1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/CodeGen/GlobalISel/Combiner.h" 10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 12 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 13 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 14 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 15 #include "llvm/CodeGen/GlobalISel/Utils.h" 16 #include "llvm/CodeGen/MachineDominators.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineInstr.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetInstrInfo.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/Support/MathExtras.h" 23 #include "llvm/Target/TargetMachine.h" 24 25 #define DEBUG_TYPE "gi-combiner" 26 27 using namespace llvm; 28 using namespace MIPatternMatch; 29 30 // Option to allow testing of the combiner while no targets know about indexed 31 // addressing. 32 static cl::opt<bool> 33 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 34 cl::desc("Force all indexed operations to be " 35 "legal for the GlobalISel combiner")); 36 37 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 38 MachineIRBuilder &B, GISelKnownBits *KB, 39 MachineDominatorTree *MDT, 40 const LegalizerInfo *LI) 41 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 42 KB(KB), MDT(MDT), LI(LI) { 43 (void)this->KB; 44 } 45 46 bool CombinerHelper::isLegalOrBeforeLegalizer( 47 const LegalityQuery &Query) const { 48 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 49 } 50 51 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 52 Register ToReg) const { 53 Observer.changingAllUsesOfReg(MRI, FromReg); 54 55 if (MRI.constrainRegAttrs(ToReg, FromReg)) 56 MRI.replaceRegWith(FromReg, ToReg); 57 else 58 Builder.buildCopy(ToReg, FromReg); 59 60 Observer.finishedChangingAllUsesOfReg(); 61 } 62 63 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 64 MachineOperand &FromRegOp, 65 Register ToReg) const { 66 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 67 Observer.changingInstr(*FromRegOp.getParent()); 68 69 FromRegOp.setReg(ToReg); 70 71 Observer.changedInstr(*FromRegOp.getParent()); 72 } 73 74 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 75 if (matchCombineCopy(MI)) { 76 applyCombineCopy(MI); 77 return true; 78 } 79 return false; 80 } 81 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 82 if (MI.getOpcode() != TargetOpcode::COPY) 83 return false; 84 Register DstReg = MI.getOperand(0).getReg(); 85 Register SrcReg = MI.getOperand(1).getReg(); 86 return canReplaceReg(DstReg, SrcReg, MRI); 87 } 88 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 89 Register DstReg = MI.getOperand(0).getReg(); 90 Register SrcReg = MI.getOperand(1).getReg(); 91 MI.eraseFromParent(); 92 replaceRegWith(MRI, DstReg, SrcReg); 93 } 94 95 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 96 bool IsUndef = false; 97 SmallVector<Register, 4> Ops; 98 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 99 applyCombineConcatVectors(MI, IsUndef, Ops); 100 return true; 101 } 102 return false; 103 } 104 105 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 106 SmallVectorImpl<Register> &Ops) { 107 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 108 "Invalid instruction"); 109 IsUndef = true; 110 MachineInstr *Undef = nullptr; 111 112 // Walk over all the operands of concat vectors and check if they are 113 // build_vector themselves or undef. 114 // Then collect their operands in Ops. 115 for (const MachineOperand &MO : MI.uses()) { 116 Register Reg = MO.getReg(); 117 MachineInstr *Def = MRI.getVRegDef(Reg); 118 assert(Def && "Operand not defined"); 119 switch (Def->getOpcode()) { 120 case TargetOpcode::G_BUILD_VECTOR: 121 IsUndef = false; 122 // Remember the operands of the build_vector to fold 123 // them into the yet-to-build flattened concat vectors. 124 for (const MachineOperand &BuildVecMO : Def->uses()) 125 Ops.push_back(BuildVecMO.getReg()); 126 break; 127 case TargetOpcode::G_IMPLICIT_DEF: { 128 LLT OpType = MRI.getType(Reg); 129 // Keep one undef value for all the undef operands. 130 if (!Undef) { 131 Builder.setInsertPt(*MI.getParent(), MI); 132 Undef = Builder.buildUndef(OpType.getScalarType()); 133 } 134 assert(MRI.getType(Undef->getOperand(0).getReg()) == 135 OpType.getScalarType() && 136 "All undefs should have the same type"); 137 // Break the undef vector in as many scalar elements as needed 138 // for the flattening. 139 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 140 EltIdx != EltEnd; ++EltIdx) 141 Ops.push_back(Undef->getOperand(0).getReg()); 142 break; 143 } 144 default: 145 return false; 146 } 147 } 148 return true; 149 } 150 void CombinerHelper::applyCombineConcatVectors( 151 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 152 // We determined that the concat_vectors can be flatten. 153 // Generate the flattened build_vector. 154 Register DstReg = MI.getOperand(0).getReg(); 155 Builder.setInsertPt(*MI.getParent(), MI); 156 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 157 158 // Note: IsUndef is sort of redundant. We could have determine it by 159 // checking that at all Ops are undef. Alternatively, we could have 160 // generate a build_vector of undefs and rely on another combine to 161 // clean that up. For now, given we already gather this information 162 // in tryCombineConcatVectors, just save compile time and issue the 163 // right thing. 164 if (IsUndef) 165 Builder.buildUndef(NewDstReg); 166 else 167 Builder.buildBuildVector(NewDstReg, Ops); 168 MI.eraseFromParent(); 169 replaceRegWith(MRI, DstReg, NewDstReg); 170 } 171 172 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 173 SmallVector<Register, 4> Ops; 174 if (matchCombineShuffleVector(MI, Ops)) { 175 applyCombineShuffleVector(MI, Ops); 176 return true; 177 } 178 return false; 179 } 180 181 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 182 SmallVectorImpl<Register> &Ops) { 183 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 184 "Invalid instruction kind"); 185 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 186 Register Src1 = MI.getOperand(1).getReg(); 187 LLT SrcType = MRI.getType(Src1); 188 // As bizarre as it may look, shuffle vector can actually produce 189 // scalar! This is because at the IR level a <1 x ty> shuffle 190 // vector is perfectly valid. 191 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 192 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 193 194 // If the resulting vector is smaller than the size of the source 195 // vectors being concatenated, we won't be able to replace the 196 // shuffle vector into a concat_vectors. 197 // 198 // Note: We may still be able to produce a concat_vectors fed by 199 // extract_vector_elt and so on. It is less clear that would 200 // be better though, so don't bother for now. 201 // 202 // If the destination is a scalar, the size of the sources doesn't 203 // matter. we will lower the shuffle to a plain copy. This will 204 // work only if the source and destination have the same size. But 205 // that's covered by the next condition. 206 // 207 // TODO: If the size between the source and destination don't match 208 // we could still emit an extract vector element in that case. 209 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 210 return false; 211 212 // Check that the shuffle mask can be broken evenly between the 213 // different sources. 214 if (DstNumElts % SrcNumElts != 0) 215 return false; 216 217 // Mask length is a multiple of the source vector length. 218 // Check if the shuffle is some kind of concatenation of the input 219 // vectors. 220 unsigned NumConcat = DstNumElts / SrcNumElts; 221 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 222 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 223 for (unsigned i = 0; i != DstNumElts; ++i) { 224 int Idx = Mask[i]; 225 // Undef value. 226 if (Idx < 0) 227 continue; 228 // Ensure the indices in each SrcType sized piece are sequential and that 229 // the same source is used for the whole piece. 230 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 231 (ConcatSrcs[i / SrcNumElts] >= 0 && 232 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 233 return false; 234 // Remember which source this index came from. 235 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 236 } 237 238 // The shuffle is concatenating multiple vectors together. 239 // Collect the different operands for that. 240 Register UndefReg; 241 Register Src2 = MI.getOperand(2).getReg(); 242 for (auto Src : ConcatSrcs) { 243 if (Src < 0) { 244 if (!UndefReg) { 245 Builder.setInsertPt(*MI.getParent(), MI); 246 UndefReg = Builder.buildUndef(SrcType).getReg(0); 247 } 248 Ops.push_back(UndefReg); 249 } else if (Src == 0) 250 Ops.push_back(Src1); 251 else 252 Ops.push_back(Src2); 253 } 254 return true; 255 } 256 257 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 258 const ArrayRef<Register> Ops) { 259 Register DstReg = MI.getOperand(0).getReg(); 260 Builder.setInsertPt(*MI.getParent(), MI); 261 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 262 263 if (Ops.size() == 1) 264 Builder.buildCopy(NewDstReg, Ops[0]); 265 else 266 Builder.buildMerge(NewDstReg, Ops); 267 268 MI.eraseFromParent(); 269 replaceRegWith(MRI, DstReg, NewDstReg); 270 } 271 272 namespace { 273 274 /// Select a preference between two uses. CurrentUse is the current preference 275 /// while *ForCandidate is attributes of the candidate under consideration. 276 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 277 const LLT TyForCandidate, 278 unsigned OpcodeForCandidate, 279 MachineInstr *MIForCandidate) { 280 if (!CurrentUse.Ty.isValid()) { 281 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 282 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 283 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 284 return CurrentUse; 285 } 286 287 // We permit the extend to hoist through basic blocks but this is only 288 // sensible if the target has extending loads. If you end up lowering back 289 // into a load and extend during the legalizer then the end result is 290 // hoisting the extend up to the load. 291 292 // Prefer defined extensions to undefined extensions as these are more 293 // likely to reduce the number of instructions. 294 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 295 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 296 return CurrentUse; 297 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 298 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 299 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 300 301 // Prefer sign extensions to zero extensions as sign-extensions tend to be 302 // more expensive. 303 if (CurrentUse.Ty == TyForCandidate) { 304 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 305 OpcodeForCandidate == TargetOpcode::G_ZEXT) 306 return CurrentUse; 307 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 308 OpcodeForCandidate == TargetOpcode::G_SEXT) 309 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 310 } 311 312 // This is potentially target specific. We've chosen the largest type 313 // because G_TRUNC is usually free. One potential catch with this is that 314 // some targets have a reduced number of larger registers than smaller 315 // registers and this choice potentially increases the live-range for the 316 // larger value. 317 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 318 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 319 } 320 return CurrentUse; 321 } 322 323 /// Find a suitable place to insert some instructions and insert them. This 324 /// function accounts for special cases like inserting before a PHI node. 325 /// The current strategy for inserting before PHI's is to duplicate the 326 /// instructions for each predecessor. However, while that's ok for G_TRUNC 327 /// on most targets since it generally requires no code, other targets/cases may 328 /// want to try harder to find a dominating block. 329 static void InsertInsnsWithoutSideEffectsBeforeUse( 330 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 331 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 332 MachineOperand &UseMO)> 333 Inserter) { 334 MachineInstr &UseMI = *UseMO.getParent(); 335 336 MachineBasicBlock *InsertBB = UseMI.getParent(); 337 338 // If the use is a PHI then we want the predecessor block instead. 339 if (UseMI.isPHI()) { 340 MachineOperand *PredBB = std::next(&UseMO); 341 InsertBB = PredBB->getMBB(); 342 } 343 344 // If the block is the same block as the def then we want to insert just after 345 // the def instead of at the start of the block. 346 if (InsertBB == DefMI.getParent()) { 347 MachineBasicBlock::iterator InsertPt = &DefMI; 348 Inserter(InsertBB, std::next(InsertPt), UseMO); 349 return; 350 } 351 352 // Otherwise we want the start of the BB 353 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 354 } 355 } // end anonymous namespace 356 357 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 358 PreferredTuple Preferred; 359 if (matchCombineExtendingLoads(MI, Preferred)) { 360 applyCombineExtendingLoads(MI, Preferred); 361 return true; 362 } 363 return false; 364 } 365 366 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 367 PreferredTuple &Preferred) { 368 // We match the loads and follow the uses to the extend instead of matching 369 // the extends and following the def to the load. This is because the load 370 // must remain in the same position for correctness (unless we also add code 371 // to find a safe place to sink it) whereas the extend is freely movable. 372 // It also prevents us from duplicating the load for the volatile case or just 373 // for performance. 374 375 if (MI.getOpcode() != TargetOpcode::G_LOAD && 376 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 377 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 378 return false; 379 380 auto &LoadValue = MI.getOperand(0); 381 assert(LoadValue.isReg() && "Result wasn't a register?"); 382 383 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 384 if (!LoadValueTy.isScalar()) 385 return false; 386 387 // Most architectures are going to legalize <s8 loads into at least a 1 byte 388 // load, and the MMOs can only describe memory accesses in multiples of bytes. 389 // If we try to perform extload combining on those, we can end up with 390 // %a(s8) = extload %ptr (load 1 byte from %ptr) 391 // ... which is an illegal extload instruction. 392 if (LoadValueTy.getSizeInBits() < 8) 393 return false; 394 395 // For non power-of-2 types, they will very likely be legalized into multiple 396 // loads. Don't bother trying to match them into extending loads. 397 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 398 return false; 399 400 // Find the preferred type aside from the any-extends (unless it's the only 401 // one) and non-extending ops. We'll emit an extending load to that type and 402 // and emit a variant of (extend (trunc X)) for the others according to the 403 // relative type sizes. At the same time, pick an extend to use based on the 404 // extend involved in the chosen type. 405 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 406 ? TargetOpcode::G_ANYEXT 407 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 408 ? TargetOpcode::G_SEXT 409 : TargetOpcode::G_ZEXT; 410 Preferred = {LLT(), PreferredOpcode, nullptr}; 411 for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) { 412 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 413 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 414 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 415 // Check for legality. 416 if (LI) { 417 LegalityQuery::MemDesc MMDesc; 418 const auto &MMO = **MI.memoperands_begin(); 419 MMDesc.SizeInBits = MMO.getSizeInBits(); 420 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 421 MMDesc.Ordering = MMO.getOrdering(); 422 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 423 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 424 if (LI->getAction({MI.getOpcode(), {UseTy, SrcTy}, {MMDesc}}).Action != 425 LegalizeActions::Legal) 426 continue; 427 } 428 Preferred = ChoosePreferredUse(Preferred, 429 MRI.getType(UseMI.getOperand(0).getReg()), 430 UseMI.getOpcode(), &UseMI); 431 } 432 } 433 434 // There were no extends 435 if (!Preferred.MI) 436 return false; 437 // It should be impossible to chose an extend without selecting a different 438 // type since by definition the result of an extend is larger. 439 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 440 441 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 442 return true; 443 } 444 445 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 446 PreferredTuple &Preferred) { 447 // Rewrite the load to the chosen extending load. 448 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 449 450 // Inserter to insert a truncate back to the original type at a given point 451 // with some basic CSE to limit truncate duplication to one per BB. 452 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 453 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 454 MachineBasicBlock::iterator InsertBefore, 455 MachineOperand &UseMO) { 456 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 457 if (PreviouslyEmitted) { 458 Observer.changingInstr(*UseMO.getParent()); 459 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 460 Observer.changedInstr(*UseMO.getParent()); 461 return; 462 } 463 464 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 465 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 466 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 467 EmittedInsns[InsertIntoBB] = NewMI; 468 replaceRegOpWith(MRI, UseMO, NewDstReg); 469 }; 470 471 Observer.changingInstr(MI); 472 MI.setDesc( 473 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 474 ? TargetOpcode::G_SEXTLOAD 475 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 476 ? TargetOpcode::G_ZEXTLOAD 477 : TargetOpcode::G_LOAD)); 478 479 // Rewrite all the uses to fix up the types. 480 auto &LoadValue = MI.getOperand(0); 481 SmallVector<MachineOperand *, 4> Uses; 482 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 483 Uses.push_back(&UseMO); 484 485 for (auto *UseMO : Uses) { 486 MachineInstr *UseMI = UseMO->getParent(); 487 488 // If the extend is compatible with the preferred extend then we should fix 489 // up the type and extend so that it uses the preferred use. 490 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 491 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 492 Register UseDstReg = UseMI->getOperand(0).getReg(); 493 MachineOperand &UseSrcMO = UseMI->getOperand(1); 494 const LLT UseDstTy = MRI.getType(UseDstReg); 495 if (UseDstReg != ChosenDstReg) { 496 if (Preferred.Ty == UseDstTy) { 497 // If the use has the same type as the preferred use, then merge 498 // the vregs and erase the extend. For example: 499 // %1:_(s8) = G_LOAD ... 500 // %2:_(s32) = G_SEXT %1(s8) 501 // %3:_(s32) = G_ANYEXT %1(s8) 502 // ... = ... %3(s32) 503 // rewrites to: 504 // %2:_(s32) = G_SEXTLOAD ... 505 // ... = ... %2(s32) 506 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 507 Observer.erasingInstr(*UseMO->getParent()); 508 UseMO->getParent()->eraseFromParent(); 509 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 510 // If the preferred size is smaller, then keep the extend but extend 511 // from the result of the extending load. For example: 512 // %1:_(s8) = G_LOAD ... 513 // %2:_(s32) = G_SEXT %1(s8) 514 // %3:_(s64) = G_ANYEXT %1(s8) 515 // ... = ... %3(s64) 516 /// rewrites to: 517 // %2:_(s32) = G_SEXTLOAD ... 518 // %3:_(s64) = G_ANYEXT %2:_(s32) 519 // ... = ... %3(s64) 520 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 521 } else { 522 // If the preferred size is large, then insert a truncate. For 523 // example: 524 // %1:_(s8) = G_LOAD ... 525 // %2:_(s64) = G_SEXT %1(s8) 526 // %3:_(s32) = G_ZEXT %1(s8) 527 // ... = ... %3(s32) 528 /// rewrites to: 529 // %2:_(s64) = G_SEXTLOAD ... 530 // %4:_(s8) = G_TRUNC %2:_(s32) 531 // %3:_(s64) = G_ZEXT %2:_(s8) 532 // ... = ... %3(s64) 533 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 534 InsertTruncAt); 535 } 536 continue; 537 } 538 // The use is (one of) the uses of the preferred use we chose earlier. 539 // We're going to update the load to def this value later so just erase 540 // the old extend. 541 Observer.erasingInstr(*UseMO->getParent()); 542 UseMO->getParent()->eraseFromParent(); 543 continue; 544 } 545 546 // The use isn't an extend. Truncate back to the type we originally loaded. 547 // This is free on many targets. 548 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 549 } 550 551 MI.getOperand(0).setReg(ChosenDstReg); 552 Observer.changedInstr(MI); 553 } 554 555 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 556 const MachineInstr &UseMI) { 557 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 558 "shouldn't consider debug uses"); 559 assert(DefMI.getParent() == UseMI.getParent()); 560 if (&DefMI == &UseMI) 561 return false; 562 563 // Loop through the basic block until we find one of the instructions. 564 MachineBasicBlock::const_iterator I = DefMI.getParent()->begin(); 565 for (; &*I != &DefMI && &*I != &UseMI; ++I) 566 return &*I == &DefMI; 567 568 llvm_unreachable("Block must contain instructions"); 569 } 570 571 bool CombinerHelper::dominates(const MachineInstr &DefMI, 572 const MachineInstr &UseMI) { 573 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 574 "shouldn't consider debug uses"); 575 if (MDT) 576 return MDT->dominates(&DefMI, &UseMI); 577 else if (DefMI.getParent() != UseMI.getParent()) 578 return false; 579 580 return isPredecessor(DefMI, UseMI); 581 } 582 583 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 584 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 585 Register SrcReg = MI.getOperand(1).getReg(); 586 Register LoadUser = SrcReg; 587 588 if (MRI.getType(SrcReg).isVector()) 589 return false; 590 591 Register TruncSrc; 592 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 593 LoadUser = TruncSrc; 594 595 uint64_t SizeInBits = MI.getOperand(2).getImm(); 596 // If the source is a G_SEXTLOAD from the same bit width, then we don't 597 // need any extend at all, just a truncate. 598 if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) { 599 const auto &MMO = **LoadMI->memoperands_begin(); 600 // If truncating more than the original extended value, abort. 601 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits()) 602 return false; 603 if (MMO.getSizeInBits() == SizeInBits) 604 return true; 605 } 606 return false; 607 } 608 609 bool CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 610 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 611 Builder.setInstrAndDebugLoc(MI); 612 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 613 MI.eraseFromParent(); 614 return true; 615 } 616 617 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 618 Register &Base, Register &Offset) { 619 auto &MF = *MI.getParent()->getParent(); 620 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 621 622 #ifndef NDEBUG 623 unsigned Opcode = MI.getOpcode(); 624 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 625 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 626 #endif 627 628 Base = MI.getOperand(1).getReg(); 629 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 630 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 631 return false; 632 633 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 634 635 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 636 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 637 continue; 638 639 Offset = Use.getOperand(2).getReg(); 640 if (!ForceLegalIndexing && 641 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 642 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 643 << Use); 644 continue; 645 } 646 647 // Make sure the offset calculation is before the potentially indexed op. 648 // FIXME: we really care about dependency here. The offset calculation might 649 // be movable. 650 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 651 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 652 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 653 << Use); 654 continue; 655 } 656 657 // FIXME: check whether all uses of Base are load/store with foldable 658 // addressing modes. If so, using the normal addr-modes is better than 659 // forming an indexed one. 660 661 bool MemOpDominatesAddrUses = true; 662 for (auto &PtrAddUse : 663 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 664 if (!dominates(MI, PtrAddUse)) { 665 MemOpDominatesAddrUses = false; 666 break; 667 } 668 } 669 670 if (!MemOpDominatesAddrUses) { 671 LLVM_DEBUG( 672 dbgs() << " Ignoring candidate as memop does not dominate uses: " 673 << Use); 674 continue; 675 } 676 677 LLVM_DEBUG(dbgs() << " Found match: " << Use); 678 Addr = Use.getOperand(0).getReg(); 679 return true; 680 } 681 682 return false; 683 } 684 685 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 686 Register &Base, Register &Offset) { 687 auto &MF = *MI.getParent()->getParent(); 688 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 689 690 #ifndef NDEBUG 691 unsigned Opcode = MI.getOpcode(); 692 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 693 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 694 #endif 695 696 Addr = MI.getOperand(1).getReg(); 697 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 698 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 699 return false; 700 701 Base = AddrDef->getOperand(1).getReg(); 702 Offset = AddrDef->getOperand(2).getReg(); 703 704 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 705 706 if (!ForceLegalIndexing && 707 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 708 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 709 return false; 710 } 711 712 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 713 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 714 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 715 return false; 716 } 717 718 if (MI.getOpcode() == TargetOpcode::G_STORE) { 719 // Would require a copy. 720 if (Base == MI.getOperand(0).getReg()) { 721 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 722 return false; 723 } 724 725 // We're expecting one use of Addr in MI, but it could also be the 726 // value stored, which isn't actually dominated by the instruction. 727 if (MI.getOperand(0).getReg() == Addr) { 728 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 729 return false; 730 } 731 } 732 733 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 734 // That might allow us to end base's liveness here by adjusting the constant. 735 736 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 737 if (!dominates(MI, UseMI)) { 738 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 739 return false; 740 } 741 } 742 743 return true; 744 } 745 746 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 747 IndexedLoadStoreMatchInfo MatchInfo; 748 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 749 applyCombineIndexedLoadStore(MI, MatchInfo); 750 return true; 751 } 752 return false; 753 } 754 755 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 756 unsigned Opcode = MI.getOpcode(); 757 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 758 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 759 return false; 760 761 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 762 MatchInfo.Offset); 763 if (!MatchInfo.IsPre && 764 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 765 MatchInfo.Offset)) 766 return false; 767 768 return true; 769 } 770 771 void CombinerHelper::applyCombineIndexedLoadStore( 772 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 773 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 774 MachineIRBuilder MIRBuilder(MI); 775 unsigned Opcode = MI.getOpcode(); 776 bool IsStore = Opcode == TargetOpcode::G_STORE; 777 unsigned NewOpcode; 778 switch (Opcode) { 779 case TargetOpcode::G_LOAD: 780 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 781 break; 782 case TargetOpcode::G_SEXTLOAD: 783 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 784 break; 785 case TargetOpcode::G_ZEXTLOAD: 786 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 787 break; 788 case TargetOpcode::G_STORE: 789 NewOpcode = TargetOpcode::G_INDEXED_STORE; 790 break; 791 default: 792 llvm_unreachable("Unknown load/store opcode"); 793 } 794 795 auto MIB = MIRBuilder.buildInstr(NewOpcode); 796 if (IsStore) { 797 MIB.addDef(MatchInfo.Addr); 798 MIB.addUse(MI.getOperand(0).getReg()); 799 } else { 800 MIB.addDef(MI.getOperand(0).getReg()); 801 MIB.addDef(MatchInfo.Addr); 802 } 803 804 MIB.addUse(MatchInfo.Base); 805 MIB.addUse(MatchInfo.Offset); 806 MIB.addImm(MatchInfo.IsPre); 807 MI.eraseFromParent(); 808 AddrDef.eraseFromParent(); 809 810 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 811 } 812 813 bool CombinerHelper::matchElideBrByInvertingCond(MachineInstr &MI) { 814 if (MI.getOpcode() != TargetOpcode::G_BR) 815 return false; 816 817 // Try to match the following: 818 // bb1: 819 // %c(s32) = G_ICMP pred, %a, %b 820 // %c1(s1) = G_TRUNC %c(s32) 821 // G_BRCOND %c1, %bb2 822 // G_BR %bb3 823 // bb2: 824 // ... 825 // bb3: 826 827 // The above pattern does not have a fall through to the successor bb2, always 828 // resulting in a branch no matter which path is taken. Here we try to find 829 // and replace that pattern with conditional branch to bb3 and otherwise 830 // fallthrough to bb2. 831 832 MachineBasicBlock *MBB = MI.getParent(); 833 MachineBasicBlock::iterator BrIt(MI); 834 if (BrIt == MBB->begin()) 835 return false; 836 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 837 838 MachineInstr *BrCond = &*std::prev(BrIt); 839 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 840 return false; 841 842 // Check that the next block is the conditional branch target. 843 if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB())) 844 return false; 845 846 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 847 if (!CmpMI || CmpMI->getOpcode() != TargetOpcode::G_ICMP || 848 !MRI.hasOneNonDBGUse(CmpMI->getOperand(0).getReg())) 849 return false; 850 return true; 851 } 852 853 bool CombinerHelper::tryElideBrByInvertingCond(MachineInstr &MI) { 854 if (!matchElideBrByInvertingCond(MI)) 855 return false; 856 applyElideBrByInvertingCond(MI); 857 return true; 858 } 859 860 void CombinerHelper::applyElideBrByInvertingCond(MachineInstr &MI) { 861 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 862 MachineBasicBlock::iterator BrIt(MI); 863 MachineInstr *BrCond = &*std::prev(BrIt); 864 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 865 866 CmpInst::Predicate InversePred = CmpInst::getInversePredicate( 867 (CmpInst::Predicate)CmpMI->getOperand(1).getPredicate()); 868 869 // Invert the G_ICMP condition. 870 Observer.changingInstr(*CmpMI); 871 CmpMI->getOperand(1).setPredicate(InversePred); 872 Observer.changedInstr(*CmpMI); 873 874 // Change the conditional branch target. 875 Observer.changingInstr(*BrCond); 876 BrCond->getOperand(1).setMBB(BrTarget); 877 Observer.changedInstr(*BrCond); 878 MI.eraseFromParent(); 879 } 880 881 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 882 // On Darwin, -Os means optimize for size without hurting performance, so 883 // only really optimize for size when -Oz (MinSize) is used. 884 if (MF.getTarget().getTargetTriple().isOSDarwin()) 885 return MF.getFunction().hasMinSize(); 886 return MF.getFunction().hasOptSize(); 887 } 888 889 // Returns a list of types to use for memory op lowering in MemOps. A partial 890 // port of findOptimalMemOpLowering in TargetLowering. 891 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 892 unsigned Limit, const MemOp &Op, 893 unsigned DstAS, unsigned SrcAS, 894 const AttributeList &FuncAttributes, 895 const TargetLowering &TLI) { 896 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 897 return false; 898 899 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 900 901 if (Ty == LLT()) { 902 // Use the largest scalar type whose alignment constraints are satisfied. 903 // We only need to check DstAlign here as SrcAlign is always greater or 904 // equal to DstAlign (or zero). 905 Ty = LLT::scalar(64); 906 if (Op.isFixedDstAlign()) 907 while (Op.getDstAlign() < Ty.getSizeInBytes() && 908 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 909 Ty = LLT::scalar(Ty.getSizeInBytes()); 910 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 911 // FIXME: check for the largest legal type we can load/store to. 912 } 913 914 unsigned NumMemOps = 0; 915 uint64_t Size = Op.size(); 916 while (Size) { 917 unsigned TySize = Ty.getSizeInBytes(); 918 while (TySize > Size) { 919 // For now, only use non-vector load / store's for the left-over pieces. 920 LLT NewTy = Ty; 921 // FIXME: check for mem op safety and legality of the types. Not all of 922 // SDAGisms map cleanly to GISel concepts. 923 if (NewTy.isVector()) 924 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 925 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 926 unsigned NewTySize = NewTy.getSizeInBytes(); 927 assert(NewTySize > 0 && "Could not find appropriate type"); 928 929 // If the new LLT cannot cover all of the remaining bits, then consider 930 // issuing a (or a pair of) unaligned and overlapping load / store. 931 bool Fast; 932 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 933 MVT VT = getMVTForLLT(Ty); 934 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 935 TLI.allowsMisalignedMemoryAccesses( 936 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 937 MachineMemOperand::MONone, &Fast) && 938 Fast) 939 TySize = Size; 940 else { 941 Ty = NewTy; 942 TySize = NewTySize; 943 } 944 } 945 946 if (++NumMemOps > Limit) 947 return false; 948 949 MemOps.push_back(Ty); 950 Size -= TySize; 951 } 952 953 return true; 954 } 955 956 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 957 if (Ty.isVector()) 958 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 959 Ty.getNumElements()); 960 return IntegerType::get(C, Ty.getSizeInBits()); 961 } 962 963 // Get a vectorized representation of the memset value operand, GISel edition. 964 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 965 MachineRegisterInfo &MRI = *MIB.getMRI(); 966 unsigned NumBits = Ty.getScalarSizeInBits(); 967 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 968 if (!Ty.isVector() && ValVRegAndVal) { 969 unsigned KnownVal = ValVRegAndVal->Value; 970 APInt Scalar = APInt(8, KnownVal); 971 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 972 return MIB.buildConstant(Ty, SplatVal).getReg(0); 973 } 974 975 // Extend the byte value to the larger type, and then multiply by a magic 976 // value 0x010101... in order to replicate it across every byte. 977 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 978 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 979 return MIB.buildConstant(Ty, 0).getReg(0); 980 } 981 982 LLT ExtType = Ty.getScalarType(); 983 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 984 if (NumBits > 8) { 985 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 986 auto MagicMI = MIB.buildConstant(ExtType, Magic); 987 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 988 } 989 990 // For vector types create a G_BUILD_VECTOR. 991 if (Ty.isVector()) 992 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 993 994 return Val; 995 } 996 997 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 998 Register Val, unsigned KnownLen, 999 Align Alignment, bool IsVolatile) { 1000 auto &MF = *MI.getParent()->getParent(); 1001 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1002 auto &DL = MF.getDataLayout(); 1003 LLVMContext &C = MF.getFunction().getContext(); 1004 1005 assert(KnownLen != 0 && "Have a zero length memset length!"); 1006 1007 bool DstAlignCanChange = false; 1008 MachineFrameInfo &MFI = MF.getFrameInfo(); 1009 bool OptSize = shouldLowerMemFuncForSize(MF); 1010 1011 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1012 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1013 DstAlignCanChange = true; 1014 1015 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1016 std::vector<LLT> MemOps; 1017 1018 const auto &DstMMO = **MI.memoperands_begin(); 1019 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1020 1021 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1022 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1023 1024 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1025 MemOp::Set(KnownLen, DstAlignCanChange, 1026 Alignment, 1027 /*IsZeroMemset=*/IsZeroVal, 1028 /*IsVolatile=*/IsVolatile), 1029 DstPtrInfo.getAddrSpace(), ~0u, 1030 MF.getFunction().getAttributes(), TLI)) 1031 return false; 1032 1033 if (DstAlignCanChange) { 1034 // Get an estimate of the type from the LLT. 1035 Type *IRTy = getTypeForLLT(MemOps[0], C); 1036 Align NewAlign = DL.getABITypeAlign(IRTy); 1037 if (NewAlign > Alignment) { 1038 Alignment = NewAlign; 1039 unsigned FI = FIDef->getOperand(1).getIndex(); 1040 // Give the stack frame object a larger alignment if needed. 1041 if (MFI.getObjectAlign(FI) < Alignment) 1042 MFI.setObjectAlignment(FI, Alignment); 1043 } 1044 } 1045 1046 MachineIRBuilder MIB(MI); 1047 // Find the largest store and generate the bit pattern for it. 1048 LLT LargestTy = MemOps[0]; 1049 for (unsigned i = 1; i < MemOps.size(); i++) 1050 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1051 LargestTy = MemOps[i]; 1052 1053 // The memset stored value is always defined as an s8, so in order to make it 1054 // work with larger store types we need to repeat the bit pattern across the 1055 // wider type. 1056 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1057 1058 if (!MemSetValue) 1059 return false; 1060 1061 // Generate the stores. For each store type in the list, we generate the 1062 // matching store of that type to the destination address. 1063 LLT PtrTy = MRI.getType(Dst); 1064 unsigned DstOff = 0; 1065 unsigned Size = KnownLen; 1066 for (unsigned I = 0; I < MemOps.size(); I++) { 1067 LLT Ty = MemOps[I]; 1068 unsigned TySize = Ty.getSizeInBytes(); 1069 if (TySize > Size) { 1070 // Issuing an unaligned load / store pair that overlaps with the previous 1071 // pair. Adjust the offset accordingly. 1072 assert(I == MemOps.size() - 1 && I != 0); 1073 DstOff -= TySize - Size; 1074 } 1075 1076 // If this store is smaller than the largest store see whether we can get 1077 // the smaller value for free with a truncate. 1078 Register Value = MemSetValue; 1079 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1080 MVT VT = getMVTForLLT(Ty); 1081 MVT LargestVT = getMVTForLLT(LargestTy); 1082 if (!LargestTy.isVector() && !Ty.isVector() && 1083 TLI.isTruncateFree(LargestVT, VT)) 1084 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1085 else 1086 Value = getMemsetValue(Val, Ty, MIB); 1087 if (!Value) 1088 return false; 1089 } 1090 1091 auto *StoreMMO = 1092 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1093 1094 Register Ptr = Dst; 1095 if (DstOff != 0) { 1096 auto Offset = 1097 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1098 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1099 } 1100 1101 MIB.buildStore(Value, Ptr, *StoreMMO); 1102 DstOff += Ty.getSizeInBytes(); 1103 Size -= TySize; 1104 } 1105 1106 MI.eraseFromParent(); 1107 return true; 1108 } 1109 1110 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1111 Register Src, unsigned KnownLen, 1112 Align DstAlign, Align SrcAlign, 1113 bool IsVolatile) { 1114 auto &MF = *MI.getParent()->getParent(); 1115 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1116 auto &DL = MF.getDataLayout(); 1117 LLVMContext &C = MF.getFunction().getContext(); 1118 1119 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1120 1121 bool DstAlignCanChange = false; 1122 MachineFrameInfo &MFI = MF.getFrameInfo(); 1123 bool OptSize = shouldLowerMemFuncForSize(MF); 1124 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1125 1126 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1127 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1128 DstAlignCanChange = true; 1129 1130 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1131 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1132 // if the memcpy is in a tail call position. 1133 1134 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1135 std::vector<LLT> MemOps; 1136 1137 const auto &DstMMO = **MI.memoperands_begin(); 1138 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1139 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1140 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1141 1142 if (!findGISelOptimalMemOpLowering( 1143 MemOps, Limit, 1144 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1145 IsVolatile), 1146 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1147 MF.getFunction().getAttributes(), TLI)) 1148 return false; 1149 1150 if (DstAlignCanChange) { 1151 // Get an estimate of the type from the LLT. 1152 Type *IRTy = getTypeForLLT(MemOps[0], C); 1153 Align NewAlign = DL.getABITypeAlign(IRTy); 1154 1155 // Don't promote to an alignment that would require dynamic stack 1156 // realignment. 1157 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1158 if (!TRI->needsStackRealignment(MF)) 1159 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1160 NewAlign = NewAlign / 2; 1161 1162 if (NewAlign > Alignment) { 1163 Alignment = NewAlign; 1164 unsigned FI = FIDef->getOperand(1).getIndex(); 1165 // Give the stack frame object a larger alignment if needed. 1166 if (MFI.getObjectAlign(FI) < Alignment) 1167 MFI.setObjectAlignment(FI, Alignment); 1168 } 1169 } 1170 1171 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1172 1173 MachineIRBuilder MIB(MI); 1174 // Now we need to emit a pair of load and stores for each of the types we've 1175 // collected. I.e. for each type, generate a load from the source pointer of 1176 // that type width, and then generate a corresponding store to the dest buffer 1177 // of that value loaded. This can result in a sequence of loads and stores 1178 // mixed types, depending on what the target specifies as good types to use. 1179 unsigned CurrOffset = 0; 1180 LLT PtrTy = MRI.getType(Src); 1181 unsigned Size = KnownLen; 1182 for (auto CopyTy : MemOps) { 1183 // Issuing an unaligned load / store pair that overlaps with the previous 1184 // pair. Adjust the offset accordingly. 1185 if (CopyTy.getSizeInBytes() > Size) 1186 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1187 1188 // Construct MMOs for the accesses. 1189 auto *LoadMMO = 1190 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1191 auto *StoreMMO = 1192 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1193 1194 // Create the load. 1195 Register LoadPtr = Src; 1196 Register Offset; 1197 if (CurrOffset != 0) { 1198 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1199 .getReg(0); 1200 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1201 } 1202 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1203 1204 // Create the store. 1205 Register StorePtr = 1206 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1207 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1208 CurrOffset += CopyTy.getSizeInBytes(); 1209 Size -= CopyTy.getSizeInBytes(); 1210 } 1211 1212 MI.eraseFromParent(); 1213 return true; 1214 } 1215 1216 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1217 Register Src, unsigned KnownLen, 1218 Align DstAlign, Align SrcAlign, 1219 bool IsVolatile) { 1220 auto &MF = *MI.getParent()->getParent(); 1221 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1222 auto &DL = MF.getDataLayout(); 1223 LLVMContext &C = MF.getFunction().getContext(); 1224 1225 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1226 1227 bool DstAlignCanChange = false; 1228 MachineFrameInfo &MFI = MF.getFrameInfo(); 1229 bool OptSize = shouldLowerMemFuncForSize(MF); 1230 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1231 1232 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1233 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1234 DstAlignCanChange = true; 1235 1236 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1237 std::vector<LLT> MemOps; 1238 1239 const auto &DstMMO = **MI.memoperands_begin(); 1240 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1241 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1242 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1243 1244 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1245 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1246 // same thing here. 1247 if (!findGISelOptimalMemOpLowering( 1248 MemOps, Limit, 1249 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1250 /*IsVolatile*/ true), 1251 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1252 MF.getFunction().getAttributes(), TLI)) 1253 return false; 1254 1255 if (DstAlignCanChange) { 1256 // Get an estimate of the type from the LLT. 1257 Type *IRTy = getTypeForLLT(MemOps[0], C); 1258 Align NewAlign = DL.getABITypeAlign(IRTy); 1259 1260 // Don't promote to an alignment that would require dynamic stack 1261 // realignment. 1262 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1263 if (!TRI->needsStackRealignment(MF)) 1264 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1265 NewAlign = NewAlign / 2; 1266 1267 if (NewAlign > Alignment) { 1268 Alignment = NewAlign; 1269 unsigned FI = FIDef->getOperand(1).getIndex(); 1270 // Give the stack frame object a larger alignment if needed. 1271 if (MFI.getObjectAlign(FI) < Alignment) 1272 MFI.setObjectAlignment(FI, Alignment); 1273 } 1274 } 1275 1276 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1277 1278 MachineIRBuilder MIB(MI); 1279 // Memmove requires that we perform the loads first before issuing the stores. 1280 // Apart from that, this loop is pretty much doing the same thing as the 1281 // memcpy codegen function. 1282 unsigned CurrOffset = 0; 1283 LLT PtrTy = MRI.getType(Src); 1284 SmallVector<Register, 16> LoadVals; 1285 for (auto CopyTy : MemOps) { 1286 // Construct MMO for the load. 1287 auto *LoadMMO = 1288 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1289 1290 // Create the load. 1291 Register LoadPtr = Src; 1292 if (CurrOffset != 0) { 1293 auto Offset = 1294 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1295 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1296 } 1297 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1298 CurrOffset += CopyTy.getSizeInBytes(); 1299 } 1300 1301 CurrOffset = 0; 1302 for (unsigned I = 0; I < MemOps.size(); ++I) { 1303 LLT CopyTy = MemOps[I]; 1304 // Now store the values loaded. 1305 auto *StoreMMO = 1306 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1307 1308 Register StorePtr = Dst; 1309 if (CurrOffset != 0) { 1310 auto Offset = 1311 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1312 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1313 } 1314 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1315 CurrOffset += CopyTy.getSizeInBytes(); 1316 } 1317 MI.eraseFromParent(); 1318 return true; 1319 } 1320 1321 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1322 // This combine is fairly complex so it's not written with a separate 1323 // matcher function. 1324 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 1325 Intrinsic::ID ID = (Intrinsic::ID)MI.getIntrinsicID(); 1326 assert((ID == Intrinsic::memcpy || ID == Intrinsic::memmove || 1327 ID == Intrinsic::memset) && 1328 "Expected a memcpy like intrinsic"); 1329 1330 auto MMOIt = MI.memoperands_begin(); 1331 const MachineMemOperand *MemOp = *MMOIt; 1332 bool IsVolatile = MemOp->isVolatile(); 1333 // Don't try to optimize volatile. 1334 if (IsVolatile) 1335 return false; 1336 1337 Align DstAlign = MemOp->getBaseAlign(); 1338 Align SrcAlign; 1339 Register Dst = MI.getOperand(1).getReg(); 1340 Register Src = MI.getOperand(2).getReg(); 1341 Register Len = MI.getOperand(3).getReg(); 1342 1343 if (ID != Intrinsic::memset) { 1344 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1345 MemOp = *(++MMOIt); 1346 SrcAlign = MemOp->getBaseAlign(); 1347 } 1348 1349 // See if this is a constant length copy 1350 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1351 if (!LenVRegAndVal) 1352 return false; // Leave it to the legalizer to lower it to a libcall. 1353 unsigned KnownLen = LenVRegAndVal->Value; 1354 1355 if (KnownLen == 0) { 1356 MI.eraseFromParent(); 1357 return true; 1358 } 1359 1360 if (MaxLen && KnownLen > MaxLen) 1361 return false; 1362 1363 if (ID == Intrinsic::memcpy) 1364 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1365 if (ID == Intrinsic::memmove) 1366 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1367 if (ID == Intrinsic::memset) 1368 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1369 return false; 1370 } 1371 1372 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1373 PtrAddChain &MatchInfo) { 1374 // We're trying to match the following pattern: 1375 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1376 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1377 // --> 1378 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1379 1380 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1381 return false; 1382 1383 Register Add2 = MI.getOperand(1).getReg(); 1384 Register Imm1 = MI.getOperand(2).getReg(); 1385 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1386 if (!MaybeImmVal) 1387 return false; 1388 1389 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1390 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1391 return false; 1392 1393 Register Base = Add2Def->getOperand(1).getReg(); 1394 Register Imm2 = Add2Def->getOperand(2).getReg(); 1395 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1396 if (!MaybeImm2Val) 1397 return false; 1398 1399 // Pass the combined immediate to the apply function. 1400 MatchInfo.Imm = MaybeImmVal->Value + MaybeImm2Val->Value; 1401 MatchInfo.Base = Base; 1402 return true; 1403 } 1404 1405 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1406 PtrAddChain &MatchInfo) { 1407 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1408 MachineIRBuilder MIB(MI); 1409 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1410 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1411 Observer.changingInstr(MI); 1412 MI.getOperand(1).setReg(MatchInfo.Base); 1413 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1414 Observer.changedInstr(MI); 1415 return true; 1416 } 1417 1418 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1419 unsigned &ShiftVal) { 1420 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1421 auto MaybeImmVal = 1422 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1423 if (!MaybeImmVal || !isPowerOf2_64(MaybeImmVal->Value)) 1424 return false; 1425 ShiftVal = Log2_64(MaybeImmVal->Value); 1426 return true; 1427 } 1428 1429 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1430 unsigned &ShiftVal) { 1431 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1432 MachineIRBuilder MIB(MI); 1433 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1434 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1435 Observer.changingInstr(MI); 1436 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1437 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1438 Observer.changedInstr(MI); 1439 return true; 1440 } 1441 1442 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1443 unsigned TargetShiftSize, 1444 unsigned &ShiftVal) { 1445 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1446 MI.getOpcode() == TargetOpcode::G_LSHR || 1447 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1448 1449 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1450 if (Ty.isVector()) // TODO: 1451 return false; 1452 1453 // Don't narrow further than the requested size. 1454 unsigned Size = Ty.getSizeInBits(); 1455 if (Size <= TargetShiftSize) 1456 return false; 1457 1458 auto MaybeImmVal = 1459 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1460 if (!MaybeImmVal) 1461 return false; 1462 1463 ShiftVal = MaybeImmVal->Value; 1464 return ShiftVal >= Size / 2 && ShiftVal < Size; 1465 } 1466 1467 bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1468 const unsigned &ShiftVal) { 1469 Register DstReg = MI.getOperand(0).getReg(); 1470 Register SrcReg = MI.getOperand(1).getReg(); 1471 LLT Ty = MRI.getType(SrcReg); 1472 unsigned Size = Ty.getSizeInBits(); 1473 unsigned HalfSize = Size / 2; 1474 assert(ShiftVal >= HalfSize); 1475 1476 LLT HalfTy = LLT::scalar(HalfSize); 1477 1478 Builder.setInstr(MI); 1479 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1480 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1481 1482 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1483 Register Narrowed = Unmerge.getReg(1); 1484 1485 // dst = G_LSHR s64:x, C for C >= 32 1486 // => 1487 // lo, hi = G_UNMERGE_VALUES x 1488 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1489 1490 if (NarrowShiftAmt != 0) { 1491 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1492 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1493 } 1494 1495 auto Zero = Builder.buildConstant(HalfTy, 0); 1496 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1497 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1498 Register Narrowed = Unmerge.getReg(0); 1499 // dst = G_SHL s64:x, C for C >= 32 1500 // => 1501 // lo, hi = G_UNMERGE_VALUES x 1502 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1503 if (NarrowShiftAmt != 0) { 1504 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1505 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1506 } 1507 1508 auto Zero = Builder.buildConstant(HalfTy, 0); 1509 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1510 } else { 1511 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1512 auto Hi = Builder.buildAShr( 1513 HalfTy, Unmerge.getReg(1), 1514 Builder.buildConstant(HalfTy, HalfSize - 1)); 1515 1516 if (ShiftVal == HalfSize) { 1517 // (G_ASHR i64:x, 32) -> 1518 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1519 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1520 } else if (ShiftVal == Size - 1) { 1521 // Don't need a second shift. 1522 // (G_ASHR i64:x, 63) -> 1523 // %narrowed = (G_ASHR hi_32(x), 31) 1524 // G_MERGE_VALUES %narrowed, %narrowed 1525 Builder.buildMerge(DstReg, { Hi, Hi }); 1526 } else { 1527 auto Lo = Builder.buildAShr( 1528 HalfTy, Unmerge.getReg(1), 1529 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1530 1531 // (G_ASHR i64:x, C) ->, for C >= 32 1532 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1533 Builder.buildMerge(DstReg, { Lo, Hi }); 1534 } 1535 } 1536 1537 MI.eraseFromParent(); 1538 return true; 1539 } 1540 1541 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1542 unsigned TargetShiftAmount) { 1543 unsigned ShiftAmt; 1544 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1545 applyCombineShiftToUnmerge(MI, ShiftAmt); 1546 return true; 1547 } 1548 1549 return false; 1550 } 1551 1552 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1553 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1554 Register DstReg = MI.getOperand(0).getReg(); 1555 LLT DstTy = MRI.getType(DstReg); 1556 Register SrcReg = MI.getOperand(1).getReg(); 1557 return mi_match(SrcReg, MRI, 1558 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 1559 } 1560 1561 bool CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1562 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1563 Register DstReg = MI.getOperand(0).getReg(); 1564 Builder.setInstr(MI); 1565 Builder.buildCopy(DstReg, Reg); 1566 MI.eraseFromParent(); 1567 return true; 1568 } 1569 1570 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1571 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1572 Register SrcReg = MI.getOperand(1).getReg(); 1573 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 1574 } 1575 1576 bool CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1577 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1578 Register DstReg = MI.getOperand(0).getReg(); 1579 Builder.setInstr(MI); 1580 Builder.buildZExtOrTrunc(DstReg, Reg); 1581 MI.eraseFromParent(); 1582 return true; 1583 } 1584 1585 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 1586 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 1587 return MO.isReg() && 1588 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 1589 }); 1590 } 1591 1592 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 1593 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 1594 return !MO.isReg() || 1595 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 1596 }); 1597 } 1598 1599 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 1600 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 1601 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 1602 return all_of(Mask, [](int Elt) { return Elt < 0; }); 1603 } 1604 1605 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 1606 assert(MI.getOpcode() == TargetOpcode::G_STORE); 1607 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 1608 MRI); 1609 } 1610 1611 bool CombinerHelper::eraseInst(MachineInstr &MI) { 1612 MI.eraseFromParent(); 1613 return true; 1614 } 1615 1616 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 1617 const MachineOperand &MOP2) { 1618 if (!MOP1.isReg() || !MOP2.isReg()) 1619 return false; 1620 MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); 1621 if (!I1) 1622 return false; 1623 MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); 1624 if (!I2) 1625 return false; 1626 1627 // Handle a case like this: 1628 // 1629 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 1630 // 1631 // Even though %0 and %1 are produced by the same instruction they are not 1632 // the same values. 1633 if (I1 == I2) 1634 return MOP1.getReg() == MOP2.getReg(); 1635 1636 // If we have an instruction which loads or stores, we can't guarantee that 1637 // it is identical. 1638 // 1639 // For example, we may have 1640 // 1641 // %x1 = G_LOAD %addr (load N from @somewhere) 1642 // ... 1643 // call @foo 1644 // ... 1645 // %x2 = G_LOAD %addr (load N from @somewhere) 1646 // ... 1647 // %or = G_OR %x1, %x2 1648 // 1649 // It's possible that @foo will modify whatever lives at the address we're 1650 // loading from. To be safe, let's just assume that all loads and stores 1651 // are different (unless we have something which is guaranteed to not 1652 // change.) 1653 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 1654 return false; 1655 1656 // Check for physical registers on the instructions first to avoid cases 1657 // like this: 1658 // 1659 // %a = COPY $physreg 1660 // ... 1661 // SOMETHING implicit-def $physreg 1662 // ... 1663 // %b = COPY $physreg 1664 // 1665 // These copies are not equivalent. 1666 if (any_of(I1->uses(), [](const MachineOperand &MO) { 1667 return MO.isReg() && MO.getReg().isPhysical(); 1668 })) { 1669 // Check if we have a case like this: 1670 // 1671 // %a = COPY $physreg 1672 // %b = COPY %a 1673 // 1674 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 1675 // From that, we know that they must have the same value, since they must 1676 // have come from the same COPY. 1677 return I1->isIdenticalTo(*I2); 1678 } 1679 1680 // We don't have any physical registers, so we don't necessarily need the 1681 // same vreg defs. 1682 // 1683 // On the off-chance that there's some target instruction feeding into the 1684 // instruction, let's use produceSameValue instead of isIdenticalTo. 1685 return Builder.getTII().produceSameValue(*I1, *I2, &MRI); 1686 } 1687 1688 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 1689 if (!MOP.isReg()) 1690 return false; 1691 // MIPatternMatch doesn't let us look through G_ZEXT etc. 1692 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 1693 return ValAndVReg && ValAndVReg->Value == C; 1694 } 1695 1696 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 1697 unsigned OpIdx) { 1698 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 1699 Register OldReg = MI.getOperand(0).getReg(); 1700 Register Replacement = MI.getOperand(OpIdx).getReg(); 1701 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 1702 MI.eraseFromParent(); 1703 replaceRegWith(MRI, OldReg, Replacement); 1704 return true; 1705 } 1706 1707 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 1708 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 1709 // Match (cond ? x : x) 1710 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 1711 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 1712 MRI); 1713 } 1714 1715 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 1716 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 1717 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1718 MRI); 1719 } 1720 1721 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 1722 return matchConstantOp(MI.getOperand(OpIdx), 0) && 1723 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 1724 MRI); 1725 } 1726 1727 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 1728 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 1729 Builder.setInstr(MI); 1730 Builder.buildFConstant(MI.getOperand(0), C); 1731 MI.eraseFromParent(); 1732 return true; 1733 } 1734 1735 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 1736 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 1737 Builder.setInstr(MI); 1738 Builder.buildConstant(MI.getOperand(0), C); 1739 MI.eraseFromParent(); 1740 return true; 1741 } 1742 1743 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 1744 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 1745 Builder.setInstr(MI); 1746 Builder.buildUndef(MI.getOperand(0)); 1747 MI.eraseFromParent(); 1748 return true; 1749 } 1750 1751 bool CombinerHelper::matchSimplifyAddToSub( 1752 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 1753 Register LHS = MI.getOperand(1).getReg(); 1754 Register RHS = MI.getOperand(2).getReg(); 1755 Register &NewLHS = std::get<0>(MatchInfo); 1756 Register &NewRHS = std::get<1>(MatchInfo); 1757 1758 // Helper lambda to check for opportunities for 1759 // ((0-A) + B) -> B - A 1760 // (A + (0-B)) -> A - B 1761 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 1762 int64_t Cst; 1763 if (!mi_match(MaybeSub, MRI, m_GSub(m_ICst(Cst), m_Reg(NewRHS))) || 1764 Cst != 0) 1765 return false; 1766 NewLHS = MaybeNewLHS; 1767 return true; 1768 }; 1769 1770 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 1771 } 1772 1773 bool CombinerHelper::applySimplifyAddToSub( 1774 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 1775 Builder.setInstr(MI); 1776 Register SubLHS, SubRHS; 1777 std::tie(SubLHS, SubRHS) = MatchInfo; 1778 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 1779 MI.eraseFromParent(); 1780 return true; 1781 } 1782 1783 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 1784 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 1785 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 1786 // 1787 // Creates the new hand + logic instruction (but does not insert them.) 1788 // 1789 // On success, MatchInfo is populated with the new instructions. These are 1790 // inserted in applyHoistLogicOpWithSameOpcodeHands. 1791 unsigned LogicOpcode = MI.getOpcode(); 1792 assert(LogicOpcode == TargetOpcode::G_AND || 1793 LogicOpcode == TargetOpcode::G_OR || 1794 LogicOpcode == TargetOpcode::G_XOR); 1795 MachineIRBuilder MIB(MI); 1796 Register Dst = MI.getOperand(0).getReg(); 1797 Register LHSReg = MI.getOperand(1).getReg(); 1798 Register RHSReg = MI.getOperand(2).getReg(); 1799 1800 // Don't recompute anything. 1801 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 1802 return false; 1803 1804 // Make sure we have (hand x, ...), (hand y, ...) 1805 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 1806 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 1807 if (!LeftHandInst || !RightHandInst) 1808 return false; 1809 unsigned HandOpcode = LeftHandInst->getOpcode(); 1810 if (HandOpcode != RightHandInst->getOpcode()) 1811 return false; 1812 if (!LeftHandInst->getOperand(1).isReg() || 1813 !RightHandInst->getOperand(1).isReg()) 1814 return false; 1815 1816 // Make sure the types match up, and if we're doing this post-legalization, 1817 // we end up with legal types. 1818 Register X = LeftHandInst->getOperand(1).getReg(); 1819 Register Y = RightHandInst->getOperand(1).getReg(); 1820 LLT XTy = MRI.getType(X); 1821 LLT YTy = MRI.getType(Y); 1822 if (XTy != YTy) 1823 return false; 1824 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 1825 return false; 1826 1827 // Optional extra source register. 1828 Register ExtraHandOpSrcReg; 1829 switch (HandOpcode) { 1830 default: 1831 return false; 1832 case TargetOpcode::G_ANYEXT: 1833 case TargetOpcode::G_SEXT: 1834 case TargetOpcode::G_ZEXT: { 1835 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 1836 break; 1837 } 1838 case TargetOpcode::G_AND: 1839 case TargetOpcode::G_ASHR: 1840 case TargetOpcode::G_LSHR: 1841 case TargetOpcode::G_SHL: { 1842 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 1843 MachineOperand &ZOp = LeftHandInst->getOperand(2); 1844 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 1845 return false; 1846 ExtraHandOpSrcReg = ZOp.getReg(); 1847 break; 1848 } 1849 } 1850 1851 // Record the steps to build the new instructions. 1852 // 1853 // Steps to build (logic x, y) 1854 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 1855 OperandBuildSteps LogicBuildSteps = { 1856 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 1857 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 1858 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 1859 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 1860 1861 // Steps to build hand (logic x, y), ...z 1862 OperandBuildSteps HandBuildSteps = { 1863 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 1864 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 1865 if (ExtraHandOpSrcReg.isValid()) 1866 HandBuildSteps.push_back( 1867 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 1868 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 1869 1870 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 1871 return true; 1872 } 1873 1874 bool CombinerHelper::applyBuildInstructionSteps( 1875 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 1876 assert(MatchInfo.InstrsToBuild.size() && 1877 "Expected at least one instr to build?"); 1878 Builder.setInstr(MI); 1879 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 1880 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 1881 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 1882 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 1883 for (auto &OperandFn : InstrToBuild.OperandFns) 1884 OperandFn(Instr); 1885 } 1886 MI.eraseFromParent(); 1887 return true; 1888 } 1889 1890 bool CombinerHelper::tryCombine(MachineInstr &MI) { 1891 if (tryCombineCopy(MI)) 1892 return true; 1893 if (tryCombineExtendingLoads(MI)) 1894 return true; 1895 if (tryCombineIndexedLoadStore(MI)) 1896 return true; 1897 return false; 1898 } 1899