1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 16 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 19 #include "llvm/CodeGen/GlobalISel/Utils.h" 20 #include "llvm/CodeGen/LowLevelType.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetInstrInfo.h" 28 #include "llvm/CodeGen/TargetLowering.h" 29 #include "llvm/CodeGen/TargetOpcodes.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetMachine.h" 32 #include <tuple> 33 34 #define DEBUG_TYPE "gi-combiner" 35 36 using namespace llvm; 37 using namespace MIPatternMatch; 38 39 // Option to allow testing of the combiner while no targets know about indexed 40 // addressing. 41 static cl::opt<bool> 42 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 43 cl::desc("Force all indexed operations to be " 44 "legal for the GlobalISel combiner")); 45 46 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 47 MachineIRBuilder &B, GISelKnownBits *KB, 48 MachineDominatorTree *MDT, 49 const LegalizerInfo *LI) 50 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 51 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 52 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 53 (void)this->KB; 54 } 55 56 const TargetLowering &CombinerHelper::getTargetLowering() const { 57 return *Builder.getMF().getSubtarget().getTargetLowering(); 58 } 59 60 /// \returns The little endian in-memory byte position of byte \p I in a 61 /// \p ByteWidth bytes wide type. 62 /// 63 /// E.g. Given a 4-byte type x, x[0] -> byte 0 64 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 65 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 66 return I; 67 } 68 69 /// \returns The big endian in-memory byte position of byte \p I in a 70 /// \p ByteWidth bytes wide type. 71 /// 72 /// E.g. Given a 4-byte type x, x[0] -> byte 3 73 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 74 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 75 return ByteWidth - I - 1; 76 } 77 78 /// Given a map from byte offsets in memory to indices in a load/store, 79 /// determine if that map corresponds to a little or big endian byte pattern. 80 /// 81 /// \param MemOffset2Idx maps memory offsets to address offsets. 82 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 83 /// 84 /// \returns true if the map corresponds to a big endian byte pattern, false 85 /// if it corresponds to a little endian byte pattern, and None otherwise. 86 /// 87 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 88 /// are as follows: 89 /// 90 /// AddrOffset Little endian Big endian 91 /// 0 0 3 92 /// 1 1 2 93 /// 2 2 1 94 /// 3 3 0 95 static Optional<bool> 96 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 97 int64_t LowestIdx) { 98 // Need at least two byte positions to decide on endianness. 99 unsigned Width = MemOffset2Idx.size(); 100 if (Width < 2) 101 return None; 102 bool BigEndian = true, LittleEndian = true; 103 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 104 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 105 if (MemOffsetAndIdx == MemOffset2Idx.end()) 106 return None; 107 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 108 assert(Idx >= 0 && "Expected non-negative byte offset?"); 109 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 110 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 111 if (!BigEndian && !LittleEndian) 112 return None; 113 } 114 115 assert((BigEndian != LittleEndian) && 116 "Pattern cannot be both big and little endian!"); 117 return BigEndian; 118 } 119 120 bool CombinerHelper::isLegalOrBeforeLegalizer( 121 const LegalityQuery &Query) const { 122 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 123 } 124 125 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 126 Register ToReg) const { 127 Observer.changingAllUsesOfReg(MRI, FromReg); 128 129 if (MRI.constrainRegAttrs(ToReg, FromReg)) 130 MRI.replaceRegWith(FromReg, ToReg); 131 else 132 Builder.buildCopy(ToReg, FromReg); 133 134 Observer.finishedChangingAllUsesOfReg(); 135 } 136 137 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 138 MachineOperand &FromRegOp, 139 Register ToReg) const { 140 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 141 Observer.changingInstr(*FromRegOp.getParent()); 142 143 FromRegOp.setReg(ToReg); 144 145 Observer.changedInstr(*FromRegOp.getParent()); 146 } 147 148 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 149 return RBI->getRegBank(Reg, MRI, *TRI); 150 } 151 152 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 153 if (RegBank) 154 MRI.setRegBank(Reg, *RegBank); 155 } 156 157 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 158 if (matchCombineCopy(MI)) { 159 applyCombineCopy(MI); 160 return true; 161 } 162 return false; 163 } 164 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 165 if (MI.getOpcode() != TargetOpcode::COPY) 166 return false; 167 Register DstReg = MI.getOperand(0).getReg(); 168 Register SrcReg = MI.getOperand(1).getReg(); 169 return canReplaceReg(DstReg, SrcReg, MRI); 170 } 171 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 172 Register DstReg = MI.getOperand(0).getReg(); 173 Register SrcReg = MI.getOperand(1).getReg(); 174 MI.eraseFromParent(); 175 replaceRegWith(MRI, DstReg, SrcReg); 176 } 177 178 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 179 bool IsUndef = false; 180 SmallVector<Register, 4> Ops; 181 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 182 applyCombineConcatVectors(MI, IsUndef, Ops); 183 return true; 184 } 185 return false; 186 } 187 188 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 189 SmallVectorImpl<Register> &Ops) { 190 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 191 "Invalid instruction"); 192 IsUndef = true; 193 MachineInstr *Undef = nullptr; 194 195 // Walk over all the operands of concat vectors and check if they are 196 // build_vector themselves or undef. 197 // Then collect their operands in Ops. 198 for (const MachineOperand &MO : MI.uses()) { 199 Register Reg = MO.getReg(); 200 MachineInstr *Def = MRI.getVRegDef(Reg); 201 assert(Def && "Operand not defined"); 202 switch (Def->getOpcode()) { 203 case TargetOpcode::G_BUILD_VECTOR: 204 IsUndef = false; 205 // Remember the operands of the build_vector to fold 206 // them into the yet-to-build flattened concat vectors. 207 for (const MachineOperand &BuildVecMO : Def->uses()) 208 Ops.push_back(BuildVecMO.getReg()); 209 break; 210 case TargetOpcode::G_IMPLICIT_DEF: { 211 LLT OpType = MRI.getType(Reg); 212 // Keep one undef value for all the undef operands. 213 if (!Undef) { 214 Builder.setInsertPt(*MI.getParent(), MI); 215 Undef = Builder.buildUndef(OpType.getScalarType()); 216 } 217 assert(MRI.getType(Undef->getOperand(0).getReg()) == 218 OpType.getScalarType() && 219 "All undefs should have the same type"); 220 // Break the undef vector in as many scalar elements as needed 221 // for the flattening. 222 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 223 EltIdx != EltEnd; ++EltIdx) 224 Ops.push_back(Undef->getOperand(0).getReg()); 225 break; 226 } 227 default: 228 return false; 229 } 230 } 231 return true; 232 } 233 void CombinerHelper::applyCombineConcatVectors( 234 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 235 // We determined that the concat_vectors can be flatten. 236 // Generate the flattened build_vector. 237 Register DstReg = MI.getOperand(0).getReg(); 238 Builder.setInsertPt(*MI.getParent(), MI); 239 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 240 241 // Note: IsUndef is sort of redundant. We could have determine it by 242 // checking that at all Ops are undef. Alternatively, we could have 243 // generate a build_vector of undefs and rely on another combine to 244 // clean that up. For now, given we already gather this information 245 // in tryCombineConcatVectors, just save compile time and issue the 246 // right thing. 247 if (IsUndef) 248 Builder.buildUndef(NewDstReg); 249 else 250 Builder.buildBuildVector(NewDstReg, Ops); 251 MI.eraseFromParent(); 252 replaceRegWith(MRI, DstReg, NewDstReg); 253 } 254 255 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 256 SmallVector<Register, 4> Ops; 257 if (matchCombineShuffleVector(MI, Ops)) { 258 applyCombineShuffleVector(MI, Ops); 259 return true; 260 } 261 return false; 262 } 263 264 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 265 SmallVectorImpl<Register> &Ops) { 266 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 267 "Invalid instruction kind"); 268 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 269 Register Src1 = MI.getOperand(1).getReg(); 270 LLT SrcType = MRI.getType(Src1); 271 // As bizarre as it may look, shuffle vector can actually produce 272 // scalar! This is because at the IR level a <1 x ty> shuffle 273 // vector is perfectly valid. 274 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 275 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 276 277 // If the resulting vector is smaller than the size of the source 278 // vectors being concatenated, we won't be able to replace the 279 // shuffle vector into a concat_vectors. 280 // 281 // Note: We may still be able to produce a concat_vectors fed by 282 // extract_vector_elt and so on. It is less clear that would 283 // be better though, so don't bother for now. 284 // 285 // If the destination is a scalar, the size of the sources doesn't 286 // matter. we will lower the shuffle to a plain copy. This will 287 // work only if the source and destination have the same size. But 288 // that's covered by the next condition. 289 // 290 // TODO: If the size between the source and destination don't match 291 // we could still emit an extract vector element in that case. 292 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 293 return false; 294 295 // Check that the shuffle mask can be broken evenly between the 296 // different sources. 297 if (DstNumElts % SrcNumElts != 0) 298 return false; 299 300 // Mask length is a multiple of the source vector length. 301 // Check if the shuffle is some kind of concatenation of the input 302 // vectors. 303 unsigned NumConcat = DstNumElts / SrcNumElts; 304 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 305 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 306 for (unsigned i = 0; i != DstNumElts; ++i) { 307 int Idx = Mask[i]; 308 // Undef value. 309 if (Idx < 0) 310 continue; 311 // Ensure the indices in each SrcType sized piece are sequential and that 312 // the same source is used for the whole piece. 313 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 314 (ConcatSrcs[i / SrcNumElts] >= 0 && 315 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 316 return false; 317 // Remember which source this index came from. 318 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 319 } 320 321 // The shuffle is concatenating multiple vectors together. 322 // Collect the different operands for that. 323 Register UndefReg; 324 Register Src2 = MI.getOperand(2).getReg(); 325 for (auto Src : ConcatSrcs) { 326 if (Src < 0) { 327 if (!UndefReg) { 328 Builder.setInsertPt(*MI.getParent(), MI); 329 UndefReg = Builder.buildUndef(SrcType).getReg(0); 330 } 331 Ops.push_back(UndefReg); 332 } else if (Src == 0) 333 Ops.push_back(Src1); 334 else 335 Ops.push_back(Src2); 336 } 337 return true; 338 } 339 340 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 341 const ArrayRef<Register> Ops) { 342 Register DstReg = MI.getOperand(0).getReg(); 343 Builder.setInsertPt(*MI.getParent(), MI); 344 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 345 346 if (Ops.size() == 1) 347 Builder.buildCopy(NewDstReg, Ops[0]); 348 else 349 Builder.buildMerge(NewDstReg, Ops); 350 351 MI.eraseFromParent(); 352 replaceRegWith(MRI, DstReg, NewDstReg); 353 } 354 355 namespace { 356 357 /// Select a preference between two uses. CurrentUse is the current preference 358 /// while *ForCandidate is attributes of the candidate under consideration. 359 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 360 const LLT TyForCandidate, 361 unsigned OpcodeForCandidate, 362 MachineInstr *MIForCandidate) { 363 if (!CurrentUse.Ty.isValid()) { 364 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 365 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 366 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 367 return CurrentUse; 368 } 369 370 // We permit the extend to hoist through basic blocks but this is only 371 // sensible if the target has extending loads. If you end up lowering back 372 // into a load and extend during the legalizer then the end result is 373 // hoisting the extend up to the load. 374 375 // Prefer defined extensions to undefined extensions as these are more 376 // likely to reduce the number of instructions. 377 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 378 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 379 return CurrentUse; 380 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 381 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 382 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 383 384 // Prefer sign extensions to zero extensions as sign-extensions tend to be 385 // more expensive. 386 if (CurrentUse.Ty == TyForCandidate) { 387 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 388 OpcodeForCandidate == TargetOpcode::G_ZEXT) 389 return CurrentUse; 390 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 391 OpcodeForCandidate == TargetOpcode::G_SEXT) 392 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 393 } 394 395 // This is potentially target specific. We've chosen the largest type 396 // because G_TRUNC is usually free. One potential catch with this is that 397 // some targets have a reduced number of larger registers than smaller 398 // registers and this choice potentially increases the live-range for the 399 // larger value. 400 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 401 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 402 } 403 return CurrentUse; 404 } 405 406 /// Find a suitable place to insert some instructions and insert them. This 407 /// function accounts for special cases like inserting before a PHI node. 408 /// The current strategy for inserting before PHI's is to duplicate the 409 /// instructions for each predecessor. However, while that's ok for G_TRUNC 410 /// on most targets since it generally requires no code, other targets/cases may 411 /// want to try harder to find a dominating block. 412 static void InsertInsnsWithoutSideEffectsBeforeUse( 413 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 414 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 415 MachineOperand &UseMO)> 416 Inserter) { 417 MachineInstr &UseMI = *UseMO.getParent(); 418 419 MachineBasicBlock *InsertBB = UseMI.getParent(); 420 421 // If the use is a PHI then we want the predecessor block instead. 422 if (UseMI.isPHI()) { 423 MachineOperand *PredBB = std::next(&UseMO); 424 InsertBB = PredBB->getMBB(); 425 } 426 427 // If the block is the same block as the def then we want to insert just after 428 // the def instead of at the start of the block. 429 if (InsertBB == DefMI.getParent()) { 430 MachineBasicBlock::iterator InsertPt = &DefMI; 431 Inserter(InsertBB, std::next(InsertPt), UseMO); 432 return; 433 } 434 435 // Otherwise we want the start of the BB 436 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 437 } 438 } // end anonymous namespace 439 440 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 441 PreferredTuple Preferred; 442 if (matchCombineExtendingLoads(MI, Preferred)) { 443 applyCombineExtendingLoads(MI, Preferred); 444 return true; 445 } 446 return false; 447 } 448 449 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 450 PreferredTuple &Preferred) { 451 // We match the loads and follow the uses to the extend instead of matching 452 // the extends and following the def to the load. This is because the load 453 // must remain in the same position for correctness (unless we also add code 454 // to find a safe place to sink it) whereas the extend is freely movable. 455 // It also prevents us from duplicating the load for the volatile case or just 456 // for performance. 457 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 458 if (!LoadMI) 459 return false; 460 461 Register LoadReg = LoadMI->getDstReg(); 462 463 LLT LoadValueTy = MRI.getType(LoadReg); 464 if (!LoadValueTy.isScalar()) 465 return false; 466 467 // Most architectures are going to legalize <s8 loads into at least a 1 byte 468 // load, and the MMOs can only describe memory accesses in multiples of bytes. 469 // If we try to perform extload combining on those, we can end up with 470 // %a(s8) = extload %ptr (load 1 byte from %ptr) 471 // ... which is an illegal extload instruction. 472 if (LoadValueTy.getSizeInBits() < 8) 473 return false; 474 475 // For non power-of-2 types, they will very likely be legalized into multiple 476 // loads. Don't bother trying to match them into extending loads. 477 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 478 return false; 479 480 // Find the preferred type aside from the any-extends (unless it's the only 481 // one) and non-extending ops. We'll emit an extending load to that type and 482 // and emit a variant of (extend (trunc X)) for the others according to the 483 // relative type sizes. At the same time, pick an extend to use based on the 484 // extend involved in the chosen type. 485 unsigned PreferredOpcode = 486 isa<GLoad>(&MI) 487 ? TargetOpcode::G_ANYEXT 488 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 489 Preferred = {LLT(), PreferredOpcode, nullptr}; 490 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 491 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 492 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 493 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 494 const auto &MMO = LoadMI->getMMO(); 495 // For atomics, only form anyextending loads. 496 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 497 continue; 498 // Check for legality. 499 if (LI) { 500 LegalityQuery::MemDesc MMDesc; 501 MMDesc.MemoryTy = MMO.getMemoryType(); 502 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 503 MMDesc.Ordering = MMO.getSuccessOrdering(); 504 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 505 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 506 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 507 .Action != LegalizeActions::Legal) 508 continue; 509 } 510 Preferred = ChoosePreferredUse(Preferred, 511 MRI.getType(UseMI.getOperand(0).getReg()), 512 UseMI.getOpcode(), &UseMI); 513 } 514 } 515 516 // There were no extends 517 if (!Preferred.MI) 518 return false; 519 // It should be impossible to chose an extend without selecting a different 520 // type since by definition the result of an extend is larger. 521 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 522 523 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 524 return true; 525 } 526 527 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 528 PreferredTuple &Preferred) { 529 // Rewrite the load to the chosen extending load. 530 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 531 532 // Inserter to insert a truncate back to the original type at a given point 533 // with some basic CSE to limit truncate duplication to one per BB. 534 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 535 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 536 MachineBasicBlock::iterator InsertBefore, 537 MachineOperand &UseMO) { 538 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 539 if (PreviouslyEmitted) { 540 Observer.changingInstr(*UseMO.getParent()); 541 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 542 Observer.changedInstr(*UseMO.getParent()); 543 return; 544 } 545 546 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 547 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 548 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 549 EmittedInsns[InsertIntoBB] = NewMI; 550 replaceRegOpWith(MRI, UseMO, NewDstReg); 551 }; 552 553 Observer.changingInstr(MI); 554 MI.setDesc( 555 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 556 ? TargetOpcode::G_SEXTLOAD 557 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 558 ? TargetOpcode::G_ZEXTLOAD 559 : TargetOpcode::G_LOAD)); 560 561 // Rewrite all the uses to fix up the types. 562 auto &LoadValue = MI.getOperand(0); 563 SmallVector<MachineOperand *, 4> Uses; 564 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 565 Uses.push_back(&UseMO); 566 567 for (auto *UseMO : Uses) { 568 MachineInstr *UseMI = UseMO->getParent(); 569 570 // If the extend is compatible with the preferred extend then we should fix 571 // up the type and extend so that it uses the preferred use. 572 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 573 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 574 Register UseDstReg = UseMI->getOperand(0).getReg(); 575 MachineOperand &UseSrcMO = UseMI->getOperand(1); 576 const LLT UseDstTy = MRI.getType(UseDstReg); 577 if (UseDstReg != ChosenDstReg) { 578 if (Preferred.Ty == UseDstTy) { 579 // If the use has the same type as the preferred use, then merge 580 // the vregs and erase the extend. For example: 581 // %1:_(s8) = G_LOAD ... 582 // %2:_(s32) = G_SEXT %1(s8) 583 // %3:_(s32) = G_ANYEXT %1(s8) 584 // ... = ... %3(s32) 585 // rewrites to: 586 // %2:_(s32) = G_SEXTLOAD ... 587 // ... = ... %2(s32) 588 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 589 Observer.erasingInstr(*UseMO->getParent()); 590 UseMO->getParent()->eraseFromParent(); 591 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 592 // If the preferred size is smaller, then keep the extend but extend 593 // from the result of the extending load. For example: 594 // %1:_(s8) = G_LOAD ... 595 // %2:_(s32) = G_SEXT %1(s8) 596 // %3:_(s64) = G_ANYEXT %1(s8) 597 // ... = ... %3(s64) 598 /// rewrites to: 599 // %2:_(s32) = G_SEXTLOAD ... 600 // %3:_(s64) = G_ANYEXT %2:_(s32) 601 // ... = ... %3(s64) 602 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 603 } else { 604 // If the preferred size is large, then insert a truncate. For 605 // example: 606 // %1:_(s8) = G_LOAD ... 607 // %2:_(s64) = G_SEXT %1(s8) 608 // %3:_(s32) = G_ZEXT %1(s8) 609 // ... = ... %3(s32) 610 /// rewrites to: 611 // %2:_(s64) = G_SEXTLOAD ... 612 // %4:_(s8) = G_TRUNC %2:_(s32) 613 // %3:_(s64) = G_ZEXT %2:_(s8) 614 // ... = ... %3(s64) 615 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 616 InsertTruncAt); 617 } 618 continue; 619 } 620 // The use is (one of) the uses of the preferred use we chose earlier. 621 // We're going to update the load to def this value later so just erase 622 // the old extend. 623 Observer.erasingInstr(*UseMO->getParent()); 624 UseMO->getParent()->eraseFromParent(); 625 continue; 626 } 627 628 // The use isn't an extend. Truncate back to the type we originally loaded. 629 // This is free on many targets. 630 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 631 } 632 633 MI.getOperand(0).setReg(ChosenDstReg); 634 Observer.changedInstr(MI); 635 } 636 637 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 638 const MachineInstr &UseMI) { 639 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 640 "shouldn't consider debug uses"); 641 assert(DefMI.getParent() == UseMI.getParent()); 642 if (&DefMI == &UseMI) 643 return false; 644 const MachineBasicBlock &MBB = *DefMI.getParent(); 645 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 646 return &MI == &DefMI || &MI == &UseMI; 647 }); 648 if (DefOrUse == MBB.end()) 649 llvm_unreachable("Block must contain both DefMI and UseMI!"); 650 return &*DefOrUse == &DefMI; 651 } 652 653 bool CombinerHelper::dominates(const MachineInstr &DefMI, 654 const MachineInstr &UseMI) { 655 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 656 "shouldn't consider debug uses"); 657 if (MDT) 658 return MDT->dominates(&DefMI, &UseMI); 659 else if (DefMI.getParent() != UseMI.getParent()) 660 return false; 661 662 return isPredecessor(DefMI, UseMI); 663 } 664 665 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 666 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 667 Register SrcReg = MI.getOperand(1).getReg(); 668 Register LoadUser = SrcReg; 669 670 if (MRI.getType(SrcReg).isVector()) 671 return false; 672 673 Register TruncSrc; 674 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 675 LoadUser = TruncSrc; 676 677 uint64_t SizeInBits = MI.getOperand(2).getImm(); 678 // If the source is a G_SEXTLOAD from the same bit width, then we don't 679 // need any extend at all, just a truncate. 680 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 681 // If truncating more than the original extended value, abort. 682 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 683 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 684 return false; 685 if (LoadSizeBits == SizeInBits) 686 return true; 687 } 688 return false; 689 } 690 691 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 692 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 693 Builder.setInstrAndDebugLoc(MI); 694 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 695 MI.eraseFromParent(); 696 } 697 698 bool CombinerHelper::matchSextInRegOfLoad( 699 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 700 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 701 702 // Only supports scalars for now. 703 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 704 return false; 705 706 Register SrcReg = MI.getOperand(1).getReg(); 707 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 708 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || 709 !LoadDef->isSimple()) 710 return false; 711 712 // If the sign extend extends from a narrower width than the load's width, 713 // then we can narrow the load width when we combine to a G_SEXTLOAD. 714 // Avoid widening the load at all. 715 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), 716 LoadDef->getMemSizeInBits()); 717 718 // Don't generate G_SEXTLOADs with a < 1 byte width. 719 if (NewSizeBits < 8) 720 return false; 721 // Don't bother creating a non-power-2 sextload, it will likely be broken up 722 // anyway for most targets. 723 if (!isPowerOf2_32(NewSizeBits)) 724 return false; 725 726 const MachineMemOperand &MMO = LoadDef->getMMO(); 727 LegalityQuery::MemDesc MMDesc; 728 MMDesc.MemoryTy = LLT::scalar(NewSizeBits); 729 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 730 MMDesc.Ordering = MMO.getSuccessOrdering(); 731 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, 732 {MRI.getType(LoadDef->getDstReg()), 733 MRI.getType(LoadDef->getPointerReg())}, 734 {MMDesc}})) 735 return false; 736 737 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 738 return true; 739 } 740 741 void CombinerHelper::applySextInRegOfLoad( 742 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 743 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 744 Register LoadReg; 745 unsigned ScalarSizeBits; 746 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 747 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 748 749 // If we have the following: 750 // %ld = G_LOAD %ptr, (load 2) 751 // %ext = G_SEXT_INREG %ld, 8 752 // ==> 753 // %ld = G_SEXTLOAD %ptr (load 1) 754 755 auto &MMO = LoadDef->getMMO(); 756 Builder.setInstrAndDebugLoc(*LoadDef); 757 auto &MF = Builder.getMF(); 758 auto PtrInfo = MMO.getPointerInfo(); 759 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 760 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 761 LoadDef->getPointerReg(), *NewMMO); 762 MI.eraseFromParent(); 763 } 764 765 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 766 Register &Base, Register &Offset) { 767 auto &MF = *MI.getParent()->getParent(); 768 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 769 770 #ifndef NDEBUG 771 unsigned Opcode = MI.getOpcode(); 772 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 773 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 774 #endif 775 776 Base = MI.getOperand(1).getReg(); 777 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 778 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 779 return false; 780 781 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 782 // FIXME: The following use traversal needs a bail out for patholigical cases. 783 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 784 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 785 continue; 786 787 Offset = Use.getOperand(2).getReg(); 788 if (!ForceLegalIndexing && 789 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 790 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 791 << Use); 792 continue; 793 } 794 795 // Make sure the offset calculation is before the potentially indexed op. 796 // FIXME: we really care about dependency here. The offset calculation might 797 // be movable. 798 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 799 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 800 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 801 << Use); 802 continue; 803 } 804 805 // FIXME: check whether all uses of Base are load/store with foldable 806 // addressing modes. If so, using the normal addr-modes is better than 807 // forming an indexed one. 808 809 bool MemOpDominatesAddrUses = true; 810 for (auto &PtrAddUse : 811 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 812 if (!dominates(MI, PtrAddUse)) { 813 MemOpDominatesAddrUses = false; 814 break; 815 } 816 } 817 818 if (!MemOpDominatesAddrUses) { 819 LLVM_DEBUG( 820 dbgs() << " Ignoring candidate as memop does not dominate uses: " 821 << Use); 822 continue; 823 } 824 825 LLVM_DEBUG(dbgs() << " Found match: " << Use); 826 Addr = Use.getOperand(0).getReg(); 827 return true; 828 } 829 830 return false; 831 } 832 833 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 834 Register &Base, Register &Offset) { 835 auto &MF = *MI.getParent()->getParent(); 836 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 837 838 #ifndef NDEBUG 839 unsigned Opcode = MI.getOpcode(); 840 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 841 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 842 #endif 843 844 Addr = MI.getOperand(1).getReg(); 845 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 846 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 847 return false; 848 849 Base = AddrDef->getOperand(1).getReg(); 850 Offset = AddrDef->getOperand(2).getReg(); 851 852 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 853 854 if (!ForceLegalIndexing && 855 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 856 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 857 return false; 858 } 859 860 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 861 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 862 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 863 return false; 864 } 865 866 if (MI.getOpcode() == TargetOpcode::G_STORE) { 867 // Would require a copy. 868 if (Base == MI.getOperand(0).getReg()) { 869 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 870 return false; 871 } 872 873 // We're expecting one use of Addr in MI, but it could also be the 874 // value stored, which isn't actually dominated by the instruction. 875 if (MI.getOperand(0).getReg() == Addr) { 876 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 877 return false; 878 } 879 } 880 881 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 882 // That might allow us to end base's liveness here by adjusting the constant. 883 884 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 885 if (!dominates(MI, UseMI)) { 886 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 887 return false; 888 } 889 } 890 891 return true; 892 } 893 894 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 895 IndexedLoadStoreMatchInfo MatchInfo; 896 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 897 applyCombineIndexedLoadStore(MI, MatchInfo); 898 return true; 899 } 900 return false; 901 } 902 903 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 904 unsigned Opcode = MI.getOpcode(); 905 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 906 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 907 return false; 908 909 // For now, no targets actually support these opcodes so don't waste time 910 // running these unless we're forced to for testing. 911 if (!ForceLegalIndexing) 912 return false; 913 914 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 915 MatchInfo.Offset); 916 if (!MatchInfo.IsPre && 917 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 918 MatchInfo.Offset)) 919 return false; 920 921 return true; 922 } 923 924 void CombinerHelper::applyCombineIndexedLoadStore( 925 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 926 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 927 MachineIRBuilder MIRBuilder(MI); 928 unsigned Opcode = MI.getOpcode(); 929 bool IsStore = Opcode == TargetOpcode::G_STORE; 930 unsigned NewOpcode; 931 switch (Opcode) { 932 case TargetOpcode::G_LOAD: 933 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 934 break; 935 case TargetOpcode::G_SEXTLOAD: 936 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 937 break; 938 case TargetOpcode::G_ZEXTLOAD: 939 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 940 break; 941 case TargetOpcode::G_STORE: 942 NewOpcode = TargetOpcode::G_INDEXED_STORE; 943 break; 944 default: 945 llvm_unreachable("Unknown load/store opcode"); 946 } 947 948 auto MIB = MIRBuilder.buildInstr(NewOpcode); 949 if (IsStore) { 950 MIB.addDef(MatchInfo.Addr); 951 MIB.addUse(MI.getOperand(0).getReg()); 952 } else { 953 MIB.addDef(MI.getOperand(0).getReg()); 954 MIB.addDef(MatchInfo.Addr); 955 } 956 957 MIB.addUse(MatchInfo.Base); 958 MIB.addUse(MatchInfo.Offset); 959 MIB.addImm(MatchInfo.IsPre); 960 MI.eraseFromParent(); 961 AddrDef.eraseFromParent(); 962 963 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 964 } 965 966 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 967 MachineInstr *&OtherMI) { 968 unsigned Opcode = MI.getOpcode(); 969 bool IsDiv, IsSigned; 970 971 switch (Opcode) { 972 default: 973 llvm_unreachable("Unexpected opcode!"); 974 case TargetOpcode::G_SDIV: 975 case TargetOpcode::G_UDIV: { 976 IsDiv = true; 977 IsSigned = Opcode == TargetOpcode::G_SDIV; 978 break; 979 } 980 case TargetOpcode::G_SREM: 981 case TargetOpcode::G_UREM: { 982 IsDiv = false; 983 IsSigned = Opcode == TargetOpcode::G_SREM; 984 break; 985 } 986 } 987 988 Register Src1 = MI.getOperand(1).getReg(); 989 unsigned DivOpcode, RemOpcode, DivremOpcode; 990 if (IsSigned) { 991 DivOpcode = TargetOpcode::G_SDIV; 992 RemOpcode = TargetOpcode::G_SREM; 993 DivremOpcode = TargetOpcode::G_SDIVREM; 994 } else { 995 DivOpcode = TargetOpcode::G_UDIV; 996 RemOpcode = TargetOpcode::G_UREM; 997 DivremOpcode = TargetOpcode::G_UDIVREM; 998 } 999 1000 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 1001 return false; 1002 1003 // Combine: 1004 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1005 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1006 // into: 1007 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1008 1009 // Combine: 1010 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1011 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1012 // into: 1013 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1014 1015 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1016 if (MI.getParent() == UseMI.getParent() && 1017 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1018 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1019 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1020 OtherMI = &UseMI; 1021 return true; 1022 } 1023 } 1024 1025 return false; 1026 } 1027 1028 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1029 MachineInstr *&OtherMI) { 1030 unsigned Opcode = MI.getOpcode(); 1031 assert(OtherMI && "OtherMI shouldn't be empty."); 1032 1033 Register DestDivReg, DestRemReg; 1034 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1035 DestDivReg = MI.getOperand(0).getReg(); 1036 DestRemReg = OtherMI->getOperand(0).getReg(); 1037 } else { 1038 DestDivReg = OtherMI->getOperand(0).getReg(); 1039 DestRemReg = MI.getOperand(0).getReg(); 1040 } 1041 1042 bool IsSigned = 1043 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1044 1045 // Check which instruction is first in the block so we don't break def-use 1046 // deps by "moving" the instruction incorrectly. 1047 if (dominates(MI, *OtherMI)) 1048 Builder.setInstrAndDebugLoc(MI); 1049 else 1050 Builder.setInstrAndDebugLoc(*OtherMI); 1051 1052 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1053 : TargetOpcode::G_UDIVREM, 1054 {DestDivReg, DestRemReg}, 1055 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1056 MI.eraseFromParent(); 1057 OtherMI->eraseFromParent(); 1058 } 1059 1060 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1061 MachineInstr *&BrCond) { 1062 assert(MI.getOpcode() == TargetOpcode::G_BR); 1063 1064 // Try to match the following: 1065 // bb1: 1066 // G_BRCOND %c1, %bb2 1067 // G_BR %bb3 1068 // bb2: 1069 // ... 1070 // bb3: 1071 1072 // The above pattern does not have a fall through to the successor bb2, always 1073 // resulting in a branch no matter which path is taken. Here we try to find 1074 // and replace that pattern with conditional branch to bb3 and otherwise 1075 // fallthrough to bb2. This is generally better for branch predictors. 1076 1077 MachineBasicBlock *MBB = MI.getParent(); 1078 MachineBasicBlock::iterator BrIt(MI); 1079 if (BrIt == MBB->begin()) 1080 return false; 1081 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1082 1083 BrCond = &*std::prev(BrIt); 1084 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1085 return false; 1086 1087 // Check that the next block is the conditional branch target. Also make sure 1088 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1089 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1090 return BrCondTarget != MI.getOperand(0).getMBB() && 1091 MBB->isLayoutSuccessor(BrCondTarget); 1092 } 1093 1094 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1095 MachineInstr *&BrCond) { 1096 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1097 Builder.setInstrAndDebugLoc(*BrCond); 1098 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1099 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1100 // this to i1 only since we might not know for sure what kind of 1101 // compare generated the condition value. 1102 auto True = Builder.buildConstant( 1103 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1104 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1105 1106 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1107 Observer.changingInstr(MI); 1108 MI.getOperand(0).setMBB(FallthroughBB); 1109 Observer.changedInstr(MI); 1110 1111 // Change the conditional branch to use the inverted condition and 1112 // new target block. 1113 Observer.changingInstr(*BrCond); 1114 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1115 BrCond->getOperand(1).setMBB(BrTarget); 1116 Observer.changedInstr(*BrCond); 1117 } 1118 1119 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 1120 // On Darwin, -Os means optimize for size without hurting performance, so 1121 // only really optimize for size when -Oz (MinSize) is used. 1122 if (MF.getTarget().getTargetTriple().isOSDarwin()) 1123 return MF.getFunction().hasMinSize(); 1124 return MF.getFunction().hasOptSize(); 1125 } 1126 1127 // Returns a list of types to use for memory op lowering in MemOps. A partial 1128 // port of findOptimalMemOpLowering in TargetLowering. 1129 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 1130 unsigned Limit, const MemOp &Op, 1131 unsigned DstAS, unsigned SrcAS, 1132 const AttributeList &FuncAttributes, 1133 const TargetLowering &TLI) { 1134 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 1135 return false; 1136 1137 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 1138 1139 if (Ty == LLT()) { 1140 // Use the largest scalar type whose alignment constraints are satisfied. 1141 // We only need to check DstAlign here as SrcAlign is always greater or 1142 // equal to DstAlign (or zero). 1143 Ty = LLT::scalar(64); 1144 if (Op.isFixedDstAlign()) 1145 while (Op.getDstAlign() < Ty.getSizeInBytes() && 1146 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 1147 Ty = LLT::scalar(Ty.getSizeInBytes()); 1148 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 1149 // FIXME: check for the largest legal type we can load/store to. 1150 } 1151 1152 unsigned NumMemOps = 0; 1153 uint64_t Size = Op.size(); 1154 while (Size) { 1155 unsigned TySize = Ty.getSizeInBytes(); 1156 while (TySize > Size) { 1157 // For now, only use non-vector load / store's for the left-over pieces. 1158 LLT NewTy = Ty; 1159 // FIXME: check for mem op safety and legality of the types. Not all of 1160 // SDAGisms map cleanly to GISel concepts. 1161 if (NewTy.isVector()) 1162 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 1163 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 1164 unsigned NewTySize = NewTy.getSizeInBytes(); 1165 assert(NewTySize > 0 && "Could not find appropriate type"); 1166 1167 // If the new LLT cannot cover all of the remaining bits, then consider 1168 // issuing a (or a pair of) unaligned and overlapping load / store. 1169 bool Fast; 1170 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 1171 MVT VT = getMVTForLLT(Ty); 1172 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 1173 TLI.allowsMisalignedMemoryAccesses( 1174 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 1175 MachineMemOperand::MONone, &Fast) && 1176 Fast) 1177 TySize = Size; 1178 else { 1179 Ty = NewTy; 1180 TySize = NewTySize; 1181 } 1182 } 1183 1184 if (++NumMemOps > Limit) 1185 return false; 1186 1187 MemOps.push_back(Ty); 1188 Size -= TySize; 1189 } 1190 1191 return true; 1192 } 1193 1194 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1195 if (Ty.isVector()) 1196 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1197 Ty.getNumElements()); 1198 return IntegerType::get(C, Ty.getSizeInBits()); 1199 } 1200 1201 // Get a vectorized representation of the memset value operand, GISel edition. 1202 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 1203 MachineRegisterInfo &MRI = *MIB.getMRI(); 1204 unsigned NumBits = Ty.getScalarSizeInBits(); 1205 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1206 if (!Ty.isVector() && ValVRegAndVal) { 1207 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 1208 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 1209 return MIB.buildConstant(Ty, SplatVal).getReg(0); 1210 } 1211 1212 // Extend the byte value to the larger type, and then multiply by a magic 1213 // value 0x010101... in order to replicate it across every byte. 1214 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 1215 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 1216 return MIB.buildConstant(Ty, 0).getReg(0); 1217 } 1218 1219 LLT ExtType = Ty.getScalarType(); 1220 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 1221 if (NumBits > 8) { 1222 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 1223 auto MagicMI = MIB.buildConstant(ExtType, Magic); 1224 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 1225 } 1226 1227 // For vector types create a G_BUILD_VECTOR. 1228 if (Ty.isVector()) 1229 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 1230 1231 return Val; 1232 } 1233 1234 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 1235 Register Val, uint64_t KnownLen, 1236 Align Alignment, bool IsVolatile) { 1237 auto &MF = *MI.getParent()->getParent(); 1238 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1239 auto &DL = MF.getDataLayout(); 1240 LLVMContext &C = MF.getFunction().getContext(); 1241 1242 assert(KnownLen != 0 && "Have a zero length memset length!"); 1243 1244 bool DstAlignCanChange = false; 1245 MachineFrameInfo &MFI = MF.getFrameInfo(); 1246 bool OptSize = shouldLowerMemFuncForSize(MF); 1247 1248 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1249 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1250 DstAlignCanChange = true; 1251 1252 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1253 std::vector<LLT> MemOps; 1254 1255 const auto &DstMMO = **MI.memoperands_begin(); 1256 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1257 1258 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1259 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1260 1261 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1262 MemOp::Set(KnownLen, DstAlignCanChange, 1263 Alignment, 1264 /*IsZeroMemset=*/IsZeroVal, 1265 /*IsVolatile=*/IsVolatile), 1266 DstPtrInfo.getAddrSpace(), ~0u, 1267 MF.getFunction().getAttributes(), TLI)) 1268 return false; 1269 1270 if (DstAlignCanChange) { 1271 // Get an estimate of the type from the LLT. 1272 Type *IRTy = getTypeForLLT(MemOps[0], C); 1273 Align NewAlign = DL.getABITypeAlign(IRTy); 1274 if (NewAlign > Alignment) { 1275 Alignment = NewAlign; 1276 unsigned FI = FIDef->getOperand(1).getIndex(); 1277 // Give the stack frame object a larger alignment if needed. 1278 if (MFI.getObjectAlign(FI) < Alignment) 1279 MFI.setObjectAlignment(FI, Alignment); 1280 } 1281 } 1282 1283 MachineIRBuilder MIB(MI); 1284 // Find the largest store and generate the bit pattern for it. 1285 LLT LargestTy = MemOps[0]; 1286 for (unsigned i = 1; i < MemOps.size(); i++) 1287 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1288 LargestTy = MemOps[i]; 1289 1290 // The memset stored value is always defined as an s8, so in order to make it 1291 // work with larger store types we need to repeat the bit pattern across the 1292 // wider type. 1293 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1294 1295 if (!MemSetValue) 1296 return false; 1297 1298 // Generate the stores. For each store type in the list, we generate the 1299 // matching store of that type to the destination address. 1300 LLT PtrTy = MRI.getType(Dst); 1301 unsigned DstOff = 0; 1302 unsigned Size = KnownLen; 1303 for (unsigned I = 0; I < MemOps.size(); I++) { 1304 LLT Ty = MemOps[I]; 1305 unsigned TySize = Ty.getSizeInBytes(); 1306 if (TySize > Size) { 1307 // Issuing an unaligned load / store pair that overlaps with the previous 1308 // pair. Adjust the offset accordingly. 1309 assert(I == MemOps.size() - 1 && I != 0); 1310 DstOff -= TySize - Size; 1311 } 1312 1313 // If this store is smaller than the largest store see whether we can get 1314 // the smaller value for free with a truncate. 1315 Register Value = MemSetValue; 1316 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1317 MVT VT = getMVTForLLT(Ty); 1318 MVT LargestVT = getMVTForLLT(LargestTy); 1319 if (!LargestTy.isVector() && !Ty.isVector() && 1320 TLI.isTruncateFree(LargestVT, VT)) 1321 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1322 else 1323 Value = getMemsetValue(Val, Ty, MIB); 1324 if (!Value) 1325 return false; 1326 } 1327 1328 auto *StoreMMO = 1329 MF.getMachineMemOperand(&DstMMO, DstOff, Ty); 1330 1331 Register Ptr = Dst; 1332 if (DstOff != 0) { 1333 auto Offset = 1334 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1335 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1336 } 1337 1338 MIB.buildStore(Value, Ptr, *StoreMMO); 1339 DstOff += Ty.getSizeInBytes(); 1340 Size -= TySize; 1341 } 1342 1343 MI.eraseFromParent(); 1344 return true; 1345 } 1346 1347 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1348 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 1349 1350 Register Dst = MI.getOperand(0).getReg(); 1351 Register Src = MI.getOperand(1).getReg(); 1352 Register Len = MI.getOperand(2).getReg(); 1353 1354 const auto *MMOIt = MI.memoperands_begin(); 1355 const MachineMemOperand *MemOp = *MMOIt; 1356 bool IsVolatile = MemOp->isVolatile(); 1357 1358 // See if this is a constant length copy 1359 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1360 // FIXME: support dynamically sized G_MEMCPY_INLINE 1361 assert(LenVRegAndVal.hasValue() && 1362 "inline memcpy with dynamic size is not yet supported"); 1363 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 1364 if (KnownLen == 0) { 1365 MI.eraseFromParent(); 1366 return true; 1367 } 1368 1369 const auto &DstMMO = **MI.memoperands_begin(); 1370 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1371 Align DstAlign = DstMMO.getBaseAlign(); 1372 Align SrcAlign = SrcMMO.getBaseAlign(); 1373 1374 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 1375 IsVolatile); 1376 } 1377 1378 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI, Register Dst, 1379 Register Src, uint64_t KnownLen, 1380 Align DstAlign, Align SrcAlign, 1381 bool IsVolatile) { 1382 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 1383 return optimizeMemcpy(MI, Dst, Src, KnownLen, 1384 std::numeric_limits<uint64_t>::max(), DstAlign, 1385 SrcAlign, IsVolatile); 1386 } 1387 1388 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1389 Register Src, uint64_t KnownLen, 1390 uint64_t Limit, Align DstAlign, 1391 Align SrcAlign, bool IsVolatile) { 1392 auto &MF = *MI.getParent()->getParent(); 1393 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1394 auto &DL = MF.getDataLayout(); 1395 LLVMContext &C = MF.getFunction().getContext(); 1396 1397 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1398 1399 bool DstAlignCanChange = false; 1400 MachineFrameInfo &MFI = MF.getFrameInfo(); 1401 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1402 1403 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1404 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1405 DstAlignCanChange = true; 1406 1407 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1408 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1409 // if the memcpy is in a tail call position. 1410 1411 std::vector<LLT> MemOps; 1412 1413 const auto &DstMMO = **MI.memoperands_begin(); 1414 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1415 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1416 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1417 1418 if (!findGISelOptimalMemOpLowering( 1419 MemOps, Limit, 1420 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1421 IsVolatile), 1422 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1423 MF.getFunction().getAttributes(), TLI)) 1424 return false; 1425 1426 if (DstAlignCanChange) { 1427 // Get an estimate of the type from the LLT. 1428 Type *IRTy = getTypeForLLT(MemOps[0], C); 1429 Align NewAlign = DL.getABITypeAlign(IRTy); 1430 1431 // Don't promote to an alignment that would require dynamic stack 1432 // realignment. 1433 if (!TRI->hasStackRealignment(MF)) 1434 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1435 NewAlign = NewAlign / 2; 1436 1437 if (NewAlign > Alignment) { 1438 Alignment = NewAlign; 1439 unsigned FI = FIDef->getOperand(1).getIndex(); 1440 // Give the stack frame object a larger alignment if needed. 1441 if (MFI.getObjectAlign(FI) < Alignment) 1442 MFI.setObjectAlignment(FI, Alignment); 1443 } 1444 } 1445 1446 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1447 1448 MachineIRBuilder MIB(MI); 1449 // Now we need to emit a pair of load and stores for each of the types we've 1450 // collected. I.e. for each type, generate a load from the source pointer of 1451 // that type width, and then generate a corresponding store to the dest buffer 1452 // of that value loaded. This can result in a sequence of loads and stores 1453 // mixed types, depending on what the target specifies as good types to use. 1454 unsigned CurrOffset = 0; 1455 LLT PtrTy = MRI.getType(Src); 1456 unsigned Size = KnownLen; 1457 for (auto CopyTy : MemOps) { 1458 // Issuing an unaligned load / store pair that overlaps with the previous 1459 // pair. Adjust the offset accordingly. 1460 if (CopyTy.getSizeInBytes() > Size) 1461 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1462 1463 // Construct MMOs for the accesses. 1464 auto *LoadMMO = 1465 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1466 auto *StoreMMO = 1467 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1468 1469 // Create the load. 1470 Register LoadPtr = Src; 1471 Register Offset; 1472 if (CurrOffset != 0) { 1473 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1474 .getReg(0); 1475 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1476 } 1477 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1478 1479 // Create the store. 1480 Register StorePtr = 1481 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1482 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1483 CurrOffset += CopyTy.getSizeInBytes(); 1484 Size -= CopyTy.getSizeInBytes(); 1485 } 1486 1487 MI.eraseFromParent(); 1488 return true; 1489 } 1490 1491 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1492 Register Src, uint64_t KnownLen, 1493 Align DstAlign, Align SrcAlign, 1494 bool IsVolatile) { 1495 auto &MF = *MI.getParent()->getParent(); 1496 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1497 auto &DL = MF.getDataLayout(); 1498 LLVMContext &C = MF.getFunction().getContext(); 1499 1500 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1501 1502 bool DstAlignCanChange = false; 1503 MachineFrameInfo &MFI = MF.getFrameInfo(); 1504 bool OptSize = shouldLowerMemFuncForSize(MF); 1505 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1506 1507 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1508 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1509 DstAlignCanChange = true; 1510 1511 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1512 std::vector<LLT> MemOps; 1513 1514 const auto &DstMMO = **MI.memoperands_begin(); 1515 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1516 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1517 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1518 1519 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1520 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1521 // same thing here. 1522 if (!findGISelOptimalMemOpLowering( 1523 MemOps, Limit, 1524 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1525 /*IsVolatile*/ true), 1526 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1527 MF.getFunction().getAttributes(), TLI)) 1528 return false; 1529 1530 if (DstAlignCanChange) { 1531 // Get an estimate of the type from the LLT. 1532 Type *IRTy = getTypeForLLT(MemOps[0], C); 1533 Align NewAlign = DL.getABITypeAlign(IRTy); 1534 1535 // Don't promote to an alignment that would require dynamic stack 1536 // realignment. 1537 if (!TRI->hasStackRealignment(MF)) 1538 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1539 NewAlign = NewAlign / 2; 1540 1541 if (NewAlign > Alignment) { 1542 Alignment = NewAlign; 1543 unsigned FI = FIDef->getOperand(1).getIndex(); 1544 // Give the stack frame object a larger alignment if needed. 1545 if (MFI.getObjectAlign(FI) < Alignment) 1546 MFI.setObjectAlignment(FI, Alignment); 1547 } 1548 } 1549 1550 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1551 1552 MachineIRBuilder MIB(MI); 1553 // Memmove requires that we perform the loads first before issuing the stores. 1554 // Apart from that, this loop is pretty much doing the same thing as the 1555 // memcpy codegen function. 1556 unsigned CurrOffset = 0; 1557 LLT PtrTy = MRI.getType(Src); 1558 SmallVector<Register, 16> LoadVals; 1559 for (auto CopyTy : MemOps) { 1560 // Construct MMO for the load. 1561 auto *LoadMMO = 1562 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1563 1564 // Create the load. 1565 Register LoadPtr = Src; 1566 if (CurrOffset != 0) { 1567 auto Offset = 1568 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1569 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1570 } 1571 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1572 CurrOffset += CopyTy.getSizeInBytes(); 1573 } 1574 1575 CurrOffset = 0; 1576 for (unsigned I = 0; I < MemOps.size(); ++I) { 1577 LLT CopyTy = MemOps[I]; 1578 // Now store the values loaded. 1579 auto *StoreMMO = 1580 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1581 1582 Register StorePtr = Dst; 1583 if (CurrOffset != 0) { 1584 auto Offset = 1585 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1586 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1587 } 1588 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1589 CurrOffset += CopyTy.getSizeInBytes(); 1590 } 1591 MI.eraseFromParent(); 1592 return true; 1593 } 1594 1595 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1596 const unsigned Opc = MI.getOpcode(); 1597 // This combine is fairly complex so it's not written with a separate 1598 // matcher function. 1599 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 1600 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); 1601 1602 auto MMOIt = MI.memoperands_begin(); 1603 const MachineMemOperand *MemOp = *MMOIt; 1604 1605 Align DstAlign = MemOp->getBaseAlign(); 1606 Align SrcAlign; 1607 Register Dst = MI.getOperand(0).getReg(); 1608 Register Src = MI.getOperand(1).getReg(); 1609 Register Len = MI.getOperand(2).getReg(); 1610 1611 if (Opc != TargetOpcode::G_MEMSET) { 1612 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1613 MemOp = *(++MMOIt); 1614 SrcAlign = MemOp->getBaseAlign(); 1615 } 1616 1617 // See if this is a constant length copy 1618 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1619 if (!LenVRegAndVal) 1620 return false; // Leave it to the legalizer to lower it to a libcall. 1621 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 1622 1623 if (KnownLen == 0) { 1624 MI.eraseFromParent(); 1625 return true; 1626 } 1627 1628 bool IsVolatile = MemOp->isVolatile(); 1629 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 1630 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 1631 IsVolatile); 1632 1633 // Don't try to optimize volatile. 1634 if (IsVolatile) 1635 return false; 1636 1637 if (MaxLen && KnownLen > MaxLen) 1638 return false; 1639 1640 if (Opc == TargetOpcode::G_MEMCPY) { 1641 auto &MF = *MI.getParent()->getParent(); 1642 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1643 bool OptSize = shouldLowerMemFuncForSize(MF); 1644 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1645 return optimizeMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 1646 IsVolatile); 1647 } 1648 if (Opc == TargetOpcode::G_MEMMOVE) 1649 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1650 if (Opc == TargetOpcode::G_MEMSET) 1651 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1652 return false; 1653 } 1654 1655 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1656 const Register Op, 1657 const MachineRegisterInfo &MRI) { 1658 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1659 if (!MaybeCst) 1660 return None; 1661 1662 APFloat V = MaybeCst->getValueAPF(); 1663 switch (Opcode) { 1664 default: 1665 llvm_unreachable("Unexpected opcode!"); 1666 case TargetOpcode::G_FNEG: { 1667 V.changeSign(); 1668 return V; 1669 } 1670 case TargetOpcode::G_FABS: { 1671 V.clearSign(); 1672 return V; 1673 } 1674 case TargetOpcode::G_FPTRUNC: 1675 break; 1676 case TargetOpcode::G_FSQRT: { 1677 bool Unused; 1678 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1679 V = APFloat(sqrt(V.convertToDouble())); 1680 break; 1681 } 1682 case TargetOpcode::G_FLOG2: { 1683 bool Unused; 1684 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1685 V = APFloat(log2(V.convertToDouble())); 1686 break; 1687 } 1688 } 1689 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1690 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1691 // and `G_FLOG2` reach here. 1692 bool Unused; 1693 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1694 return V; 1695 } 1696 1697 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1698 Optional<APFloat> &Cst) { 1699 Register DstReg = MI.getOperand(0).getReg(); 1700 Register SrcReg = MI.getOperand(1).getReg(); 1701 LLT DstTy = MRI.getType(DstReg); 1702 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1703 return Cst.hasValue(); 1704 } 1705 1706 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1707 Optional<APFloat> &Cst) { 1708 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1709 Builder.setInstrAndDebugLoc(MI); 1710 MachineFunction &MF = Builder.getMF(); 1711 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1712 Register DstReg = MI.getOperand(0).getReg(); 1713 Builder.buildFConstant(DstReg, *FPVal); 1714 MI.eraseFromParent(); 1715 } 1716 1717 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1718 PtrAddChain &MatchInfo) { 1719 // We're trying to match the following pattern: 1720 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1721 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1722 // --> 1723 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1724 1725 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1726 return false; 1727 1728 Register Add2 = MI.getOperand(1).getReg(); 1729 Register Imm1 = MI.getOperand(2).getReg(); 1730 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1731 if (!MaybeImmVal) 1732 return false; 1733 1734 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1735 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1736 return false; 1737 1738 Register Base = Add2Def->getOperand(1).getReg(); 1739 Register Imm2 = Add2Def->getOperand(2).getReg(); 1740 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1741 if (!MaybeImm2Val) 1742 return false; 1743 1744 // Check if the new combined immediate forms an illegal addressing mode. 1745 // Do not combine if it was legal before but would get illegal. 1746 // To do so, we need to find a load/store user of the pointer to get 1747 // the access type. 1748 Type *AccessTy = nullptr; 1749 auto &MF = *MI.getMF(); 1750 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1751 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1752 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1753 MF.getFunction().getContext()); 1754 break; 1755 } 1756 } 1757 TargetLoweringBase::AddrMode AMNew; 1758 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1759 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1760 if (AccessTy) { 1761 AMNew.HasBaseReg = true; 1762 TargetLoweringBase::AddrMode AMOld; 1763 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); 1764 AMOld.HasBaseReg = true; 1765 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1766 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1767 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1768 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1769 return false; 1770 } 1771 1772 // Pass the combined immediate to the apply function. 1773 MatchInfo.Imm = AMNew.BaseOffs; 1774 MatchInfo.Base = Base; 1775 MatchInfo.Bank = getRegBank(Imm2); 1776 return true; 1777 } 1778 1779 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1780 PtrAddChain &MatchInfo) { 1781 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1782 MachineIRBuilder MIB(MI); 1783 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1784 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1785 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1786 Observer.changingInstr(MI); 1787 MI.getOperand(1).setReg(MatchInfo.Base); 1788 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1789 Observer.changedInstr(MI); 1790 } 1791 1792 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1793 RegisterImmPair &MatchInfo) { 1794 // We're trying to match the following pattern with any of 1795 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1796 // %t1 = SHIFT %base, G_CONSTANT imm1 1797 // %root = SHIFT %t1, G_CONSTANT imm2 1798 // --> 1799 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1800 1801 unsigned Opcode = MI.getOpcode(); 1802 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1803 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1804 Opcode == TargetOpcode::G_USHLSAT) && 1805 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1806 1807 Register Shl2 = MI.getOperand(1).getReg(); 1808 Register Imm1 = MI.getOperand(2).getReg(); 1809 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1810 if (!MaybeImmVal) 1811 return false; 1812 1813 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1814 if (Shl2Def->getOpcode() != Opcode) 1815 return false; 1816 1817 Register Base = Shl2Def->getOperand(1).getReg(); 1818 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1819 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1820 if (!MaybeImm2Val) 1821 return false; 1822 1823 // Pass the combined immediate to the apply function. 1824 MatchInfo.Imm = 1825 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1826 MatchInfo.Reg = Base; 1827 1828 // There is no simple replacement for a saturating unsigned left shift that 1829 // exceeds the scalar size. 1830 if (Opcode == TargetOpcode::G_USHLSAT && 1831 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1832 return false; 1833 1834 return true; 1835 } 1836 1837 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1838 RegisterImmPair &MatchInfo) { 1839 unsigned Opcode = MI.getOpcode(); 1840 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1841 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1842 Opcode == TargetOpcode::G_USHLSAT) && 1843 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1844 1845 Builder.setInstrAndDebugLoc(MI); 1846 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1847 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1848 auto Imm = MatchInfo.Imm; 1849 1850 if (Imm >= ScalarSizeInBits) { 1851 // Any logical shift that exceeds scalar size will produce zero. 1852 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1853 Builder.buildConstant(MI.getOperand(0), 0); 1854 MI.eraseFromParent(); 1855 return; 1856 } 1857 // Arithmetic shift and saturating signed left shift have no effect beyond 1858 // scalar size. 1859 Imm = ScalarSizeInBits - 1; 1860 } 1861 1862 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1863 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1864 Observer.changingInstr(MI); 1865 MI.getOperand(1).setReg(MatchInfo.Reg); 1866 MI.getOperand(2).setReg(NewImm); 1867 Observer.changedInstr(MI); 1868 } 1869 1870 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1871 ShiftOfShiftedLogic &MatchInfo) { 1872 // We're trying to match the following pattern with any of 1873 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1874 // with any of G_AND/G_OR/G_XOR logic instructions. 1875 // %t1 = SHIFT %X, G_CONSTANT C0 1876 // %t2 = LOGIC %t1, %Y 1877 // %root = SHIFT %t2, G_CONSTANT C1 1878 // --> 1879 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1880 // %t4 = SHIFT %Y, G_CONSTANT C1 1881 // %root = LOGIC %t3, %t4 1882 unsigned ShiftOpcode = MI.getOpcode(); 1883 assert((ShiftOpcode == TargetOpcode::G_SHL || 1884 ShiftOpcode == TargetOpcode::G_ASHR || 1885 ShiftOpcode == TargetOpcode::G_LSHR || 1886 ShiftOpcode == TargetOpcode::G_USHLSAT || 1887 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1888 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1889 1890 // Match a one-use bitwise logic op. 1891 Register LogicDest = MI.getOperand(1).getReg(); 1892 if (!MRI.hasOneNonDBGUse(LogicDest)) 1893 return false; 1894 1895 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1896 unsigned LogicOpcode = LogicMI->getOpcode(); 1897 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1898 LogicOpcode != TargetOpcode::G_XOR) 1899 return false; 1900 1901 // Find a matching one-use shift by constant. 1902 const Register C1 = MI.getOperand(2).getReg(); 1903 auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); 1904 if (!MaybeImmVal) 1905 return false; 1906 1907 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1908 1909 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1910 // Shift should match previous one and should be a one-use. 1911 if (MI->getOpcode() != ShiftOpcode || 1912 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1913 return false; 1914 1915 // Must be a constant. 1916 auto MaybeImmVal = 1917 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1918 if (!MaybeImmVal) 1919 return false; 1920 1921 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1922 return true; 1923 }; 1924 1925 // Logic ops are commutative, so check each operand for a match. 1926 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1927 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1928 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1929 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1930 uint64_t C0Val; 1931 1932 if (matchFirstShift(LogicMIOp1, C0Val)) { 1933 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1934 MatchInfo.Shift2 = LogicMIOp1; 1935 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1936 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1937 MatchInfo.Shift2 = LogicMIOp2; 1938 } else 1939 return false; 1940 1941 MatchInfo.ValSum = C0Val + C1Val; 1942 1943 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1944 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1945 return false; 1946 1947 MatchInfo.Logic = LogicMI; 1948 return true; 1949 } 1950 1951 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1952 ShiftOfShiftedLogic &MatchInfo) { 1953 unsigned Opcode = MI.getOpcode(); 1954 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1955 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1956 Opcode == TargetOpcode::G_SSHLSAT) && 1957 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1958 1959 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1960 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1961 Builder.setInstrAndDebugLoc(MI); 1962 1963 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1964 1965 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1966 Register Shift1 = 1967 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1968 1969 Register Shift2Const = MI.getOperand(2).getReg(); 1970 Register Shift2 = Builder 1971 .buildInstr(Opcode, {DestType}, 1972 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1973 .getReg(0); 1974 1975 Register Dest = MI.getOperand(0).getReg(); 1976 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1977 1978 // These were one use so it's safe to remove them. 1979 MatchInfo.Shift2->eraseFromParentAndMarkDBGValuesForRemoval(); 1980 MatchInfo.Logic->eraseFromParentAndMarkDBGValuesForRemoval(); 1981 1982 MI.eraseFromParent(); 1983 } 1984 1985 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1986 unsigned &ShiftVal) { 1987 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1988 auto MaybeImmVal = 1989 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1990 if (!MaybeImmVal) 1991 return false; 1992 1993 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1994 return (static_cast<int32_t>(ShiftVal) != -1); 1995 } 1996 1997 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1998 unsigned &ShiftVal) { 1999 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2000 MachineIRBuilder MIB(MI); 2001 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 2002 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 2003 Observer.changingInstr(MI); 2004 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 2005 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 2006 Observer.changedInstr(MI); 2007 } 2008 2009 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 2010 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 2011 RegisterImmPair &MatchData) { 2012 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 2013 2014 Register LHS = MI.getOperand(1).getReg(); 2015 2016 Register ExtSrc; 2017 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 2018 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 2019 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 2020 return false; 2021 2022 // TODO: Should handle vector splat. 2023 Register RHS = MI.getOperand(2).getReg(); 2024 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 2025 if (!MaybeShiftAmtVal) 2026 return false; 2027 2028 if (LI) { 2029 LLT SrcTy = MRI.getType(ExtSrc); 2030 2031 // We only really care about the legality with the shifted value. We can 2032 // pick any type the constant shift amount, so ask the target what to 2033 // use. Otherwise we would have to guess and hope it is reported as legal. 2034 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 2035 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 2036 return false; 2037 } 2038 2039 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 2040 MatchData.Reg = ExtSrc; 2041 MatchData.Imm = ShiftAmt; 2042 2043 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 2044 return MinLeadingZeros >= ShiftAmt; 2045 } 2046 2047 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 2048 const RegisterImmPair &MatchData) { 2049 Register ExtSrcReg = MatchData.Reg; 2050 int64_t ShiftAmtVal = MatchData.Imm; 2051 2052 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 2053 Builder.setInstrAndDebugLoc(MI); 2054 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 2055 auto NarrowShift = 2056 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 2057 Builder.buildZExt(MI.getOperand(0), NarrowShift); 2058 MI.eraseFromParent(); 2059 } 2060 2061 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 2062 Register &MatchInfo) { 2063 GMerge &Merge = cast<GMerge>(MI); 2064 SmallVector<Register, 16> MergedValues; 2065 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 2066 MergedValues.emplace_back(Merge.getSourceReg(I)); 2067 2068 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 2069 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 2070 return false; 2071 2072 for (unsigned I = 0; I < MergedValues.size(); ++I) 2073 if (MergedValues[I] != Unmerge->getReg(I)) 2074 return false; 2075 2076 MatchInfo = Unmerge->getSourceReg(); 2077 return true; 2078 } 2079 2080 static Register peekThroughBitcast(Register Reg, 2081 const MachineRegisterInfo &MRI) { 2082 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 2083 ; 2084 2085 return Reg; 2086 } 2087 2088 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 2089 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2090 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2091 "Expected an unmerge"); 2092 auto &Unmerge = cast<GUnmerge>(MI); 2093 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 2094 2095 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI); 2096 if (!SrcInstr) 2097 return false; 2098 2099 // Check the source type of the merge. 2100 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 2101 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 2102 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 2103 if (SrcMergeTy != Dst0Ty && !SameSize) 2104 return false; 2105 // They are the same now (modulo a bitcast). 2106 // We can collect all the src registers. 2107 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 2108 Operands.push_back(SrcInstr->getSourceReg(Idx)); 2109 return true; 2110 } 2111 2112 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 2113 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2114 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2115 "Expected an unmerge"); 2116 assert((MI.getNumOperands() - 1 == Operands.size()) && 2117 "Not enough operands to replace all defs"); 2118 unsigned NumElems = MI.getNumOperands() - 1; 2119 2120 LLT SrcTy = MRI.getType(Operands[0]); 2121 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2122 bool CanReuseInputDirectly = DstTy == SrcTy; 2123 Builder.setInstrAndDebugLoc(MI); 2124 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2125 Register DstReg = MI.getOperand(Idx).getReg(); 2126 Register SrcReg = Operands[Idx]; 2127 if (CanReuseInputDirectly) 2128 replaceRegWith(MRI, DstReg, SrcReg); 2129 else 2130 Builder.buildCast(DstReg, SrcReg); 2131 } 2132 MI.eraseFromParent(); 2133 } 2134 2135 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 2136 SmallVectorImpl<APInt> &Csts) { 2137 unsigned SrcIdx = MI.getNumOperands() - 1; 2138 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 2139 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 2140 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 2141 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 2142 return false; 2143 // Break down the big constant in smaller ones. 2144 const MachineOperand &CstVal = SrcInstr->getOperand(1); 2145 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 2146 ? CstVal.getCImm()->getValue() 2147 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 2148 2149 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 2150 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 2151 // Unmerge a constant. 2152 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 2153 Csts.emplace_back(Val.trunc(ShiftAmt)); 2154 Val = Val.lshr(ShiftAmt); 2155 } 2156 2157 return true; 2158 } 2159 2160 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 2161 SmallVectorImpl<APInt> &Csts) { 2162 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2163 "Expected an unmerge"); 2164 assert((MI.getNumOperands() - 1 == Csts.size()) && 2165 "Not enough operands to replace all defs"); 2166 unsigned NumElems = MI.getNumOperands() - 1; 2167 Builder.setInstrAndDebugLoc(MI); 2168 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2169 Register DstReg = MI.getOperand(Idx).getReg(); 2170 Builder.buildConstant(DstReg, Csts[Idx]); 2171 } 2172 2173 MI.eraseFromParent(); 2174 } 2175 2176 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2177 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2178 "Expected an unmerge"); 2179 // Check that all the lanes are dead except the first one. 2180 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2181 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 2182 return false; 2183 } 2184 return true; 2185 } 2186 2187 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2188 Builder.setInstrAndDebugLoc(MI); 2189 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2190 // Truncating a vector is going to truncate every single lane, 2191 // whereas we want the full lowbits. 2192 // Do the operation on a scalar instead. 2193 LLT SrcTy = MRI.getType(SrcReg); 2194 if (SrcTy.isVector()) 2195 SrcReg = 2196 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 2197 2198 Register Dst0Reg = MI.getOperand(0).getReg(); 2199 LLT Dst0Ty = MRI.getType(Dst0Reg); 2200 if (Dst0Ty.isVector()) { 2201 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 2202 Builder.buildCast(Dst0Reg, MIB); 2203 } else 2204 Builder.buildTrunc(Dst0Reg, SrcReg); 2205 MI.eraseFromParent(); 2206 } 2207 2208 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 2209 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2210 "Expected an unmerge"); 2211 Register Dst0Reg = MI.getOperand(0).getReg(); 2212 LLT Dst0Ty = MRI.getType(Dst0Reg); 2213 // G_ZEXT on vector applies to each lane, so it will 2214 // affect all destinations. Therefore we won't be able 2215 // to simplify the unmerge to just the first definition. 2216 if (Dst0Ty.isVector()) 2217 return false; 2218 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2219 LLT SrcTy = MRI.getType(SrcReg); 2220 if (SrcTy.isVector()) 2221 return false; 2222 2223 Register ZExtSrcReg; 2224 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 2225 return false; 2226 2227 // Finally we can replace the first definition with 2228 // a zext of the source if the definition is big enough to hold 2229 // all of ZExtSrc bits. 2230 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2231 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 2232 } 2233 2234 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 2235 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2236 "Expected an unmerge"); 2237 2238 Register Dst0Reg = MI.getOperand(0).getReg(); 2239 2240 MachineInstr *ZExtInstr = 2241 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 2242 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 2243 "Expecting a G_ZEXT"); 2244 2245 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 2246 LLT Dst0Ty = MRI.getType(Dst0Reg); 2247 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2248 2249 Builder.setInstrAndDebugLoc(MI); 2250 2251 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 2252 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 2253 } else { 2254 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 2255 "ZExt src doesn't fit in destination"); 2256 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 2257 } 2258 2259 Register ZeroReg; 2260 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2261 if (!ZeroReg) 2262 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 2263 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 2264 } 2265 MI.eraseFromParent(); 2266 } 2267 2268 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 2269 unsigned TargetShiftSize, 2270 unsigned &ShiftVal) { 2271 assert((MI.getOpcode() == TargetOpcode::G_SHL || 2272 MI.getOpcode() == TargetOpcode::G_LSHR || 2273 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 2274 2275 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2276 if (Ty.isVector()) // TODO: 2277 return false; 2278 2279 // Don't narrow further than the requested size. 2280 unsigned Size = Ty.getSizeInBits(); 2281 if (Size <= TargetShiftSize) 2282 return false; 2283 2284 auto MaybeImmVal = 2285 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 2286 if (!MaybeImmVal) 2287 return false; 2288 2289 ShiftVal = MaybeImmVal->Value.getSExtValue(); 2290 return ShiftVal >= Size / 2 && ShiftVal < Size; 2291 } 2292 2293 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 2294 const unsigned &ShiftVal) { 2295 Register DstReg = MI.getOperand(0).getReg(); 2296 Register SrcReg = MI.getOperand(1).getReg(); 2297 LLT Ty = MRI.getType(SrcReg); 2298 unsigned Size = Ty.getSizeInBits(); 2299 unsigned HalfSize = Size / 2; 2300 assert(ShiftVal >= HalfSize); 2301 2302 LLT HalfTy = LLT::scalar(HalfSize); 2303 2304 Builder.setInstr(MI); 2305 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 2306 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 2307 2308 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2309 Register Narrowed = Unmerge.getReg(1); 2310 2311 // dst = G_LSHR s64:x, C for C >= 32 2312 // => 2313 // lo, hi = G_UNMERGE_VALUES x 2314 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 2315 2316 if (NarrowShiftAmt != 0) { 2317 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 2318 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2319 } 2320 2321 auto Zero = Builder.buildConstant(HalfTy, 0); 2322 Builder.buildMerge(DstReg, { Narrowed, Zero }); 2323 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 2324 Register Narrowed = Unmerge.getReg(0); 2325 // dst = G_SHL s64:x, C for C >= 32 2326 // => 2327 // lo, hi = G_UNMERGE_VALUES x 2328 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 2329 if (NarrowShiftAmt != 0) { 2330 Narrowed = Builder.buildShl(HalfTy, Narrowed, 2331 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2332 } 2333 2334 auto Zero = Builder.buildConstant(HalfTy, 0); 2335 Builder.buildMerge(DstReg, { Zero, Narrowed }); 2336 } else { 2337 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2338 auto Hi = Builder.buildAShr( 2339 HalfTy, Unmerge.getReg(1), 2340 Builder.buildConstant(HalfTy, HalfSize - 1)); 2341 2342 if (ShiftVal == HalfSize) { 2343 // (G_ASHR i64:x, 32) -> 2344 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 2345 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 2346 } else if (ShiftVal == Size - 1) { 2347 // Don't need a second shift. 2348 // (G_ASHR i64:x, 63) -> 2349 // %narrowed = (G_ASHR hi_32(x), 31) 2350 // G_MERGE_VALUES %narrowed, %narrowed 2351 Builder.buildMerge(DstReg, { Hi, Hi }); 2352 } else { 2353 auto Lo = Builder.buildAShr( 2354 HalfTy, Unmerge.getReg(1), 2355 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 2356 2357 // (G_ASHR i64:x, C) ->, for C >= 32 2358 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 2359 Builder.buildMerge(DstReg, { Lo, Hi }); 2360 } 2361 } 2362 2363 MI.eraseFromParent(); 2364 } 2365 2366 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 2367 unsigned TargetShiftAmount) { 2368 unsigned ShiftAmt; 2369 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 2370 applyCombineShiftToUnmerge(MI, ShiftAmt); 2371 return true; 2372 } 2373 2374 return false; 2375 } 2376 2377 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2378 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2379 Register DstReg = MI.getOperand(0).getReg(); 2380 LLT DstTy = MRI.getType(DstReg); 2381 Register SrcReg = MI.getOperand(1).getReg(); 2382 return mi_match(SrcReg, MRI, 2383 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2384 } 2385 2386 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2387 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2388 Register DstReg = MI.getOperand(0).getReg(); 2389 Builder.setInstr(MI); 2390 Builder.buildCopy(DstReg, Reg); 2391 MI.eraseFromParent(); 2392 } 2393 2394 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2395 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2396 Register SrcReg = MI.getOperand(1).getReg(); 2397 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2398 } 2399 2400 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2401 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2402 Register DstReg = MI.getOperand(0).getReg(); 2403 Builder.setInstr(MI); 2404 Builder.buildZExtOrTrunc(DstReg, Reg); 2405 MI.eraseFromParent(); 2406 } 2407 2408 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2409 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2410 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2411 Register LHS = MI.getOperand(1).getReg(); 2412 Register RHS = MI.getOperand(2).getReg(); 2413 LLT IntTy = MRI.getType(LHS); 2414 2415 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2416 // instruction. 2417 PtrReg.second = false; 2418 for (Register SrcReg : {LHS, RHS}) { 2419 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2420 // Don't handle cases where the integer is implicitly converted to the 2421 // pointer width. 2422 LLT PtrTy = MRI.getType(PtrReg.first); 2423 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2424 return true; 2425 } 2426 2427 PtrReg.second = true; 2428 } 2429 2430 return false; 2431 } 2432 2433 void CombinerHelper::applyCombineAddP2IToPtrAdd( 2434 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2435 Register Dst = MI.getOperand(0).getReg(); 2436 Register LHS = MI.getOperand(1).getReg(); 2437 Register RHS = MI.getOperand(2).getReg(); 2438 2439 const bool DoCommute = PtrReg.second; 2440 if (DoCommute) 2441 std::swap(LHS, RHS); 2442 LHS = PtrReg.first; 2443 2444 LLT PtrTy = MRI.getType(LHS); 2445 2446 Builder.setInstrAndDebugLoc(MI); 2447 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2448 Builder.buildPtrToInt(Dst, PtrAdd); 2449 MI.eraseFromParent(); 2450 } 2451 2452 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2453 int64_t &NewCst) { 2454 auto &PtrAdd = cast<GPtrAdd>(MI); 2455 Register LHS = PtrAdd.getBaseReg(); 2456 Register RHS = PtrAdd.getOffsetReg(); 2457 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2458 2459 if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { 2460 int64_t Cst; 2461 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2462 NewCst = Cst + *RHSCst; 2463 return true; 2464 } 2465 } 2466 2467 return false; 2468 } 2469 2470 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2471 int64_t &NewCst) { 2472 auto &PtrAdd = cast<GPtrAdd>(MI); 2473 Register Dst = PtrAdd.getReg(0); 2474 2475 Builder.setInstrAndDebugLoc(MI); 2476 Builder.buildConstant(Dst, NewCst); 2477 PtrAdd.eraseFromParent(); 2478 } 2479 2480 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2481 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2482 Register DstReg = MI.getOperand(0).getReg(); 2483 Register SrcReg = MI.getOperand(1).getReg(); 2484 LLT DstTy = MRI.getType(DstReg); 2485 return mi_match(SrcReg, MRI, 2486 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2487 } 2488 2489 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2490 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2491 Register DstReg = MI.getOperand(0).getReg(); 2492 Register SrcReg = MI.getOperand(1).getReg(); 2493 LLT DstTy = MRI.getType(DstReg); 2494 if (mi_match(SrcReg, MRI, 2495 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2496 unsigned DstSize = DstTy.getScalarSizeInBits(); 2497 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2498 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2499 } 2500 return false; 2501 } 2502 2503 bool CombinerHelper::matchCombineExtOfExt( 2504 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2505 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2506 MI.getOpcode() == TargetOpcode::G_SEXT || 2507 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2508 "Expected a G_[ASZ]EXT"); 2509 Register SrcReg = MI.getOperand(1).getReg(); 2510 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2511 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2512 unsigned Opc = MI.getOpcode(); 2513 unsigned SrcOpc = SrcMI->getOpcode(); 2514 if (Opc == SrcOpc || 2515 (Opc == TargetOpcode::G_ANYEXT && 2516 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2517 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2518 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2519 return true; 2520 } 2521 return false; 2522 } 2523 2524 void CombinerHelper::applyCombineExtOfExt( 2525 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2526 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2527 MI.getOpcode() == TargetOpcode::G_SEXT || 2528 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2529 "Expected a G_[ASZ]EXT"); 2530 2531 Register Reg = std::get<0>(MatchInfo); 2532 unsigned SrcExtOp = std::get<1>(MatchInfo); 2533 2534 // Combine exts with the same opcode. 2535 if (MI.getOpcode() == SrcExtOp) { 2536 Observer.changingInstr(MI); 2537 MI.getOperand(1).setReg(Reg); 2538 Observer.changedInstr(MI); 2539 return; 2540 } 2541 2542 // Combine: 2543 // - anyext([sz]ext x) to [sz]ext x 2544 // - sext(zext x) to zext x 2545 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2546 (MI.getOpcode() == TargetOpcode::G_SEXT && 2547 SrcExtOp == TargetOpcode::G_ZEXT)) { 2548 Register DstReg = MI.getOperand(0).getReg(); 2549 Builder.setInstrAndDebugLoc(MI); 2550 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2551 MI.eraseFromParent(); 2552 } 2553 } 2554 2555 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2556 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2557 Register DstReg = MI.getOperand(0).getReg(); 2558 Register SrcReg = MI.getOperand(1).getReg(); 2559 LLT DstTy = MRI.getType(DstReg); 2560 2561 Builder.setInstrAndDebugLoc(MI); 2562 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2563 MI.getFlags()); 2564 MI.eraseFromParent(); 2565 } 2566 2567 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2568 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2569 Register SrcReg = MI.getOperand(1).getReg(); 2570 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2571 } 2572 2573 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2574 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2575 Src = MI.getOperand(1).getReg(); 2576 Register AbsSrc; 2577 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2578 } 2579 2580 bool CombinerHelper::matchCombineTruncOfExt( 2581 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2582 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2583 Register SrcReg = MI.getOperand(1).getReg(); 2584 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2585 unsigned SrcOpc = SrcMI->getOpcode(); 2586 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2587 SrcOpc == TargetOpcode::G_ZEXT) { 2588 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2589 return true; 2590 } 2591 return false; 2592 } 2593 2594 void CombinerHelper::applyCombineTruncOfExt( 2595 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2596 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2597 Register SrcReg = MatchInfo.first; 2598 unsigned SrcExtOp = MatchInfo.second; 2599 Register DstReg = MI.getOperand(0).getReg(); 2600 LLT SrcTy = MRI.getType(SrcReg); 2601 LLT DstTy = MRI.getType(DstReg); 2602 if (SrcTy == DstTy) { 2603 MI.eraseFromParent(); 2604 replaceRegWith(MRI, DstReg, SrcReg); 2605 return; 2606 } 2607 Builder.setInstrAndDebugLoc(MI); 2608 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2609 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2610 else 2611 Builder.buildTrunc(DstReg, SrcReg); 2612 MI.eraseFromParent(); 2613 } 2614 2615 bool CombinerHelper::matchCombineTruncOfShl( 2616 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2617 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2618 Register DstReg = MI.getOperand(0).getReg(); 2619 Register SrcReg = MI.getOperand(1).getReg(); 2620 LLT DstTy = MRI.getType(DstReg); 2621 Register ShiftSrc; 2622 Register ShiftAmt; 2623 2624 if (MRI.hasOneNonDBGUse(SrcReg) && 2625 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2626 isLegalOrBeforeLegalizer( 2627 {TargetOpcode::G_SHL, 2628 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2629 KnownBits Known = KB->getKnownBits(ShiftAmt); 2630 unsigned Size = DstTy.getSizeInBits(); 2631 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2632 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2633 return true; 2634 } 2635 } 2636 return false; 2637 } 2638 2639 void CombinerHelper::applyCombineTruncOfShl( 2640 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2641 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2642 Register DstReg = MI.getOperand(0).getReg(); 2643 Register SrcReg = MI.getOperand(1).getReg(); 2644 LLT DstTy = MRI.getType(DstReg); 2645 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2646 2647 Register ShiftSrc = MatchInfo.first; 2648 Register ShiftAmt = MatchInfo.second; 2649 Builder.setInstrAndDebugLoc(MI); 2650 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2651 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2652 MI.eraseFromParent(); 2653 } 2654 2655 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2656 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2657 return MO.isReg() && 2658 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2659 }); 2660 } 2661 2662 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2663 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2664 return !MO.isReg() || 2665 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2666 }); 2667 } 2668 2669 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2670 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2671 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2672 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2673 } 2674 2675 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2676 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2677 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2678 MRI); 2679 } 2680 2681 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2682 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2683 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2684 MRI); 2685 } 2686 2687 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2688 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2689 if (auto MaybeCstCmp = 2690 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2691 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; 2692 return true; 2693 } 2694 return false; 2695 } 2696 2697 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2698 MI.eraseFromParent(); 2699 return true; 2700 } 2701 2702 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2703 const MachineOperand &MOP2) { 2704 if (!MOP1.isReg() || !MOP2.isReg()) 2705 return false; 2706 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2707 if (!InstAndDef1) 2708 return false; 2709 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2710 if (!InstAndDef2) 2711 return false; 2712 MachineInstr *I1 = InstAndDef1->MI; 2713 MachineInstr *I2 = InstAndDef2->MI; 2714 2715 // Handle a case like this: 2716 // 2717 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2718 // 2719 // Even though %0 and %1 are produced by the same instruction they are not 2720 // the same values. 2721 if (I1 == I2) 2722 return MOP1.getReg() == MOP2.getReg(); 2723 2724 // If we have an instruction which loads or stores, we can't guarantee that 2725 // it is identical. 2726 // 2727 // For example, we may have 2728 // 2729 // %x1 = G_LOAD %addr (load N from @somewhere) 2730 // ... 2731 // call @foo 2732 // ... 2733 // %x2 = G_LOAD %addr (load N from @somewhere) 2734 // ... 2735 // %or = G_OR %x1, %x2 2736 // 2737 // It's possible that @foo will modify whatever lives at the address we're 2738 // loading from. To be safe, let's just assume that all loads and stores 2739 // are different (unless we have something which is guaranteed to not 2740 // change.) 2741 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2742 return false; 2743 2744 // Check for physical registers on the instructions first to avoid cases 2745 // like this: 2746 // 2747 // %a = COPY $physreg 2748 // ... 2749 // SOMETHING implicit-def $physreg 2750 // ... 2751 // %b = COPY $physreg 2752 // 2753 // These copies are not equivalent. 2754 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2755 return MO.isReg() && MO.getReg().isPhysical(); 2756 })) { 2757 // Check if we have a case like this: 2758 // 2759 // %a = COPY $physreg 2760 // %b = COPY %a 2761 // 2762 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2763 // From that, we know that they must have the same value, since they must 2764 // have come from the same COPY. 2765 return I1->isIdenticalTo(*I2); 2766 } 2767 2768 // We don't have any physical registers, so we don't necessarily need the 2769 // same vreg defs. 2770 // 2771 // On the off-chance that there's some target instruction feeding into the 2772 // instruction, let's use produceSameValue instead of isIdenticalTo. 2773 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2774 // Handle instructions with multiple defs that produce same values. Values 2775 // are same for operands with same index. 2776 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2777 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2778 // I1 and I2 are different instructions but produce same values, 2779 // %1 and %6 are same, %1 and %7 are not the same value. 2780 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2781 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2782 } 2783 return false; 2784 } 2785 2786 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2787 if (!MOP.isReg()) 2788 return false; 2789 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2790 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2791 return ValAndVReg && ValAndVReg->Value == C; 2792 } 2793 2794 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2795 unsigned OpIdx) { 2796 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2797 Register OldReg = MI.getOperand(0).getReg(); 2798 Register Replacement = MI.getOperand(OpIdx).getReg(); 2799 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2800 MI.eraseFromParent(); 2801 replaceRegWith(MRI, OldReg, Replacement); 2802 return true; 2803 } 2804 2805 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2806 Register Replacement) { 2807 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2808 Register OldReg = MI.getOperand(0).getReg(); 2809 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2810 MI.eraseFromParent(); 2811 replaceRegWith(MRI, OldReg, Replacement); 2812 return true; 2813 } 2814 2815 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2816 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2817 // Match (cond ? x : x) 2818 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2819 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2820 MRI); 2821 } 2822 2823 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2824 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2825 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2826 MRI); 2827 } 2828 2829 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2830 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2831 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2832 MRI); 2833 } 2834 2835 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2836 MachineOperand &MO = MI.getOperand(OpIdx); 2837 return MO.isReg() && 2838 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2839 } 2840 2841 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2842 unsigned OpIdx) { 2843 MachineOperand &MO = MI.getOperand(OpIdx); 2844 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2845 } 2846 2847 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2848 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2849 Builder.setInstr(MI); 2850 Builder.buildFConstant(MI.getOperand(0), C); 2851 MI.eraseFromParent(); 2852 return true; 2853 } 2854 2855 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2856 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2857 Builder.setInstr(MI); 2858 Builder.buildConstant(MI.getOperand(0), C); 2859 MI.eraseFromParent(); 2860 return true; 2861 } 2862 2863 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2864 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2865 Builder.setInstr(MI); 2866 Builder.buildConstant(MI.getOperand(0), C); 2867 MI.eraseFromParent(); 2868 return true; 2869 } 2870 2871 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2872 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2873 Builder.setInstr(MI); 2874 Builder.buildUndef(MI.getOperand(0)); 2875 MI.eraseFromParent(); 2876 return true; 2877 } 2878 2879 bool CombinerHelper::matchSimplifyAddToSub( 2880 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2881 Register LHS = MI.getOperand(1).getReg(); 2882 Register RHS = MI.getOperand(2).getReg(); 2883 Register &NewLHS = std::get<0>(MatchInfo); 2884 Register &NewRHS = std::get<1>(MatchInfo); 2885 2886 // Helper lambda to check for opportunities for 2887 // ((0-A) + B) -> B - A 2888 // (A + (0-B)) -> A - B 2889 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2890 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2891 return false; 2892 NewLHS = MaybeNewLHS; 2893 return true; 2894 }; 2895 2896 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2897 } 2898 2899 bool CombinerHelper::matchCombineInsertVecElts( 2900 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2901 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2902 "Invalid opcode"); 2903 Register DstReg = MI.getOperand(0).getReg(); 2904 LLT DstTy = MRI.getType(DstReg); 2905 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2906 unsigned NumElts = DstTy.getNumElements(); 2907 // If this MI is part of a sequence of insert_vec_elts, then 2908 // don't do the combine in the middle of the sequence. 2909 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2910 TargetOpcode::G_INSERT_VECTOR_ELT) 2911 return false; 2912 MachineInstr *CurrInst = &MI; 2913 MachineInstr *TmpInst; 2914 int64_t IntImm; 2915 Register TmpReg; 2916 MatchInfo.resize(NumElts); 2917 while (mi_match( 2918 CurrInst->getOperand(0).getReg(), MRI, 2919 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2920 if (IntImm >= NumElts) 2921 return false; 2922 if (!MatchInfo[IntImm]) 2923 MatchInfo[IntImm] = TmpReg; 2924 CurrInst = TmpInst; 2925 } 2926 // Variable index. 2927 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2928 return false; 2929 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2930 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2931 if (!MatchInfo[I - 1].isValid()) 2932 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2933 } 2934 return true; 2935 } 2936 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2937 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2938 } 2939 2940 void CombinerHelper::applyCombineInsertVecElts( 2941 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2942 Builder.setInstr(MI); 2943 Register UndefReg; 2944 auto GetUndef = [&]() { 2945 if (UndefReg) 2946 return UndefReg; 2947 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2948 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2949 return UndefReg; 2950 }; 2951 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2952 if (!MatchInfo[I]) 2953 MatchInfo[I] = GetUndef(); 2954 } 2955 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2956 MI.eraseFromParent(); 2957 } 2958 2959 void CombinerHelper::applySimplifyAddToSub( 2960 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2961 Builder.setInstr(MI); 2962 Register SubLHS, SubRHS; 2963 std::tie(SubLHS, SubRHS) = MatchInfo; 2964 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2965 MI.eraseFromParent(); 2966 } 2967 2968 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2969 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2970 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2971 // 2972 // Creates the new hand + logic instruction (but does not insert them.) 2973 // 2974 // On success, MatchInfo is populated with the new instructions. These are 2975 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2976 unsigned LogicOpcode = MI.getOpcode(); 2977 assert(LogicOpcode == TargetOpcode::G_AND || 2978 LogicOpcode == TargetOpcode::G_OR || 2979 LogicOpcode == TargetOpcode::G_XOR); 2980 MachineIRBuilder MIB(MI); 2981 Register Dst = MI.getOperand(0).getReg(); 2982 Register LHSReg = MI.getOperand(1).getReg(); 2983 Register RHSReg = MI.getOperand(2).getReg(); 2984 2985 // Don't recompute anything. 2986 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2987 return false; 2988 2989 // Make sure we have (hand x, ...), (hand y, ...) 2990 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2991 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2992 if (!LeftHandInst || !RightHandInst) 2993 return false; 2994 unsigned HandOpcode = LeftHandInst->getOpcode(); 2995 if (HandOpcode != RightHandInst->getOpcode()) 2996 return false; 2997 if (!LeftHandInst->getOperand(1).isReg() || 2998 !RightHandInst->getOperand(1).isReg()) 2999 return false; 3000 3001 // Make sure the types match up, and if we're doing this post-legalization, 3002 // we end up with legal types. 3003 Register X = LeftHandInst->getOperand(1).getReg(); 3004 Register Y = RightHandInst->getOperand(1).getReg(); 3005 LLT XTy = MRI.getType(X); 3006 LLT YTy = MRI.getType(Y); 3007 if (XTy != YTy) 3008 return false; 3009 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 3010 return false; 3011 3012 // Optional extra source register. 3013 Register ExtraHandOpSrcReg; 3014 switch (HandOpcode) { 3015 default: 3016 return false; 3017 case TargetOpcode::G_ANYEXT: 3018 case TargetOpcode::G_SEXT: 3019 case TargetOpcode::G_ZEXT: { 3020 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 3021 break; 3022 } 3023 case TargetOpcode::G_AND: 3024 case TargetOpcode::G_ASHR: 3025 case TargetOpcode::G_LSHR: 3026 case TargetOpcode::G_SHL: { 3027 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 3028 MachineOperand &ZOp = LeftHandInst->getOperand(2); 3029 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 3030 return false; 3031 ExtraHandOpSrcReg = ZOp.getReg(); 3032 break; 3033 } 3034 } 3035 3036 // Record the steps to build the new instructions. 3037 // 3038 // Steps to build (logic x, y) 3039 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 3040 OperandBuildSteps LogicBuildSteps = { 3041 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 3042 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 3043 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 3044 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 3045 3046 // Steps to build hand (logic x, y), ...z 3047 OperandBuildSteps HandBuildSteps = { 3048 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 3049 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 3050 if (ExtraHandOpSrcReg.isValid()) 3051 HandBuildSteps.push_back( 3052 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 3053 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 3054 3055 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 3056 return true; 3057 } 3058 3059 void CombinerHelper::applyBuildInstructionSteps( 3060 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 3061 assert(MatchInfo.InstrsToBuild.size() && 3062 "Expected at least one instr to build?"); 3063 Builder.setInstr(MI); 3064 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 3065 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 3066 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 3067 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 3068 for (auto &OperandFn : InstrToBuild.OperandFns) 3069 OperandFn(Instr); 3070 } 3071 MI.eraseFromParent(); 3072 } 3073 3074 bool CombinerHelper::matchAshrShlToSextInreg( 3075 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 3076 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 3077 int64_t ShlCst, AshrCst; 3078 Register Src; 3079 // FIXME: detect splat constant vectors. 3080 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3081 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 3082 return false; 3083 if (ShlCst != AshrCst) 3084 return false; 3085 if (!isLegalOrBeforeLegalizer( 3086 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 3087 return false; 3088 MatchInfo = std::make_tuple(Src, ShlCst); 3089 return true; 3090 } 3091 3092 void CombinerHelper::applyAshShlToSextInreg( 3093 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 3094 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 3095 Register Src; 3096 int64_t ShiftAmt; 3097 std::tie(Src, ShiftAmt) = MatchInfo; 3098 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 3099 Builder.setInstrAndDebugLoc(MI); 3100 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 3101 MI.eraseFromParent(); 3102 } 3103 3104 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 3105 bool CombinerHelper::matchOverlappingAnd( 3106 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3107 assert(MI.getOpcode() == TargetOpcode::G_AND); 3108 3109 Register Dst = MI.getOperand(0).getReg(); 3110 LLT Ty = MRI.getType(Dst); 3111 3112 Register R; 3113 int64_t C1; 3114 int64_t C2; 3115 if (!mi_match( 3116 Dst, MRI, 3117 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 3118 return false; 3119 3120 MatchInfo = [=](MachineIRBuilder &B) { 3121 if (C1 & C2) { 3122 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 3123 return; 3124 } 3125 auto Zero = B.buildConstant(Ty, 0); 3126 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 3127 }; 3128 return true; 3129 } 3130 3131 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 3132 Register &Replacement) { 3133 // Given 3134 // 3135 // %y:_(sN) = G_SOMETHING 3136 // %x:_(sN) = G_SOMETHING 3137 // %res:_(sN) = G_AND %x, %y 3138 // 3139 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 3140 // 3141 // Patterns like this can appear as a result of legalization. E.g. 3142 // 3143 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 3144 // %one:_(s32) = G_CONSTANT i32 1 3145 // %and:_(s32) = G_AND %cmp, %one 3146 // 3147 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 3148 assert(MI.getOpcode() == TargetOpcode::G_AND); 3149 if (!KB) 3150 return false; 3151 3152 Register AndDst = MI.getOperand(0).getReg(); 3153 LLT DstTy = MRI.getType(AndDst); 3154 3155 // FIXME: This should be removed once GISelKnownBits supports vectors. 3156 if (DstTy.isVector()) 3157 return false; 3158 3159 Register LHS = MI.getOperand(1).getReg(); 3160 Register RHS = MI.getOperand(2).getReg(); 3161 KnownBits LHSBits = KB->getKnownBits(LHS); 3162 KnownBits RHSBits = KB->getKnownBits(RHS); 3163 3164 // Check that x & Mask == x. 3165 // x & 1 == x, always 3166 // x & 0 == x, only if x is also 0 3167 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 3168 // 3169 // Check if we can replace AndDst with the LHS of the G_AND 3170 if (canReplaceReg(AndDst, LHS, MRI) && 3171 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3172 Replacement = LHS; 3173 return true; 3174 } 3175 3176 // Check if we can replace AndDst with the RHS of the G_AND 3177 if (canReplaceReg(AndDst, RHS, MRI) && 3178 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3179 Replacement = RHS; 3180 return true; 3181 } 3182 3183 return false; 3184 } 3185 3186 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 3187 // Given 3188 // 3189 // %y:_(sN) = G_SOMETHING 3190 // %x:_(sN) = G_SOMETHING 3191 // %res:_(sN) = G_OR %x, %y 3192 // 3193 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 3194 assert(MI.getOpcode() == TargetOpcode::G_OR); 3195 if (!KB) 3196 return false; 3197 3198 Register OrDst = MI.getOperand(0).getReg(); 3199 LLT DstTy = MRI.getType(OrDst); 3200 3201 // FIXME: This should be removed once GISelKnownBits supports vectors. 3202 if (DstTy.isVector()) 3203 return false; 3204 3205 Register LHS = MI.getOperand(1).getReg(); 3206 Register RHS = MI.getOperand(2).getReg(); 3207 KnownBits LHSBits = KB->getKnownBits(LHS); 3208 KnownBits RHSBits = KB->getKnownBits(RHS); 3209 3210 // Check that x | Mask == x. 3211 // x | 0 == x, always 3212 // x | 1 == x, only if x is also 1 3213 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 3214 // 3215 // Check if we can replace OrDst with the LHS of the G_OR 3216 if (canReplaceReg(OrDst, LHS, MRI) && 3217 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3218 Replacement = LHS; 3219 return true; 3220 } 3221 3222 // Check if we can replace OrDst with the RHS of the G_OR 3223 if (canReplaceReg(OrDst, RHS, MRI) && 3224 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3225 Replacement = RHS; 3226 return true; 3227 } 3228 3229 return false; 3230 } 3231 3232 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 3233 // If the input is already sign extended, just drop the extension. 3234 Register Src = MI.getOperand(1).getReg(); 3235 unsigned ExtBits = MI.getOperand(2).getImm(); 3236 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 3237 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 3238 } 3239 3240 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 3241 int64_t Cst, bool IsVector, bool IsFP) { 3242 // For i1, Cst will always be -1 regardless of boolean contents. 3243 return (ScalarSizeBits == 1 && Cst == -1) || 3244 isConstTrueVal(TLI, Cst, IsVector, IsFP); 3245 } 3246 3247 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 3248 SmallVectorImpl<Register> &RegsToNegate) { 3249 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3250 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3251 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 3252 Register XorSrc; 3253 Register CstReg; 3254 // We match xor(src, true) here. 3255 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3256 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 3257 return false; 3258 3259 if (!MRI.hasOneNonDBGUse(XorSrc)) 3260 return false; 3261 3262 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 3263 // and ORs. The suffix of RegsToNegate starting from index I is used a work 3264 // list of tree nodes to visit. 3265 RegsToNegate.push_back(XorSrc); 3266 // Remember whether the comparisons are all integer or all floating point. 3267 bool IsInt = false; 3268 bool IsFP = false; 3269 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 3270 Register Reg = RegsToNegate[I]; 3271 if (!MRI.hasOneNonDBGUse(Reg)) 3272 return false; 3273 MachineInstr *Def = MRI.getVRegDef(Reg); 3274 switch (Def->getOpcode()) { 3275 default: 3276 // Don't match if the tree contains anything other than ANDs, ORs and 3277 // comparisons. 3278 return false; 3279 case TargetOpcode::G_ICMP: 3280 if (IsFP) 3281 return false; 3282 IsInt = true; 3283 // When we apply the combine we will invert the predicate. 3284 break; 3285 case TargetOpcode::G_FCMP: 3286 if (IsInt) 3287 return false; 3288 IsFP = true; 3289 // When we apply the combine we will invert the predicate. 3290 break; 3291 case TargetOpcode::G_AND: 3292 case TargetOpcode::G_OR: 3293 // Implement De Morgan's laws: 3294 // ~(x & y) -> ~x | ~y 3295 // ~(x | y) -> ~x & ~y 3296 // When we apply the combine we will change the opcode and recursively 3297 // negate the operands. 3298 RegsToNegate.push_back(Def->getOperand(1).getReg()); 3299 RegsToNegate.push_back(Def->getOperand(2).getReg()); 3300 break; 3301 } 3302 } 3303 3304 // Now we know whether the comparisons are integer or floating point, check 3305 // the constant in the xor. 3306 int64_t Cst; 3307 if (Ty.isVector()) { 3308 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 3309 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 3310 if (!MaybeCst) 3311 return false; 3312 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 3313 return false; 3314 } else { 3315 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 3316 return false; 3317 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 3318 return false; 3319 } 3320 3321 return true; 3322 } 3323 3324 void CombinerHelper::applyNotCmp(MachineInstr &MI, 3325 SmallVectorImpl<Register> &RegsToNegate) { 3326 for (Register Reg : RegsToNegate) { 3327 MachineInstr *Def = MRI.getVRegDef(Reg); 3328 Observer.changingInstr(*Def); 3329 // For each comparison, invert the opcode. For each AND and OR, change the 3330 // opcode. 3331 switch (Def->getOpcode()) { 3332 default: 3333 llvm_unreachable("Unexpected opcode"); 3334 case TargetOpcode::G_ICMP: 3335 case TargetOpcode::G_FCMP: { 3336 MachineOperand &PredOp = Def->getOperand(1); 3337 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 3338 (CmpInst::Predicate)PredOp.getPredicate()); 3339 PredOp.setPredicate(NewP); 3340 break; 3341 } 3342 case TargetOpcode::G_AND: 3343 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3344 break; 3345 case TargetOpcode::G_OR: 3346 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3347 break; 3348 } 3349 Observer.changedInstr(*Def); 3350 } 3351 3352 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3353 MI.eraseFromParent(); 3354 } 3355 3356 bool CombinerHelper::matchXorOfAndWithSameReg( 3357 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3358 // Match (xor (and x, y), y) (or any of its commuted cases) 3359 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3360 Register &X = MatchInfo.first; 3361 Register &Y = MatchInfo.second; 3362 Register AndReg = MI.getOperand(1).getReg(); 3363 Register SharedReg = MI.getOperand(2).getReg(); 3364 3365 // Find a G_AND on either side of the G_XOR. 3366 // Look for one of 3367 // 3368 // (xor (and x, y), SharedReg) 3369 // (xor SharedReg, (and x, y)) 3370 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3371 std::swap(AndReg, SharedReg); 3372 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3373 return false; 3374 } 3375 3376 // Only do this if we'll eliminate the G_AND. 3377 if (!MRI.hasOneNonDBGUse(AndReg)) 3378 return false; 3379 3380 // We can combine if SharedReg is the same as either the LHS or RHS of the 3381 // G_AND. 3382 if (Y != SharedReg) 3383 std::swap(X, Y); 3384 return Y == SharedReg; 3385 } 3386 3387 void CombinerHelper::applyXorOfAndWithSameReg( 3388 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3389 // Fold (xor (and x, y), y) -> (and (not x), y) 3390 Builder.setInstrAndDebugLoc(MI); 3391 Register X, Y; 3392 std::tie(X, Y) = MatchInfo; 3393 auto Not = Builder.buildNot(MRI.getType(X), X); 3394 Observer.changingInstr(MI); 3395 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3396 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3397 MI.getOperand(2).setReg(Y); 3398 Observer.changedInstr(MI); 3399 } 3400 3401 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3402 auto &PtrAdd = cast<GPtrAdd>(MI); 3403 Register DstReg = PtrAdd.getReg(0); 3404 LLT Ty = MRI.getType(DstReg); 3405 const DataLayout &DL = Builder.getMF().getDataLayout(); 3406 3407 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3408 return false; 3409 3410 if (Ty.isPointer()) { 3411 auto ConstVal = getConstantVRegVal(PtrAdd.getBaseReg(), MRI); 3412 return ConstVal && *ConstVal == 0; 3413 } 3414 3415 assert(Ty.isVector() && "Expecting a vector type"); 3416 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 3417 return isBuildVectorAllZeros(*VecMI, MRI); 3418 } 3419 3420 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3421 auto &PtrAdd = cast<GPtrAdd>(MI); 3422 Builder.setInstrAndDebugLoc(PtrAdd); 3423 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 3424 PtrAdd.eraseFromParent(); 3425 } 3426 3427 /// The second source operand is known to be a power of 2. 3428 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3429 Register DstReg = MI.getOperand(0).getReg(); 3430 Register Src0 = MI.getOperand(1).getReg(); 3431 Register Pow2Src1 = MI.getOperand(2).getReg(); 3432 LLT Ty = MRI.getType(DstReg); 3433 Builder.setInstrAndDebugLoc(MI); 3434 3435 // Fold (urem x, pow2) -> (and x, pow2-1) 3436 auto NegOne = Builder.buildConstant(Ty, -1); 3437 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3438 Builder.buildAnd(DstReg, Src0, Add); 3439 MI.eraseFromParent(); 3440 } 3441 3442 Optional<SmallVector<Register, 8>> 3443 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3444 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3445 // We want to detect if Root is part of a tree which represents a bunch 3446 // of loads being merged into a larger load. We'll try to recognize patterns 3447 // like, for example: 3448 // 3449 // Reg Reg 3450 // \ / 3451 // OR_1 Reg 3452 // \ / 3453 // OR_2 3454 // \ Reg 3455 // .. / 3456 // Root 3457 // 3458 // Reg Reg Reg Reg 3459 // \ / \ / 3460 // OR_1 OR_2 3461 // \ / 3462 // \ / 3463 // ... 3464 // Root 3465 // 3466 // Each "Reg" may have been produced by a load + some arithmetic. This 3467 // function will save each of them. 3468 SmallVector<Register, 8> RegsToVisit; 3469 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3470 3471 // In the "worst" case, we're dealing with a load for each byte. So, there 3472 // are at most #bytes - 1 ORs. 3473 const unsigned MaxIter = 3474 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3475 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3476 if (Ors.empty()) 3477 break; 3478 const MachineInstr *Curr = Ors.pop_back_val(); 3479 Register OrLHS = Curr->getOperand(1).getReg(); 3480 Register OrRHS = Curr->getOperand(2).getReg(); 3481 3482 // In the combine, we want to elimate the entire tree. 3483 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3484 return None; 3485 3486 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3487 // something that may be a load + arithmetic. 3488 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3489 Ors.push_back(Or); 3490 else 3491 RegsToVisit.push_back(OrLHS); 3492 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3493 Ors.push_back(Or); 3494 else 3495 RegsToVisit.push_back(OrRHS); 3496 } 3497 3498 // We're going to try and merge each register into a wider power-of-2 type, 3499 // so we ought to have an even number of registers. 3500 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3501 return None; 3502 return RegsToVisit; 3503 } 3504 3505 /// Helper function for findLoadOffsetsForLoadOrCombine. 3506 /// 3507 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3508 /// and then moving that value into a specific byte offset. 3509 /// 3510 /// e.g. x[i] << 24 3511 /// 3512 /// \returns The load instruction and the byte offset it is moved into. 3513 static Optional<std::pair<GZExtLoad *, int64_t>> 3514 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3515 const MachineRegisterInfo &MRI) { 3516 assert(MRI.hasOneNonDBGUse(Reg) && 3517 "Expected Reg to only have one non-debug use?"); 3518 Register MaybeLoad; 3519 int64_t Shift; 3520 if (!mi_match(Reg, MRI, 3521 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3522 Shift = 0; 3523 MaybeLoad = Reg; 3524 } 3525 3526 if (Shift % MemSizeInBits != 0) 3527 return None; 3528 3529 // TODO: Handle other types of loads. 3530 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3531 if (!Load) 3532 return None; 3533 3534 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3535 return None; 3536 3537 return std::make_pair(Load, Shift / MemSizeInBits); 3538 } 3539 3540 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3541 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3542 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3543 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3544 3545 // Each load found for the pattern. There should be one for each RegsToVisit. 3546 SmallSetVector<const MachineInstr *, 8> Loads; 3547 3548 // The lowest index used in any load. (The lowest "i" for each x[i].) 3549 int64_t LowestIdx = INT64_MAX; 3550 3551 // The load which uses the lowest index. 3552 GZExtLoad *LowestIdxLoad = nullptr; 3553 3554 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3555 SmallSet<int64_t, 8> SeenIdx; 3556 3557 // Ensure each load is in the same MBB. 3558 // TODO: Support multiple MachineBasicBlocks. 3559 MachineBasicBlock *MBB = nullptr; 3560 const MachineMemOperand *MMO = nullptr; 3561 3562 // Earliest instruction-order load in the pattern. 3563 GZExtLoad *EarliestLoad = nullptr; 3564 3565 // Latest instruction-order load in the pattern. 3566 GZExtLoad *LatestLoad = nullptr; 3567 3568 // Base pointer which every load should share. 3569 Register BasePtr; 3570 3571 // We want to find a load for each register. Each load should have some 3572 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3573 // track of the load which uses the lowest index. Later, we will check if we 3574 // can use its pointer in the final, combined load. 3575 for (auto Reg : RegsToVisit) { 3576 // Find the load, and find the position that it will end up in (e.g. a 3577 // shifted) value. 3578 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3579 if (!LoadAndPos) 3580 return None; 3581 GZExtLoad *Load; 3582 int64_t DstPos; 3583 std::tie(Load, DstPos) = *LoadAndPos; 3584 3585 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3586 // it is difficult to check for stores/calls/etc between loads. 3587 MachineBasicBlock *LoadMBB = Load->getParent(); 3588 if (!MBB) 3589 MBB = LoadMBB; 3590 if (LoadMBB != MBB) 3591 return None; 3592 3593 // Make sure that the MachineMemOperands of every seen load are compatible. 3594 auto &LoadMMO = Load->getMMO(); 3595 if (!MMO) 3596 MMO = &LoadMMO; 3597 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3598 return None; 3599 3600 // Find out what the base pointer and index for the load is. 3601 Register LoadPtr; 3602 int64_t Idx; 3603 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3604 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3605 LoadPtr = Load->getOperand(1).getReg(); 3606 Idx = 0; 3607 } 3608 3609 // Don't combine things like a[i], a[i] -> a bigger load. 3610 if (!SeenIdx.insert(Idx).second) 3611 return None; 3612 3613 // Every load must share the same base pointer; don't combine things like: 3614 // 3615 // a[i], b[i + 1] -> a bigger load. 3616 if (!BasePtr.isValid()) 3617 BasePtr = LoadPtr; 3618 if (BasePtr != LoadPtr) 3619 return None; 3620 3621 if (Idx < LowestIdx) { 3622 LowestIdx = Idx; 3623 LowestIdxLoad = Load; 3624 } 3625 3626 // Keep track of the byte offset that this load ends up at. If we have seen 3627 // the byte offset, then stop here. We do not want to combine: 3628 // 3629 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3630 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3631 return None; 3632 Loads.insert(Load); 3633 3634 // Keep track of the position of the earliest/latest loads in the pattern. 3635 // We will check that there are no load fold barriers between them later 3636 // on. 3637 // 3638 // FIXME: Is there a better way to check for load fold barriers? 3639 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3640 EarliestLoad = Load; 3641 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3642 LatestLoad = Load; 3643 } 3644 3645 // We found a load for each register. Let's check if each load satisfies the 3646 // pattern. 3647 assert(Loads.size() == RegsToVisit.size() && 3648 "Expected to find a load for each register?"); 3649 assert(EarliestLoad != LatestLoad && EarliestLoad && 3650 LatestLoad && "Expected at least two loads?"); 3651 3652 // Check if there are any stores, calls, etc. between any of the loads. If 3653 // there are, then we can't safely perform the combine. 3654 // 3655 // MaxIter is chosen based off the (worst case) number of iterations it 3656 // typically takes to succeed in the LLVM test suite plus some padding. 3657 // 3658 // FIXME: Is there a better way to check for load fold barriers? 3659 const unsigned MaxIter = 20; 3660 unsigned Iter = 0; 3661 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3662 LatestLoad->getIterator())) { 3663 if (Loads.count(&MI)) 3664 continue; 3665 if (MI.isLoadFoldBarrier()) 3666 return None; 3667 if (Iter++ == MaxIter) 3668 return None; 3669 } 3670 3671 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3672 } 3673 3674 bool CombinerHelper::matchLoadOrCombine( 3675 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3676 assert(MI.getOpcode() == TargetOpcode::G_OR); 3677 MachineFunction &MF = *MI.getMF(); 3678 // Assuming a little-endian target, transform: 3679 // s8 *a = ... 3680 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3681 // => 3682 // s32 val = *((i32)a) 3683 // 3684 // s8 *a = ... 3685 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3686 // => 3687 // s32 val = BSWAP(*((s32)a)) 3688 Register Dst = MI.getOperand(0).getReg(); 3689 LLT Ty = MRI.getType(Dst); 3690 if (Ty.isVector()) 3691 return false; 3692 3693 // We need to combine at least two loads into this type. Since the smallest 3694 // possible load is into a byte, we need at least a 16-bit wide type. 3695 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3696 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3697 return false; 3698 3699 // Match a collection of non-OR instructions in the pattern. 3700 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3701 if (!RegsToVisit) 3702 return false; 3703 3704 // We have a collection of non-OR instructions. Figure out how wide each of 3705 // the small loads should be based off of the number of potential loads we 3706 // found. 3707 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3708 if (NarrowMemSizeInBits % 8 != 0) 3709 return false; 3710 3711 // Check if each register feeding into each OR is a load from the same 3712 // base pointer + some arithmetic. 3713 // 3714 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3715 // 3716 // Also verify that each of these ends up putting a[i] into the same memory 3717 // offset as a load into a wide type would. 3718 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3719 GZExtLoad *LowestIdxLoad, *LatestLoad; 3720 int64_t LowestIdx; 3721 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3722 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3723 if (!MaybeLoadInfo) 3724 return false; 3725 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3726 3727 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3728 // we found before, check if this corresponds to a big or little endian byte 3729 // pattern. If it does, then we can represent it using a load + possibly a 3730 // BSWAP. 3731 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3732 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3733 if (!IsBigEndian.hasValue()) 3734 return false; 3735 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3736 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3737 return false; 3738 3739 // Make sure that the load from the lowest index produces offset 0 in the 3740 // final value. 3741 // 3742 // This ensures that we won't combine something like this: 3743 // 3744 // load x[i] -> byte 2 3745 // load x[i+1] -> byte 0 ---> wide_load x[i] 3746 // load x[i+2] -> byte 1 3747 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3748 const unsigned ZeroByteOffset = 3749 *IsBigEndian 3750 ? bigEndianByteAt(NumLoadsInTy, 0) 3751 : littleEndianByteAt(NumLoadsInTy, 0); 3752 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3753 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3754 ZeroOffsetIdx->second != LowestIdx) 3755 return false; 3756 3757 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3758 // may not use index 0. 3759 Register Ptr = LowestIdxLoad->getPointerReg(); 3760 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3761 LegalityQuery::MemDesc MMDesc; 3762 MMDesc.MemoryTy = Ty; 3763 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 3764 MMDesc.Ordering = MMO.getSuccessOrdering(); 3765 if (!isLegalOrBeforeLegalizer( 3766 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3767 return false; 3768 auto PtrInfo = MMO.getPointerInfo(); 3769 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3770 3771 // Load must be allowed and fast on the target. 3772 LLVMContext &C = MF.getFunction().getContext(); 3773 auto &DL = MF.getDataLayout(); 3774 bool Fast = false; 3775 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3776 !Fast) 3777 return false; 3778 3779 MatchInfo = [=](MachineIRBuilder &MIB) { 3780 MIB.setInstrAndDebugLoc(*LatestLoad); 3781 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3782 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3783 if (NeedsBSwap) 3784 MIB.buildBSwap(Dst, LoadDst); 3785 }; 3786 return true; 3787 } 3788 3789 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3790 MachineInstr *&ExtMI) { 3791 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3792 3793 Register DstReg = MI.getOperand(0).getReg(); 3794 3795 // TODO: Extending a vector may be expensive, don't do this until heuristics 3796 // are better. 3797 if (MRI.getType(DstReg).isVector()) 3798 return false; 3799 3800 // Try to match a phi, whose only use is an extend. 3801 if (!MRI.hasOneNonDBGUse(DstReg)) 3802 return false; 3803 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3804 switch (ExtMI->getOpcode()) { 3805 case TargetOpcode::G_ANYEXT: 3806 return true; // G_ANYEXT is usually free. 3807 case TargetOpcode::G_ZEXT: 3808 case TargetOpcode::G_SEXT: 3809 break; 3810 default: 3811 return false; 3812 } 3813 3814 // If the target is likely to fold this extend away, don't propagate. 3815 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3816 return false; 3817 3818 // We don't want to propagate the extends unless there's a good chance that 3819 // they'll be optimized in some way. 3820 // Collect the unique incoming values. 3821 SmallPtrSet<MachineInstr *, 4> InSrcs; 3822 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3823 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3824 switch (DefMI->getOpcode()) { 3825 case TargetOpcode::G_LOAD: 3826 case TargetOpcode::G_TRUNC: 3827 case TargetOpcode::G_SEXT: 3828 case TargetOpcode::G_ZEXT: 3829 case TargetOpcode::G_ANYEXT: 3830 case TargetOpcode::G_CONSTANT: 3831 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3832 // Don't try to propagate if there are too many places to create new 3833 // extends, chances are it'll increase code size. 3834 if (InSrcs.size() > 2) 3835 return false; 3836 break; 3837 default: 3838 return false; 3839 } 3840 } 3841 return true; 3842 } 3843 3844 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3845 MachineInstr *&ExtMI) { 3846 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3847 Register DstReg = ExtMI->getOperand(0).getReg(); 3848 LLT ExtTy = MRI.getType(DstReg); 3849 3850 // Propagate the extension into the block of each incoming reg's block. 3851 // Use a SetVector here because PHIs can have duplicate edges, and we want 3852 // deterministic iteration order. 3853 SmallSetVector<MachineInstr *, 8> SrcMIs; 3854 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3855 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3856 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3857 if (!SrcMIs.insert(SrcMI)) 3858 continue; 3859 3860 // Build an extend after each src inst. 3861 auto *MBB = SrcMI->getParent(); 3862 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3863 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3864 InsertPt = MBB->getFirstNonPHI(); 3865 3866 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3867 Builder.setDebugLoc(MI.getDebugLoc()); 3868 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3869 SrcMI->getOperand(0).getReg()); 3870 OldToNewSrcMap[SrcMI] = NewExt; 3871 } 3872 3873 // Create a new phi with the extended inputs. 3874 Builder.setInstrAndDebugLoc(MI); 3875 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3876 NewPhi.addDef(DstReg); 3877 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3878 auto &MO = MI.getOperand(SrcIdx); 3879 if (!MO.isReg()) { 3880 NewPhi.addMBB(MO.getMBB()); 3881 continue; 3882 } 3883 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3884 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3885 } 3886 Builder.insertInstr(NewPhi); 3887 ExtMI->eraseFromParent(); 3888 } 3889 3890 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3891 Register &Reg) { 3892 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3893 // If we have a constant index, look for a G_BUILD_VECTOR source 3894 // and find the source register that the index maps to. 3895 Register SrcVec = MI.getOperand(1).getReg(); 3896 LLT SrcTy = MRI.getType(SrcVec); 3897 if (!isLegalOrBeforeLegalizer( 3898 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3899 return false; 3900 3901 auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3902 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3903 return false; 3904 3905 unsigned VecIdx = Cst->Value.getZExtValue(); 3906 MachineInstr *BuildVecMI = 3907 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3908 if (!BuildVecMI) { 3909 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3910 if (!BuildVecMI) 3911 return false; 3912 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3913 if (!isLegalOrBeforeLegalizer( 3914 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3915 return false; 3916 } 3917 3918 EVT Ty(getMVTForLLT(SrcTy)); 3919 if (!MRI.hasOneNonDBGUse(SrcVec) && 3920 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3921 return false; 3922 3923 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3924 return true; 3925 } 3926 3927 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3928 Register &Reg) { 3929 // Check the type of the register, since it may have come from a 3930 // G_BUILD_VECTOR_TRUNC. 3931 LLT ScalarTy = MRI.getType(Reg); 3932 Register DstReg = MI.getOperand(0).getReg(); 3933 LLT DstTy = MRI.getType(DstReg); 3934 3935 Builder.setInstrAndDebugLoc(MI); 3936 if (ScalarTy != DstTy) { 3937 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3938 Builder.buildTrunc(DstReg, Reg); 3939 MI.eraseFromParent(); 3940 return; 3941 } 3942 replaceSingleDefInstWithReg(MI, Reg); 3943 } 3944 3945 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3946 MachineInstr &MI, 3947 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3948 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3949 // This combine tries to find build_vector's which have every source element 3950 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3951 // the masked load scalarization is run late in the pipeline. There's already 3952 // a combine for a similar pattern starting from the extract, but that 3953 // doesn't attempt to do it if there are multiple uses of the build_vector, 3954 // which in this case is true. Starting the combine from the build_vector 3955 // feels more natural than trying to find sibling nodes of extracts. 3956 // E.g. 3957 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3958 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3959 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3960 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3961 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3962 // ==> 3963 // replace ext{1,2,3,4} with %s{1,2,3,4} 3964 3965 Register DstReg = MI.getOperand(0).getReg(); 3966 LLT DstTy = MRI.getType(DstReg); 3967 unsigned NumElts = DstTy.getNumElements(); 3968 3969 SmallBitVector ExtractedElts(NumElts); 3970 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), 3971 MRI.use_instr_nodbg_end())) { 3972 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3973 return false; 3974 auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI); 3975 if (!Cst) 3976 return false; 3977 unsigned Idx = Cst.getValue().getZExtValue(); 3978 if (Idx >= NumElts) 3979 return false; // Out of range. 3980 ExtractedElts.set(Idx); 3981 SrcDstPairs.emplace_back( 3982 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3983 } 3984 // Match if every element was extracted. 3985 return ExtractedElts.all(); 3986 } 3987 3988 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3989 MachineInstr &MI, 3990 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3991 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3992 for (auto &Pair : SrcDstPairs) { 3993 auto *ExtMI = Pair.second; 3994 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3995 ExtMI->eraseFromParent(); 3996 } 3997 MI.eraseFromParent(); 3998 } 3999 4000 void CombinerHelper::applyBuildFn( 4001 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4002 Builder.setInstrAndDebugLoc(MI); 4003 MatchInfo(Builder); 4004 MI.eraseFromParent(); 4005 } 4006 4007 void CombinerHelper::applyBuildFnNoErase( 4008 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4009 Builder.setInstrAndDebugLoc(MI); 4010 MatchInfo(Builder); 4011 } 4012 4013 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 4014 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 4015 unsigned Opc = MI.getOpcode(); 4016 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 4017 Register X = MI.getOperand(1).getReg(); 4018 Register Y = MI.getOperand(2).getReg(); 4019 if (X != Y) 4020 return false; 4021 unsigned RotateOpc = 4022 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 4023 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 4024 } 4025 4026 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 4027 unsigned Opc = MI.getOpcode(); 4028 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 4029 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 4030 Observer.changingInstr(MI); 4031 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 4032 : TargetOpcode::G_ROTR)); 4033 MI.RemoveOperand(2); 4034 Observer.changedInstr(MI); 4035 } 4036 4037 // Fold (rot x, c) -> (rot x, c % BitSize) 4038 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 4039 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4040 MI.getOpcode() == TargetOpcode::G_ROTR); 4041 unsigned Bitsize = 4042 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4043 Register AmtReg = MI.getOperand(2).getReg(); 4044 bool OutOfRange = false; 4045 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 4046 if (auto *CI = dyn_cast<ConstantInt>(C)) 4047 OutOfRange |= CI->getValue().uge(Bitsize); 4048 return true; 4049 }; 4050 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 4051 } 4052 4053 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 4054 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4055 MI.getOpcode() == TargetOpcode::G_ROTR); 4056 unsigned Bitsize = 4057 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4058 Builder.setInstrAndDebugLoc(MI); 4059 Register Amt = MI.getOperand(2).getReg(); 4060 LLT AmtTy = MRI.getType(Amt); 4061 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 4062 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 4063 Observer.changingInstr(MI); 4064 MI.getOperand(2).setReg(Amt); 4065 Observer.changedInstr(MI); 4066 } 4067 4068 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 4069 int64_t &MatchInfo) { 4070 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4071 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4072 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 4073 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 4074 Optional<bool> KnownVal; 4075 switch (Pred) { 4076 default: 4077 llvm_unreachable("Unexpected G_ICMP predicate?"); 4078 case CmpInst::ICMP_EQ: 4079 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 4080 break; 4081 case CmpInst::ICMP_NE: 4082 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 4083 break; 4084 case CmpInst::ICMP_SGE: 4085 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 4086 break; 4087 case CmpInst::ICMP_SGT: 4088 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 4089 break; 4090 case CmpInst::ICMP_SLE: 4091 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 4092 break; 4093 case CmpInst::ICMP_SLT: 4094 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 4095 break; 4096 case CmpInst::ICMP_UGE: 4097 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 4098 break; 4099 case CmpInst::ICMP_UGT: 4100 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 4101 break; 4102 case CmpInst::ICMP_ULE: 4103 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 4104 break; 4105 case CmpInst::ICMP_ULT: 4106 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 4107 break; 4108 } 4109 if (!KnownVal) 4110 return false; 4111 MatchInfo = 4112 *KnownVal 4113 ? getICmpTrueVal(getTargetLowering(), 4114 /*IsVector = */ 4115 MRI.getType(MI.getOperand(0).getReg()).isVector(), 4116 /* IsFP = */ false) 4117 : 0; 4118 return true; 4119 } 4120 4121 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4122 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4123 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4124 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4125 Register Dst = MI.getOperand(0).getReg(); 4126 Register Src = MI.getOperand(1).getReg(); 4127 LLT Ty = MRI.getType(Src); 4128 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4129 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4130 return false; 4131 int64_t Width = MI.getOperand(2).getImm(); 4132 Register ShiftSrc; 4133 int64_t ShiftImm; 4134 if (!mi_match( 4135 Src, MRI, 4136 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4137 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4138 return false; 4139 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4140 return false; 4141 4142 MatchInfo = [=](MachineIRBuilder &B) { 4143 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4144 auto Cst2 = B.buildConstant(ExtractTy, Width); 4145 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4146 }; 4147 return true; 4148 } 4149 4150 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4151 bool CombinerHelper::matchBitfieldExtractFromAnd( 4152 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4153 assert(MI.getOpcode() == TargetOpcode::G_AND); 4154 Register Dst = MI.getOperand(0).getReg(); 4155 LLT Ty = MRI.getType(Dst); 4156 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 4157 TargetOpcode::G_UBFX, Ty, Ty)) 4158 return false; 4159 4160 int64_t AndImm, LSBImm; 4161 Register ShiftSrc; 4162 const unsigned Size = Ty.getScalarSizeInBits(); 4163 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4164 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4165 m_ICst(AndImm)))) 4166 return false; 4167 4168 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4169 auto MaybeMask = static_cast<uint64_t>(AndImm); 4170 if (MaybeMask & (MaybeMask + 1)) 4171 return false; 4172 4173 // LSB must fit within the register. 4174 if (static_cast<uint64_t>(LSBImm) >= Size) 4175 return false; 4176 4177 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4178 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4179 MatchInfo = [=](MachineIRBuilder &B) { 4180 auto WidthCst = B.buildConstant(ExtractTy, Width); 4181 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4182 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4183 }; 4184 return true; 4185 } 4186 4187 bool CombinerHelper::matchBitfieldExtractFromShr( 4188 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4189 const unsigned Opcode = MI.getOpcode(); 4190 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 4191 4192 const Register Dst = MI.getOperand(0).getReg(); 4193 4194 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 4195 ? TargetOpcode::G_SBFX 4196 : TargetOpcode::G_UBFX; 4197 4198 // Check if the type we would use for the extract is legal 4199 LLT Ty = MRI.getType(Dst); 4200 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4201 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 4202 return false; 4203 4204 Register ShlSrc; 4205 int64_t ShrAmt; 4206 int64_t ShlAmt; 4207 const unsigned Size = Ty.getScalarSizeInBits(); 4208 4209 // Try to match shr (shl x, c1), c2 4210 if (!mi_match(Dst, MRI, 4211 m_BinOp(Opcode, 4212 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4213 m_ICst(ShrAmt)))) 4214 return false; 4215 4216 // Make sure that the shift sizes can fit a bitfield extract 4217 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4218 return false; 4219 4220 // Skip this combine if the G_SEXT_INREG combine could handle it 4221 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4222 return false; 4223 4224 // Calculate start position and width of the extract 4225 const int64_t Pos = ShrAmt - ShlAmt; 4226 const int64_t Width = Size - ShrAmt; 4227 4228 MatchInfo = [=](MachineIRBuilder &B) { 4229 auto WidthCst = B.buildConstant(ExtractTy, Width); 4230 auto PosCst = B.buildConstant(ExtractTy, Pos); 4231 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4232 }; 4233 return true; 4234 } 4235 4236 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4237 MachineInstr &PtrAdd) { 4238 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4239 4240 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4241 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4242 if (!Src1Def) 4243 return false; 4244 4245 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4246 4247 if (MRI.hasOneNonDBGUse(Src1Reg)) 4248 return false; 4249 4250 auto C1 = getConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4251 if (!C1) 4252 return false; 4253 auto C2 = getConstantVRegVal(Src2Reg, MRI); 4254 if (!C2) 4255 return false; 4256 4257 const APInt &C1APIntVal = *C1; 4258 const APInt &C2APIntVal = *C2; 4259 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4260 4261 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4262 // This combine may end up running before ptrtoint/inttoptr combines 4263 // manage to eliminate redundant conversions, so try to look through them. 4264 MachineInstr *ConvUseMI = &UseMI; 4265 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4266 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4267 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4268 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4269 if (!MRI.hasOneNonDBGUse(DefReg)) 4270 break; 4271 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4272 ConvUseOpc = ConvUseMI->getOpcode(); 4273 } 4274 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4275 ConvUseOpc == TargetOpcode::G_STORE; 4276 if (!LoadStore) 4277 continue; 4278 // Is x[offset2] already not a legal addressing mode? If so then 4279 // reassociating the constants breaks nothing (we test offset2 because 4280 // that's the one we hope to fold into the load or store). 4281 TargetLoweringBase::AddrMode AM; 4282 AM.HasBaseReg = true; 4283 AM.BaseOffs = C2APIntVal.getSExtValue(); 4284 unsigned AS = 4285 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4286 Type *AccessTy = 4287 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4288 PtrAdd.getMF()->getFunction().getContext()); 4289 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4290 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4291 AccessTy, AS)) 4292 continue; 4293 4294 // Would x[offset1+offset2] still be a legal addressing mode? 4295 AM.BaseOffs = CombinedValue; 4296 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4297 AccessTy, AS)) 4298 return true; 4299 } 4300 4301 return false; 4302 } 4303 4304 bool CombinerHelper::matchReassocPtrAdd( 4305 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4306 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 4307 // We're trying to match a few pointer computation patterns here for 4308 // re-association opportunities. 4309 // 1) Isolating a constant operand to be on the RHS, e.g.: 4310 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4311 // 4312 // 2) Folding two constants in each sub-tree as long as such folding 4313 // doesn't break a legal addressing mode. 4314 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4315 Register Src1Reg = MI.getOperand(1).getReg(); 4316 Register Src2Reg = MI.getOperand(2).getReg(); 4317 MachineInstr *LHS = MRI.getVRegDef(Src1Reg); 4318 MachineInstr *RHS = MRI.getVRegDef(Src2Reg); 4319 4320 if (LHS->getOpcode() != TargetOpcode::G_PTR_ADD) { 4321 // Try to match example 1). 4322 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4323 return false; 4324 auto C2 = getConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4325 if (!C2) 4326 return false; 4327 4328 MatchInfo = [=,&MI](MachineIRBuilder &B) { 4329 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4330 4331 auto NewBase = 4332 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4333 Observer.changingInstr(MI); 4334 MI.getOperand(1).setReg(NewBase.getReg(0)); 4335 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4336 Observer.changedInstr(MI); 4337 }; 4338 } else { 4339 // Try to match example 2. 4340 Register LHSSrc1 = LHS->getOperand(1).getReg(); 4341 Register LHSSrc2 = LHS->getOperand(2).getReg(); 4342 auto C1 = getConstantVRegVal(LHSSrc2, MRI); 4343 if (!C1) 4344 return false; 4345 auto C2 = getConstantVRegVal(Src2Reg, MRI); 4346 if (!C2) 4347 return false; 4348 4349 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4350 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4351 Observer.changingInstr(MI); 4352 MI.getOperand(1).setReg(LHSSrc1); 4353 MI.getOperand(2).setReg(NewCst.getReg(0)); 4354 Observer.changedInstr(MI); 4355 }; 4356 } 4357 return !reassociationCanBreakAddressingModePattern(MI); 4358 } 4359 4360 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4361 Register Op1 = MI.getOperand(1).getReg(); 4362 Register Op2 = MI.getOperand(2).getReg(); 4363 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4364 if (!MaybeCst) 4365 return false; 4366 MatchInfo = *MaybeCst; 4367 return true; 4368 } 4369 4370 bool CombinerHelper::matchNarrowBinopFeedingAnd( 4371 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4372 // Look for a binop feeding into an AND with a mask: 4373 // 4374 // %add = G_ADD %lhs, %rhs 4375 // %and = G_AND %add, 000...11111111 4376 // 4377 // Check if it's possible to perform the binop at a narrower width and zext 4378 // back to the original width like so: 4379 // 4380 // %narrow_lhs = G_TRUNC %lhs 4381 // %narrow_rhs = G_TRUNC %rhs 4382 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 4383 // %new_add = G_ZEXT %narrow_add 4384 // %and = G_AND %new_add, 000...11111111 4385 // 4386 // This can allow later combines to eliminate the G_AND if it turns out 4387 // that the mask is irrelevant. 4388 assert(MI.getOpcode() == TargetOpcode::G_AND); 4389 Register Dst = MI.getOperand(0).getReg(); 4390 Register AndLHS = MI.getOperand(1).getReg(); 4391 Register AndRHS = MI.getOperand(2).getReg(); 4392 LLT WideTy = MRI.getType(Dst); 4393 4394 // If the potential binop has more than one use, then it's possible that one 4395 // of those uses will need its full width. 4396 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 4397 return false; 4398 4399 // Check if the LHS feeding the AND is impacted by the high bits that we're 4400 // masking out. 4401 // 4402 // e.g. for 64-bit x, y: 4403 // 4404 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 4405 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 4406 if (!LHSInst) 4407 return false; 4408 unsigned LHSOpc = LHSInst->getOpcode(); 4409 switch (LHSOpc) { 4410 default: 4411 return false; 4412 case TargetOpcode::G_ADD: 4413 case TargetOpcode::G_SUB: 4414 case TargetOpcode::G_MUL: 4415 case TargetOpcode::G_AND: 4416 case TargetOpcode::G_OR: 4417 case TargetOpcode::G_XOR: 4418 break; 4419 } 4420 4421 // Find the mask on the RHS. 4422 auto Cst = getConstantVRegValWithLookThrough(AndRHS, MRI); 4423 if (!Cst) 4424 return false; 4425 auto Mask = Cst->Value; 4426 if (!Mask.isMask()) 4427 return false; 4428 4429 // No point in combining if there's nothing to truncate. 4430 unsigned NarrowWidth = Mask.countTrailingOnes(); 4431 if (NarrowWidth == WideTy.getSizeInBits()) 4432 return false; 4433 LLT NarrowTy = LLT::scalar(NarrowWidth); 4434 4435 // Check if adding the zext + truncates could be harmful. 4436 auto &MF = *MI.getMF(); 4437 const auto &TLI = getTargetLowering(); 4438 LLVMContext &Ctx = MF.getFunction().getContext(); 4439 auto &DL = MF.getDataLayout(); 4440 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 4441 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 4442 return false; 4443 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 4444 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 4445 return false; 4446 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 4447 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 4448 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4449 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 4450 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 4451 auto NarrowBinOp = 4452 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 4453 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 4454 Observer.changingInstr(MI); 4455 MI.getOperand(1).setReg(Ext.getReg(0)); 4456 Observer.changedInstr(MI); 4457 }; 4458 return true; 4459 } 4460 4461 bool CombinerHelper::tryCombine(MachineInstr &MI) { 4462 if (tryCombineCopy(MI)) 4463 return true; 4464 if (tryCombineExtendingLoads(MI)) 4465 return true; 4466 if (tryCombineIndexedLoadStore(MI)) 4467 return true; 4468 return false; 4469 } 4470