1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/CodeGen/GlobalISel/Combiner.h" 10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 12 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 13 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 14 #include "llvm/CodeGen/GlobalISel/Utils.h" 15 #include "llvm/CodeGen/MachineDominators.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineInstr.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/TargetInstrInfo.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/Support/MathExtras.h" 22 #include "llvm/Target/TargetMachine.h" 23 24 #define DEBUG_TYPE "gi-combiner" 25 26 using namespace llvm; 27 using namespace MIPatternMatch; 28 29 // Option to allow testing of the combiner while no targets know about indexed 30 // addressing. 31 static cl::opt<bool> 32 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 33 cl::desc("Force all indexed operations to be " 34 "legal for the GlobalISel combiner")); 35 36 37 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 38 MachineIRBuilder &B, GISelKnownBits *KB, 39 MachineDominatorTree *MDT) 40 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 41 KB(KB), MDT(MDT) { 42 (void)this->KB; 43 } 44 45 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 46 Register ToReg) const { 47 Observer.changingAllUsesOfReg(MRI, FromReg); 48 49 if (MRI.constrainRegAttrs(ToReg, FromReg)) 50 MRI.replaceRegWith(FromReg, ToReg); 51 else 52 Builder.buildCopy(ToReg, FromReg); 53 54 Observer.finishedChangingAllUsesOfReg(); 55 } 56 57 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 58 MachineOperand &FromRegOp, 59 Register ToReg) const { 60 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 61 Observer.changingInstr(*FromRegOp.getParent()); 62 63 FromRegOp.setReg(ToReg); 64 65 Observer.changedInstr(*FromRegOp.getParent()); 66 } 67 68 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 69 if (matchCombineCopy(MI)) { 70 applyCombineCopy(MI); 71 return true; 72 } 73 return false; 74 } 75 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 76 if (MI.getOpcode() != TargetOpcode::COPY) 77 return false; 78 Register DstReg = MI.getOperand(0).getReg(); 79 Register SrcReg = MI.getOperand(1).getReg(); 80 return canReplaceReg(DstReg, SrcReg, MRI); 81 } 82 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 83 Register DstReg = MI.getOperand(0).getReg(); 84 Register SrcReg = MI.getOperand(1).getReg(); 85 MI.eraseFromParent(); 86 replaceRegWith(MRI, DstReg, SrcReg); 87 } 88 89 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 90 bool IsUndef = false; 91 SmallVector<Register, 4> Ops; 92 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 93 applyCombineConcatVectors(MI, IsUndef, Ops); 94 return true; 95 } 96 return false; 97 } 98 99 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 100 SmallVectorImpl<Register> &Ops) { 101 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 102 "Invalid instruction"); 103 IsUndef = true; 104 MachineInstr *Undef = nullptr; 105 106 // Walk over all the operands of concat vectors and check if they are 107 // build_vector themselves or undef. 108 // Then collect their operands in Ops. 109 for (const MachineOperand &MO : MI.uses()) { 110 Register Reg = MO.getReg(); 111 MachineInstr *Def = MRI.getVRegDef(Reg); 112 assert(Def && "Operand not defined"); 113 switch (Def->getOpcode()) { 114 case TargetOpcode::G_BUILD_VECTOR: 115 IsUndef = false; 116 // Remember the operands of the build_vector to fold 117 // them into the yet-to-build flattened concat vectors. 118 for (const MachineOperand &BuildVecMO : Def->uses()) 119 Ops.push_back(BuildVecMO.getReg()); 120 break; 121 case TargetOpcode::G_IMPLICIT_DEF: { 122 LLT OpType = MRI.getType(Reg); 123 // Keep one undef value for all the undef operands. 124 if (!Undef) { 125 Builder.setInsertPt(*MI.getParent(), MI); 126 Undef = Builder.buildUndef(OpType.getScalarType()); 127 } 128 assert(MRI.getType(Undef->getOperand(0).getReg()) == 129 OpType.getScalarType() && 130 "All undefs should have the same type"); 131 // Break the undef vector in as many scalar elements as needed 132 // for the flattening. 133 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 134 EltIdx != EltEnd; ++EltIdx) 135 Ops.push_back(Undef->getOperand(0).getReg()); 136 break; 137 } 138 default: 139 return false; 140 } 141 } 142 return true; 143 } 144 void CombinerHelper::applyCombineConcatVectors( 145 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 146 // We determined that the concat_vectors can be flatten. 147 // Generate the flattened build_vector. 148 Register DstReg = MI.getOperand(0).getReg(); 149 Builder.setInsertPt(*MI.getParent(), MI); 150 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 151 152 // Note: IsUndef is sort of redundant. We could have determine it by 153 // checking that at all Ops are undef. Alternatively, we could have 154 // generate a build_vector of undefs and rely on another combine to 155 // clean that up. For now, given we already gather this information 156 // in tryCombineConcatVectors, just save compile time and issue the 157 // right thing. 158 if (IsUndef) 159 Builder.buildUndef(NewDstReg); 160 else 161 Builder.buildBuildVector(NewDstReg, Ops); 162 MI.eraseFromParent(); 163 replaceRegWith(MRI, DstReg, NewDstReg); 164 } 165 166 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 167 SmallVector<Register, 4> Ops; 168 if (matchCombineShuffleVector(MI, Ops)) { 169 applyCombineShuffleVector(MI, Ops); 170 return true; 171 } 172 return false; 173 } 174 175 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 176 SmallVectorImpl<Register> &Ops) { 177 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 178 "Invalid instruction kind"); 179 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 180 Register Src1 = MI.getOperand(1).getReg(); 181 LLT SrcType = MRI.getType(Src1); 182 // As bizarre as it may look, shuffle vector can actually produce 183 // scalar! This is because at the IR level a <1 x ty> shuffle 184 // vector is perfectly valid. 185 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 186 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 187 188 // If the resulting vector is smaller than the size of the source 189 // vectors being concatenated, we won't be able to replace the 190 // shuffle vector into a concat_vectors. 191 // 192 // Note: We may still be able to produce a concat_vectors fed by 193 // extract_vector_elt and so on. It is less clear that would 194 // be better though, so don't bother for now. 195 // 196 // If the destination is a scalar, the size of the sources doesn't 197 // matter. we will lower the shuffle to a plain copy. This will 198 // work only if the source and destination have the same size. But 199 // that's covered by the next condition. 200 // 201 // TODO: If the size between the source and destination don't match 202 // we could still emit an extract vector element in that case. 203 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 204 return false; 205 206 // Check that the shuffle mask can be broken evenly between the 207 // different sources. 208 if (DstNumElts % SrcNumElts != 0) 209 return false; 210 211 // Mask length is a multiple of the source vector length. 212 // Check if the shuffle is some kind of concatenation of the input 213 // vectors. 214 unsigned NumConcat = DstNumElts / SrcNumElts; 215 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 216 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 217 for (unsigned i = 0; i != DstNumElts; ++i) { 218 int Idx = Mask[i]; 219 // Undef value. 220 if (Idx < 0) 221 continue; 222 // Ensure the indices in each SrcType sized piece are sequential and that 223 // the same source is used for the whole piece. 224 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 225 (ConcatSrcs[i / SrcNumElts] >= 0 && 226 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 227 return false; 228 // Remember which source this index came from. 229 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 230 } 231 232 // The shuffle is concatenating multiple vectors together. 233 // Collect the different operands for that. 234 Register UndefReg; 235 Register Src2 = MI.getOperand(2).getReg(); 236 for (auto Src : ConcatSrcs) { 237 if (Src < 0) { 238 if (!UndefReg) { 239 Builder.setInsertPt(*MI.getParent(), MI); 240 UndefReg = Builder.buildUndef(SrcType).getReg(0); 241 } 242 Ops.push_back(UndefReg); 243 } else if (Src == 0) 244 Ops.push_back(Src1); 245 else 246 Ops.push_back(Src2); 247 } 248 return true; 249 } 250 251 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 252 const ArrayRef<Register> Ops) { 253 Register DstReg = MI.getOperand(0).getReg(); 254 Builder.setInsertPt(*MI.getParent(), MI); 255 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 256 257 if (Ops.size() == 1) 258 Builder.buildCopy(NewDstReg, Ops[0]); 259 else 260 Builder.buildMerge(NewDstReg, Ops); 261 262 MI.eraseFromParent(); 263 replaceRegWith(MRI, DstReg, NewDstReg); 264 } 265 266 namespace { 267 268 /// Select a preference between two uses. CurrentUse is the current preference 269 /// while *ForCandidate is attributes of the candidate under consideration. 270 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 271 const LLT TyForCandidate, 272 unsigned OpcodeForCandidate, 273 MachineInstr *MIForCandidate) { 274 if (!CurrentUse.Ty.isValid()) { 275 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 276 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 277 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 278 return CurrentUse; 279 } 280 281 // We permit the extend to hoist through basic blocks but this is only 282 // sensible if the target has extending loads. If you end up lowering back 283 // into a load and extend during the legalizer then the end result is 284 // hoisting the extend up to the load. 285 286 // Prefer defined extensions to undefined extensions as these are more 287 // likely to reduce the number of instructions. 288 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 289 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 290 return CurrentUse; 291 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 292 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 293 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 294 295 // Prefer sign extensions to zero extensions as sign-extensions tend to be 296 // more expensive. 297 if (CurrentUse.Ty == TyForCandidate) { 298 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 299 OpcodeForCandidate == TargetOpcode::G_ZEXT) 300 return CurrentUse; 301 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 302 OpcodeForCandidate == TargetOpcode::G_SEXT) 303 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 304 } 305 306 // This is potentially target specific. We've chosen the largest type 307 // because G_TRUNC is usually free. One potential catch with this is that 308 // some targets have a reduced number of larger registers than smaller 309 // registers and this choice potentially increases the live-range for the 310 // larger value. 311 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 312 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 313 } 314 return CurrentUse; 315 } 316 317 /// Find a suitable place to insert some instructions and insert them. This 318 /// function accounts for special cases like inserting before a PHI node. 319 /// The current strategy for inserting before PHI's is to duplicate the 320 /// instructions for each predecessor. However, while that's ok for G_TRUNC 321 /// on most targets since it generally requires no code, other targets/cases may 322 /// want to try harder to find a dominating block. 323 static void InsertInsnsWithoutSideEffectsBeforeUse( 324 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 325 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 326 MachineOperand &UseMO)> 327 Inserter) { 328 MachineInstr &UseMI = *UseMO.getParent(); 329 330 MachineBasicBlock *InsertBB = UseMI.getParent(); 331 332 // If the use is a PHI then we want the predecessor block instead. 333 if (UseMI.isPHI()) { 334 MachineOperand *PredBB = std::next(&UseMO); 335 InsertBB = PredBB->getMBB(); 336 } 337 338 // If the block is the same block as the def then we want to insert just after 339 // the def instead of at the start of the block. 340 if (InsertBB == DefMI.getParent()) { 341 MachineBasicBlock::iterator InsertPt = &DefMI; 342 Inserter(InsertBB, std::next(InsertPt), UseMO); 343 return; 344 } 345 346 // Otherwise we want the start of the BB 347 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 348 } 349 } // end anonymous namespace 350 351 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 352 PreferredTuple Preferred; 353 if (matchCombineExtendingLoads(MI, Preferred)) { 354 applyCombineExtendingLoads(MI, Preferred); 355 return true; 356 } 357 return false; 358 } 359 360 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 361 PreferredTuple &Preferred) { 362 // We match the loads and follow the uses to the extend instead of matching 363 // the extends and following the def to the load. This is because the load 364 // must remain in the same position for correctness (unless we also add code 365 // to find a safe place to sink it) whereas the extend is freely movable. 366 // It also prevents us from duplicating the load for the volatile case or just 367 // for performance. 368 369 if (MI.getOpcode() != TargetOpcode::G_LOAD && 370 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 371 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 372 return false; 373 374 auto &LoadValue = MI.getOperand(0); 375 assert(LoadValue.isReg() && "Result wasn't a register?"); 376 377 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 378 if (!LoadValueTy.isScalar()) 379 return false; 380 381 // Most architectures are going to legalize <s8 loads into at least a 1 byte 382 // load, and the MMOs can only describe memory accesses in multiples of bytes. 383 // If we try to perform extload combining on those, we can end up with 384 // %a(s8) = extload %ptr (load 1 byte from %ptr) 385 // ... which is an illegal extload instruction. 386 if (LoadValueTy.getSizeInBits() < 8) 387 return false; 388 389 // For non power-of-2 types, they will very likely be legalized into multiple 390 // loads. Don't bother trying to match them into extending loads. 391 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 392 return false; 393 394 // Find the preferred type aside from the any-extends (unless it's the only 395 // one) and non-extending ops. We'll emit an extending load to that type and 396 // and emit a variant of (extend (trunc X)) for the others according to the 397 // relative type sizes. At the same time, pick an extend to use based on the 398 // extend involved in the chosen type. 399 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 400 ? TargetOpcode::G_ANYEXT 401 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 402 ? TargetOpcode::G_SEXT 403 : TargetOpcode::G_ZEXT; 404 Preferred = {LLT(), PreferredOpcode, nullptr}; 405 for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) { 406 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 407 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 408 UseMI.getOpcode() == TargetOpcode::G_ANYEXT) { 409 Preferred = ChoosePreferredUse(Preferred, 410 MRI.getType(UseMI.getOperand(0).getReg()), 411 UseMI.getOpcode(), &UseMI); 412 } 413 } 414 415 // There were no extends 416 if (!Preferred.MI) 417 return false; 418 // It should be impossible to chose an extend without selecting a different 419 // type since by definition the result of an extend is larger. 420 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 421 422 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 423 return true; 424 } 425 426 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 427 PreferredTuple &Preferred) { 428 // Rewrite the load to the chosen extending load. 429 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 430 431 // Inserter to insert a truncate back to the original type at a given point 432 // with some basic CSE to limit truncate duplication to one per BB. 433 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 434 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 435 MachineBasicBlock::iterator InsertBefore, 436 MachineOperand &UseMO) { 437 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 438 if (PreviouslyEmitted) { 439 Observer.changingInstr(*UseMO.getParent()); 440 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 441 Observer.changedInstr(*UseMO.getParent()); 442 return; 443 } 444 445 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 446 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 447 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 448 EmittedInsns[InsertIntoBB] = NewMI; 449 replaceRegOpWith(MRI, UseMO, NewDstReg); 450 }; 451 452 Observer.changingInstr(MI); 453 MI.setDesc( 454 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 455 ? TargetOpcode::G_SEXTLOAD 456 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 457 ? TargetOpcode::G_ZEXTLOAD 458 : TargetOpcode::G_LOAD)); 459 460 // Rewrite all the uses to fix up the types. 461 auto &LoadValue = MI.getOperand(0); 462 SmallVector<MachineOperand *, 4> Uses; 463 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 464 Uses.push_back(&UseMO); 465 466 for (auto *UseMO : Uses) { 467 MachineInstr *UseMI = UseMO->getParent(); 468 469 // If the extend is compatible with the preferred extend then we should fix 470 // up the type and extend so that it uses the preferred use. 471 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 472 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 473 Register UseDstReg = UseMI->getOperand(0).getReg(); 474 MachineOperand &UseSrcMO = UseMI->getOperand(1); 475 const LLT UseDstTy = MRI.getType(UseDstReg); 476 if (UseDstReg != ChosenDstReg) { 477 if (Preferred.Ty == UseDstTy) { 478 // If the use has the same type as the preferred use, then merge 479 // the vregs and erase the extend. For example: 480 // %1:_(s8) = G_LOAD ... 481 // %2:_(s32) = G_SEXT %1(s8) 482 // %3:_(s32) = G_ANYEXT %1(s8) 483 // ... = ... %3(s32) 484 // rewrites to: 485 // %2:_(s32) = G_SEXTLOAD ... 486 // ... = ... %2(s32) 487 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 488 Observer.erasingInstr(*UseMO->getParent()); 489 UseMO->getParent()->eraseFromParent(); 490 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 491 // If the preferred size is smaller, then keep the extend but extend 492 // from the result of the extending load. For example: 493 // %1:_(s8) = G_LOAD ... 494 // %2:_(s32) = G_SEXT %1(s8) 495 // %3:_(s64) = G_ANYEXT %1(s8) 496 // ... = ... %3(s64) 497 /// rewrites to: 498 // %2:_(s32) = G_SEXTLOAD ... 499 // %3:_(s64) = G_ANYEXT %2:_(s32) 500 // ... = ... %3(s64) 501 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 502 } else { 503 // If the preferred size is large, then insert a truncate. For 504 // example: 505 // %1:_(s8) = G_LOAD ... 506 // %2:_(s64) = G_SEXT %1(s8) 507 // %3:_(s32) = G_ZEXT %1(s8) 508 // ... = ... %3(s32) 509 /// rewrites to: 510 // %2:_(s64) = G_SEXTLOAD ... 511 // %4:_(s8) = G_TRUNC %2:_(s32) 512 // %3:_(s64) = G_ZEXT %2:_(s8) 513 // ... = ... %3(s64) 514 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 515 InsertTruncAt); 516 } 517 continue; 518 } 519 // The use is (one of) the uses of the preferred use we chose earlier. 520 // We're going to update the load to def this value later so just erase 521 // the old extend. 522 Observer.erasingInstr(*UseMO->getParent()); 523 UseMO->getParent()->eraseFromParent(); 524 continue; 525 } 526 527 // The use isn't an extend. Truncate back to the type we originally loaded. 528 // This is free on many targets. 529 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 530 } 531 532 MI.getOperand(0).setReg(ChosenDstReg); 533 Observer.changedInstr(MI); 534 } 535 536 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 537 const MachineInstr &UseMI) { 538 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 539 "shouldn't consider debug uses"); 540 assert(DefMI.getParent() == UseMI.getParent()); 541 if (&DefMI == &UseMI) 542 return false; 543 544 // Loop through the basic block until we find one of the instructions. 545 MachineBasicBlock::const_iterator I = DefMI.getParent()->begin(); 546 for (; &*I != &DefMI && &*I != &UseMI; ++I) 547 return &*I == &DefMI; 548 549 llvm_unreachable("Block must contain instructions"); 550 } 551 552 bool CombinerHelper::dominates(const MachineInstr &DefMI, 553 const MachineInstr &UseMI) { 554 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 555 "shouldn't consider debug uses"); 556 if (MDT) 557 return MDT->dominates(&DefMI, &UseMI); 558 else if (DefMI.getParent() != UseMI.getParent()) 559 return false; 560 561 return isPredecessor(DefMI, UseMI); 562 } 563 564 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 565 Register &Base, Register &Offset) { 566 auto &MF = *MI.getParent()->getParent(); 567 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 568 569 #ifndef NDEBUG 570 unsigned Opcode = MI.getOpcode(); 571 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 572 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 573 #endif 574 575 Base = MI.getOperand(1).getReg(); 576 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 577 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 578 return false; 579 580 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 581 582 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 583 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 584 continue; 585 586 Offset = Use.getOperand(2).getReg(); 587 if (!ForceLegalIndexing && 588 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 589 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 590 << Use); 591 continue; 592 } 593 594 // Make sure the offset calculation is before the potentially indexed op. 595 // FIXME: we really care about dependency here. The offset calculation might 596 // be movable. 597 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 598 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 599 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 600 << Use); 601 continue; 602 } 603 604 // FIXME: check whether all uses of Base are load/store with foldable 605 // addressing modes. If so, using the normal addr-modes is better than 606 // forming an indexed one. 607 608 bool MemOpDominatesAddrUses = true; 609 for (auto &PtrAddUse : 610 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 611 if (!dominates(MI, PtrAddUse)) { 612 MemOpDominatesAddrUses = false; 613 break; 614 } 615 } 616 617 if (!MemOpDominatesAddrUses) { 618 LLVM_DEBUG( 619 dbgs() << " Ignoring candidate as memop does not dominate uses: " 620 << Use); 621 continue; 622 } 623 624 LLVM_DEBUG(dbgs() << " Found match: " << Use); 625 Addr = Use.getOperand(0).getReg(); 626 return true; 627 } 628 629 return false; 630 } 631 632 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 633 Register &Base, Register &Offset) { 634 auto &MF = *MI.getParent()->getParent(); 635 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 636 637 #ifndef NDEBUG 638 unsigned Opcode = MI.getOpcode(); 639 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 640 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 641 #endif 642 643 Addr = MI.getOperand(1).getReg(); 644 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 645 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 646 return false; 647 648 Base = AddrDef->getOperand(1).getReg(); 649 Offset = AddrDef->getOperand(2).getReg(); 650 651 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 652 653 if (!ForceLegalIndexing && 654 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 655 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 656 return false; 657 } 658 659 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 660 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 661 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 662 return false; 663 } 664 665 if (MI.getOpcode() == TargetOpcode::G_STORE) { 666 // Would require a copy. 667 if (Base == MI.getOperand(0).getReg()) { 668 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 669 return false; 670 } 671 672 // We're expecting one use of Addr in MI, but it could also be the 673 // value stored, which isn't actually dominated by the instruction. 674 if (MI.getOperand(0).getReg() == Addr) { 675 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 676 return false; 677 } 678 } 679 680 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 681 // That might allow us to end base's liveness here by adjusting the constant. 682 683 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 684 if (!dominates(MI, UseMI)) { 685 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 686 return false; 687 } 688 } 689 690 return true; 691 } 692 693 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 694 IndexedLoadStoreMatchInfo MatchInfo; 695 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 696 applyCombineIndexedLoadStore(MI, MatchInfo); 697 return true; 698 } 699 return false; 700 } 701 702 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 703 unsigned Opcode = MI.getOpcode(); 704 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 705 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 706 return false; 707 708 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 709 MatchInfo.Offset); 710 if (!MatchInfo.IsPre && 711 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 712 MatchInfo.Offset)) 713 return false; 714 715 return true; 716 } 717 718 void CombinerHelper::applyCombineIndexedLoadStore( 719 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 720 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 721 MachineIRBuilder MIRBuilder(MI); 722 unsigned Opcode = MI.getOpcode(); 723 bool IsStore = Opcode == TargetOpcode::G_STORE; 724 unsigned NewOpcode; 725 switch (Opcode) { 726 case TargetOpcode::G_LOAD: 727 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 728 break; 729 case TargetOpcode::G_SEXTLOAD: 730 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 731 break; 732 case TargetOpcode::G_ZEXTLOAD: 733 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 734 break; 735 case TargetOpcode::G_STORE: 736 NewOpcode = TargetOpcode::G_INDEXED_STORE; 737 break; 738 default: 739 llvm_unreachable("Unknown load/store opcode"); 740 } 741 742 auto MIB = MIRBuilder.buildInstr(NewOpcode); 743 if (IsStore) { 744 MIB.addDef(MatchInfo.Addr); 745 MIB.addUse(MI.getOperand(0).getReg()); 746 } else { 747 MIB.addDef(MI.getOperand(0).getReg()); 748 MIB.addDef(MatchInfo.Addr); 749 } 750 751 MIB.addUse(MatchInfo.Base); 752 MIB.addUse(MatchInfo.Offset); 753 MIB.addImm(MatchInfo.IsPre); 754 MI.eraseFromParent(); 755 AddrDef.eraseFromParent(); 756 757 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 758 } 759 760 bool CombinerHelper::matchElideBrByInvertingCond(MachineInstr &MI) { 761 if (MI.getOpcode() != TargetOpcode::G_BR) 762 return false; 763 764 // Try to match the following: 765 // bb1: 766 // %c(s32) = G_ICMP pred, %a, %b 767 // %c1(s1) = G_TRUNC %c(s32) 768 // G_BRCOND %c1, %bb2 769 // G_BR %bb3 770 // bb2: 771 // ... 772 // bb3: 773 774 // The above pattern does not have a fall through to the successor bb2, always 775 // resulting in a branch no matter which path is taken. Here we try to find 776 // and replace that pattern with conditional branch to bb3 and otherwise 777 // fallthrough to bb2. 778 779 MachineBasicBlock *MBB = MI.getParent(); 780 MachineBasicBlock::iterator BrIt(MI); 781 if (BrIt == MBB->begin()) 782 return false; 783 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 784 785 MachineInstr *BrCond = &*std::prev(BrIt); 786 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 787 return false; 788 789 // Check that the next block is the conditional branch target. 790 if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB())) 791 return false; 792 793 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 794 if (!CmpMI || CmpMI->getOpcode() != TargetOpcode::G_ICMP || 795 !MRI.hasOneNonDBGUse(CmpMI->getOperand(0).getReg())) 796 return false; 797 return true; 798 } 799 800 bool CombinerHelper::tryElideBrByInvertingCond(MachineInstr &MI) { 801 if (!matchElideBrByInvertingCond(MI)) 802 return false; 803 applyElideBrByInvertingCond(MI); 804 return true; 805 } 806 807 void CombinerHelper::applyElideBrByInvertingCond(MachineInstr &MI) { 808 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 809 MachineBasicBlock::iterator BrIt(MI); 810 MachineInstr *BrCond = &*std::prev(BrIt); 811 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 812 813 CmpInst::Predicate InversePred = CmpInst::getInversePredicate( 814 (CmpInst::Predicate)CmpMI->getOperand(1).getPredicate()); 815 816 // Invert the G_ICMP condition. 817 Observer.changingInstr(*CmpMI); 818 CmpMI->getOperand(1).setPredicate(InversePred); 819 Observer.changedInstr(*CmpMI); 820 821 // Change the conditional branch target. 822 Observer.changingInstr(*BrCond); 823 BrCond->getOperand(1).setMBB(BrTarget); 824 Observer.changedInstr(*BrCond); 825 MI.eraseFromParent(); 826 } 827 828 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 829 // On Darwin, -Os means optimize for size without hurting performance, so 830 // only really optimize for size when -Oz (MinSize) is used. 831 if (MF.getTarget().getTargetTriple().isOSDarwin()) 832 return MF.getFunction().hasMinSize(); 833 return MF.getFunction().hasOptSize(); 834 } 835 836 // Returns a list of types to use for memory op lowering in MemOps. A partial 837 // port of findOptimalMemOpLowering in TargetLowering. 838 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 839 unsigned Limit, const MemOp &Op, 840 unsigned DstAS, unsigned SrcAS, 841 const AttributeList &FuncAttributes, 842 const TargetLowering &TLI) { 843 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 844 return false; 845 846 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 847 848 if (Ty == LLT()) { 849 // Use the largest scalar type whose alignment constraints are satisfied. 850 // We only need to check DstAlign here as SrcAlign is always greater or 851 // equal to DstAlign (or zero). 852 Ty = LLT::scalar(64); 853 if (Op.isFixedDstAlign()) 854 while (Op.getDstAlign() < Ty.getSizeInBytes() && 855 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, 856 Op.getDstAlign().value())) 857 Ty = LLT::scalar(Ty.getSizeInBytes()); 858 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 859 // FIXME: check for the largest legal type we can load/store to. 860 } 861 862 unsigned NumMemOps = 0; 863 uint64_t Size = Op.size(); 864 while (Size) { 865 unsigned TySize = Ty.getSizeInBytes(); 866 while (TySize > Size) { 867 // For now, only use non-vector load / store's for the left-over pieces. 868 LLT NewTy = Ty; 869 // FIXME: check for mem op safety and legality of the types. Not all of 870 // SDAGisms map cleanly to GISel concepts. 871 if (NewTy.isVector()) 872 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 873 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 874 unsigned NewTySize = NewTy.getSizeInBytes(); 875 assert(NewTySize > 0 && "Could not find appropriate type"); 876 877 // If the new LLT cannot cover all of the remaining bits, then consider 878 // issuing a (or a pair of) unaligned and overlapping load / store. 879 bool Fast; 880 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 881 MVT VT = getMVTForLLT(Ty); 882 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 883 TLI.allowsMisalignedMemoryAccesses( 884 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 885 MachineMemOperand::MONone, &Fast) && 886 Fast) 887 TySize = Size; 888 else { 889 Ty = NewTy; 890 TySize = NewTySize; 891 } 892 } 893 894 if (++NumMemOps > Limit) 895 return false; 896 897 MemOps.push_back(Ty); 898 Size -= TySize; 899 } 900 901 return true; 902 } 903 904 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 905 if (Ty.isVector()) 906 return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 907 Ty.getNumElements()); 908 return IntegerType::get(C, Ty.getSizeInBits()); 909 } 910 911 // Get a vectorized representation of the memset value operand, GISel edition. 912 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 913 MachineRegisterInfo &MRI = *MIB.getMRI(); 914 unsigned NumBits = Ty.getScalarSizeInBits(); 915 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 916 if (!Ty.isVector() && ValVRegAndVal) { 917 unsigned KnownVal = ValVRegAndVal->Value; 918 APInt Scalar = APInt(8, KnownVal); 919 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 920 return MIB.buildConstant(Ty, SplatVal).getReg(0); 921 } 922 923 // Extend the byte value to the larger type, and then multiply by a magic 924 // value 0x010101... in order to replicate it across every byte. 925 LLT ExtType = Ty.getScalarType(); 926 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 927 if (NumBits > 8) { 928 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 929 auto MagicMI = MIB.buildConstant(ExtType, Magic); 930 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 931 } 932 933 // For vector types create a G_BUILD_VECTOR. 934 if (Ty.isVector()) 935 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 936 937 return Val; 938 } 939 940 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 941 Register Val, unsigned KnownLen, 942 Align Alignment, bool IsVolatile) { 943 auto &MF = *MI.getParent()->getParent(); 944 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 945 auto &DL = MF.getDataLayout(); 946 LLVMContext &C = MF.getFunction().getContext(); 947 948 assert(KnownLen != 0 && "Have a zero length memset length!"); 949 950 bool DstAlignCanChange = false; 951 MachineFrameInfo &MFI = MF.getFrameInfo(); 952 bool OptSize = shouldLowerMemFuncForSize(MF); 953 954 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 955 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 956 DstAlignCanChange = true; 957 958 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 959 std::vector<LLT> MemOps; 960 961 const auto &DstMMO = **MI.memoperands_begin(); 962 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 963 964 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 965 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 966 967 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 968 MemOp::Set(KnownLen, DstAlignCanChange, 969 Alignment, 970 /*IsZeroMemset=*/IsZeroVal, 971 /*IsVolatile=*/IsVolatile), 972 DstPtrInfo.getAddrSpace(), ~0u, 973 MF.getFunction().getAttributes(), TLI)) 974 return false; 975 976 if (DstAlignCanChange) { 977 // Get an estimate of the type from the LLT. 978 Type *IRTy = getTypeForLLT(MemOps[0], C); 979 Align NewAlign = DL.getABITypeAlign(IRTy); 980 if (NewAlign > Alignment) { 981 Alignment = NewAlign; 982 unsigned FI = FIDef->getOperand(1).getIndex(); 983 // Give the stack frame object a larger alignment if needed. 984 if (MFI.getObjectAlign(FI) < Alignment) 985 MFI.setObjectAlignment(FI, Alignment); 986 } 987 } 988 989 MachineIRBuilder MIB(MI); 990 // Find the largest store and generate the bit pattern for it. 991 LLT LargestTy = MemOps[0]; 992 for (unsigned i = 1; i < MemOps.size(); i++) 993 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 994 LargestTy = MemOps[i]; 995 996 // The memset stored value is always defined as an s8, so in order to make it 997 // work with larger store types we need to repeat the bit pattern across the 998 // wider type. 999 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1000 1001 if (!MemSetValue) 1002 return false; 1003 1004 // Generate the stores. For each store type in the list, we generate the 1005 // matching store of that type to the destination address. 1006 LLT PtrTy = MRI.getType(Dst); 1007 unsigned DstOff = 0; 1008 unsigned Size = KnownLen; 1009 for (unsigned I = 0; I < MemOps.size(); I++) { 1010 LLT Ty = MemOps[I]; 1011 unsigned TySize = Ty.getSizeInBytes(); 1012 if (TySize > Size) { 1013 // Issuing an unaligned load / store pair that overlaps with the previous 1014 // pair. Adjust the offset accordingly. 1015 assert(I == MemOps.size() - 1 && I != 0); 1016 DstOff -= TySize - Size; 1017 } 1018 1019 // If this store is smaller than the largest store see whether we can get 1020 // the smaller value for free with a truncate. 1021 Register Value = MemSetValue; 1022 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1023 MVT VT = getMVTForLLT(Ty); 1024 MVT LargestVT = getMVTForLLT(LargestTy); 1025 if (!LargestTy.isVector() && !Ty.isVector() && 1026 TLI.isTruncateFree(LargestVT, VT)) 1027 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1028 else 1029 Value = getMemsetValue(Val, Ty, MIB); 1030 if (!Value) 1031 return false; 1032 } 1033 1034 auto *StoreMMO = 1035 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1036 1037 Register Ptr = Dst; 1038 if (DstOff != 0) { 1039 auto Offset = 1040 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1041 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1042 } 1043 1044 MIB.buildStore(Value, Ptr, *StoreMMO); 1045 DstOff += Ty.getSizeInBytes(); 1046 Size -= TySize; 1047 } 1048 1049 MI.eraseFromParent(); 1050 return true; 1051 } 1052 1053 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1054 Register Src, unsigned KnownLen, 1055 Align DstAlign, Align SrcAlign, 1056 bool IsVolatile) { 1057 auto &MF = *MI.getParent()->getParent(); 1058 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1059 auto &DL = MF.getDataLayout(); 1060 LLVMContext &C = MF.getFunction().getContext(); 1061 1062 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1063 1064 bool DstAlignCanChange = false; 1065 MachineFrameInfo &MFI = MF.getFrameInfo(); 1066 bool OptSize = shouldLowerMemFuncForSize(MF); 1067 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1068 1069 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1070 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1071 DstAlignCanChange = true; 1072 1073 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1074 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1075 // if the memcpy is in a tail call position. 1076 1077 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1078 std::vector<LLT> MemOps; 1079 1080 const auto &DstMMO = **MI.memoperands_begin(); 1081 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1082 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1083 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1084 1085 if (!findGISelOptimalMemOpLowering( 1086 MemOps, Limit, 1087 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1088 IsVolatile), 1089 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1090 MF.getFunction().getAttributes(), TLI)) 1091 return false; 1092 1093 if (DstAlignCanChange) { 1094 // Get an estimate of the type from the LLT. 1095 Type *IRTy = getTypeForLLT(MemOps[0], C); 1096 Align NewAlign = DL.getABITypeAlign(IRTy); 1097 1098 // Don't promote to an alignment that would require dynamic stack 1099 // realignment. 1100 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1101 if (!TRI->needsStackRealignment(MF)) 1102 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1103 NewAlign = NewAlign / 2; 1104 1105 if (NewAlign > Alignment) { 1106 Alignment = NewAlign; 1107 unsigned FI = FIDef->getOperand(1).getIndex(); 1108 // Give the stack frame object a larger alignment if needed. 1109 if (MFI.getObjectAlign(FI) < Alignment) 1110 MFI.setObjectAlignment(FI, Alignment); 1111 } 1112 } 1113 1114 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1115 1116 MachineIRBuilder MIB(MI); 1117 // Now we need to emit a pair of load and stores for each of the types we've 1118 // collected. I.e. for each type, generate a load from the source pointer of 1119 // that type width, and then generate a corresponding store to the dest buffer 1120 // of that value loaded. This can result in a sequence of loads and stores 1121 // mixed types, depending on what the target specifies as good types to use. 1122 unsigned CurrOffset = 0; 1123 LLT PtrTy = MRI.getType(Src); 1124 unsigned Size = KnownLen; 1125 for (auto CopyTy : MemOps) { 1126 // Issuing an unaligned load / store pair that overlaps with the previous 1127 // pair. Adjust the offset accordingly. 1128 if (CopyTy.getSizeInBytes() > Size) 1129 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1130 1131 // Construct MMOs for the accesses. 1132 auto *LoadMMO = 1133 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1134 auto *StoreMMO = 1135 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1136 1137 // Create the load. 1138 Register LoadPtr = Src; 1139 Register Offset; 1140 if (CurrOffset != 0) { 1141 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1142 .getReg(0); 1143 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1144 } 1145 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1146 1147 // Create the store. 1148 Register StorePtr = 1149 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1150 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1151 CurrOffset += CopyTy.getSizeInBytes(); 1152 Size -= CopyTy.getSizeInBytes(); 1153 } 1154 1155 MI.eraseFromParent(); 1156 return true; 1157 } 1158 1159 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1160 Register Src, unsigned KnownLen, 1161 Align DstAlign, Align SrcAlign, 1162 bool IsVolatile) { 1163 auto &MF = *MI.getParent()->getParent(); 1164 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1165 auto &DL = MF.getDataLayout(); 1166 LLVMContext &C = MF.getFunction().getContext(); 1167 1168 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1169 1170 bool DstAlignCanChange = false; 1171 MachineFrameInfo &MFI = MF.getFrameInfo(); 1172 bool OptSize = shouldLowerMemFuncForSize(MF); 1173 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1174 1175 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1176 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1177 DstAlignCanChange = true; 1178 1179 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1180 std::vector<LLT> MemOps; 1181 1182 const auto &DstMMO = **MI.memoperands_begin(); 1183 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1184 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1185 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1186 1187 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1188 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1189 // same thing here. 1190 if (!findGISelOptimalMemOpLowering( 1191 MemOps, Limit, 1192 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1193 /*IsVolatile*/ true), 1194 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1195 MF.getFunction().getAttributes(), TLI)) 1196 return false; 1197 1198 if (DstAlignCanChange) { 1199 // Get an estimate of the type from the LLT. 1200 Type *IRTy = getTypeForLLT(MemOps[0], C); 1201 Align NewAlign = DL.getABITypeAlign(IRTy); 1202 1203 // Don't promote to an alignment that would require dynamic stack 1204 // realignment. 1205 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1206 if (!TRI->needsStackRealignment(MF)) 1207 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1208 NewAlign = NewAlign / 2; 1209 1210 if (NewAlign > Alignment) { 1211 Alignment = NewAlign; 1212 unsigned FI = FIDef->getOperand(1).getIndex(); 1213 // Give the stack frame object a larger alignment if needed. 1214 if (MFI.getObjectAlign(FI) < Alignment) 1215 MFI.setObjectAlignment(FI, Alignment); 1216 } 1217 } 1218 1219 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1220 1221 MachineIRBuilder MIB(MI); 1222 // Memmove requires that we perform the loads first before issuing the stores. 1223 // Apart from that, this loop is pretty much doing the same thing as the 1224 // memcpy codegen function. 1225 unsigned CurrOffset = 0; 1226 LLT PtrTy = MRI.getType(Src); 1227 SmallVector<Register, 16> LoadVals; 1228 for (auto CopyTy : MemOps) { 1229 // Construct MMO for the load. 1230 auto *LoadMMO = 1231 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1232 1233 // Create the load. 1234 Register LoadPtr = Src; 1235 if (CurrOffset != 0) { 1236 auto Offset = 1237 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1238 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1239 } 1240 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1241 CurrOffset += CopyTy.getSizeInBytes(); 1242 } 1243 1244 CurrOffset = 0; 1245 for (unsigned I = 0; I < MemOps.size(); ++I) { 1246 LLT CopyTy = MemOps[I]; 1247 // Now store the values loaded. 1248 auto *StoreMMO = 1249 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1250 1251 Register StorePtr = Dst; 1252 if (CurrOffset != 0) { 1253 auto Offset = 1254 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1255 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1256 } 1257 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1258 CurrOffset += CopyTy.getSizeInBytes(); 1259 } 1260 MI.eraseFromParent(); 1261 return true; 1262 } 1263 1264 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1265 // This combine is fairly complex so it's not written with a separate 1266 // matcher function. 1267 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 1268 Intrinsic::ID ID = (Intrinsic::ID)MI.getIntrinsicID(); 1269 assert((ID == Intrinsic::memcpy || ID == Intrinsic::memmove || 1270 ID == Intrinsic::memset) && 1271 "Expected a memcpy like intrinsic"); 1272 1273 auto MMOIt = MI.memoperands_begin(); 1274 const MachineMemOperand *MemOp = *MMOIt; 1275 bool IsVolatile = MemOp->isVolatile(); 1276 // Don't try to optimize volatile. 1277 if (IsVolatile) 1278 return false; 1279 1280 Align DstAlign = MemOp->getBaseAlign(); 1281 Align SrcAlign; 1282 Register Dst = MI.getOperand(1).getReg(); 1283 Register Src = MI.getOperand(2).getReg(); 1284 Register Len = MI.getOperand(3).getReg(); 1285 1286 if (ID != Intrinsic::memset) { 1287 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1288 MemOp = *(++MMOIt); 1289 SrcAlign = MemOp->getBaseAlign(); 1290 } 1291 1292 // See if this is a constant length copy 1293 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1294 if (!LenVRegAndVal) 1295 return false; // Leave it to the legalizer to lower it to a libcall. 1296 unsigned KnownLen = LenVRegAndVal->Value; 1297 1298 if (KnownLen == 0) { 1299 MI.eraseFromParent(); 1300 return true; 1301 } 1302 1303 if (MaxLen && KnownLen > MaxLen) 1304 return false; 1305 1306 if (ID == Intrinsic::memcpy) 1307 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1308 if (ID == Intrinsic::memmove) 1309 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1310 if (ID == Intrinsic::memset) 1311 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1312 return false; 1313 } 1314 1315 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1316 PtrAddChain &MatchInfo) { 1317 // We're trying to match the following pattern: 1318 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1319 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1320 // --> 1321 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1322 1323 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1324 return false; 1325 1326 Register Add2 = MI.getOperand(1).getReg(); 1327 Register Imm1 = MI.getOperand(2).getReg(); 1328 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1329 if (!MaybeImmVal) 1330 return false; 1331 1332 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1333 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1334 return false; 1335 1336 Register Base = Add2Def->getOperand(1).getReg(); 1337 Register Imm2 = Add2Def->getOperand(2).getReg(); 1338 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1339 if (!MaybeImm2Val) 1340 return false; 1341 1342 // Pass the combined immediate to the apply function. 1343 MatchInfo.Imm = MaybeImmVal->Value + MaybeImm2Val->Value; 1344 MatchInfo.Base = Base; 1345 return true; 1346 } 1347 1348 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1349 PtrAddChain &MatchInfo) { 1350 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1351 MachineIRBuilder MIB(MI); 1352 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1353 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1354 Observer.changingInstr(MI); 1355 MI.getOperand(1).setReg(MatchInfo.Base); 1356 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1357 Observer.changedInstr(MI); 1358 return true; 1359 } 1360 1361 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1362 unsigned &ShiftVal) { 1363 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1364 auto MaybeImmVal = 1365 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1366 if (!MaybeImmVal || !isPowerOf2_64(MaybeImmVal->Value)) 1367 return false; 1368 ShiftVal = Log2_64(MaybeImmVal->Value); 1369 return true; 1370 } 1371 1372 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1373 unsigned &ShiftVal) { 1374 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1375 MachineIRBuilder MIB(MI); 1376 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1377 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1378 Observer.changingInstr(MI); 1379 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1380 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1381 Observer.changedInstr(MI); 1382 return true; 1383 } 1384 1385 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1386 unsigned TargetShiftSize, 1387 unsigned &ShiftVal) { 1388 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1389 MI.getOpcode() == TargetOpcode::G_LSHR || 1390 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1391 1392 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1393 if (Ty.isVector()) // TODO: 1394 return false; 1395 1396 // Don't narrow further than the requested size. 1397 unsigned Size = Ty.getSizeInBits(); 1398 if (Size <= TargetShiftSize) 1399 return false; 1400 1401 auto MaybeImmVal = 1402 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1403 if (!MaybeImmVal) 1404 return false; 1405 1406 ShiftVal = MaybeImmVal->Value; 1407 return ShiftVal >= Size / 2 && ShiftVal < Size; 1408 } 1409 1410 bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1411 const unsigned &ShiftVal) { 1412 Register DstReg = MI.getOperand(0).getReg(); 1413 Register SrcReg = MI.getOperand(1).getReg(); 1414 LLT Ty = MRI.getType(SrcReg); 1415 unsigned Size = Ty.getSizeInBits(); 1416 unsigned HalfSize = Size / 2; 1417 assert(ShiftVal >= HalfSize); 1418 1419 LLT HalfTy = LLT::scalar(HalfSize); 1420 1421 Builder.setInstr(MI); 1422 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1423 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1424 1425 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1426 Register Narrowed = Unmerge.getReg(1); 1427 1428 // dst = G_LSHR s64:x, C for C >= 32 1429 // => 1430 // lo, hi = G_UNMERGE_VALUES x 1431 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1432 1433 if (NarrowShiftAmt != 0) { 1434 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1435 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1436 } 1437 1438 auto Zero = Builder.buildConstant(HalfTy, 0); 1439 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1440 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1441 Register Narrowed = Unmerge.getReg(0); 1442 // dst = G_SHL s64:x, C for C >= 32 1443 // => 1444 // lo, hi = G_UNMERGE_VALUES x 1445 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1446 if (NarrowShiftAmt != 0) { 1447 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1448 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1449 } 1450 1451 auto Zero = Builder.buildConstant(HalfTy, 0); 1452 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1453 } else { 1454 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1455 auto Hi = Builder.buildAShr( 1456 HalfTy, Unmerge.getReg(1), 1457 Builder.buildConstant(HalfTy, HalfSize - 1)); 1458 1459 if (ShiftVal == HalfSize) { 1460 // (G_ASHR i64:x, 32) -> 1461 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1462 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1463 } else if (ShiftVal == Size - 1) { 1464 // Don't need a second shift. 1465 // (G_ASHR i64:x, 63) -> 1466 // %narrowed = (G_ASHR hi_32(x), 31) 1467 // G_MERGE_VALUES %narrowed, %narrowed 1468 Builder.buildMerge(DstReg, { Hi, Hi }); 1469 } else { 1470 auto Lo = Builder.buildAShr( 1471 HalfTy, Unmerge.getReg(1), 1472 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1473 1474 // (G_ASHR i64:x, C) ->, for C >= 32 1475 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1476 Builder.buildMerge(DstReg, { Lo, Hi }); 1477 } 1478 } 1479 1480 MI.eraseFromParent(); 1481 return true; 1482 } 1483 1484 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1485 unsigned TargetShiftAmount) { 1486 unsigned ShiftAmt; 1487 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1488 applyCombineShiftToUnmerge(MI, ShiftAmt); 1489 return true; 1490 } 1491 1492 return false; 1493 } 1494 1495 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 1496 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 1497 return MO.isReg() && 1498 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 1499 }); 1500 } 1501 1502 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 1503 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 1504 return !MO.isReg() || 1505 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 1506 }); 1507 } 1508 1509 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 1510 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 1511 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 1512 return all_of(Mask, [](int Elt) { return Elt < 0; }); 1513 } 1514 1515 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 1516 const MachineOperand &MOP2) { 1517 if (!MOP1.isReg() || !MOP2.isReg()) 1518 return false; 1519 MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); 1520 if (!I1) 1521 return false; 1522 MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); 1523 if (!I2) 1524 return false; 1525 1526 // Check for physical registers on the instructions first to avoid cases like 1527 // this: 1528 // 1529 // %a = COPY $physreg 1530 // ... 1531 // SOMETHING implicit-def $physreg 1532 // ... 1533 // %b = COPY $physreg 1534 // 1535 // These copies are not equivalent. 1536 if (any_of(I1->uses(), [](const MachineOperand &MO) { 1537 return MO.isReg() && MO.getReg().isPhysical(); 1538 })) { 1539 // Check if we have a case like this: 1540 // 1541 // %a = COPY $physreg 1542 // %b = COPY %a 1543 // 1544 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 1545 // From that, we know that they must have the same value, since they must 1546 // have come from the same COPY. 1547 return I1->isIdenticalTo(*I2); 1548 } 1549 1550 // We don't have any physical registers, so we don't necessarily need the 1551 // same vreg defs. 1552 // 1553 // On the off-chance that there's some target instruction feeding into the 1554 // instruction, let's use produceSameValue instead of isIdenticalTo. 1555 return Builder.getTII().produceSameValue(*I1, *I2, &MRI); 1556 } 1557 1558 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 1559 if (!MOP.isReg()) 1560 return false; 1561 int64_t Cst; 1562 return mi_match(MOP.getReg(), MRI, m_ICst(Cst)) && Cst == C; 1563 } 1564 1565 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 1566 unsigned OpIdx) { 1567 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 1568 Register OldReg = MI.getOperand(0).getReg(); 1569 Register Replacement = MI.getOperand(OpIdx).getReg(); 1570 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 1571 MI.eraseFromParent(); 1572 replaceRegWith(MRI, OldReg, Replacement); 1573 return true; 1574 } 1575 1576 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 1577 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 1578 // Match (cond ? x : x) 1579 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 1580 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 1581 MRI); 1582 } 1583 1584 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 1585 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 1586 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1587 MRI); 1588 } 1589 1590 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 1591 return matchConstantOp(MI.getOperand(OpIdx), 0) && 1592 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 1593 MRI); 1594 } 1595 1596 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 1597 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 1598 Builder.setInstr(MI); 1599 Builder.buildFConstant(MI.getOperand(0), C); 1600 MI.eraseFromParent(); 1601 return true; 1602 } 1603 1604 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 1605 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 1606 Builder.setInstr(MI); 1607 Builder.buildConstant(MI.getOperand(0), C); 1608 MI.eraseFromParent(); 1609 return true; 1610 } 1611 1612 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 1613 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 1614 Builder.setInstr(MI); 1615 Builder.buildUndef(MI.getOperand(0)); 1616 MI.eraseFromParent(); 1617 return true; 1618 } 1619 1620 bool CombinerHelper::tryCombine(MachineInstr &MI) { 1621 if (tryCombineCopy(MI)) 1622 return true; 1623 if (tryCombineExtendingLoads(MI)) 1624 return true; 1625 if (tryCombineIndexedLoadStore(MI)) 1626 return true; 1627 return false; 1628 } 1629