1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/CodeGen/GlobalISel/Combiner.h" 10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 12 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 13 #include "llvm/CodeGen/GlobalISel/Utils.h" 14 #include "llvm/CodeGen/MachineDominators.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineInstr.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/TargetInstrInfo.h" 19 #include "llvm/CodeGen/TargetLowering.h" 20 #include "llvm/Support/MathExtras.h" 21 #include "llvm/Target/TargetMachine.h" 22 23 #define DEBUG_TYPE "gi-combiner" 24 25 using namespace llvm; 26 27 // Option to allow testing of the combiner while no targets know about indexed 28 // addressing. 29 static cl::opt<bool> 30 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 31 cl::desc("Force all indexed operations to be " 32 "legal for the GlobalISel combiner")); 33 34 35 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 36 MachineIRBuilder &B, GISelKnownBits *KB, 37 MachineDominatorTree *MDT) 38 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 39 KB(KB), MDT(MDT) { 40 (void)this->KB; 41 } 42 43 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 44 Register ToReg) const { 45 Observer.changingAllUsesOfReg(MRI, FromReg); 46 47 if (MRI.constrainRegAttrs(ToReg, FromReg)) 48 MRI.replaceRegWith(FromReg, ToReg); 49 else 50 Builder.buildCopy(ToReg, FromReg); 51 52 Observer.finishedChangingAllUsesOfReg(); 53 } 54 55 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 56 MachineOperand &FromRegOp, 57 Register ToReg) const { 58 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 59 Observer.changingInstr(*FromRegOp.getParent()); 60 61 FromRegOp.setReg(ToReg); 62 63 Observer.changedInstr(*FromRegOp.getParent()); 64 } 65 66 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 67 if (matchCombineCopy(MI)) { 68 applyCombineCopy(MI); 69 return true; 70 } 71 return false; 72 } 73 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 74 if (MI.getOpcode() != TargetOpcode::COPY) 75 return false; 76 Register DstReg = MI.getOperand(0).getReg(); 77 Register SrcReg = MI.getOperand(1).getReg(); 78 79 // Give up if either DstReg or SrcReg is a physical register. 80 if (Register::isPhysicalRegister(DstReg) || 81 Register::isPhysicalRegister(SrcReg)) 82 return false; 83 84 // Give up the types don't match. 85 LLT DstTy = MRI.getType(DstReg); 86 LLT SrcTy = MRI.getType(SrcReg); 87 // Give up if one has a valid LLT, but the other doesn't. 88 if (DstTy.isValid() != SrcTy.isValid()) 89 return false; 90 // Give up if the types don't match. 91 if (DstTy.isValid() && SrcTy.isValid() && DstTy != SrcTy) 92 return false; 93 94 // Get the register banks and classes. 95 const RegisterBank *DstBank = MRI.getRegBankOrNull(DstReg); 96 const RegisterBank *SrcBank = MRI.getRegBankOrNull(SrcReg); 97 const TargetRegisterClass *DstRC = MRI.getRegClassOrNull(DstReg); 98 const TargetRegisterClass *SrcRC = MRI.getRegClassOrNull(SrcReg); 99 100 // Replace if the register constraints match. 101 if ((SrcRC == DstRC) && (SrcBank == DstBank)) 102 return true; 103 // Replace if DstReg has no constraints. 104 if (!DstBank && !DstRC) 105 return true; 106 107 return false; 108 } 109 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 110 Register DstReg = MI.getOperand(0).getReg(); 111 Register SrcReg = MI.getOperand(1).getReg(); 112 MI.eraseFromParent(); 113 replaceRegWith(MRI, DstReg, SrcReg); 114 } 115 116 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 117 bool IsUndef = false; 118 SmallVector<Register, 4> Ops; 119 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 120 applyCombineConcatVectors(MI, IsUndef, Ops); 121 return true; 122 } 123 return false; 124 } 125 126 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 127 SmallVectorImpl<Register> &Ops) { 128 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 129 "Invalid instruction"); 130 IsUndef = true; 131 MachineInstr *Undef = nullptr; 132 133 // Walk over all the operands of concat vectors and check if they are 134 // build_vector themselves or undef. 135 // Then collect their operands in Ops. 136 for (const MachineOperand &MO : MI.uses()) { 137 Register Reg = MO.getReg(); 138 MachineInstr *Def = MRI.getVRegDef(Reg); 139 assert(Def && "Operand not defined"); 140 switch (Def->getOpcode()) { 141 case TargetOpcode::G_BUILD_VECTOR: 142 IsUndef = false; 143 // Remember the operands of the build_vector to fold 144 // them into the yet-to-build flattened concat vectors. 145 for (const MachineOperand &BuildVecMO : Def->uses()) 146 Ops.push_back(BuildVecMO.getReg()); 147 break; 148 case TargetOpcode::G_IMPLICIT_DEF: { 149 LLT OpType = MRI.getType(Reg); 150 // Keep one undef value for all the undef operands. 151 if (!Undef) { 152 Builder.setInsertPt(*MI.getParent(), MI); 153 Undef = Builder.buildUndef(OpType.getScalarType()); 154 } 155 assert(MRI.getType(Undef->getOperand(0).getReg()) == 156 OpType.getScalarType() && 157 "All undefs should have the same type"); 158 // Break the undef vector in as many scalar elements as needed 159 // for the flattening. 160 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 161 EltIdx != EltEnd; ++EltIdx) 162 Ops.push_back(Undef->getOperand(0).getReg()); 163 break; 164 } 165 default: 166 return false; 167 } 168 } 169 return true; 170 } 171 void CombinerHelper::applyCombineConcatVectors( 172 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 173 // We determined that the concat_vectors can be flatten. 174 // Generate the flattened build_vector. 175 Register DstReg = MI.getOperand(0).getReg(); 176 Builder.setInsertPt(*MI.getParent(), MI); 177 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 178 179 // Note: IsUndef is sort of redundant. We could have determine it by 180 // checking that at all Ops are undef. Alternatively, we could have 181 // generate a build_vector of undefs and rely on another combine to 182 // clean that up. For now, given we already gather this information 183 // in tryCombineConcatVectors, just save compile time and issue the 184 // right thing. 185 if (IsUndef) 186 Builder.buildUndef(NewDstReg); 187 else 188 Builder.buildBuildVector(NewDstReg, Ops); 189 MI.eraseFromParent(); 190 replaceRegWith(MRI, DstReg, NewDstReg); 191 } 192 193 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 194 SmallVector<Register, 4> Ops; 195 if (matchCombineShuffleVector(MI, Ops)) { 196 applyCombineShuffleVector(MI, Ops); 197 return true; 198 } 199 return false; 200 } 201 202 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 203 SmallVectorImpl<Register> &Ops) { 204 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 205 "Invalid instruction kind"); 206 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 207 Register Src1 = MI.getOperand(1).getReg(); 208 LLT SrcType = MRI.getType(Src1); 209 // As bizarre as it may look, shuffle vector can actually produce 210 // scalar! This is because at the IR level a <1 x ty> shuffle 211 // vector is perfectly valid. 212 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 213 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 214 215 // If the resulting vector is smaller than the size of the source 216 // vectors being concatenated, we won't be able to replace the 217 // shuffle vector into a concat_vectors. 218 // 219 // Note: We may still be able to produce a concat_vectors fed by 220 // extract_vector_elt and so on. It is less clear that would 221 // be better though, so don't bother for now. 222 // 223 // If the destination is a scalar, the size of the sources doesn't 224 // matter. we will lower the shuffle to a plain copy. This will 225 // work only if the source and destination have the same size. But 226 // that's covered by the next condition. 227 // 228 // TODO: If the size between the source and destination don't match 229 // we could still emit an extract vector element in that case. 230 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 231 return false; 232 233 // Check that the shuffle mask can be broken evenly between the 234 // different sources. 235 if (DstNumElts % SrcNumElts != 0) 236 return false; 237 238 // Mask length is a multiple of the source vector length. 239 // Check if the shuffle is some kind of concatenation of the input 240 // vectors. 241 unsigned NumConcat = DstNumElts / SrcNumElts; 242 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 243 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 244 for (unsigned i = 0; i != DstNumElts; ++i) { 245 int Idx = Mask[i]; 246 // Undef value. 247 if (Idx < 0) 248 continue; 249 // Ensure the indices in each SrcType sized piece are sequential and that 250 // the same source is used for the whole piece. 251 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 252 (ConcatSrcs[i / SrcNumElts] >= 0 && 253 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 254 return false; 255 // Remember which source this index came from. 256 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 257 } 258 259 // The shuffle is concatenating multiple vectors together. 260 // Collect the different operands for that. 261 Register UndefReg; 262 Register Src2 = MI.getOperand(2).getReg(); 263 for (auto Src : ConcatSrcs) { 264 if (Src < 0) { 265 if (!UndefReg) { 266 Builder.setInsertPt(*MI.getParent(), MI); 267 UndefReg = Builder.buildUndef(SrcType).getReg(0); 268 } 269 Ops.push_back(UndefReg); 270 } else if (Src == 0) 271 Ops.push_back(Src1); 272 else 273 Ops.push_back(Src2); 274 } 275 return true; 276 } 277 278 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 279 const ArrayRef<Register> Ops) { 280 Register DstReg = MI.getOperand(0).getReg(); 281 Builder.setInsertPt(*MI.getParent(), MI); 282 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 283 284 if (Ops.size() == 1) 285 Builder.buildCopy(NewDstReg, Ops[0]); 286 else 287 Builder.buildMerge(NewDstReg, Ops); 288 289 MI.eraseFromParent(); 290 replaceRegWith(MRI, DstReg, NewDstReg); 291 } 292 293 namespace { 294 295 /// Select a preference between two uses. CurrentUse is the current preference 296 /// while *ForCandidate is attributes of the candidate under consideration. 297 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 298 const LLT &TyForCandidate, 299 unsigned OpcodeForCandidate, 300 MachineInstr *MIForCandidate) { 301 if (!CurrentUse.Ty.isValid()) { 302 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 303 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 304 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 305 return CurrentUse; 306 } 307 308 // We permit the extend to hoist through basic blocks but this is only 309 // sensible if the target has extending loads. If you end up lowering back 310 // into a load and extend during the legalizer then the end result is 311 // hoisting the extend up to the load. 312 313 // Prefer defined extensions to undefined extensions as these are more 314 // likely to reduce the number of instructions. 315 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 316 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 317 return CurrentUse; 318 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 319 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 320 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 321 322 // Prefer sign extensions to zero extensions as sign-extensions tend to be 323 // more expensive. 324 if (CurrentUse.Ty == TyForCandidate) { 325 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 326 OpcodeForCandidate == TargetOpcode::G_ZEXT) 327 return CurrentUse; 328 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 329 OpcodeForCandidate == TargetOpcode::G_SEXT) 330 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 331 } 332 333 // This is potentially target specific. We've chosen the largest type 334 // because G_TRUNC is usually free. One potential catch with this is that 335 // some targets have a reduced number of larger registers than smaller 336 // registers and this choice potentially increases the live-range for the 337 // larger value. 338 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 339 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 340 } 341 return CurrentUse; 342 } 343 344 /// Find a suitable place to insert some instructions and insert them. This 345 /// function accounts for special cases like inserting before a PHI node. 346 /// The current strategy for inserting before PHI's is to duplicate the 347 /// instructions for each predecessor. However, while that's ok for G_TRUNC 348 /// on most targets since it generally requires no code, other targets/cases may 349 /// want to try harder to find a dominating block. 350 static void InsertInsnsWithoutSideEffectsBeforeUse( 351 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 352 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 353 MachineOperand &UseMO)> 354 Inserter) { 355 MachineInstr &UseMI = *UseMO.getParent(); 356 357 MachineBasicBlock *InsertBB = UseMI.getParent(); 358 359 // If the use is a PHI then we want the predecessor block instead. 360 if (UseMI.isPHI()) { 361 MachineOperand *PredBB = std::next(&UseMO); 362 InsertBB = PredBB->getMBB(); 363 } 364 365 // If the block is the same block as the def then we want to insert just after 366 // the def instead of at the start of the block. 367 if (InsertBB == DefMI.getParent()) { 368 MachineBasicBlock::iterator InsertPt = &DefMI; 369 Inserter(InsertBB, std::next(InsertPt), UseMO); 370 return; 371 } 372 373 // Otherwise we want the start of the BB 374 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 375 } 376 } // end anonymous namespace 377 378 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 379 PreferredTuple Preferred; 380 if (matchCombineExtendingLoads(MI, Preferred)) { 381 applyCombineExtendingLoads(MI, Preferred); 382 return true; 383 } 384 return false; 385 } 386 387 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 388 PreferredTuple &Preferred) { 389 // We match the loads and follow the uses to the extend instead of matching 390 // the extends and following the def to the load. This is because the load 391 // must remain in the same position for correctness (unless we also add code 392 // to find a safe place to sink it) whereas the extend is freely movable. 393 // It also prevents us from duplicating the load for the volatile case or just 394 // for performance. 395 396 if (MI.getOpcode() != TargetOpcode::G_LOAD && 397 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 398 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 399 return false; 400 401 auto &LoadValue = MI.getOperand(0); 402 assert(LoadValue.isReg() && "Result wasn't a register?"); 403 404 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 405 if (!LoadValueTy.isScalar()) 406 return false; 407 408 // Most architectures are going to legalize <s8 loads into at least a 1 byte 409 // load, and the MMOs can only describe memory accesses in multiples of bytes. 410 // If we try to perform extload combining on those, we can end up with 411 // %a(s8) = extload %ptr (load 1 byte from %ptr) 412 // ... which is an illegal extload instruction. 413 if (LoadValueTy.getSizeInBits() < 8) 414 return false; 415 416 // For non power-of-2 types, they will very likely be legalized into multiple 417 // loads. Don't bother trying to match them into extending loads. 418 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 419 return false; 420 421 // Find the preferred type aside from the any-extends (unless it's the only 422 // one) and non-extending ops. We'll emit an extending load to that type and 423 // and emit a variant of (extend (trunc X)) for the others according to the 424 // relative type sizes. At the same time, pick an extend to use based on the 425 // extend involved in the chosen type. 426 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 427 ? TargetOpcode::G_ANYEXT 428 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 429 ? TargetOpcode::G_SEXT 430 : TargetOpcode::G_ZEXT; 431 Preferred = {LLT(), PreferredOpcode, nullptr}; 432 for (auto &UseMI : MRI.use_instructions(LoadValue.getReg())) { 433 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 434 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 435 UseMI.getOpcode() == TargetOpcode::G_ANYEXT) { 436 Preferred = ChoosePreferredUse(Preferred, 437 MRI.getType(UseMI.getOperand(0).getReg()), 438 UseMI.getOpcode(), &UseMI); 439 } 440 } 441 442 // There were no extends 443 if (!Preferred.MI) 444 return false; 445 // It should be impossible to chose an extend without selecting a different 446 // type since by definition the result of an extend is larger. 447 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 448 449 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 450 return true; 451 } 452 453 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 454 PreferredTuple &Preferred) { 455 // Rewrite the load to the chosen extending load. 456 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 457 458 // Inserter to insert a truncate back to the original type at a given point 459 // with some basic CSE to limit truncate duplication to one per BB. 460 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 461 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 462 MachineBasicBlock::iterator InsertBefore, 463 MachineOperand &UseMO) { 464 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 465 if (PreviouslyEmitted) { 466 Observer.changingInstr(*UseMO.getParent()); 467 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 468 Observer.changedInstr(*UseMO.getParent()); 469 return; 470 } 471 472 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 473 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 474 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 475 EmittedInsns[InsertIntoBB] = NewMI; 476 replaceRegOpWith(MRI, UseMO, NewDstReg); 477 }; 478 479 Observer.changingInstr(MI); 480 MI.setDesc( 481 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 482 ? TargetOpcode::G_SEXTLOAD 483 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 484 ? TargetOpcode::G_ZEXTLOAD 485 : TargetOpcode::G_LOAD)); 486 487 // Rewrite all the uses to fix up the types. 488 auto &LoadValue = MI.getOperand(0); 489 SmallVector<MachineOperand *, 4> Uses; 490 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 491 Uses.push_back(&UseMO); 492 493 for (auto *UseMO : Uses) { 494 MachineInstr *UseMI = UseMO->getParent(); 495 496 // If the extend is compatible with the preferred extend then we should fix 497 // up the type and extend so that it uses the preferred use. 498 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 499 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 500 Register UseDstReg = UseMI->getOperand(0).getReg(); 501 MachineOperand &UseSrcMO = UseMI->getOperand(1); 502 const LLT &UseDstTy = MRI.getType(UseDstReg); 503 if (UseDstReg != ChosenDstReg) { 504 if (Preferred.Ty == UseDstTy) { 505 // If the use has the same type as the preferred use, then merge 506 // the vregs and erase the extend. For example: 507 // %1:_(s8) = G_LOAD ... 508 // %2:_(s32) = G_SEXT %1(s8) 509 // %3:_(s32) = G_ANYEXT %1(s8) 510 // ... = ... %3(s32) 511 // rewrites to: 512 // %2:_(s32) = G_SEXTLOAD ... 513 // ... = ... %2(s32) 514 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 515 Observer.erasingInstr(*UseMO->getParent()); 516 UseMO->getParent()->eraseFromParent(); 517 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 518 // If the preferred size is smaller, then keep the extend but extend 519 // from the result of the extending load. For example: 520 // %1:_(s8) = G_LOAD ... 521 // %2:_(s32) = G_SEXT %1(s8) 522 // %3:_(s64) = G_ANYEXT %1(s8) 523 // ... = ... %3(s64) 524 /// rewrites to: 525 // %2:_(s32) = G_SEXTLOAD ... 526 // %3:_(s64) = G_ANYEXT %2:_(s32) 527 // ... = ... %3(s64) 528 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 529 } else { 530 // If the preferred size is large, then insert a truncate. For 531 // example: 532 // %1:_(s8) = G_LOAD ... 533 // %2:_(s64) = G_SEXT %1(s8) 534 // %3:_(s32) = G_ZEXT %1(s8) 535 // ... = ... %3(s32) 536 /// rewrites to: 537 // %2:_(s64) = G_SEXTLOAD ... 538 // %4:_(s8) = G_TRUNC %2:_(s32) 539 // %3:_(s64) = G_ZEXT %2:_(s8) 540 // ... = ... %3(s64) 541 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 542 InsertTruncAt); 543 } 544 continue; 545 } 546 // The use is (one of) the uses of the preferred use we chose earlier. 547 // We're going to update the load to def this value later so just erase 548 // the old extend. 549 Observer.erasingInstr(*UseMO->getParent()); 550 UseMO->getParent()->eraseFromParent(); 551 continue; 552 } 553 554 // The use isn't an extend. Truncate back to the type we originally loaded. 555 // This is free on many targets. 556 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 557 } 558 559 MI.getOperand(0).setReg(ChosenDstReg); 560 Observer.changedInstr(MI); 561 } 562 563 bool CombinerHelper::isPredecessor(MachineInstr &DefMI, MachineInstr &UseMI) { 564 assert(DefMI.getParent() == UseMI.getParent()); 565 if (&DefMI == &UseMI) 566 return false; 567 568 // Loop through the basic block until we find one of the instructions. 569 MachineBasicBlock::const_iterator I = DefMI.getParent()->begin(); 570 for (; &*I != &DefMI && &*I != &UseMI; ++I) 571 return &*I == &DefMI; 572 573 llvm_unreachable("Block must contain instructions"); 574 } 575 576 bool CombinerHelper::dominates(MachineInstr &DefMI, MachineInstr &UseMI) { 577 if (MDT) 578 return MDT->dominates(&DefMI, &UseMI); 579 else if (DefMI.getParent() != UseMI.getParent()) 580 return false; 581 582 return isPredecessor(DefMI, UseMI); 583 } 584 585 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 586 Register &Base, Register &Offset) { 587 auto &MF = *MI.getParent()->getParent(); 588 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 589 590 #ifndef NDEBUG 591 unsigned Opcode = MI.getOpcode(); 592 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 593 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 594 #endif 595 596 Base = MI.getOperand(1).getReg(); 597 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 598 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 599 return false; 600 601 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 602 603 for (auto &Use : MRI.use_instructions(Base)) { 604 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 605 continue; 606 607 Offset = Use.getOperand(2).getReg(); 608 if (!ForceLegalIndexing && 609 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 610 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 611 << Use); 612 continue; 613 } 614 615 // Make sure the offset calculation is before the potentially indexed op. 616 // FIXME: we really care about dependency here. The offset calculation might 617 // be movable. 618 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 619 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 620 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 621 << Use); 622 continue; 623 } 624 625 // FIXME: check whether all uses of Base are load/store with foldable 626 // addressing modes. If so, using the normal addr-modes is better than 627 // forming an indexed one. 628 629 bool MemOpDominatesAddrUses = true; 630 for (auto &PtrAddUse : MRI.use_instructions(Use.getOperand(0).getReg())) { 631 if (!dominates(MI, PtrAddUse)) { 632 MemOpDominatesAddrUses = false; 633 break; 634 } 635 } 636 637 if (!MemOpDominatesAddrUses) { 638 LLVM_DEBUG( 639 dbgs() << " Ignoring candidate as memop does not dominate uses: " 640 << Use); 641 continue; 642 } 643 644 LLVM_DEBUG(dbgs() << " Found match: " << Use); 645 Addr = Use.getOperand(0).getReg(); 646 return true; 647 } 648 649 return false; 650 } 651 652 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 653 Register &Base, Register &Offset) { 654 auto &MF = *MI.getParent()->getParent(); 655 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 656 657 #ifndef NDEBUG 658 unsigned Opcode = MI.getOpcode(); 659 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 660 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 661 #endif 662 663 Addr = MI.getOperand(1).getReg(); 664 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 665 if (!AddrDef || MRI.hasOneUse(Addr)) 666 return false; 667 668 Base = AddrDef->getOperand(1).getReg(); 669 Offset = AddrDef->getOperand(2).getReg(); 670 671 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 672 673 if (!ForceLegalIndexing && 674 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 675 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 676 return false; 677 } 678 679 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 680 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 681 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 682 return false; 683 } 684 685 if (MI.getOpcode() == TargetOpcode::G_STORE) { 686 // Would require a copy. 687 if (Base == MI.getOperand(0).getReg()) { 688 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 689 return false; 690 } 691 692 // We're expecting one use of Addr in MI, but it could also be the 693 // value stored, which isn't actually dominated by the instruction. 694 if (MI.getOperand(0).getReg() == Addr) { 695 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 696 return false; 697 } 698 } 699 700 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 701 // That might allow us to end base's liveness here by adjusting the constant. 702 703 for (auto &UseMI : MRI.use_instructions(Addr)) { 704 if (!dominates(MI, UseMI)) { 705 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 706 return false; 707 } 708 } 709 710 return true; 711 } 712 713 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 714 IndexedLoadStoreMatchInfo MatchInfo; 715 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 716 applyCombineIndexedLoadStore(MI, MatchInfo); 717 return true; 718 } 719 return false; 720 } 721 722 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 723 unsigned Opcode = MI.getOpcode(); 724 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 725 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 726 return false; 727 728 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 729 MatchInfo.Offset); 730 if (!MatchInfo.IsPre && 731 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 732 MatchInfo.Offset)) 733 return false; 734 735 return true; 736 } 737 738 void CombinerHelper::applyCombineIndexedLoadStore( 739 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 740 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 741 MachineIRBuilder MIRBuilder(MI); 742 unsigned Opcode = MI.getOpcode(); 743 bool IsStore = Opcode == TargetOpcode::G_STORE; 744 unsigned NewOpcode; 745 switch (Opcode) { 746 case TargetOpcode::G_LOAD: 747 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 748 break; 749 case TargetOpcode::G_SEXTLOAD: 750 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 751 break; 752 case TargetOpcode::G_ZEXTLOAD: 753 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 754 break; 755 case TargetOpcode::G_STORE: 756 NewOpcode = TargetOpcode::G_INDEXED_STORE; 757 break; 758 default: 759 llvm_unreachable("Unknown load/store opcode"); 760 } 761 762 auto MIB = MIRBuilder.buildInstr(NewOpcode); 763 if (IsStore) { 764 MIB.addDef(MatchInfo.Addr); 765 MIB.addUse(MI.getOperand(0).getReg()); 766 } else { 767 MIB.addDef(MI.getOperand(0).getReg()); 768 MIB.addDef(MatchInfo.Addr); 769 } 770 771 MIB.addUse(MatchInfo.Base); 772 MIB.addUse(MatchInfo.Offset); 773 MIB.addImm(MatchInfo.IsPre); 774 MI.eraseFromParent(); 775 AddrDef.eraseFromParent(); 776 777 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 778 } 779 780 bool CombinerHelper::matchElideBrByInvertingCond(MachineInstr &MI) { 781 if (MI.getOpcode() != TargetOpcode::G_BR) 782 return false; 783 784 // Try to match the following: 785 // bb1: 786 // %c(s32) = G_ICMP pred, %a, %b 787 // %c1(s1) = G_TRUNC %c(s32) 788 // G_BRCOND %c1, %bb2 789 // G_BR %bb3 790 // bb2: 791 // ... 792 // bb3: 793 794 // The above pattern does not have a fall through to the successor bb2, always 795 // resulting in a branch no matter which path is taken. Here we try to find 796 // and replace that pattern with conditional branch to bb3 and otherwise 797 // fallthrough to bb2. 798 799 MachineBasicBlock *MBB = MI.getParent(); 800 MachineBasicBlock::iterator BrIt(MI); 801 if (BrIt == MBB->begin()) 802 return false; 803 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 804 805 MachineInstr *BrCond = &*std::prev(BrIt); 806 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 807 return false; 808 809 // Check that the next block is the conditional branch target. 810 if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB())) 811 return false; 812 813 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 814 if (!CmpMI || CmpMI->getOpcode() != TargetOpcode::G_ICMP || 815 !MRI.hasOneUse(CmpMI->getOperand(0).getReg())) 816 return false; 817 return true; 818 } 819 820 bool CombinerHelper::tryElideBrByInvertingCond(MachineInstr &MI) { 821 if (!matchElideBrByInvertingCond(MI)) 822 return false; 823 applyElideBrByInvertingCond(MI); 824 return true; 825 } 826 827 void CombinerHelper::applyElideBrByInvertingCond(MachineInstr &MI) { 828 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 829 MachineBasicBlock::iterator BrIt(MI); 830 MachineInstr *BrCond = &*std::prev(BrIt); 831 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 832 833 CmpInst::Predicate InversePred = CmpInst::getInversePredicate( 834 (CmpInst::Predicate)CmpMI->getOperand(1).getPredicate()); 835 836 // Invert the G_ICMP condition. 837 Observer.changingInstr(*CmpMI); 838 CmpMI->getOperand(1).setPredicate(InversePred); 839 Observer.changedInstr(*CmpMI); 840 841 // Change the conditional branch target. 842 Observer.changingInstr(*BrCond); 843 BrCond->getOperand(1).setMBB(BrTarget); 844 Observer.changedInstr(*BrCond); 845 MI.eraseFromParent(); 846 } 847 848 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 849 // On Darwin, -Os means optimize for size without hurting performance, so 850 // only really optimize for size when -Oz (MinSize) is used. 851 if (MF.getTarget().getTargetTriple().isOSDarwin()) 852 return MF.getFunction().hasMinSize(); 853 return MF.getFunction().hasOptSize(); 854 } 855 856 // Returns a list of types to use for memory op lowering in MemOps. A partial 857 // port of findOptimalMemOpLowering in TargetLowering. 858 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 859 unsigned Limit, const MemOp &Op, 860 unsigned DstAS, unsigned SrcAS, 861 const AttributeList &FuncAttributes, 862 const TargetLowering &TLI) { 863 if (Op.getSrcAlign() != 0 && Op.getSrcAlign() < Op.getDstAlign()) 864 return false; 865 866 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 867 868 if (Ty == LLT()) { 869 // Use the largest scalar type whose alignment constraints are satisfied. 870 // We only need to check DstAlign here as SrcAlign is always greater or 871 // equal to DstAlign (or zero). 872 Ty = LLT::scalar(64); 873 while (Op.getDstAlign() && Op.getDstAlign() < Ty.getSizeInBytes() && 874 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 875 Ty = LLT::scalar(Ty.getSizeInBytes()); 876 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 877 // FIXME: check for the largest legal type we can load/store to. 878 } 879 880 unsigned NumMemOps = 0; 881 auto Size = Op.size(); 882 while (Size != 0) { 883 unsigned TySize = Ty.getSizeInBytes(); 884 while (TySize > Size) { 885 // For now, only use non-vector load / store's for the left-over pieces. 886 LLT NewTy = Ty; 887 // FIXME: check for mem op safety and legality of the types. Not all of 888 // SDAGisms map cleanly to GISel concepts. 889 if (NewTy.isVector()) 890 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 891 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 892 unsigned NewTySize = NewTy.getSizeInBytes(); 893 assert(NewTySize > 0 && "Could not find appropriate type"); 894 895 // If the new LLT cannot cover all of the remaining bits, then consider 896 // issuing a (or a pair of) unaligned and overlapping load / store. 897 bool Fast; 898 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 899 MVT VT = getMVTForLLT(Ty); 900 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 901 TLI.allowsMisalignedMemoryAccesses( 902 VT, DstAS, Op.getDstAlign(), MachineMemOperand::MONone, &Fast) && 903 Fast) 904 TySize = Size; 905 else { 906 Ty = NewTy; 907 TySize = NewTySize; 908 } 909 } 910 911 if (++NumMemOps > Limit) 912 return false; 913 914 MemOps.push_back(Ty); 915 Size -= TySize; 916 } 917 918 return true; 919 } 920 921 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 922 if (Ty.isVector()) 923 return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 924 Ty.getNumElements()); 925 return IntegerType::get(C, Ty.getSizeInBits()); 926 } 927 928 // Get a vectorized representation of the memset value operand, GISel edition. 929 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 930 MachineRegisterInfo &MRI = *MIB.getMRI(); 931 unsigned NumBits = Ty.getScalarSizeInBits(); 932 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 933 if (!Ty.isVector() && ValVRegAndVal) { 934 unsigned KnownVal = ValVRegAndVal->Value; 935 APInt Scalar = APInt(8, KnownVal); 936 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 937 return MIB.buildConstant(Ty, SplatVal).getReg(0); 938 } 939 // FIXME: for vector types create a G_BUILD_VECTOR. 940 if (Ty.isVector()) 941 return Register(); 942 943 // Extend the byte value to the larger type, and then multiply by a magic 944 // value 0x010101... in order to replicate it across every byte. 945 LLT ExtType = Ty.getScalarType(); 946 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 947 if (NumBits > 8) { 948 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 949 auto MagicMI = MIB.buildConstant(ExtType, Magic); 950 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 951 } 952 953 assert(ExtType == Ty && "Vector memset value type not supported yet"); 954 return Val; 955 } 956 957 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 958 Register Val, unsigned KnownLen, 959 Align Alignment, bool IsVolatile) { 960 auto &MF = *MI.getParent()->getParent(); 961 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 962 auto &DL = MF.getDataLayout(); 963 LLVMContext &C = MF.getFunction().getContext(); 964 965 assert(KnownLen != 0 && "Have a zero length memset length!"); 966 967 bool DstAlignCanChange = false; 968 MachineFrameInfo &MFI = MF.getFrameInfo(); 969 bool OptSize = shouldLowerMemFuncForSize(MF); 970 971 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 972 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 973 DstAlignCanChange = true; 974 975 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 976 std::vector<LLT> MemOps; 977 978 const auto &DstMMO = **MI.memoperands_begin(); 979 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 980 981 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 982 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 983 984 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 985 MemOp::Set(KnownLen, DstAlignCanChange, 986 Alignment, 987 /*IsZeroMemset=*/IsZeroVal, 988 /*IsVolatile=*/IsVolatile), 989 DstPtrInfo.getAddrSpace(), ~0u, 990 MF.getFunction().getAttributes(), TLI)) 991 return false; 992 993 if (DstAlignCanChange) { 994 // Get an estimate of the type from the LLT. 995 Type *IRTy = getTypeForLLT(MemOps[0], C); 996 Align NewAlign = DL.getABITypeAlign(IRTy); 997 if (NewAlign > Alignment) { 998 Alignment = NewAlign; 999 unsigned FI = FIDef->getOperand(1).getIndex(); 1000 // Give the stack frame object a larger alignment if needed. 1001 if (MFI.getObjectAlign(FI) < Alignment) 1002 MFI.setObjectAlignment(FI, Alignment); 1003 } 1004 } 1005 1006 MachineIRBuilder MIB(MI); 1007 // Find the largest store and generate the bit pattern for it. 1008 LLT LargestTy = MemOps[0]; 1009 for (unsigned i = 1; i < MemOps.size(); i++) 1010 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1011 LargestTy = MemOps[i]; 1012 1013 // The memset stored value is always defined as an s8, so in order to make it 1014 // work with larger store types we need to repeat the bit pattern across the 1015 // wider type. 1016 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1017 1018 if (!MemSetValue) 1019 return false; 1020 1021 // Generate the stores. For each store type in the list, we generate the 1022 // matching store of that type to the destination address. 1023 LLT PtrTy = MRI.getType(Dst); 1024 unsigned DstOff = 0; 1025 unsigned Size = KnownLen; 1026 for (unsigned I = 0; I < MemOps.size(); I++) { 1027 LLT Ty = MemOps[I]; 1028 unsigned TySize = Ty.getSizeInBytes(); 1029 if (TySize > Size) { 1030 // Issuing an unaligned load / store pair that overlaps with the previous 1031 // pair. Adjust the offset accordingly. 1032 assert(I == MemOps.size() - 1 && I != 0); 1033 DstOff -= TySize - Size; 1034 } 1035 1036 // If this store is smaller than the largest store see whether we can get 1037 // the smaller value for free with a truncate. 1038 Register Value = MemSetValue; 1039 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1040 MVT VT = getMVTForLLT(Ty); 1041 MVT LargestVT = getMVTForLLT(LargestTy); 1042 if (!LargestTy.isVector() && !Ty.isVector() && 1043 TLI.isTruncateFree(LargestVT, VT)) 1044 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1045 else 1046 Value = getMemsetValue(Val, Ty, MIB); 1047 if (!Value) 1048 return false; 1049 } 1050 1051 auto *StoreMMO = 1052 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1053 1054 Register Ptr = Dst; 1055 if (DstOff != 0) { 1056 auto Offset = 1057 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1058 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1059 } 1060 1061 MIB.buildStore(Value, Ptr, *StoreMMO); 1062 DstOff += Ty.getSizeInBytes(); 1063 Size -= TySize; 1064 } 1065 1066 MI.eraseFromParent(); 1067 return true; 1068 } 1069 1070 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1071 Register Src, unsigned KnownLen, 1072 Align DstAlign, Align SrcAlign, 1073 bool IsVolatile) { 1074 auto &MF = *MI.getParent()->getParent(); 1075 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1076 auto &DL = MF.getDataLayout(); 1077 LLVMContext &C = MF.getFunction().getContext(); 1078 1079 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1080 1081 bool DstAlignCanChange = false; 1082 MachineFrameInfo &MFI = MF.getFrameInfo(); 1083 bool OptSize = shouldLowerMemFuncForSize(MF); 1084 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1085 1086 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1087 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1088 DstAlignCanChange = true; 1089 1090 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1091 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1092 // if the memcpy is in a tail call position. 1093 1094 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1095 std::vector<LLT> MemOps; 1096 1097 const auto &DstMMO = **MI.memoperands_begin(); 1098 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1099 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1100 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1101 1102 if (!findGISelOptimalMemOpLowering( 1103 MemOps, Limit, 1104 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1105 IsVolatile), 1106 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1107 MF.getFunction().getAttributes(), TLI)) 1108 return false; 1109 1110 if (DstAlignCanChange) { 1111 // Get an estimate of the type from the LLT. 1112 Type *IRTy = getTypeForLLT(MemOps[0], C); 1113 Align NewAlign = DL.getABITypeAlign(IRTy); 1114 1115 // Don't promote to an alignment that would require dynamic stack 1116 // realignment. 1117 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1118 if (!TRI->needsStackRealignment(MF)) 1119 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1120 NewAlign = NewAlign / 2; 1121 1122 if (NewAlign > Alignment) { 1123 Alignment = NewAlign; 1124 unsigned FI = FIDef->getOperand(1).getIndex(); 1125 // Give the stack frame object a larger alignment if needed. 1126 if (MFI.getObjectAlign(FI) < Alignment) 1127 MFI.setObjectAlignment(FI, Alignment); 1128 } 1129 } 1130 1131 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1132 1133 MachineIRBuilder MIB(MI); 1134 // Now we need to emit a pair of load and stores for each of the types we've 1135 // collected. I.e. for each type, generate a load from the source pointer of 1136 // that type width, and then generate a corresponding store to the dest buffer 1137 // of that value loaded. This can result in a sequence of loads and stores 1138 // mixed types, depending on what the target specifies as good types to use. 1139 unsigned CurrOffset = 0; 1140 LLT PtrTy = MRI.getType(Src); 1141 unsigned Size = KnownLen; 1142 for (auto CopyTy : MemOps) { 1143 // Issuing an unaligned load / store pair that overlaps with the previous 1144 // pair. Adjust the offset accordingly. 1145 if (CopyTy.getSizeInBytes() > Size) 1146 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1147 1148 // Construct MMOs for the accesses. 1149 auto *LoadMMO = 1150 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1151 auto *StoreMMO = 1152 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1153 1154 // Create the load. 1155 Register LoadPtr = Src; 1156 Register Offset; 1157 if (CurrOffset != 0) { 1158 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1159 .getReg(0); 1160 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1161 } 1162 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1163 1164 // Create the store. 1165 Register StorePtr = 1166 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1167 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1168 CurrOffset += CopyTy.getSizeInBytes(); 1169 Size -= CopyTy.getSizeInBytes(); 1170 } 1171 1172 MI.eraseFromParent(); 1173 return true; 1174 } 1175 1176 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1177 Register Src, unsigned KnownLen, 1178 Align DstAlign, Align SrcAlign, 1179 bool IsVolatile) { 1180 auto &MF = *MI.getParent()->getParent(); 1181 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1182 auto &DL = MF.getDataLayout(); 1183 LLVMContext &C = MF.getFunction().getContext(); 1184 1185 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1186 1187 bool DstAlignCanChange = false; 1188 MachineFrameInfo &MFI = MF.getFrameInfo(); 1189 bool OptSize = shouldLowerMemFuncForSize(MF); 1190 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1191 1192 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1193 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1194 DstAlignCanChange = true; 1195 1196 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1197 std::vector<LLT> MemOps; 1198 1199 const auto &DstMMO = **MI.memoperands_begin(); 1200 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1201 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1202 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1203 1204 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1205 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1206 // same thing here. 1207 if (!findGISelOptimalMemOpLowering( 1208 MemOps, Limit, 1209 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1210 /*IsVolatile*/ true), 1211 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1212 MF.getFunction().getAttributes(), TLI)) 1213 return false; 1214 1215 if (DstAlignCanChange) { 1216 // Get an estimate of the type from the LLT. 1217 Type *IRTy = getTypeForLLT(MemOps[0], C); 1218 Align NewAlign = DL.getABITypeAlign(IRTy); 1219 1220 // Don't promote to an alignment that would require dynamic stack 1221 // realignment. 1222 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1223 if (!TRI->needsStackRealignment(MF)) 1224 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1225 NewAlign = NewAlign / 2; 1226 1227 if (NewAlign > Alignment) { 1228 Alignment = NewAlign; 1229 unsigned FI = FIDef->getOperand(1).getIndex(); 1230 // Give the stack frame object a larger alignment if needed. 1231 if (MFI.getObjectAlign(FI) < Alignment) 1232 MFI.setObjectAlignment(FI, Alignment); 1233 } 1234 } 1235 1236 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1237 1238 MachineIRBuilder MIB(MI); 1239 // Memmove requires that we perform the loads first before issuing the stores. 1240 // Apart from that, this loop is pretty much doing the same thing as the 1241 // memcpy codegen function. 1242 unsigned CurrOffset = 0; 1243 LLT PtrTy = MRI.getType(Src); 1244 SmallVector<Register, 16> LoadVals; 1245 for (auto CopyTy : MemOps) { 1246 // Construct MMO for the load. 1247 auto *LoadMMO = 1248 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1249 1250 // Create the load. 1251 Register LoadPtr = Src; 1252 if (CurrOffset != 0) { 1253 auto Offset = 1254 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1255 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1256 } 1257 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1258 CurrOffset += CopyTy.getSizeInBytes(); 1259 } 1260 1261 CurrOffset = 0; 1262 for (unsigned I = 0; I < MemOps.size(); ++I) { 1263 LLT CopyTy = MemOps[I]; 1264 // Now store the values loaded. 1265 auto *StoreMMO = 1266 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1267 1268 Register StorePtr = Dst; 1269 if (CurrOffset != 0) { 1270 auto Offset = 1271 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1272 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1273 } 1274 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1275 CurrOffset += CopyTy.getSizeInBytes(); 1276 } 1277 MI.eraseFromParent(); 1278 return true; 1279 } 1280 1281 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1282 // This combine is fairly complex so it's not written with a separate 1283 // matcher function. 1284 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 1285 Intrinsic::ID ID = (Intrinsic::ID)MI.getIntrinsicID(); 1286 assert((ID == Intrinsic::memcpy || ID == Intrinsic::memmove || 1287 ID == Intrinsic::memset) && 1288 "Expected a memcpy like intrinsic"); 1289 1290 auto MMOIt = MI.memoperands_begin(); 1291 const MachineMemOperand *MemOp = *MMOIt; 1292 bool IsVolatile = MemOp->isVolatile(); 1293 // Don't try to optimize volatile. 1294 if (IsVolatile) 1295 return false; 1296 1297 Align DstAlign(MemOp->getBaseAlignment()); 1298 Align SrcAlign; 1299 Register Dst = MI.getOperand(1).getReg(); 1300 Register Src = MI.getOperand(2).getReg(); 1301 Register Len = MI.getOperand(3).getReg(); 1302 1303 if (ID != Intrinsic::memset) { 1304 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1305 MemOp = *(++MMOIt); 1306 SrcAlign = Align(MemOp->getBaseAlignment()); 1307 } 1308 1309 // See if this is a constant length copy 1310 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1311 if (!LenVRegAndVal) 1312 return false; // Leave it to the legalizer to lower it to a libcall. 1313 unsigned KnownLen = LenVRegAndVal->Value; 1314 1315 if (KnownLen == 0) { 1316 MI.eraseFromParent(); 1317 return true; 1318 } 1319 1320 if (MaxLen && KnownLen > MaxLen) 1321 return false; 1322 1323 if (ID == Intrinsic::memcpy) 1324 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1325 if (ID == Intrinsic::memmove) 1326 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1327 if (ID == Intrinsic::memset) 1328 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1329 return false; 1330 } 1331 1332 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1333 PtrAddChain &MatchInfo) { 1334 // We're trying to match the following pattern: 1335 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1336 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1337 // --> 1338 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1339 1340 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1341 return false; 1342 1343 Register Add2 = MI.getOperand(1).getReg(); 1344 Register Imm1 = MI.getOperand(2).getReg(); 1345 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1346 if (!MaybeImmVal) 1347 return false; 1348 1349 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1350 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1351 return false; 1352 1353 Register Base = Add2Def->getOperand(1).getReg(); 1354 Register Imm2 = Add2Def->getOperand(2).getReg(); 1355 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1356 if (!MaybeImm2Val) 1357 return false; 1358 1359 // Pass the combined immediate to the apply function. 1360 MatchInfo.Imm = MaybeImmVal->Value + MaybeImm2Val->Value; 1361 MatchInfo.Base = Base; 1362 return true; 1363 } 1364 1365 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1366 PtrAddChain &MatchInfo) { 1367 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1368 MachineIRBuilder MIB(MI); 1369 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1370 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1371 Observer.changingInstr(MI); 1372 MI.getOperand(1).setReg(MatchInfo.Base); 1373 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1374 Observer.changedInstr(MI); 1375 return true; 1376 } 1377 1378 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1379 unsigned &ShiftVal) { 1380 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1381 auto MaybeImmVal = 1382 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1383 if (!MaybeImmVal || !isPowerOf2_64(MaybeImmVal->Value)) 1384 return false; 1385 ShiftVal = Log2_64(MaybeImmVal->Value); 1386 return true; 1387 } 1388 1389 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1390 unsigned &ShiftVal) { 1391 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1392 MachineIRBuilder MIB(MI); 1393 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1394 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1395 Observer.changingInstr(MI); 1396 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1397 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1398 Observer.changedInstr(MI); 1399 return true; 1400 } 1401 1402 bool CombinerHelper::tryCombine(MachineInstr &MI) { 1403 if (tryCombineCopy(MI)) 1404 return true; 1405 if (tryCombineExtendingLoads(MI)) 1406 return true; 1407 if (tryCombineIndexedLoadStore(MI)) 1408 return true; 1409 return false; 1410 } 1411