786     if (Base == MI.getOperand(0).getReg()) {
787       LLVM_DEBUG(dbgs() << "    Skipping, storing base so need copy anyway.");
788       return false;
789     }
790 
791     // We're expecting one use of Addr in MI, but it could also be the
792     // value stored, which isn't actually dominated by the instruction.
793     if (MI.getOperand(0).getReg() == Addr) {
794       LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses");
795       return false;
796     }
797   }
798 
799   // FIXME: check whether all uses of the base pointer are constant PtrAdds.
800   // That might allow us to end base's liveness here by adjusting the constant.
801 
802   for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) {
803     if (!dominates(MI, UseMI)) {
804       LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses.");
805       return false;
806     }
807   }
808 
809   return true;
810 }
811 
812 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) {
813   IndexedLoadStoreMatchInfo MatchInfo;
814   if (matchCombineIndexedLoadStore(MI, MatchInfo)) {
815     applyCombineIndexedLoadStore(MI, MatchInfo);
816     return true;
817   }
818   return false;
819 }
820 
821 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
822   unsigned Opcode = MI.getOpcode();
823   if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD &&
824       Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE)
825     return false;
826 
827   // For now, no targets actually support these opcodes so don't waste time
828   // running these unless we're forced to for testing.
829   if (!ForceLegalIndexing)
830     return false;
831 
832   MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
833                                           MatchInfo.Offset);
834   if (!MatchInfo.IsPre &&
835       !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
836                               MatchInfo.Offset))
837     return false;
838 
839   return true;
840 }
841 
842 void CombinerHelper::applyCombineIndexedLoadStore(
843     MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
844   MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr);
845   MachineIRBuilder MIRBuilder(MI);
846   unsigned Opcode = MI.getOpcode();
847   bool IsStore = Opcode == TargetOpcode::G_STORE;
848   unsigned NewOpcode;
849   switch (Opcode) {
850   case TargetOpcode::G_LOAD:
851     NewOpcode = TargetOpcode::G_INDEXED_LOAD;
852     break;
853   case TargetOpcode::G_SEXTLOAD:
854     NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD;
855     break;
856   case TargetOpcode::G_ZEXTLOAD:
857     NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD;
858     break;
859   case TargetOpcode::G_STORE:
860     NewOpcode = TargetOpcode::G_INDEXED_STORE;
861     break;
862   default:
863     llvm_unreachable("Unknown load/store opcode");
864   }
865 
866   auto MIB = MIRBuilder.buildInstr(NewOpcode);
867   if (IsStore) {
868     MIB.addDef(MatchInfo.Addr);
869     MIB.addUse(MI.getOperand(0).getReg());
870   } else {
871     MIB.addDef(MI.getOperand(0).getReg());
872     MIB.addDef(MatchInfo.Addr);
873   }
874 
875   MIB.addUse(MatchInfo.Base);
876   MIB.addUse(MatchInfo.Offset);
877   MIB.addImm(MatchInfo.IsPre);
878   MI.eraseFromParent();
879   AddrDef.eraseFromParent();
880 
881   LLVM_DEBUG(dbgs() << "    Combinined to indexed operation");
882 }
883 
884 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI) {
885   if (MI.getOpcode() != TargetOpcode::G_BR)
886     return false;
887 
888   // Try to match the following:
889   // bb1:
890   //   G_BRCOND %c1, %bb2
891   //   G_BR %bb3
892   // bb2:
893   // ...
894   // bb3:
895 
896   // The above pattern does not have a fall through to the successor bb2, always
897   // resulting in a branch no matter which path is taken. Here we try to find
898   // and replace that pattern with conditional branch to bb3 and otherwise
899   // fallthrough to bb2. This is generally better for branch predictors.
900 
901   MachineBasicBlock *MBB = MI.getParent();
902   MachineBasicBlock::iterator BrIt(MI);
903   if (BrIt == MBB->begin())
904     return false;
905   assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator");
906 
907   MachineInstr *BrCond = &*std::prev(BrIt);
908   if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
909     return false;
910 
911   // Check that the next block is the conditional branch target.
912   if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB()))
913     return false;
914   return true;
915 }
916 
917 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI) {
918   MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
919   MachineBasicBlock::iterator BrIt(MI);
920   MachineInstr *BrCond = &*std::prev(BrIt);
921 
922   Builder.setInstrAndDebugLoc(*BrCond);
923   LLT Ty = MRI.getType(BrCond->getOperand(0).getReg());
924   // FIXME: Does int/fp matter for this? If so, we might need to restrict
925   // this to i1 only since we might not know for sure what kind of
926   // compare generated the condition value.
927   auto True = Builder.buildConstant(
928       Ty, getICmpTrueVal(getTargetLowering(), false, false));
929   auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True);
930 
931   auto *FallthroughBB = BrCond->getOperand(1).getMBB();
932   Observer.changingInstr(MI);
933   MI.getOperand(0).setMBB(FallthroughBB);
934   Observer.changedInstr(MI);
935 
936   // Change the conditional branch to use the inverted condition and
937   // new target block.
938   Observer.changingInstr(*BrCond);
939   BrCond->getOperand(0).setReg(Xor.getReg(0));
940   BrCond->getOperand(1).setMBB(BrTarget);
941   Observer.changedInstr(*BrCond);
942 }
943 
944 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
945   // On Darwin, -Os means optimize for size without hurting performance, so
946   // only really optimize for size when -Oz (MinSize) is used.
947   if (MF.getTarget().getTargetTriple().isOSDarwin())
948     return MF.getFunction().hasMinSize();
949   return MF.getFunction().hasOptSize();
950 }
951 
952 // Returns a list of types to use for memory op lowering in MemOps. A partial
953 // port of findOptimalMemOpLowering in TargetLowering.
954 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps,
955                                           unsigned Limit, const MemOp &Op,
956                                           unsigned DstAS, unsigned SrcAS,
957                                           const AttributeList &FuncAttributes,
958                                           const TargetLowering &TLI) {
959   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
960     return false;
961 
962   LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes);
963 
964   if (Ty == LLT()) {
965     // Use the largest scalar type whose alignment constraints are satisfied.
966     // We only need to check DstAlign here as SrcAlign is always greater or
967     // equal to DstAlign (or zero).
968     Ty = LLT::scalar(64);
969     if (Op.isFixedDstAlign())
970       while (Op.getDstAlign() < Ty.getSizeInBytes() &&
971              !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign()))
972         Ty = LLT::scalar(Ty.getSizeInBytes());
973     assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
974     // FIXME: check for the largest legal type we can load/store to.
975   }
976 
977   unsigned NumMemOps = 0;
978   uint64_t Size = Op.size();
979   while (Size) {
980     unsigned TySize = Ty.getSizeInBytes();
981     while (TySize > Size) {
982       // For now, only use non-vector load / store's for the left-over pieces.
983       LLT NewTy = Ty;
984       // FIXME: check for mem op safety and legality of the types. Not all of
985       // SDAGisms map cleanly to GISel concepts.
986       if (NewTy.isVector())
987         NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
988       NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
989       unsigned NewTySize = NewTy.getSizeInBytes();
990       assert(NewTySize > 0 && "Could not find appropriate type");
991 
992       // If the new LLT cannot cover all of the remaining bits, then consider
993       // issuing a (or a pair of) unaligned and overlapping load / store.
994       bool Fast;
995       // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
996       MVT VT = getMVTForLLT(Ty);
997       if (NumMemOps && Op.allowOverlap() && NewTySize < Size &&
998           TLI.allowsMisalignedMemoryAccesses(
999               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
1000               MachineMemOperand::MONone, &Fast) &&
1001           Fast)
1002         TySize = Size;
1003       else {
1004         Ty = NewTy;
1005         TySize = NewTySize;
1006       }
1007     }
1008 
1009     if (++NumMemOps > Limit)
1010       return false;
1011 
1012     MemOps.push_back(Ty);
1013     Size -= TySize;
1014   }
1015 
1016   return true;
1017 }
1018 
1019 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
1020   if (Ty.isVector())
1021     return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
1022                                 Ty.getNumElements());
1023   return IntegerType::get(C, Ty.getSizeInBits());
1024 }
1025 
1026 // Get a vectorized representation of the memset value operand, GISel edition.
1027 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
1028   MachineRegisterInfo &MRI = *MIB.getMRI();
1029   unsigned NumBits = Ty.getScalarSizeInBits();
1030   auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
1031   if (!Ty.isVector() && ValVRegAndVal) {
1032     APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8);
1033     APInt SplatVal = APInt::getSplat(NumBits, Scalar);
1034     return MIB.buildConstant(Ty, SplatVal).getReg(0);
1035   }
1036 
1037   // Extend the byte value to the larger type, and then multiply by a magic
1038   // value 0x010101... in order to replicate it across every byte.
1039   // Unless it's zero, in which case just emit a larger G_CONSTANT 0.
1040   if (ValVRegAndVal && ValVRegAndVal->Value == 0) {
1041     return MIB.buildConstant(Ty, 0).getReg(0);
1042   }
1043 
1044   LLT ExtType = Ty.getScalarType();
1045   auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
1046   if (NumBits > 8) {
1047     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
1048     auto MagicMI = MIB.buildConstant(ExtType, Magic);
1049     Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
1050   }
1051 
1052   // For vector types create a G_BUILD_VECTOR.
1053   if (Ty.isVector())
1054     Val = MIB.buildSplatVector(Ty, Val).getReg(0);
1055 
1056   return Val;
1057 }
1058 
1059 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst,
1060                                     Register Val, unsigned KnownLen,
1061                                     Align Alignment, bool IsVolatile) {
1062   auto &MF = *MI.getParent()->getParent();
1063   const auto &TLI = *MF.getSubtarget().getTargetLowering();
1064   auto &DL = MF.getDataLayout();
1065   LLVMContext &C = MF.getFunction().getContext();
1066 
1067   assert(KnownLen != 0 && "Have a zero length memset length!");
1068 
1069   bool DstAlignCanChange = false;
1070   MachineFrameInfo &MFI = MF.getFrameInfo();
1071   bool OptSize = shouldLowerMemFuncForSize(MF);
1072 
1073   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
1074   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
1075     DstAlignCanChange = true;
1076 
1077   unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
1078   std::vector<LLT> MemOps;
1079 
1080   const auto &DstMMO = **MI.memoperands_begin();
1081   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
1082 
1083   auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
1084   bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
1085 
1086   if (!findGISelOptimalMemOpLowering(MemOps, Limit,
1087                                      MemOp::Set(KnownLen, DstAlignCanChange,
1088                                                 Alignment,
1089                                                 /*IsZeroMemset=*/IsZeroVal,
1090                                                 /*IsVolatile=*/IsVolatile),
1091                                      DstPtrInfo.getAddrSpace(), ~0u,
1092                                      MF.getFunction().getAttributes(), TLI))
1093     return false;
1094 
1095   if (DstAlignCanChange) {
1096     // Get an estimate of the type from the LLT.
1097     Type *IRTy = getTypeForLLT(MemOps[0], C);
1098     Align NewAlign = DL.getABITypeAlign(IRTy);
1099     if (NewAlign > Alignment) {
1100       Alignment = NewAlign;
1101       unsigned FI = FIDef->getOperand(1).getIndex();
1102       // Give the stack frame object a larger alignment if needed.
1103       if (MFI.getObjectAlign(FI) < Alignment)
1104         MFI.setObjectAlignment(FI, Alignment);
1105     }
1106   }
1107 
1108   MachineIRBuilder MIB(MI);
1109   // Find the largest store and generate the bit pattern for it.
1110   LLT LargestTy = MemOps[0];
1111   for (unsigned i = 1; i < MemOps.size(); i++)
1112     if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
1113       LargestTy = MemOps[i];
1114 
1115   // The memset stored value is always defined as an s8, so in order to make it
1116   // work with larger store types we need to repeat the bit pattern across the
1117   // wider type.
1118   Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
1119 
1120   if (!MemSetValue)
1121     return false;
1122 
1123   // Generate the stores. For each store type in the list, we generate the
1124   // matching store of that type to the destination address.
1125   LLT PtrTy = MRI.getType(Dst);
1126   unsigned DstOff = 0;
1127   unsigned Size = KnownLen;
1128   for (unsigned I = 0; I < MemOps.size(); I++) {
1129     LLT Ty = MemOps[I];
1130     unsigned TySize = Ty.getSizeInBytes();
1131     if (TySize > Size) {
1132       // Issuing an unaligned load / store pair that overlaps with the previous
1133       // pair. Adjust the offset accordingly.
1134       assert(I == MemOps.size() - 1 && I != 0);
1135       DstOff -= TySize - Size;
1136     }
1137 
1138     // If this store is smaller than the largest store see whether we can get
1139     // the smaller value for free with a truncate.
1140     Register Value = MemSetValue;
1141     if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
1142       MVT VT = getMVTForLLT(Ty);
1143       MVT LargestVT = getMVTForLLT(LargestTy);
1144       if (!LargestTy.isVector() && !Ty.isVector() &&
1145           TLI.isTruncateFree(LargestVT, VT))
1146         Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
1147       else
1148         Value = getMemsetValue(Val, Ty, MIB);
1149       if (!Value)
1150         return false;
1151     }
1152 
1153     auto *StoreMMO =
1154         MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes());
1155 
1156     Register Ptr = Dst;
1157     if (DstOff != 0) {
1158       auto Offset =
1159           MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
1160       Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
1161     }
1162 
1163     MIB.buildStore(Value, Ptr, *StoreMMO);
1164     DstOff += Ty.getSizeInBytes();
1165     Size -= TySize;
1166   }
1167 
1168   MI.eraseFromParent();
1169   return true;
1170 }
1171 
1172 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst,
1173                                     Register Src, unsigned KnownLen,
1174                                     Align DstAlign, Align SrcAlign,
1175                                     bool IsVolatile) {
1176   auto &MF = *MI.getParent()->getParent();
1177   const auto &TLI = *MF.getSubtarget().getTargetLowering();
1178   auto &DL = MF.getDataLayout();
1179   LLVMContext &C = MF.getFunction().getContext();
1180 
1181   assert(KnownLen != 0 && "Have a zero length memcpy length!");
1182 
1183   bool DstAlignCanChange = false;
1184   MachineFrameInfo &MFI = MF.getFrameInfo();
1185   bool OptSize = shouldLowerMemFuncForSize(MF);
1186   Align Alignment = commonAlignment(DstAlign, SrcAlign);
1187 
1188   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
1189   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
1190     DstAlignCanChange = true;
1191 
1192   // FIXME: infer better src pointer alignment like SelectionDAG does here.
1193   // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
1194   // if the memcpy is in a tail call position.
1195 
1196   unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize);
1197   std::vector<LLT> MemOps;
1198 
1199   const auto &DstMMO = **MI.memoperands_begin();
1200   const auto &SrcMMO = **std::next(MI.memoperands_begin());
1201   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
1202   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
1203 
1204   if (!findGISelOptimalMemOpLowering(
1205           MemOps, Limit,
1206           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
1207                       IsVolatile),
1208           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
1209           MF.getFunction().getAttributes(), TLI))
1210     return false;
1211 
1212   if (DstAlignCanChange) {
1213     // Get an estimate of the type from the LLT.
1214     Type *IRTy = getTypeForLLT(MemOps[0], C);
1215     Align NewAlign = DL.getABITypeAlign(IRTy);
1216 
1217     // Don't promote to an alignment that would require dynamic stack
1218     // realignment.
1219     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1220     if (!TRI->needsStackRealignment(MF))
1221       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
1222         NewAlign = NewAlign / 2;
1223 
1224     if (NewAlign > Alignment) {
1225       Alignment = NewAlign;
1226       unsigned FI = FIDef->getOperand(1).getIndex();
1227       // Give the stack frame object a larger alignment if needed.
1228       if (MFI.getObjectAlign(FI) < Alignment)
1229         MFI.setObjectAlignment(FI, Alignment);
1230     }
1231   }
1232 
1233   LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");
1234 
1235   MachineIRBuilder MIB(MI);
1236   // Now we need to emit a pair of load and stores for each of the types we've
1237   // collected. I.e. for each type, generate a load from the source pointer of
1238   // that type width, and then generate a corresponding store to the dest buffer
1239   // of that value loaded. This can result in a sequence of loads and stores
1240   // mixed types, depending on what the target specifies as good types to use.
1241   unsigned CurrOffset = 0;
1242   LLT PtrTy = MRI.getType(Src);
1243   unsigned Size = KnownLen;
1244   for (auto CopyTy : MemOps) {
1245     // Issuing an unaligned load / store pair  that overlaps with the previous
1246     // pair. Adjust the offset accordingly.
1247     if (CopyTy.getSizeInBytes() > Size)
1248       CurrOffset -= CopyTy.getSizeInBytes() - Size;
1249 
1250     // Construct MMOs for the accesses.
1251     auto *LoadMMO =
1252         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
1253     auto *StoreMMO =
1254         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
1255 
1256     // Create the load.
1257     Register LoadPtr = Src;
1258     Register Offset;
1259     if (CurrOffset != 0) {
1260       Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset)
1261                    .getReg(0);
1262       LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0);
1263     }
1264     auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
1265 
1266     // Create the store.
1267     Register StorePtr =
1268         CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
1269     MIB.buildStore(LdVal, StorePtr, *StoreMMO);
1270     CurrOffset += CopyTy.getSizeInBytes();
1271     Size -= CopyTy.getSizeInBytes();
1272   }
1273 
1274   MI.eraseFromParent();
1275   return true;
1276 }
1277 
1278 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst,
1279                                      Register Src, unsigned KnownLen,
1280                                      Align DstAlign, Align SrcAlign,
1281                                      bool IsVolatile) {
1282   auto &MF = *MI.getParent()->getParent();
1283   const auto &TLI = *MF.getSubtarget().getTargetLowering();
1284   auto &DL = MF.getDataLayout();
1285   LLVMContext &C = MF.getFunction().getContext();
1286 
1287   assert(KnownLen != 0 && "Have a zero length memmove length!");
1288 
1289   bool DstAlignCanChange = false;
1290   MachineFrameInfo &MFI = MF.getFrameInfo();
1291   bool OptSize = shouldLowerMemFuncForSize(MF);
1292   Align Alignment = commonAlignment(DstAlign, SrcAlign);
1293 
1294   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
1295   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
1296     DstAlignCanChange = true;
1297 
1298   unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
1299   std::vector<LLT> MemOps;
1300 
1301   const auto &DstMMO = **MI.memoperands_begin();
1302   const auto &SrcMMO = **std::next(MI.memoperands_begin());
1303   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
1304   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
1305 
1306   // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
1307   // to a bug in it's findOptimalMemOpLowering implementation. For now do the
1308   // same thing here.
1309   if (!findGISelOptimalMemOpLowering(
1310           MemOps, Limit,
1311           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
1312                       /*IsVolatile*/ true),
1313           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
1314           MF.getFunction().getAttributes(), TLI))
1315     return false;
1316 
1317   if (DstAlignCanChange) {
1318     // Get an estimate of the type from the LLT.
1319     Type *IRTy = getTypeForLLT(MemOps[0], C);
1320     Align NewAlign = DL.getABITypeAlign(IRTy);
1321 
1322     // Don't promote to an alignment that would require dynamic stack
1323     // realignment.
1324     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1325     if (!TRI->needsStackRealignment(MF))
1326       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
1327         NewAlign = NewAlign / 2;
1328 
1329     if (NewAlign > Alignment) {
1330       Alignment = NewAlign;
1331       unsigned FI = FIDef->getOperand(1).getIndex();
1332       // Give the stack frame object a larger alignment if needed.
1333       if (MFI.getObjectAlign(FI) < Alignment)
1334         MFI.setObjectAlignment(FI, Alignment);
1335     }
1336   }
1337 
1338   LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");
1339 
1340   MachineIRBuilder MIB(MI);
1341   // Memmove requires that we perform the loads first before issuing the stores.
1342   // Apart from that, this loop is pretty much doing the same thing as the
1343   // memcpy codegen function.
1344   unsigned CurrOffset = 0;
1345   LLT PtrTy = MRI.getType(Src);
1346   SmallVector<Register, 16> LoadVals;
1347   for (auto CopyTy : MemOps) {
1348     // Construct MMO for the load.
1349     auto *LoadMMO =
1350         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
1351 
1352     // Create the load.
1353     Register LoadPtr = Src;
1354     if (CurrOffset != 0) {
1355       auto Offset =
1356           MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
1357       LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0);
1358     }
1359     LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
1360     CurrOffset += CopyTy.getSizeInBytes();
1361   }
1362 
1363   CurrOffset = 0;
1364   for (unsigned I = 0; I < MemOps.size(); ++I) {
1365     LLT CopyTy = MemOps[I];
1366     // Now store the values loaded.
1367     auto *StoreMMO =
1368         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
1369 
1370     Register StorePtr = Dst;
1371     if (CurrOffset != 0) {
1372       auto Offset =
1373           MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
1374       StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
1375     }
1376     MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
1377     CurrOffset += CopyTy.getSizeInBytes();
1378   }
1379   MI.eraseFromParent();
1380   return true;
1381 }
1382 
1383 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
1384   const unsigned Opc = MI.getOpcode();
1385   // This combine is fairly complex so it's not written with a separate
1386   // matcher function.
1387   assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE ||
1388           Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction");
1389 
1390   auto MMOIt = MI.memoperands_begin();
1391   const MachineMemOperand *MemOp = *MMOIt;
1392   bool IsVolatile = MemOp->isVolatile();
1393   // Don't try to optimize volatile.
1394   if (IsVolatile)
1395     return false;
1396 
1397   Align DstAlign = MemOp->getBaseAlign();
1398   Align SrcAlign;
1399   Register Dst = MI.getOperand(0).getReg();
1400   Register Src = MI.getOperand(1).getReg();
1401   Register Len = MI.getOperand(2).getReg();
1402 
1403   if (Opc != TargetOpcode::G_MEMSET) {
1404     assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
1405     MemOp = *(++MMOIt);
1406     SrcAlign = MemOp->getBaseAlign();
1407   }
1408 
1409   // See if this is a constant length copy
1410   auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI);
1411   if (!LenVRegAndVal)
1412     return false; // Leave it to the legalizer to lower it to a libcall.
1413   unsigned KnownLen = LenVRegAndVal->Value.getZExtValue();
1414 
1415   if (KnownLen == 0) {
1416     MI.eraseFromParent();
1417     return true;
1418   }
1419 
1420   if (MaxLen && KnownLen > MaxLen)
1421     return false;
1422 
1423   if (Opc == TargetOpcode::G_MEMCPY)
1424     return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
1425   if (Opc == TargetOpcode::G_MEMMOVE)
1426     return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
1427   if (Opc == TargetOpcode::G_MEMSET)
1428     return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
1429   return false;
1430 }
1431 
1432 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy,
1433                                              const Register Op,
1434                                              const MachineRegisterInfo &MRI) {
1435   const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI);
1436   if (!MaybeCst)
1437     return None;
1438 
1439   APFloat V = MaybeCst->getValueAPF();
1440   switch (Opcode) {
1441   default:
1442     llvm_unreachable("Unexpected opcode!");
1443   case TargetOpcode::G_FNEG: {
1444     V.changeSign();
1445     return V;
1446   }
1447   case TargetOpcode::G_FABS: {
1448     V.clearSign();
1449     return V;
1450   }
1451   case TargetOpcode::G_FPTRUNC:
1452     break;
1453   case TargetOpcode::G_FSQRT: {
1454     bool Unused;
1455     V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1456     V = APFloat(sqrt(V.convertToDouble()));
1457     break;
1458   }
1459   case TargetOpcode::G_FLOG2: {
1460     bool Unused;
1461     V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1462     V = APFloat(log2(V.convertToDouble()));
1463     break;
1464   }
1465   }
1466   // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise,
1467   // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`,
1468   // and `G_FLOG2` reach here.
1469   bool Unused;
1470   V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused);
1471   return V;
1472 }
1473 
1474 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI,
1475                                                      Optional<APFloat> &Cst) {
1476   Register DstReg = MI.getOperand(0).getReg();
1477   Register SrcReg = MI.getOperand(1).getReg();
1478   LLT DstTy = MRI.getType(DstReg);
1479   Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI);
1480   return Cst.hasValue();
1481 }
1482 
1483 bool CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI,
1484                                                      Optional<APFloat> &Cst) {
1485   assert(Cst.hasValue() && "Optional is unexpectedly empty!");
1486   Builder.setInstrAndDebugLoc(MI);
1487   MachineFunction &MF = Builder.getMF();
1488   auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst);
1489   Register DstReg = MI.getOperand(0).getReg();
1490   Builder.buildFConstant(DstReg, *FPVal);
1491   MI.eraseFromParent();
1492   return true;
1493 }
1494 
1495 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI,
1496                                            PtrAddChain &MatchInfo) {
1497   // We're trying to match the following pattern:
1498   //   %t1 = G_PTR_ADD %base, G_CONSTANT imm1
1499   //   %root = G_PTR_ADD %t1, G_CONSTANT imm2
1500   // -->
1501   //   %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2)
1502 
1503   if (MI.getOpcode() != TargetOpcode::G_PTR_ADD)
1504     return false;
1505 
1506   Register Add2 = MI.getOperand(1).getReg();
1507   Register Imm1 = MI.getOperand(2).getReg();
1508   auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI);
1509   if (!MaybeImmVal)
1510     return false;
1511 
1512   MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2);
1513   if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD)
1514     return false;
1515 
1516   Register Base = Add2Def->getOperand(1).getReg();
1517   Register Imm2 = Add2Def->getOperand(2).getReg();
1518   auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI);
1519   if (!MaybeImm2Val)
1520     return false;
1521 
1522   // Pass the combined immediate to the apply function.
1523   MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue();
1524   MatchInfo.Base = Base;
1525   return true;
1526 }
1527 
1528 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI,
1529                                            PtrAddChain &MatchInfo) {
1530   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
1531   MachineIRBuilder MIB(MI);
1532   LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg());
1533   auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm);
1534   Observer.changingInstr(MI);
1535   MI.getOperand(1).setReg(MatchInfo.Base);
1536   MI.getOperand(2).setReg(NewOffset.getReg(0));
1537   Observer.changedInstr(MI);
1538   return true;
1539 }
1540 
1541 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI,
1542                                           RegisterImmPair &MatchInfo) {
1543   // We're trying to match the following pattern with any of
1544   // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions:
1545   //   %t1 = SHIFT %base, G_CONSTANT imm1
1546   //   %root = SHIFT %t1, G_CONSTANT imm2
1547   // -->
1548   //   %root = SHIFT %base, G_CONSTANT (imm1 + imm2)
1549 
1550   unsigned Opcode = MI.getOpcode();
1551   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1552           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1553           Opcode == TargetOpcode::G_USHLSAT) &&
1554          "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1555 
1556   Register Shl2 = MI.getOperand(1).getReg();
1557   Register Imm1 = MI.getOperand(2).getReg();
1558   auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI);
1559   if (!MaybeImmVal)
1560     return false;
1561 
1562   MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2);
1563   if (Shl2Def->getOpcode() != Opcode)
1564     return false;
1565 
1566   Register Base = Shl2Def->getOperand(1).getReg();
1567   Register Imm2 = Shl2Def->getOperand(2).getReg();
1568   auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI);
1569   if (!MaybeImm2Val)
1570     return false;
1571 
1572   // Pass the combined immediate to the apply function.
1573   MatchInfo.Imm =
1574       (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue();
1575   MatchInfo.Reg = Base;
1576 
1577   // There is no simple replacement for a saturating unsigned left shift that
1578   // exceeds the scalar size.
1579   if (Opcode == TargetOpcode::G_USHLSAT &&
1580       MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits())
1581     return false;
1582 
1583   return true;
1584 }
1585 
1586 bool CombinerHelper::applyShiftImmedChain(MachineInstr &MI,
1587                                           RegisterImmPair &MatchInfo) {
1588   unsigned Opcode = MI.getOpcode();
1589   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1590           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1591           Opcode == TargetOpcode::G_USHLSAT) &&
1592          "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1593 
1594   Builder.setInstrAndDebugLoc(MI);
1595   LLT Ty = MRI.getType(MI.getOperand(1).getReg());
1596   unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits();
1597   auto Imm = MatchInfo.Imm;
1598 
1599   if (Imm >= ScalarSizeInBits) {
1600     // Any logical shift that exceeds scalar size will produce zero.
1601     if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) {
1602       Builder.buildConstant(MI.getOperand(0), 0);
1603       MI.eraseFromParent();
1604       return true;
1605     }
1606     // Arithmetic shift and saturating signed left shift have no effect beyond
1607     // scalar size.
1608     Imm = ScalarSizeInBits - 1;
1609   }
1610 
1611   LLT ImmTy = MRI.getType(MI.getOperand(2).getReg());
1612   Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0);
1613   Observer.changingInstr(MI);
1614   MI.getOperand(1).setReg(MatchInfo.Reg);
1615   MI.getOperand(2).setReg(NewImm);
1616   Observer.changedInstr(MI);
1617   return true;
1618 }
1619 
1620 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI,
1621                                               ShiftOfShiftedLogic &MatchInfo) {
1622   // We're trying to match the following pattern with any of
1623   // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination
1624   // with any of G_AND/G_OR/G_XOR logic instructions.
1625   //   %t1 = SHIFT %X, G_CONSTANT C0
1626   //   %t2 = LOGIC %t1, %Y
1627   //   %root = SHIFT %t2, G_CONSTANT C1
1628   // -->
1629   //   %t3 = SHIFT %X, G_CONSTANT (C0+C1)
1630   //   %t4 = SHIFT %Y, G_CONSTANT C1
1631   //   %root = LOGIC %t3, %t4
1632   unsigned ShiftOpcode = MI.getOpcode();
1633   assert((ShiftOpcode == TargetOpcode::G_SHL ||
1634           ShiftOpcode == TargetOpcode::G_ASHR ||
1635           ShiftOpcode == TargetOpcode::G_LSHR ||
1636           ShiftOpcode == TargetOpcode::G_USHLSAT ||
1637           ShiftOpcode == TargetOpcode::G_SSHLSAT) &&
1638          "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1639 
1640   // Match a one-use bitwise logic op.
1641   Register LogicDest = MI.getOperand(1).getReg();
1642   if (!MRI.hasOneNonDBGUse(LogicDest))
1643     return false;
1644 
1645   MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest);
1646   unsigned LogicOpcode = LogicMI->getOpcode();
1647   if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR &&
1648       LogicOpcode != TargetOpcode::G_XOR)
1649     return false;
1650 
1651   // Find a matching one-use shift by constant.
1652   const Register C1 = MI.getOperand(2).getReg();
1653   auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI);
1654   if (!MaybeImmVal)
1655     return false;
1656 
1657   const uint64_t C1Val = MaybeImmVal->Value.getZExtValue();
1658 
1659   auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) {
1660     // Shift should match previous one and should be a one-use.
1661     if (MI->getOpcode() != ShiftOpcode ||
1662         !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
1663       return false;
1664 
1665     // Must be a constant.
1666     auto MaybeImmVal =
1667         getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
1668     if (!MaybeImmVal)
1669       return false;
1670 
1671     ShiftVal = MaybeImmVal->Value.getSExtValue();
1672     return true;
1673   };
1674 
1675   // Logic ops are commutative, so check each operand for a match.
1676   Register LogicMIReg1 = LogicMI->getOperand(1).getReg();
1677   MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1);
1678   Register LogicMIReg2 = LogicMI->getOperand(2).getReg();
1679   MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2);
1680   uint64_t C0Val;
1681 
1682   if (matchFirstShift(LogicMIOp1, C0Val)) {
1683     MatchInfo.LogicNonShiftReg = LogicMIReg2;
1684     MatchInfo.Shift2 = LogicMIOp1;
1685   } else if (matchFirstShift(LogicMIOp2, C0Val)) {
1686     MatchInfo.LogicNonShiftReg = LogicMIReg1;
1687     MatchInfo.Shift2 = LogicMIOp2;
1688   } else
1689     return false;
1690 
1691   MatchInfo.ValSum = C0Val + C1Val;
1692 
1693   // The fold is not valid if the sum of the shift values exceeds bitwidth.
1694   if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits())
1695     return false;
1696 
1697   MatchInfo.Logic = LogicMI;
1698   return true;
1699 }
1700 
1701 bool CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI,
1702                                               ShiftOfShiftedLogic &MatchInfo) {
1703   unsigned Opcode = MI.getOpcode();
1704   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1705           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT ||
1706           Opcode == TargetOpcode::G_SSHLSAT) &&
1707          "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1708 
1709   LLT ShlType = MRI.getType(MI.getOperand(2).getReg());
1710   LLT DestType = MRI.getType(MI.getOperand(0).getReg());
1711   Builder.setInstrAndDebugLoc(MI);
1712 
1713   Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0);
1714 
1715   Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg();
1716   Register Shift1 =
1717       Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0);
1718 
1719   Register Shift2Const = MI.getOperand(2).getReg();
1720   Register Shift2 = Builder
1721                         .buildInstr(Opcode, {DestType},
1722                                     {MatchInfo.LogicNonShiftReg, Shift2Const})
1723                         .getReg(0);
1724 
1725   Register Dest = MI.getOperand(0).getReg();
1726   Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2});
1727 
1728   // These were one use so it's safe to remove them.
1729   MatchInfo.Shift2->eraseFromParent();
1730   MatchInfo.Logic->eraseFromParent();
1731 
1732   MI.eraseFromParent();
1733   return true;
1734 }
1735 
1736 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI,
1737                                           unsigned &ShiftVal) {
1738   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
1739   auto MaybeImmVal =
1740       getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
1741   if (!MaybeImmVal)
1742     return false;
1743 
1744   ShiftVal = MaybeImmVal->Value.exactLogBase2();
1745   return (static_cast<int32_t>(ShiftVal) != -1);
1746 }
1747 
1748 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI,
1749                                           unsigned &ShiftVal) {
1750   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
1751   MachineIRBuilder MIB(MI);
1752   LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg());
1753   auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal);
1754   Observer.changingInstr(MI);
1755   MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL));
1756   MI.getOperand(2).setReg(ShiftCst.getReg(0));
1757   Observer.changedInstr(MI);
1758   return true;
1759 }
1760 
1761 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source
1762 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI,
1763                                              RegisterImmPair &MatchData) {
1764   assert(MI.getOpcode() == TargetOpcode::G_SHL && KB);
1765 
1766   Register LHS = MI.getOperand(1).getReg();
1767 
1768   Register ExtSrc;
1769   if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) &&
1770       !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) &&
1771       !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc))))
1772     return false;
1773 
1774   // TODO: Should handle vector splat.
1775   Register RHS = MI.getOperand(2).getReg();
1776   auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI);
1777   if (!MaybeShiftAmtVal)
1778     return false;
1779 
1780   if (LI) {
1781     LLT SrcTy = MRI.getType(ExtSrc);
1782 
1783     // We only really care about the legality with the shifted value. We can
1784     // pick any type the constant shift amount, so ask the target what to
1785     // use. Otherwise we would have to guess and hope it is reported as legal.
1786     LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy);
1787     if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}}))
1788       return false;
1789   }
1790 
1791   int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue();
1792   MatchData.Reg = ExtSrc;
1793   MatchData.Imm = ShiftAmt;
1794 
1795   unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes();
1796   return MinLeadingZeros >= ShiftAmt;
1797 }
1798 
1799 bool CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI,
1800                                              const RegisterImmPair &MatchData) {
1801   Register ExtSrcReg = MatchData.Reg;
1802   int64_t ShiftAmtVal = MatchData.Imm;
1803 
1804   LLT ExtSrcTy = MRI.getType(ExtSrcReg);
1805   Builder.setInstrAndDebugLoc(MI);
1806   auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal);
1807   auto NarrowShift =
1808       Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags());
1809   Builder.buildZExt(MI.getOperand(0), NarrowShift);
1810   MI.eraseFromParent();
1811   return true;
1812 }
1813 
1814 static Register peekThroughBitcast(Register Reg,
1815                                    const MachineRegisterInfo &MRI) {
1816   while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg))))
1817     ;
1818 
1819   return Reg;
1820 }
1821 
1822 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues(
1823     MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
1824   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1825          "Expected an unmerge");
1826   Register SrcReg =
1827       peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI);
1828 
1829   MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
1830   if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES &&
1831       SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR &&
1832       SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS)
1833     return false;
1834 
1835   // Check the source type of the merge.
1836   LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg());
1837   LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
1838   bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits();
1839   if (SrcMergeTy != Dst0Ty && !SameSize)
1840     return false;
1841   // They are the same now (modulo a bitcast).
1842   // We can collect all the src registers.
1843   for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx;
1844        ++Idx)
1845     Operands.push_back(SrcInstr->getOperand(Idx).getReg());
1846   return true;
1847 }
1848 
1849 bool CombinerHelper::applyCombineUnmergeMergeToPlainValues(
1850     MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
1851   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1852          "Expected an unmerge");
1853   assert((MI.getNumOperands() - 1 == Operands.size()) &&
1854          "Not enough operands to replace all defs");
1855   unsigned NumElems = MI.getNumOperands() - 1;
1856 
1857   LLT SrcTy = MRI.getType(Operands[0]);
1858   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1859   bool CanReuseInputDirectly = DstTy == SrcTy;
1860   Builder.setInstrAndDebugLoc(MI);
1861   for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
1862     Register DstReg = MI.getOperand(Idx).getReg();
1863     Register SrcReg = Operands[Idx];
1864     if (CanReuseInputDirectly)
1865       replaceRegWith(MRI, DstReg, SrcReg);
1866     else
1867       Builder.buildCast(DstReg, SrcReg);
1868   }
1869   MI.eraseFromParent();
1870   return true;
1871 }
1872 
1873 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI,
1874                                                  SmallVectorImpl<APInt> &Csts) {
1875   unsigned SrcIdx = MI.getNumOperands() - 1;
1876   Register SrcReg = MI.getOperand(SrcIdx).getReg();
1877   MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
1878   if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT &&
1879       SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT)
1880     return false;
1881   // Break down the big constant in smaller ones.
1882   const MachineOperand &CstVal = SrcInstr->getOperand(1);
1883   APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT
1884                   ? CstVal.getCImm()->getValue()
1885                   : CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
1886 
1887   LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
1888   unsigned ShiftAmt = Dst0Ty.getSizeInBits();
1889   // Unmerge a constant.
1890   for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) {
1891     Csts.emplace_back(Val.trunc(ShiftAmt));
1892     Val = Val.lshr(ShiftAmt);
1893   }
1894 
1895   return true;
1896 }
1897 
1898 bool CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI,
1899                                                  SmallVectorImpl<APInt> &Csts) {
1900   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1901          "Expected an unmerge");
1902   assert((MI.getNumOperands() - 1 == Csts.size()) &&
1903          "Not enough operands to replace all defs");
1904   unsigned NumElems = MI.getNumOperands() - 1;
1905   Builder.setInstrAndDebugLoc(MI);
1906   for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
1907     Register DstReg = MI.getOperand(Idx).getReg();
1908     Builder.buildConstant(DstReg, Csts[Idx]);
1909   }
1910 
1911   MI.eraseFromParent();
1912   return true;
1913 }
1914 
1915 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
1916   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1917          "Expected an unmerge");
1918   // Check that all the lanes are dead except the first one.
1919   for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
1920     if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg()))
1921       return false;
1922   }
1923   return true;
1924 }
1925 
1926 bool CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
1927   Builder.setInstrAndDebugLoc(MI);
1928   Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
1929   // Truncating a vector is going to truncate every single lane,
1930   // whereas we want the full lowbits.
1931   // Do the operation on a scalar instead.
1932   LLT SrcTy = MRI.getType(SrcReg);
1933   if (SrcTy.isVector())
1934     SrcReg =
1935         Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0);
1936 
1937   Register Dst0Reg = MI.getOperand(0).getReg();
1938   LLT Dst0Ty = MRI.getType(Dst0Reg);
1939   if (Dst0Ty.isVector()) {
1940     auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg);
1941     Builder.buildCast(Dst0Reg, MIB);
1942   } else
1943     Builder.buildTrunc(Dst0Reg, SrcReg);
1944   MI.eraseFromParent();
1945   return true;
1946 }
1947 
1948 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) {
1949   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1950          "Expected an unmerge");
1951   Register Dst0Reg = MI.getOperand(0).getReg();
1952   LLT Dst0Ty = MRI.getType(Dst0Reg);
1953   // G_ZEXT on vector applies to each lane, so it will
1954   // affect all destinations. Therefore we won't be able
1955   // to simplify the unmerge to just the first definition.
1956   if (Dst0Ty.isVector())
1957     return false;
1958   Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
1959   LLT SrcTy = MRI.getType(SrcReg);
1960   if (SrcTy.isVector())
1961     return false;
1962 
1963   Register ZExtSrcReg;
1964   if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg))))
1965     return false;
1966 
1967   // Finally we can replace the first definition with
1968   // a zext of the source if the definition is big enough to hold
1969   // all of ZExtSrc bits.
1970   LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
1971   return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits();
1972 }
1973 
1974 bool CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) {
1975   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1976          "Expected an unmerge");
1977 
1978   Register Dst0Reg = MI.getOperand(0).getReg();
1979 
1980   MachineInstr *ZExtInstr =
1981       MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg());
1982   assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT &&
1983          "Expecting a G_ZEXT");
1984 
1985   Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg();
1986   LLT Dst0Ty = MRI.getType(Dst0Reg);
1987   LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
1988 
1989   Builder.setInstrAndDebugLoc(MI);
1990 
1991   if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) {
1992     Builder.buildZExt(Dst0Reg, ZExtSrcReg);
1993   } else {
1994     assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() &&
1995            "ZExt src doesn't fit in destination");
1996     replaceRegWith(MRI, Dst0Reg, ZExtSrcReg);
1997   }
1998 
1999   Register ZeroReg;
2000   for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
2001     if (!ZeroReg)
2002       ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0);
2003     replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg);
2004   }
2005   MI.eraseFromParent();
2006   return true;
2007 }
2008 
2009 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI,
2010                                                 unsigned TargetShiftSize,
2011                                                 unsigned &ShiftVal) {
2012   assert((MI.getOpcode() == TargetOpcode::G_SHL ||
2013           MI.getOpcode() == TargetOpcode::G_LSHR ||
2014           MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift");
2015 
2016   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2017   if (Ty.isVector()) // TODO:
2018     return false;
2019 
2020   // Don't narrow further than the requested size.
2021   unsigned Size = Ty.getSizeInBits();
2022   if (Size <= TargetShiftSize)
2023     return false;
2024 
2025   auto MaybeImmVal =
2026     getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
2027   if (!MaybeImmVal)
2028     return false;
2029 
2030   ShiftVal = MaybeImmVal->Value.getSExtValue();
2031   return ShiftVal >= Size / 2 && ShiftVal < Size;
2032 }
2033 
2034 bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI,
2035                                                 const unsigned &ShiftVal) {
2036   Register DstReg = MI.getOperand(0).getReg();
2037   Register SrcReg = MI.getOperand(1).getReg();
2038   LLT Ty = MRI.getType(SrcReg);
2039   unsigned Size = Ty.getSizeInBits();
2040   unsigned HalfSize = Size / 2;
2041   assert(ShiftVal >= HalfSize);
2042 
2043   LLT HalfTy = LLT::scalar(HalfSize);
2044 
2045   Builder.setInstr(MI);
2046   auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg);
2047   unsigned NarrowShiftAmt = ShiftVal - HalfSize;
2048 
2049   if (MI.getOpcode() == TargetOpcode::G_LSHR) {
2050     Register Narrowed = Unmerge.getReg(1);
2051 
2052     //  dst = G_LSHR s64:x, C for C >= 32
2053     // =>
2054     //   lo, hi = G_UNMERGE_VALUES x
2055     //   dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0
2056 
2057     if (NarrowShiftAmt != 0) {
2058       Narrowed = Builder.buildLShr(HalfTy, Narrowed,
2059         Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
2060     }
2061 
2062     auto Zero = Builder.buildConstant(HalfTy, 0);
2063     Builder.buildMerge(DstReg, { Narrowed, Zero });
2064   } else if (MI.getOpcode() == TargetOpcode::G_SHL) {
2065     Register Narrowed = Unmerge.getReg(0);
2066     //  dst = G_SHL s64:x, C for C >= 32
2067     // =>
2068     //   lo, hi = G_UNMERGE_VALUES x
2069     //   dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32)
2070     if (NarrowShiftAmt != 0) {
2071       Narrowed = Builder.buildShl(HalfTy, Narrowed,
2072         Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
2073     }
2074 
2075     auto Zero = Builder.buildConstant(HalfTy, 0);
2076     Builder.buildMerge(DstReg, { Zero, Narrowed });
2077   } else {
2078     assert(MI.getOpcode() == TargetOpcode::G_ASHR);
2079     auto Hi = Builder.buildAShr(
2080       HalfTy, Unmerge.getReg(1),
2081       Builder.buildConstant(HalfTy, HalfSize - 1));
2082 
2083     if (ShiftVal == HalfSize) {
2084       // (G_ASHR i64:x, 32) ->
2085       //   G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31)
2086       Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi });
2087     } else if (ShiftVal == Size - 1) {
2088       // Don't need a second shift.
2089       // (G_ASHR i64:x, 63) ->
2090       //   %narrowed = (G_ASHR hi_32(x), 31)
2091       //   G_MERGE_VALUES %narrowed, %narrowed
2092       Builder.buildMerge(DstReg, { Hi, Hi });
2093     } else {
2094       auto Lo = Builder.buildAShr(
2095         HalfTy, Unmerge.getReg(1),
2096         Builder.buildConstant(HalfTy, ShiftVal - HalfSize));
2097 
2098       // (G_ASHR i64:x, C) ->, for C >= 32
2099       //   G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31)
2100       Builder.buildMerge(DstReg, { Lo, Hi });
2101     }
2102   }
2103 
2104   MI.eraseFromParent();
2105   return true;
2106 }
2107 
2108 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI,
2109                                               unsigned TargetShiftAmount) {
2110   unsigned ShiftAmt;
2111   if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) {
2112     applyCombineShiftToUnmerge(MI, ShiftAmt);
2113     return true;
2114   }
2115 
2116   return false;
2117 }
2118 
2119 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2120   assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
2121   Register DstReg = MI.getOperand(0).getReg();
2122   LLT DstTy = MRI.getType(DstReg);
2123   Register SrcReg = MI.getOperand(1).getReg();
2124   return mi_match(SrcReg, MRI,
2125                   m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg))));
2126 }
2127 
2128 bool CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2129   assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
2130   Register DstReg = MI.getOperand(0).getReg();
2131   Builder.setInstr(MI);
2132   Builder.buildCopy(DstReg, Reg);
2133   MI.eraseFromParent();
2134   return true;
2135 }
2136 
2137 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2138   assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
2139   Register SrcReg = MI.getOperand(1).getReg();
2140   return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg)));
2141 }
2142 
2143 bool CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2144   assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
2145   Register DstReg = MI.getOperand(0).getReg();
2146   Builder.setInstr(MI);
2147   Builder.buildZExtOrTrunc(DstReg, Reg);
2148   MI.eraseFromParent();
2149   return true;
2150 }
2151 
2152 bool CombinerHelper::matchCombineAddP2IToPtrAdd(
2153     MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2154   assert(MI.getOpcode() == TargetOpcode::G_ADD);
2155   Register LHS = MI.getOperand(1).getReg();
2156   Register RHS = MI.getOperand(2).getReg();
2157   LLT IntTy = MRI.getType(LHS);
2158 
2159   // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the
2160   // instruction.
2161   PtrReg.second = false;
2162   for (Register SrcReg : {LHS, RHS}) {
2163     if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) {
2164       // Don't handle cases where the integer is implicitly converted to the
2165       // pointer width.
2166       LLT PtrTy = MRI.getType(PtrReg.first);
2167       if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits())
2168         return true;
2169     }
2170 
2171     PtrReg.second = true;
2172   }
2173 
2174   return false;
2175 }
2176 
2177 bool CombinerHelper::applyCombineAddP2IToPtrAdd(
2178     MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2179   Register Dst = MI.getOperand(0).getReg();
2180   Register LHS = MI.getOperand(1).getReg();
2181   Register RHS = MI.getOperand(2).getReg();
2182 
2183   const bool DoCommute = PtrReg.second;
2184   if (DoCommute)
2185     std::swap(LHS, RHS);
2186   LHS = PtrReg.first;
2187 
2188   LLT PtrTy = MRI.getType(LHS);
2189 
2190   Builder.setInstrAndDebugLoc(MI);
2191   auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS);
2192   Builder.buildPtrToInt(Dst, PtrAdd);
2193   MI.eraseFromParent();
2194   return true;
2195 }
2196 
2197 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI,
2198                                                   int64_t &NewCst) {
2199   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD");
2200   Register LHS = MI.getOperand(1).getReg();
2201   Register RHS = MI.getOperand(2).getReg();
2202   MachineRegisterInfo &MRI = Builder.getMF().getRegInfo();
2203 
2204   if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) {
2205     int64_t Cst;
2206     if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) {
2207       NewCst = Cst + *RHSCst;
2208       return true;
2209     }
2210   }
2211 
2212   return false;
2213 }
2214 
2215 bool CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI,
2216                                                   int64_t &NewCst) {
2217   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD");
2218   Register Dst = MI.getOperand(0).getReg();
2219 
2220   Builder.setInstrAndDebugLoc(MI);
2221   Builder.buildConstant(Dst, NewCst);
2222   MI.eraseFromParent();
2223   return true;
2224 }
2225 
2226 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
2227   assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT");
2228   Register DstReg = MI.getOperand(0).getReg();
2229   Register SrcReg = MI.getOperand(1).getReg();
2230   LLT DstTy = MRI.getType(DstReg);
2231   return mi_match(SrcReg, MRI,
2232                   m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))));
2233 }
2234 
2235 bool CombinerHelper::applyCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
2236   assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT");
2237   Register DstReg = MI.getOperand(0).getReg();
2238   MI.eraseFromParent();
2239   replaceRegWith(MRI, DstReg, Reg);
2240   return true;
2241 }
2242 
2243 bool CombinerHelper::matchCombineExtOfExt(
2244     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2245   assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2246           MI.getOpcode() == TargetOpcode::G_SEXT ||
2247           MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2248          "Expected a G_[ASZ]EXT");
2249   Register SrcReg = MI.getOperand(1).getReg();
2250   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2251   // Match exts with the same opcode, anyext([sz]ext) and sext(zext).
2252   unsigned Opc = MI.getOpcode();
2253   unsigned SrcOpc = SrcMI->getOpcode();
2254   if (Opc == SrcOpc ||
2255       (Opc == TargetOpcode::G_ANYEXT &&
2256        (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) ||
2257       (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) {
2258     MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc);
2259     return true;
2260   }
2261   return false;
2262 }
2263 
2264 bool CombinerHelper::applyCombineExtOfExt(
2265     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2266   assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2267           MI.getOpcode() == TargetOpcode::G_SEXT ||
2268           MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2269          "Expected a G_[ASZ]EXT");
2270 
2271   Register Reg = std::get<0>(MatchInfo);
2272   unsigned SrcExtOp = std::get<1>(MatchInfo);
2273 
2274   // Combine exts with the same opcode.
2275   if (MI.getOpcode() == SrcExtOp) {
2276     Observer.changingInstr(MI);
2277     MI.getOperand(1).setReg(Reg);
2278     Observer.changedInstr(MI);
2279     return true;
2280   }
2281 
2282   // Combine:
2283   // - anyext([sz]ext x) to [sz]ext x
2284   // - sext(zext x) to zext x
2285   if (MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2286       (MI.getOpcode() == TargetOpcode::G_SEXT &&
2287        SrcExtOp == TargetOpcode::G_ZEXT)) {
2288     Register DstReg = MI.getOperand(0).getReg();
2289     Builder.setInstrAndDebugLoc(MI);
2290     Builder.buildInstr(SrcExtOp, {DstReg}, {Reg});
2291     MI.eraseFromParent();
2292     return true;
2293   }
2294 
2295   return false;
2296 }
2297 
2298 bool CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) {
2299   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
2300   Register DstReg = MI.getOperand(0).getReg();
2301   Register SrcReg = MI.getOperand(1).getReg();
2302   LLT DstTy = MRI.getType(DstReg);
2303 
2304   Builder.setInstrAndDebugLoc(MI);
2305   Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg,
2306                    MI.getFlags());
2307   MI.eraseFromParent();
2308   return true;
2309 }
2310 
2311 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) {
2312   assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG");
2313   Register SrcReg = MI.getOperand(1).getReg();
2314   return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg)));
2315 }
2316 
2317 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) {
2318   assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS");
2319   Src = MI.getOperand(1).getReg();
2320   Register AbsSrc;
2321   return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc)));
2322 }
2323 
2324 bool CombinerHelper::applyCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) {
2325   assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS");
2326   Register Dst = MI.getOperand(0).getReg();
2327   MI.eraseFromParent();
2328   replaceRegWith(MRI, Dst, Src);
2329   return true;
2330 }
2331 
2332 bool CombinerHelper::matchCombineTruncOfExt(
2333     MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2334   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2335   Register SrcReg = MI.getOperand(1).getReg();
2336   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2337   unsigned SrcOpc = SrcMI->getOpcode();
2338   if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT ||
2339       SrcOpc == TargetOpcode::G_ZEXT) {
2340     MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc);
2341     return true;
2342   }
2343   return false;
2344 }
2345 
2346 bool CombinerHelper::applyCombineTruncOfExt(
2347     MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2348   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2349   Register SrcReg = MatchInfo.first;
2350   unsigned SrcExtOp = MatchInfo.second;
2351   Register DstReg = MI.getOperand(0).getReg();
2352   LLT SrcTy = MRI.getType(SrcReg);
2353   LLT DstTy = MRI.getType(DstReg);
2354   if (SrcTy == DstTy) {
2355     MI.eraseFromParent();
2356     replaceRegWith(MRI, DstReg, SrcReg);
2357     return true;
2358   }
2359   Builder.setInstrAndDebugLoc(MI);
2360   if (SrcTy.getSizeInBits() < DstTy.getSizeInBits())
2361     Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg});
2362   else
2363     Builder.buildTrunc(DstReg, SrcReg);
2364   MI.eraseFromParent();
2365   return true;
2366 }
2367 
2368 bool CombinerHelper::matchCombineTruncOfShl(
2369     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
2370   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2371   Register DstReg = MI.getOperand(0).getReg();
2372   Register SrcReg = MI.getOperand(1).getReg();
2373   LLT DstTy = MRI.getType(DstReg);
2374   Register ShiftSrc;
2375   Register ShiftAmt;
2376 
2377   if (MRI.hasOneNonDBGUse(SrcReg) &&
2378       mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) &&
2379       isLegalOrBeforeLegalizer(
2380           {TargetOpcode::G_SHL,
2381            {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) {
2382     KnownBits Known = KB->getKnownBits(ShiftAmt);
2383     unsigned Size = DstTy.getSizeInBits();
2384     if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
2385       MatchInfo = std::make_pair(ShiftSrc, ShiftAmt);
2386       return true;
2387     }
2388   }
2389   return false;
2390 }
2391 
2392 bool CombinerHelper::applyCombineTruncOfShl(
2393     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
2394   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2395   Register DstReg = MI.getOperand(0).getReg();
2396   Register SrcReg = MI.getOperand(1).getReg();
2397   LLT DstTy = MRI.getType(DstReg);
2398   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2399 
2400   Register ShiftSrc = MatchInfo.first;
2401   Register ShiftAmt = MatchInfo.second;
2402   Builder.setInstrAndDebugLoc(MI);
2403   auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc);
2404   Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags());
2405   MI.eraseFromParent();
2406   return true;
2407 }
2408 
2409 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) {
2410   return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2411     return MO.isReg() &&
2412            getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2413   });
2414 }
2415 
2416 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) {
2417   return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2418     return !MO.isReg() ||
2419            getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2420   });
2421 }
2422 
2423 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) {
2424   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
2425   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
2426   return all_of(Mask, [](int Elt) { return Elt < 0; });
2427 }
2428 
2429 bool CombinerHelper::matchUndefStore(MachineInstr &MI) {
2430   assert(MI.getOpcode() == TargetOpcode::G_STORE);
2431   return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(),
2432                       MRI);
2433 }
2434 
2435 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) {
2436   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2437   return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(),
2438                       MRI);
2439 }
2440 
2441 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) {
2442   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2443   if (auto MaybeCstCmp =
2444           getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) {
2445     OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2;
2446     return true;
2447   }
2448   return false;
2449 }
2450 
2451 bool CombinerHelper::eraseInst(MachineInstr &MI) {
2452   MI.eraseFromParent();
2453   return true;
2454 }
2455 
2456 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1,
2457                                     const MachineOperand &MOP2) {
2458   if (!MOP1.isReg() || !MOP2.isReg())
2459     return false;
2460   MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI);
2461   if (!I1)
2462     return false;
2463   MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI);
2464   if (!I2)
2465     return false;
2466 
2467   // Handle a case like this:
2468   //
2469   // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>)
2470   //
2471   // Even though %0 and %1 are produced by the same instruction they are not
2472   // the same values.
2473   if (I1 == I2)
2474     return MOP1.getReg() == MOP2.getReg();
2475 
2476   // If we have an instruction which loads or stores, we can't guarantee that
2477   // it is identical.
2478   //
2479   // For example, we may have
2480   //
2481   // %x1 = G_LOAD %addr (load N from @somewhere)
2482   // ...
2483   // call @foo
2484   // ...
2485   // %x2 = G_LOAD %addr (load N from @somewhere)
2486   // ...
2487   // %or = G_OR %x1, %x2
2488   //
2489   // It's possible that @foo will modify whatever lives at the address we're
2490   // loading from. To be safe, let's just assume that all loads and stores
2491   // are different (unless we have something which is guaranteed to not
2492   // change.)
2493   if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr))
2494     return false;
2495 
2496   // Check for physical registers on the instructions first to avoid cases
2497   // like this:
2498   //
2499   // %a = COPY $physreg
2500   // ...
2501   // SOMETHING implicit-def $physreg
2502   // ...
2503   // %b = COPY $physreg
2504   //
2505   // These copies are not equivalent.
2506   if (any_of(I1->uses(), [](const MachineOperand &MO) {
2507         return MO.isReg() && MO.getReg().isPhysical();
2508       })) {
2509     // Check if we have a case like this:
2510     //
2511     // %a = COPY $physreg
2512     // %b = COPY %a
2513     //
2514     // In this case, I1 and I2 will both be equal to %a = COPY $physreg.
2515     // From that, we know that they must have the same value, since they must
2516     // have come from the same COPY.
2517     return I1->isIdenticalTo(*I2);
2518   }
2519 
2520   // We don't have any physical registers, so we don't necessarily need the
2521   // same vreg defs.
2522   //
2523   // On the off-chance that there's some target instruction feeding into the
2524   // instruction, let's use produceSameValue instead of isIdenticalTo.
2525   return Builder.getTII().produceSameValue(*I1, *I2, &MRI);
2526 }
2527 
2528 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) {
2529   if (!MOP.isReg())
2530     return false;
2531   // MIPatternMatch doesn't let us look through G_ZEXT etc.
2532   auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI);
2533   return ValAndVReg && ValAndVReg->Value == C;
2534 }
2535 
2536 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI,
2537                                                      unsigned OpIdx) {
2538   assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2539   Register OldReg = MI.getOperand(0).getReg();
2540   Register Replacement = MI.getOperand(OpIdx).getReg();
2541   assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2542   MI.eraseFromParent();
2543   replaceRegWith(MRI, OldReg, Replacement);
2544   return true;
2545 }
2546 
2547 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI,
2548                                                  Register Replacement) {
2549   assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2550   Register OldReg = MI.getOperand(0).getReg();
2551   assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2552   MI.eraseFromParent();
2553   replaceRegWith(MRI, OldReg, Replacement);
2554   return true;
2555 }
2556 
2557 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) {
2558   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2559   // Match (cond ? x : x)
2560   return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) &&
2561          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(),
2562                        MRI);
2563 }
2564 
2565 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) {
2566   return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) &&
2567          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
2568                        MRI);
2569 }
2570 
2571 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) {
2572   return matchConstantOp(MI.getOperand(OpIdx), 0) &&
2573          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(),
2574                        MRI);
2575 }
2576 
2577 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) {
2578   MachineOperand &MO = MI.getOperand(OpIdx);
2579   return MO.isReg() &&
2580          getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2581 }
2582 
2583 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) {
2584   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2585   Builder.setInstr(MI);
2586   Builder.buildFConstant(MI.getOperand(0), C);
2587   MI.eraseFromParent();
2588   return true;
2589 }
2590 
2591 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) {
2592   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2593   Builder.setInstr(MI);
2594   Builder.buildConstant(MI.getOperand(0), C);
2595   MI.eraseFromParent();
2596   return true;
2597 }
2598 
2599 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) {
2600   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2601   Builder.setInstr(MI);
2602   Builder.buildUndef(MI.getOperand(0));
2603   MI.eraseFromParent();
2604   return true;
2605 }
2606 
2607 bool CombinerHelper::matchSimplifyAddToSub(
2608     MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2609   Register LHS = MI.getOperand(1).getReg();
2610   Register RHS = MI.getOperand(2).getReg();
2611   Register &NewLHS = std::get<0>(MatchInfo);
2612   Register &NewRHS = std::get<1>(MatchInfo);
2613 
2614   // Helper lambda to check for opportunities for
2615   // ((0-A) + B) -> B - A
2616   // (A + (0-B)) -> A - B
2617   auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) {
2618     if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS))))
2619       return false;
2620     NewLHS = MaybeNewLHS;
2621     return true;
2622   };
2623 
2624   return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
2625 }
2626 
2627 bool CombinerHelper::matchCombineInsertVecElts(
2628     MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2629   assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT &&
2630          "Invalid opcode");
2631   Register DstReg = MI.getOperand(0).getReg();
2632   LLT DstTy = MRI.getType(DstReg);
2633   assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?");
2634   unsigned NumElts = DstTy.getNumElements();
2635   // If this MI is part of a sequence of insert_vec_elts, then
2636   // don't do the combine in the middle of the sequence.
2637   if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() ==
2638                                    TargetOpcode::G_INSERT_VECTOR_ELT)
2639     return false;
2640   MachineInstr *CurrInst = &MI;
2641   MachineInstr *TmpInst;
2642   int64_t IntImm;
2643   Register TmpReg;
2644   MatchInfo.resize(NumElts);
2645   while (mi_match(
2646       CurrInst->getOperand(0).getReg(), MRI,
2647       m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) {
2648     if (IntImm >= NumElts)
2649       return false;
2650     if (!MatchInfo[IntImm])
2651       MatchInfo[IntImm] = TmpReg;
2652     CurrInst = TmpInst;
2653   }
2654   // Variable index.
2655   if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
2656     return false;
2657   if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
2658     for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) {
2659       if (!MatchInfo[I - 1].isValid())
2660         MatchInfo[I - 1] = TmpInst->getOperand(I).getReg();
2661     }
2662     return true;
2663   }
2664   // If we didn't end in a G_IMPLICIT_DEF, bail out.
2665   return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF;
2666 }
2667 
2668 bool CombinerHelper::applyCombineInsertVecElts(
2669     MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2670   Builder.setInstr(MI);
2671   Register UndefReg;
2672   auto GetUndef = [&]() {
2673     if (UndefReg)
2674       return UndefReg;
2675     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2676     UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0);
2677     return UndefReg;
2678   };
2679   for (unsigned I = 0; I < MatchInfo.size(); ++I) {
2680     if (!MatchInfo[I])
2681       MatchInfo[I] = GetUndef();
2682   }
2683   Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo);
2684   MI.eraseFromParent();
2685   return true;
2686 }
2687 
2688 bool CombinerHelper::applySimplifyAddToSub(
2689     MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2690   Builder.setInstr(MI);
2691   Register SubLHS, SubRHS;
2692   std::tie(SubLHS, SubRHS) = MatchInfo;
2693   Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS);
2694   MI.eraseFromParent();
2695   return true;
2696 }
2697 
2698 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands(
2699     MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
2700   // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ...
2701   //
2702   // Creates the new hand + logic instruction (but does not insert them.)
2703   //
2704   // On success, MatchInfo is populated with the new instructions. These are
2705   // inserted in applyHoistLogicOpWithSameOpcodeHands.
2706   unsigned LogicOpcode = MI.getOpcode();
2707   assert(LogicOpcode == TargetOpcode::G_AND ||
2708          LogicOpcode == TargetOpcode::G_OR ||
2709          LogicOpcode == TargetOpcode::G_XOR);
2710   MachineIRBuilder MIB(MI);
2711   Register Dst = MI.getOperand(0).getReg();
2712   Register LHSReg = MI.getOperand(1).getReg();
2713   Register RHSReg = MI.getOperand(2).getReg();
2714 
2715   // Don't recompute anything.
2716   if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg))
2717     return false;
2718 
2719   // Make sure we have (hand x, ...), (hand y, ...)
2720   MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI);
2721   MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI);
2722   if (!LeftHandInst || !RightHandInst)
2723     return false;
2724   unsigned HandOpcode = LeftHandInst->getOpcode();
2725   if (HandOpcode != RightHandInst->getOpcode())
2726     return false;
2727   if (!LeftHandInst->getOperand(1).isReg() ||
2728       !RightHandInst->getOperand(1).isReg())
2729     return false;
2730 
2731   // Make sure the types match up, and if we're doing this post-legalization,
2732   // we end up with legal types.
2733   Register X = LeftHandInst->getOperand(1).getReg();
2734   Register Y = RightHandInst->getOperand(1).getReg();
2735   LLT XTy = MRI.getType(X);
2736   LLT YTy = MRI.getType(Y);
2737   if (XTy != YTy)
2738     return false;
2739   if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}}))
2740     return false;
2741 
2742   // Optional extra source register.
2743   Register ExtraHandOpSrcReg;
2744   switch (HandOpcode) {
2745   default:
2746     return false;
2747   case TargetOpcode::G_ANYEXT:
2748   case TargetOpcode::G_SEXT:
2749   case TargetOpcode::G_ZEXT: {
2750     // Match: logic (ext X), (ext Y) --> ext (logic X, Y)
2751     break;
2752   }
2753   case TargetOpcode::G_AND:
2754   case TargetOpcode::G_ASHR:
2755   case TargetOpcode::G_LSHR:
2756   case TargetOpcode::G_SHL: {
2757     // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z
2758     MachineOperand &ZOp = LeftHandInst->getOperand(2);
2759     if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2)))
2760       return false;
2761     ExtraHandOpSrcReg = ZOp.getReg();
2762     break;
2763   }
2764   }
2765 
2766   // Record the steps to build the new instructions.
2767   //
2768   // Steps to build (logic x, y)
2769   auto NewLogicDst = MRI.createGenericVirtualRegister(XTy);
2770   OperandBuildSteps LogicBuildSteps = {
2771       [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); },
2772       [=](MachineInstrBuilder &MIB) { MIB.addReg(X); },
2773       [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }};
2774   InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps);
2775 
2776   // Steps to build hand (logic x, y), ...z
2777   OperandBuildSteps HandBuildSteps = {
2778       [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); },
2779       [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }};
2780   if (ExtraHandOpSrcReg.isValid())
2781     HandBuildSteps.push_back(
2782         [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); });
2783   InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps);
2784 
2785   MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps});
2786   return true;
2787 }
2788 
2789 bool CombinerHelper::applyBuildInstructionSteps(
2790     MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
2791   assert(MatchInfo.InstrsToBuild.size() &&
2792          "Expected at least one instr to build?");
2793   Builder.setInstr(MI);
2794   for (auto &InstrToBuild : MatchInfo.InstrsToBuild) {
2795     assert(InstrToBuild.Opcode && "Expected a valid opcode?");
2796     assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?");
2797     MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode);
2798     for (auto &OperandFn : InstrToBuild.OperandFns)
2799       OperandFn(Instr);
2800   }
2801   MI.eraseFromParent();
2802   return true;
2803 }
2804 
2805 bool CombinerHelper::matchAshrShlToSextInreg(
2806     MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
2807   assert(MI.getOpcode() == TargetOpcode::G_ASHR);
2808   int64_t ShlCst, AshrCst;
2809   Register Src;
2810   // FIXME: detect splat constant vectors.
2811   if (!mi_match(MI.getOperand(0).getReg(), MRI,
2812                 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst))))
2813     return false;
2814   if (ShlCst != AshrCst)
2815     return false;
2816   if (!isLegalOrBeforeLegalizer(
2817           {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}}))
2818     return false;
2819   MatchInfo = std::make_tuple(Src, ShlCst);
2820   return true;
2821 }
2822 bool CombinerHelper::applyAshShlToSextInreg(
2823     MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
2824   assert(MI.getOpcode() == TargetOpcode::G_ASHR);
2825   Register Src;
2826   int64_t ShiftAmt;
2827   std::tie(Src, ShiftAmt) = MatchInfo;
2828   unsigned Size = MRI.getType(Src).getScalarSizeInBits();
2829   Builder.setInstrAndDebugLoc(MI);
2830   Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt);
2831   MI.eraseFromParent();
2832   return true;
2833 }
2834 
2835 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI,
2836                                        Register &Replacement) {
2837   // Given
2838   //
2839   // %y:_(sN) = G_SOMETHING
2840   // %x:_(sN) = G_SOMETHING
2841   // %res:_(sN) = G_AND %x, %y
2842   //
2843   // Eliminate the G_AND when it is known that x & y == x or x & y == y.
2844   //
2845   // Patterns like this can appear as a result of legalization. E.g.
2846   //
2847   // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y
2848   // %one:_(s32) = G_CONSTANT i32 1
2849   // %and:_(s32) = G_AND %cmp, %one
2850   //
2851   // In this case, G_ICMP only produces a single bit, so x & 1 == x.
2852   assert(MI.getOpcode() == TargetOpcode::G_AND);
2853   if (!KB)
2854     return false;
2855 
2856   Register AndDst = MI.getOperand(0).getReg();
2857   LLT DstTy = MRI.getType(AndDst);
2858 
2859   // FIXME: This should be removed once GISelKnownBits supports vectors.
2860   if (DstTy.isVector())
2861     return false;
2862 
2863   Register LHS = MI.getOperand(1).getReg();
2864   Register RHS = MI.getOperand(2).getReg();
2865   KnownBits LHSBits = KB->getKnownBits(LHS);
2866   KnownBits RHSBits = KB->getKnownBits(RHS);
2867 
2868   // Check that x & Mask == x.
2869   // x & 1 == x, always
2870   // x & 0 == x, only if x is also 0
2871   // Meaning Mask has no effect if every bit is either one in Mask or zero in x.
2872   //
2873   // Check if we can replace AndDst with the LHS of the G_AND
2874   if (canReplaceReg(AndDst, LHS, MRI) &&
2875       (LHSBits.Zero | RHSBits.One).isAllOnesValue()) {
2876     Replacement = LHS;
2877     return true;
2878   }
2879 
2880   // Check if we can replace AndDst with the RHS of the G_AND
2881   if (canReplaceReg(AndDst, RHS, MRI) &&
2882       (LHSBits.One | RHSBits.Zero).isAllOnesValue()) {
2883     Replacement = RHS;
2884     return true;
2885   }
2886 
2887   return false;
2888 }
2889 
2890 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) {
2891   // Given
2892   //
2893   // %y:_(sN) = G_SOMETHING
2894   // %x:_(sN) = G_SOMETHING
2895   // %res:_(sN) = G_OR %x, %y
2896   //
2897   // Eliminate the G_OR when it is known that x | y == x or x | y == y.
2898   assert(MI.getOpcode() == TargetOpcode::G_OR);
2899   if (!KB)
2900     return false;
2901 
2902   Register OrDst = MI.getOperand(0).getReg();
2903   LLT DstTy = MRI.getType(OrDst);
2904 
2905   // FIXME: This should be removed once GISelKnownBits supports vectors.
2906   if (DstTy.isVector())
2907     return false;
2908 
2909   Register LHS = MI.getOperand(1).getReg();
2910   Register RHS = MI.getOperand(2).getReg();
2911   KnownBits LHSBits = KB->getKnownBits(LHS);
2912   KnownBits RHSBits = KB->getKnownBits(RHS);
2913 
2914   // Check that x | Mask == x.
2915   // x | 0 == x, always
2916   // x | 1 == x, only if x is also 1
2917   // Meaning Mask has no effect if every bit is either zero in Mask or one in x.
2918   //
2919   // Check if we can replace OrDst with the LHS of the G_OR
2920   if (canReplaceReg(OrDst, LHS, MRI) &&
2921       (LHSBits.One | RHSBits.Zero).isAllOnesValue()) {
2922     Replacement = LHS;
2923     return true;
2924   }
2925 
2926   // Check if we can replace OrDst with the RHS of the G_OR
2927   if (canReplaceReg(OrDst, RHS, MRI) &&
2928       (LHSBits.Zero | RHSBits.One).isAllOnesValue()) {
2929     Replacement = RHS;
2930     return true;
2931   }
2932 
2933   return false;
2934 }
2935 
2936 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) {
2937   // If the input is already sign extended, just drop the extension.
2938   Register Src = MI.getOperand(1).getReg();
2939   unsigned ExtBits = MI.getOperand(2).getImm();
2940   unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits();
2941   return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1);
2942 }
2943 
2944 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits,
2945                              int64_t Cst, bool IsVector, bool IsFP) {
2946   // For i1, Cst will always be -1 regardless of boolean contents.
2947   return (ScalarSizeBits == 1 && Cst == -1) ||
2948          isConstTrueVal(TLI, Cst, IsVector, IsFP);
2949 }
2950 
2951 bool CombinerHelper::matchNotCmp(MachineInstr &MI,
2952                                  SmallVectorImpl<Register> &RegsToNegate) {
2953   assert(MI.getOpcode() == TargetOpcode::G_XOR);
2954   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2955   const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering();
2956   Register XorSrc;
2957   Register CstReg;
2958   // We match xor(src, true) here.
2959   if (!mi_match(MI.getOperand(0).getReg(), MRI,
2960                 m_GXor(m_Reg(XorSrc), m_Reg(CstReg))))
2961     return false;
2962 
2963   if (!MRI.hasOneNonDBGUse(XorSrc))
2964     return false;
2965 
2966   // Check that XorSrc is the root of a tree of comparisons combined with ANDs
2967   // and ORs. The suffix of RegsToNegate starting from index I is used a work
2968   // list of tree nodes to visit.
2969   RegsToNegate.push_back(XorSrc);
2970   // Remember whether the comparisons are all integer or all floating point.
2971   bool IsInt = false;
2972   bool IsFP = false;
2973   for (unsigned I = 0; I < RegsToNegate.size(); ++I) {
2974     Register Reg = RegsToNegate[I];
2975     if (!MRI.hasOneNonDBGUse(Reg))
2976       return false;
2977     MachineInstr *Def = MRI.getVRegDef(Reg);
2978     switch (Def->getOpcode()) {
2979     default:
2980       // Don't match if the tree contains anything other than ANDs, ORs and
2981       // comparisons.
2982       return false;
2983     case TargetOpcode::G_ICMP:
2984       if (IsFP)
2985         return false;
2986       IsInt = true;
2987       // When we apply the combine we will invert the predicate.
2988       break;
2989     case TargetOpcode::G_FCMP:
2990       if (IsInt)
2991         return false;
2992       IsFP = true;
2993       // When we apply the combine we will invert the predicate.
2994       break;
2995     case TargetOpcode::G_AND:
2996     case TargetOpcode::G_OR:
2997       // Implement De Morgan's laws:
2998       // ~(x & y) -> ~x | ~y
2999       // ~(x | y) -> ~x & ~y
3000       // When we apply the combine we will change the opcode and recursively
3001       // negate the operands.
3002       RegsToNegate.push_back(Def->getOperand(1).getReg());
3003       RegsToNegate.push_back(Def->getOperand(2).getReg());
3004       break;
3005     }
3006   }
3007 
3008   // Now we know whether the comparisons are integer or floating point, check
3009   // the constant in the xor.
3010   int64_t Cst;
3011   if (Ty.isVector()) {
3012     MachineInstr *CstDef = MRI.getVRegDef(CstReg);
3013     auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI);
3014     if (!MaybeCst)
3015       return false;
3016     if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP))
3017       return false;
3018   } else {
3019     if (!mi_match(CstReg, MRI, m_ICst(Cst)))
3020       return false;
3021     if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP))
3022       return false;
3023   }
3024 
3025   return true;
3026 }
3027 
3028 bool CombinerHelper::applyNotCmp(MachineInstr &MI,
3029                                  SmallVectorImpl<Register> &RegsToNegate) {
3030   for (Register Reg : RegsToNegate) {
3031     MachineInstr *Def = MRI.getVRegDef(Reg);
3032     Observer.changingInstr(*Def);
3033     // For each comparison, invert the opcode. For each AND and OR, change the
3034     // opcode.
3035     switch (Def->getOpcode()) {
3036     default:
3037       llvm_unreachable("Unexpected opcode");
3038     case TargetOpcode::G_ICMP:
3039     case TargetOpcode::G_FCMP: {
3040       MachineOperand &PredOp = Def->getOperand(1);
3041       CmpInst::Predicate NewP = CmpInst::getInversePredicate(
3042           (CmpInst::Predicate)PredOp.getPredicate());
3043       PredOp.setPredicate(NewP);
3044       break;
3045     }
3046     case TargetOpcode::G_AND:
3047       Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR));
3048       break;
3049     case TargetOpcode::G_OR:
3050       Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3051       break;
3052     }
3053     Observer.changedInstr(*Def);
3054   }
3055 
3056   replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
3057   MI.eraseFromParent();
3058   return true;
3059 }
3060 
3061 bool CombinerHelper::matchXorOfAndWithSameReg(
3062     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3063   // Match (xor (and x, y), y) (or any of its commuted cases)
3064   assert(MI.getOpcode() == TargetOpcode::G_XOR);
3065   Register &X = MatchInfo.first;
3066   Register &Y = MatchInfo.second;
3067   Register AndReg = MI.getOperand(1).getReg();
3068   Register SharedReg = MI.getOperand(2).getReg();
3069 
3070   // Find a G_AND on either side of the G_XOR.
3071   // Look for one of
3072   //
3073   // (xor (and x, y), SharedReg)
3074   // (xor SharedReg, (and x, y))
3075   if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) {
3076     std::swap(AndReg, SharedReg);
3077     if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y))))
3078       return false;
3079   }
3080 
3081   // Only do this if we'll eliminate the G_AND.
3082   if (!MRI.hasOneNonDBGUse(AndReg))
3083     return false;
3084 
3085   // We can combine if SharedReg is the same as either the LHS or RHS of the
3086   // G_AND.
3087   if (Y != SharedReg)
3088     std::swap(X, Y);
3089   return Y == SharedReg;
3090 }
3091 
3092 bool CombinerHelper::applyXorOfAndWithSameReg(
3093     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3094   // Fold (xor (and x, y), y) -> (and (not x), y)
3095   Builder.setInstrAndDebugLoc(MI);
3096   Register X, Y;
3097   std::tie(X, Y) = MatchInfo;
3098   auto Not = Builder.buildNot(MRI.getType(X), X);
3099   Observer.changingInstr(MI);
3100   MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3101   MI.getOperand(1).setReg(Not->getOperand(0).getReg());
3102   MI.getOperand(2).setReg(Y);
3103   Observer.changedInstr(MI);
3104   return true;
3105 }
3106 
3107 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) {
3108   Register DstReg = MI.getOperand(0).getReg();
3109   LLT Ty = MRI.getType(DstReg);
3110   const DataLayout &DL = Builder.getMF().getDataLayout();
3111 
3112   if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace()))
3113     return false;
3114 
3115   if (Ty.isPointer()) {
3116     auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI);
3117     return ConstVal && *ConstVal == 0;
3118   }
3119 
3120   assert(Ty.isVector() && "Expecting a vector type");
3121   const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg());
3122   return isBuildVectorAllZeros(*VecMI, MRI);
3123 }
3124 
3125 bool CombinerHelper::applyPtrAddZero(MachineInstr &MI) {
3126   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD);
3127   Builder.setInstrAndDebugLoc(MI);
3128   Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2));
3129   MI.eraseFromParent();
3130   return true;
3131 }
3132 
3133 bool CombinerHelper::tryCombine(MachineInstr &MI) {
3134   if (tryCombineCopy(MI))
3135     return true;
3136   if (tryCombineExtendingLoads(MI))
3137     return true;
3138   if (tryCombineIndexedLoadStore(MI))
3139     return true;
3140   return false;
3141 }
3142