1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 15 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 16 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 17 #include "llvm/CodeGen/GlobalISel/Utils.h" 18 #include "llvm/CodeGen/LowLevelType.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineDominators.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineMemOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/TargetInstrInfo.h" 26 #include "llvm/CodeGen/TargetLowering.h" 27 #include "llvm/CodeGen/TargetOpcodes.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Target/TargetMachine.h" 30 31 #define DEBUG_TYPE "gi-combiner" 32 33 using namespace llvm; 34 using namespace MIPatternMatch; 35 36 // Option to allow testing of the combiner while no targets know about indexed 37 // addressing. 38 static cl::opt<bool> 39 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 40 cl::desc("Force all indexed operations to be " 41 "legal for the GlobalISel combiner")); 42 43 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 44 MachineIRBuilder &B, GISelKnownBits *KB, 45 MachineDominatorTree *MDT, 46 const LegalizerInfo *LI) 47 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 48 KB(KB), MDT(MDT), LI(LI) { 49 (void)this->KB; 50 } 51 52 const TargetLowering &CombinerHelper::getTargetLowering() const { 53 return *Builder.getMF().getSubtarget().getTargetLowering(); 54 } 55 56 /// \returns The little endian in-memory byte position of byte \p I in a 57 /// \p ByteWidth bytes wide type. 58 /// 59 /// E.g. Given a 4-byte type x, x[0] -> byte 0 60 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 61 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 62 return I; 63 } 64 65 /// \returns The big endian in-memory byte position of byte \p I in a 66 /// \p ByteWidth bytes wide type. 67 /// 68 /// E.g. Given a 4-byte type x, x[0] -> byte 3 69 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 70 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 71 return ByteWidth - I - 1; 72 } 73 74 /// Given a map from byte offsets in memory to indices in a load/store, 75 /// determine if that map corresponds to a little or big endian byte pattern. 76 /// 77 /// \param MemOffset2Idx maps memory offsets to address offsets. 78 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 79 /// 80 /// \returns true if the map corresponds to a big endian byte pattern, false 81 /// if it corresponds to a little endian byte pattern, and None otherwise. 82 /// 83 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 84 /// are as follows: 85 /// 86 /// AddrOffset Little endian Big endian 87 /// 0 0 3 88 /// 1 1 2 89 /// 2 2 1 90 /// 3 3 0 91 static Optional<bool> 92 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 93 int64_t LowestIdx) { 94 // Need at least two byte positions to decide on endianness. 95 unsigned Width = MemOffset2Idx.size(); 96 if (Width < 2) 97 return None; 98 bool BigEndian = true, LittleEndian = true; 99 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 100 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 101 if (MemOffsetAndIdx == MemOffset2Idx.end()) 102 return None; 103 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 104 assert(Idx >= 0 && "Expected non-negative byte offset?"); 105 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 106 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 107 if (!BigEndian && !LittleEndian) 108 return None; 109 } 110 111 assert((BigEndian != LittleEndian) && 112 "Pattern cannot be both big and little endian!"); 113 return BigEndian; 114 } 115 116 bool CombinerHelper::isLegalOrBeforeLegalizer( 117 const LegalityQuery &Query) const { 118 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 119 } 120 121 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 122 Register ToReg) const { 123 Observer.changingAllUsesOfReg(MRI, FromReg); 124 125 if (MRI.constrainRegAttrs(ToReg, FromReg)) 126 MRI.replaceRegWith(FromReg, ToReg); 127 else 128 Builder.buildCopy(ToReg, FromReg); 129 130 Observer.finishedChangingAllUsesOfReg(); 131 } 132 133 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 134 MachineOperand &FromRegOp, 135 Register ToReg) const { 136 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 137 Observer.changingInstr(*FromRegOp.getParent()); 138 139 FromRegOp.setReg(ToReg); 140 141 Observer.changedInstr(*FromRegOp.getParent()); 142 } 143 144 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 145 if (matchCombineCopy(MI)) { 146 applyCombineCopy(MI); 147 return true; 148 } 149 return false; 150 } 151 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 152 if (MI.getOpcode() != TargetOpcode::COPY) 153 return false; 154 Register DstReg = MI.getOperand(0).getReg(); 155 Register SrcReg = MI.getOperand(1).getReg(); 156 return canReplaceReg(DstReg, SrcReg, MRI); 157 } 158 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 159 Register DstReg = MI.getOperand(0).getReg(); 160 Register SrcReg = MI.getOperand(1).getReg(); 161 MI.eraseFromParent(); 162 replaceRegWith(MRI, DstReg, SrcReg); 163 } 164 165 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 166 bool IsUndef = false; 167 SmallVector<Register, 4> Ops; 168 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 169 applyCombineConcatVectors(MI, IsUndef, Ops); 170 return true; 171 } 172 return false; 173 } 174 175 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 176 SmallVectorImpl<Register> &Ops) { 177 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 178 "Invalid instruction"); 179 IsUndef = true; 180 MachineInstr *Undef = nullptr; 181 182 // Walk over all the operands of concat vectors and check if they are 183 // build_vector themselves or undef. 184 // Then collect their operands in Ops. 185 for (const MachineOperand &MO : MI.uses()) { 186 Register Reg = MO.getReg(); 187 MachineInstr *Def = MRI.getVRegDef(Reg); 188 assert(Def && "Operand not defined"); 189 switch (Def->getOpcode()) { 190 case TargetOpcode::G_BUILD_VECTOR: 191 IsUndef = false; 192 // Remember the operands of the build_vector to fold 193 // them into the yet-to-build flattened concat vectors. 194 for (const MachineOperand &BuildVecMO : Def->uses()) 195 Ops.push_back(BuildVecMO.getReg()); 196 break; 197 case TargetOpcode::G_IMPLICIT_DEF: { 198 LLT OpType = MRI.getType(Reg); 199 // Keep one undef value for all the undef operands. 200 if (!Undef) { 201 Builder.setInsertPt(*MI.getParent(), MI); 202 Undef = Builder.buildUndef(OpType.getScalarType()); 203 } 204 assert(MRI.getType(Undef->getOperand(0).getReg()) == 205 OpType.getScalarType() && 206 "All undefs should have the same type"); 207 // Break the undef vector in as many scalar elements as needed 208 // for the flattening. 209 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 210 EltIdx != EltEnd; ++EltIdx) 211 Ops.push_back(Undef->getOperand(0).getReg()); 212 break; 213 } 214 default: 215 return false; 216 } 217 } 218 return true; 219 } 220 void CombinerHelper::applyCombineConcatVectors( 221 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 222 // We determined that the concat_vectors can be flatten. 223 // Generate the flattened build_vector. 224 Register DstReg = MI.getOperand(0).getReg(); 225 Builder.setInsertPt(*MI.getParent(), MI); 226 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 227 228 // Note: IsUndef is sort of redundant. We could have determine it by 229 // checking that at all Ops are undef. Alternatively, we could have 230 // generate a build_vector of undefs and rely on another combine to 231 // clean that up. For now, given we already gather this information 232 // in tryCombineConcatVectors, just save compile time and issue the 233 // right thing. 234 if (IsUndef) 235 Builder.buildUndef(NewDstReg); 236 else 237 Builder.buildBuildVector(NewDstReg, Ops); 238 MI.eraseFromParent(); 239 replaceRegWith(MRI, DstReg, NewDstReg); 240 } 241 242 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 243 SmallVector<Register, 4> Ops; 244 if (matchCombineShuffleVector(MI, Ops)) { 245 applyCombineShuffleVector(MI, Ops); 246 return true; 247 } 248 return false; 249 } 250 251 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 252 SmallVectorImpl<Register> &Ops) { 253 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 254 "Invalid instruction kind"); 255 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 256 Register Src1 = MI.getOperand(1).getReg(); 257 LLT SrcType = MRI.getType(Src1); 258 // As bizarre as it may look, shuffle vector can actually produce 259 // scalar! This is because at the IR level a <1 x ty> shuffle 260 // vector is perfectly valid. 261 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 262 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 263 264 // If the resulting vector is smaller than the size of the source 265 // vectors being concatenated, we won't be able to replace the 266 // shuffle vector into a concat_vectors. 267 // 268 // Note: We may still be able to produce a concat_vectors fed by 269 // extract_vector_elt and so on. It is less clear that would 270 // be better though, so don't bother for now. 271 // 272 // If the destination is a scalar, the size of the sources doesn't 273 // matter. we will lower the shuffle to a plain copy. This will 274 // work only if the source and destination have the same size. But 275 // that's covered by the next condition. 276 // 277 // TODO: If the size between the source and destination don't match 278 // we could still emit an extract vector element in that case. 279 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 280 return false; 281 282 // Check that the shuffle mask can be broken evenly between the 283 // different sources. 284 if (DstNumElts % SrcNumElts != 0) 285 return false; 286 287 // Mask length is a multiple of the source vector length. 288 // Check if the shuffle is some kind of concatenation of the input 289 // vectors. 290 unsigned NumConcat = DstNumElts / SrcNumElts; 291 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 292 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 293 for (unsigned i = 0; i != DstNumElts; ++i) { 294 int Idx = Mask[i]; 295 // Undef value. 296 if (Idx < 0) 297 continue; 298 // Ensure the indices in each SrcType sized piece are sequential and that 299 // the same source is used for the whole piece. 300 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 301 (ConcatSrcs[i / SrcNumElts] >= 0 && 302 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 303 return false; 304 // Remember which source this index came from. 305 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 306 } 307 308 // The shuffle is concatenating multiple vectors together. 309 // Collect the different operands for that. 310 Register UndefReg; 311 Register Src2 = MI.getOperand(2).getReg(); 312 for (auto Src : ConcatSrcs) { 313 if (Src < 0) { 314 if (!UndefReg) { 315 Builder.setInsertPt(*MI.getParent(), MI); 316 UndefReg = Builder.buildUndef(SrcType).getReg(0); 317 } 318 Ops.push_back(UndefReg); 319 } else if (Src == 0) 320 Ops.push_back(Src1); 321 else 322 Ops.push_back(Src2); 323 } 324 return true; 325 } 326 327 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 328 const ArrayRef<Register> Ops) { 329 Register DstReg = MI.getOperand(0).getReg(); 330 Builder.setInsertPt(*MI.getParent(), MI); 331 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 332 333 if (Ops.size() == 1) 334 Builder.buildCopy(NewDstReg, Ops[0]); 335 else 336 Builder.buildMerge(NewDstReg, Ops); 337 338 MI.eraseFromParent(); 339 replaceRegWith(MRI, DstReg, NewDstReg); 340 } 341 342 namespace { 343 344 /// Select a preference between two uses. CurrentUse is the current preference 345 /// while *ForCandidate is attributes of the candidate under consideration. 346 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 347 const LLT TyForCandidate, 348 unsigned OpcodeForCandidate, 349 MachineInstr *MIForCandidate) { 350 if (!CurrentUse.Ty.isValid()) { 351 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 352 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 353 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 354 return CurrentUse; 355 } 356 357 // We permit the extend to hoist through basic blocks but this is only 358 // sensible if the target has extending loads. If you end up lowering back 359 // into a load and extend during the legalizer then the end result is 360 // hoisting the extend up to the load. 361 362 // Prefer defined extensions to undefined extensions as these are more 363 // likely to reduce the number of instructions. 364 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 365 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 366 return CurrentUse; 367 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 368 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 369 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 370 371 // Prefer sign extensions to zero extensions as sign-extensions tend to be 372 // more expensive. 373 if (CurrentUse.Ty == TyForCandidate) { 374 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 375 OpcodeForCandidate == TargetOpcode::G_ZEXT) 376 return CurrentUse; 377 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 378 OpcodeForCandidate == TargetOpcode::G_SEXT) 379 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 380 } 381 382 // This is potentially target specific. We've chosen the largest type 383 // because G_TRUNC is usually free. One potential catch with this is that 384 // some targets have a reduced number of larger registers than smaller 385 // registers and this choice potentially increases the live-range for the 386 // larger value. 387 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 388 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 389 } 390 return CurrentUse; 391 } 392 393 /// Find a suitable place to insert some instructions and insert them. This 394 /// function accounts for special cases like inserting before a PHI node. 395 /// The current strategy for inserting before PHI's is to duplicate the 396 /// instructions for each predecessor. However, while that's ok for G_TRUNC 397 /// on most targets since it generally requires no code, other targets/cases may 398 /// want to try harder to find a dominating block. 399 static void InsertInsnsWithoutSideEffectsBeforeUse( 400 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 401 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 402 MachineOperand &UseMO)> 403 Inserter) { 404 MachineInstr &UseMI = *UseMO.getParent(); 405 406 MachineBasicBlock *InsertBB = UseMI.getParent(); 407 408 // If the use is a PHI then we want the predecessor block instead. 409 if (UseMI.isPHI()) { 410 MachineOperand *PredBB = std::next(&UseMO); 411 InsertBB = PredBB->getMBB(); 412 } 413 414 // If the block is the same block as the def then we want to insert just after 415 // the def instead of at the start of the block. 416 if (InsertBB == DefMI.getParent()) { 417 MachineBasicBlock::iterator InsertPt = &DefMI; 418 Inserter(InsertBB, std::next(InsertPt), UseMO); 419 return; 420 } 421 422 // Otherwise we want the start of the BB 423 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 424 } 425 } // end anonymous namespace 426 427 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 428 PreferredTuple Preferred; 429 if (matchCombineExtendingLoads(MI, Preferred)) { 430 applyCombineExtendingLoads(MI, Preferred); 431 return true; 432 } 433 return false; 434 } 435 436 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 437 PreferredTuple &Preferred) { 438 // We match the loads and follow the uses to the extend instead of matching 439 // the extends and following the def to the load. This is because the load 440 // must remain in the same position for correctness (unless we also add code 441 // to find a safe place to sink it) whereas the extend is freely movable. 442 // It also prevents us from duplicating the load for the volatile case or just 443 // for performance. 444 445 if (MI.getOpcode() != TargetOpcode::G_LOAD && 446 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 447 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 448 return false; 449 450 auto &LoadValue = MI.getOperand(0); 451 assert(LoadValue.isReg() && "Result wasn't a register?"); 452 453 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 454 if (!LoadValueTy.isScalar()) 455 return false; 456 457 // Most architectures are going to legalize <s8 loads into at least a 1 byte 458 // load, and the MMOs can only describe memory accesses in multiples of bytes. 459 // If we try to perform extload combining on those, we can end up with 460 // %a(s8) = extload %ptr (load 1 byte from %ptr) 461 // ... which is an illegal extload instruction. 462 if (LoadValueTy.getSizeInBits() < 8) 463 return false; 464 465 // For non power-of-2 types, they will very likely be legalized into multiple 466 // loads. Don't bother trying to match them into extending loads. 467 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 468 return false; 469 470 // Find the preferred type aside from the any-extends (unless it's the only 471 // one) and non-extending ops. We'll emit an extending load to that type and 472 // and emit a variant of (extend (trunc X)) for the others according to the 473 // relative type sizes. At the same time, pick an extend to use based on the 474 // extend involved in the chosen type. 475 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 476 ? TargetOpcode::G_ANYEXT 477 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 478 ? TargetOpcode::G_SEXT 479 : TargetOpcode::G_ZEXT; 480 Preferred = {LLT(), PreferredOpcode, nullptr}; 481 for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) { 482 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 483 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 484 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 485 // Check for legality. 486 if (LI) { 487 LegalityQuery::MemDesc MMDesc; 488 const auto &MMO = **MI.memoperands_begin(); 489 MMDesc.SizeInBits = MMO.getSizeInBits(); 490 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 491 MMDesc.Ordering = MMO.getOrdering(); 492 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 493 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 494 if (LI->getAction({MI.getOpcode(), {UseTy, SrcTy}, {MMDesc}}).Action != 495 LegalizeActions::Legal) 496 continue; 497 } 498 Preferred = ChoosePreferredUse(Preferred, 499 MRI.getType(UseMI.getOperand(0).getReg()), 500 UseMI.getOpcode(), &UseMI); 501 } 502 } 503 504 // There were no extends 505 if (!Preferred.MI) 506 return false; 507 // It should be impossible to chose an extend without selecting a different 508 // type since by definition the result of an extend is larger. 509 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 510 511 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 512 return true; 513 } 514 515 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 516 PreferredTuple &Preferred) { 517 // Rewrite the load to the chosen extending load. 518 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 519 520 // Inserter to insert a truncate back to the original type at a given point 521 // with some basic CSE to limit truncate duplication to one per BB. 522 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 523 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 524 MachineBasicBlock::iterator InsertBefore, 525 MachineOperand &UseMO) { 526 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 527 if (PreviouslyEmitted) { 528 Observer.changingInstr(*UseMO.getParent()); 529 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 530 Observer.changedInstr(*UseMO.getParent()); 531 return; 532 } 533 534 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 535 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 536 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 537 EmittedInsns[InsertIntoBB] = NewMI; 538 replaceRegOpWith(MRI, UseMO, NewDstReg); 539 }; 540 541 Observer.changingInstr(MI); 542 MI.setDesc( 543 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 544 ? TargetOpcode::G_SEXTLOAD 545 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 546 ? TargetOpcode::G_ZEXTLOAD 547 : TargetOpcode::G_LOAD)); 548 549 // Rewrite all the uses to fix up the types. 550 auto &LoadValue = MI.getOperand(0); 551 SmallVector<MachineOperand *, 4> Uses; 552 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 553 Uses.push_back(&UseMO); 554 555 for (auto *UseMO : Uses) { 556 MachineInstr *UseMI = UseMO->getParent(); 557 558 // If the extend is compatible with the preferred extend then we should fix 559 // up the type and extend so that it uses the preferred use. 560 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 561 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 562 Register UseDstReg = UseMI->getOperand(0).getReg(); 563 MachineOperand &UseSrcMO = UseMI->getOperand(1); 564 const LLT UseDstTy = MRI.getType(UseDstReg); 565 if (UseDstReg != ChosenDstReg) { 566 if (Preferred.Ty == UseDstTy) { 567 // If the use has the same type as the preferred use, then merge 568 // the vregs and erase the extend. For example: 569 // %1:_(s8) = G_LOAD ... 570 // %2:_(s32) = G_SEXT %1(s8) 571 // %3:_(s32) = G_ANYEXT %1(s8) 572 // ... = ... %3(s32) 573 // rewrites to: 574 // %2:_(s32) = G_SEXTLOAD ... 575 // ... = ... %2(s32) 576 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 577 Observer.erasingInstr(*UseMO->getParent()); 578 UseMO->getParent()->eraseFromParent(); 579 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 580 // If the preferred size is smaller, then keep the extend but extend 581 // from the result of the extending load. For example: 582 // %1:_(s8) = G_LOAD ... 583 // %2:_(s32) = G_SEXT %1(s8) 584 // %3:_(s64) = G_ANYEXT %1(s8) 585 // ... = ... %3(s64) 586 /// rewrites to: 587 // %2:_(s32) = G_SEXTLOAD ... 588 // %3:_(s64) = G_ANYEXT %2:_(s32) 589 // ... = ... %3(s64) 590 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 591 } else { 592 // If the preferred size is large, then insert a truncate. For 593 // example: 594 // %1:_(s8) = G_LOAD ... 595 // %2:_(s64) = G_SEXT %1(s8) 596 // %3:_(s32) = G_ZEXT %1(s8) 597 // ... = ... %3(s32) 598 /// rewrites to: 599 // %2:_(s64) = G_SEXTLOAD ... 600 // %4:_(s8) = G_TRUNC %2:_(s32) 601 // %3:_(s64) = G_ZEXT %2:_(s8) 602 // ... = ... %3(s64) 603 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 604 InsertTruncAt); 605 } 606 continue; 607 } 608 // The use is (one of) the uses of the preferred use we chose earlier. 609 // We're going to update the load to def this value later so just erase 610 // the old extend. 611 Observer.erasingInstr(*UseMO->getParent()); 612 UseMO->getParent()->eraseFromParent(); 613 continue; 614 } 615 616 // The use isn't an extend. Truncate back to the type we originally loaded. 617 // This is free on many targets. 618 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 619 } 620 621 MI.getOperand(0).setReg(ChosenDstReg); 622 Observer.changedInstr(MI); 623 } 624 625 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 626 const MachineInstr &UseMI) { 627 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 628 "shouldn't consider debug uses"); 629 assert(DefMI.getParent() == UseMI.getParent()); 630 if (&DefMI == &UseMI) 631 return false; 632 const MachineBasicBlock &MBB = *DefMI.getParent(); 633 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 634 return &MI == &DefMI || &MI == &UseMI; 635 }); 636 if (DefOrUse == MBB.end()) 637 llvm_unreachable("Block must contain both DefMI and UseMI!"); 638 return &*DefOrUse == &DefMI; 639 } 640 641 bool CombinerHelper::dominates(const MachineInstr &DefMI, 642 const MachineInstr &UseMI) { 643 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 644 "shouldn't consider debug uses"); 645 if (MDT) 646 return MDT->dominates(&DefMI, &UseMI); 647 else if (DefMI.getParent() != UseMI.getParent()) 648 return false; 649 650 return isPredecessor(DefMI, UseMI); 651 } 652 653 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 654 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 655 Register SrcReg = MI.getOperand(1).getReg(); 656 Register LoadUser = SrcReg; 657 658 if (MRI.getType(SrcReg).isVector()) 659 return false; 660 661 Register TruncSrc; 662 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 663 LoadUser = TruncSrc; 664 665 uint64_t SizeInBits = MI.getOperand(2).getImm(); 666 // If the source is a G_SEXTLOAD from the same bit width, then we don't 667 // need any extend at all, just a truncate. 668 if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) { 669 const auto &MMO = **LoadMI->memoperands_begin(); 670 // If truncating more than the original extended value, abort. 671 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits()) 672 return false; 673 if (MMO.getSizeInBits() == SizeInBits) 674 return true; 675 } 676 return false; 677 } 678 679 bool CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 680 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 681 Builder.setInstrAndDebugLoc(MI); 682 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 683 MI.eraseFromParent(); 684 return true; 685 } 686 687 bool CombinerHelper::matchSextInRegOfLoad( 688 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 689 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 690 691 // Only supports scalars for now. 692 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 693 return false; 694 695 Register SrcReg = MI.getOperand(1).getReg(); 696 MachineInstr *LoadDef = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI); 697 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg())) 698 return false; 699 700 // If the sign extend extends from a narrower width than the load's width, 701 // then we can narrow the load width when we combine to a G_SEXTLOAD. 702 auto &MMO = **LoadDef->memoperands_begin(); 703 // Don't do this for non-simple loads. 704 if (MMO.isAtomic() || MMO.isVolatile()) 705 return false; 706 707 // Avoid widening the load at all. 708 unsigned NewSizeBits = 709 std::min((uint64_t)MI.getOperand(2).getImm(), MMO.getSizeInBits()); 710 711 // Don't generate G_SEXTLOADs with a < 1 byte width. 712 if (NewSizeBits < 8) 713 return false; 714 // Don't bother creating a non-power-2 sextload, it will likely be broken up 715 // anyway for most targets. 716 if (!isPowerOf2_32(NewSizeBits)) 717 return false; 718 MatchInfo = std::make_tuple(LoadDef->getOperand(0).getReg(), NewSizeBits); 719 return true; 720 } 721 722 bool CombinerHelper::applySextInRegOfLoad( 723 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 724 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 725 Register LoadReg; 726 unsigned ScalarSizeBits; 727 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 728 auto *LoadDef = MRI.getVRegDef(LoadReg); 729 assert(LoadDef && "Expected a load reg"); 730 731 // If we have the following: 732 // %ld = G_LOAD %ptr, (load 2) 733 // %ext = G_SEXT_INREG %ld, 8 734 // ==> 735 // %ld = G_SEXTLOAD %ptr (load 1) 736 737 auto &MMO = **LoadDef->memoperands_begin(); 738 Builder.setInstrAndDebugLoc(*LoadDef); 739 auto &MF = Builder.getMF(); 740 auto PtrInfo = MMO.getPointerInfo(); 741 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 742 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 743 LoadDef->getOperand(1).getReg(), *NewMMO); 744 MI.eraseFromParent(); 745 return true; 746 } 747 748 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 749 Register &Base, Register &Offset) { 750 auto &MF = *MI.getParent()->getParent(); 751 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 752 753 #ifndef NDEBUG 754 unsigned Opcode = MI.getOpcode(); 755 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 756 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 757 #endif 758 759 Base = MI.getOperand(1).getReg(); 760 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 761 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 762 return false; 763 764 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 765 // FIXME: The following use traversal needs a bail out for patholigical cases. 766 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 767 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 768 continue; 769 770 Offset = Use.getOperand(2).getReg(); 771 if (!ForceLegalIndexing && 772 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 773 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 774 << Use); 775 continue; 776 } 777 778 // Make sure the offset calculation is before the potentially indexed op. 779 // FIXME: we really care about dependency here. The offset calculation might 780 // be movable. 781 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 782 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 783 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 784 << Use); 785 continue; 786 } 787 788 // FIXME: check whether all uses of Base are load/store with foldable 789 // addressing modes. If so, using the normal addr-modes is better than 790 // forming an indexed one. 791 792 bool MemOpDominatesAddrUses = true; 793 for (auto &PtrAddUse : 794 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 795 if (!dominates(MI, PtrAddUse)) { 796 MemOpDominatesAddrUses = false; 797 break; 798 } 799 } 800 801 if (!MemOpDominatesAddrUses) { 802 LLVM_DEBUG( 803 dbgs() << " Ignoring candidate as memop does not dominate uses: " 804 << Use); 805 continue; 806 } 807 808 LLVM_DEBUG(dbgs() << " Found match: " << Use); 809 Addr = Use.getOperand(0).getReg(); 810 return true; 811 } 812 813 return false; 814 } 815 816 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 817 Register &Base, Register &Offset) { 818 auto &MF = *MI.getParent()->getParent(); 819 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 820 821 #ifndef NDEBUG 822 unsigned Opcode = MI.getOpcode(); 823 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 824 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 825 #endif 826 827 Addr = MI.getOperand(1).getReg(); 828 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 829 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 830 return false; 831 832 Base = AddrDef->getOperand(1).getReg(); 833 Offset = AddrDef->getOperand(2).getReg(); 834 835 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 836 837 if (!ForceLegalIndexing && 838 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 839 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 840 return false; 841 } 842 843 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 844 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 845 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 846 return false; 847 } 848 849 if (MI.getOpcode() == TargetOpcode::G_STORE) { 850 // Would require a copy. 851 if (Base == MI.getOperand(0).getReg()) { 852 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 853 return false; 854 } 855 856 // We're expecting one use of Addr in MI, but it could also be the 857 // value stored, which isn't actually dominated by the instruction. 858 if (MI.getOperand(0).getReg() == Addr) { 859 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 860 return false; 861 } 862 } 863 864 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 865 // That might allow us to end base's liveness here by adjusting the constant. 866 867 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 868 if (!dominates(MI, UseMI)) { 869 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 870 return false; 871 } 872 } 873 874 return true; 875 } 876 877 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 878 IndexedLoadStoreMatchInfo MatchInfo; 879 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 880 applyCombineIndexedLoadStore(MI, MatchInfo); 881 return true; 882 } 883 return false; 884 } 885 886 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 887 unsigned Opcode = MI.getOpcode(); 888 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 889 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 890 return false; 891 892 // For now, no targets actually support these opcodes so don't waste time 893 // running these unless we're forced to for testing. 894 if (!ForceLegalIndexing) 895 return false; 896 897 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 898 MatchInfo.Offset); 899 if (!MatchInfo.IsPre && 900 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 901 MatchInfo.Offset)) 902 return false; 903 904 return true; 905 } 906 907 void CombinerHelper::applyCombineIndexedLoadStore( 908 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 909 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 910 MachineIRBuilder MIRBuilder(MI); 911 unsigned Opcode = MI.getOpcode(); 912 bool IsStore = Opcode == TargetOpcode::G_STORE; 913 unsigned NewOpcode; 914 switch (Opcode) { 915 case TargetOpcode::G_LOAD: 916 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 917 break; 918 case TargetOpcode::G_SEXTLOAD: 919 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 920 break; 921 case TargetOpcode::G_ZEXTLOAD: 922 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 923 break; 924 case TargetOpcode::G_STORE: 925 NewOpcode = TargetOpcode::G_INDEXED_STORE; 926 break; 927 default: 928 llvm_unreachable("Unknown load/store opcode"); 929 } 930 931 auto MIB = MIRBuilder.buildInstr(NewOpcode); 932 if (IsStore) { 933 MIB.addDef(MatchInfo.Addr); 934 MIB.addUse(MI.getOperand(0).getReg()); 935 } else { 936 MIB.addDef(MI.getOperand(0).getReg()); 937 MIB.addDef(MatchInfo.Addr); 938 } 939 940 MIB.addUse(MatchInfo.Base); 941 MIB.addUse(MatchInfo.Offset); 942 MIB.addImm(MatchInfo.IsPre); 943 MI.eraseFromParent(); 944 AddrDef.eraseFromParent(); 945 946 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 947 } 948 949 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 950 MachineInstr *&OtherMI) { 951 unsigned Opcode = MI.getOpcode(); 952 bool IsDiv, IsSigned; 953 954 switch (Opcode) { 955 default: 956 llvm_unreachable("Unexpected opcode!"); 957 case TargetOpcode::G_SDIV: 958 case TargetOpcode::G_UDIV: { 959 IsDiv = true; 960 IsSigned = Opcode == TargetOpcode::G_SDIV; 961 break; 962 } 963 case TargetOpcode::G_SREM: 964 case TargetOpcode::G_UREM: { 965 IsDiv = false; 966 IsSigned = Opcode == TargetOpcode::G_SREM; 967 break; 968 } 969 } 970 971 Register Src1 = MI.getOperand(1).getReg(); 972 unsigned DivOpcode, RemOpcode, DivremOpcode; 973 if (IsSigned) { 974 DivOpcode = TargetOpcode::G_SDIV; 975 RemOpcode = TargetOpcode::G_SREM; 976 DivremOpcode = TargetOpcode::G_SDIVREM; 977 } else { 978 DivOpcode = TargetOpcode::G_UDIV; 979 RemOpcode = TargetOpcode::G_UREM; 980 DivremOpcode = TargetOpcode::G_UDIVREM; 981 } 982 983 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 984 return false; 985 986 // Combine: 987 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 988 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 989 // into: 990 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 991 992 // Combine: 993 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 994 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 995 // into: 996 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 997 998 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 999 if (MI.getParent() == UseMI.getParent() && 1000 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1001 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1002 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1003 OtherMI = &UseMI; 1004 return true; 1005 } 1006 } 1007 1008 return false; 1009 } 1010 1011 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1012 MachineInstr *&OtherMI) { 1013 unsigned Opcode = MI.getOpcode(); 1014 assert(OtherMI && "OtherMI shouldn't be empty."); 1015 1016 Register DestDivReg, DestRemReg; 1017 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1018 DestDivReg = MI.getOperand(0).getReg(); 1019 DestRemReg = OtherMI->getOperand(0).getReg(); 1020 } else { 1021 DestDivReg = OtherMI->getOperand(0).getReg(); 1022 DestRemReg = MI.getOperand(0).getReg(); 1023 } 1024 1025 bool IsSigned = 1026 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1027 Builder.setInstrAndDebugLoc(MI); 1028 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1029 : TargetOpcode::G_UDIVREM, 1030 {DestDivReg, DestRemReg}, 1031 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1032 MI.eraseFromParent(); 1033 OtherMI->eraseFromParent(); 1034 } 1035 1036 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI) { 1037 if (MI.getOpcode() != TargetOpcode::G_BR) 1038 return false; 1039 1040 // Try to match the following: 1041 // bb1: 1042 // G_BRCOND %c1, %bb2 1043 // G_BR %bb3 1044 // bb2: 1045 // ... 1046 // bb3: 1047 1048 // The above pattern does not have a fall through to the successor bb2, always 1049 // resulting in a branch no matter which path is taken. Here we try to find 1050 // and replace that pattern with conditional branch to bb3 and otherwise 1051 // fallthrough to bb2. This is generally better for branch predictors. 1052 1053 MachineBasicBlock *MBB = MI.getParent(); 1054 MachineBasicBlock::iterator BrIt(MI); 1055 if (BrIt == MBB->begin()) 1056 return false; 1057 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1058 1059 MachineInstr *BrCond = &*std::prev(BrIt); 1060 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1061 return false; 1062 1063 // Check that the next block is the conditional branch target. Also make sure 1064 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1065 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1066 return BrCondTarget != MI.getOperand(0).getMBB() && 1067 MBB->isLayoutSuccessor(BrCondTarget); 1068 } 1069 1070 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI) { 1071 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1072 MachineBasicBlock::iterator BrIt(MI); 1073 MachineInstr *BrCond = &*std::prev(BrIt); 1074 1075 Builder.setInstrAndDebugLoc(*BrCond); 1076 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1077 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1078 // this to i1 only since we might not know for sure what kind of 1079 // compare generated the condition value. 1080 auto True = Builder.buildConstant( 1081 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1082 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1083 1084 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1085 Observer.changingInstr(MI); 1086 MI.getOperand(0).setMBB(FallthroughBB); 1087 Observer.changedInstr(MI); 1088 1089 // Change the conditional branch to use the inverted condition and 1090 // new target block. 1091 Observer.changingInstr(*BrCond); 1092 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1093 BrCond->getOperand(1).setMBB(BrTarget); 1094 Observer.changedInstr(*BrCond); 1095 } 1096 1097 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 1098 // On Darwin, -Os means optimize for size without hurting performance, so 1099 // only really optimize for size when -Oz (MinSize) is used. 1100 if (MF.getTarget().getTargetTriple().isOSDarwin()) 1101 return MF.getFunction().hasMinSize(); 1102 return MF.getFunction().hasOptSize(); 1103 } 1104 1105 // Returns a list of types to use for memory op lowering in MemOps. A partial 1106 // port of findOptimalMemOpLowering in TargetLowering. 1107 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 1108 unsigned Limit, const MemOp &Op, 1109 unsigned DstAS, unsigned SrcAS, 1110 const AttributeList &FuncAttributes, 1111 const TargetLowering &TLI) { 1112 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 1113 return false; 1114 1115 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 1116 1117 if (Ty == LLT()) { 1118 // Use the largest scalar type whose alignment constraints are satisfied. 1119 // We only need to check DstAlign here as SrcAlign is always greater or 1120 // equal to DstAlign (or zero). 1121 Ty = LLT::scalar(64); 1122 if (Op.isFixedDstAlign()) 1123 while (Op.getDstAlign() < Ty.getSizeInBytes() && 1124 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 1125 Ty = LLT::scalar(Ty.getSizeInBytes()); 1126 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 1127 // FIXME: check for the largest legal type we can load/store to. 1128 } 1129 1130 unsigned NumMemOps = 0; 1131 uint64_t Size = Op.size(); 1132 while (Size) { 1133 unsigned TySize = Ty.getSizeInBytes(); 1134 while (TySize > Size) { 1135 // For now, only use non-vector load / store's for the left-over pieces. 1136 LLT NewTy = Ty; 1137 // FIXME: check for mem op safety and legality of the types. Not all of 1138 // SDAGisms map cleanly to GISel concepts. 1139 if (NewTy.isVector()) 1140 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 1141 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 1142 unsigned NewTySize = NewTy.getSizeInBytes(); 1143 assert(NewTySize > 0 && "Could not find appropriate type"); 1144 1145 // If the new LLT cannot cover all of the remaining bits, then consider 1146 // issuing a (or a pair of) unaligned and overlapping load / store. 1147 bool Fast; 1148 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 1149 MVT VT = getMVTForLLT(Ty); 1150 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 1151 TLI.allowsMisalignedMemoryAccesses( 1152 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 1153 MachineMemOperand::MONone, &Fast) && 1154 Fast) 1155 TySize = Size; 1156 else { 1157 Ty = NewTy; 1158 TySize = NewTySize; 1159 } 1160 } 1161 1162 if (++NumMemOps > Limit) 1163 return false; 1164 1165 MemOps.push_back(Ty); 1166 Size -= TySize; 1167 } 1168 1169 return true; 1170 } 1171 1172 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1173 if (Ty.isVector()) 1174 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1175 Ty.getNumElements()); 1176 return IntegerType::get(C, Ty.getSizeInBits()); 1177 } 1178 1179 // Get a vectorized representation of the memset value operand, GISel edition. 1180 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 1181 MachineRegisterInfo &MRI = *MIB.getMRI(); 1182 unsigned NumBits = Ty.getScalarSizeInBits(); 1183 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1184 if (!Ty.isVector() && ValVRegAndVal) { 1185 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 1186 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 1187 return MIB.buildConstant(Ty, SplatVal).getReg(0); 1188 } 1189 1190 // Extend the byte value to the larger type, and then multiply by a magic 1191 // value 0x010101... in order to replicate it across every byte. 1192 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 1193 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 1194 return MIB.buildConstant(Ty, 0).getReg(0); 1195 } 1196 1197 LLT ExtType = Ty.getScalarType(); 1198 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 1199 if (NumBits > 8) { 1200 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 1201 auto MagicMI = MIB.buildConstant(ExtType, Magic); 1202 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 1203 } 1204 1205 // For vector types create a G_BUILD_VECTOR. 1206 if (Ty.isVector()) 1207 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 1208 1209 return Val; 1210 } 1211 1212 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 1213 Register Val, unsigned KnownLen, 1214 Align Alignment, bool IsVolatile) { 1215 auto &MF = *MI.getParent()->getParent(); 1216 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1217 auto &DL = MF.getDataLayout(); 1218 LLVMContext &C = MF.getFunction().getContext(); 1219 1220 assert(KnownLen != 0 && "Have a zero length memset length!"); 1221 1222 bool DstAlignCanChange = false; 1223 MachineFrameInfo &MFI = MF.getFrameInfo(); 1224 bool OptSize = shouldLowerMemFuncForSize(MF); 1225 1226 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1227 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1228 DstAlignCanChange = true; 1229 1230 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1231 std::vector<LLT> MemOps; 1232 1233 const auto &DstMMO = **MI.memoperands_begin(); 1234 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1235 1236 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1237 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1238 1239 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1240 MemOp::Set(KnownLen, DstAlignCanChange, 1241 Alignment, 1242 /*IsZeroMemset=*/IsZeroVal, 1243 /*IsVolatile=*/IsVolatile), 1244 DstPtrInfo.getAddrSpace(), ~0u, 1245 MF.getFunction().getAttributes(), TLI)) 1246 return false; 1247 1248 if (DstAlignCanChange) { 1249 // Get an estimate of the type from the LLT. 1250 Type *IRTy = getTypeForLLT(MemOps[0], C); 1251 Align NewAlign = DL.getABITypeAlign(IRTy); 1252 if (NewAlign > Alignment) { 1253 Alignment = NewAlign; 1254 unsigned FI = FIDef->getOperand(1).getIndex(); 1255 // Give the stack frame object a larger alignment if needed. 1256 if (MFI.getObjectAlign(FI) < Alignment) 1257 MFI.setObjectAlignment(FI, Alignment); 1258 } 1259 } 1260 1261 MachineIRBuilder MIB(MI); 1262 // Find the largest store and generate the bit pattern for it. 1263 LLT LargestTy = MemOps[0]; 1264 for (unsigned i = 1; i < MemOps.size(); i++) 1265 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1266 LargestTy = MemOps[i]; 1267 1268 // The memset stored value is always defined as an s8, so in order to make it 1269 // work with larger store types we need to repeat the bit pattern across the 1270 // wider type. 1271 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1272 1273 if (!MemSetValue) 1274 return false; 1275 1276 // Generate the stores. For each store type in the list, we generate the 1277 // matching store of that type to the destination address. 1278 LLT PtrTy = MRI.getType(Dst); 1279 unsigned DstOff = 0; 1280 unsigned Size = KnownLen; 1281 for (unsigned I = 0; I < MemOps.size(); I++) { 1282 LLT Ty = MemOps[I]; 1283 unsigned TySize = Ty.getSizeInBytes(); 1284 if (TySize > Size) { 1285 // Issuing an unaligned load / store pair that overlaps with the previous 1286 // pair. Adjust the offset accordingly. 1287 assert(I == MemOps.size() - 1 && I != 0); 1288 DstOff -= TySize - Size; 1289 } 1290 1291 // If this store is smaller than the largest store see whether we can get 1292 // the smaller value for free with a truncate. 1293 Register Value = MemSetValue; 1294 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1295 MVT VT = getMVTForLLT(Ty); 1296 MVT LargestVT = getMVTForLLT(LargestTy); 1297 if (!LargestTy.isVector() && !Ty.isVector() && 1298 TLI.isTruncateFree(LargestVT, VT)) 1299 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1300 else 1301 Value = getMemsetValue(Val, Ty, MIB); 1302 if (!Value) 1303 return false; 1304 } 1305 1306 auto *StoreMMO = 1307 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1308 1309 Register Ptr = Dst; 1310 if (DstOff != 0) { 1311 auto Offset = 1312 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1313 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1314 } 1315 1316 MIB.buildStore(Value, Ptr, *StoreMMO); 1317 DstOff += Ty.getSizeInBytes(); 1318 Size -= TySize; 1319 } 1320 1321 MI.eraseFromParent(); 1322 return true; 1323 } 1324 1325 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1326 Register Src, unsigned KnownLen, 1327 Align DstAlign, Align SrcAlign, 1328 bool IsVolatile) { 1329 auto &MF = *MI.getParent()->getParent(); 1330 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1331 auto &DL = MF.getDataLayout(); 1332 LLVMContext &C = MF.getFunction().getContext(); 1333 1334 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1335 1336 bool DstAlignCanChange = false; 1337 MachineFrameInfo &MFI = MF.getFrameInfo(); 1338 bool OptSize = shouldLowerMemFuncForSize(MF); 1339 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1340 1341 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1342 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1343 DstAlignCanChange = true; 1344 1345 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1346 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1347 // if the memcpy is in a tail call position. 1348 1349 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1350 std::vector<LLT> MemOps; 1351 1352 const auto &DstMMO = **MI.memoperands_begin(); 1353 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1354 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1355 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1356 1357 if (!findGISelOptimalMemOpLowering( 1358 MemOps, Limit, 1359 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1360 IsVolatile), 1361 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1362 MF.getFunction().getAttributes(), TLI)) 1363 return false; 1364 1365 if (DstAlignCanChange) { 1366 // Get an estimate of the type from the LLT. 1367 Type *IRTy = getTypeForLLT(MemOps[0], C); 1368 Align NewAlign = DL.getABITypeAlign(IRTy); 1369 1370 // Don't promote to an alignment that would require dynamic stack 1371 // realignment. 1372 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1373 if (!TRI->hasStackRealignment(MF)) 1374 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1375 NewAlign = NewAlign / 2; 1376 1377 if (NewAlign > Alignment) { 1378 Alignment = NewAlign; 1379 unsigned FI = FIDef->getOperand(1).getIndex(); 1380 // Give the stack frame object a larger alignment if needed. 1381 if (MFI.getObjectAlign(FI) < Alignment) 1382 MFI.setObjectAlignment(FI, Alignment); 1383 } 1384 } 1385 1386 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1387 1388 MachineIRBuilder MIB(MI); 1389 // Now we need to emit a pair of load and stores for each of the types we've 1390 // collected. I.e. for each type, generate a load from the source pointer of 1391 // that type width, and then generate a corresponding store to the dest buffer 1392 // of that value loaded. This can result in a sequence of loads and stores 1393 // mixed types, depending on what the target specifies as good types to use. 1394 unsigned CurrOffset = 0; 1395 LLT PtrTy = MRI.getType(Src); 1396 unsigned Size = KnownLen; 1397 for (auto CopyTy : MemOps) { 1398 // Issuing an unaligned load / store pair that overlaps with the previous 1399 // pair. Adjust the offset accordingly. 1400 if (CopyTy.getSizeInBytes() > Size) 1401 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1402 1403 // Construct MMOs for the accesses. 1404 auto *LoadMMO = 1405 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1406 auto *StoreMMO = 1407 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1408 1409 // Create the load. 1410 Register LoadPtr = Src; 1411 Register Offset; 1412 if (CurrOffset != 0) { 1413 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1414 .getReg(0); 1415 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1416 } 1417 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1418 1419 // Create the store. 1420 Register StorePtr = 1421 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1422 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1423 CurrOffset += CopyTy.getSizeInBytes(); 1424 Size -= CopyTy.getSizeInBytes(); 1425 } 1426 1427 MI.eraseFromParent(); 1428 return true; 1429 } 1430 1431 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1432 Register Src, unsigned KnownLen, 1433 Align DstAlign, Align SrcAlign, 1434 bool IsVolatile) { 1435 auto &MF = *MI.getParent()->getParent(); 1436 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1437 auto &DL = MF.getDataLayout(); 1438 LLVMContext &C = MF.getFunction().getContext(); 1439 1440 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1441 1442 bool DstAlignCanChange = false; 1443 MachineFrameInfo &MFI = MF.getFrameInfo(); 1444 bool OptSize = shouldLowerMemFuncForSize(MF); 1445 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1446 1447 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1448 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1449 DstAlignCanChange = true; 1450 1451 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1452 std::vector<LLT> MemOps; 1453 1454 const auto &DstMMO = **MI.memoperands_begin(); 1455 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1456 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1457 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1458 1459 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1460 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1461 // same thing here. 1462 if (!findGISelOptimalMemOpLowering( 1463 MemOps, Limit, 1464 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1465 /*IsVolatile*/ true), 1466 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1467 MF.getFunction().getAttributes(), TLI)) 1468 return false; 1469 1470 if (DstAlignCanChange) { 1471 // Get an estimate of the type from the LLT. 1472 Type *IRTy = getTypeForLLT(MemOps[0], C); 1473 Align NewAlign = DL.getABITypeAlign(IRTy); 1474 1475 // Don't promote to an alignment that would require dynamic stack 1476 // realignment. 1477 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1478 if (!TRI->hasStackRealignment(MF)) 1479 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1480 NewAlign = NewAlign / 2; 1481 1482 if (NewAlign > Alignment) { 1483 Alignment = NewAlign; 1484 unsigned FI = FIDef->getOperand(1).getIndex(); 1485 // Give the stack frame object a larger alignment if needed. 1486 if (MFI.getObjectAlign(FI) < Alignment) 1487 MFI.setObjectAlignment(FI, Alignment); 1488 } 1489 } 1490 1491 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1492 1493 MachineIRBuilder MIB(MI); 1494 // Memmove requires that we perform the loads first before issuing the stores. 1495 // Apart from that, this loop is pretty much doing the same thing as the 1496 // memcpy codegen function. 1497 unsigned CurrOffset = 0; 1498 LLT PtrTy = MRI.getType(Src); 1499 SmallVector<Register, 16> LoadVals; 1500 for (auto CopyTy : MemOps) { 1501 // Construct MMO for the load. 1502 auto *LoadMMO = 1503 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1504 1505 // Create the load. 1506 Register LoadPtr = Src; 1507 if (CurrOffset != 0) { 1508 auto Offset = 1509 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1510 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1511 } 1512 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1513 CurrOffset += CopyTy.getSizeInBytes(); 1514 } 1515 1516 CurrOffset = 0; 1517 for (unsigned I = 0; I < MemOps.size(); ++I) { 1518 LLT CopyTy = MemOps[I]; 1519 // Now store the values loaded. 1520 auto *StoreMMO = 1521 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1522 1523 Register StorePtr = Dst; 1524 if (CurrOffset != 0) { 1525 auto Offset = 1526 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1527 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1528 } 1529 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1530 CurrOffset += CopyTy.getSizeInBytes(); 1531 } 1532 MI.eraseFromParent(); 1533 return true; 1534 } 1535 1536 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1537 const unsigned Opc = MI.getOpcode(); 1538 // This combine is fairly complex so it's not written with a separate 1539 // matcher function. 1540 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 1541 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); 1542 1543 auto MMOIt = MI.memoperands_begin(); 1544 const MachineMemOperand *MemOp = *MMOIt; 1545 bool IsVolatile = MemOp->isVolatile(); 1546 // Don't try to optimize volatile. 1547 if (IsVolatile) 1548 return false; 1549 1550 Align DstAlign = MemOp->getBaseAlign(); 1551 Align SrcAlign; 1552 Register Dst = MI.getOperand(0).getReg(); 1553 Register Src = MI.getOperand(1).getReg(); 1554 Register Len = MI.getOperand(2).getReg(); 1555 1556 if (Opc != TargetOpcode::G_MEMSET) { 1557 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1558 MemOp = *(++MMOIt); 1559 SrcAlign = MemOp->getBaseAlign(); 1560 } 1561 1562 // See if this is a constant length copy 1563 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1564 if (!LenVRegAndVal) 1565 return false; // Leave it to the legalizer to lower it to a libcall. 1566 unsigned KnownLen = LenVRegAndVal->Value.getZExtValue(); 1567 1568 if (KnownLen == 0) { 1569 MI.eraseFromParent(); 1570 return true; 1571 } 1572 1573 if (MaxLen && KnownLen > MaxLen) 1574 return false; 1575 1576 if (Opc == TargetOpcode::G_MEMCPY) 1577 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1578 if (Opc == TargetOpcode::G_MEMMOVE) 1579 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1580 if (Opc == TargetOpcode::G_MEMSET) 1581 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1582 return false; 1583 } 1584 1585 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1586 const Register Op, 1587 const MachineRegisterInfo &MRI) { 1588 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1589 if (!MaybeCst) 1590 return None; 1591 1592 APFloat V = MaybeCst->getValueAPF(); 1593 switch (Opcode) { 1594 default: 1595 llvm_unreachable("Unexpected opcode!"); 1596 case TargetOpcode::G_FNEG: { 1597 V.changeSign(); 1598 return V; 1599 } 1600 case TargetOpcode::G_FABS: { 1601 V.clearSign(); 1602 return V; 1603 } 1604 case TargetOpcode::G_FPTRUNC: 1605 break; 1606 case TargetOpcode::G_FSQRT: { 1607 bool Unused; 1608 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1609 V = APFloat(sqrt(V.convertToDouble())); 1610 break; 1611 } 1612 case TargetOpcode::G_FLOG2: { 1613 bool Unused; 1614 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1615 V = APFloat(log2(V.convertToDouble())); 1616 break; 1617 } 1618 } 1619 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1620 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1621 // and `G_FLOG2` reach here. 1622 bool Unused; 1623 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1624 return V; 1625 } 1626 1627 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1628 Optional<APFloat> &Cst) { 1629 Register DstReg = MI.getOperand(0).getReg(); 1630 Register SrcReg = MI.getOperand(1).getReg(); 1631 LLT DstTy = MRI.getType(DstReg); 1632 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1633 return Cst.hasValue(); 1634 } 1635 1636 bool CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1637 Optional<APFloat> &Cst) { 1638 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1639 Builder.setInstrAndDebugLoc(MI); 1640 MachineFunction &MF = Builder.getMF(); 1641 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1642 Register DstReg = MI.getOperand(0).getReg(); 1643 Builder.buildFConstant(DstReg, *FPVal); 1644 MI.eraseFromParent(); 1645 return true; 1646 } 1647 1648 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1649 PtrAddChain &MatchInfo) { 1650 // We're trying to match the following pattern: 1651 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1652 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1653 // --> 1654 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1655 1656 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1657 return false; 1658 1659 Register Add2 = MI.getOperand(1).getReg(); 1660 Register Imm1 = MI.getOperand(2).getReg(); 1661 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1662 if (!MaybeImmVal) 1663 return false; 1664 1665 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1666 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1667 return false; 1668 1669 Register Base = Add2Def->getOperand(1).getReg(); 1670 Register Imm2 = Add2Def->getOperand(2).getReg(); 1671 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1672 if (!MaybeImm2Val) 1673 return false; 1674 1675 // Pass the combined immediate to the apply function. 1676 MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue(); 1677 MatchInfo.Base = Base; 1678 return true; 1679 } 1680 1681 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1682 PtrAddChain &MatchInfo) { 1683 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1684 MachineIRBuilder MIB(MI); 1685 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1686 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1687 Observer.changingInstr(MI); 1688 MI.getOperand(1).setReg(MatchInfo.Base); 1689 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1690 Observer.changedInstr(MI); 1691 return true; 1692 } 1693 1694 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1695 RegisterImmPair &MatchInfo) { 1696 // We're trying to match the following pattern with any of 1697 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1698 // %t1 = SHIFT %base, G_CONSTANT imm1 1699 // %root = SHIFT %t1, G_CONSTANT imm2 1700 // --> 1701 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1702 1703 unsigned Opcode = MI.getOpcode(); 1704 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1705 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1706 Opcode == TargetOpcode::G_USHLSAT) && 1707 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1708 1709 Register Shl2 = MI.getOperand(1).getReg(); 1710 Register Imm1 = MI.getOperand(2).getReg(); 1711 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1712 if (!MaybeImmVal) 1713 return false; 1714 1715 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1716 if (Shl2Def->getOpcode() != Opcode) 1717 return false; 1718 1719 Register Base = Shl2Def->getOperand(1).getReg(); 1720 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1721 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1722 if (!MaybeImm2Val) 1723 return false; 1724 1725 // Pass the combined immediate to the apply function. 1726 MatchInfo.Imm = 1727 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1728 MatchInfo.Reg = Base; 1729 1730 // There is no simple replacement for a saturating unsigned left shift that 1731 // exceeds the scalar size. 1732 if (Opcode == TargetOpcode::G_USHLSAT && 1733 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1734 return false; 1735 1736 return true; 1737 } 1738 1739 bool CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1740 RegisterImmPair &MatchInfo) { 1741 unsigned Opcode = MI.getOpcode(); 1742 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1743 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1744 Opcode == TargetOpcode::G_USHLSAT) && 1745 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1746 1747 Builder.setInstrAndDebugLoc(MI); 1748 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1749 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1750 auto Imm = MatchInfo.Imm; 1751 1752 if (Imm >= ScalarSizeInBits) { 1753 // Any logical shift that exceeds scalar size will produce zero. 1754 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1755 Builder.buildConstant(MI.getOperand(0), 0); 1756 MI.eraseFromParent(); 1757 return true; 1758 } 1759 // Arithmetic shift and saturating signed left shift have no effect beyond 1760 // scalar size. 1761 Imm = ScalarSizeInBits - 1; 1762 } 1763 1764 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1765 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1766 Observer.changingInstr(MI); 1767 MI.getOperand(1).setReg(MatchInfo.Reg); 1768 MI.getOperand(2).setReg(NewImm); 1769 Observer.changedInstr(MI); 1770 return true; 1771 } 1772 1773 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1774 ShiftOfShiftedLogic &MatchInfo) { 1775 // We're trying to match the following pattern with any of 1776 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1777 // with any of G_AND/G_OR/G_XOR logic instructions. 1778 // %t1 = SHIFT %X, G_CONSTANT C0 1779 // %t2 = LOGIC %t1, %Y 1780 // %root = SHIFT %t2, G_CONSTANT C1 1781 // --> 1782 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1783 // %t4 = SHIFT %Y, G_CONSTANT C1 1784 // %root = LOGIC %t3, %t4 1785 unsigned ShiftOpcode = MI.getOpcode(); 1786 assert((ShiftOpcode == TargetOpcode::G_SHL || 1787 ShiftOpcode == TargetOpcode::G_ASHR || 1788 ShiftOpcode == TargetOpcode::G_LSHR || 1789 ShiftOpcode == TargetOpcode::G_USHLSAT || 1790 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1791 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1792 1793 // Match a one-use bitwise logic op. 1794 Register LogicDest = MI.getOperand(1).getReg(); 1795 if (!MRI.hasOneNonDBGUse(LogicDest)) 1796 return false; 1797 1798 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1799 unsigned LogicOpcode = LogicMI->getOpcode(); 1800 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1801 LogicOpcode != TargetOpcode::G_XOR) 1802 return false; 1803 1804 // Find a matching one-use shift by constant. 1805 const Register C1 = MI.getOperand(2).getReg(); 1806 auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); 1807 if (!MaybeImmVal) 1808 return false; 1809 1810 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1811 1812 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1813 // Shift should match previous one and should be a one-use. 1814 if (MI->getOpcode() != ShiftOpcode || 1815 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1816 return false; 1817 1818 // Must be a constant. 1819 auto MaybeImmVal = 1820 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1821 if (!MaybeImmVal) 1822 return false; 1823 1824 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1825 return true; 1826 }; 1827 1828 // Logic ops are commutative, so check each operand for a match. 1829 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1830 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1831 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1832 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1833 uint64_t C0Val; 1834 1835 if (matchFirstShift(LogicMIOp1, C0Val)) { 1836 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1837 MatchInfo.Shift2 = LogicMIOp1; 1838 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1839 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1840 MatchInfo.Shift2 = LogicMIOp2; 1841 } else 1842 return false; 1843 1844 MatchInfo.ValSum = C0Val + C1Val; 1845 1846 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1847 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1848 return false; 1849 1850 MatchInfo.Logic = LogicMI; 1851 return true; 1852 } 1853 1854 bool CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1855 ShiftOfShiftedLogic &MatchInfo) { 1856 unsigned Opcode = MI.getOpcode(); 1857 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1858 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1859 Opcode == TargetOpcode::G_SSHLSAT) && 1860 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1861 1862 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1863 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1864 Builder.setInstrAndDebugLoc(MI); 1865 1866 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1867 1868 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1869 Register Shift1 = 1870 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1871 1872 Register Shift2Const = MI.getOperand(2).getReg(); 1873 Register Shift2 = Builder 1874 .buildInstr(Opcode, {DestType}, 1875 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1876 .getReg(0); 1877 1878 Register Dest = MI.getOperand(0).getReg(); 1879 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1880 1881 // These were one use so it's safe to remove them. 1882 MatchInfo.Shift2->eraseFromParent(); 1883 MatchInfo.Logic->eraseFromParent(); 1884 1885 MI.eraseFromParent(); 1886 return true; 1887 } 1888 1889 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1890 unsigned &ShiftVal) { 1891 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1892 auto MaybeImmVal = 1893 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1894 if (!MaybeImmVal) 1895 return false; 1896 1897 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1898 return (static_cast<int32_t>(ShiftVal) != -1); 1899 } 1900 1901 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1902 unsigned &ShiftVal) { 1903 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1904 MachineIRBuilder MIB(MI); 1905 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1906 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1907 Observer.changingInstr(MI); 1908 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1909 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1910 Observer.changedInstr(MI); 1911 return true; 1912 } 1913 1914 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1915 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1916 RegisterImmPair &MatchData) { 1917 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1918 1919 Register LHS = MI.getOperand(1).getReg(); 1920 1921 Register ExtSrc; 1922 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1923 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1924 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1925 return false; 1926 1927 // TODO: Should handle vector splat. 1928 Register RHS = MI.getOperand(2).getReg(); 1929 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 1930 if (!MaybeShiftAmtVal) 1931 return false; 1932 1933 if (LI) { 1934 LLT SrcTy = MRI.getType(ExtSrc); 1935 1936 // We only really care about the legality with the shifted value. We can 1937 // pick any type the constant shift amount, so ask the target what to 1938 // use. Otherwise we would have to guess and hope it is reported as legal. 1939 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1940 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1941 return false; 1942 } 1943 1944 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1945 MatchData.Reg = ExtSrc; 1946 MatchData.Imm = ShiftAmt; 1947 1948 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1949 return MinLeadingZeros >= ShiftAmt; 1950 } 1951 1952 bool CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1953 const RegisterImmPair &MatchData) { 1954 Register ExtSrcReg = MatchData.Reg; 1955 int64_t ShiftAmtVal = MatchData.Imm; 1956 1957 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1958 Builder.setInstrAndDebugLoc(MI); 1959 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1960 auto NarrowShift = 1961 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1962 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1963 MI.eraseFromParent(); 1964 return true; 1965 } 1966 1967 static Register peekThroughBitcast(Register Reg, 1968 const MachineRegisterInfo &MRI) { 1969 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1970 ; 1971 1972 return Reg; 1973 } 1974 1975 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1976 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1977 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1978 "Expected an unmerge"); 1979 Register SrcReg = 1980 peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI); 1981 1982 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1983 if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES && 1984 SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR && 1985 SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS) 1986 return false; 1987 1988 // Check the source type of the merge. 1989 LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg()); 1990 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1991 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1992 if (SrcMergeTy != Dst0Ty && !SameSize) 1993 return false; 1994 // They are the same now (modulo a bitcast). 1995 // We can collect all the src registers. 1996 for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx; 1997 ++Idx) 1998 Operands.push_back(SrcInstr->getOperand(Idx).getReg()); 1999 return true; 2000 } 2001 2002 bool CombinerHelper::applyCombineUnmergeMergeToPlainValues( 2003 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2004 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2005 "Expected an unmerge"); 2006 assert((MI.getNumOperands() - 1 == Operands.size()) && 2007 "Not enough operands to replace all defs"); 2008 unsigned NumElems = MI.getNumOperands() - 1; 2009 2010 LLT SrcTy = MRI.getType(Operands[0]); 2011 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2012 bool CanReuseInputDirectly = DstTy == SrcTy; 2013 Builder.setInstrAndDebugLoc(MI); 2014 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2015 Register DstReg = MI.getOperand(Idx).getReg(); 2016 Register SrcReg = Operands[Idx]; 2017 if (CanReuseInputDirectly) 2018 replaceRegWith(MRI, DstReg, SrcReg); 2019 else 2020 Builder.buildCast(DstReg, SrcReg); 2021 } 2022 MI.eraseFromParent(); 2023 return true; 2024 } 2025 2026 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 2027 SmallVectorImpl<APInt> &Csts) { 2028 unsigned SrcIdx = MI.getNumOperands() - 1; 2029 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 2030 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 2031 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 2032 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 2033 return false; 2034 // Break down the big constant in smaller ones. 2035 const MachineOperand &CstVal = SrcInstr->getOperand(1); 2036 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 2037 ? CstVal.getCImm()->getValue() 2038 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 2039 2040 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 2041 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 2042 // Unmerge a constant. 2043 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 2044 Csts.emplace_back(Val.trunc(ShiftAmt)); 2045 Val = Val.lshr(ShiftAmt); 2046 } 2047 2048 return true; 2049 } 2050 2051 bool CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 2052 SmallVectorImpl<APInt> &Csts) { 2053 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2054 "Expected an unmerge"); 2055 assert((MI.getNumOperands() - 1 == Csts.size()) && 2056 "Not enough operands to replace all defs"); 2057 unsigned NumElems = MI.getNumOperands() - 1; 2058 Builder.setInstrAndDebugLoc(MI); 2059 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2060 Register DstReg = MI.getOperand(Idx).getReg(); 2061 Builder.buildConstant(DstReg, Csts[Idx]); 2062 } 2063 2064 MI.eraseFromParent(); 2065 return true; 2066 } 2067 2068 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2069 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2070 "Expected an unmerge"); 2071 // Check that all the lanes are dead except the first one. 2072 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2073 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 2074 return false; 2075 } 2076 return true; 2077 } 2078 2079 bool CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2080 Builder.setInstrAndDebugLoc(MI); 2081 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2082 // Truncating a vector is going to truncate every single lane, 2083 // whereas we want the full lowbits. 2084 // Do the operation on a scalar instead. 2085 LLT SrcTy = MRI.getType(SrcReg); 2086 if (SrcTy.isVector()) 2087 SrcReg = 2088 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 2089 2090 Register Dst0Reg = MI.getOperand(0).getReg(); 2091 LLT Dst0Ty = MRI.getType(Dst0Reg); 2092 if (Dst0Ty.isVector()) { 2093 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 2094 Builder.buildCast(Dst0Reg, MIB); 2095 } else 2096 Builder.buildTrunc(Dst0Reg, SrcReg); 2097 MI.eraseFromParent(); 2098 return true; 2099 } 2100 2101 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 2102 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2103 "Expected an unmerge"); 2104 Register Dst0Reg = MI.getOperand(0).getReg(); 2105 LLT Dst0Ty = MRI.getType(Dst0Reg); 2106 // G_ZEXT on vector applies to each lane, so it will 2107 // affect all destinations. Therefore we won't be able 2108 // to simplify the unmerge to just the first definition. 2109 if (Dst0Ty.isVector()) 2110 return false; 2111 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2112 LLT SrcTy = MRI.getType(SrcReg); 2113 if (SrcTy.isVector()) 2114 return false; 2115 2116 Register ZExtSrcReg; 2117 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 2118 return false; 2119 2120 // Finally we can replace the first definition with 2121 // a zext of the source if the definition is big enough to hold 2122 // all of ZExtSrc bits. 2123 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2124 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 2125 } 2126 2127 bool CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 2128 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2129 "Expected an unmerge"); 2130 2131 Register Dst0Reg = MI.getOperand(0).getReg(); 2132 2133 MachineInstr *ZExtInstr = 2134 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 2135 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 2136 "Expecting a G_ZEXT"); 2137 2138 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 2139 LLT Dst0Ty = MRI.getType(Dst0Reg); 2140 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2141 2142 Builder.setInstrAndDebugLoc(MI); 2143 2144 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 2145 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 2146 } else { 2147 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 2148 "ZExt src doesn't fit in destination"); 2149 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 2150 } 2151 2152 Register ZeroReg; 2153 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2154 if (!ZeroReg) 2155 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 2156 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 2157 } 2158 MI.eraseFromParent(); 2159 return true; 2160 } 2161 2162 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 2163 unsigned TargetShiftSize, 2164 unsigned &ShiftVal) { 2165 assert((MI.getOpcode() == TargetOpcode::G_SHL || 2166 MI.getOpcode() == TargetOpcode::G_LSHR || 2167 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 2168 2169 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2170 if (Ty.isVector()) // TODO: 2171 return false; 2172 2173 // Don't narrow further than the requested size. 2174 unsigned Size = Ty.getSizeInBits(); 2175 if (Size <= TargetShiftSize) 2176 return false; 2177 2178 auto MaybeImmVal = 2179 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 2180 if (!MaybeImmVal) 2181 return false; 2182 2183 ShiftVal = MaybeImmVal->Value.getSExtValue(); 2184 return ShiftVal >= Size / 2 && ShiftVal < Size; 2185 } 2186 2187 bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 2188 const unsigned &ShiftVal) { 2189 Register DstReg = MI.getOperand(0).getReg(); 2190 Register SrcReg = MI.getOperand(1).getReg(); 2191 LLT Ty = MRI.getType(SrcReg); 2192 unsigned Size = Ty.getSizeInBits(); 2193 unsigned HalfSize = Size / 2; 2194 assert(ShiftVal >= HalfSize); 2195 2196 LLT HalfTy = LLT::scalar(HalfSize); 2197 2198 Builder.setInstr(MI); 2199 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 2200 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 2201 2202 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2203 Register Narrowed = Unmerge.getReg(1); 2204 2205 // dst = G_LSHR s64:x, C for C >= 32 2206 // => 2207 // lo, hi = G_UNMERGE_VALUES x 2208 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 2209 2210 if (NarrowShiftAmt != 0) { 2211 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 2212 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2213 } 2214 2215 auto Zero = Builder.buildConstant(HalfTy, 0); 2216 Builder.buildMerge(DstReg, { Narrowed, Zero }); 2217 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 2218 Register Narrowed = Unmerge.getReg(0); 2219 // dst = G_SHL s64:x, C for C >= 32 2220 // => 2221 // lo, hi = G_UNMERGE_VALUES x 2222 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 2223 if (NarrowShiftAmt != 0) { 2224 Narrowed = Builder.buildShl(HalfTy, Narrowed, 2225 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2226 } 2227 2228 auto Zero = Builder.buildConstant(HalfTy, 0); 2229 Builder.buildMerge(DstReg, { Zero, Narrowed }); 2230 } else { 2231 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2232 auto Hi = Builder.buildAShr( 2233 HalfTy, Unmerge.getReg(1), 2234 Builder.buildConstant(HalfTy, HalfSize - 1)); 2235 2236 if (ShiftVal == HalfSize) { 2237 // (G_ASHR i64:x, 32) -> 2238 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 2239 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 2240 } else if (ShiftVal == Size - 1) { 2241 // Don't need a second shift. 2242 // (G_ASHR i64:x, 63) -> 2243 // %narrowed = (G_ASHR hi_32(x), 31) 2244 // G_MERGE_VALUES %narrowed, %narrowed 2245 Builder.buildMerge(DstReg, { Hi, Hi }); 2246 } else { 2247 auto Lo = Builder.buildAShr( 2248 HalfTy, Unmerge.getReg(1), 2249 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 2250 2251 // (G_ASHR i64:x, C) ->, for C >= 32 2252 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 2253 Builder.buildMerge(DstReg, { Lo, Hi }); 2254 } 2255 } 2256 2257 MI.eraseFromParent(); 2258 return true; 2259 } 2260 2261 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 2262 unsigned TargetShiftAmount) { 2263 unsigned ShiftAmt; 2264 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 2265 applyCombineShiftToUnmerge(MI, ShiftAmt); 2266 return true; 2267 } 2268 2269 return false; 2270 } 2271 2272 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2273 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2274 Register DstReg = MI.getOperand(0).getReg(); 2275 LLT DstTy = MRI.getType(DstReg); 2276 Register SrcReg = MI.getOperand(1).getReg(); 2277 return mi_match(SrcReg, MRI, 2278 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2279 } 2280 2281 bool CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2282 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2283 Register DstReg = MI.getOperand(0).getReg(); 2284 Builder.setInstr(MI); 2285 Builder.buildCopy(DstReg, Reg); 2286 MI.eraseFromParent(); 2287 return true; 2288 } 2289 2290 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2291 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2292 Register SrcReg = MI.getOperand(1).getReg(); 2293 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2294 } 2295 2296 bool CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2297 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2298 Register DstReg = MI.getOperand(0).getReg(); 2299 Builder.setInstr(MI); 2300 Builder.buildZExtOrTrunc(DstReg, Reg); 2301 MI.eraseFromParent(); 2302 return true; 2303 } 2304 2305 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2306 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2307 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2308 Register LHS = MI.getOperand(1).getReg(); 2309 Register RHS = MI.getOperand(2).getReg(); 2310 LLT IntTy = MRI.getType(LHS); 2311 2312 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2313 // instruction. 2314 PtrReg.second = false; 2315 for (Register SrcReg : {LHS, RHS}) { 2316 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2317 // Don't handle cases where the integer is implicitly converted to the 2318 // pointer width. 2319 LLT PtrTy = MRI.getType(PtrReg.first); 2320 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2321 return true; 2322 } 2323 2324 PtrReg.second = true; 2325 } 2326 2327 return false; 2328 } 2329 2330 bool CombinerHelper::applyCombineAddP2IToPtrAdd( 2331 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2332 Register Dst = MI.getOperand(0).getReg(); 2333 Register LHS = MI.getOperand(1).getReg(); 2334 Register RHS = MI.getOperand(2).getReg(); 2335 2336 const bool DoCommute = PtrReg.second; 2337 if (DoCommute) 2338 std::swap(LHS, RHS); 2339 LHS = PtrReg.first; 2340 2341 LLT PtrTy = MRI.getType(LHS); 2342 2343 Builder.setInstrAndDebugLoc(MI); 2344 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2345 Builder.buildPtrToInt(Dst, PtrAdd); 2346 MI.eraseFromParent(); 2347 return true; 2348 } 2349 2350 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2351 int64_t &NewCst) { 2352 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2353 Register LHS = MI.getOperand(1).getReg(); 2354 Register RHS = MI.getOperand(2).getReg(); 2355 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2356 2357 if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { 2358 int64_t Cst; 2359 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2360 NewCst = Cst + *RHSCst; 2361 return true; 2362 } 2363 } 2364 2365 return false; 2366 } 2367 2368 bool CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2369 int64_t &NewCst) { 2370 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2371 Register Dst = MI.getOperand(0).getReg(); 2372 2373 Builder.setInstrAndDebugLoc(MI); 2374 Builder.buildConstant(Dst, NewCst); 2375 MI.eraseFromParent(); 2376 return true; 2377 } 2378 2379 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2380 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2381 Register DstReg = MI.getOperand(0).getReg(); 2382 Register SrcReg = MI.getOperand(1).getReg(); 2383 LLT DstTy = MRI.getType(DstReg); 2384 return mi_match(SrcReg, MRI, 2385 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2386 } 2387 2388 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2389 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2390 Register DstReg = MI.getOperand(0).getReg(); 2391 Register SrcReg = MI.getOperand(1).getReg(); 2392 LLT DstTy = MRI.getType(DstReg); 2393 if (mi_match(SrcReg, MRI, 2394 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2395 unsigned DstSize = DstTy.getScalarSizeInBits(); 2396 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2397 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2398 } 2399 return false; 2400 } 2401 2402 bool CombinerHelper::matchCombineExtOfExt( 2403 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2404 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2405 MI.getOpcode() == TargetOpcode::G_SEXT || 2406 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2407 "Expected a G_[ASZ]EXT"); 2408 Register SrcReg = MI.getOperand(1).getReg(); 2409 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2410 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2411 unsigned Opc = MI.getOpcode(); 2412 unsigned SrcOpc = SrcMI->getOpcode(); 2413 if (Opc == SrcOpc || 2414 (Opc == TargetOpcode::G_ANYEXT && 2415 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2416 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2417 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2418 return true; 2419 } 2420 return false; 2421 } 2422 2423 bool CombinerHelper::applyCombineExtOfExt( 2424 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2425 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2426 MI.getOpcode() == TargetOpcode::G_SEXT || 2427 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2428 "Expected a G_[ASZ]EXT"); 2429 2430 Register Reg = std::get<0>(MatchInfo); 2431 unsigned SrcExtOp = std::get<1>(MatchInfo); 2432 2433 // Combine exts with the same opcode. 2434 if (MI.getOpcode() == SrcExtOp) { 2435 Observer.changingInstr(MI); 2436 MI.getOperand(1).setReg(Reg); 2437 Observer.changedInstr(MI); 2438 return true; 2439 } 2440 2441 // Combine: 2442 // - anyext([sz]ext x) to [sz]ext x 2443 // - sext(zext x) to zext x 2444 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2445 (MI.getOpcode() == TargetOpcode::G_SEXT && 2446 SrcExtOp == TargetOpcode::G_ZEXT)) { 2447 Register DstReg = MI.getOperand(0).getReg(); 2448 Builder.setInstrAndDebugLoc(MI); 2449 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2450 MI.eraseFromParent(); 2451 return true; 2452 } 2453 2454 return false; 2455 } 2456 2457 bool CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2458 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2459 Register DstReg = MI.getOperand(0).getReg(); 2460 Register SrcReg = MI.getOperand(1).getReg(); 2461 LLT DstTy = MRI.getType(DstReg); 2462 2463 Builder.setInstrAndDebugLoc(MI); 2464 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2465 MI.getFlags()); 2466 MI.eraseFromParent(); 2467 return true; 2468 } 2469 2470 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2471 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2472 Register SrcReg = MI.getOperand(1).getReg(); 2473 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2474 } 2475 2476 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2477 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2478 Src = MI.getOperand(1).getReg(); 2479 Register AbsSrc; 2480 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2481 } 2482 2483 bool CombinerHelper::matchCombineTruncOfExt( 2484 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2485 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2486 Register SrcReg = MI.getOperand(1).getReg(); 2487 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2488 unsigned SrcOpc = SrcMI->getOpcode(); 2489 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2490 SrcOpc == TargetOpcode::G_ZEXT) { 2491 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2492 return true; 2493 } 2494 return false; 2495 } 2496 2497 bool CombinerHelper::applyCombineTruncOfExt( 2498 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2499 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2500 Register SrcReg = MatchInfo.first; 2501 unsigned SrcExtOp = MatchInfo.second; 2502 Register DstReg = MI.getOperand(0).getReg(); 2503 LLT SrcTy = MRI.getType(SrcReg); 2504 LLT DstTy = MRI.getType(DstReg); 2505 if (SrcTy == DstTy) { 2506 MI.eraseFromParent(); 2507 replaceRegWith(MRI, DstReg, SrcReg); 2508 return true; 2509 } 2510 Builder.setInstrAndDebugLoc(MI); 2511 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2512 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2513 else 2514 Builder.buildTrunc(DstReg, SrcReg); 2515 MI.eraseFromParent(); 2516 return true; 2517 } 2518 2519 bool CombinerHelper::matchCombineTruncOfShl( 2520 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2521 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2522 Register DstReg = MI.getOperand(0).getReg(); 2523 Register SrcReg = MI.getOperand(1).getReg(); 2524 LLT DstTy = MRI.getType(DstReg); 2525 Register ShiftSrc; 2526 Register ShiftAmt; 2527 2528 if (MRI.hasOneNonDBGUse(SrcReg) && 2529 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2530 isLegalOrBeforeLegalizer( 2531 {TargetOpcode::G_SHL, 2532 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2533 KnownBits Known = KB->getKnownBits(ShiftAmt); 2534 unsigned Size = DstTy.getSizeInBits(); 2535 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2536 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2537 return true; 2538 } 2539 } 2540 return false; 2541 } 2542 2543 bool CombinerHelper::applyCombineTruncOfShl( 2544 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2545 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2546 Register DstReg = MI.getOperand(0).getReg(); 2547 Register SrcReg = MI.getOperand(1).getReg(); 2548 LLT DstTy = MRI.getType(DstReg); 2549 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2550 2551 Register ShiftSrc = MatchInfo.first; 2552 Register ShiftAmt = MatchInfo.second; 2553 Builder.setInstrAndDebugLoc(MI); 2554 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2555 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2556 MI.eraseFromParent(); 2557 return true; 2558 } 2559 2560 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2561 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2562 return MO.isReg() && 2563 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2564 }); 2565 } 2566 2567 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2568 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2569 return !MO.isReg() || 2570 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2571 }); 2572 } 2573 2574 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2575 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2576 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2577 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2578 } 2579 2580 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2581 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2582 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2583 MRI); 2584 } 2585 2586 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2587 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2588 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2589 MRI); 2590 } 2591 2592 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2593 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2594 if (auto MaybeCstCmp = 2595 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2596 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; 2597 return true; 2598 } 2599 return false; 2600 } 2601 2602 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2603 MI.eraseFromParent(); 2604 return true; 2605 } 2606 2607 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2608 const MachineOperand &MOP2) { 2609 if (!MOP1.isReg() || !MOP2.isReg()) 2610 return false; 2611 MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); 2612 if (!I1) 2613 return false; 2614 MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); 2615 if (!I2) 2616 return false; 2617 2618 // Handle a case like this: 2619 // 2620 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2621 // 2622 // Even though %0 and %1 are produced by the same instruction they are not 2623 // the same values. 2624 if (I1 == I2) 2625 return MOP1.getReg() == MOP2.getReg(); 2626 2627 // If we have an instruction which loads or stores, we can't guarantee that 2628 // it is identical. 2629 // 2630 // For example, we may have 2631 // 2632 // %x1 = G_LOAD %addr (load N from @somewhere) 2633 // ... 2634 // call @foo 2635 // ... 2636 // %x2 = G_LOAD %addr (load N from @somewhere) 2637 // ... 2638 // %or = G_OR %x1, %x2 2639 // 2640 // It's possible that @foo will modify whatever lives at the address we're 2641 // loading from. To be safe, let's just assume that all loads and stores 2642 // are different (unless we have something which is guaranteed to not 2643 // change.) 2644 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2645 return false; 2646 2647 // Check for physical registers on the instructions first to avoid cases 2648 // like this: 2649 // 2650 // %a = COPY $physreg 2651 // ... 2652 // SOMETHING implicit-def $physreg 2653 // ... 2654 // %b = COPY $physreg 2655 // 2656 // These copies are not equivalent. 2657 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2658 return MO.isReg() && MO.getReg().isPhysical(); 2659 })) { 2660 // Check if we have a case like this: 2661 // 2662 // %a = COPY $physreg 2663 // %b = COPY %a 2664 // 2665 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2666 // From that, we know that they must have the same value, since they must 2667 // have come from the same COPY. 2668 return I1->isIdenticalTo(*I2); 2669 } 2670 2671 // We don't have any physical registers, so we don't necessarily need the 2672 // same vreg defs. 2673 // 2674 // On the off-chance that there's some target instruction feeding into the 2675 // instruction, let's use produceSameValue instead of isIdenticalTo. 2676 return Builder.getTII().produceSameValue(*I1, *I2, &MRI); 2677 } 2678 2679 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2680 if (!MOP.isReg()) 2681 return false; 2682 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2683 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2684 return ValAndVReg && ValAndVReg->Value == C; 2685 } 2686 2687 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2688 unsigned OpIdx) { 2689 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2690 Register OldReg = MI.getOperand(0).getReg(); 2691 Register Replacement = MI.getOperand(OpIdx).getReg(); 2692 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2693 MI.eraseFromParent(); 2694 replaceRegWith(MRI, OldReg, Replacement); 2695 return true; 2696 } 2697 2698 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2699 Register Replacement) { 2700 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2701 Register OldReg = MI.getOperand(0).getReg(); 2702 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2703 MI.eraseFromParent(); 2704 replaceRegWith(MRI, OldReg, Replacement); 2705 return true; 2706 } 2707 2708 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2709 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2710 // Match (cond ? x : x) 2711 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2712 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2713 MRI); 2714 } 2715 2716 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2717 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2718 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2719 MRI); 2720 } 2721 2722 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2723 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2724 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2725 MRI); 2726 } 2727 2728 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2729 MachineOperand &MO = MI.getOperand(OpIdx); 2730 return MO.isReg() && 2731 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2732 } 2733 2734 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2735 unsigned OpIdx) { 2736 MachineOperand &MO = MI.getOperand(OpIdx); 2737 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2738 } 2739 2740 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2741 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2742 Builder.setInstr(MI); 2743 Builder.buildFConstant(MI.getOperand(0), C); 2744 MI.eraseFromParent(); 2745 return true; 2746 } 2747 2748 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2749 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2750 Builder.setInstr(MI); 2751 Builder.buildConstant(MI.getOperand(0), C); 2752 MI.eraseFromParent(); 2753 return true; 2754 } 2755 2756 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2757 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2758 Builder.setInstr(MI); 2759 Builder.buildUndef(MI.getOperand(0)); 2760 MI.eraseFromParent(); 2761 return true; 2762 } 2763 2764 bool CombinerHelper::matchSimplifyAddToSub( 2765 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2766 Register LHS = MI.getOperand(1).getReg(); 2767 Register RHS = MI.getOperand(2).getReg(); 2768 Register &NewLHS = std::get<0>(MatchInfo); 2769 Register &NewRHS = std::get<1>(MatchInfo); 2770 2771 // Helper lambda to check for opportunities for 2772 // ((0-A) + B) -> B - A 2773 // (A + (0-B)) -> A - B 2774 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2775 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2776 return false; 2777 NewLHS = MaybeNewLHS; 2778 return true; 2779 }; 2780 2781 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2782 } 2783 2784 bool CombinerHelper::matchCombineInsertVecElts( 2785 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2786 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2787 "Invalid opcode"); 2788 Register DstReg = MI.getOperand(0).getReg(); 2789 LLT DstTy = MRI.getType(DstReg); 2790 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2791 unsigned NumElts = DstTy.getNumElements(); 2792 // If this MI is part of a sequence of insert_vec_elts, then 2793 // don't do the combine in the middle of the sequence. 2794 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2795 TargetOpcode::G_INSERT_VECTOR_ELT) 2796 return false; 2797 MachineInstr *CurrInst = &MI; 2798 MachineInstr *TmpInst; 2799 int64_t IntImm; 2800 Register TmpReg; 2801 MatchInfo.resize(NumElts); 2802 while (mi_match( 2803 CurrInst->getOperand(0).getReg(), MRI, 2804 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2805 if (IntImm >= NumElts) 2806 return false; 2807 if (!MatchInfo[IntImm]) 2808 MatchInfo[IntImm] = TmpReg; 2809 CurrInst = TmpInst; 2810 } 2811 // Variable index. 2812 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2813 return false; 2814 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2815 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2816 if (!MatchInfo[I - 1].isValid()) 2817 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2818 } 2819 return true; 2820 } 2821 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2822 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2823 } 2824 2825 bool CombinerHelper::applyCombineInsertVecElts( 2826 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2827 Builder.setInstr(MI); 2828 Register UndefReg; 2829 auto GetUndef = [&]() { 2830 if (UndefReg) 2831 return UndefReg; 2832 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2833 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2834 return UndefReg; 2835 }; 2836 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2837 if (!MatchInfo[I]) 2838 MatchInfo[I] = GetUndef(); 2839 } 2840 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2841 MI.eraseFromParent(); 2842 return true; 2843 } 2844 2845 bool CombinerHelper::applySimplifyAddToSub( 2846 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2847 Builder.setInstr(MI); 2848 Register SubLHS, SubRHS; 2849 std::tie(SubLHS, SubRHS) = MatchInfo; 2850 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2851 MI.eraseFromParent(); 2852 return true; 2853 } 2854 2855 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2856 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2857 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2858 // 2859 // Creates the new hand + logic instruction (but does not insert them.) 2860 // 2861 // On success, MatchInfo is populated with the new instructions. These are 2862 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2863 unsigned LogicOpcode = MI.getOpcode(); 2864 assert(LogicOpcode == TargetOpcode::G_AND || 2865 LogicOpcode == TargetOpcode::G_OR || 2866 LogicOpcode == TargetOpcode::G_XOR); 2867 MachineIRBuilder MIB(MI); 2868 Register Dst = MI.getOperand(0).getReg(); 2869 Register LHSReg = MI.getOperand(1).getReg(); 2870 Register RHSReg = MI.getOperand(2).getReg(); 2871 2872 // Don't recompute anything. 2873 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2874 return false; 2875 2876 // Make sure we have (hand x, ...), (hand y, ...) 2877 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2878 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2879 if (!LeftHandInst || !RightHandInst) 2880 return false; 2881 unsigned HandOpcode = LeftHandInst->getOpcode(); 2882 if (HandOpcode != RightHandInst->getOpcode()) 2883 return false; 2884 if (!LeftHandInst->getOperand(1).isReg() || 2885 !RightHandInst->getOperand(1).isReg()) 2886 return false; 2887 2888 // Make sure the types match up, and if we're doing this post-legalization, 2889 // we end up with legal types. 2890 Register X = LeftHandInst->getOperand(1).getReg(); 2891 Register Y = RightHandInst->getOperand(1).getReg(); 2892 LLT XTy = MRI.getType(X); 2893 LLT YTy = MRI.getType(Y); 2894 if (XTy != YTy) 2895 return false; 2896 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2897 return false; 2898 2899 // Optional extra source register. 2900 Register ExtraHandOpSrcReg; 2901 switch (HandOpcode) { 2902 default: 2903 return false; 2904 case TargetOpcode::G_ANYEXT: 2905 case TargetOpcode::G_SEXT: 2906 case TargetOpcode::G_ZEXT: { 2907 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2908 break; 2909 } 2910 case TargetOpcode::G_AND: 2911 case TargetOpcode::G_ASHR: 2912 case TargetOpcode::G_LSHR: 2913 case TargetOpcode::G_SHL: { 2914 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2915 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2916 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2917 return false; 2918 ExtraHandOpSrcReg = ZOp.getReg(); 2919 break; 2920 } 2921 } 2922 2923 // Record the steps to build the new instructions. 2924 // 2925 // Steps to build (logic x, y) 2926 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2927 OperandBuildSteps LogicBuildSteps = { 2928 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2929 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2930 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2931 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2932 2933 // Steps to build hand (logic x, y), ...z 2934 OperandBuildSteps HandBuildSteps = { 2935 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2936 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2937 if (ExtraHandOpSrcReg.isValid()) 2938 HandBuildSteps.push_back( 2939 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2940 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2941 2942 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2943 return true; 2944 } 2945 2946 bool CombinerHelper::applyBuildInstructionSteps( 2947 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2948 assert(MatchInfo.InstrsToBuild.size() && 2949 "Expected at least one instr to build?"); 2950 Builder.setInstr(MI); 2951 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2952 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2953 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2954 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2955 for (auto &OperandFn : InstrToBuild.OperandFns) 2956 OperandFn(Instr); 2957 } 2958 MI.eraseFromParent(); 2959 return true; 2960 } 2961 2962 bool CombinerHelper::matchAshrShlToSextInreg( 2963 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2964 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2965 int64_t ShlCst, AshrCst; 2966 Register Src; 2967 // FIXME: detect splat constant vectors. 2968 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2969 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2970 return false; 2971 if (ShlCst != AshrCst) 2972 return false; 2973 if (!isLegalOrBeforeLegalizer( 2974 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2975 return false; 2976 MatchInfo = std::make_tuple(Src, ShlCst); 2977 return true; 2978 } 2979 bool CombinerHelper::applyAshShlToSextInreg( 2980 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2981 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2982 Register Src; 2983 int64_t ShiftAmt; 2984 std::tie(Src, ShiftAmt) = MatchInfo; 2985 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2986 Builder.setInstrAndDebugLoc(MI); 2987 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2988 MI.eraseFromParent(); 2989 return true; 2990 } 2991 2992 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2993 Register &Replacement) { 2994 // Given 2995 // 2996 // %y:_(sN) = G_SOMETHING 2997 // %x:_(sN) = G_SOMETHING 2998 // %res:_(sN) = G_AND %x, %y 2999 // 3000 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 3001 // 3002 // Patterns like this can appear as a result of legalization. E.g. 3003 // 3004 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 3005 // %one:_(s32) = G_CONSTANT i32 1 3006 // %and:_(s32) = G_AND %cmp, %one 3007 // 3008 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 3009 assert(MI.getOpcode() == TargetOpcode::G_AND); 3010 if (!KB) 3011 return false; 3012 3013 Register AndDst = MI.getOperand(0).getReg(); 3014 LLT DstTy = MRI.getType(AndDst); 3015 3016 // FIXME: This should be removed once GISelKnownBits supports vectors. 3017 if (DstTy.isVector()) 3018 return false; 3019 3020 Register LHS = MI.getOperand(1).getReg(); 3021 Register RHS = MI.getOperand(2).getReg(); 3022 KnownBits LHSBits = KB->getKnownBits(LHS); 3023 KnownBits RHSBits = KB->getKnownBits(RHS); 3024 3025 // Check that x & Mask == x. 3026 // x & 1 == x, always 3027 // x & 0 == x, only if x is also 0 3028 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 3029 // 3030 // Check if we can replace AndDst with the LHS of the G_AND 3031 if (canReplaceReg(AndDst, LHS, MRI) && 3032 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3033 Replacement = LHS; 3034 return true; 3035 } 3036 3037 // Check if we can replace AndDst with the RHS of the G_AND 3038 if (canReplaceReg(AndDst, RHS, MRI) && 3039 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3040 Replacement = RHS; 3041 return true; 3042 } 3043 3044 return false; 3045 } 3046 3047 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 3048 // Given 3049 // 3050 // %y:_(sN) = G_SOMETHING 3051 // %x:_(sN) = G_SOMETHING 3052 // %res:_(sN) = G_OR %x, %y 3053 // 3054 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 3055 assert(MI.getOpcode() == TargetOpcode::G_OR); 3056 if (!KB) 3057 return false; 3058 3059 Register OrDst = MI.getOperand(0).getReg(); 3060 LLT DstTy = MRI.getType(OrDst); 3061 3062 // FIXME: This should be removed once GISelKnownBits supports vectors. 3063 if (DstTy.isVector()) 3064 return false; 3065 3066 Register LHS = MI.getOperand(1).getReg(); 3067 Register RHS = MI.getOperand(2).getReg(); 3068 KnownBits LHSBits = KB->getKnownBits(LHS); 3069 KnownBits RHSBits = KB->getKnownBits(RHS); 3070 3071 // Check that x | Mask == x. 3072 // x | 0 == x, always 3073 // x | 1 == x, only if x is also 1 3074 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 3075 // 3076 // Check if we can replace OrDst with the LHS of the G_OR 3077 if (canReplaceReg(OrDst, LHS, MRI) && 3078 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3079 Replacement = LHS; 3080 return true; 3081 } 3082 3083 // Check if we can replace OrDst with the RHS of the G_OR 3084 if (canReplaceReg(OrDst, RHS, MRI) && 3085 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3086 Replacement = RHS; 3087 return true; 3088 } 3089 3090 return false; 3091 } 3092 3093 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 3094 // If the input is already sign extended, just drop the extension. 3095 Register Src = MI.getOperand(1).getReg(); 3096 unsigned ExtBits = MI.getOperand(2).getImm(); 3097 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 3098 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 3099 } 3100 3101 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 3102 int64_t Cst, bool IsVector, bool IsFP) { 3103 // For i1, Cst will always be -1 regardless of boolean contents. 3104 return (ScalarSizeBits == 1 && Cst == -1) || 3105 isConstTrueVal(TLI, Cst, IsVector, IsFP); 3106 } 3107 3108 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 3109 SmallVectorImpl<Register> &RegsToNegate) { 3110 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3111 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3112 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 3113 Register XorSrc; 3114 Register CstReg; 3115 // We match xor(src, true) here. 3116 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3117 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 3118 return false; 3119 3120 if (!MRI.hasOneNonDBGUse(XorSrc)) 3121 return false; 3122 3123 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 3124 // and ORs. The suffix of RegsToNegate starting from index I is used a work 3125 // list of tree nodes to visit. 3126 RegsToNegate.push_back(XorSrc); 3127 // Remember whether the comparisons are all integer or all floating point. 3128 bool IsInt = false; 3129 bool IsFP = false; 3130 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 3131 Register Reg = RegsToNegate[I]; 3132 if (!MRI.hasOneNonDBGUse(Reg)) 3133 return false; 3134 MachineInstr *Def = MRI.getVRegDef(Reg); 3135 switch (Def->getOpcode()) { 3136 default: 3137 // Don't match if the tree contains anything other than ANDs, ORs and 3138 // comparisons. 3139 return false; 3140 case TargetOpcode::G_ICMP: 3141 if (IsFP) 3142 return false; 3143 IsInt = true; 3144 // When we apply the combine we will invert the predicate. 3145 break; 3146 case TargetOpcode::G_FCMP: 3147 if (IsInt) 3148 return false; 3149 IsFP = true; 3150 // When we apply the combine we will invert the predicate. 3151 break; 3152 case TargetOpcode::G_AND: 3153 case TargetOpcode::G_OR: 3154 // Implement De Morgan's laws: 3155 // ~(x & y) -> ~x | ~y 3156 // ~(x | y) -> ~x & ~y 3157 // When we apply the combine we will change the opcode and recursively 3158 // negate the operands. 3159 RegsToNegate.push_back(Def->getOperand(1).getReg()); 3160 RegsToNegate.push_back(Def->getOperand(2).getReg()); 3161 break; 3162 } 3163 } 3164 3165 // Now we know whether the comparisons are integer or floating point, check 3166 // the constant in the xor. 3167 int64_t Cst; 3168 if (Ty.isVector()) { 3169 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 3170 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 3171 if (!MaybeCst) 3172 return false; 3173 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 3174 return false; 3175 } else { 3176 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 3177 return false; 3178 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 3179 return false; 3180 } 3181 3182 return true; 3183 } 3184 3185 bool CombinerHelper::applyNotCmp(MachineInstr &MI, 3186 SmallVectorImpl<Register> &RegsToNegate) { 3187 for (Register Reg : RegsToNegate) { 3188 MachineInstr *Def = MRI.getVRegDef(Reg); 3189 Observer.changingInstr(*Def); 3190 // For each comparison, invert the opcode. For each AND and OR, change the 3191 // opcode. 3192 switch (Def->getOpcode()) { 3193 default: 3194 llvm_unreachable("Unexpected opcode"); 3195 case TargetOpcode::G_ICMP: 3196 case TargetOpcode::G_FCMP: { 3197 MachineOperand &PredOp = Def->getOperand(1); 3198 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 3199 (CmpInst::Predicate)PredOp.getPredicate()); 3200 PredOp.setPredicate(NewP); 3201 break; 3202 } 3203 case TargetOpcode::G_AND: 3204 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3205 break; 3206 case TargetOpcode::G_OR: 3207 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3208 break; 3209 } 3210 Observer.changedInstr(*Def); 3211 } 3212 3213 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3214 MI.eraseFromParent(); 3215 return true; 3216 } 3217 3218 bool CombinerHelper::matchXorOfAndWithSameReg( 3219 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3220 // Match (xor (and x, y), y) (or any of its commuted cases) 3221 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3222 Register &X = MatchInfo.first; 3223 Register &Y = MatchInfo.second; 3224 Register AndReg = MI.getOperand(1).getReg(); 3225 Register SharedReg = MI.getOperand(2).getReg(); 3226 3227 // Find a G_AND on either side of the G_XOR. 3228 // Look for one of 3229 // 3230 // (xor (and x, y), SharedReg) 3231 // (xor SharedReg, (and x, y)) 3232 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3233 std::swap(AndReg, SharedReg); 3234 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3235 return false; 3236 } 3237 3238 // Only do this if we'll eliminate the G_AND. 3239 if (!MRI.hasOneNonDBGUse(AndReg)) 3240 return false; 3241 3242 // We can combine if SharedReg is the same as either the LHS or RHS of the 3243 // G_AND. 3244 if (Y != SharedReg) 3245 std::swap(X, Y); 3246 return Y == SharedReg; 3247 } 3248 3249 bool CombinerHelper::applyXorOfAndWithSameReg( 3250 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3251 // Fold (xor (and x, y), y) -> (and (not x), y) 3252 Builder.setInstrAndDebugLoc(MI); 3253 Register X, Y; 3254 std::tie(X, Y) = MatchInfo; 3255 auto Not = Builder.buildNot(MRI.getType(X), X); 3256 Observer.changingInstr(MI); 3257 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3258 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3259 MI.getOperand(2).setReg(Y); 3260 Observer.changedInstr(MI); 3261 return true; 3262 } 3263 3264 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3265 Register DstReg = MI.getOperand(0).getReg(); 3266 LLT Ty = MRI.getType(DstReg); 3267 const DataLayout &DL = Builder.getMF().getDataLayout(); 3268 3269 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3270 return false; 3271 3272 if (Ty.isPointer()) { 3273 auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI); 3274 return ConstVal && *ConstVal == 0; 3275 } 3276 3277 assert(Ty.isVector() && "Expecting a vector type"); 3278 const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg()); 3279 return isBuildVectorAllZeros(*VecMI, MRI); 3280 } 3281 3282 bool CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3283 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 3284 Builder.setInstrAndDebugLoc(MI); 3285 Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2)); 3286 MI.eraseFromParent(); 3287 return true; 3288 } 3289 3290 /// The second source operand is known to be a power of 2. 3291 bool CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3292 Register DstReg = MI.getOperand(0).getReg(); 3293 Register Src0 = MI.getOperand(1).getReg(); 3294 Register Pow2Src1 = MI.getOperand(2).getReg(); 3295 LLT Ty = MRI.getType(DstReg); 3296 Builder.setInstrAndDebugLoc(MI); 3297 3298 // Fold (urem x, pow2) -> (and x, pow2-1) 3299 auto NegOne = Builder.buildConstant(Ty, -1); 3300 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3301 Builder.buildAnd(DstReg, Src0, Add); 3302 MI.eraseFromParent(); 3303 return true; 3304 } 3305 3306 Optional<SmallVector<Register, 8>> 3307 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3308 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3309 // We want to detect if Root is part of a tree which represents a bunch 3310 // of loads being merged into a larger load. We'll try to recognize patterns 3311 // like, for example: 3312 // 3313 // Reg Reg 3314 // \ / 3315 // OR_1 Reg 3316 // \ / 3317 // OR_2 3318 // \ Reg 3319 // .. / 3320 // Root 3321 // 3322 // Reg Reg Reg Reg 3323 // \ / \ / 3324 // OR_1 OR_2 3325 // \ / 3326 // \ / 3327 // ... 3328 // Root 3329 // 3330 // Each "Reg" may have been produced by a load + some arithmetic. This 3331 // function will save each of them. 3332 SmallVector<Register, 8> RegsToVisit; 3333 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3334 3335 // In the "worst" case, we're dealing with a load for each byte. So, there 3336 // are at most #bytes - 1 ORs. 3337 const unsigned MaxIter = 3338 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3339 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3340 if (Ors.empty()) 3341 break; 3342 const MachineInstr *Curr = Ors.pop_back_val(); 3343 Register OrLHS = Curr->getOperand(1).getReg(); 3344 Register OrRHS = Curr->getOperand(2).getReg(); 3345 3346 // In the combine, we want to elimate the entire tree. 3347 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3348 return None; 3349 3350 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3351 // something that may be a load + arithmetic. 3352 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3353 Ors.push_back(Or); 3354 else 3355 RegsToVisit.push_back(OrLHS); 3356 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3357 Ors.push_back(Or); 3358 else 3359 RegsToVisit.push_back(OrRHS); 3360 } 3361 3362 // We're going to try and merge each register into a wider power-of-2 type, 3363 // so we ought to have an even number of registers. 3364 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3365 return None; 3366 return RegsToVisit; 3367 } 3368 3369 /// Helper function for findLoadOffsetsForLoadOrCombine. 3370 /// 3371 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3372 /// and then moving that value into a specific byte offset. 3373 /// 3374 /// e.g. x[i] << 24 3375 /// 3376 /// \returns The load instruction and the byte offset it is moved into. 3377 static Optional<std::pair<MachineInstr *, int64_t>> 3378 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3379 const MachineRegisterInfo &MRI) { 3380 assert(MRI.hasOneNonDBGUse(Reg) && 3381 "Expected Reg to only have one non-debug use?"); 3382 Register MaybeLoad; 3383 int64_t Shift; 3384 if (!mi_match(Reg, MRI, 3385 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3386 Shift = 0; 3387 MaybeLoad = Reg; 3388 } 3389 3390 if (Shift % MemSizeInBits != 0) 3391 return None; 3392 3393 // TODO: Handle other types of loads. 3394 auto *Load = getOpcodeDef(TargetOpcode::G_ZEXTLOAD, MaybeLoad, MRI); 3395 if (!Load) 3396 return None; 3397 3398 const auto &MMO = **Load->memoperands_begin(); 3399 if (!MMO.isUnordered() || MMO.getSizeInBits() != MemSizeInBits) 3400 return None; 3401 3402 return std::make_pair(Load, Shift / MemSizeInBits); 3403 } 3404 3405 Optional<std::pair<MachineInstr *, int64_t>> 3406 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3407 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3408 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3409 3410 // Each load found for the pattern. There should be one for each RegsToVisit. 3411 SmallSetVector<const MachineInstr *, 8> Loads; 3412 3413 // The lowest index used in any load. (The lowest "i" for each x[i].) 3414 int64_t LowestIdx = INT64_MAX; 3415 3416 // The load which uses the lowest index. 3417 MachineInstr *LowestIdxLoad = nullptr; 3418 3419 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3420 SmallSet<int64_t, 8> SeenIdx; 3421 3422 // Ensure each load is in the same MBB. 3423 // TODO: Support multiple MachineBasicBlocks. 3424 MachineBasicBlock *MBB = nullptr; 3425 const MachineMemOperand *MMO = nullptr; 3426 3427 // Earliest instruction-order load in the pattern. 3428 MachineInstr *EarliestLoad = nullptr; 3429 3430 // Latest instruction-order load in the pattern. 3431 MachineInstr *LatestLoad = nullptr; 3432 3433 // Base pointer which every load should share. 3434 Register BasePtr; 3435 3436 // We want to find a load for each register. Each load should have some 3437 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3438 // track of the load which uses the lowest index. Later, we will check if we 3439 // can use its pointer in the final, combined load. 3440 for (auto Reg : RegsToVisit) { 3441 // Find the load, and find the position that it will end up in (e.g. a 3442 // shifted) value. 3443 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3444 if (!LoadAndPos) 3445 return None; 3446 MachineInstr *Load; 3447 int64_t DstPos; 3448 std::tie(Load, DstPos) = *LoadAndPos; 3449 3450 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3451 // it is difficult to check for stores/calls/etc between loads. 3452 MachineBasicBlock *LoadMBB = Load->getParent(); 3453 if (!MBB) 3454 MBB = LoadMBB; 3455 if (LoadMBB != MBB) 3456 return None; 3457 3458 // Make sure that the MachineMemOperands of every seen load are compatible. 3459 const MachineMemOperand *LoadMMO = *Load->memoperands_begin(); 3460 if (!MMO) 3461 MMO = LoadMMO; 3462 if (MMO->getAddrSpace() != LoadMMO->getAddrSpace()) 3463 return None; 3464 3465 // Find out what the base pointer and index for the load is. 3466 Register LoadPtr; 3467 int64_t Idx; 3468 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3469 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3470 LoadPtr = Load->getOperand(1).getReg(); 3471 Idx = 0; 3472 } 3473 3474 // Don't combine things like a[i], a[i] -> a bigger load. 3475 if (!SeenIdx.insert(Idx).second) 3476 return None; 3477 3478 // Every load must share the same base pointer; don't combine things like: 3479 // 3480 // a[i], b[i + 1] -> a bigger load. 3481 if (!BasePtr.isValid()) 3482 BasePtr = LoadPtr; 3483 if (BasePtr != LoadPtr) 3484 return None; 3485 3486 if (Idx < LowestIdx) { 3487 LowestIdx = Idx; 3488 LowestIdxLoad = Load; 3489 } 3490 3491 // Keep track of the byte offset that this load ends up at. If we have seen 3492 // the byte offset, then stop here. We do not want to combine: 3493 // 3494 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3495 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3496 return None; 3497 Loads.insert(Load); 3498 3499 // Keep track of the position of the earliest/latest loads in the pattern. 3500 // We will check that there are no load fold barriers between them later 3501 // on. 3502 // 3503 // FIXME: Is there a better way to check for load fold barriers? 3504 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3505 EarliestLoad = Load; 3506 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3507 LatestLoad = Load; 3508 } 3509 3510 // We found a load for each register. Let's check if each load satisfies the 3511 // pattern. 3512 assert(Loads.size() == RegsToVisit.size() && 3513 "Expected to find a load for each register?"); 3514 assert(EarliestLoad != LatestLoad && EarliestLoad && 3515 LatestLoad && "Expected at least two loads?"); 3516 3517 // Check if there are any stores, calls, etc. between any of the loads. If 3518 // there are, then we can't safely perform the combine. 3519 // 3520 // MaxIter is chosen based off the (worst case) number of iterations it 3521 // typically takes to succeed in the LLVM test suite plus some padding. 3522 // 3523 // FIXME: Is there a better way to check for load fold barriers? 3524 const unsigned MaxIter = 20; 3525 unsigned Iter = 0; 3526 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3527 LatestLoad->getIterator())) { 3528 if (Loads.count(&MI)) 3529 continue; 3530 if (MI.isLoadFoldBarrier()) 3531 return None; 3532 if (Iter++ == MaxIter) 3533 return None; 3534 } 3535 3536 return std::make_pair(LowestIdxLoad, LowestIdx); 3537 } 3538 3539 bool CombinerHelper::matchLoadOrCombine( 3540 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3541 assert(MI.getOpcode() == TargetOpcode::G_OR); 3542 MachineFunction &MF = *MI.getMF(); 3543 // Assuming a little-endian target, transform: 3544 // s8 *a = ... 3545 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3546 // => 3547 // s32 val = *((i32)a) 3548 // 3549 // s8 *a = ... 3550 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3551 // => 3552 // s32 val = BSWAP(*((s32)a)) 3553 Register Dst = MI.getOperand(0).getReg(); 3554 LLT Ty = MRI.getType(Dst); 3555 if (Ty.isVector()) 3556 return false; 3557 3558 // We need to combine at least two loads into this type. Since the smallest 3559 // possible load is into a byte, we need at least a 16-bit wide type. 3560 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3561 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3562 return false; 3563 3564 // Match a collection of non-OR instructions in the pattern. 3565 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3566 if (!RegsToVisit) 3567 return false; 3568 3569 // We have a collection of non-OR instructions. Figure out how wide each of 3570 // the small loads should be based off of the number of potential loads we 3571 // found. 3572 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3573 if (NarrowMemSizeInBits % 8 != 0) 3574 return false; 3575 3576 // Check if each register feeding into each OR is a load from the same 3577 // base pointer + some arithmetic. 3578 // 3579 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3580 // 3581 // Also verify that each of these ends up putting a[i] into the same memory 3582 // offset as a load into a wide type would. 3583 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3584 MachineInstr *LowestIdxLoad; 3585 int64_t LowestIdx; 3586 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3587 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3588 if (!MaybeLoadInfo) 3589 return false; 3590 std::tie(LowestIdxLoad, LowestIdx) = *MaybeLoadInfo; 3591 3592 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3593 // we found before, check if this corresponds to a big or little endian byte 3594 // pattern. If it does, then we can represent it using a load + possibly a 3595 // BSWAP. 3596 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3597 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3598 if (!IsBigEndian.hasValue()) 3599 return false; 3600 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3601 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3602 return false; 3603 3604 // Make sure that the load from the lowest index produces offset 0 in the 3605 // final value. 3606 // 3607 // This ensures that we won't combine something like this: 3608 // 3609 // load x[i] -> byte 2 3610 // load x[i+1] -> byte 0 ---> wide_load x[i] 3611 // load x[i+2] -> byte 1 3612 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3613 const unsigned ZeroByteOffset = 3614 *IsBigEndian 3615 ? bigEndianByteAt(NumLoadsInTy, 0) 3616 : littleEndianByteAt(NumLoadsInTy, 0); 3617 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3618 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3619 ZeroOffsetIdx->second != LowestIdx) 3620 return false; 3621 3622 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3623 // may not use index 0. 3624 Register Ptr = LowestIdxLoad->getOperand(1).getReg(); 3625 const MachineMemOperand &MMO = **LowestIdxLoad->memoperands_begin(); 3626 LegalityQuery::MemDesc MMDesc; 3627 MMDesc.SizeInBits = WideMemSizeInBits; 3628 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 3629 MMDesc.Ordering = MMO.getOrdering(); 3630 if (!isLegalOrBeforeLegalizer( 3631 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3632 return false; 3633 auto PtrInfo = MMO.getPointerInfo(); 3634 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3635 3636 // Load must be allowed and fast on the target. 3637 LLVMContext &C = MF.getFunction().getContext(); 3638 auto &DL = MF.getDataLayout(); 3639 bool Fast = false; 3640 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3641 !Fast) 3642 return false; 3643 3644 MatchInfo = [=](MachineIRBuilder &MIB) { 3645 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3646 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3647 if (NeedsBSwap) 3648 MIB.buildBSwap(Dst, LoadDst); 3649 }; 3650 return true; 3651 } 3652 3653 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3654 MachineInstr *&ExtMI) { 3655 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3656 3657 Register DstReg = MI.getOperand(0).getReg(); 3658 3659 // TODO: Extending a vector may be expensive, don't do this until heuristics 3660 // are better. 3661 if (MRI.getType(DstReg).isVector()) 3662 return false; 3663 3664 // Try to match a phi, whose only use is an extend. 3665 if (!MRI.hasOneNonDBGUse(DstReg)) 3666 return false; 3667 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3668 switch (ExtMI->getOpcode()) { 3669 case TargetOpcode::G_ANYEXT: 3670 return true; // G_ANYEXT is usually free. 3671 case TargetOpcode::G_ZEXT: 3672 case TargetOpcode::G_SEXT: 3673 break; 3674 default: 3675 return false; 3676 } 3677 3678 // If the target is likely to fold this extend away, don't propagate. 3679 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3680 return false; 3681 3682 // We don't want to propagate the extends unless there's a good chance that 3683 // they'll be optimized in some way. 3684 // Collect the unique incoming values. 3685 SmallPtrSet<MachineInstr *, 4> InSrcs; 3686 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3687 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3688 switch (DefMI->getOpcode()) { 3689 case TargetOpcode::G_LOAD: 3690 case TargetOpcode::G_TRUNC: 3691 case TargetOpcode::G_SEXT: 3692 case TargetOpcode::G_ZEXT: 3693 case TargetOpcode::G_ANYEXT: 3694 case TargetOpcode::G_CONSTANT: 3695 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3696 // Don't try to propagate if there are too many places to create new 3697 // extends, chances are it'll increase code size. 3698 if (InSrcs.size() > 2) 3699 return false; 3700 break; 3701 default: 3702 return false; 3703 } 3704 } 3705 return true; 3706 } 3707 3708 bool CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3709 MachineInstr *&ExtMI) { 3710 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3711 Register DstReg = ExtMI->getOperand(0).getReg(); 3712 LLT ExtTy = MRI.getType(DstReg); 3713 3714 // Propagate the extension into the block of each incoming reg's block. 3715 // Use a SetVector here because PHIs can have duplicate edges, and we want 3716 // deterministic iteration order. 3717 SmallSetVector<MachineInstr *, 8> SrcMIs; 3718 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3719 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3720 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3721 if (!SrcMIs.insert(SrcMI)) 3722 continue; 3723 3724 // Build an extend after each src inst. 3725 auto *MBB = SrcMI->getParent(); 3726 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3727 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3728 InsertPt = MBB->getFirstNonPHI(); 3729 3730 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3731 Builder.setDebugLoc(MI.getDebugLoc()); 3732 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3733 SrcMI->getOperand(0).getReg()); 3734 OldToNewSrcMap[SrcMI] = NewExt; 3735 } 3736 3737 // Create a new phi with the extended inputs. 3738 Builder.setInstrAndDebugLoc(MI); 3739 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3740 NewPhi.addDef(DstReg); 3741 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3742 auto &MO = MI.getOperand(SrcIdx); 3743 if (!MO.isReg()) { 3744 NewPhi.addMBB(MO.getMBB()); 3745 continue; 3746 } 3747 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3748 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3749 } 3750 Builder.insertInstr(NewPhi); 3751 ExtMI->eraseFromParent(); 3752 return true; 3753 } 3754 3755 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3756 Register &Reg) { 3757 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3758 // If we have a constant index, look for a G_BUILD_VECTOR source 3759 // and find the source register that the index maps to. 3760 Register SrcVec = MI.getOperand(1).getReg(); 3761 LLT SrcTy = MRI.getType(SrcVec); 3762 if (!isLegalOrBeforeLegalizer( 3763 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3764 return false; 3765 3766 auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3767 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3768 return false; 3769 3770 unsigned VecIdx = Cst->Value.getZExtValue(); 3771 MachineInstr *BuildVecMI = 3772 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3773 if (!BuildVecMI) { 3774 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3775 if (!BuildVecMI) 3776 return false; 3777 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3778 if (!isLegalOrBeforeLegalizer( 3779 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3780 return false; 3781 } 3782 3783 EVT Ty(getMVTForLLT(SrcTy)); 3784 if (!MRI.hasOneNonDBGUse(SrcVec) && 3785 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3786 return false; 3787 3788 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3789 return true; 3790 } 3791 3792 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3793 Register &Reg) { 3794 // Check the type of the register, since it may have come from a 3795 // G_BUILD_VECTOR_TRUNC. 3796 LLT ScalarTy = MRI.getType(Reg); 3797 Register DstReg = MI.getOperand(0).getReg(); 3798 LLT DstTy = MRI.getType(DstReg); 3799 3800 Builder.setInstrAndDebugLoc(MI); 3801 if (ScalarTy != DstTy) { 3802 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3803 Builder.buildTrunc(DstReg, Reg); 3804 MI.eraseFromParent(); 3805 return; 3806 } 3807 replaceSingleDefInstWithReg(MI, Reg); 3808 } 3809 3810 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3811 MachineInstr &MI, 3812 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3813 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3814 // This combine tries to find build_vector's which have every source element 3815 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3816 // the masked load scalarization is run late in the pipeline. There's already 3817 // a combine for a similar pattern starting from the extract, but that 3818 // doesn't attempt to do it if there are multiple uses of the build_vector, 3819 // which in this case is true. Starting the combine from the build_vector 3820 // feels more natural than trying to find sibling nodes of extracts. 3821 // E.g. 3822 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3823 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3824 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3825 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3826 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3827 // ==> 3828 // replace ext{1,2,3,4} with %s{1,2,3,4} 3829 3830 Register DstReg = MI.getOperand(0).getReg(); 3831 LLT DstTy = MRI.getType(DstReg); 3832 unsigned NumElts = DstTy.getNumElements(); 3833 3834 SmallBitVector ExtractedElts(NumElts); 3835 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), 3836 MRI.use_instr_nodbg_end())) { 3837 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3838 return false; 3839 auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI); 3840 if (!Cst) 3841 return false; 3842 unsigned Idx = Cst.getValue().getZExtValue(); 3843 if (Idx >= NumElts) 3844 return false; // Out of range. 3845 ExtractedElts.set(Idx); 3846 SrcDstPairs.emplace_back( 3847 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3848 } 3849 // Match if every element was extracted. 3850 return ExtractedElts.all(); 3851 } 3852 3853 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3854 MachineInstr &MI, 3855 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3856 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3857 for (auto &Pair : SrcDstPairs) { 3858 auto *ExtMI = Pair.second; 3859 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3860 ExtMI->eraseFromParent(); 3861 } 3862 MI.eraseFromParent(); 3863 } 3864 3865 bool CombinerHelper::applyBuildFn( 3866 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3867 Builder.setInstrAndDebugLoc(MI); 3868 MatchInfo(Builder); 3869 MI.eraseFromParent(); 3870 return true; 3871 } 3872 3873 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3874 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3875 unsigned Opc = MI.getOpcode(); 3876 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3877 Register X = MI.getOperand(1).getReg(); 3878 Register Y = MI.getOperand(2).getReg(); 3879 if (X != Y) 3880 return false; 3881 unsigned RotateOpc = 3882 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3883 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3884 } 3885 3886 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3887 unsigned Opc = MI.getOpcode(); 3888 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3889 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3890 Observer.changingInstr(MI); 3891 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3892 : TargetOpcode::G_ROTR)); 3893 MI.RemoveOperand(2); 3894 Observer.changedInstr(MI); 3895 } 3896 3897 bool CombinerHelper::tryCombine(MachineInstr &MI) { 3898 if (tryCombineCopy(MI)) 3899 return true; 3900 if (tryCombineExtendingLoads(MI)) 3901 return true; 3902 if (tryCombineIndexedLoadStore(MI)) 3903 return true; 3904 return false; 3905 } 3906