1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 15 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 16 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 17 #include "llvm/CodeGen/GlobalISel/Utils.h" 18 #include "llvm/CodeGen/LowLevelType.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineDominators.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineMemOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/TargetInstrInfo.h" 26 #include "llvm/CodeGen/TargetLowering.h" 27 #include "llvm/CodeGen/TargetOpcodes.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Target/TargetMachine.h" 30 31 #define DEBUG_TYPE "gi-combiner" 32 33 using namespace llvm; 34 using namespace MIPatternMatch; 35 36 // Option to allow testing of the combiner while no targets know about indexed 37 // addressing. 38 static cl::opt<bool> 39 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 40 cl::desc("Force all indexed operations to be " 41 "legal for the GlobalISel combiner")); 42 43 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 44 MachineIRBuilder &B, GISelKnownBits *KB, 45 MachineDominatorTree *MDT, 46 const LegalizerInfo *LI) 47 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 48 KB(KB), MDT(MDT), LI(LI) { 49 (void)this->KB; 50 } 51 52 const TargetLowering &CombinerHelper::getTargetLowering() const { 53 return *Builder.getMF().getSubtarget().getTargetLowering(); 54 } 55 56 /// \returns The little endian in-memory byte position of byte \p I in a 57 /// \p ByteWidth bytes wide type. 58 /// 59 /// E.g. Given a 4-byte type x, x[0] -> byte 0 60 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 61 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 62 return I; 63 } 64 65 /// \returns The big endian in-memory byte position of byte \p I in a 66 /// \p ByteWidth bytes wide type. 67 /// 68 /// E.g. Given a 4-byte type x, x[0] -> byte 3 69 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 70 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 71 return ByteWidth - I - 1; 72 } 73 74 /// Given a map from byte offsets in memory to indices in a load/store, 75 /// determine if that map corresponds to a little or big endian byte pattern. 76 /// 77 /// \param MemOffset2Idx maps memory offsets to address offsets. 78 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 79 /// 80 /// \returns true if the map corresponds to a big endian byte pattern, false 81 /// if it corresponds to a little endian byte pattern, and None otherwise. 82 /// 83 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 84 /// are as follows: 85 /// 86 /// AddrOffset Little endian Big endian 87 /// 0 0 3 88 /// 1 1 2 89 /// 2 2 1 90 /// 3 3 0 91 static Optional<bool> 92 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 93 int64_t LowestIdx) { 94 // Need at least two byte positions to decide on endianness. 95 unsigned Width = MemOffset2Idx.size(); 96 if (Width < 2) 97 return None; 98 bool BigEndian = true, LittleEndian = true; 99 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 100 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 101 if (MemOffsetAndIdx == MemOffset2Idx.end()) 102 return None; 103 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 104 assert(Idx >= 0 && "Expected non-negative byte offset?"); 105 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 106 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 107 if (!BigEndian && !LittleEndian) 108 return None; 109 } 110 111 assert((BigEndian != LittleEndian) && 112 "Pattern cannot be both big and little endian!"); 113 return BigEndian; 114 } 115 116 bool CombinerHelper::isLegalOrBeforeLegalizer( 117 const LegalityQuery &Query) const { 118 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 119 } 120 121 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 122 Register ToReg) const { 123 Observer.changingAllUsesOfReg(MRI, FromReg); 124 125 if (MRI.constrainRegAttrs(ToReg, FromReg)) 126 MRI.replaceRegWith(FromReg, ToReg); 127 else 128 Builder.buildCopy(ToReg, FromReg); 129 130 Observer.finishedChangingAllUsesOfReg(); 131 } 132 133 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 134 MachineOperand &FromRegOp, 135 Register ToReg) const { 136 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 137 Observer.changingInstr(*FromRegOp.getParent()); 138 139 FromRegOp.setReg(ToReg); 140 141 Observer.changedInstr(*FromRegOp.getParent()); 142 } 143 144 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 145 if (matchCombineCopy(MI)) { 146 applyCombineCopy(MI); 147 return true; 148 } 149 return false; 150 } 151 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 152 if (MI.getOpcode() != TargetOpcode::COPY) 153 return false; 154 Register DstReg = MI.getOperand(0).getReg(); 155 Register SrcReg = MI.getOperand(1).getReg(); 156 return canReplaceReg(DstReg, SrcReg, MRI); 157 } 158 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 159 Register DstReg = MI.getOperand(0).getReg(); 160 Register SrcReg = MI.getOperand(1).getReg(); 161 MI.eraseFromParent(); 162 replaceRegWith(MRI, DstReg, SrcReg); 163 } 164 165 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 166 bool IsUndef = false; 167 SmallVector<Register, 4> Ops; 168 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 169 applyCombineConcatVectors(MI, IsUndef, Ops); 170 return true; 171 } 172 return false; 173 } 174 175 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 176 SmallVectorImpl<Register> &Ops) { 177 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 178 "Invalid instruction"); 179 IsUndef = true; 180 MachineInstr *Undef = nullptr; 181 182 // Walk over all the operands of concat vectors and check if they are 183 // build_vector themselves or undef. 184 // Then collect their operands in Ops. 185 for (const MachineOperand &MO : MI.uses()) { 186 Register Reg = MO.getReg(); 187 MachineInstr *Def = MRI.getVRegDef(Reg); 188 assert(Def && "Operand not defined"); 189 switch (Def->getOpcode()) { 190 case TargetOpcode::G_BUILD_VECTOR: 191 IsUndef = false; 192 // Remember the operands of the build_vector to fold 193 // them into the yet-to-build flattened concat vectors. 194 for (const MachineOperand &BuildVecMO : Def->uses()) 195 Ops.push_back(BuildVecMO.getReg()); 196 break; 197 case TargetOpcode::G_IMPLICIT_DEF: { 198 LLT OpType = MRI.getType(Reg); 199 // Keep one undef value for all the undef operands. 200 if (!Undef) { 201 Builder.setInsertPt(*MI.getParent(), MI); 202 Undef = Builder.buildUndef(OpType.getScalarType()); 203 } 204 assert(MRI.getType(Undef->getOperand(0).getReg()) == 205 OpType.getScalarType() && 206 "All undefs should have the same type"); 207 // Break the undef vector in as many scalar elements as needed 208 // for the flattening. 209 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 210 EltIdx != EltEnd; ++EltIdx) 211 Ops.push_back(Undef->getOperand(0).getReg()); 212 break; 213 } 214 default: 215 return false; 216 } 217 } 218 return true; 219 } 220 void CombinerHelper::applyCombineConcatVectors( 221 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 222 // We determined that the concat_vectors can be flatten. 223 // Generate the flattened build_vector. 224 Register DstReg = MI.getOperand(0).getReg(); 225 Builder.setInsertPt(*MI.getParent(), MI); 226 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 227 228 // Note: IsUndef is sort of redundant. We could have determine it by 229 // checking that at all Ops are undef. Alternatively, we could have 230 // generate a build_vector of undefs and rely on another combine to 231 // clean that up. For now, given we already gather this information 232 // in tryCombineConcatVectors, just save compile time and issue the 233 // right thing. 234 if (IsUndef) 235 Builder.buildUndef(NewDstReg); 236 else 237 Builder.buildBuildVector(NewDstReg, Ops); 238 MI.eraseFromParent(); 239 replaceRegWith(MRI, DstReg, NewDstReg); 240 } 241 242 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 243 SmallVector<Register, 4> Ops; 244 if (matchCombineShuffleVector(MI, Ops)) { 245 applyCombineShuffleVector(MI, Ops); 246 return true; 247 } 248 return false; 249 } 250 251 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 252 SmallVectorImpl<Register> &Ops) { 253 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 254 "Invalid instruction kind"); 255 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 256 Register Src1 = MI.getOperand(1).getReg(); 257 LLT SrcType = MRI.getType(Src1); 258 // As bizarre as it may look, shuffle vector can actually produce 259 // scalar! This is because at the IR level a <1 x ty> shuffle 260 // vector is perfectly valid. 261 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 262 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 263 264 // If the resulting vector is smaller than the size of the source 265 // vectors being concatenated, we won't be able to replace the 266 // shuffle vector into a concat_vectors. 267 // 268 // Note: We may still be able to produce a concat_vectors fed by 269 // extract_vector_elt and so on. It is less clear that would 270 // be better though, so don't bother for now. 271 // 272 // If the destination is a scalar, the size of the sources doesn't 273 // matter. we will lower the shuffle to a plain copy. This will 274 // work only if the source and destination have the same size. But 275 // that's covered by the next condition. 276 // 277 // TODO: If the size between the source and destination don't match 278 // we could still emit an extract vector element in that case. 279 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 280 return false; 281 282 // Check that the shuffle mask can be broken evenly between the 283 // different sources. 284 if (DstNumElts % SrcNumElts != 0) 285 return false; 286 287 // Mask length is a multiple of the source vector length. 288 // Check if the shuffle is some kind of concatenation of the input 289 // vectors. 290 unsigned NumConcat = DstNumElts / SrcNumElts; 291 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 292 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 293 for (unsigned i = 0; i != DstNumElts; ++i) { 294 int Idx = Mask[i]; 295 // Undef value. 296 if (Idx < 0) 297 continue; 298 // Ensure the indices in each SrcType sized piece are sequential and that 299 // the same source is used for the whole piece. 300 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 301 (ConcatSrcs[i / SrcNumElts] >= 0 && 302 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 303 return false; 304 // Remember which source this index came from. 305 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 306 } 307 308 // The shuffle is concatenating multiple vectors together. 309 // Collect the different operands for that. 310 Register UndefReg; 311 Register Src2 = MI.getOperand(2).getReg(); 312 for (auto Src : ConcatSrcs) { 313 if (Src < 0) { 314 if (!UndefReg) { 315 Builder.setInsertPt(*MI.getParent(), MI); 316 UndefReg = Builder.buildUndef(SrcType).getReg(0); 317 } 318 Ops.push_back(UndefReg); 319 } else if (Src == 0) 320 Ops.push_back(Src1); 321 else 322 Ops.push_back(Src2); 323 } 324 return true; 325 } 326 327 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 328 const ArrayRef<Register> Ops) { 329 Register DstReg = MI.getOperand(0).getReg(); 330 Builder.setInsertPt(*MI.getParent(), MI); 331 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 332 333 if (Ops.size() == 1) 334 Builder.buildCopy(NewDstReg, Ops[0]); 335 else 336 Builder.buildMerge(NewDstReg, Ops); 337 338 MI.eraseFromParent(); 339 replaceRegWith(MRI, DstReg, NewDstReg); 340 } 341 342 namespace { 343 344 /// Select a preference between two uses. CurrentUse is the current preference 345 /// while *ForCandidate is attributes of the candidate under consideration. 346 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 347 const LLT TyForCandidate, 348 unsigned OpcodeForCandidate, 349 MachineInstr *MIForCandidate) { 350 if (!CurrentUse.Ty.isValid()) { 351 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 352 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 353 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 354 return CurrentUse; 355 } 356 357 // We permit the extend to hoist through basic blocks but this is only 358 // sensible if the target has extending loads. If you end up lowering back 359 // into a load and extend during the legalizer then the end result is 360 // hoisting the extend up to the load. 361 362 // Prefer defined extensions to undefined extensions as these are more 363 // likely to reduce the number of instructions. 364 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 365 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 366 return CurrentUse; 367 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 368 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 369 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 370 371 // Prefer sign extensions to zero extensions as sign-extensions tend to be 372 // more expensive. 373 if (CurrentUse.Ty == TyForCandidate) { 374 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 375 OpcodeForCandidate == TargetOpcode::G_ZEXT) 376 return CurrentUse; 377 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 378 OpcodeForCandidate == TargetOpcode::G_SEXT) 379 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 380 } 381 382 // This is potentially target specific. We've chosen the largest type 383 // because G_TRUNC is usually free. One potential catch with this is that 384 // some targets have a reduced number of larger registers than smaller 385 // registers and this choice potentially increases the live-range for the 386 // larger value. 387 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 388 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 389 } 390 return CurrentUse; 391 } 392 393 /// Find a suitable place to insert some instructions and insert them. This 394 /// function accounts for special cases like inserting before a PHI node. 395 /// The current strategy for inserting before PHI's is to duplicate the 396 /// instructions for each predecessor. However, while that's ok for G_TRUNC 397 /// on most targets since it generally requires no code, other targets/cases may 398 /// want to try harder to find a dominating block. 399 static void InsertInsnsWithoutSideEffectsBeforeUse( 400 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 401 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 402 MachineOperand &UseMO)> 403 Inserter) { 404 MachineInstr &UseMI = *UseMO.getParent(); 405 406 MachineBasicBlock *InsertBB = UseMI.getParent(); 407 408 // If the use is a PHI then we want the predecessor block instead. 409 if (UseMI.isPHI()) { 410 MachineOperand *PredBB = std::next(&UseMO); 411 InsertBB = PredBB->getMBB(); 412 } 413 414 // If the block is the same block as the def then we want to insert just after 415 // the def instead of at the start of the block. 416 if (InsertBB == DefMI.getParent()) { 417 MachineBasicBlock::iterator InsertPt = &DefMI; 418 Inserter(InsertBB, std::next(InsertPt), UseMO); 419 return; 420 } 421 422 // Otherwise we want the start of the BB 423 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 424 } 425 } // end anonymous namespace 426 427 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 428 PreferredTuple Preferred; 429 if (matchCombineExtendingLoads(MI, Preferred)) { 430 applyCombineExtendingLoads(MI, Preferred); 431 return true; 432 } 433 return false; 434 } 435 436 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 437 PreferredTuple &Preferred) { 438 // We match the loads and follow the uses to the extend instead of matching 439 // the extends and following the def to the load. This is because the load 440 // must remain in the same position for correctness (unless we also add code 441 // to find a safe place to sink it) whereas the extend is freely movable. 442 // It also prevents us from duplicating the load for the volatile case or just 443 // for performance. 444 445 if (MI.getOpcode() != TargetOpcode::G_LOAD && 446 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 447 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 448 return false; 449 450 auto &LoadValue = MI.getOperand(0); 451 assert(LoadValue.isReg() && "Result wasn't a register?"); 452 453 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 454 if (!LoadValueTy.isScalar()) 455 return false; 456 457 // Most architectures are going to legalize <s8 loads into at least a 1 byte 458 // load, and the MMOs can only describe memory accesses in multiples of bytes. 459 // If we try to perform extload combining on those, we can end up with 460 // %a(s8) = extload %ptr (load 1 byte from %ptr) 461 // ... which is an illegal extload instruction. 462 if (LoadValueTy.getSizeInBits() < 8) 463 return false; 464 465 // For non power-of-2 types, they will very likely be legalized into multiple 466 // loads. Don't bother trying to match them into extending loads. 467 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 468 return false; 469 470 // Find the preferred type aside from the any-extends (unless it's the only 471 // one) and non-extending ops. We'll emit an extending load to that type and 472 // and emit a variant of (extend (trunc X)) for the others according to the 473 // relative type sizes. At the same time, pick an extend to use based on the 474 // extend involved in the chosen type. 475 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 476 ? TargetOpcode::G_ANYEXT 477 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 478 ? TargetOpcode::G_SEXT 479 : TargetOpcode::G_ZEXT; 480 Preferred = {LLT(), PreferredOpcode, nullptr}; 481 for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) { 482 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 483 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 484 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 485 const auto &MMO = **MI.memoperands_begin(); 486 // For atomics, only form anyextending loads. 487 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 488 continue; 489 // Check for legality. 490 if (LI) { 491 LegalityQuery::MemDesc MMDesc; 492 MMDesc.SizeInBits = MMO.getSizeInBits(); 493 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 494 MMDesc.Ordering = MMO.getOrdering(); 495 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 496 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 497 if (LI->getAction({MI.getOpcode(), {UseTy, SrcTy}, {MMDesc}}).Action != 498 LegalizeActions::Legal) 499 continue; 500 } 501 Preferred = ChoosePreferredUse(Preferred, 502 MRI.getType(UseMI.getOperand(0).getReg()), 503 UseMI.getOpcode(), &UseMI); 504 } 505 } 506 507 // There were no extends 508 if (!Preferred.MI) 509 return false; 510 // It should be impossible to chose an extend without selecting a different 511 // type since by definition the result of an extend is larger. 512 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 513 514 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 515 return true; 516 } 517 518 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 519 PreferredTuple &Preferred) { 520 // Rewrite the load to the chosen extending load. 521 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 522 523 // Inserter to insert a truncate back to the original type at a given point 524 // with some basic CSE to limit truncate duplication to one per BB. 525 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 526 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 527 MachineBasicBlock::iterator InsertBefore, 528 MachineOperand &UseMO) { 529 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 530 if (PreviouslyEmitted) { 531 Observer.changingInstr(*UseMO.getParent()); 532 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 533 Observer.changedInstr(*UseMO.getParent()); 534 return; 535 } 536 537 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 538 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 539 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 540 EmittedInsns[InsertIntoBB] = NewMI; 541 replaceRegOpWith(MRI, UseMO, NewDstReg); 542 }; 543 544 Observer.changingInstr(MI); 545 MI.setDesc( 546 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 547 ? TargetOpcode::G_SEXTLOAD 548 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 549 ? TargetOpcode::G_ZEXTLOAD 550 : TargetOpcode::G_LOAD)); 551 552 // Rewrite all the uses to fix up the types. 553 auto &LoadValue = MI.getOperand(0); 554 SmallVector<MachineOperand *, 4> Uses; 555 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 556 Uses.push_back(&UseMO); 557 558 for (auto *UseMO : Uses) { 559 MachineInstr *UseMI = UseMO->getParent(); 560 561 // If the extend is compatible with the preferred extend then we should fix 562 // up the type and extend so that it uses the preferred use. 563 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 564 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 565 Register UseDstReg = UseMI->getOperand(0).getReg(); 566 MachineOperand &UseSrcMO = UseMI->getOperand(1); 567 const LLT UseDstTy = MRI.getType(UseDstReg); 568 if (UseDstReg != ChosenDstReg) { 569 if (Preferred.Ty == UseDstTy) { 570 // If the use has the same type as the preferred use, then merge 571 // the vregs and erase the extend. For example: 572 // %1:_(s8) = G_LOAD ... 573 // %2:_(s32) = G_SEXT %1(s8) 574 // %3:_(s32) = G_ANYEXT %1(s8) 575 // ... = ... %3(s32) 576 // rewrites to: 577 // %2:_(s32) = G_SEXTLOAD ... 578 // ... = ... %2(s32) 579 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 580 Observer.erasingInstr(*UseMO->getParent()); 581 UseMO->getParent()->eraseFromParent(); 582 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 583 // If the preferred size is smaller, then keep the extend but extend 584 // from the result of the extending load. For example: 585 // %1:_(s8) = G_LOAD ... 586 // %2:_(s32) = G_SEXT %1(s8) 587 // %3:_(s64) = G_ANYEXT %1(s8) 588 // ... = ... %3(s64) 589 /// rewrites to: 590 // %2:_(s32) = G_SEXTLOAD ... 591 // %3:_(s64) = G_ANYEXT %2:_(s32) 592 // ... = ... %3(s64) 593 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 594 } else { 595 // If the preferred size is large, then insert a truncate. For 596 // example: 597 // %1:_(s8) = G_LOAD ... 598 // %2:_(s64) = G_SEXT %1(s8) 599 // %3:_(s32) = G_ZEXT %1(s8) 600 // ... = ... %3(s32) 601 /// rewrites to: 602 // %2:_(s64) = G_SEXTLOAD ... 603 // %4:_(s8) = G_TRUNC %2:_(s32) 604 // %3:_(s64) = G_ZEXT %2:_(s8) 605 // ... = ... %3(s64) 606 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 607 InsertTruncAt); 608 } 609 continue; 610 } 611 // The use is (one of) the uses of the preferred use we chose earlier. 612 // We're going to update the load to def this value later so just erase 613 // the old extend. 614 Observer.erasingInstr(*UseMO->getParent()); 615 UseMO->getParent()->eraseFromParent(); 616 continue; 617 } 618 619 // The use isn't an extend. Truncate back to the type we originally loaded. 620 // This is free on many targets. 621 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 622 } 623 624 MI.getOperand(0).setReg(ChosenDstReg); 625 Observer.changedInstr(MI); 626 } 627 628 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 629 const MachineInstr &UseMI) { 630 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 631 "shouldn't consider debug uses"); 632 assert(DefMI.getParent() == UseMI.getParent()); 633 if (&DefMI == &UseMI) 634 return false; 635 const MachineBasicBlock &MBB = *DefMI.getParent(); 636 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 637 return &MI == &DefMI || &MI == &UseMI; 638 }); 639 if (DefOrUse == MBB.end()) 640 llvm_unreachable("Block must contain both DefMI and UseMI!"); 641 return &*DefOrUse == &DefMI; 642 } 643 644 bool CombinerHelper::dominates(const MachineInstr &DefMI, 645 const MachineInstr &UseMI) { 646 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 647 "shouldn't consider debug uses"); 648 if (MDT) 649 return MDT->dominates(&DefMI, &UseMI); 650 else if (DefMI.getParent() != UseMI.getParent()) 651 return false; 652 653 return isPredecessor(DefMI, UseMI); 654 } 655 656 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 657 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 658 Register SrcReg = MI.getOperand(1).getReg(); 659 Register LoadUser = SrcReg; 660 661 if (MRI.getType(SrcReg).isVector()) 662 return false; 663 664 Register TruncSrc; 665 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 666 LoadUser = TruncSrc; 667 668 uint64_t SizeInBits = MI.getOperand(2).getImm(); 669 // If the source is a G_SEXTLOAD from the same bit width, then we don't 670 // need any extend at all, just a truncate. 671 if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) { 672 const auto &MMO = **LoadMI->memoperands_begin(); 673 // If truncating more than the original extended value, abort. 674 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits()) 675 return false; 676 if (MMO.getSizeInBits() == SizeInBits) 677 return true; 678 } 679 return false; 680 } 681 682 bool CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 683 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 684 Builder.setInstrAndDebugLoc(MI); 685 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 686 MI.eraseFromParent(); 687 return true; 688 } 689 690 bool CombinerHelper::matchSextInRegOfLoad( 691 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 692 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 693 694 // Only supports scalars for now. 695 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 696 return false; 697 698 Register SrcReg = MI.getOperand(1).getReg(); 699 MachineInstr *LoadDef = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI); 700 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg())) 701 return false; 702 703 // If the sign extend extends from a narrower width than the load's width, 704 // then we can narrow the load width when we combine to a G_SEXTLOAD. 705 auto &MMO = **LoadDef->memoperands_begin(); 706 // Don't do this for non-simple loads. 707 if (MMO.isAtomic() || MMO.isVolatile()) 708 return false; 709 710 // Avoid widening the load at all. 711 unsigned NewSizeBits = 712 std::min((uint64_t)MI.getOperand(2).getImm(), MMO.getSizeInBits()); 713 714 // Don't generate G_SEXTLOADs with a < 1 byte width. 715 if (NewSizeBits < 8) 716 return false; 717 // Don't bother creating a non-power-2 sextload, it will likely be broken up 718 // anyway for most targets. 719 if (!isPowerOf2_32(NewSizeBits)) 720 return false; 721 MatchInfo = std::make_tuple(LoadDef->getOperand(0).getReg(), NewSizeBits); 722 return true; 723 } 724 725 bool CombinerHelper::applySextInRegOfLoad( 726 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 727 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 728 Register LoadReg; 729 unsigned ScalarSizeBits; 730 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 731 auto *LoadDef = MRI.getVRegDef(LoadReg); 732 assert(LoadDef && "Expected a load reg"); 733 734 // If we have the following: 735 // %ld = G_LOAD %ptr, (load 2) 736 // %ext = G_SEXT_INREG %ld, 8 737 // ==> 738 // %ld = G_SEXTLOAD %ptr (load 1) 739 740 auto &MMO = **LoadDef->memoperands_begin(); 741 Builder.setInstrAndDebugLoc(*LoadDef); 742 auto &MF = Builder.getMF(); 743 auto PtrInfo = MMO.getPointerInfo(); 744 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 745 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 746 LoadDef->getOperand(1).getReg(), *NewMMO); 747 MI.eraseFromParent(); 748 return true; 749 } 750 751 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 752 Register &Base, Register &Offset) { 753 auto &MF = *MI.getParent()->getParent(); 754 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 755 756 #ifndef NDEBUG 757 unsigned Opcode = MI.getOpcode(); 758 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 759 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 760 #endif 761 762 Base = MI.getOperand(1).getReg(); 763 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 764 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 765 return false; 766 767 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 768 // FIXME: The following use traversal needs a bail out for patholigical cases. 769 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 770 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 771 continue; 772 773 Offset = Use.getOperand(2).getReg(); 774 if (!ForceLegalIndexing && 775 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 776 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 777 << Use); 778 continue; 779 } 780 781 // Make sure the offset calculation is before the potentially indexed op. 782 // FIXME: we really care about dependency here. The offset calculation might 783 // be movable. 784 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 785 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 786 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 787 << Use); 788 continue; 789 } 790 791 // FIXME: check whether all uses of Base are load/store with foldable 792 // addressing modes. If so, using the normal addr-modes is better than 793 // forming an indexed one. 794 795 bool MemOpDominatesAddrUses = true; 796 for (auto &PtrAddUse : 797 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 798 if (!dominates(MI, PtrAddUse)) { 799 MemOpDominatesAddrUses = false; 800 break; 801 } 802 } 803 804 if (!MemOpDominatesAddrUses) { 805 LLVM_DEBUG( 806 dbgs() << " Ignoring candidate as memop does not dominate uses: " 807 << Use); 808 continue; 809 } 810 811 LLVM_DEBUG(dbgs() << " Found match: " << Use); 812 Addr = Use.getOperand(0).getReg(); 813 return true; 814 } 815 816 return false; 817 } 818 819 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 820 Register &Base, Register &Offset) { 821 auto &MF = *MI.getParent()->getParent(); 822 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 823 824 #ifndef NDEBUG 825 unsigned Opcode = MI.getOpcode(); 826 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 827 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 828 #endif 829 830 Addr = MI.getOperand(1).getReg(); 831 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 832 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 833 return false; 834 835 Base = AddrDef->getOperand(1).getReg(); 836 Offset = AddrDef->getOperand(2).getReg(); 837 838 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 839 840 if (!ForceLegalIndexing && 841 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 842 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 843 return false; 844 } 845 846 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 847 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 848 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 849 return false; 850 } 851 852 if (MI.getOpcode() == TargetOpcode::G_STORE) { 853 // Would require a copy. 854 if (Base == MI.getOperand(0).getReg()) { 855 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 856 return false; 857 } 858 859 // We're expecting one use of Addr in MI, but it could also be the 860 // value stored, which isn't actually dominated by the instruction. 861 if (MI.getOperand(0).getReg() == Addr) { 862 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 863 return false; 864 } 865 } 866 867 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 868 // That might allow us to end base's liveness here by adjusting the constant. 869 870 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 871 if (!dominates(MI, UseMI)) { 872 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 873 return false; 874 } 875 } 876 877 return true; 878 } 879 880 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 881 IndexedLoadStoreMatchInfo MatchInfo; 882 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 883 applyCombineIndexedLoadStore(MI, MatchInfo); 884 return true; 885 } 886 return false; 887 } 888 889 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 890 unsigned Opcode = MI.getOpcode(); 891 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 892 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 893 return false; 894 895 // For now, no targets actually support these opcodes so don't waste time 896 // running these unless we're forced to for testing. 897 if (!ForceLegalIndexing) 898 return false; 899 900 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 901 MatchInfo.Offset); 902 if (!MatchInfo.IsPre && 903 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 904 MatchInfo.Offset)) 905 return false; 906 907 return true; 908 } 909 910 void CombinerHelper::applyCombineIndexedLoadStore( 911 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 912 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 913 MachineIRBuilder MIRBuilder(MI); 914 unsigned Opcode = MI.getOpcode(); 915 bool IsStore = Opcode == TargetOpcode::G_STORE; 916 unsigned NewOpcode; 917 switch (Opcode) { 918 case TargetOpcode::G_LOAD: 919 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 920 break; 921 case TargetOpcode::G_SEXTLOAD: 922 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 923 break; 924 case TargetOpcode::G_ZEXTLOAD: 925 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 926 break; 927 case TargetOpcode::G_STORE: 928 NewOpcode = TargetOpcode::G_INDEXED_STORE; 929 break; 930 default: 931 llvm_unreachable("Unknown load/store opcode"); 932 } 933 934 auto MIB = MIRBuilder.buildInstr(NewOpcode); 935 if (IsStore) { 936 MIB.addDef(MatchInfo.Addr); 937 MIB.addUse(MI.getOperand(0).getReg()); 938 } else { 939 MIB.addDef(MI.getOperand(0).getReg()); 940 MIB.addDef(MatchInfo.Addr); 941 } 942 943 MIB.addUse(MatchInfo.Base); 944 MIB.addUse(MatchInfo.Offset); 945 MIB.addImm(MatchInfo.IsPre); 946 MI.eraseFromParent(); 947 AddrDef.eraseFromParent(); 948 949 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 950 } 951 952 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 953 MachineInstr *&OtherMI) { 954 unsigned Opcode = MI.getOpcode(); 955 bool IsDiv, IsSigned; 956 957 switch (Opcode) { 958 default: 959 llvm_unreachable("Unexpected opcode!"); 960 case TargetOpcode::G_SDIV: 961 case TargetOpcode::G_UDIV: { 962 IsDiv = true; 963 IsSigned = Opcode == TargetOpcode::G_SDIV; 964 break; 965 } 966 case TargetOpcode::G_SREM: 967 case TargetOpcode::G_UREM: { 968 IsDiv = false; 969 IsSigned = Opcode == TargetOpcode::G_SREM; 970 break; 971 } 972 } 973 974 Register Src1 = MI.getOperand(1).getReg(); 975 unsigned DivOpcode, RemOpcode, DivremOpcode; 976 if (IsSigned) { 977 DivOpcode = TargetOpcode::G_SDIV; 978 RemOpcode = TargetOpcode::G_SREM; 979 DivremOpcode = TargetOpcode::G_SDIVREM; 980 } else { 981 DivOpcode = TargetOpcode::G_UDIV; 982 RemOpcode = TargetOpcode::G_UREM; 983 DivremOpcode = TargetOpcode::G_UDIVREM; 984 } 985 986 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 987 return false; 988 989 // Combine: 990 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 991 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 992 // into: 993 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 994 995 // Combine: 996 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 997 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 998 // into: 999 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1000 1001 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1002 if (MI.getParent() == UseMI.getParent() && 1003 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1004 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1005 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1006 OtherMI = &UseMI; 1007 return true; 1008 } 1009 } 1010 1011 return false; 1012 } 1013 1014 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1015 MachineInstr *&OtherMI) { 1016 unsigned Opcode = MI.getOpcode(); 1017 assert(OtherMI && "OtherMI shouldn't be empty."); 1018 1019 Register DestDivReg, DestRemReg; 1020 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1021 DestDivReg = MI.getOperand(0).getReg(); 1022 DestRemReg = OtherMI->getOperand(0).getReg(); 1023 } else { 1024 DestDivReg = OtherMI->getOperand(0).getReg(); 1025 DestRemReg = MI.getOperand(0).getReg(); 1026 } 1027 1028 bool IsSigned = 1029 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1030 Builder.setInstrAndDebugLoc(MI); 1031 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1032 : TargetOpcode::G_UDIVREM, 1033 {DestDivReg, DestRemReg}, 1034 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1035 MI.eraseFromParent(); 1036 OtherMI->eraseFromParent(); 1037 } 1038 1039 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1040 MachineInstr *&BrCond) { 1041 assert(MI.getOpcode() == TargetOpcode::G_BR); 1042 1043 // Try to match the following: 1044 // bb1: 1045 // G_BRCOND %c1, %bb2 1046 // G_BR %bb3 1047 // bb2: 1048 // ... 1049 // bb3: 1050 1051 // The above pattern does not have a fall through to the successor bb2, always 1052 // resulting in a branch no matter which path is taken. Here we try to find 1053 // and replace that pattern with conditional branch to bb3 and otherwise 1054 // fallthrough to bb2. This is generally better for branch predictors. 1055 1056 MachineBasicBlock *MBB = MI.getParent(); 1057 MachineBasicBlock::iterator BrIt(MI); 1058 if (BrIt == MBB->begin()) 1059 return false; 1060 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1061 1062 BrCond = &*std::prev(BrIt); 1063 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1064 return false; 1065 1066 // Check that the next block is the conditional branch target. Also make sure 1067 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1068 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1069 return BrCondTarget != MI.getOperand(0).getMBB() && 1070 MBB->isLayoutSuccessor(BrCondTarget); 1071 } 1072 1073 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1074 MachineInstr *&BrCond) { 1075 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1076 Builder.setInstrAndDebugLoc(*BrCond); 1077 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1078 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1079 // this to i1 only since we might not know for sure what kind of 1080 // compare generated the condition value. 1081 auto True = Builder.buildConstant( 1082 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1083 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1084 1085 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1086 Observer.changingInstr(MI); 1087 MI.getOperand(0).setMBB(FallthroughBB); 1088 Observer.changedInstr(MI); 1089 1090 // Change the conditional branch to use the inverted condition and 1091 // new target block. 1092 Observer.changingInstr(*BrCond); 1093 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1094 BrCond->getOperand(1).setMBB(BrTarget); 1095 Observer.changedInstr(*BrCond); 1096 } 1097 1098 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 1099 // On Darwin, -Os means optimize for size without hurting performance, so 1100 // only really optimize for size when -Oz (MinSize) is used. 1101 if (MF.getTarget().getTargetTriple().isOSDarwin()) 1102 return MF.getFunction().hasMinSize(); 1103 return MF.getFunction().hasOptSize(); 1104 } 1105 1106 // Returns a list of types to use for memory op lowering in MemOps. A partial 1107 // port of findOptimalMemOpLowering in TargetLowering. 1108 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 1109 unsigned Limit, const MemOp &Op, 1110 unsigned DstAS, unsigned SrcAS, 1111 const AttributeList &FuncAttributes, 1112 const TargetLowering &TLI) { 1113 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 1114 return false; 1115 1116 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 1117 1118 if (Ty == LLT()) { 1119 // Use the largest scalar type whose alignment constraints are satisfied. 1120 // We only need to check DstAlign here as SrcAlign is always greater or 1121 // equal to DstAlign (or zero). 1122 Ty = LLT::scalar(64); 1123 if (Op.isFixedDstAlign()) 1124 while (Op.getDstAlign() < Ty.getSizeInBytes() && 1125 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 1126 Ty = LLT::scalar(Ty.getSizeInBytes()); 1127 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 1128 // FIXME: check for the largest legal type we can load/store to. 1129 } 1130 1131 unsigned NumMemOps = 0; 1132 uint64_t Size = Op.size(); 1133 while (Size) { 1134 unsigned TySize = Ty.getSizeInBytes(); 1135 while (TySize > Size) { 1136 // For now, only use non-vector load / store's for the left-over pieces. 1137 LLT NewTy = Ty; 1138 // FIXME: check for mem op safety and legality of the types. Not all of 1139 // SDAGisms map cleanly to GISel concepts. 1140 if (NewTy.isVector()) 1141 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 1142 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 1143 unsigned NewTySize = NewTy.getSizeInBytes(); 1144 assert(NewTySize > 0 && "Could not find appropriate type"); 1145 1146 // If the new LLT cannot cover all of the remaining bits, then consider 1147 // issuing a (or a pair of) unaligned and overlapping load / store. 1148 bool Fast; 1149 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 1150 MVT VT = getMVTForLLT(Ty); 1151 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 1152 TLI.allowsMisalignedMemoryAccesses( 1153 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 1154 MachineMemOperand::MONone, &Fast) && 1155 Fast) 1156 TySize = Size; 1157 else { 1158 Ty = NewTy; 1159 TySize = NewTySize; 1160 } 1161 } 1162 1163 if (++NumMemOps > Limit) 1164 return false; 1165 1166 MemOps.push_back(Ty); 1167 Size -= TySize; 1168 } 1169 1170 return true; 1171 } 1172 1173 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1174 if (Ty.isVector()) 1175 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1176 Ty.getNumElements()); 1177 return IntegerType::get(C, Ty.getSizeInBits()); 1178 } 1179 1180 // Get a vectorized representation of the memset value operand, GISel edition. 1181 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 1182 MachineRegisterInfo &MRI = *MIB.getMRI(); 1183 unsigned NumBits = Ty.getScalarSizeInBits(); 1184 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1185 if (!Ty.isVector() && ValVRegAndVal) { 1186 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 1187 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 1188 return MIB.buildConstant(Ty, SplatVal).getReg(0); 1189 } 1190 1191 // Extend the byte value to the larger type, and then multiply by a magic 1192 // value 0x010101... in order to replicate it across every byte. 1193 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 1194 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 1195 return MIB.buildConstant(Ty, 0).getReg(0); 1196 } 1197 1198 LLT ExtType = Ty.getScalarType(); 1199 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 1200 if (NumBits > 8) { 1201 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 1202 auto MagicMI = MIB.buildConstant(ExtType, Magic); 1203 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 1204 } 1205 1206 // For vector types create a G_BUILD_VECTOR. 1207 if (Ty.isVector()) 1208 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 1209 1210 return Val; 1211 } 1212 1213 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 1214 Register Val, unsigned KnownLen, 1215 Align Alignment, bool IsVolatile) { 1216 auto &MF = *MI.getParent()->getParent(); 1217 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1218 auto &DL = MF.getDataLayout(); 1219 LLVMContext &C = MF.getFunction().getContext(); 1220 1221 assert(KnownLen != 0 && "Have a zero length memset length!"); 1222 1223 bool DstAlignCanChange = false; 1224 MachineFrameInfo &MFI = MF.getFrameInfo(); 1225 bool OptSize = shouldLowerMemFuncForSize(MF); 1226 1227 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1228 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1229 DstAlignCanChange = true; 1230 1231 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1232 std::vector<LLT> MemOps; 1233 1234 const auto &DstMMO = **MI.memoperands_begin(); 1235 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1236 1237 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1238 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1239 1240 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1241 MemOp::Set(KnownLen, DstAlignCanChange, 1242 Alignment, 1243 /*IsZeroMemset=*/IsZeroVal, 1244 /*IsVolatile=*/IsVolatile), 1245 DstPtrInfo.getAddrSpace(), ~0u, 1246 MF.getFunction().getAttributes(), TLI)) 1247 return false; 1248 1249 if (DstAlignCanChange) { 1250 // Get an estimate of the type from the LLT. 1251 Type *IRTy = getTypeForLLT(MemOps[0], C); 1252 Align NewAlign = DL.getABITypeAlign(IRTy); 1253 if (NewAlign > Alignment) { 1254 Alignment = NewAlign; 1255 unsigned FI = FIDef->getOperand(1).getIndex(); 1256 // Give the stack frame object a larger alignment if needed. 1257 if (MFI.getObjectAlign(FI) < Alignment) 1258 MFI.setObjectAlignment(FI, Alignment); 1259 } 1260 } 1261 1262 MachineIRBuilder MIB(MI); 1263 // Find the largest store and generate the bit pattern for it. 1264 LLT LargestTy = MemOps[0]; 1265 for (unsigned i = 1; i < MemOps.size(); i++) 1266 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1267 LargestTy = MemOps[i]; 1268 1269 // The memset stored value is always defined as an s8, so in order to make it 1270 // work with larger store types we need to repeat the bit pattern across the 1271 // wider type. 1272 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1273 1274 if (!MemSetValue) 1275 return false; 1276 1277 // Generate the stores. For each store type in the list, we generate the 1278 // matching store of that type to the destination address. 1279 LLT PtrTy = MRI.getType(Dst); 1280 unsigned DstOff = 0; 1281 unsigned Size = KnownLen; 1282 for (unsigned I = 0; I < MemOps.size(); I++) { 1283 LLT Ty = MemOps[I]; 1284 unsigned TySize = Ty.getSizeInBytes(); 1285 if (TySize > Size) { 1286 // Issuing an unaligned load / store pair that overlaps with the previous 1287 // pair. Adjust the offset accordingly. 1288 assert(I == MemOps.size() - 1 && I != 0); 1289 DstOff -= TySize - Size; 1290 } 1291 1292 // If this store is smaller than the largest store see whether we can get 1293 // the smaller value for free with a truncate. 1294 Register Value = MemSetValue; 1295 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1296 MVT VT = getMVTForLLT(Ty); 1297 MVT LargestVT = getMVTForLLT(LargestTy); 1298 if (!LargestTy.isVector() && !Ty.isVector() && 1299 TLI.isTruncateFree(LargestVT, VT)) 1300 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1301 else 1302 Value = getMemsetValue(Val, Ty, MIB); 1303 if (!Value) 1304 return false; 1305 } 1306 1307 auto *StoreMMO = 1308 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1309 1310 Register Ptr = Dst; 1311 if (DstOff != 0) { 1312 auto Offset = 1313 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1314 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1315 } 1316 1317 MIB.buildStore(Value, Ptr, *StoreMMO); 1318 DstOff += Ty.getSizeInBytes(); 1319 Size -= TySize; 1320 } 1321 1322 MI.eraseFromParent(); 1323 return true; 1324 } 1325 1326 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1327 Register Src, unsigned KnownLen, 1328 Align DstAlign, Align SrcAlign, 1329 bool IsVolatile) { 1330 auto &MF = *MI.getParent()->getParent(); 1331 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1332 auto &DL = MF.getDataLayout(); 1333 LLVMContext &C = MF.getFunction().getContext(); 1334 1335 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1336 1337 bool DstAlignCanChange = false; 1338 MachineFrameInfo &MFI = MF.getFrameInfo(); 1339 bool OptSize = shouldLowerMemFuncForSize(MF); 1340 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1341 1342 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1343 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1344 DstAlignCanChange = true; 1345 1346 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1347 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1348 // if the memcpy is in a tail call position. 1349 1350 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1351 std::vector<LLT> MemOps; 1352 1353 const auto &DstMMO = **MI.memoperands_begin(); 1354 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1355 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1356 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1357 1358 if (!findGISelOptimalMemOpLowering( 1359 MemOps, Limit, 1360 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1361 IsVolatile), 1362 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1363 MF.getFunction().getAttributes(), TLI)) 1364 return false; 1365 1366 if (DstAlignCanChange) { 1367 // Get an estimate of the type from the LLT. 1368 Type *IRTy = getTypeForLLT(MemOps[0], C); 1369 Align NewAlign = DL.getABITypeAlign(IRTy); 1370 1371 // Don't promote to an alignment that would require dynamic stack 1372 // realignment. 1373 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1374 if (!TRI->hasStackRealignment(MF)) 1375 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1376 NewAlign = NewAlign / 2; 1377 1378 if (NewAlign > Alignment) { 1379 Alignment = NewAlign; 1380 unsigned FI = FIDef->getOperand(1).getIndex(); 1381 // Give the stack frame object a larger alignment if needed. 1382 if (MFI.getObjectAlign(FI) < Alignment) 1383 MFI.setObjectAlignment(FI, Alignment); 1384 } 1385 } 1386 1387 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1388 1389 MachineIRBuilder MIB(MI); 1390 // Now we need to emit a pair of load and stores for each of the types we've 1391 // collected. I.e. for each type, generate a load from the source pointer of 1392 // that type width, and then generate a corresponding store to the dest buffer 1393 // of that value loaded. This can result in a sequence of loads and stores 1394 // mixed types, depending on what the target specifies as good types to use. 1395 unsigned CurrOffset = 0; 1396 LLT PtrTy = MRI.getType(Src); 1397 unsigned Size = KnownLen; 1398 for (auto CopyTy : MemOps) { 1399 // Issuing an unaligned load / store pair that overlaps with the previous 1400 // pair. Adjust the offset accordingly. 1401 if (CopyTy.getSizeInBytes() > Size) 1402 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1403 1404 // Construct MMOs for the accesses. 1405 auto *LoadMMO = 1406 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1407 auto *StoreMMO = 1408 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1409 1410 // Create the load. 1411 Register LoadPtr = Src; 1412 Register Offset; 1413 if (CurrOffset != 0) { 1414 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1415 .getReg(0); 1416 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1417 } 1418 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1419 1420 // Create the store. 1421 Register StorePtr = 1422 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1423 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1424 CurrOffset += CopyTy.getSizeInBytes(); 1425 Size -= CopyTy.getSizeInBytes(); 1426 } 1427 1428 MI.eraseFromParent(); 1429 return true; 1430 } 1431 1432 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1433 Register Src, unsigned KnownLen, 1434 Align DstAlign, Align SrcAlign, 1435 bool IsVolatile) { 1436 auto &MF = *MI.getParent()->getParent(); 1437 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1438 auto &DL = MF.getDataLayout(); 1439 LLVMContext &C = MF.getFunction().getContext(); 1440 1441 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1442 1443 bool DstAlignCanChange = false; 1444 MachineFrameInfo &MFI = MF.getFrameInfo(); 1445 bool OptSize = shouldLowerMemFuncForSize(MF); 1446 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1447 1448 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1449 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1450 DstAlignCanChange = true; 1451 1452 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1453 std::vector<LLT> MemOps; 1454 1455 const auto &DstMMO = **MI.memoperands_begin(); 1456 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1457 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1458 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1459 1460 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1461 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1462 // same thing here. 1463 if (!findGISelOptimalMemOpLowering( 1464 MemOps, Limit, 1465 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1466 /*IsVolatile*/ true), 1467 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1468 MF.getFunction().getAttributes(), TLI)) 1469 return false; 1470 1471 if (DstAlignCanChange) { 1472 // Get an estimate of the type from the LLT. 1473 Type *IRTy = getTypeForLLT(MemOps[0], C); 1474 Align NewAlign = DL.getABITypeAlign(IRTy); 1475 1476 // Don't promote to an alignment that would require dynamic stack 1477 // realignment. 1478 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1479 if (!TRI->hasStackRealignment(MF)) 1480 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1481 NewAlign = NewAlign / 2; 1482 1483 if (NewAlign > Alignment) { 1484 Alignment = NewAlign; 1485 unsigned FI = FIDef->getOperand(1).getIndex(); 1486 // Give the stack frame object a larger alignment if needed. 1487 if (MFI.getObjectAlign(FI) < Alignment) 1488 MFI.setObjectAlignment(FI, Alignment); 1489 } 1490 } 1491 1492 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1493 1494 MachineIRBuilder MIB(MI); 1495 // Memmove requires that we perform the loads first before issuing the stores. 1496 // Apart from that, this loop is pretty much doing the same thing as the 1497 // memcpy codegen function. 1498 unsigned CurrOffset = 0; 1499 LLT PtrTy = MRI.getType(Src); 1500 SmallVector<Register, 16> LoadVals; 1501 for (auto CopyTy : MemOps) { 1502 // Construct MMO for the load. 1503 auto *LoadMMO = 1504 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1505 1506 // Create the load. 1507 Register LoadPtr = Src; 1508 if (CurrOffset != 0) { 1509 auto Offset = 1510 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1511 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1512 } 1513 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1514 CurrOffset += CopyTy.getSizeInBytes(); 1515 } 1516 1517 CurrOffset = 0; 1518 for (unsigned I = 0; I < MemOps.size(); ++I) { 1519 LLT CopyTy = MemOps[I]; 1520 // Now store the values loaded. 1521 auto *StoreMMO = 1522 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1523 1524 Register StorePtr = Dst; 1525 if (CurrOffset != 0) { 1526 auto Offset = 1527 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1528 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1529 } 1530 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1531 CurrOffset += CopyTy.getSizeInBytes(); 1532 } 1533 MI.eraseFromParent(); 1534 return true; 1535 } 1536 1537 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1538 const unsigned Opc = MI.getOpcode(); 1539 // This combine is fairly complex so it's not written with a separate 1540 // matcher function. 1541 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 1542 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); 1543 1544 auto MMOIt = MI.memoperands_begin(); 1545 const MachineMemOperand *MemOp = *MMOIt; 1546 bool IsVolatile = MemOp->isVolatile(); 1547 // Don't try to optimize volatile. 1548 if (IsVolatile) 1549 return false; 1550 1551 Align DstAlign = MemOp->getBaseAlign(); 1552 Align SrcAlign; 1553 Register Dst = MI.getOperand(0).getReg(); 1554 Register Src = MI.getOperand(1).getReg(); 1555 Register Len = MI.getOperand(2).getReg(); 1556 1557 if (Opc != TargetOpcode::G_MEMSET) { 1558 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1559 MemOp = *(++MMOIt); 1560 SrcAlign = MemOp->getBaseAlign(); 1561 } 1562 1563 // See if this is a constant length copy 1564 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1565 if (!LenVRegAndVal) 1566 return false; // Leave it to the legalizer to lower it to a libcall. 1567 unsigned KnownLen = LenVRegAndVal->Value.getZExtValue(); 1568 1569 if (KnownLen == 0) { 1570 MI.eraseFromParent(); 1571 return true; 1572 } 1573 1574 if (MaxLen && KnownLen > MaxLen) 1575 return false; 1576 1577 if (Opc == TargetOpcode::G_MEMCPY) 1578 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1579 if (Opc == TargetOpcode::G_MEMMOVE) 1580 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1581 if (Opc == TargetOpcode::G_MEMSET) 1582 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1583 return false; 1584 } 1585 1586 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1587 const Register Op, 1588 const MachineRegisterInfo &MRI) { 1589 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1590 if (!MaybeCst) 1591 return None; 1592 1593 APFloat V = MaybeCst->getValueAPF(); 1594 switch (Opcode) { 1595 default: 1596 llvm_unreachable("Unexpected opcode!"); 1597 case TargetOpcode::G_FNEG: { 1598 V.changeSign(); 1599 return V; 1600 } 1601 case TargetOpcode::G_FABS: { 1602 V.clearSign(); 1603 return V; 1604 } 1605 case TargetOpcode::G_FPTRUNC: 1606 break; 1607 case TargetOpcode::G_FSQRT: { 1608 bool Unused; 1609 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1610 V = APFloat(sqrt(V.convertToDouble())); 1611 break; 1612 } 1613 case TargetOpcode::G_FLOG2: { 1614 bool Unused; 1615 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1616 V = APFloat(log2(V.convertToDouble())); 1617 break; 1618 } 1619 } 1620 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1621 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1622 // and `G_FLOG2` reach here. 1623 bool Unused; 1624 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1625 return V; 1626 } 1627 1628 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1629 Optional<APFloat> &Cst) { 1630 Register DstReg = MI.getOperand(0).getReg(); 1631 Register SrcReg = MI.getOperand(1).getReg(); 1632 LLT DstTy = MRI.getType(DstReg); 1633 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1634 return Cst.hasValue(); 1635 } 1636 1637 bool CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1638 Optional<APFloat> &Cst) { 1639 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1640 Builder.setInstrAndDebugLoc(MI); 1641 MachineFunction &MF = Builder.getMF(); 1642 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1643 Register DstReg = MI.getOperand(0).getReg(); 1644 Builder.buildFConstant(DstReg, *FPVal); 1645 MI.eraseFromParent(); 1646 return true; 1647 } 1648 1649 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1650 PtrAddChain &MatchInfo) { 1651 // We're trying to match the following pattern: 1652 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1653 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1654 // --> 1655 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1656 1657 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1658 return false; 1659 1660 Register Add2 = MI.getOperand(1).getReg(); 1661 Register Imm1 = MI.getOperand(2).getReg(); 1662 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1663 if (!MaybeImmVal) 1664 return false; 1665 1666 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1667 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1668 return false; 1669 1670 Register Base = Add2Def->getOperand(1).getReg(); 1671 Register Imm2 = Add2Def->getOperand(2).getReg(); 1672 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1673 if (!MaybeImm2Val) 1674 return false; 1675 1676 // Pass the combined immediate to the apply function. 1677 MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue(); 1678 MatchInfo.Base = Base; 1679 return true; 1680 } 1681 1682 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1683 PtrAddChain &MatchInfo) { 1684 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1685 MachineIRBuilder MIB(MI); 1686 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1687 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1688 Observer.changingInstr(MI); 1689 MI.getOperand(1).setReg(MatchInfo.Base); 1690 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1691 Observer.changedInstr(MI); 1692 return true; 1693 } 1694 1695 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1696 RegisterImmPair &MatchInfo) { 1697 // We're trying to match the following pattern with any of 1698 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1699 // %t1 = SHIFT %base, G_CONSTANT imm1 1700 // %root = SHIFT %t1, G_CONSTANT imm2 1701 // --> 1702 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1703 1704 unsigned Opcode = MI.getOpcode(); 1705 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1706 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1707 Opcode == TargetOpcode::G_USHLSAT) && 1708 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1709 1710 Register Shl2 = MI.getOperand(1).getReg(); 1711 Register Imm1 = MI.getOperand(2).getReg(); 1712 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1713 if (!MaybeImmVal) 1714 return false; 1715 1716 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1717 if (Shl2Def->getOpcode() != Opcode) 1718 return false; 1719 1720 Register Base = Shl2Def->getOperand(1).getReg(); 1721 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1722 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1723 if (!MaybeImm2Val) 1724 return false; 1725 1726 // Pass the combined immediate to the apply function. 1727 MatchInfo.Imm = 1728 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1729 MatchInfo.Reg = Base; 1730 1731 // There is no simple replacement for a saturating unsigned left shift that 1732 // exceeds the scalar size. 1733 if (Opcode == TargetOpcode::G_USHLSAT && 1734 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1735 return false; 1736 1737 return true; 1738 } 1739 1740 bool CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1741 RegisterImmPair &MatchInfo) { 1742 unsigned Opcode = MI.getOpcode(); 1743 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1744 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1745 Opcode == TargetOpcode::G_USHLSAT) && 1746 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1747 1748 Builder.setInstrAndDebugLoc(MI); 1749 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1750 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1751 auto Imm = MatchInfo.Imm; 1752 1753 if (Imm >= ScalarSizeInBits) { 1754 // Any logical shift that exceeds scalar size will produce zero. 1755 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1756 Builder.buildConstant(MI.getOperand(0), 0); 1757 MI.eraseFromParent(); 1758 return true; 1759 } 1760 // Arithmetic shift and saturating signed left shift have no effect beyond 1761 // scalar size. 1762 Imm = ScalarSizeInBits - 1; 1763 } 1764 1765 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1766 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1767 Observer.changingInstr(MI); 1768 MI.getOperand(1).setReg(MatchInfo.Reg); 1769 MI.getOperand(2).setReg(NewImm); 1770 Observer.changedInstr(MI); 1771 return true; 1772 } 1773 1774 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1775 ShiftOfShiftedLogic &MatchInfo) { 1776 // We're trying to match the following pattern with any of 1777 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1778 // with any of G_AND/G_OR/G_XOR logic instructions. 1779 // %t1 = SHIFT %X, G_CONSTANT C0 1780 // %t2 = LOGIC %t1, %Y 1781 // %root = SHIFT %t2, G_CONSTANT C1 1782 // --> 1783 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1784 // %t4 = SHIFT %Y, G_CONSTANT C1 1785 // %root = LOGIC %t3, %t4 1786 unsigned ShiftOpcode = MI.getOpcode(); 1787 assert((ShiftOpcode == TargetOpcode::G_SHL || 1788 ShiftOpcode == TargetOpcode::G_ASHR || 1789 ShiftOpcode == TargetOpcode::G_LSHR || 1790 ShiftOpcode == TargetOpcode::G_USHLSAT || 1791 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1792 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1793 1794 // Match a one-use bitwise logic op. 1795 Register LogicDest = MI.getOperand(1).getReg(); 1796 if (!MRI.hasOneNonDBGUse(LogicDest)) 1797 return false; 1798 1799 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1800 unsigned LogicOpcode = LogicMI->getOpcode(); 1801 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1802 LogicOpcode != TargetOpcode::G_XOR) 1803 return false; 1804 1805 // Find a matching one-use shift by constant. 1806 const Register C1 = MI.getOperand(2).getReg(); 1807 auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); 1808 if (!MaybeImmVal) 1809 return false; 1810 1811 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1812 1813 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1814 // Shift should match previous one and should be a one-use. 1815 if (MI->getOpcode() != ShiftOpcode || 1816 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1817 return false; 1818 1819 // Must be a constant. 1820 auto MaybeImmVal = 1821 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1822 if (!MaybeImmVal) 1823 return false; 1824 1825 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1826 return true; 1827 }; 1828 1829 // Logic ops are commutative, so check each operand for a match. 1830 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1831 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1832 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1833 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1834 uint64_t C0Val; 1835 1836 if (matchFirstShift(LogicMIOp1, C0Val)) { 1837 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1838 MatchInfo.Shift2 = LogicMIOp1; 1839 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1840 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1841 MatchInfo.Shift2 = LogicMIOp2; 1842 } else 1843 return false; 1844 1845 MatchInfo.ValSum = C0Val + C1Val; 1846 1847 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1848 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1849 return false; 1850 1851 MatchInfo.Logic = LogicMI; 1852 return true; 1853 } 1854 1855 bool CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1856 ShiftOfShiftedLogic &MatchInfo) { 1857 unsigned Opcode = MI.getOpcode(); 1858 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1859 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1860 Opcode == TargetOpcode::G_SSHLSAT) && 1861 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1862 1863 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1864 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1865 Builder.setInstrAndDebugLoc(MI); 1866 1867 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1868 1869 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1870 Register Shift1 = 1871 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1872 1873 Register Shift2Const = MI.getOperand(2).getReg(); 1874 Register Shift2 = Builder 1875 .buildInstr(Opcode, {DestType}, 1876 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1877 .getReg(0); 1878 1879 Register Dest = MI.getOperand(0).getReg(); 1880 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1881 1882 // These were one use so it's safe to remove them. 1883 MatchInfo.Shift2->eraseFromParent(); 1884 MatchInfo.Logic->eraseFromParent(); 1885 1886 MI.eraseFromParent(); 1887 return true; 1888 } 1889 1890 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1891 unsigned &ShiftVal) { 1892 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1893 auto MaybeImmVal = 1894 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1895 if (!MaybeImmVal) 1896 return false; 1897 1898 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1899 return (static_cast<int32_t>(ShiftVal) != -1); 1900 } 1901 1902 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1903 unsigned &ShiftVal) { 1904 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1905 MachineIRBuilder MIB(MI); 1906 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1907 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1908 Observer.changingInstr(MI); 1909 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1910 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1911 Observer.changedInstr(MI); 1912 return true; 1913 } 1914 1915 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1916 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1917 RegisterImmPair &MatchData) { 1918 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1919 1920 Register LHS = MI.getOperand(1).getReg(); 1921 1922 Register ExtSrc; 1923 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1924 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1925 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1926 return false; 1927 1928 // TODO: Should handle vector splat. 1929 Register RHS = MI.getOperand(2).getReg(); 1930 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 1931 if (!MaybeShiftAmtVal) 1932 return false; 1933 1934 if (LI) { 1935 LLT SrcTy = MRI.getType(ExtSrc); 1936 1937 // We only really care about the legality with the shifted value. We can 1938 // pick any type the constant shift amount, so ask the target what to 1939 // use. Otherwise we would have to guess and hope it is reported as legal. 1940 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1941 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1942 return false; 1943 } 1944 1945 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1946 MatchData.Reg = ExtSrc; 1947 MatchData.Imm = ShiftAmt; 1948 1949 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1950 return MinLeadingZeros >= ShiftAmt; 1951 } 1952 1953 bool CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1954 const RegisterImmPair &MatchData) { 1955 Register ExtSrcReg = MatchData.Reg; 1956 int64_t ShiftAmtVal = MatchData.Imm; 1957 1958 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1959 Builder.setInstrAndDebugLoc(MI); 1960 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1961 auto NarrowShift = 1962 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1963 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1964 MI.eraseFromParent(); 1965 return true; 1966 } 1967 1968 static Register peekThroughBitcast(Register Reg, 1969 const MachineRegisterInfo &MRI) { 1970 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1971 ; 1972 1973 return Reg; 1974 } 1975 1976 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1977 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1978 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1979 "Expected an unmerge"); 1980 Register SrcReg = 1981 peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI); 1982 1983 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1984 if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES && 1985 SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR && 1986 SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS) 1987 return false; 1988 1989 // Check the source type of the merge. 1990 LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg()); 1991 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1992 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1993 if (SrcMergeTy != Dst0Ty && !SameSize) 1994 return false; 1995 // They are the same now (modulo a bitcast). 1996 // We can collect all the src registers. 1997 for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx; 1998 ++Idx) 1999 Operands.push_back(SrcInstr->getOperand(Idx).getReg()); 2000 return true; 2001 } 2002 2003 bool CombinerHelper::applyCombineUnmergeMergeToPlainValues( 2004 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2005 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2006 "Expected an unmerge"); 2007 assert((MI.getNumOperands() - 1 == Operands.size()) && 2008 "Not enough operands to replace all defs"); 2009 unsigned NumElems = MI.getNumOperands() - 1; 2010 2011 LLT SrcTy = MRI.getType(Operands[0]); 2012 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2013 bool CanReuseInputDirectly = DstTy == SrcTy; 2014 Builder.setInstrAndDebugLoc(MI); 2015 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2016 Register DstReg = MI.getOperand(Idx).getReg(); 2017 Register SrcReg = Operands[Idx]; 2018 if (CanReuseInputDirectly) 2019 replaceRegWith(MRI, DstReg, SrcReg); 2020 else 2021 Builder.buildCast(DstReg, SrcReg); 2022 } 2023 MI.eraseFromParent(); 2024 return true; 2025 } 2026 2027 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 2028 SmallVectorImpl<APInt> &Csts) { 2029 unsigned SrcIdx = MI.getNumOperands() - 1; 2030 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 2031 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 2032 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 2033 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 2034 return false; 2035 // Break down the big constant in smaller ones. 2036 const MachineOperand &CstVal = SrcInstr->getOperand(1); 2037 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 2038 ? CstVal.getCImm()->getValue() 2039 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 2040 2041 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 2042 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 2043 // Unmerge a constant. 2044 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 2045 Csts.emplace_back(Val.trunc(ShiftAmt)); 2046 Val = Val.lshr(ShiftAmt); 2047 } 2048 2049 return true; 2050 } 2051 2052 bool CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 2053 SmallVectorImpl<APInt> &Csts) { 2054 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2055 "Expected an unmerge"); 2056 assert((MI.getNumOperands() - 1 == Csts.size()) && 2057 "Not enough operands to replace all defs"); 2058 unsigned NumElems = MI.getNumOperands() - 1; 2059 Builder.setInstrAndDebugLoc(MI); 2060 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2061 Register DstReg = MI.getOperand(Idx).getReg(); 2062 Builder.buildConstant(DstReg, Csts[Idx]); 2063 } 2064 2065 MI.eraseFromParent(); 2066 return true; 2067 } 2068 2069 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2070 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2071 "Expected an unmerge"); 2072 // Check that all the lanes are dead except the first one. 2073 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2074 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 2075 return false; 2076 } 2077 return true; 2078 } 2079 2080 bool CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2081 Builder.setInstrAndDebugLoc(MI); 2082 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2083 // Truncating a vector is going to truncate every single lane, 2084 // whereas we want the full lowbits. 2085 // Do the operation on a scalar instead. 2086 LLT SrcTy = MRI.getType(SrcReg); 2087 if (SrcTy.isVector()) 2088 SrcReg = 2089 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 2090 2091 Register Dst0Reg = MI.getOperand(0).getReg(); 2092 LLT Dst0Ty = MRI.getType(Dst0Reg); 2093 if (Dst0Ty.isVector()) { 2094 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 2095 Builder.buildCast(Dst0Reg, MIB); 2096 } else 2097 Builder.buildTrunc(Dst0Reg, SrcReg); 2098 MI.eraseFromParent(); 2099 return true; 2100 } 2101 2102 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 2103 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2104 "Expected an unmerge"); 2105 Register Dst0Reg = MI.getOperand(0).getReg(); 2106 LLT Dst0Ty = MRI.getType(Dst0Reg); 2107 // G_ZEXT on vector applies to each lane, so it will 2108 // affect all destinations. Therefore we won't be able 2109 // to simplify the unmerge to just the first definition. 2110 if (Dst0Ty.isVector()) 2111 return false; 2112 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2113 LLT SrcTy = MRI.getType(SrcReg); 2114 if (SrcTy.isVector()) 2115 return false; 2116 2117 Register ZExtSrcReg; 2118 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 2119 return false; 2120 2121 // Finally we can replace the first definition with 2122 // a zext of the source if the definition is big enough to hold 2123 // all of ZExtSrc bits. 2124 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2125 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 2126 } 2127 2128 bool CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 2129 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2130 "Expected an unmerge"); 2131 2132 Register Dst0Reg = MI.getOperand(0).getReg(); 2133 2134 MachineInstr *ZExtInstr = 2135 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 2136 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 2137 "Expecting a G_ZEXT"); 2138 2139 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 2140 LLT Dst0Ty = MRI.getType(Dst0Reg); 2141 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2142 2143 Builder.setInstrAndDebugLoc(MI); 2144 2145 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 2146 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 2147 } else { 2148 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 2149 "ZExt src doesn't fit in destination"); 2150 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 2151 } 2152 2153 Register ZeroReg; 2154 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2155 if (!ZeroReg) 2156 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 2157 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 2158 } 2159 MI.eraseFromParent(); 2160 return true; 2161 } 2162 2163 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 2164 unsigned TargetShiftSize, 2165 unsigned &ShiftVal) { 2166 assert((MI.getOpcode() == TargetOpcode::G_SHL || 2167 MI.getOpcode() == TargetOpcode::G_LSHR || 2168 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 2169 2170 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2171 if (Ty.isVector()) // TODO: 2172 return false; 2173 2174 // Don't narrow further than the requested size. 2175 unsigned Size = Ty.getSizeInBits(); 2176 if (Size <= TargetShiftSize) 2177 return false; 2178 2179 auto MaybeImmVal = 2180 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 2181 if (!MaybeImmVal) 2182 return false; 2183 2184 ShiftVal = MaybeImmVal->Value.getSExtValue(); 2185 return ShiftVal >= Size / 2 && ShiftVal < Size; 2186 } 2187 2188 bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 2189 const unsigned &ShiftVal) { 2190 Register DstReg = MI.getOperand(0).getReg(); 2191 Register SrcReg = MI.getOperand(1).getReg(); 2192 LLT Ty = MRI.getType(SrcReg); 2193 unsigned Size = Ty.getSizeInBits(); 2194 unsigned HalfSize = Size / 2; 2195 assert(ShiftVal >= HalfSize); 2196 2197 LLT HalfTy = LLT::scalar(HalfSize); 2198 2199 Builder.setInstr(MI); 2200 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 2201 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 2202 2203 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2204 Register Narrowed = Unmerge.getReg(1); 2205 2206 // dst = G_LSHR s64:x, C for C >= 32 2207 // => 2208 // lo, hi = G_UNMERGE_VALUES x 2209 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 2210 2211 if (NarrowShiftAmt != 0) { 2212 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 2213 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2214 } 2215 2216 auto Zero = Builder.buildConstant(HalfTy, 0); 2217 Builder.buildMerge(DstReg, { Narrowed, Zero }); 2218 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 2219 Register Narrowed = Unmerge.getReg(0); 2220 // dst = G_SHL s64:x, C for C >= 32 2221 // => 2222 // lo, hi = G_UNMERGE_VALUES x 2223 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 2224 if (NarrowShiftAmt != 0) { 2225 Narrowed = Builder.buildShl(HalfTy, Narrowed, 2226 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2227 } 2228 2229 auto Zero = Builder.buildConstant(HalfTy, 0); 2230 Builder.buildMerge(DstReg, { Zero, Narrowed }); 2231 } else { 2232 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2233 auto Hi = Builder.buildAShr( 2234 HalfTy, Unmerge.getReg(1), 2235 Builder.buildConstant(HalfTy, HalfSize - 1)); 2236 2237 if (ShiftVal == HalfSize) { 2238 // (G_ASHR i64:x, 32) -> 2239 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 2240 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 2241 } else if (ShiftVal == Size - 1) { 2242 // Don't need a second shift. 2243 // (G_ASHR i64:x, 63) -> 2244 // %narrowed = (G_ASHR hi_32(x), 31) 2245 // G_MERGE_VALUES %narrowed, %narrowed 2246 Builder.buildMerge(DstReg, { Hi, Hi }); 2247 } else { 2248 auto Lo = Builder.buildAShr( 2249 HalfTy, Unmerge.getReg(1), 2250 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 2251 2252 // (G_ASHR i64:x, C) ->, for C >= 32 2253 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 2254 Builder.buildMerge(DstReg, { Lo, Hi }); 2255 } 2256 } 2257 2258 MI.eraseFromParent(); 2259 return true; 2260 } 2261 2262 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 2263 unsigned TargetShiftAmount) { 2264 unsigned ShiftAmt; 2265 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 2266 applyCombineShiftToUnmerge(MI, ShiftAmt); 2267 return true; 2268 } 2269 2270 return false; 2271 } 2272 2273 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2274 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2275 Register DstReg = MI.getOperand(0).getReg(); 2276 LLT DstTy = MRI.getType(DstReg); 2277 Register SrcReg = MI.getOperand(1).getReg(); 2278 return mi_match(SrcReg, MRI, 2279 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2280 } 2281 2282 bool CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2283 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2284 Register DstReg = MI.getOperand(0).getReg(); 2285 Builder.setInstr(MI); 2286 Builder.buildCopy(DstReg, Reg); 2287 MI.eraseFromParent(); 2288 return true; 2289 } 2290 2291 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2292 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2293 Register SrcReg = MI.getOperand(1).getReg(); 2294 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2295 } 2296 2297 bool CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2298 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2299 Register DstReg = MI.getOperand(0).getReg(); 2300 Builder.setInstr(MI); 2301 Builder.buildZExtOrTrunc(DstReg, Reg); 2302 MI.eraseFromParent(); 2303 return true; 2304 } 2305 2306 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2307 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2308 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2309 Register LHS = MI.getOperand(1).getReg(); 2310 Register RHS = MI.getOperand(2).getReg(); 2311 LLT IntTy = MRI.getType(LHS); 2312 2313 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2314 // instruction. 2315 PtrReg.second = false; 2316 for (Register SrcReg : {LHS, RHS}) { 2317 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2318 // Don't handle cases where the integer is implicitly converted to the 2319 // pointer width. 2320 LLT PtrTy = MRI.getType(PtrReg.first); 2321 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2322 return true; 2323 } 2324 2325 PtrReg.second = true; 2326 } 2327 2328 return false; 2329 } 2330 2331 bool CombinerHelper::applyCombineAddP2IToPtrAdd( 2332 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2333 Register Dst = MI.getOperand(0).getReg(); 2334 Register LHS = MI.getOperand(1).getReg(); 2335 Register RHS = MI.getOperand(2).getReg(); 2336 2337 const bool DoCommute = PtrReg.second; 2338 if (DoCommute) 2339 std::swap(LHS, RHS); 2340 LHS = PtrReg.first; 2341 2342 LLT PtrTy = MRI.getType(LHS); 2343 2344 Builder.setInstrAndDebugLoc(MI); 2345 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2346 Builder.buildPtrToInt(Dst, PtrAdd); 2347 MI.eraseFromParent(); 2348 return true; 2349 } 2350 2351 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2352 int64_t &NewCst) { 2353 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2354 Register LHS = MI.getOperand(1).getReg(); 2355 Register RHS = MI.getOperand(2).getReg(); 2356 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2357 2358 if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { 2359 int64_t Cst; 2360 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2361 NewCst = Cst + *RHSCst; 2362 return true; 2363 } 2364 } 2365 2366 return false; 2367 } 2368 2369 bool CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2370 int64_t &NewCst) { 2371 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2372 Register Dst = MI.getOperand(0).getReg(); 2373 2374 Builder.setInstrAndDebugLoc(MI); 2375 Builder.buildConstant(Dst, NewCst); 2376 MI.eraseFromParent(); 2377 return true; 2378 } 2379 2380 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2381 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2382 Register DstReg = MI.getOperand(0).getReg(); 2383 Register SrcReg = MI.getOperand(1).getReg(); 2384 LLT DstTy = MRI.getType(DstReg); 2385 return mi_match(SrcReg, MRI, 2386 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2387 } 2388 2389 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2390 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2391 Register DstReg = MI.getOperand(0).getReg(); 2392 Register SrcReg = MI.getOperand(1).getReg(); 2393 LLT DstTy = MRI.getType(DstReg); 2394 if (mi_match(SrcReg, MRI, 2395 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2396 unsigned DstSize = DstTy.getScalarSizeInBits(); 2397 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2398 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2399 } 2400 return false; 2401 } 2402 2403 bool CombinerHelper::matchCombineExtOfExt( 2404 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2405 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2406 MI.getOpcode() == TargetOpcode::G_SEXT || 2407 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2408 "Expected a G_[ASZ]EXT"); 2409 Register SrcReg = MI.getOperand(1).getReg(); 2410 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2411 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2412 unsigned Opc = MI.getOpcode(); 2413 unsigned SrcOpc = SrcMI->getOpcode(); 2414 if (Opc == SrcOpc || 2415 (Opc == TargetOpcode::G_ANYEXT && 2416 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2417 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2418 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2419 return true; 2420 } 2421 return false; 2422 } 2423 2424 bool CombinerHelper::applyCombineExtOfExt( 2425 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2426 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2427 MI.getOpcode() == TargetOpcode::G_SEXT || 2428 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2429 "Expected a G_[ASZ]EXT"); 2430 2431 Register Reg = std::get<0>(MatchInfo); 2432 unsigned SrcExtOp = std::get<1>(MatchInfo); 2433 2434 // Combine exts with the same opcode. 2435 if (MI.getOpcode() == SrcExtOp) { 2436 Observer.changingInstr(MI); 2437 MI.getOperand(1).setReg(Reg); 2438 Observer.changedInstr(MI); 2439 return true; 2440 } 2441 2442 // Combine: 2443 // - anyext([sz]ext x) to [sz]ext x 2444 // - sext(zext x) to zext x 2445 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2446 (MI.getOpcode() == TargetOpcode::G_SEXT && 2447 SrcExtOp == TargetOpcode::G_ZEXT)) { 2448 Register DstReg = MI.getOperand(0).getReg(); 2449 Builder.setInstrAndDebugLoc(MI); 2450 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2451 MI.eraseFromParent(); 2452 return true; 2453 } 2454 2455 return false; 2456 } 2457 2458 bool CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2459 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2460 Register DstReg = MI.getOperand(0).getReg(); 2461 Register SrcReg = MI.getOperand(1).getReg(); 2462 LLT DstTy = MRI.getType(DstReg); 2463 2464 Builder.setInstrAndDebugLoc(MI); 2465 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2466 MI.getFlags()); 2467 MI.eraseFromParent(); 2468 return true; 2469 } 2470 2471 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2472 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2473 Register SrcReg = MI.getOperand(1).getReg(); 2474 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2475 } 2476 2477 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2478 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2479 Src = MI.getOperand(1).getReg(); 2480 Register AbsSrc; 2481 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2482 } 2483 2484 bool CombinerHelper::matchCombineTruncOfExt( 2485 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2486 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2487 Register SrcReg = MI.getOperand(1).getReg(); 2488 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2489 unsigned SrcOpc = SrcMI->getOpcode(); 2490 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2491 SrcOpc == TargetOpcode::G_ZEXT) { 2492 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2493 return true; 2494 } 2495 return false; 2496 } 2497 2498 bool CombinerHelper::applyCombineTruncOfExt( 2499 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2500 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2501 Register SrcReg = MatchInfo.first; 2502 unsigned SrcExtOp = MatchInfo.second; 2503 Register DstReg = MI.getOperand(0).getReg(); 2504 LLT SrcTy = MRI.getType(SrcReg); 2505 LLT DstTy = MRI.getType(DstReg); 2506 if (SrcTy == DstTy) { 2507 MI.eraseFromParent(); 2508 replaceRegWith(MRI, DstReg, SrcReg); 2509 return true; 2510 } 2511 Builder.setInstrAndDebugLoc(MI); 2512 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2513 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2514 else 2515 Builder.buildTrunc(DstReg, SrcReg); 2516 MI.eraseFromParent(); 2517 return true; 2518 } 2519 2520 bool CombinerHelper::matchCombineTruncOfShl( 2521 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2522 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2523 Register DstReg = MI.getOperand(0).getReg(); 2524 Register SrcReg = MI.getOperand(1).getReg(); 2525 LLT DstTy = MRI.getType(DstReg); 2526 Register ShiftSrc; 2527 Register ShiftAmt; 2528 2529 if (MRI.hasOneNonDBGUse(SrcReg) && 2530 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2531 isLegalOrBeforeLegalizer( 2532 {TargetOpcode::G_SHL, 2533 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2534 KnownBits Known = KB->getKnownBits(ShiftAmt); 2535 unsigned Size = DstTy.getSizeInBits(); 2536 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2537 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2538 return true; 2539 } 2540 } 2541 return false; 2542 } 2543 2544 bool CombinerHelper::applyCombineTruncOfShl( 2545 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2546 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2547 Register DstReg = MI.getOperand(0).getReg(); 2548 Register SrcReg = MI.getOperand(1).getReg(); 2549 LLT DstTy = MRI.getType(DstReg); 2550 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2551 2552 Register ShiftSrc = MatchInfo.first; 2553 Register ShiftAmt = MatchInfo.second; 2554 Builder.setInstrAndDebugLoc(MI); 2555 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2556 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2557 MI.eraseFromParent(); 2558 return true; 2559 } 2560 2561 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2562 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2563 return MO.isReg() && 2564 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2565 }); 2566 } 2567 2568 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2569 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2570 return !MO.isReg() || 2571 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2572 }); 2573 } 2574 2575 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2576 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2577 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2578 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2579 } 2580 2581 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2582 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2583 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2584 MRI); 2585 } 2586 2587 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2588 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2589 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2590 MRI); 2591 } 2592 2593 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2594 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2595 if (auto MaybeCstCmp = 2596 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2597 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; 2598 return true; 2599 } 2600 return false; 2601 } 2602 2603 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2604 MI.eraseFromParent(); 2605 return true; 2606 } 2607 2608 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2609 const MachineOperand &MOP2) { 2610 if (!MOP1.isReg() || !MOP2.isReg()) 2611 return false; 2612 MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); 2613 if (!I1) 2614 return false; 2615 MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); 2616 if (!I2) 2617 return false; 2618 2619 // Handle a case like this: 2620 // 2621 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2622 // 2623 // Even though %0 and %1 are produced by the same instruction they are not 2624 // the same values. 2625 if (I1 == I2) 2626 return MOP1.getReg() == MOP2.getReg(); 2627 2628 // If we have an instruction which loads or stores, we can't guarantee that 2629 // it is identical. 2630 // 2631 // For example, we may have 2632 // 2633 // %x1 = G_LOAD %addr (load N from @somewhere) 2634 // ... 2635 // call @foo 2636 // ... 2637 // %x2 = G_LOAD %addr (load N from @somewhere) 2638 // ... 2639 // %or = G_OR %x1, %x2 2640 // 2641 // It's possible that @foo will modify whatever lives at the address we're 2642 // loading from. To be safe, let's just assume that all loads and stores 2643 // are different (unless we have something which is guaranteed to not 2644 // change.) 2645 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2646 return false; 2647 2648 // Check for physical registers on the instructions first to avoid cases 2649 // like this: 2650 // 2651 // %a = COPY $physreg 2652 // ... 2653 // SOMETHING implicit-def $physreg 2654 // ... 2655 // %b = COPY $physreg 2656 // 2657 // These copies are not equivalent. 2658 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2659 return MO.isReg() && MO.getReg().isPhysical(); 2660 })) { 2661 // Check if we have a case like this: 2662 // 2663 // %a = COPY $physreg 2664 // %b = COPY %a 2665 // 2666 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2667 // From that, we know that they must have the same value, since they must 2668 // have come from the same COPY. 2669 return I1->isIdenticalTo(*I2); 2670 } 2671 2672 // We don't have any physical registers, so we don't necessarily need the 2673 // same vreg defs. 2674 // 2675 // On the off-chance that there's some target instruction feeding into the 2676 // instruction, let's use produceSameValue instead of isIdenticalTo. 2677 return Builder.getTII().produceSameValue(*I1, *I2, &MRI); 2678 } 2679 2680 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2681 if (!MOP.isReg()) 2682 return false; 2683 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2684 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2685 return ValAndVReg && ValAndVReg->Value == C; 2686 } 2687 2688 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2689 unsigned OpIdx) { 2690 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2691 Register OldReg = MI.getOperand(0).getReg(); 2692 Register Replacement = MI.getOperand(OpIdx).getReg(); 2693 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2694 MI.eraseFromParent(); 2695 replaceRegWith(MRI, OldReg, Replacement); 2696 return true; 2697 } 2698 2699 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2700 Register Replacement) { 2701 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2702 Register OldReg = MI.getOperand(0).getReg(); 2703 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2704 MI.eraseFromParent(); 2705 replaceRegWith(MRI, OldReg, Replacement); 2706 return true; 2707 } 2708 2709 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2710 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2711 // Match (cond ? x : x) 2712 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2713 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2714 MRI); 2715 } 2716 2717 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2718 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2719 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2720 MRI); 2721 } 2722 2723 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2724 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2725 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2726 MRI); 2727 } 2728 2729 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2730 MachineOperand &MO = MI.getOperand(OpIdx); 2731 return MO.isReg() && 2732 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2733 } 2734 2735 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2736 unsigned OpIdx) { 2737 MachineOperand &MO = MI.getOperand(OpIdx); 2738 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2739 } 2740 2741 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2742 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2743 Builder.setInstr(MI); 2744 Builder.buildFConstant(MI.getOperand(0), C); 2745 MI.eraseFromParent(); 2746 return true; 2747 } 2748 2749 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2750 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2751 Builder.setInstr(MI); 2752 Builder.buildConstant(MI.getOperand(0), C); 2753 MI.eraseFromParent(); 2754 return true; 2755 } 2756 2757 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2758 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2759 Builder.setInstr(MI); 2760 Builder.buildUndef(MI.getOperand(0)); 2761 MI.eraseFromParent(); 2762 return true; 2763 } 2764 2765 bool CombinerHelper::matchSimplifyAddToSub( 2766 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2767 Register LHS = MI.getOperand(1).getReg(); 2768 Register RHS = MI.getOperand(2).getReg(); 2769 Register &NewLHS = std::get<0>(MatchInfo); 2770 Register &NewRHS = std::get<1>(MatchInfo); 2771 2772 // Helper lambda to check for opportunities for 2773 // ((0-A) + B) -> B - A 2774 // (A + (0-B)) -> A - B 2775 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2776 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2777 return false; 2778 NewLHS = MaybeNewLHS; 2779 return true; 2780 }; 2781 2782 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2783 } 2784 2785 bool CombinerHelper::matchCombineInsertVecElts( 2786 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2787 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2788 "Invalid opcode"); 2789 Register DstReg = MI.getOperand(0).getReg(); 2790 LLT DstTy = MRI.getType(DstReg); 2791 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2792 unsigned NumElts = DstTy.getNumElements(); 2793 // If this MI is part of a sequence of insert_vec_elts, then 2794 // don't do the combine in the middle of the sequence. 2795 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2796 TargetOpcode::G_INSERT_VECTOR_ELT) 2797 return false; 2798 MachineInstr *CurrInst = &MI; 2799 MachineInstr *TmpInst; 2800 int64_t IntImm; 2801 Register TmpReg; 2802 MatchInfo.resize(NumElts); 2803 while (mi_match( 2804 CurrInst->getOperand(0).getReg(), MRI, 2805 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2806 if (IntImm >= NumElts) 2807 return false; 2808 if (!MatchInfo[IntImm]) 2809 MatchInfo[IntImm] = TmpReg; 2810 CurrInst = TmpInst; 2811 } 2812 // Variable index. 2813 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2814 return false; 2815 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2816 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2817 if (!MatchInfo[I - 1].isValid()) 2818 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2819 } 2820 return true; 2821 } 2822 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2823 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2824 } 2825 2826 bool CombinerHelper::applyCombineInsertVecElts( 2827 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2828 Builder.setInstr(MI); 2829 Register UndefReg; 2830 auto GetUndef = [&]() { 2831 if (UndefReg) 2832 return UndefReg; 2833 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2834 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2835 return UndefReg; 2836 }; 2837 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2838 if (!MatchInfo[I]) 2839 MatchInfo[I] = GetUndef(); 2840 } 2841 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2842 MI.eraseFromParent(); 2843 return true; 2844 } 2845 2846 bool CombinerHelper::applySimplifyAddToSub( 2847 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2848 Builder.setInstr(MI); 2849 Register SubLHS, SubRHS; 2850 std::tie(SubLHS, SubRHS) = MatchInfo; 2851 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2852 MI.eraseFromParent(); 2853 return true; 2854 } 2855 2856 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2857 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2858 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2859 // 2860 // Creates the new hand + logic instruction (but does not insert them.) 2861 // 2862 // On success, MatchInfo is populated with the new instructions. These are 2863 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2864 unsigned LogicOpcode = MI.getOpcode(); 2865 assert(LogicOpcode == TargetOpcode::G_AND || 2866 LogicOpcode == TargetOpcode::G_OR || 2867 LogicOpcode == TargetOpcode::G_XOR); 2868 MachineIRBuilder MIB(MI); 2869 Register Dst = MI.getOperand(0).getReg(); 2870 Register LHSReg = MI.getOperand(1).getReg(); 2871 Register RHSReg = MI.getOperand(2).getReg(); 2872 2873 // Don't recompute anything. 2874 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2875 return false; 2876 2877 // Make sure we have (hand x, ...), (hand y, ...) 2878 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2879 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2880 if (!LeftHandInst || !RightHandInst) 2881 return false; 2882 unsigned HandOpcode = LeftHandInst->getOpcode(); 2883 if (HandOpcode != RightHandInst->getOpcode()) 2884 return false; 2885 if (!LeftHandInst->getOperand(1).isReg() || 2886 !RightHandInst->getOperand(1).isReg()) 2887 return false; 2888 2889 // Make sure the types match up, and if we're doing this post-legalization, 2890 // we end up with legal types. 2891 Register X = LeftHandInst->getOperand(1).getReg(); 2892 Register Y = RightHandInst->getOperand(1).getReg(); 2893 LLT XTy = MRI.getType(X); 2894 LLT YTy = MRI.getType(Y); 2895 if (XTy != YTy) 2896 return false; 2897 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2898 return false; 2899 2900 // Optional extra source register. 2901 Register ExtraHandOpSrcReg; 2902 switch (HandOpcode) { 2903 default: 2904 return false; 2905 case TargetOpcode::G_ANYEXT: 2906 case TargetOpcode::G_SEXT: 2907 case TargetOpcode::G_ZEXT: { 2908 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2909 break; 2910 } 2911 case TargetOpcode::G_AND: 2912 case TargetOpcode::G_ASHR: 2913 case TargetOpcode::G_LSHR: 2914 case TargetOpcode::G_SHL: { 2915 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2916 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2917 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2918 return false; 2919 ExtraHandOpSrcReg = ZOp.getReg(); 2920 break; 2921 } 2922 } 2923 2924 // Record the steps to build the new instructions. 2925 // 2926 // Steps to build (logic x, y) 2927 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2928 OperandBuildSteps LogicBuildSteps = { 2929 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2930 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2931 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2932 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2933 2934 // Steps to build hand (logic x, y), ...z 2935 OperandBuildSteps HandBuildSteps = { 2936 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2937 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2938 if (ExtraHandOpSrcReg.isValid()) 2939 HandBuildSteps.push_back( 2940 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2941 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2942 2943 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2944 return true; 2945 } 2946 2947 bool CombinerHelper::applyBuildInstructionSteps( 2948 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2949 assert(MatchInfo.InstrsToBuild.size() && 2950 "Expected at least one instr to build?"); 2951 Builder.setInstr(MI); 2952 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2953 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2954 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2955 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2956 for (auto &OperandFn : InstrToBuild.OperandFns) 2957 OperandFn(Instr); 2958 } 2959 MI.eraseFromParent(); 2960 return true; 2961 } 2962 2963 bool CombinerHelper::matchAshrShlToSextInreg( 2964 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2965 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2966 int64_t ShlCst, AshrCst; 2967 Register Src; 2968 // FIXME: detect splat constant vectors. 2969 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2970 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2971 return false; 2972 if (ShlCst != AshrCst) 2973 return false; 2974 if (!isLegalOrBeforeLegalizer( 2975 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2976 return false; 2977 MatchInfo = std::make_tuple(Src, ShlCst); 2978 return true; 2979 } 2980 bool CombinerHelper::applyAshShlToSextInreg( 2981 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2982 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2983 Register Src; 2984 int64_t ShiftAmt; 2985 std::tie(Src, ShiftAmt) = MatchInfo; 2986 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2987 Builder.setInstrAndDebugLoc(MI); 2988 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2989 MI.eraseFromParent(); 2990 return true; 2991 } 2992 2993 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2994 Register &Replacement) { 2995 // Given 2996 // 2997 // %y:_(sN) = G_SOMETHING 2998 // %x:_(sN) = G_SOMETHING 2999 // %res:_(sN) = G_AND %x, %y 3000 // 3001 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 3002 // 3003 // Patterns like this can appear as a result of legalization. E.g. 3004 // 3005 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 3006 // %one:_(s32) = G_CONSTANT i32 1 3007 // %and:_(s32) = G_AND %cmp, %one 3008 // 3009 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 3010 assert(MI.getOpcode() == TargetOpcode::G_AND); 3011 if (!KB) 3012 return false; 3013 3014 Register AndDst = MI.getOperand(0).getReg(); 3015 LLT DstTy = MRI.getType(AndDst); 3016 3017 // FIXME: This should be removed once GISelKnownBits supports vectors. 3018 if (DstTy.isVector()) 3019 return false; 3020 3021 Register LHS = MI.getOperand(1).getReg(); 3022 Register RHS = MI.getOperand(2).getReg(); 3023 KnownBits LHSBits = KB->getKnownBits(LHS); 3024 KnownBits RHSBits = KB->getKnownBits(RHS); 3025 3026 // Check that x & Mask == x. 3027 // x & 1 == x, always 3028 // x & 0 == x, only if x is also 0 3029 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 3030 // 3031 // Check if we can replace AndDst with the LHS of the G_AND 3032 if (canReplaceReg(AndDst, LHS, MRI) && 3033 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3034 Replacement = LHS; 3035 return true; 3036 } 3037 3038 // Check if we can replace AndDst with the RHS of the G_AND 3039 if (canReplaceReg(AndDst, RHS, MRI) && 3040 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3041 Replacement = RHS; 3042 return true; 3043 } 3044 3045 return false; 3046 } 3047 3048 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 3049 // Given 3050 // 3051 // %y:_(sN) = G_SOMETHING 3052 // %x:_(sN) = G_SOMETHING 3053 // %res:_(sN) = G_OR %x, %y 3054 // 3055 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 3056 assert(MI.getOpcode() == TargetOpcode::G_OR); 3057 if (!KB) 3058 return false; 3059 3060 Register OrDst = MI.getOperand(0).getReg(); 3061 LLT DstTy = MRI.getType(OrDst); 3062 3063 // FIXME: This should be removed once GISelKnownBits supports vectors. 3064 if (DstTy.isVector()) 3065 return false; 3066 3067 Register LHS = MI.getOperand(1).getReg(); 3068 Register RHS = MI.getOperand(2).getReg(); 3069 KnownBits LHSBits = KB->getKnownBits(LHS); 3070 KnownBits RHSBits = KB->getKnownBits(RHS); 3071 3072 // Check that x | Mask == x. 3073 // x | 0 == x, always 3074 // x | 1 == x, only if x is also 1 3075 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 3076 // 3077 // Check if we can replace OrDst with the LHS of the G_OR 3078 if (canReplaceReg(OrDst, LHS, MRI) && 3079 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3080 Replacement = LHS; 3081 return true; 3082 } 3083 3084 // Check if we can replace OrDst with the RHS of the G_OR 3085 if (canReplaceReg(OrDst, RHS, MRI) && 3086 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3087 Replacement = RHS; 3088 return true; 3089 } 3090 3091 return false; 3092 } 3093 3094 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 3095 // If the input is already sign extended, just drop the extension. 3096 Register Src = MI.getOperand(1).getReg(); 3097 unsigned ExtBits = MI.getOperand(2).getImm(); 3098 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 3099 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 3100 } 3101 3102 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 3103 int64_t Cst, bool IsVector, bool IsFP) { 3104 // For i1, Cst will always be -1 regardless of boolean contents. 3105 return (ScalarSizeBits == 1 && Cst == -1) || 3106 isConstTrueVal(TLI, Cst, IsVector, IsFP); 3107 } 3108 3109 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 3110 SmallVectorImpl<Register> &RegsToNegate) { 3111 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3112 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3113 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 3114 Register XorSrc; 3115 Register CstReg; 3116 // We match xor(src, true) here. 3117 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3118 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 3119 return false; 3120 3121 if (!MRI.hasOneNonDBGUse(XorSrc)) 3122 return false; 3123 3124 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 3125 // and ORs. The suffix of RegsToNegate starting from index I is used a work 3126 // list of tree nodes to visit. 3127 RegsToNegate.push_back(XorSrc); 3128 // Remember whether the comparisons are all integer or all floating point. 3129 bool IsInt = false; 3130 bool IsFP = false; 3131 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 3132 Register Reg = RegsToNegate[I]; 3133 if (!MRI.hasOneNonDBGUse(Reg)) 3134 return false; 3135 MachineInstr *Def = MRI.getVRegDef(Reg); 3136 switch (Def->getOpcode()) { 3137 default: 3138 // Don't match if the tree contains anything other than ANDs, ORs and 3139 // comparisons. 3140 return false; 3141 case TargetOpcode::G_ICMP: 3142 if (IsFP) 3143 return false; 3144 IsInt = true; 3145 // When we apply the combine we will invert the predicate. 3146 break; 3147 case TargetOpcode::G_FCMP: 3148 if (IsInt) 3149 return false; 3150 IsFP = true; 3151 // When we apply the combine we will invert the predicate. 3152 break; 3153 case TargetOpcode::G_AND: 3154 case TargetOpcode::G_OR: 3155 // Implement De Morgan's laws: 3156 // ~(x & y) -> ~x | ~y 3157 // ~(x | y) -> ~x & ~y 3158 // When we apply the combine we will change the opcode and recursively 3159 // negate the operands. 3160 RegsToNegate.push_back(Def->getOperand(1).getReg()); 3161 RegsToNegate.push_back(Def->getOperand(2).getReg()); 3162 break; 3163 } 3164 } 3165 3166 // Now we know whether the comparisons are integer or floating point, check 3167 // the constant in the xor. 3168 int64_t Cst; 3169 if (Ty.isVector()) { 3170 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 3171 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 3172 if (!MaybeCst) 3173 return false; 3174 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 3175 return false; 3176 } else { 3177 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 3178 return false; 3179 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 3180 return false; 3181 } 3182 3183 return true; 3184 } 3185 3186 bool CombinerHelper::applyNotCmp(MachineInstr &MI, 3187 SmallVectorImpl<Register> &RegsToNegate) { 3188 for (Register Reg : RegsToNegate) { 3189 MachineInstr *Def = MRI.getVRegDef(Reg); 3190 Observer.changingInstr(*Def); 3191 // For each comparison, invert the opcode. For each AND and OR, change the 3192 // opcode. 3193 switch (Def->getOpcode()) { 3194 default: 3195 llvm_unreachable("Unexpected opcode"); 3196 case TargetOpcode::G_ICMP: 3197 case TargetOpcode::G_FCMP: { 3198 MachineOperand &PredOp = Def->getOperand(1); 3199 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 3200 (CmpInst::Predicate)PredOp.getPredicate()); 3201 PredOp.setPredicate(NewP); 3202 break; 3203 } 3204 case TargetOpcode::G_AND: 3205 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3206 break; 3207 case TargetOpcode::G_OR: 3208 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3209 break; 3210 } 3211 Observer.changedInstr(*Def); 3212 } 3213 3214 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3215 MI.eraseFromParent(); 3216 return true; 3217 } 3218 3219 bool CombinerHelper::matchXorOfAndWithSameReg( 3220 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3221 // Match (xor (and x, y), y) (or any of its commuted cases) 3222 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3223 Register &X = MatchInfo.first; 3224 Register &Y = MatchInfo.second; 3225 Register AndReg = MI.getOperand(1).getReg(); 3226 Register SharedReg = MI.getOperand(2).getReg(); 3227 3228 // Find a G_AND on either side of the G_XOR. 3229 // Look for one of 3230 // 3231 // (xor (and x, y), SharedReg) 3232 // (xor SharedReg, (and x, y)) 3233 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3234 std::swap(AndReg, SharedReg); 3235 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3236 return false; 3237 } 3238 3239 // Only do this if we'll eliminate the G_AND. 3240 if (!MRI.hasOneNonDBGUse(AndReg)) 3241 return false; 3242 3243 // We can combine if SharedReg is the same as either the LHS or RHS of the 3244 // G_AND. 3245 if (Y != SharedReg) 3246 std::swap(X, Y); 3247 return Y == SharedReg; 3248 } 3249 3250 bool CombinerHelper::applyXorOfAndWithSameReg( 3251 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3252 // Fold (xor (and x, y), y) -> (and (not x), y) 3253 Builder.setInstrAndDebugLoc(MI); 3254 Register X, Y; 3255 std::tie(X, Y) = MatchInfo; 3256 auto Not = Builder.buildNot(MRI.getType(X), X); 3257 Observer.changingInstr(MI); 3258 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3259 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3260 MI.getOperand(2).setReg(Y); 3261 Observer.changedInstr(MI); 3262 return true; 3263 } 3264 3265 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3266 Register DstReg = MI.getOperand(0).getReg(); 3267 LLT Ty = MRI.getType(DstReg); 3268 const DataLayout &DL = Builder.getMF().getDataLayout(); 3269 3270 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3271 return false; 3272 3273 if (Ty.isPointer()) { 3274 auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI); 3275 return ConstVal && *ConstVal == 0; 3276 } 3277 3278 assert(Ty.isVector() && "Expecting a vector type"); 3279 const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg()); 3280 return isBuildVectorAllZeros(*VecMI, MRI); 3281 } 3282 3283 bool CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3284 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 3285 Builder.setInstrAndDebugLoc(MI); 3286 Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2)); 3287 MI.eraseFromParent(); 3288 return true; 3289 } 3290 3291 /// The second source operand is known to be a power of 2. 3292 bool CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3293 Register DstReg = MI.getOperand(0).getReg(); 3294 Register Src0 = MI.getOperand(1).getReg(); 3295 Register Pow2Src1 = MI.getOperand(2).getReg(); 3296 LLT Ty = MRI.getType(DstReg); 3297 Builder.setInstrAndDebugLoc(MI); 3298 3299 // Fold (urem x, pow2) -> (and x, pow2-1) 3300 auto NegOne = Builder.buildConstant(Ty, -1); 3301 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3302 Builder.buildAnd(DstReg, Src0, Add); 3303 MI.eraseFromParent(); 3304 return true; 3305 } 3306 3307 Optional<SmallVector<Register, 8>> 3308 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3309 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3310 // We want to detect if Root is part of a tree which represents a bunch 3311 // of loads being merged into a larger load. We'll try to recognize patterns 3312 // like, for example: 3313 // 3314 // Reg Reg 3315 // \ / 3316 // OR_1 Reg 3317 // \ / 3318 // OR_2 3319 // \ Reg 3320 // .. / 3321 // Root 3322 // 3323 // Reg Reg Reg Reg 3324 // \ / \ / 3325 // OR_1 OR_2 3326 // \ / 3327 // \ / 3328 // ... 3329 // Root 3330 // 3331 // Each "Reg" may have been produced by a load + some arithmetic. This 3332 // function will save each of them. 3333 SmallVector<Register, 8> RegsToVisit; 3334 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3335 3336 // In the "worst" case, we're dealing with a load for each byte. So, there 3337 // are at most #bytes - 1 ORs. 3338 const unsigned MaxIter = 3339 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3340 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3341 if (Ors.empty()) 3342 break; 3343 const MachineInstr *Curr = Ors.pop_back_val(); 3344 Register OrLHS = Curr->getOperand(1).getReg(); 3345 Register OrRHS = Curr->getOperand(2).getReg(); 3346 3347 // In the combine, we want to elimate the entire tree. 3348 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3349 return None; 3350 3351 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3352 // something that may be a load + arithmetic. 3353 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3354 Ors.push_back(Or); 3355 else 3356 RegsToVisit.push_back(OrLHS); 3357 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3358 Ors.push_back(Or); 3359 else 3360 RegsToVisit.push_back(OrRHS); 3361 } 3362 3363 // We're going to try and merge each register into a wider power-of-2 type, 3364 // so we ought to have an even number of registers. 3365 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3366 return None; 3367 return RegsToVisit; 3368 } 3369 3370 /// Helper function for findLoadOffsetsForLoadOrCombine. 3371 /// 3372 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3373 /// and then moving that value into a specific byte offset. 3374 /// 3375 /// e.g. x[i] << 24 3376 /// 3377 /// \returns The load instruction and the byte offset it is moved into. 3378 static Optional<std::pair<MachineInstr *, int64_t>> 3379 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3380 const MachineRegisterInfo &MRI) { 3381 assert(MRI.hasOneNonDBGUse(Reg) && 3382 "Expected Reg to only have one non-debug use?"); 3383 Register MaybeLoad; 3384 int64_t Shift; 3385 if (!mi_match(Reg, MRI, 3386 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3387 Shift = 0; 3388 MaybeLoad = Reg; 3389 } 3390 3391 if (Shift % MemSizeInBits != 0) 3392 return None; 3393 3394 // TODO: Handle other types of loads. 3395 auto *Load = getOpcodeDef(TargetOpcode::G_ZEXTLOAD, MaybeLoad, MRI); 3396 if (!Load) 3397 return None; 3398 3399 const auto &MMO = **Load->memoperands_begin(); 3400 if (!MMO.isUnordered() || MMO.getSizeInBits() != MemSizeInBits) 3401 return None; 3402 3403 return std::make_pair(Load, Shift / MemSizeInBits); 3404 } 3405 3406 Optional<std::pair<MachineInstr *, int64_t>> 3407 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3408 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3409 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3410 3411 // Each load found for the pattern. There should be one for each RegsToVisit. 3412 SmallSetVector<const MachineInstr *, 8> Loads; 3413 3414 // The lowest index used in any load. (The lowest "i" for each x[i].) 3415 int64_t LowestIdx = INT64_MAX; 3416 3417 // The load which uses the lowest index. 3418 MachineInstr *LowestIdxLoad = nullptr; 3419 3420 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3421 SmallSet<int64_t, 8> SeenIdx; 3422 3423 // Ensure each load is in the same MBB. 3424 // TODO: Support multiple MachineBasicBlocks. 3425 MachineBasicBlock *MBB = nullptr; 3426 const MachineMemOperand *MMO = nullptr; 3427 3428 // Earliest instruction-order load in the pattern. 3429 MachineInstr *EarliestLoad = nullptr; 3430 3431 // Latest instruction-order load in the pattern. 3432 MachineInstr *LatestLoad = nullptr; 3433 3434 // Base pointer which every load should share. 3435 Register BasePtr; 3436 3437 // We want to find a load for each register. Each load should have some 3438 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3439 // track of the load which uses the lowest index. Later, we will check if we 3440 // can use its pointer in the final, combined load. 3441 for (auto Reg : RegsToVisit) { 3442 // Find the load, and find the position that it will end up in (e.g. a 3443 // shifted) value. 3444 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3445 if (!LoadAndPos) 3446 return None; 3447 MachineInstr *Load; 3448 int64_t DstPos; 3449 std::tie(Load, DstPos) = *LoadAndPos; 3450 3451 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3452 // it is difficult to check for stores/calls/etc between loads. 3453 MachineBasicBlock *LoadMBB = Load->getParent(); 3454 if (!MBB) 3455 MBB = LoadMBB; 3456 if (LoadMBB != MBB) 3457 return None; 3458 3459 // Make sure that the MachineMemOperands of every seen load are compatible. 3460 const MachineMemOperand *LoadMMO = *Load->memoperands_begin(); 3461 if (!MMO) 3462 MMO = LoadMMO; 3463 if (MMO->getAddrSpace() != LoadMMO->getAddrSpace()) 3464 return None; 3465 3466 // Find out what the base pointer and index for the load is. 3467 Register LoadPtr; 3468 int64_t Idx; 3469 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3470 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3471 LoadPtr = Load->getOperand(1).getReg(); 3472 Idx = 0; 3473 } 3474 3475 // Don't combine things like a[i], a[i] -> a bigger load. 3476 if (!SeenIdx.insert(Idx).second) 3477 return None; 3478 3479 // Every load must share the same base pointer; don't combine things like: 3480 // 3481 // a[i], b[i + 1] -> a bigger load. 3482 if (!BasePtr.isValid()) 3483 BasePtr = LoadPtr; 3484 if (BasePtr != LoadPtr) 3485 return None; 3486 3487 if (Idx < LowestIdx) { 3488 LowestIdx = Idx; 3489 LowestIdxLoad = Load; 3490 } 3491 3492 // Keep track of the byte offset that this load ends up at. If we have seen 3493 // the byte offset, then stop here. We do not want to combine: 3494 // 3495 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3496 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3497 return None; 3498 Loads.insert(Load); 3499 3500 // Keep track of the position of the earliest/latest loads in the pattern. 3501 // We will check that there are no load fold barriers between them later 3502 // on. 3503 // 3504 // FIXME: Is there a better way to check for load fold barriers? 3505 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3506 EarliestLoad = Load; 3507 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3508 LatestLoad = Load; 3509 } 3510 3511 // We found a load for each register. Let's check if each load satisfies the 3512 // pattern. 3513 assert(Loads.size() == RegsToVisit.size() && 3514 "Expected to find a load for each register?"); 3515 assert(EarliestLoad != LatestLoad && EarliestLoad && 3516 LatestLoad && "Expected at least two loads?"); 3517 3518 // Check if there are any stores, calls, etc. between any of the loads. If 3519 // there are, then we can't safely perform the combine. 3520 // 3521 // MaxIter is chosen based off the (worst case) number of iterations it 3522 // typically takes to succeed in the LLVM test suite plus some padding. 3523 // 3524 // FIXME: Is there a better way to check for load fold barriers? 3525 const unsigned MaxIter = 20; 3526 unsigned Iter = 0; 3527 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3528 LatestLoad->getIterator())) { 3529 if (Loads.count(&MI)) 3530 continue; 3531 if (MI.isLoadFoldBarrier()) 3532 return None; 3533 if (Iter++ == MaxIter) 3534 return None; 3535 } 3536 3537 return std::make_pair(LowestIdxLoad, LowestIdx); 3538 } 3539 3540 bool CombinerHelper::matchLoadOrCombine( 3541 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3542 assert(MI.getOpcode() == TargetOpcode::G_OR); 3543 MachineFunction &MF = *MI.getMF(); 3544 // Assuming a little-endian target, transform: 3545 // s8 *a = ... 3546 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3547 // => 3548 // s32 val = *((i32)a) 3549 // 3550 // s8 *a = ... 3551 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3552 // => 3553 // s32 val = BSWAP(*((s32)a)) 3554 Register Dst = MI.getOperand(0).getReg(); 3555 LLT Ty = MRI.getType(Dst); 3556 if (Ty.isVector()) 3557 return false; 3558 3559 // We need to combine at least two loads into this type. Since the smallest 3560 // possible load is into a byte, we need at least a 16-bit wide type. 3561 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3562 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3563 return false; 3564 3565 // Match a collection of non-OR instructions in the pattern. 3566 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3567 if (!RegsToVisit) 3568 return false; 3569 3570 // We have a collection of non-OR instructions. Figure out how wide each of 3571 // the small loads should be based off of the number of potential loads we 3572 // found. 3573 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3574 if (NarrowMemSizeInBits % 8 != 0) 3575 return false; 3576 3577 // Check if each register feeding into each OR is a load from the same 3578 // base pointer + some arithmetic. 3579 // 3580 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3581 // 3582 // Also verify that each of these ends up putting a[i] into the same memory 3583 // offset as a load into a wide type would. 3584 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3585 MachineInstr *LowestIdxLoad; 3586 int64_t LowestIdx; 3587 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3588 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3589 if (!MaybeLoadInfo) 3590 return false; 3591 std::tie(LowestIdxLoad, LowestIdx) = *MaybeLoadInfo; 3592 3593 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3594 // we found before, check if this corresponds to a big or little endian byte 3595 // pattern. If it does, then we can represent it using a load + possibly a 3596 // BSWAP. 3597 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3598 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3599 if (!IsBigEndian.hasValue()) 3600 return false; 3601 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3602 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3603 return false; 3604 3605 // Make sure that the load from the lowest index produces offset 0 in the 3606 // final value. 3607 // 3608 // This ensures that we won't combine something like this: 3609 // 3610 // load x[i] -> byte 2 3611 // load x[i+1] -> byte 0 ---> wide_load x[i] 3612 // load x[i+2] -> byte 1 3613 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3614 const unsigned ZeroByteOffset = 3615 *IsBigEndian 3616 ? bigEndianByteAt(NumLoadsInTy, 0) 3617 : littleEndianByteAt(NumLoadsInTy, 0); 3618 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3619 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3620 ZeroOffsetIdx->second != LowestIdx) 3621 return false; 3622 3623 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3624 // may not use index 0. 3625 Register Ptr = LowestIdxLoad->getOperand(1).getReg(); 3626 const MachineMemOperand &MMO = **LowestIdxLoad->memoperands_begin(); 3627 LegalityQuery::MemDesc MMDesc; 3628 MMDesc.SizeInBits = WideMemSizeInBits; 3629 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 3630 MMDesc.Ordering = MMO.getOrdering(); 3631 if (!isLegalOrBeforeLegalizer( 3632 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3633 return false; 3634 auto PtrInfo = MMO.getPointerInfo(); 3635 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3636 3637 // Load must be allowed and fast on the target. 3638 LLVMContext &C = MF.getFunction().getContext(); 3639 auto &DL = MF.getDataLayout(); 3640 bool Fast = false; 3641 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3642 !Fast) 3643 return false; 3644 3645 MatchInfo = [=](MachineIRBuilder &MIB) { 3646 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3647 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3648 if (NeedsBSwap) 3649 MIB.buildBSwap(Dst, LoadDst); 3650 }; 3651 return true; 3652 } 3653 3654 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3655 MachineInstr *&ExtMI) { 3656 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3657 3658 Register DstReg = MI.getOperand(0).getReg(); 3659 3660 // TODO: Extending a vector may be expensive, don't do this until heuristics 3661 // are better. 3662 if (MRI.getType(DstReg).isVector()) 3663 return false; 3664 3665 // Try to match a phi, whose only use is an extend. 3666 if (!MRI.hasOneNonDBGUse(DstReg)) 3667 return false; 3668 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3669 switch (ExtMI->getOpcode()) { 3670 case TargetOpcode::G_ANYEXT: 3671 return true; // G_ANYEXT is usually free. 3672 case TargetOpcode::G_ZEXT: 3673 case TargetOpcode::G_SEXT: 3674 break; 3675 default: 3676 return false; 3677 } 3678 3679 // If the target is likely to fold this extend away, don't propagate. 3680 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3681 return false; 3682 3683 // We don't want to propagate the extends unless there's a good chance that 3684 // they'll be optimized in some way. 3685 // Collect the unique incoming values. 3686 SmallPtrSet<MachineInstr *, 4> InSrcs; 3687 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3688 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3689 switch (DefMI->getOpcode()) { 3690 case TargetOpcode::G_LOAD: 3691 case TargetOpcode::G_TRUNC: 3692 case TargetOpcode::G_SEXT: 3693 case TargetOpcode::G_ZEXT: 3694 case TargetOpcode::G_ANYEXT: 3695 case TargetOpcode::G_CONSTANT: 3696 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3697 // Don't try to propagate if there are too many places to create new 3698 // extends, chances are it'll increase code size. 3699 if (InSrcs.size() > 2) 3700 return false; 3701 break; 3702 default: 3703 return false; 3704 } 3705 } 3706 return true; 3707 } 3708 3709 bool CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3710 MachineInstr *&ExtMI) { 3711 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3712 Register DstReg = ExtMI->getOperand(0).getReg(); 3713 LLT ExtTy = MRI.getType(DstReg); 3714 3715 // Propagate the extension into the block of each incoming reg's block. 3716 // Use a SetVector here because PHIs can have duplicate edges, and we want 3717 // deterministic iteration order. 3718 SmallSetVector<MachineInstr *, 8> SrcMIs; 3719 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3720 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3721 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3722 if (!SrcMIs.insert(SrcMI)) 3723 continue; 3724 3725 // Build an extend after each src inst. 3726 auto *MBB = SrcMI->getParent(); 3727 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3728 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3729 InsertPt = MBB->getFirstNonPHI(); 3730 3731 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3732 Builder.setDebugLoc(MI.getDebugLoc()); 3733 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3734 SrcMI->getOperand(0).getReg()); 3735 OldToNewSrcMap[SrcMI] = NewExt; 3736 } 3737 3738 // Create a new phi with the extended inputs. 3739 Builder.setInstrAndDebugLoc(MI); 3740 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3741 NewPhi.addDef(DstReg); 3742 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3743 auto &MO = MI.getOperand(SrcIdx); 3744 if (!MO.isReg()) { 3745 NewPhi.addMBB(MO.getMBB()); 3746 continue; 3747 } 3748 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3749 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3750 } 3751 Builder.insertInstr(NewPhi); 3752 ExtMI->eraseFromParent(); 3753 return true; 3754 } 3755 3756 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3757 Register &Reg) { 3758 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3759 // If we have a constant index, look for a G_BUILD_VECTOR source 3760 // and find the source register that the index maps to. 3761 Register SrcVec = MI.getOperand(1).getReg(); 3762 LLT SrcTy = MRI.getType(SrcVec); 3763 if (!isLegalOrBeforeLegalizer( 3764 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3765 return false; 3766 3767 auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3768 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3769 return false; 3770 3771 unsigned VecIdx = Cst->Value.getZExtValue(); 3772 MachineInstr *BuildVecMI = 3773 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3774 if (!BuildVecMI) { 3775 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3776 if (!BuildVecMI) 3777 return false; 3778 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3779 if (!isLegalOrBeforeLegalizer( 3780 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3781 return false; 3782 } 3783 3784 EVT Ty(getMVTForLLT(SrcTy)); 3785 if (!MRI.hasOneNonDBGUse(SrcVec) && 3786 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3787 return false; 3788 3789 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3790 return true; 3791 } 3792 3793 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3794 Register &Reg) { 3795 // Check the type of the register, since it may have come from a 3796 // G_BUILD_VECTOR_TRUNC. 3797 LLT ScalarTy = MRI.getType(Reg); 3798 Register DstReg = MI.getOperand(0).getReg(); 3799 LLT DstTy = MRI.getType(DstReg); 3800 3801 Builder.setInstrAndDebugLoc(MI); 3802 if (ScalarTy != DstTy) { 3803 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3804 Builder.buildTrunc(DstReg, Reg); 3805 MI.eraseFromParent(); 3806 return; 3807 } 3808 replaceSingleDefInstWithReg(MI, Reg); 3809 } 3810 3811 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3812 MachineInstr &MI, 3813 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3814 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3815 // This combine tries to find build_vector's which have every source element 3816 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3817 // the masked load scalarization is run late in the pipeline. There's already 3818 // a combine for a similar pattern starting from the extract, but that 3819 // doesn't attempt to do it if there are multiple uses of the build_vector, 3820 // which in this case is true. Starting the combine from the build_vector 3821 // feels more natural than trying to find sibling nodes of extracts. 3822 // E.g. 3823 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3824 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3825 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3826 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3827 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3828 // ==> 3829 // replace ext{1,2,3,4} with %s{1,2,3,4} 3830 3831 Register DstReg = MI.getOperand(0).getReg(); 3832 LLT DstTy = MRI.getType(DstReg); 3833 unsigned NumElts = DstTy.getNumElements(); 3834 3835 SmallBitVector ExtractedElts(NumElts); 3836 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), 3837 MRI.use_instr_nodbg_end())) { 3838 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3839 return false; 3840 auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI); 3841 if (!Cst) 3842 return false; 3843 unsigned Idx = Cst.getValue().getZExtValue(); 3844 if (Idx >= NumElts) 3845 return false; // Out of range. 3846 ExtractedElts.set(Idx); 3847 SrcDstPairs.emplace_back( 3848 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3849 } 3850 // Match if every element was extracted. 3851 return ExtractedElts.all(); 3852 } 3853 3854 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3855 MachineInstr &MI, 3856 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3857 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3858 for (auto &Pair : SrcDstPairs) { 3859 auto *ExtMI = Pair.second; 3860 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3861 ExtMI->eraseFromParent(); 3862 } 3863 MI.eraseFromParent(); 3864 } 3865 3866 bool CombinerHelper::applyBuildFn( 3867 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3868 Builder.setInstrAndDebugLoc(MI); 3869 MatchInfo(Builder); 3870 MI.eraseFromParent(); 3871 return true; 3872 } 3873 3874 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3875 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3876 unsigned Opc = MI.getOpcode(); 3877 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3878 Register X = MI.getOperand(1).getReg(); 3879 Register Y = MI.getOperand(2).getReg(); 3880 if (X != Y) 3881 return false; 3882 unsigned RotateOpc = 3883 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3884 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3885 } 3886 3887 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3888 unsigned Opc = MI.getOpcode(); 3889 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3890 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3891 Observer.changingInstr(MI); 3892 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3893 : TargetOpcode::G_ROTR)); 3894 MI.RemoveOperand(2); 3895 Observer.changedInstr(MI); 3896 } 3897 3898 // Fold (rot x, c) -> (rot x, c % BitSize) 3899 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3900 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3901 MI.getOpcode() == TargetOpcode::G_ROTR); 3902 unsigned Bitsize = 3903 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3904 Register AmtReg = MI.getOperand(2).getReg(); 3905 bool OutOfRange = false; 3906 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 3907 if (auto *CI = dyn_cast<ConstantInt>(C)) 3908 OutOfRange |= CI->getValue().uge(Bitsize); 3909 return true; 3910 }; 3911 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 3912 } 3913 3914 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 3915 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3916 MI.getOpcode() == TargetOpcode::G_ROTR); 3917 unsigned Bitsize = 3918 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3919 Builder.setInstrAndDebugLoc(MI); 3920 Register Amt = MI.getOperand(2).getReg(); 3921 LLT AmtTy = MRI.getType(Amt); 3922 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 3923 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 3924 Observer.changingInstr(MI); 3925 MI.getOperand(2).setReg(Amt); 3926 Observer.changedInstr(MI); 3927 } 3928 3929 bool CombinerHelper::tryCombine(MachineInstr &MI) { 3930 if (tryCombineCopy(MI)) 3931 return true; 3932 if (tryCombineExtendingLoads(MI)) 3933 return true; 3934 if (tryCombineIndexedLoadStore(MI)) 3935 return true; 3936 return false; 3937 } 3938