1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/CodeGen/GlobalISel/Combiner.h" 10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 12 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 13 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 14 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 15 #include "llvm/CodeGen/GlobalISel/Utils.h" 16 #include "llvm/CodeGen/MachineDominators.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineInstr.h" 19 #include "llvm/CodeGen/MachineMemOperand.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/Support/MathExtras.h" 24 #include "llvm/Target/TargetMachine.h" 25 26 #define DEBUG_TYPE "gi-combiner" 27 28 using namespace llvm; 29 using namespace MIPatternMatch; 30 31 // Option to allow testing of the combiner while no targets know about indexed 32 // addressing. 33 static cl::opt<bool> 34 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 35 cl::desc("Force all indexed operations to be " 36 "legal for the GlobalISel combiner")); 37 38 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 39 MachineIRBuilder &B, GISelKnownBits *KB, 40 MachineDominatorTree *MDT, 41 const LegalizerInfo *LI) 42 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 43 KB(KB), MDT(MDT), LI(LI) { 44 (void)this->KB; 45 } 46 47 const TargetLowering &CombinerHelper::getTargetLowering() const { 48 return *Builder.getMF().getSubtarget().getTargetLowering(); 49 } 50 51 bool CombinerHelper::isLegalOrBeforeLegalizer( 52 const LegalityQuery &Query) const { 53 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 54 } 55 56 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 57 Register ToReg) const { 58 Observer.changingAllUsesOfReg(MRI, FromReg); 59 60 if (MRI.constrainRegAttrs(ToReg, FromReg)) 61 MRI.replaceRegWith(FromReg, ToReg); 62 else 63 Builder.buildCopy(ToReg, FromReg); 64 65 Observer.finishedChangingAllUsesOfReg(); 66 } 67 68 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 69 MachineOperand &FromRegOp, 70 Register ToReg) const { 71 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 72 Observer.changingInstr(*FromRegOp.getParent()); 73 74 FromRegOp.setReg(ToReg); 75 76 Observer.changedInstr(*FromRegOp.getParent()); 77 } 78 79 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 80 if (matchCombineCopy(MI)) { 81 applyCombineCopy(MI); 82 return true; 83 } 84 return false; 85 } 86 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 87 if (MI.getOpcode() != TargetOpcode::COPY) 88 return false; 89 Register DstReg = MI.getOperand(0).getReg(); 90 Register SrcReg = MI.getOperand(1).getReg(); 91 return canReplaceReg(DstReg, SrcReg, MRI); 92 } 93 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 94 Register DstReg = MI.getOperand(0).getReg(); 95 Register SrcReg = MI.getOperand(1).getReg(); 96 MI.eraseFromParent(); 97 replaceRegWith(MRI, DstReg, SrcReg); 98 } 99 100 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 101 bool IsUndef = false; 102 SmallVector<Register, 4> Ops; 103 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 104 applyCombineConcatVectors(MI, IsUndef, Ops); 105 return true; 106 } 107 return false; 108 } 109 110 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 111 SmallVectorImpl<Register> &Ops) { 112 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 113 "Invalid instruction"); 114 IsUndef = true; 115 MachineInstr *Undef = nullptr; 116 117 // Walk over all the operands of concat vectors and check if they are 118 // build_vector themselves or undef. 119 // Then collect their operands in Ops. 120 for (const MachineOperand &MO : MI.uses()) { 121 Register Reg = MO.getReg(); 122 MachineInstr *Def = MRI.getVRegDef(Reg); 123 assert(Def && "Operand not defined"); 124 switch (Def->getOpcode()) { 125 case TargetOpcode::G_BUILD_VECTOR: 126 IsUndef = false; 127 // Remember the operands of the build_vector to fold 128 // them into the yet-to-build flattened concat vectors. 129 for (const MachineOperand &BuildVecMO : Def->uses()) 130 Ops.push_back(BuildVecMO.getReg()); 131 break; 132 case TargetOpcode::G_IMPLICIT_DEF: { 133 LLT OpType = MRI.getType(Reg); 134 // Keep one undef value for all the undef operands. 135 if (!Undef) { 136 Builder.setInsertPt(*MI.getParent(), MI); 137 Undef = Builder.buildUndef(OpType.getScalarType()); 138 } 139 assert(MRI.getType(Undef->getOperand(0).getReg()) == 140 OpType.getScalarType() && 141 "All undefs should have the same type"); 142 // Break the undef vector in as many scalar elements as needed 143 // for the flattening. 144 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 145 EltIdx != EltEnd; ++EltIdx) 146 Ops.push_back(Undef->getOperand(0).getReg()); 147 break; 148 } 149 default: 150 return false; 151 } 152 } 153 return true; 154 } 155 void CombinerHelper::applyCombineConcatVectors( 156 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 157 // We determined that the concat_vectors can be flatten. 158 // Generate the flattened build_vector. 159 Register DstReg = MI.getOperand(0).getReg(); 160 Builder.setInsertPt(*MI.getParent(), MI); 161 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 162 163 // Note: IsUndef is sort of redundant. We could have determine it by 164 // checking that at all Ops are undef. Alternatively, we could have 165 // generate a build_vector of undefs and rely on another combine to 166 // clean that up. For now, given we already gather this information 167 // in tryCombineConcatVectors, just save compile time and issue the 168 // right thing. 169 if (IsUndef) 170 Builder.buildUndef(NewDstReg); 171 else 172 Builder.buildBuildVector(NewDstReg, Ops); 173 MI.eraseFromParent(); 174 replaceRegWith(MRI, DstReg, NewDstReg); 175 } 176 177 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 178 SmallVector<Register, 4> Ops; 179 if (matchCombineShuffleVector(MI, Ops)) { 180 applyCombineShuffleVector(MI, Ops); 181 return true; 182 } 183 return false; 184 } 185 186 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 187 SmallVectorImpl<Register> &Ops) { 188 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 189 "Invalid instruction kind"); 190 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 191 Register Src1 = MI.getOperand(1).getReg(); 192 LLT SrcType = MRI.getType(Src1); 193 // As bizarre as it may look, shuffle vector can actually produce 194 // scalar! This is because at the IR level a <1 x ty> shuffle 195 // vector is perfectly valid. 196 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 197 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 198 199 // If the resulting vector is smaller than the size of the source 200 // vectors being concatenated, we won't be able to replace the 201 // shuffle vector into a concat_vectors. 202 // 203 // Note: We may still be able to produce a concat_vectors fed by 204 // extract_vector_elt and so on. It is less clear that would 205 // be better though, so don't bother for now. 206 // 207 // If the destination is a scalar, the size of the sources doesn't 208 // matter. we will lower the shuffle to a plain copy. This will 209 // work only if the source and destination have the same size. But 210 // that's covered by the next condition. 211 // 212 // TODO: If the size between the source and destination don't match 213 // we could still emit an extract vector element in that case. 214 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 215 return false; 216 217 // Check that the shuffle mask can be broken evenly between the 218 // different sources. 219 if (DstNumElts % SrcNumElts != 0) 220 return false; 221 222 // Mask length is a multiple of the source vector length. 223 // Check if the shuffle is some kind of concatenation of the input 224 // vectors. 225 unsigned NumConcat = DstNumElts / SrcNumElts; 226 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 227 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 228 for (unsigned i = 0; i != DstNumElts; ++i) { 229 int Idx = Mask[i]; 230 // Undef value. 231 if (Idx < 0) 232 continue; 233 // Ensure the indices in each SrcType sized piece are sequential and that 234 // the same source is used for the whole piece. 235 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 236 (ConcatSrcs[i / SrcNumElts] >= 0 && 237 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 238 return false; 239 // Remember which source this index came from. 240 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 241 } 242 243 // The shuffle is concatenating multiple vectors together. 244 // Collect the different operands for that. 245 Register UndefReg; 246 Register Src2 = MI.getOperand(2).getReg(); 247 for (auto Src : ConcatSrcs) { 248 if (Src < 0) { 249 if (!UndefReg) { 250 Builder.setInsertPt(*MI.getParent(), MI); 251 UndefReg = Builder.buildUndef(SrcType).getReg(0); 252 } 253 Ops.push_back(UndefReg); 254 } else if (Src == 0) 255 Ops.push_back(Src1); 256 else 257 Ops.push_back(Src2); 258 } 259 return true; 260 } 261 262 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 263 const ArrayRef<Register> Ops) { 264 Register DstReg = MI.getOperand(0).getReg(); 265 Builder.setInsertPt(*MI.getParent(), MI); 266 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 267 268 if (Ops.size() == 1) 269 Builder.buildCopy(NewDstReg, Ops[0]); 270 else 271 Builder.buildMerge(NewDstReg, Ops); 272 273 MI.eraseFromParent(); 274 replaceRegWith(MRI, DstReg, NewDstReg); 275 } 276 277 namespace { 278 279 /// Select a preference between two uses. CurrentUse is the current preference 280 /// while *ForCandidate is attributes of the candidate under consideration. 281 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 282 const LLT TyForCandidate, 283 unsigned OpcodeForCandidate, 284 MachineInstr *MIForCandidate) { 285 if (!CurrentUse.Ty.isValid()) { 286 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 287 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 288 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 289 return CurrentUse; 290 } 291 292 // We permit the extend to hoist through basic blocks but this is only 293 // sensible if the target has extending loads. If you end up lowering back 294 // into a load and extend during the legalizer then the end result is 295 // hoisting the extend up to the load. 296 297 // Prefer defined extensions to undefined extensions as these are more 298 // likely to reduce the number of instructions. 299 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 300 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 301 return CurrentUse; 302 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 303 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 304 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 305 306 // Prefer sign extensions to zero extensions as sign-extensions tend to be 307 // more expensive. 308 if (CurrentUse.Ty == TyForCandidate) { 309 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 310 OpcodeForCandidate == TargetOpcode::G_ZEXT) 311 return CurrentUse; 312 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 313 OpcodeForCandidate == TargetOpcode::G_SEXT) 314 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 315 } 316 317 // This is potentially target specific. We've chosen the largest type 318 // because G_TRUNC is usually free. One potential catch with this is that 319 // some targets have a reduced number of larger registers than smaller 320 // registers and this choice potentially increases the live-range for the 321 // larger value. 322 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 323 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 324 } 325 return CurrentUse; 326 } 327 328 /// Find a suitable place to insert some instructions and insert them. This 329 /// function accounts for special cases like inserting before a PHI node. 330 /// The current strategy for inserting before PHI's is to duplicate the 331 /// instructions for each predecessor. However, while that's ok for G_TRUNC 332 /// on most targets since it generally requires no code, other targets/cases may 333 /// want to try harder to find a dominating block. 334 static void InsertInsnsWithoutSideEffectsBeforeUse( 335 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 336 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 337 MachineOperand &UseMO)> 338 Inserter) { 339 MachineInstr &UseMI = *UseMO.getParent(); 340 341 MachineBasicBlock *InsertBB = UseMI.getParent(); 342 343 // If the use is a PHI then we want the predecessor block instead. 344 if (UseMI.isPHI()) { 345 MachineOperand *PredBB = std::next(&UseMO); 346 InsertBB = PredBB->getMBB(); 347 } 348 349 // If the block is the same block as the def then we want to insert just after 350 // the def instead of at the start of the block. 351 if (InsertBB == DefMI.getParent()) { 352 MachineBasicBlock::iterator InsertPt = &DefMI; 353 Inserter(InsertBB, std::next(InsertPt), UseMO); 354 return; 355 } 356 357 // Otherwise we want the start of the BB 358 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 359 } 360 } // end anonymous namespace 361 362 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 363 PreferredTuple Preferred; 364 if (matchCombineExtendingLoads(MI, Preferred)) { 365 applyCombineExtendingLoads(MI, Preferred); 366 return true; 367 } 368 return false; 369 } 370 371 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 372 PreferredTuple &Preferred) { 373 // We match the loads and follow the uses to the extend instead of matching 374 // the extends and following the def to the load. This is because the load 375 // must remain in the same position for correctness (unless we also add code 376 // to find a safe place to sink it) whereas the extend is freely movable. 377 // It also prevents us from duplicating the load for the volatile case or just 378 // for performance. 379 380 if (MI.getOpcode() != TargetOpcode::G_LOAD && 381 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 382 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 383 return false; 384 385 auto &LoadValue = MI.getOperand(0); 386 assert(LoadValue.isReg() && "Result wasn't a register?"); 387 388 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 389 if (!LoadValueTy.isScalar()) 390 return false; 391 392 // Most architectures are going to legalize <s8 loads into at least a 1 byte 393 // load, and the MMOs can only describe memory accesses in multiples of bytes. 394 // If we try to perform extload combining on those, we can end up with 395 // %a(s8) = extload %ptr (load 1 byte from %ptr) 396 // ... which is an illegal extload instruction. 397 if (LoadValueTy.getSizeInBits() < 8) 398 return false; 399 400 // For non power-of-2 types, they will very likely be legalized into multiple 401 // loads. Don't bother trying to match them into extending loads. 402 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 403 return false; 404 405 // Find the preferred type aside from the any-extends (unless it's the only 406 // one) and non-extending ops. We'll emit an extending load to that type and 407 // and emit a variant of (extend (trunc X)) for the others according to the 408 // relative type sizes. At the same time, pick an extend to use based on the 409 // extend involved in the chosen type. 410 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 411 ? TargetOpcode::G_ANYEXT 412 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 413 ? TargetOpcode::G_SEXT 414 : TargetOpcode::G_ZEXT; 415 Preferred = {LLT(), PreferredOpcode, nullptr}; 416 for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) { 417 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 418 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 419 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 420 // Check for legality. 421 if (LI) { 422 LegalityQuery::MemDesc MMDesc; 423 const auto &MMO = **MI.memoperands_begin(); 424 MMDesc.SizeInBits = MMO.getSizeInBits(); 425 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 426 MMDesc.Ordering = MMO.getOrdering(); 427 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 428 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 429 if (LI->getAction({MI.getOpcode(), {UseTy, SrcTy}, {MMDesc}}).Action != 430 LegalizeActions::Legal) 431 continue; 432 } 433 Preferred = ChoosePreferredUse(Preferred, 434 MRI.getType(UseMI.getOperand(0).getReg()), 435 UseMI.getOpcode(), &UseMI); 436 } 437 } 438 439 // There were no extends 440 if (!Preferred.MI) 441 return false; 442 // It should be impossible to chose an extend without selecting a different 443 // type since by definition the result of an extend is larger. 444 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 445 446 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 447 return true; 448 } 449 450 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 451 PreferredTuple &Preferred) { 452 // Rewrite the load to the chosen extending load. 453 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 454 455 // Inserter to insert a truncate back to the original type at a given point 456 // with some basic CSE to limit truncate duplication to one per BB. 457 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 458 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 459 MachineBasicBlock::iterator InsertBefore, 460 MachineOperand &UseMO) { 461 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 462 if (PreviouslyEmitted) { 463 Observer.changingInstr(*UseMO.getParent()); 464 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 465 Observer.changedInstr(*UseMO.getParent()); 466 return; 467 } 468 469 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 470 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 471 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 472 EmittedInsns[InsertIntoBB] = NewMI; 473 replaceRegOpWith(MRI, UseMO, NewDstReg); 474 }; 475 476 Observer.changingInstr(MI); 477 MI.setDesc( 478 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 479 ? TargetOpcode::G_SEXTLOAD 480 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 481 ? TargetOpcode::G_ZEXTLOAD 482 : TargetOpcode::G_LOAD)); 483 484 // Rewrite all the uses to fix up the types. 485 auto &LoadValue = MI.getOperand(0); 486 SmallVector<MachineOperand *, 4> Uses; 487 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 488 Uses.push_back(&UseMO); 489 490 for (auto *UseMO : Uses) { 491 MachineInstr *UseMI = UseMO->getParent(); 492 493 // If the extend is compatible with the preferred extend then we should fix 494 // up the type and extend so that it uses the preferred use. 495 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 496 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 497 Register UseDstReg = UseMI->getOperand(0).getReg(); 498 MachineOperand &UseSrcMO = UseMI->getOperand(1); 499 const LLT UseDstTy = MRI.getType(UseDstReg); 500 if (UseDstReg != ChosenDstReg) { 501 if (Preferred.Ty == UseDstTy) { 502 // If the use has the same type as the preferred use, then merge 503 // the vregs and erase the extend. For example: 504 // %1:_(s8) = G_LOAD ... 505 // %2:_(s32) = G_SEXT %1(s8) 506 // %3:_(s32) = G_ANYEXT %1(s8) 507 // ... = ... %3(s32) 508 // rewrites to: 509 // %2:_(s32) = G_SEXTLOAD ... 510 // ... = ... %2(s32) 511 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 512 Observer.erasingInstr(*UseMO->getParent()); 513 UseMO->getParent()->eraseFromParent(); 514 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 515 // If the preferred size is smaller, then keep the extend but extend 516 // from the result of the extending load. For example: 517 // %1:_(s8) = G_LOAD ... 518 // %2:_(s32) = G_SEXT %1(s8) 519 // %3:_(s64) = G_ANYEXT %1(s8) 520 // ... = ... %3(s64) 521 /// rewrites to: 522 // %2:_(s32) = G_SEXTLOAD ... 523 // %3:_(s64) = G_ANYEXT %2:_(s32) 524 // ... = ... %3(s64) 525 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 526 } else { 527 // If the preferred size is large, then insert a truncate. For 528 // example: 529 // %1:_(s8) = G_LOAD ... 530 // %2:_(s64) = G_SEXT %1(s8) 531 // %3:_(s32) = G_ZEXT %1(s8) 532 // ... = ... %3(s32) 533 /// rewrites to: 534 // %2:_(s64) = G_SEXTLOAD ... 535 // %4:_(s8) = G_TRUNC %2:_(s32) 536 // %3:_(s64) = G_ZEXT %2:_(s8) 537 // ... = ... %3(s64) 538 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 539 InsertTruncAt); 540 } 541 continue; 542 } 543 // The use is (one of) the uses of the preferred use we chose earlier. 544 // We're going to update the load to def this value later so just erase 545 // the old extend. 546 Observer.erasingInstr(*UseMO->getParent()); 547 UseMO->getParent()->eraseFromParent(); 548 continue; 549 } 550 551 // The use isn't an extend. Truncate back to the type we originally loaded. 552 // This is free on many targets. 553 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 554 } 555 556 MI.getOperand(0).setReg(ChosenDstReg); 557 Observer.changedInstr(MI); 558 } 559 560 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 561 const MachineInstr &UseMI) { 562 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 563 "shouldn't consider debug uses"); 564 assert(DefMI.getParent() == UseMI.getParent()); 565 if (&DefMI == &UseMI) 566 return false; 567 568 // Loop through the basic block until we find one of the instructions. 569 MachineBasicBlock::const_iterator I = DefMI.getParent()->begin(); 570 for (; &*I != &DefMI && &*I != &UseMI; ++I) 571 return &*I == &DefMI; 572 573 llvm_unreachable("Block must contain instructions"); 574 } 575 576 bool CombinerHelper::dominates(const MachineInstr &DefMI, 577 const MachineInstr &UseMI) { 578 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 579 "shouldn't consider debug uses"); 580 if (MDT) 581 return MDT->dominates(&DefMI, &UseMI); 582 else if (DefMI.getParent() != UseMI.getParent()) 583 return false; 584 585 return isPredecessor(DefMI, UseMI); 586 } 587 588 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 589 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 590 Register SrcReg = MI.getOperand(1).getReg(); 591 Register LoadUser = SrcReg; 592 593 if (MRI.getType(SrcReg).isVector()) 594 return false; 595 596 Register TruncSrc; 597 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 598 LoadUser = TruncSrc; 599 600 uint64_t SizeInBits = MI.getOperand(2).getImm(); 601 // If the source is a G_SEXTLOAD from the same bit width, then we don't 602 // need any extend at all, just a truncate. 603 if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) { 604 const auto &MMO = **LoadMI->memoperands_begin(); 605 // If truncating more than the original extended value, abort. 606 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits()) 607 return false; 608 if (MMO.getSizeInBits() == SizeInBits) 609 return true; 610 } 611 return false; 612 } 613 614 bool CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 615 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 616 Builder.setInstrAndDebugLoc(MI); 617 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 618 MI.eraseFromParent(); 619 return true; 620 } 621 622 bool CombinerHelper::matchSextInRegOfLoad( 623 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 624 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 625 626 // Only supports scalars for now. 627 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 628 return false; 629 630 Register SrcReg = MI.getOperand(1).getReg(); 631 MachineInstr *LoadDef = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI); 632 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg())) 633 return false; 634 635 // If the sign extend extends from a narrower width than the load's width, 636 // then we can narrow the load width when we combine to a G_SEXTLOAD. 637 auto &MMO = **LoadDef->memoperands_begin(); 638 // Don't do this for non-simple loads. 639 if (MMO.isAtomic() || MMO.isVolatile()) 640 return false; 641 642 // Avoid widening the load at all. 643 unsigned NewSizeBits = 644 std::min((uint64_t)MI.getOperand(2).getImm(), MMO.getSizeInBits()); 645 646 // Don't generate G_SEXTLOADs with a < 1 byte width. 647 if (NewSizeBits < 8) 648 return false; 649 // Don't bother creating a non-power-2 sextload, it will likely be broken up 650 // anyway for most targets. 651 if (!isPowerOf2_32(NewSizeBits)) 652 return false; 653 MatchInfo = std::make_tuple(LoadDef->getOperand(0).getReg(), NewSizeBits); 654 return true; 655 } 656 657 bool CombinerHelper::applySextInRegOfLoad( 658 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 659 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 660 Register LoadReg; 661 unsigned ScalarSizeBits; 662 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 663 auto *LoadDef = MRI.getVRegDef(LoadReg); 664 assert(LoadDef && "Expected a load reg"); 665 666 // If we have the following: 667 // %ld = G_LOAD %ptr, (load 2) 668 // %ext = G_SEXT_INREG %ld, 8 669 // ==> 670 // %ld = G_SEXTLOAD %ptr (load 1) 671 672 auto &MMO = **LoadDef->memoperands_begin(); 673 Builder.setInstrAndDebugLoc(MI); 674 auto &MF = Builder.getMF(); 675 auto PtrInfo = MMO.getPointerInfo(); 676 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 677 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 678 LoadDef->getOperand(1).getReg(), *NewMMO); 679 MI.eraseFromParent(); 680 return true; 681 } 682 683 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 684 Register &Base, Register &Offset) { 685 auto &MF = *MI.getParent()->getParent(); 686 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 687 688 #ifndef NDEBUG 689 unsigned Opcode = MI.getOpcode(); 690 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 691 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 692 #endif 693 694 Base = MI.getOperand(1).getReg(); 695 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 696 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 697 return false; 698 699 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 700 // FIXME: The following use traversal needs a bail out for patholigical cases. 701 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 702 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 703 continue; 704 705 Offset = Use.getOperand(2).getReg(); 706 if (!ForceLegalIndexing && 707 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 708 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 709 << Use); 710 continue; 711 } 712 713 // Make sure the offset calculation is before the potentially indexed op. 714 // FIXME: we really care about dependency here. The offset calculation might 715 // be movable. 716 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 717 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 718 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 719 << Use); 720 continue; 721 } 722 723 // FIXME: check whether all uses of Base are load/store with foldable 724 // addressing modes. If so, using the normal addr-modes is better than 725 // forming an indexed one. 726 727 bool MemOpDominatesAddrUses = true; 728 for (auto &PtrAddUse : 729 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 730 if (!dominates(MI, PtrAddUse)) { 731 MemOpDominatesAddrUses = false; 732 break; 733 } 734 } 735 736 if (!MemOpDominatesAddrUses) { 737 LLVM_DEBUG( 738 dbgs() << " Ignoring candidate as memop does not dominate uses: " 739 << Use); 740 continue; 741 } 742 743 LLVM_DEBUG(dbgs() << " Found match: " << Use); 744 Addr = Use.getOperand(0).getReg(); 745 return true; 746 } 747 748 return false; 749 } 750 751 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 752 Register &Base, Register &Offset) { 753 auto &MF = *MI.getParent()->getParent(); 754 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 755 756 #ifndef NDEBUG 757 unsigned Opcode = MI.getOpcode(); 758 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 759 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 760 #endif 761 762 Addr = MI.getOperand(1).getReg(); 763 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 764 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 765 return false; 766 767 Base = AddrDef->getOperand(1).getReg(); 768 Offset = AddrDef->getOperand(2).getReg(); 769 770 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 771 772 if (!ForceLegalIndexing && 773 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 774 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 775 return false; 776 } 777 778 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 779 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 780 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 781 return false; 782 } 783 784 if (MI.getOpcode() == TargetOpcode::G_STORE) { 785 // Would require a copy. 786 if (Base == MI.getOperand(0).getReg()) { 787 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 788 return false; 789 } 790 791 // We're expecting one use of Addr in MI, but it could also be the 792 // value stored, which isn't actually dominated by the instruction. 793 if (MI.getOperand(0).getReg() == Addr) { 794 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 795 return false; 796 } 797 } 798 799 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 800 // That might allow us to end base's liveness here by adjusting the constant. 801 802 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 803 if (!dominates(MI, UseMI)) { 804 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 805 return false; 806 } 807 } 808 809 return true; 810 } 811 812 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 813 IndexedLoadStoreMatchInfo MatchInfo; 814 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 815 applyCombineIndexedLoadStore(MI, MatchInfo); 816 return true; 817 } 818 return false; 819 } 820 821 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 822 unsigned Opcode = MI.getOpcode(); 823 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 824 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 825 return false; 826 827 // For now, no targets actually support these opcodes so don't waste time 828 // running these unless we're forced to for testing. 829 if (!ForceLegalIndexing) 830 return false; 831 832 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 833 MatchInfo.Offset); 834 if (!MatchInfo.IsPre && 835 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 836 MatchInfo.Offset)) 837 return false; 838 839 return true; 840 } 841 842 void CombinerHelper::applyCombineIndexedLoadStore( 843 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 844 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 845 MachineIRBuilder MIRBuilder(MI); 846 unsigned Opcode = MI.getOpcode(); 847 bool IsStore = Opcode == TargetOpcode::G_STORE; 848 unsigned NewOpcode; 849 switch (Opcode) { 850 case TargetOpcode::G_LOAD: 851 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 852 break; 853 case TargetOpcode::G_SEXTLOAD: 854 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 855 break; 856 case TargetOpcode::G_ZEXTLOAD: 857 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 858 break; 859 case TargetOpcode::G_STORE: 860 NewOpcode = TargetOpcode::G_INDEXED_STORE; 861 break; 862 default: 863 llvm_unreachable("Unknown load/store opcode"); 864 } 865 866 auto MIB = MIRBuilder.buildInstr(NewOpcode); 867 if (IsStore) { 868 MIB.addDef(MatchInfo.Addr); 869 MIB.addUse(MI.getOperand(0).getReg()); 870 } else { 871 MIB.addDef(MI.getOperand(0).getReg()); 872 MIB.addDef(MatchInfo.Addr); 873 } 874 875 MIB.addUse(MatchInfo.Base); 876 MIB.addUse(MatchInfo.Offset); 877 MIB.addImm(MatchInfo.IsPre); 878 MI.eraseFromParent(); 879 AddrDef.eraseFromParent(); 880 881 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 882 } 883 884 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI) { 885 if (MI.getOpcode() != TargetOpcode::G_BR) 886 return false; 887 888 // Try to match the following: 889 // bb1: 890 // G_BRCOND %c1, %bb2 891 // G_BR %bb3 892 // bb2: 893 // ... 894 // bb3: 895 896 // The above pattern does not have a fall through to the successor bb2, always 897 // resulting in a branch no matter which path is taken. Here we try to find 898 // and replace that pattern with conditional branch to bb3 and otherwise 899 // fallthrough to bb2. This is generally better for branch predictors. 900 901 MachineBasicBlock *MBB = MI.getParent(); 902 MachineBasicBlock::iterator BrIt(MI); 903 if (BrIt == MBB->begin()) 904 return false; 905 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 906 907 MachineInstr *BrCond = &*std::prev(BrIt); 908 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 909 return false; 910 911 // Check that the next block is the conditional branch target. 912 if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB())) 913 return false; 914 return true; 915 } 916 917 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI) { 918 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 919 MachineBasicBlock::iterator BrIt(MI); 920 MachineInstr *BrCond = &*std::prev(BrIt); 921 922 Builder.setInstrAndDebugLoc(*BrCond); 923 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 924 // FIXME: Does int/fp matter for this? If so, we might need to restrict 925 // this to i1 only since we might not know for sure what kind of 926 // compare generated the condition value. 927 auto True = Builder.buildConstant( 928 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 929 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 930 931 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 932 Observer.changingInstr(MI); 933 MI.getOperand(0).setMBB(FallthroughBB); 934 Observer.changedInstr(MI); 935 936 // Change the conditional branch to use the inverted condition and 937 // new target block. 938 Observer.changingInstr(*BrCond); 939 BrCond->getOperand(0).setReg(Xor.getReg(0)); 940 BrCond->getOperand(1).setMBB(BrTarget); 941 Observer.changedInstr(*BrCond); 942 } 943 944 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 945 // On Darwin, -Os means optimize for size without hurting performance, so 946 // only really optimize for size when -Oz (MinSize) is used. 947 if (MF.getTarget().getTargetTriple().isOSDarwin()) 948 return MF.getFunction().hasMinSize(); 949 return MF.getFunction().hasOptSize(); 950 } 951 952 // Returns a list of types to use for memory op lowering in MemOps. A partial 953 // port of findOptimalMemOpLowering in TargetLowering. 954 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 955 unsigned Limit, const MemOp &Op, 956 unsigned DstAS, unsigned SrcAS, 957 const AttributeList &FuncAttributes, 958 const TargetLowering &TLI) { 959 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 960 return false; 961 962 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 963 964 if (Ty == LLT()) { 965 // Use the largest scalar type whose alignment constraints are satisfied. 966 // We only need to check DstAlign here as SrcAlign is always greater or 967 // equal to DstAlign (or zero). 968 Ty = LLT::scalar(64); 969 if (Op.isFixedDstAlign()) 970 while (Op.getDstAlign() < Ty.getSizeInBytes() && 971 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 972 Ty = LLT::scalar(Ty.getSizeInBytes()); 973 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 974 // FIXME: check for the largest legal type we can load/store to. 975 } 976 977 unsigned NumMemOps = 0; 978 uint64_t Size = Op.size(); 979 while (Size) { 980 unsigned TySize = Ty.getSizeInBytes(); 981 while (TySize > Size) { 982 // For now, only use non-vector load / store's for the left-over pieces. 983 LLT NewTy = Ty; 984 // FIXME: check for mem op safety and legality of the types. Not all of 985 // SDAGisms map cleanly to GISel concepts. 986 if (NewTy.isVector()) 987 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 988 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 989 unsigned NewTySize = NewTy.getSizeInBytes(); 990 assert(NewTySize > 0 && "Could not find appropriate type"); 991 992 // If the new LLT cannot cover all of the remaining bits, then consider 993 // issuing a (or a pair of) unaligned and overlapping load / store. 994 bool Fast; 995 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 996 MVT VT = getMVTForLLT(Ty); 997 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 998 TLI.allowsMisalignedMemoryAccesses( 999 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 1000 MachineMemOperand::MONone, &Fast) && 1001 Fast) 1002 TySize = Size; 1003 else { 1004 Ty = NewTy; 1005 TySize = NewTySize; 1006 } 1007 } 1008 1009 if (++NumMemOps > Limit) 1010 return false; 1011 1012 MemOps.push_back(Ty); 1013 Size -= TySize; 1014 } 1015 1016 return true; 1017 } 1018 1019 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1020 if (Ty.isVector()) 1021 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1022 Ty.getNumElements()); 1023 return IntegerType::get(C, Ty.getSizeInBits()); 1024 } 1025 1026 // Get a vectorized representation of the memset value operand, GISel edition. 1027 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 1028 MachineRegisterInfo &MRI = *MIB.getMRI(); 1029 unsigned NumBits = Ty.getScalarSizeInBits(); 1030 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1031 if (!Ty.isVector() && ValVRegAndVal) { 1032 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 1033 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 1034 return MIB.buildConstant(Ty, SplatVal).getReg(0); 1035 } 1036 1037 // Extend the byte value to the larger type, and then multiply by a magic 1038 // value 0x010101... in order to replicate it across every byte. 1039 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 1040 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 1041 return MIB.buildConstant(Ty, 0).getReg(0); 1042 } 1043 1044 LLT ExtType = Ty.getScalarType(); 1045 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 1046 if (NumBits > 8) { 1047 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 1048 auto MagicMI = MIB.buildConstant(ExtType, Magic); 1049 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 1050 } 1051 1052 // For vector types create a G_BUILD_VECTOR. 1053 if (Ty.isVector()) 1054 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 1055 1056 return Val; 1057 } 1058 1059 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 1060 Register Val, unsigned KnownLen, 1061 Align Alignment, bool IsVolatile) { 1062 auto &MF = *MI.getParent()->getParent(); 1063 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1064 auto &DL = MF.getDataLayout(); 1065 LLVMContext &C = MF.getFunction().getContext(); 1066 1067 assert(KnownLen != 0 && "Have a zero length memset length!"); 1068 1069 bool DstAlignCanChange = false; 1070 MachineFrameInfo &MFI = MF.getFrameInfo(); 1071 bool OptSize = shouldLowerMemFuncForSize(MF); 1072 1073 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1074 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1075 DstAlignCanChange = true; 1076 1077 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1078 std::vector<LLT> MemOps; 1079 1080 const auto &DstMMO = **MI.memoperands_begin(); 1081 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1082 1083 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1084 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1085 1086 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1087 MemOp::Set(KnownLen, DstAlignCanChange, 1088 Alignment, 1089 /*IsZeroMemset=*/IsZeroVal, 1090 /*IsVolatile=*/IsVolatile), 1091 DstPtrInfo.getAddrSpace(), ~0u, 1092 MF.getFunction().getAttributes(), TLI)) 1093 return false; 1094 1095 if (DstAlignCanChange) { 1096 // Get an estimate of the type from the LLT. 1097 Type *IRTy = getTypeForLLT(MemOps[0], C); 1098 Align NewAlign = DL.getABITypeAlign(IRTy); 1099 if (NewAlign > Alignment) { 1100 Alignment = NewAlign; 1101 unsigned FI = FIDef->getOperand(1).getIndex(); 1102 // Give the stack frame object a larger alignment if needed. 1103 if (MFI.getObjectAlign(FI) < Alignment) 1104 MFI.setObjectAlignment(FI, Alignment); 1105 } 1106 } 1107 1108 MachineIRBuilder MIB(MI); 1109 // Find the largest store and generate the bit pattern for it. 1110 LLT LargestTy = MemOps[0]; 1111 for (unsigned i = 1; i < MemOps.size(); i++) 1112 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1113 LargestTy = MemOps[i]; 1114 1115 // The memset stored value is always defined as an s8, so in order to make it 1116 // work with larger store types we need to repeat the bit pattern across the 1117 // wider type. 1118 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1119 1120 if (!MemSetValue) 1121 return false; 1122 1123 // Generate the stores. For each store type in the list, we generate the 1124 // matching store of that type to the destination address. 1125 LLT PtrTy = MRI.getType(Dst); 1126 unsigned DstOff = 0; 1127 unsigned Size = KnownLen; 1128 for (unsigned I = 0; I < MemOps.size(); I++) { 1129 LLT Ty = MemOps[I]; 1130 unsigned TySize = Ty.getSizeInBytes(); 1131 if (TySize > Size) { 1132 // Issuing an unaligned load / store pair that overlaps with the previous 1133 // pair. Adjust the offset accordingly. 1134 assert(I == MemOps.size() - 1 && I != 0); 1135 DstOff -= TySize - Size; 1136 } 1137 1138 // If this store is smaller than the largest store see whether we can get 1139 // the smaller value for free with a truncate. 1140 Register Value = MemSetValue; 1141 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1142 MVT VT = getMVTForLLT(Ty); 1143 MVT LargestVT = getMVTForLLT(LargestTy); 1144 if (!LargestTy.isVector() && !Ty.isVector() && 1145 TLI.isTruncateFree(LargestVT, VT)) 1146 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1147 else 1148 Value = getMemsetValue(Val, Ty, MIB); 1149 if (!Value) 1150 return false; 1151 } 1152 1153 auto *StoreMMO = 1154 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1155 1156 Register Ptr = Dst; 1157 if (DstOff != 0) { 1158 auto Offset = 1159 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1160 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1161 } 1162 1163 MIB.buildStore(Value, Ptr, *StoreMMO); 1164 DstOff += Ty.getSizeInBytes(); 1165 Size -= TySize; 1166 } 1167 1168 MI.eraseFromParent(); 1169 return true; 1170 } 1171 1172 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1173 Register Src, unsigned KnownLen, 1174 Align DstAlign, Align SrcAlign, 1175 bool IsVolatile) { 1176 auto &MF = *MI.getParent()->getParent(); 1177 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1178 auto &DL = MF.getDataLayout(); 1179 LLVMContext &C = MF.getFunction().getContext(); 1180 1181 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1182 1183 bool DstAlignCanChange = false; 1184 MachineFrameInfo &MFI = MF.getFrameInfo(); 1185 bool OptSize = shouldLowerMemFuncForSize(MF); 1186 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1187 1188 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1189 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1190 DstAlignCanChange = true; 1191 1192 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1193 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1194 // if the memcpy is in a tail call position. 1195 1196 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1197 std::vector<LLT> MemOps; 1198 1199 const auto &DstMMO = **MI.memoperands_begin(); 1200 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1201 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1202 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1203 1204 if (!findGISelOptimalMemOpLowering( 1205 MemOps, Limit, 1206 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1207 IsVolatile), 1208 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1209 MF.getFunction().getAttributes(), TLI)) 1210 return false; 1211 1212 if (DstAlignCanChange) { 1213 // Get an estimate of the type from the LLT. 1214 Type *IRTy = getTypeForLLT(MemOps[0], C); 1215 Align NewAlign = DL.getABITypeAlign(IRTy); 1216 1217 // Don't promote to an alignment that would require dynamic stack 1218 // realignment. 1219 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1220 if (!TRI->needsStackRealignment(MF)) 1221 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1222 NewAlign = NewAlign / 2; 1223 1224 if (NewAlign > Alignment) { 1225 Alignment = NewAlign; 1226 unsigned FI = FIDef->getOperand(1).getIndex(); 1227 // Give the stack frame object a larger alignment if needed. 1228 if (MFI.getObjectAlign(FI) < Alignment) 1229 MFI.setObjectAlignment(FI, Alignment); 1230 } 1231 } 1232 1233 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1234 1235 MachineIRBuilder MIB(MI); 1236 // Now we need to emit a pair of load and stores for each of the types we've 1237 // collected. I.e. for each type, generate a load from the source pointer of 1238 // that type width, and then generate a corresponding store to the dest buffer 1239 // of that value loaded. This can result in a sequence of loads and stores 1240 // mixed types, depending on what the target specifies as good types to use. 1241 unsigned CurrOffset = 0; 1242 LLT PtrTy = MRI.getType(Src); 1243 unsigned Size = KnownLen; 1244 for (auto CopyTy : MemOps) { 1245 // Issuing an unaligned load / store pair that overlaps with the previous 1246 // pair. Adjust the offset accordingly. 1247 if (CopyTy.getSizeInBytes() > Size) 1248 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1249 1250 // Construct MMOs for the accesses. 1251 auto *LoadMMO = 1252 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1253 auto *StoreMMO = 1254 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1255 1256 // Create the load. 1257 Register LoadPtr = Src; 1258 Register Offset; 1259 if (CurrOffset != 0) { 1260 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1261 .getReg(0); 1262 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1263 } 1264 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1265 1266 // Create the store. 1267 Register StorePtr = 1268 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1269 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1270 CurrOffset += CopyTy.getSizeInBytes(); 1271 Size -= CopyTy.getSizeInBytes(); 1272 } 1273 1274 MI.eraseFromParent(); 1275 return true; 1276 } 1277 1278 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1279 Register Src, unsigned KnownLen, 1280 Align DstAlign, Align SrcAlign, 1281 bool IsVolatile) { 1282 auto &MF = *MI.getParent()->getParent(); 1283 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1284 auto &DL = MF.getDataLayout(); 1285 LLVMContext &C = MF.getFunction().getContext(); 1286 1287 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1288 1289 bool DstAlignCanChange = false; 1290 MachineFrameInfo &MFI = MF.getFrameInfo(); 1291 bool OptSize = shouldLowerMemFuncForSize(MF); 1292 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1293 1294 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1295 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1296 DstAlignCanChange = true; 1297 1298 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1299 std::vector<LLT> MemOps; 1300 1301 const auto &DstMMO = **MI.memoperands_begin(); 1302 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1303 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1304 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1305 1306 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1307 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1308 // same thing here. 1309 if (!findGISelOptimalMemOpLowering( 1310 MemOps, Limit, 1311 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1312 /*IsVolatile*/ true), 1313 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1314 MF.getFunction().getAttributes(), TLI)) 1315 return false; 1316 1317 if (DstAlignCanChange) { 1318 // Get an estimate of the type from the LLT. 1319 Type *IRTy = getTypeForLLT(MemOps[0], C); 1320 Align NewAlign = DL.getABITypeAlign(IRTy); 1321 1322 // Don't promote to an alignment that would require dynamic stack 1323 // realignment. 1324 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1325 if (!TRI->needsStackRealignment(MF)) 1326 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1327 NewAlign = NewAlign / 2; 1328 1329 if (NewAlign > Alignment) { 1330 Alignment = NewAlign; 1331 unsigned FI = FIDef->getOperand(1).getIndex(); 1332 // Give the stack frame object a larger alignment if needed. 1333 if (MFI.getObjectAlign(FI) < Alignment) 1334 MFI.setObjectAlignment(FI, Alignment); 1335 } 1336 } 1337 1338 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1339 1340 MachineIRBuilder MIB(MI); 1341 // Memmove requires that we perform the loads first before issuing the stores. 1342 // Apart from that, this loop is pretty much doing the same thing as the 1343 // memcpy codegen function. 1344 unsigned CurrOffset = 0; 1345 LLT PtrTy = MRI.getType(Src); 1346 SmallVector<Register, 16> LoadVals; 1347 for (auto CopyTy : MemOps) { 1348 // Construct MMO for the load. 1349 auto *LoadMMO = 1350 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1351 1352 // Create the load. 1353 Register LoadPtr = Src; 1354 if (CurrOffset != 0) { 1355 auto Offset = 1356 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1357 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1358 } 1359 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1360 CurrOffset += CopyTy.getSizeInBytes(); 1361 } 1362 1363 CurrOffset = 0; 1364 for (unsigned I = 0; I < MemOps.size(); ++I) { 1365 LLT CopyTy = MemOps[I]; 1366 // Now store the values loaded. 1367 auto *StoreMMO = 1368 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1369 1370 Register StorePtr = Dst; 1371 if (CurrOffset != 0) { 1372 auto Offset = 1373 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1374 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1375 } 1376 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1377 CurrOffset += CopyTy.getSizeInBytes(); 1378 } 1379 MI.eraseFromParent(); 1380 return true; 1381 } 1382 1383 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1384 const unsigned Opc = MI.getOpcode(); 1385 // This combine is fairly complex so it's not written with a separate 1386 // matcher function. 1387 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 1388 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); 1389 1390 auto MMOIt = MI.memoperands_begin(); 1391 const MachineMemOperand *MemOp = *MMOIt; 1392 bool IsVolatile = MemOp->isVolatile(); 1393 // Don't try to optimize volatile. 1394 if (IsVolatile) 1395 return false; 1396 1397 Align DstAlign = MemOp->getBaseAlign(); 1398 Align SrcAlign; 1399 Register Dst = MI.getOperand(0).getReg(); 1400 Register Src = MI.getOperand(1).getReg(); 1401 Register Len = MI.getOperand(2).getReg(); 1402 1403 if (Opc != TargetOpcode::G_MEMSET) { 1404 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1405 MemOp = *(++MMOIt); 1406 SrcAlign = MemOp->getBaseAlign(); 1407 } 1408 1409 // See if this is a constant length copy 1410 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1411 if (!LenVRegAndVal) 1412 return false; // Leave it to the legalizer to lower it to a libcall. 1413 unsigned KnownLen = LenVRegAndVal->Value.getZExtValue(); 1414 1415 if (KnownLen == 0) { 1416 MI.eraseFromParent(); 1417 return true; 1418 } 1419 1420 if (MaxLen && KnownLen > MaxLen) 1421 return false; 1422 1423 if (Opc == TargetOpcode::G_MEMCPY) 1424 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1425 if (Opc == TargetOpcode::G_MEMMOVE) 1426 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1427 if (Opc == TargetOpcode::G_MEMSET) 1428 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1429 return false; 1430 } 1431 1432 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1433 const Register Op, 1434 const MachineRegisterInfo &MRI) { 1435 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1436 if (!MaybeCst) 1437 return None; 1438 1439 APFloat V = MaybeCst->getValueAPF(); 1440 switch (Opcode) { 1441 default: 1442 llvm_unreachable("Unexpected opcode!"); 1443 case TargetOpcode::G_FNEG: { 1444 V.changeSign(); 1445 return V; 1446 } 1447 case TargetOpcode::G_FABS: { 1448 V.clearSign(); 1449 return V; 1450 } 1451 case TargetOpcode::G_FPTRUNC: 1452 break; 1453 case TargetOpcode::G_FSQRT: { 1454 bool Unused; 1455 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1456 V = APFloat(sqrt(V.convertToDouble())); 1457 break; 1458 } 1459 case TargetOpcode::G_FLOG2: { 1460 bool Unused; 1461 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1462 V = APFloat(log2(V.convertToDouble())); 1463 break; 1464 } 1465 } 1466 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1467 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1468 // and `G_FLOG2` reach here. 1469 bool Unused; 1470 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1471 return V; 1472 } 1473 1474 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1475 Optional<APFloat> &Cst) { 1476 Register DstReg = MI.getOperand(0).getReg(); 1477 Register SrcReg = MI.getOperand(1).getReg(); 1478 LLT DstTy = MRI.getType(DstReg); 1479 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1480 return Cst.hasValue(); 1481 } 1482 1483 bool CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1484 Optional<APFloat> &Cst) { 1485 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1486 Builder.setInstrAndDebugLoc(MI); 1487 MachineFunction &MF = Builder.getMF(); 1488 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1489 Register DstReg = MI.getOperand(0).getReg(); 1490 Builder.buildFConstant(DstReg, *FPVal); 1491 MI.eraseFromParent(); 1492 return true; 1493 } 1494 1495 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1496 PtrAddChain &MatchInfo) { 1497 // We're trying to match the following pattern: 1498 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1499 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1500 // --> 1501 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1502 1503 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1504 return false; 1505 1506 Register Add2 = MI.getOperand(1).getReg(); 1507 Register Imm1 = MI.getOperand(2).getReg(); 1508 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1509 if (!MaybeImmVal) 1510 return false; 1511 1512 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1513 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1514 return false; 1515 1516 Register Base = Add2Def->getOperand(1).getReg(); 1517 Register Imm2 = Add2Def->getOperand(2).getReg(); 1518 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1519 if (!MaybeImm2Val) 1520 return false; 1521 1522 // Pass the combined immediate to the apply function. 1523 MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue(); 1524 MatchInfo.Base = Base; 1525 return true; 1526 } 1527 1528 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1529 PtrAddChain &MatchInfo) { 1530 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1531 MachineIRBuilder MIB(MI); 1532 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1533 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1534 Observer.changingInstr(MI); 1535 MI.getOperand(1).setReg(MatchInfo.Base); 1536 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1537 Observer.changedInstr(MI); 1538 return true; 1539 } 1540 1541 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1542 RegisterImmPair &MatchInfo) { 1543 // We're trying to match the following pattern with any of 1544 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1545 // %t1 = SHIFT %base, G_CONSTANT imm1 1546 // %root = SHIFT %t1, G_CONSTANT imm2 1547 // --> 1548 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1549 1550 unsigned Opcode = MI.getOpcode(); 1551 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1552 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1553 Opcode == TargetOpcode::G_USHLSAT) && 1554 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1555 1556 Register Shl2 = MI.getOperand(1).getReg(); 1557 Register Imm1 = MI.getOperand(2).getReg(); 1558 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1559 if (!MaybeImmVal) 1560 return false; 1561 1562 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1563 if (Shl2Def->getOpcode() != Opcode) 1564 return false; 1565 1566 Register Base = Shl2Def->getOperand(1).getReg(); 1567 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1568 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1569 if (!MaybeImm2Val) 1570 return false; 1571 1572 // Pass the combined immediate to the apply function. 1573 MatchInfo.Imm = 1574 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1575 MatchInfo.Reg = Base; 1576 1577 // There is no simple replacement for a saturating unsigned left shift that 1578 // exceeds the scalar size. 1579 if (Opcode == TargetOpcode::G_USHLSAT && 1580 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1581 return false; 1582 1583 return true; 1584 } 1585 1586 bool CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1587 RegisterImmPair &MatchInfo) { 1588 unsigned Opcode = MI.getOpcode(); 1589 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1590 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1591 Opcode == TargetOpcode::G_USHLSAT) && 1592 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1593 1594 Builder.setInstrAndDebugLoc(MI); 1595 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1596 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1597 auto Imm = MatchInfo.Imm; 1598 1599 if (Imm >= ScalarSizeInBits) { 1600 // Any logical shift that exceeds scalar size will produce zero. 1601 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1602 Builder.buildConstant(MI.getOperand(0), 0); 1603 MI.eraseFromParent(); 1604 return true; 1605 } 1606 // Arithmetic shift and saturating signed left shift have no effect beyond 1607 // scalar size. 1608 Imm = ScalarSizeInBits - 1; 1609 } 1610 1611 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1612 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1613 Observer.changingInstr(MI); 1614 MI.getOperand(1).setReg(MatchInfo.Reg); 1615 MI.getOperand(2).setReg(NewImm); 1616 Observer.changedInstr(MI); 1617 return true; 1618 } 1619 1620 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1621 ShiftOfShiftedLogic &MatchInfo) { 1622 // We're trying to match the following pattern with any of 1623 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1624 // with any of G_AND/G_OR/G_XOR logic instructions. 1625 // %t1 = SHIFT %X, G_CONSTANT C0 1626 // %t2 = LOGIC %t1, %Y 1627 // %root = SHIFT %t2, G_CONSTANT C1 1628 // --> 1629 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1630 // %t4 = SHIFT %Y, G_CONSTANT C1 1631 // %root = LOGIC %t3, %t4 1632 unsigned ShiftOpcode = MI.getOpcode(); 1633 assert((ShiftOpcode == TargetOpcode::G_SHL || 1634 ShiftOpcode == TargetOpcode::G_ASHR || 1635 ShiftOpcode == TargetOpcode::G_LSHR || 1636 ShiftOpcode == TargetOpcode::G_USHLSAT || 1637 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1638 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1639 1640 // Match a one-use bitwise logic op. 1641 Register LogicDest = MI.getOperand(1).getReg(); 1642 if (!MRI.hasOneNonDBGUse(LogicDest)) 1643 return false; 1644 1645 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1646 unsigned LogicOpcode = LogicMI->getOpcode(); 1647 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1648 LogicOpcode != TargetOpcode::G_XOR) 1649 return false; 1650 1651 // Find a matching one-use shift by constant. 1652 const Register C1 = MI.getOperand(2).getReg(); 1653 auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); 1654 if (!MaybeImmVal) 1655 return false; 1656 1657 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1658 1659 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1660 // Shift should match previous one and should be a one-use. 1661 if (MI->getOpcode() != ShiftOpcode || 1662 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1663 return false; 1664 1665 // Must be a constant. 1666 auto MaybeImmVal = 1667 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1668 if (!MaybeImmVal) 1669 return false; 1670 1671 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1672 return true; 1673 }; 1674 1675 // Logic ops are commutative, so check each operand for a match. 1676 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1677 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1678 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1679 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1680 uint64_t C0Val; 1681 1682 if (matchFirstShift(LogicMIOp1, C0Val)) { 1683 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1684 MatchInfo.Shift2 = LogicMIOp1; 1685 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1686 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1687 MatchInfo.Shift2 = LogicMIOp2; 1688 } else 1689 return false; 1690 1691 MatchInfo.ValSum = C0Val + C1Val; 1692 1693 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1694 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1695 return false; 1696 1697 MatchInfo.Logic = LogicMI; 1698 return true; 1699 } 1700 1701 bool CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1702 ShiftOfShiftedLogic &MatchInfo) { 1703 unsigned Opcode = MI.getOpcode(); 1704 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1705 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1706 Opcode == TargetOpcode::G_SSHLSAT) && 1707 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1708 1709 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1710 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1711 Builder.setInstrAndDebugLoc(MI); 1712 1713 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1714 1715 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1716 Register Shift1 = 1717 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1718 1719 Register Shift2Const = MI.getOperand(2).getReg(); 1720 Register Shift2 = Builder 1721 .buildInstr(Opcode, {DestType}, 1722 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1723 .getReg(0); 1724 1725 Register Dest = MI.getOperand(0).getReg(); 1726 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1727 1728 // These were one use so it's safe to remove them. 1729 MatchInfo.Shift2->eraseFromParent(); 1730 MatchInfo.Logic->eraseFromParent(); 1731 1732 MI.eraseFromParent(); 1733 return true; 1734 } 1735 1736 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1737 unsigned &ShiftVal) { 1738 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1739 auto MaybeImmVal = 1740 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1741 if (!MaybeImmVal) 1742 return false; 1743 1744 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1745 return (static_cast<int32_t>(ShiftVal) != -1); 1746 } 1747 1748 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1749 unsigned &ShiftVal) { 1750 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1751 MachineIRBuilder MIB(MI); 1752 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1753 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1754 Observer.changingInstr(MI); 1755 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1756 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1757 Observer.changedInstr(MI); 1758 return true; 1759 } 1760 1761 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1762 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1763 RegisterImmPair &MatchData) { 1764 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1765 1766 Register LHS = MI.getOperand(1).getReg(); 1767 1768 Register ExtSrc; 1769 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1770 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1771 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1772 return false; 1773 1774 // TODO: Should handle vector splat. 1775 Register RHS = MI.getOperand(2).getReg(); 1776 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 1777 if (!MaybeShiftAmtVal) 1778 return false; 1779 1780 if (LI) { 1781 LLT SrcTy = MRI.getType(ExtSrc); 1782 1783 // We only really care about the legality with the shifted value. We can 1784 // pick any type the constant shift amount, so ask the target what to 1785 // use. Otherwise we would have to guess and hope it is reported as legal. 1786 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1787 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1788 return false; 1789 } 1790 1791 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1792 MatchData.Reg = ExtSrc; 1793 MatchData.Imm = ShiftAmt; 1794 1795 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1796 return MinLeadingZeros >= ShiftAmt; 1797 } 1798 1799 bool CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1800 const RegisterImmPair &MatchData) { 1801 Register ExtSrcReg = MatchData.Reg; 1802 int64_t ShiftAmtVal = MatchData.Imm; 1803 1804 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1805 Builder.setInstrAndDebugLoc(MI); 1806 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1807 auto NarrowShift = 1808 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1809 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1810 MI.eraseFromParent(); 1811 return true; 1812 } 1813 1814 static Register peekThroughBitcast(Register Reg, 1815 const MachineRegisterInfo &MRI) { 1816 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1817 ; 1818 1819 return Reg; 1820 } 1821 1822 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1823 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1824 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1825 "Expected an unmerge"); 1826 Register SrcReg = 1827 peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI); 1828 1829 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1830 if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES && 1831 SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR && 1832 SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS) 1833 return false; 1834 1835 // Check the source type of the merge. 1836 LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg()); 1837 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1838 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1839 if (SrcMergeTy != Dst0Ty && !SameSize) 1840 return false; 1841 // They are the same now (modulo a bitcast). 1842 // We can collect all the src registers. 1843 for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx; 1844 ++Idx) 1845 Operands.push_back(SrcInstr->getOperand(Idx).getReg()); 1846 return true; 1847 } 1848 1849 bool CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1850 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1851 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1852 "Expected an unmerge"); 1853 assert((MI.getNumOperands() - 1 == Operands.size()) && 1854 "Not enough operands to replace all defs"); 1855 unsigned NumElems = MI.getNumOperands() - 1; 1856 1857 LLT SrcTy = MRI.getType(Operands[0]); 1858 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1859 bool CanReuseInputDirectly = DstTy == SrcTy; 1860 Builder.setInstrAndDebugLoc(MI); 1861 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1862 Register DstReg = MI.getOperand(Idx).getReg(); 1863 Register SrcReg = Operands[Idx]; 1864 if (CanReuseInputDirectly) 1865 replaceRegWith(MRI, DstReg, SrcReg); 1866 else 1867 Builder.buildCast(DstReg, SrcReg); 1868 } 1869 MI.eraseFromParent(); 1870 return true; 1871 } 1872 1873 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1874 SmallVectorImpl<APInt> &Csts) { 1875 unsigned SrcIdx = MI.getNumOperands() - 1; 1876 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1877 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1878 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1879 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1880 return false; 1881 // Break down the big constant in smaller ones. 1882 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1883 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1884 ? CstVal.getCImm()->getValue() 1885 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1886 1887 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1888 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1889 // Unmerge a constant. 1890 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1891 Csts.emplace_back(Val.trunc(ShiftAmt)); 1892 Val = Val.lshr(ShiftAmt); 1893 } 1894 1895 return true; 1896 } 1897 1898 bool CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1899 SmallVectorImpl<APInt> &Csts) { 1900 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1901 "Expected an unmerge"); 1902 assert((MI.getNumOperands() - 1 == Csts.size()) && 1903 "Not enough operands to replace all defs"); 1904 unsigned NumElems = MI.getNumOperands() - 1; 1905 Builder.setInstrAndDebugLoc(MI); 1906 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1907 Register DstReg = MI.getOperand(Idx).getReg(); 1908 Builder.buildConstant(DstReg, Csts[Idx]); 1909 } 1910 1911 MI.eraseFromParent(); 1912 return true; 1913 } 1914 1915 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1916 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1917 "Expected an unmerge"); 1918 // Check that all the lanes are dead except the first one. 1919 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1920 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1921 return false; 1922 } 1923 return true; 1924 } 1925 1926 bool CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1927 Builder.setInstrAndDebugLoc(MI); 1928 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1929 // Truncating a vector is going to truncate every single lane, 1930 // whereas we want the full lowbits. 1931 // Do the operation on a scalar instead. 1932 LLT SrcTy = MRI.getType(SrcReg); 1933 if (SrcTy.isVector()) 1934 SrcReg = 1935 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1936 1937 Register Dst0Reg = MI.getOperand(0).getReg(); 1938 LLT Dst0Ty = MRI.getType(Dst0Reg); 1939 if (Dst0Ty.isVector()) { 1940 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 1941 Builder.buildCast(Dst0Reg, MIB); 1942 } else 1943 Builder.buildTrunc(Dst0Reg, SrcReg); 1944 MI.eraseFromParent(); 1945 return true; 1946 } 1947 1948 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 1949 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1950 "Expected an unmerge"); 1951 Register Dst0Reg = MI.getOperand(0).getReg(); 1952 LLT Dst0Ty = MRI.getType(Dst0Reg); 1953 // G_ZEXT on vector applies to each lane, so it will 1954 // affect all destinations. Therefore we won't be able 1955 // to simplify the unmerge to just the first definition. 1956 if (Dst0Ty.isVector()) 1957 return false; 1958 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1959 LLT SrcTy = MRI.getType(SrcReg); 1960 if (SrcTy.isVector()) 1961 return false; 1962 1963 Register ZExtSrcReg; 1964 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 1965 return false; 1966 1967 // Finally we can replace the first definition with 1968 // a zext of the source if the definition is big enough to hold 1969 // all of ZExtSrc bits. 1970 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1971 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 1972 } 1973 1974 bool CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 1975 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1976 "Expected an unmerge"); 1977 1978 Register Dst0Reg = MI.getOperand(0).getReg(); 1979 1980 MachineInstr *ZExtInstr = 1981 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 1982 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 1983 "Expecting a G_ZEXT"); 1984 1985 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 1986 LLT Dst0Ty = MRI.getType(Dst0Reg); 1987 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1988 1989 Builder.setInstrAndDebugLoc(MI); 1990 1991 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 1992 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 1993 } else { 1994 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 1995 "ZExt src doesn't fit in destination"); 1996 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 1997 } 1998 1999 Register ZeroReg; 2000 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2001 if (!ZeroReg) 2002 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 2003 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 2004 } 2005 MI.eraseFromParent(); 2006 return true; 2007 } 2008 2009 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 2010 unsigned TargetShiftSize, 2011 unsigned &ShiftVal) { 2012 assert((MI.getOpcode() == TargetOpcode::G_SHL || 2013 MI.getOpcode() == TargetOpcode::G_LSHR || 2014 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 2015 2016 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2017 if (Ty.isVector()) // TODO: 2018 return false; 2019 2020 // Don't narrow further than the requested size. 2021 unsigned Size = Ty.getSizeInBits(); 2022 if (Size <= TargetShiftSize) 2023 return false; 2024 2025 auto MaybeImmVal = 2026 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 2027 if (!MaybeImmVal) 2028 return false; 2029 2030 ShiftVal = MaybeImmVal->Value.getSExtValue(); 2031 return ShiftVal >= Size / 2 && ShiftVal < Size; 2032 } 2033 2034 bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 2035 const unsigned &ShiftVal) { 2036 Register DstReg = MI.getOperand(0).getReg(); 2037 Register SrcReg = MI.getOperand(1).getReg(); 2038 LLT Ty = MRI.getType(SrcReg); 2039 unsigned Size = Ty.getSizeInBits(); 2040 unsigned HalfSize = Size / 2; 2041 assert(ShiftVal >= HalfSize); 2042 2043 LLT HalfTy = LLT::scalar(HalfSize); 2044 2045 Builder.setInstr(MI); 2046 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 2047 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 2048 2049 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2050 Register Narrowed = Unmerge.getReg(1); 2051 2052 // dst = G_LSHR s64:x, C for C >= 32 2053 // => 2054 // lo, hi = G_UNMERGE_VALUES x 2055 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 2056 2057 if (NarrowShiftAmt != 0) { 2058 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 2059 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2060 } 2061 2062 auto Zero = Builder.buildConstant(HalfTy, 0); 2063 Builder.buildMerge(DstReg, { Narrowed, Zero }); 2064 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 2065 Register Narrowed = Unmerge.getReg(0); 2066 // dst = G_SHL s64:x, C for C >= 32 2067 // => 2068 // lo, hi = G_UNMERGE_VALUES x 2069 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 2070 if (NarrowShiftAmt != 0) { 2071 Narrowed = Builder.buildShl(HalfTy, Narrowed, 2072 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2073 } 2074 2075 auto Zero = Builder.buildConstant(HalfTy, 0); 2076 Builder.buildMerge(DstReg, { Zero, Narrowed }); 2077 } else { 2078 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2079 auto Hi = Builder.buildAShr( 2080 HalfTy, Unmerge.getReg(1), 2081 Builder.buildConstant(HalfTy, HalfSize - 1)); 2082 2083 if (ShiftVal == HalfSize) { 2084 // (G_ASHR i64:x, 32) -> 2085 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 2086 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 2087 } else if (ShiftVal == Size - 1) { 2088 // Don't need a second shift. 2089 // (G_ASHR i64:x, 63) -> 2090 // %narrowed = (G_ASHR hi_32(x), 31) 2091 // G_MERGE_VALUES %narrowed, %narrowed 2092 Builder.buildMerge(DstReg, { Hi, Hi }); 2093 } else { 2094 auto Lo = Builder.buildAShr( 2095 HalfTy, Unmerge.getReg(1), 2096 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 2097 2098 // (G_ASHR i64:x, C) ->, for C >= 32 2099 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 2100 Builder.buildMerge(DstReg, { Lo, Hi }); 2101 } 2102 } 2103 2104 MI.eraseFromParent(); 2105 return true; 2106 } 2107 2108 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 2109 unsigned TargetShiftAmount) { 2110 unsigned ShiftAmt; 2111 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 2112 applyCombineShiftToUnmerge(MI, ShiftAmt); 2113 return true; 2114 } 2115 2116 return false; 2117 } 2118 2119 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2120 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2121 Register DstReg = MI.getOperand(0).getReg(); 2122 LLT DstTy = MRI.getType(DstReg); 2123 Register SrcReg = MI.getOperand(1).getReg(); 2124 return mi_match(SrcReg, MRI, 2125 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2126 } 2127 2128 bool CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2129 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2130 Register DstReg = MI.getOperand(0).getReg(); 2131 Builder.setInstr(MI); 2132 Builder.buildCopy(DstReg, Reg); 2133 MI.eraseFromParent(); 2134 return true; 2135 } 2136 2137 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2138 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2139 Register SrcReg = MI.getOperand(1).getReg(); 2140 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2141 } 2142 2143 bool CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2144 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2145 Register DstReg = MI.getOperand(0).getReg(); 2146 Builder.setInstr(MI); 2147 Builder.buildZExtOrTrunc(DstReg, Reg); 2148 MI.eraseFromParent(); 2149 return true; 2150 } 2151 2152 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2153 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2154 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2155 Register LHS = MI.getOperand(1).getReg(); 2156 Register RHS = MI.getOperand(2).getReg(); 2157 LLT IntTy = MRI.getType(LHS); 2158 2159 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2160 // instruction. 2161 PtrReg.second = false; 2162 for (Register SrcReg : {LHS, RHS}) { 2163 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2164 // Don't handle cases where the integer is implicitly converted to the 2165 // pointer width. 2166 LLT PtrTy = MRI.getType(PtrReg.first); 2167 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2168 return true; 2169 } 2170 2171 PtrReg.second = true; 2172 } 2173 2174 return false; 2175 } 2176 2177 bool CombinerHelper::applyCombineAddP2IToPtrAdd( 2178 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2179 Register Dst = MI.getOperand(0).getReg(); 2180 Register LHS = MI.getOperand(1).getReg(); 2181 Register RHS = MI.getOperand(2).getReg(); 2182 2183 const bool DoCommute = PtrReg.second; 2184 if (DoCommute) 2185 std::swap(LHS, RHS); 2186 LHS = PtrReg.first; 2187 2188 LLT PtrTy = MRI.getType(LHS); 2189 2190 Builder.setInstrAndDebugLoc(MI); 2191 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2192 Builder.buildPtrToInt(Dst, PtrAdd); 2193 MI.eraseFromParent(); 2194 return true; 2195 } 2196 2197 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2198 int64_t &NewCst) { 2199 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2200 Register LHS = MI.getOperand(1).getReg(); 2201 Register RHS = MI.getOperand(2).getReg(); 2202 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2203 2204 if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { 2205 int64_t Cst; 2206 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2207 NewCst = Cst + *RHSCst; 2208 return true; 2209 } 2210 } 2211 2212 return false; 2213 } 2214 2215 bool CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2216 int64_t &NewCst) { 2217 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2218 Register Dst = MI.getOperand(0).getReg(); 2219 2220 Builder.setInstrAndDebugLoc(MI); 2221 Builder.buildConstant(Dst, NewCst); 2222 MI.eraseFromParent(); 2223 return true; 2224 } 2225 2226 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2227 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2228 Register DstReg = MI.getOperand(0).getReg(); 2229 Register SrcReg = MI.getOperand(1).getReg(); 2230 LLT DstTy = MRI.getType(DstReg); 2231 return mi_match(SrcReg, MRI, 2232 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2233 } 2234 2235 bool CombinerHelper::applyCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2236 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2237 Register DstReg = MI.getOperand(0).getReg(); 2238 MI.eraseFromParent(); 2239 replaceRegWith(MRI, DstReg, Reg); 2240 return true; 2241 } 2242 2243 bool CombinerHelper::matchCombineExtOfExt( 2244 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2245 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2246 MI.getOpcode() == TargetOpcode::G_SEXT || 2247 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2248 "Expected a G_[ASZ]EXT"); 2249 Register SrcReg = MI.getOperand(1).getReg(); 2250 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2251 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2252 unsigned Opc = MI.getOpcode(); 2253 unsigned SrcOpc = SrcMI->getOpcode(); 2254 if (Opc == SrcOpc || 2255 (Opc == TargetOpcode::G_ANYEXT && 2256 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2257 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2258 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2259 return true; 2260 } 2261 return false; 2262 } 2263 2264 bool CombinerHelper::applyCombineExtOfExt( 2265 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2266 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2267 MI.getOpcode() == TargetOpcode::G_SEXT || 2268 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2269 "Expected a G_[ASZ]EXT"); 2270 2271 Register Reg = std::get<0>(MatchInfo); 2272 unsigned SrcExtOp = std::get<1>(MatchInfo); 2273 2274 // Combine exts with the same opcode. 2275 if (MI.getOpcode() == SrcExtOp) { 2276 Observer.changingInstr(MI); 2277 MI.getOperand(1).setReg(Reg); 2278 Observer.changedInstr(MI); 2279 return true; 2280 } 2281 2282 // Combine: 2283 // - anyext([sz]ext x) to [sz]ext x 2284 // - sext(zext x) to zext x 2285 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2286 (MI.getOpcode() == TargetOpcode::G_SEXT && 2287 SrcExtOp == TargetOpcode::G_ZEXT)) { 2288 Register DstReg = MI.getOperand(0).getReg(); 2289 Builder.setInstrAndDebugLoc(MI); 2290 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2291 MI.eraseFromParent(); 2292 return true; 2293 } 2294 2295 return false; 2296 } 2297 2298 bool CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2299 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2300 Register DstReg = MI.getOperand(0).getReg(); 2301 Register SrcReg = MI.getOperand(1).getReg(); 2302 LLT DstTy = MRI.getType(DstReg); 2303 2304 Builder.setInstrAndDebugLoc(MI); 2305 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2306 MI.getFlags()); 2307 MI.eraseFromParent(); 2308 return true; 2309 } 2310 2311 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2312 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2313 Register SrcReg = MI.getOperand(1).getReg(); 2314 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2315 } 2316 2317 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2318 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2319 Src = MI.getOperand(1).getReg(); 2320 Register AbsSrc; 2321 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2322 } 2323 2324 bool CombinerHelper::applyCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2325 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2326 Register Dst = MI.getOperand(0).getReg(); 2327 MI.eraseFromParent(); 2328 replaceRegWith(MRI, Dst, Src); 2329 return true; 2330 } 2331 2332 bool CombinerHelper::matchCombineTruncOfExt( 2333 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2334 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2335 Register SrcReg = MI.getOperand(1).getReg(); 2336 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2337 unsigned SrcOpc = SrcMI->getOpcode(); 2338 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2339 SrcOpc == TargetOpcode::G_ZEXT) { 2340 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2341 return true; 2342 } 2343 return false; 2344 } 2345 2346 bool CombinerHelper::applyCombineTruncOfExt( 2347 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2348 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2349 Register SrcReg = MatchInfo.first; 2350 unsigned SrcExtOp = MatchInfo.second; 2351 Register DstReg = MI.getOperand(0).getReg(); 2352 LLT SrcTy = MRI.getType(SrcReg); 2353 LLT DstTy = MRI.getType(DstReg); 2354 if (SrcTy == DstTy) { 2355 MI.eraseFromParent(); 2356 replaceRegWith(MRI, DstReg, SrcReg); 2357 return true; 2358 } 2359 Builder.setInstrAndDebugLoc(MI); 2360 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2361 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2362 else 2363 Builder.buildTrunc(DstReg, SrcReg); 2364 MI.eraseFromParent(); 2365 return true; 2366 } 2367 2368 bool CombinerHelper::matchCombineTruncOfShl( 2369 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2370 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2371 Register DstReg = MI.getOperand(0).getReg(); 2372 Register SrcReg = MI.getOperand(1).getReg(); 2373 LLT DstTy = MRI.getType(DstReg); 2374 Register ShiftSrc; 2375 Register ShiftAmt; 2376 2377 if (MRI.hasOneNonDBGUse(SrcReg) && 2378 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2379 isLegalOrBeforeLegalizer( 2380 {TargetOpcode::G_SHL, 2381 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2382 KnownBits Known = KB->getKnownBits(ShiftAmt); 2383 unsigned Size = DstTy.getSizeInBits(); 2384 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2385 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2386 return true; 2387 } 2388 } 2389 return false; 2390 } 2391 2392 bool CombinerHelper::applyCombineTruncOfShl( 2393 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2394 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2395 Register DstReg = MI.getOperand(0).getReg(); 2396 Register SrcReg = MI.getOperand(1).getReg(); 2397 LLT DstTy = MRI.getType(DstReg); 2398 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2399 2400 Register ShiftSrc = MatchInfo.first; 2401 Register ShiftAmt = MatchInfo.second; 2402 Builder.setInstrAndDebugLoc(MI); 2403 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2404 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2405 MI.eraseFromParent(); 2406 return true; 2407 } 2408 2409 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2410 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2411 return MO.isReg() && 2412 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2413 }); 2414 } 2415 2416 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2417 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2418 return !MO.isReg() || 2419 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2420 }); 2421 } 2422 2423 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2424 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2425 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2426 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2427 } 2428 2429 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2430 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2431 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2432 MRI); 2433 } 2434 2435 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2436 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2437 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2438 MRI); 2439 } 2440 2441 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2442 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2443 if (auto MaybeCstCmp = 2444 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2445 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; 2446 return true; 2447 } 2448 return false; 2449 } 2450 2451 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2452 MI.eraseFromParent(); 2453 return true; 2454 } 2455 2456 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2457 const MachineOperand &MOP2) { 2458 if (!MOP1.isReg() || !MOP2.isReg()) 2459 return false; 2460 MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); 2461 if (!I1) 2462 return false; 2463 MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); 2464 if (!I2) 2465 return false; 2466 2467 // Handle a case like this: 2468 // 2469 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2470 // 2471 // Even though %0 and %1 are produced by the same instruction they are not 2472 // the same values. 2473 if (I1 == I2) 2474 return MOP1.getReg() == MOP2.getReg(); 2475 2476 // If we have an instruction which loads or stores, we can't guarantee that 2477 // it is identical. 2478 // 2479 // For example, we may have 2480 // 2481 // %x1 = G_LOAD %addr (load N from @somewhere) 2482 // ... 2483 // call @foo 2484 // ... 2485 // %x2 = G_LOAD %addr (load N from @somewhere) 2486 // ... 2487 // %or = G_OR %x1, %x2 2488 // 2489 // It's possible that @foo will modify whatever lives at the address we're 2490 // loading from. To be safe, let's just assume that all loads and stores 2491 // are different (unless we have something which is guaranteed to not 2492 // change.) 2493 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2494 return false; 2495 2496 // Check for physical registers on the instructions first to avoid cases 2497 // like this: 2498 // 2499 // %a = COPY $physreg 2500 // ... 2501 // SOMETHING implicit-def $physreg 2502 // ... 2503 // %b = COPY $physreg 2504 // 2505 // These copies are not equivalent. 2506 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2507 return MO.isReg() && MO.getReg().isPhysical(); 2508 })) { 2509 // Check if we have a case like this: 2510 // 2511 // %a = COPY $physreg 2512 // %b = COPY %a 2513 // 2514 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2515 // From that, we know that they must have the same value, since they must 2516 // have come from the same COPY. 2517 return I1->isIdenticalTo(*I2); 2518 } 2519 2520 // We don't have any physical registers, so we don't necessarily need the 2521 // same vreg defs. 2522 // 2523 // On the off-chance that there's some target instruction feeding into the 2524 // instruction, let's use produceSameValue instead of isIdenticalTo. 2525 return Builder.getTII().produceSameValue(*I1, *I2, &MRI); 2526 } 2527 2528 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2529 if (!MOP.isReg()) 2530 return false; 2531 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2532 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2533 return ValAndVReg && ValAndVReg->Value == C; 2534 } 2535 2536 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2537 unsigned OpIdx) { 2538 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2539 Register OldReg = MI.getOperand(0).getReg(); 2540 Register Replacement = MI.getOperand(OpIdx).getReg(); 2541 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2542 MI.eraseFromParent(); 2543 replaceRegWith(MRI, OldReg, Replacement); 2544 return true; 2545 } 2546 2547 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2548 Register Replacement) { 2549 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2550 Register OldReg = MI.getOperand(0).getReg(); 2551 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2552 MI.eraseFromParent(); 2553 replaceRegWith(MRI, OldReg, Replacement); 2554 return true; 2555 } 2556 2557 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2558 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2559 // Match (cond ? x : x) 2560 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2561 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2562 MRI); 2563 } 2564 2565 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2566 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2567 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2568 MRI); 2569 } 2570 2571 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2572 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2573 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2574 MRI); 2575 } 2576 2577 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2578 MachineOperand &MO = MI.getOperand(OpIdx); 2579 return MO.isReg() && 2580 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2581 } 2582 2583 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2584 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2585 Builder.setInstr(MI); 2586 Builder.buildFConstant(MI.getOperand(0), C); 2587 MI.eraseFromParent(); 2588 return true; 2589 } 2590 2591 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2592 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2593 Builder.setInstr(MI); 2594 Builder.buildConstant(MI.getOperand(0), C); 2595 MI.eraseFromParent(); 2596 return true; 2597 } 2598 2599 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2600 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2601 Builder.setInstr(MI); 2602 Builder.buildUndef(MI.getOperand(0)); 2603 MI.eraseFromParent(); 2604 return true; 2605 } 2606 2607 bool CombinerHelper::matchSimplifyAddToSub( 2608 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2609 Register LHS = MI.getOperand(1).getReg(); 2610 Register RHS = MI.getOperand(2).getReg(); 2611 Register &NewLHS = std::get<0>(MatchInfo); 2612 Register &NewRHS = std::get<1>(MatchInfo); 2613 2614 // Helper lambda to check for opportunities for 2615 // ((0-A) + B) -> B - A 2616 // (A + (0-B)) -> A - B 2617 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2618 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2619 return false; 2620 NewLHS = MaybeNewLHS; 2621 return true; 2622 }; 2623 2624 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2625 } 2626 2627 bool CombinerHelper::matchCombineInsertVecElts( 2628 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2629 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2630 "Invalid opcode"); 2631 Register DstReg = MI.getOperand(0).getReg(); 2632 LLT DstTy = MRI.getType(DstReg); 2633 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2634 unsigned NumElts = DstTy.getNumElements(); 2635 // If this MI is part of a sequence of insert_vec_elts, then 2636 // don't do the combine in the middle of the sequence. 2637 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2638 TargetOpcode::G_INSERT_VECTOR_ELT) 2639 return false; 2640 MachineInstr *CurrInst = &MI; 2641 MachineInstr *TmpInst; 2642 int64_t IntImm; 2643 Register TmpReg; 2644 MatchInfo.resize(NumElts); 2645 while (mi_match( 2646 CurrInst->getOperand(0).getReg(), MRI, 2647 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2648 if (IntImm >= NumElts) 2649 return false; 2650 if (!MatchInfo[IntImm]) 2651 MatchInfo[IntImm] = TmpReg; 2652 CurrInst = TmpInst; 2653 } 2654 // Variable index. 2655 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2656 return false; 2657 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2658 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2659 if (!MatchInfo[I - 1].isValid()) 2660 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2661 } 2662 return true; 2663 } 2664 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2665 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2666 } 2667 2668 bool CombinerHelper::applyCombineInsertVecElts( 2669 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2670 Builder.setInstr(MI); 2671 Register UndefReg; 2672 auto GetUndef = [&]() { 2673 if (UndefReg) 2674 return UndefReg; 2675 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2676 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2677 return UndefReg; 2678 }; 2679 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2680 if (!MatchInfo[I]) 2681 MatchInfo[I] = GetUndef(); 2682 } 2683 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2684 MI.eraseFromParent(); 2685 return true; 2686 } 2687 2688 bool CombinerHelper::applySimplifyAddToSub( 2689 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2690 Builder.setInstr(MI); 2691 Register SubLHS, SubRHS; 2692 std::tie(SubLHS, SubRHS) = MatchInfo; 2693 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2694 MI.eraseFromParent(); 2695 return true; 2696 } 2697 2698 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2699 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2700 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2701 // 2702 // Creates the new hand + logic instruction (but does not insert them.) 2703 // 2704 // On success, MatchInfo is populated with the new instructions. These are 2705 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2706 unsigned LogicOpcode = MI.getOpcode(); 2707 assert(LogicOpcode == TargetOpcode::G_AND || 2708 LogicOpcode == TargetOpcode::G_OR || 2709 LogicOpcode == TargetOpcode::G_XOR); 2710 MachineIRBuilder MIB(MI); 2711 Register Dst = MI.getOperand(0).getReg(); 2712 Register LHSReg = MI.getOperand(1).getReg(); 2713 Register RHSReg = MI.getOperand(2).getReg(); 2714 2715 // Don't recompute anything. 2716 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2717 return false; 2718 2719 // Make sure we have (hand x, ...), (hand y, ...) 2720 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2721 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2722 if (!LeftHandInst || !RightHandInst) 2723 return false; 2724 unsigned HandOpcode = LeftHandInst->getOpcode(); 2725 if (HandOpcode != RightHandInst->getOpcode()) 2726 return false; 2727 if (!LeftHandInst->getOperand(1).isReg() || 2728 !RightHandInst->getOperand(1).isReg()) 2729 return false; 2730 2731 // Make sure the types match up, and if we're doing this post-legalization, 2732 // we end up with legal types. 2733 Register X = LeftHandInst->getOperand(1).getReg(); 2734 Register Y = RightHandInst->getOperand(1).getReg(); 2735 LLT XTy = MRI.getType(X); 2736 LLT YTy = MRI.getType(Y); 2737 if (XTy != YTy) 2738 return false; 2739 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2740 return false; 2741 2742 // Optional extra source register. 2743 Register ExtraHandOpSrcReg; 2744 switch (HandOpcode) { 2745 default: 2746 return false; 2747 case TargetOpcode::G_ANYEXT: 2748 case TargetOpcode::G_SEXT: 2749 case TargetOpcode::G_ZEXT: { 2750 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2751 break; 2752 } 2753 case TargetOpcode::G_AND: 2754 case TargetOpcode::G_ASHR: 2755 case TargetOpcode::G_LSHR: 2756 case TargetOpcode::G_SHL: { 2757 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2758 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2759 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2760 return false; 2761 ExtraHandOpSrcReg = ZOp.getReg(); 2762 break; 2763 } 2764 } 2765 2766 // Record the steps to build the new instructions. 2767 // 2768 // Steps to build (logic x, y) 2769 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2770 OperandBuildSteps LogicBuildSteps = { 2771 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2772 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2773 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2774 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2775 2776 // Steps to build hand (logic x, y), ...z 2777 OperandBuildSteps HandBuildSteps = { 2778 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2779 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2780 if (ExtraHandOpSrcReg.isValid()) 2781 HandBuildSteps.push_back( 2782 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2783 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2784 2785 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2786 return true; 2787 } 2788 2789 bool CombinerHelper::applyBuildInstructionSteps( 2790 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2791 assert(MatchInfo.InstrsToBuild.size() && 2792 "Expected at least one instr to build?"); 2793 Builder.setInstr(MI); 2794 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2795 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2796 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2797 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2798 for (auto &OperandFn : InstrToBuild.OperandFns) 2799 OperandFn(Instr); 2800 } 2801 MI.eraseFromParent(); 2802 return true; 2803 } 2804 2805 bool CombinerHelper::matchAshrShlToSextInreg( 2806 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2807 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2808 int64_t ShlCst, AshrCst; 2809 Register Src; 2810 // FIXME: detect splat constant vectors. 2811 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2812 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2813 return false; 2814 if (ShlCst != AshrCst) 2815 return false; 2816 if (!isLegalOrBeforeLegalizer( 2817 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2818 return false; 2819 MatchInfo = std::make_tuple(Src, ShlCst); 2820 return true; 2821 } 2822 bool CombinerHelper::applyAshShlToSextInreg( 2823 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2824 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2825 Register Src; 2826 int64_t ShiftAmt; 2827 std::tie(Src, ShiftAmt) = MatchInfo; 2828 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2829 Builder.setInstrAndDebugLoc(MI); 2830 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2831 MI.eraseFromParent(); 2832 return true; 2833 } 2834 2835 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2836 Register &Replacement) { 2837 // Given 2838 // 2839 // %y:_(sN) = G_SOMETHING 2840 // %x:_(sN) = G_SOMETHING 2841 // %res:_(sN) = G_AND %x, %y 2842 // 2843 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 2844 // 2845 // Patterns like this can appear as a result of legalization. E.g. 2846 // 2847 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2848 // %one:_(s32) = G_CONSTANT i32 1 2849 // %and:_(s32) = G_AND %cmp, %one 2850 // 2851 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2852 assert(MI.getOpcode() == TargetOpcode::G_AND); 2853 if (!KB) 2854 return false; 2855 2856 Register AndDst = MI.getOperand(0).getReg(); 2857 LLT DstTy = MRI.getType(AndDst); 2858 2859 // FIXME: This should be removed once GISelKnownBits supports vectors. 2860 if (DstTy.isVector()) 2861 return false; 2862 2863 Register LHS = MI.getOperand(1).getReg(); 2864 Register RHS = MI.getOperand(2).getReg(); 2865 KnownBits LHSBits = KB->getKnownBits(LHS); 2866 KnownBits RHSBits = KB->getKnownBits(RHS); 2867 2868 // Check that x & Mask == x. 2869 // x & 1 == x, always 2870 // x & 0 == x, only if x is also 0 2871 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 2872 // 2873 // Check if we can replace AndDst with the LHS of the G_AND 2874 if (canReplaceReg(AndDst, LHS, MRI) && 2875 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 2876 Replacement = LHS; 2877 return true; 2878 } 2879 2880 // Check if we can replace AndDst with the RHS of the G_AND 2881 if (canReplaceReg(AndDst, RHS, MRI) && 2882 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 2883 Replacement = RHS; 2884 return true; 2885 } 2886 2887 return false; 2888 } 2889 2890 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 2891 // Given 2892 // 2893 // %y:_(sN) = G_SOMETHING 2894 // %x:_(sN) = G_SOMETHING 2895 // %res:_(sN) = G_OR %x, %y 2896 // 2897 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 2898 assert(MI.getOpcode() == TargetOpcode::G_OR); 2899 if (!KB) 2900 return false; 2901 2902 Register OrDst = MI.getOperand(0).getReg(); 2903 LLT DstTy = MRI.getType(OrDst); 2904 2905 // FIXME: This should be removed once GISelKnownBits supports vectors. 2906 if (DstTy.isVector()) 2907 return false; 2908 2909 Register LHS = MI.getOperand(1).getReg(); 2910 Register RHS = MI.getOperand(2).getReg(); 2911 KnownBits LHSBits = KB->getKnownBits(LHS); 2912 KnownBits RHSBits = KB->getKnownBits(RHS); 2913 2914 // Check that x | Mask == x. 2915 // x | 0 == x, always 2916 // x | 1 == x, only if x is also 1 2917 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 2918 // 2919 // Check if we can replace OrDst with the LHS of the G_OR 2920 if (canReplaceReg(OrDst, LHS, MRI) && 2921 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 2922 Replacement = LHS; 2923 return true; 2924 } 2925 2926 // Check if we can replace OrDst with the RHS of the G_OR 2927 if (canReplaceReg(OrDst, RHS, MRI) && 2928 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 2929 Replacement = RHS; 2930 return true; 2931 } 2932 2933 return false; 2934 } 2935 2936 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 2937 // If the input is already sign extended, just drop the extension. 2938 Register Src = MI.getOperand(1).getReg(); 2939 unsigned ExtBits = MI.getOperand(2).getImm(); 2940 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 2941 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 2942 } 2943 2944 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 2945 int64_t Cst, bool IsVector, bool IsFP) { 2946 // For i1, Cst will always be -1 regardless of boolean contents. 2947 return (ScalarSizeBits == 1 && Cst == -1) || 2948 isConstTrueVal(TLI, Cst, IsVector, IsFP); 2949 } 2950 2951 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 2952 SmallVectorImpl<Register> &RegsToNegate) { 2953 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2954 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2955 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 2956 Register XorSrc; 2957 Register CstReg; 2958 // We match xor(src, true) here. 2959 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2960 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 2961 return false; 2962 2963 if (!MRI.hasOneNonDBGUse(XorSrc)) 2964 return false; 2965 2966 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 2967 // and ORs. The suffix of RegsToNegate starting from index I is used a work 2968 // list of tree nodes to visit. 2969 RegsToNegate.push_back(XorSrc); 2970 // Remember whether the comparisons are all integer or all floating point. 2971 bool IsInt = false; 2972 bool IsFP = false; 2973 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 2974 Register Reg = RegsToNegate[I]; 2975 if (!MRI.hasOneNonDBGUse(Reg)) 2976 return false; 2977 MachineInstr *Def = MRI.getVRegDef(Reg); 2978 switch (Def->getOpcode()) { 2979 default: 2980 // Don't match if the tree contains anything other than ANDs, ORs and 2981 // comparisons. 2982 return false; 2983 case TargetOpcode::G_ICMP: 2984 if (IsFP) 2985 return false; 2986 IsInt = true; 2987 // When we apply the combine we will invert the predicate. 2988 break; 2989 case TargetOpcode::G_FCMP: 2990 if (IsInt) 2991 return false; 2992 IsFP = true; 2993 // When we apply the combine we will invert the predicate. 2994 break; 2995 case TargetOpcode::G_AND: 2996 case TargetOpcode::G_OR: 2997 // Implement De Morgan's laws: 2998 // ~(x & y) -> ~x | ~y 2999 // ~(x | y) -> ~x & ~y 3000 // When we apply the combine we will change the opcode and recursively 3001 // negate the operands. 3002 RegsToNegate.push_back(Def->getOperand(1).getReg()); 3003 RegsToNegate.push_back(Def->getOperand(2).getReg()); 3004 break; 3005 } 3006 } 3007 3008 // Now we know whether the comparisons are integer or floating point, check 3009 // the constant in the xor. 3010 int64_t Cst; 3011 if (Ty.isVector()) { 3012 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 3013 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 3014 if (!MaybeCst) 3015 return false; 3016 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 3017 return false; 3018 } else { 3019 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 3020 return false; 3021 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 3022 return false; 3023 } 3024 3025 return true; 3026 } 3027 3028 bool CombinerHelper::applyNotCmp(MachineInstr &MI, 3029 SmallVectorImpl<Register> &RegsToNegate) { 3030 for (Register Reg : RegsToNegate) { 3031 MachineInstr *Def = MRI.getVRegDef(Reg); 3032 Observer.changingInstr(*Def); 3033 // For each comparison, invert the opcode. For each AND and OR, change the 3034 // opcode. 3035 switch (Def->getOpcode()) { 3036 default: 3037 llvm_unreachable("Unexpected opcode"); 3038 case TargetOpcode::G_ICMP: 3039 case TargetOpcode::G_FCMP: { 3040 MachineOperand &PredOp = Def->getOperand(1); 3041 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 3042 (CmpInst::Predicate)PredOp.getPredicate()); 3043 PredOp.setPredicate(NewP); 3044 break; 3045 } 3046 case TargetOpcode::G_AND: 3047 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3048 break; 3049 case TargetOpcode::G_OR: 3050 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3051 break; 3052 } 3053 Observer.changedInstr(*Def); 3054 } 3055 3056 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3057 MI.eraseFromParent(); 3058 return true; 3059 } 3060 3061 bool CombinerHelper::matchXorOfAndWithSameReg( 3062 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3063 // Match (xor (and x, y), y) (or any of its commuted cases) 3064 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3065 Register &X = MatchInfo.first; 3066 Register &Y = MatchInfo.second; 3067 Register AndReg = MI.getOperand(1).getReg(); 3068 Register SharedReg = MI.getOperand(2).getReg(); 3069 3070 // Find a G_AND on either side of the G_XOR. 3071 // Look for one of 3072 // 3073 // (xor (and x, y), SharedReg) 3074 // (xor SharedReg, (and x, y)) 3075 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3076 std::swap(AndReg, SharedReg); 3077 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3078 return false; 3079 } 3080 3081 // Only do this if we'll eliminate the G_AND. 3082 if (!MRI.hasOneNonDBGUse(AndReg)) 3083 return false; 3084 3085 // We can combine if SharedReg is the same as either the LHS or RHS of the 3086 // G_AND. 3087 if (Y != SharedReg) 3088 std::swap(X, Y); 3089 return Y == SharedReg; 3090 } 3091 3092 bool CombinerHelper::applyXorOfAndWithSameReg( 3093 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3094 // Fold (xor (and x, y), y) -> (and (not x), y) 3095 Builder.setInstrAndDebugLoc(MI); 3096 Register X, Y; 3097 std::tie(X, Y) = MatchInfo; 3098 auto Not = Builder.buildNot(MRI.getType(X), X); 3099 Observer.changingInstr(MI); 3100 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3101 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3102 MI.getOperand(2).setReg(Y); 3103 Observer.changedInstr(MI); 3104 return true; 3105 } 3106 3107 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3108 Register DstReg = MI.getOperand(0).getReg(); 3109 LLT Ty = MRI.getType(DstReg); 3110 const DataLayout &DL = Builder.getMF().getDataLayout(); 3111 3112 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3113 return false; 3114 3115 if (Ty.isPointer()) { 3116 auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI); 3117 return ConstVal && *ConstVal == 0; 3118 } 3119 3120 assert(Ty.isVector() && "Expecting a vector type"); 3121 const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg()); 3122 return isBuildVectorAllZeros(*VecMI, MRI); 3123 } 3124 3125 bool CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3126 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 3127 Builder.setInstrAndDebugLoc(MI); 3128 Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2)); 3129 MI.eraseFromParent(); 3130 return true; 3131 } 3132 3133 bool CombinerHelper::tryCombine(MachineInstr &MI) { 3134 if (tryCombineCopy(MI)) 3135 return true; 3136 if (tryCombineExtendingLoads(MI)) 3137 return true; 3138 if (tryCombineIndexedLoadStore(MI)) 3139 return true; 3140 return false; 3141 } 3142