1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/CodeGen/GlobalISel/Combiner.h" 10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 12 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 13 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 14 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 15 #include "llvm/CodeGen/GlobalISel/Utils.h" 16 #include "llvm/CodeGen/MachineDominators.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineInstr.h" 19 #include "llvm/CodeGen/MachineMemOperand.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/Support/MathExtras.h" 24 #include "llvm/Target/TargetMachine.h" 25 26 #define DEBUG_TYPE "gi-combiner" 27 28 using namespace llvm; 29 using namespace MIPatternMatch; 30 31 // Option to allow testing of the combiner while no targets know about indexed 32 // addressing. 33 static cl::opt<bool> 34 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 35 cl::desc("Force all indexed operations to be " 36 "legal for the GlobalISel combiner")); 37 38 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 39 MachineIRBuilder &B, GISelKnownBits *KB, 40 MachineDominatorTree *MDT, 41 const LegalizerInfo *LI) 42 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 43 KB(KB), MDT(MDT), LI(LI) { 44 (void)this->KB; 45 } 46 47 const TargetLowering &CombinerHelper::getTargetLowering() const { 48 return *Builder.getMF().getSubtarget().getTargetLowering(); 49 } 50 51 bool CombinerHelper::isLegalOrBeforeLegalizer( 52 const LegalityQuery &Query) const { 53 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 54 } 55 56 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 57 Register ToReg) const { 58 Observer.changingAllUsesOfReg(MRI, FromReg); 59 60 if (MRI.constrainRegAttrs(ToReg, FromReg)) 61 MRI.replaceRegWith(FromReg, ToReg); 62 else 63 Builder.buildCopy(ToReg, FromReg); 64 65 Observer.finishedChangingAllUsesOfReg(); 66 } 67 68 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 69 MachineOperand &FromRegOp, 70 Register ToReg) const { 71 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 72 Observer.changingInstr(*FromRegOp.getParent()); 73 74 FromRegOp.setReg(ToReg); 75 76 Observer.changedInstr(*FromRegOp.getParent()); 77 } 78 79 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 80 if (matchCombineCopy(MI)) { 81 applyCombineCopy(MI); 82 return true; 83 } 84 return false; 85 } 86 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 87 if (MI.getOpcode() != TargetOpcode::COPY) 88 return false; 89 Register DstReg = MI.getOperand(0).getReg(); 90 Register SrcReg = MI.getOperand(1).getReg(); 91 return canReplaceReg(DstReg, SrcReg, MRI); 92 } 93 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 94 Register DstReg = MI.getOperand(0).getReg(); 95 Register SrcReg = MI.getOperand(1).getReg(); 96 MI.eraseFromParent(); 97 replaceRegWith(MRI, DstReg, SrcReg); 98 } 99 100 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 101 bool IsUndef = false; 102 SmallVector<Register, 4> Ops; 103 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 104 applyCombineConcatVectors(MI, IsUndef, Ops); 105 return true; 106 } 107 return false; 108 } 109 110 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 111 SmallVectorImpl<Register> &Ops) { 112 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 113 "Invalid instruction"); 114 IsUndef = true; 115 MachineInstr *Undef = nullptr; 116 117 // Walk over all the operands of concat vectors and check if they are 118 // build_vector themselves or undef. 119 // Then collect their operands in Ops. 120 for (const MachineOperand &MO : MI.uses()) { 121 Register Reg = MO.getReg(); 122 MachineInstr *Def = MRI.getVRegDef(Reg); 123 assert(Def && "Operand not defined"); 124 switch (Def->getOpcode()) { 125 case TargetOpcode::G_BUILD_VECTOR: 126 IsUndef = false; 127 // Remember the operands of the build_vector to fold 128 // them into the yet-to-build flattened concat vectors. 129 for (const MachineOperand &BuildVecMO : Def->uses()) 130 Ops.push_back(BuildVecMO.getReg()); 131 break; 132 case TargetOpcode::G_IMPLICIT_DEF: { 133 LLT OpType = MRI.getType(Reg); 134 // Keep one undef value for all the undef operands. 135 if (!Undef) { 136 Builder.setInsertPt(*MI.getParent(), MI); 137 Undef = Builder.buildUndef(OpType.getScalarType()); 138 } 139 assert(MRI.getType(Undef->getOperand(0).getReg()) == 140 OpType.getScalarType() && 141 "All undefs should have the same type"); 142 // Break the undef vector in as many scalar elements as needed 143 // for the flattening. 144 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 145 EltIdx != EltEnd; ++EltIdx) 146 Ops.push_back(Undef->getOperand(0).getReg()); 147 break; 148 } 149 default: 150 return false; 151 } 152 } 153 return true; 154 } 155 void CombinerHelper::applyCombineConcatVectors( 156 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 157 // We determined that the concat_vectors can be flatten. 158 // Generate the flattened build_vector. 159 Register DstReg = MI.getOperand(0).getReg(); 160 Builder.setInsertPt(*MI.getParent(), MI); 161 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 162 163 // Note: IsUndef is sort of redundant. We could have determine it by 164 // checking that at all Ops are undef. Alternatively, we could have 165 // generate a build_vector of undefs and rely on another combine to 166 // clean that up. For now, given we already gather this information 167 // in tryCombineConcatVectors, just save compile time and issue the 168 // right thing. 169 if (IsUndef) 170 Builder.buildUndef(NewDstReg); 171 else 172 Builder.buildBuildVector(NewDstReg, Ops); 173 MI.eraseFromParent(); 174 replaceRegWith(MRI, DstReg, NewDstReg); 175 } 176 177 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 178 SmallVector<Register, 4> Ops; 179 if (matchCombineShuffleVector(MI, Ops)) { 180 applyCombineShuffleVector(MI, Ops); 181 return true; 182 } 183 return false; 184 } 185 186 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 187 SmallVectorImpl<Register> &Ops) { 188 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 189 "Invalid instruction kind"); 190 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 191 Register Src1 = MI.getOperand(1).getReg(); 192 LLT SrcType = MRI.getType(Src1); 193 // As bizarre as it may look, shuffle vector can actually produce 194 // scalar! This is because at the IR level a <1 x ty> shuffle 195 // vector is perfectly valid. 196 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 197 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 198 199 // If the resulting vector is smaller than the size of the source 200 // vectors being concatenated, we won't be able to replace the 201 // shuffle vector into a concat_vectors. 202 // 203 // Note: We may still be able to produce a concat_vectors fed by 204 // extract_vector_elt and so on. It is less clear that would 205 // be better though, so don't bother for now. 206 // 207 // If the destination is a scalar, the size of the sources doesn't 208 // matter. we will lower the shuffle to a plain copy. This will 209 // work only if the source and destination have the same size. But 210 // that's covered by the next condition. 211 // 212 // TODO: If the size between the source and destination don't match 213 // we could still emit an extract vector element in that case. 214 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 215 return false; 216 217 // Check that the shuffle mask can be broken evenly between the 218 // different sources. 219 if (DstNumElts % SrcNumElts != 0) 220 return false; 221 222 // Mask length is a multiple of the source vector length. 223 // Check if the shuffle is some kind of concatenation of the input 224 // vectors. 225 unsigned NumConcat = DstNumElts / SrcNumElts; 226 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 227 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 228 for (unsigned i = 0; i != DstNumElts; ++i) { 229 int Idx = Mask[i]; 230 // Undef value. 231 if (Idx < 0) 232 continue; 233 // Ensure the indices in each SrcType sized piece are sequential and that 234 // the same source is used for the whole piece. 235 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 236 (ConcatSrcs[i / SrcNumElts] >= 0 && 237 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 238 return false; 239 // Remember which source this index came from. 240 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 241 } 242 243 // The shuffle is concatenating multiple vectors together. 244 // Collect the different operands for that. 245 Register UndefReg; 246 Register Src2 = MI.getOperand(2).getReg(); 247 for (auto Src : ConcatSrcs) { 248 if (Src < 0) { 249 if (!UndefReg) { 250 Builder.setInsertPt(*MI.getParent(), MI); 251 UndefReg = Builder.buildUndef(SrcType).getReg(0); 252 } 253 Ops.push_back(UndefReg); 254 } else if (Src == 0) 255 Ops.push_back(Src1); 256 else 257 Ops.push_back(Src2); 258 } 259 return true; 260 } 261 262 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 263 const ArrayRef<Register> Ops) { 264 Register DstReg = MI.getOperand(0).getReg(); 265 Builder.setInsertPt(*MI.getParent(), MI); 266 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 267 268 if (Ops.size() == 1) 269 Builder.buildCopy(NewDstReg, Ops[0]); 270 else 271 Builder.buildMerge(NewDstReg, Ops); 272 273 MI.eraseFromParent(); 274 replaceRegWith(MRI, DstReg, NewDstReg); 275 } 276 277 namespace { 278 279 /// Select a preference between two uses. CurrentUse is the current preference 280 /// while *ForCandidate is attributes of the candidate under consideration. 281 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 282 const LLT TyForCandidate, 283 unsigned OpcodeForCandidate, 284 MachineInstr *MIForCandidate) { 285 if (!CurrentUse.Ty.isValid()) { 286 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 287 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 288 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 289 return CurrentUse; 290 } 291 292 // We permit the extend to hoist through basic blocks but this is only 293 // sensible if the target has extending loads. If you end up lowering back 294 // into a load and extend during the legalizer then the end result is 295 // hoisting the extend up to the load. 296 297 // Prefer defined extensions to undefined extensions as these are more 298 // likely to reduce the number of instructions. 299 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 300 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 301 return CurrentUse; 302 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 303 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 304 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 305 306 // Prefer sign extensions to zero extensions as sign-extensions tend to be 307 // more expensive. 308 if (CurrentUse.Ty == TyForCandidate) { 309 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 310 OpcodeForCandidate == TargetOpcode::G_ZEXT) 311 return CurrentUse; 312 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 313 OpcodeForCandidate == TargetOpcode::G_SEXT) 314 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 315 } 316 317 // This is potentially target specific. We've chosen the largest type 318 // because G_TRUNC is usually free. One potential catch with this is that 319 // some targets have a reduced number of larger registers than smaller 320 // registers and this choice potentially increases the live-range for the 321 // larger value. 322 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 323 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 324 } 325 return CurrentUse; 326 } 327 328 /// Find a suitable place to insert some instructions and insert them. This 329 /// function accounts for special cases like inserting before a PHI node. 330 /// The current strategy for inserting before PHI's is to duplicate the 331 /// instructions for each predecessor. However, while that's ok for G_TRUNC 332 /// on most targets since it generally requires no code, other targets/cases may 333 /// want to try harder to find a dominating block. 334 static void InsertInsnsWithoutSideEffectsBeforeUse( 335 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 336 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 337 MachineOperand &UseMO)> 338 Inserter) { 339 MachineInstr &UseMI = *UseMO.getParent(); 340 341 MachineBasicBlock *InsertBB = UseMI.getParent(); 342 343 // If the use is a PHI then we want the predecessor block instead. 344 if (UseMI.isPHI()) { 345 MachineOperand *PredBB = std::next(&UseMO); 346 InsertBB = PredBB->getMBB(); 347 } 348 349 // If the block is the same block as the def then we want to insert just after 350 // the def instead of at the start of the block. 351 if (InsertBB == DefMI.getParent()) { 352 MachineBasicBlock::iterator InsertPt = &DefMI; 353 Inserter(InsertBB, std::next(InsertPt), UseMO); 354 return; 355 } 356 357 // Otherwise we want the start of the BB 358 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 359 } 360 } // end anonymous namespace 361 362 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 363 PreferredTuple Preferred; 364 if (matchCombineExtendingLoads(MI, Preferred)) { 365 applyCombineExtendingLoads(MI, Preferred); 366 return true; 367 } 368 return false; 369 } 370 371 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 372 PreferredTuple &Preferred) { 373 // We match the loads and follow the uses to the extend instead of matching 374 // the extends and following the def to the load. This is because the load 375 // must remain in the same position for correctness (unless we also add code 376 // to find a safe place to sink it) whereas the extend is freely movable. 377 // It also prevents us from duplicating the load for the volatile case or just 378 // for performance. 379 380 if (MI.getOpcode() != TargetOpcode::G_LOAD && 381 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 382 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 383 return false; 384 385 auto &LoadValue = MI.getOperand(0); 386 assert(LoadValue.isReg() && "Result wasn't a register?"); 387 388 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 389 if (!LoadValueTy.isScalar()) 390 return false; 391 392 // Most architectures are going to legalize <s8 loads into at least a 1 byte 393 // load, and the MMOs can only describe memory accesses in multiples of bytes. 394 // If we try to perform extload combining on those, we can end up with 395 // %a(s8) = extload %ptr (load 1 byte from %ptr) 396 // ... which is an illegal extload instruction. 397 if (LoadValueTy.getSizeInBits() < 8) 398 return false; 399 400 // For non power-of-2 types, they will very likely be legalized into multiple 401 // loads. Don't bother trying to match them into extending loads. 402 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 403 return false; 404 405 // Find the preferred type aside from the any-extends (unless it's the only 406 // one) and non-extending ops. We'll emit an extending load to that type and 407 // and emit a variant of (extend (trunc X)) for the others according to the 408 // relative type sizes. At the same time, pick an extend to use based on the 409 // extend involved in the chosen type. 410 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 411 ? TargetOpcode::G_ANYEXT 412 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 413 ? TargetOpcode::G_SEXT 414 : TargetOpcode::G_ZEXT; 415 Preferred = {LLT(), PreferredOpcode, nullptr}; 416 for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) { 417 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 418 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 419 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 420 // Check for legality. 421 if (LI) { 422 LegalityQuery::MemDesc MMDesc; 423 const auto &MMO = **MI.memoperands_begin(); 424 MMDesc.SizeInBits = MMO.getSizeInBits(); 425 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 426 MMDesc.Ordering = MMO.getOrdering(); 427 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 428 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 429 if (LI->getAction({MI.getOpcode(), {UseTy, SrcTy}, {MMDesc}}).Action != 430 LegalizeActions::Legal) 431 continue; 432 } 433 Preferred = ChoosePreferredUse(Preferred, 434 MRI.getType(UseMI.getOperand(0).getReg()), 435 UseMI.getOpcode(), &UseMI); 436 } 437 } 438 439 // There were no extends 440 if (!Preferred.MI) 441 return false; 442 // It should be impossible to chose an extend without selecting a different 443 // type since by definition the result of an extend is larger. 444 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 445 446 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 447 return true; 448 } 449 450 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 451 PreferredTuple &Preferred) { 452 // Rewrite the load to the chosen extending load. 453 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 454 455 // Inserter to insert a truncate back to the original type at a given point 456 // with some basic CSE to limit truncate duplication to one per BB. 457 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 458 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 459 MachineBasicBlock::iterator InsertBefore, 460 MachineOperand &UseMO) { 461 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 462 if (PreviouslyEmitted) { 463 Observer.changingInstr(*UseMO.getParent()); 464 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 465 Observer.changedInstr(*UseMO.getParent()); 466 return; 467 } 468 469 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 470 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 471 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 472 EmittedInsns[InsertIntoBB] = NewMI; 473 replaceRegOpWith(MRI, UseMO, NewDstReg); 474 }; 475 476 Observer.changingInstr(MI); 477 MI.setDesc( 478 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 479 ? TargetOpcode::G_SEXTLOAD 480 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 481 ? TargetOpcode::G_ZEXTLOAD 482 : TargetOpcode::G_LOAD)); 483 484 // Rewrite all the uses to fix up the types. 485 auto &LoadValue = MI.getOperand(0); 486 SmallVector<MachineOperand *, 4> Uses; 487 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 488 Uses.push_back(&UseMO); 489 490 for (auto *UseMO : Uses) { 491 MachineInstr *UseMI = UseMO->getParent(); 492 493 // If the extend is compatible with the preferred extend then we should fix 494 // up the type and extend so that it uses the preferred use. 495 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 496 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 497 Register UseDstReg = UseMI->getOperand(0).getReg(); 498 MachineOperand &UseSrcMO = UseMI->getOperand(1); 499 const LLT UseDstTy = MRI.getType(UseDstReg); 500 if (UseDstReg != ChosenDstReg) { 501 if (Preferred.Ty == UseDstTy) { 502 // If the use has the same type as the preferred use, then merge 503 // the vregs and erase the extend. For example: 504 // %1:_(s8) = G_LOAD ... 505 // %2:_(s32) = G_SEXT %1(s8) 506 // %3:_(s32) = G_ANYEXT %1(s8) 507 // ... = ... %3(s32) 508 // rewrites to: 509 // %2:_(s32) = G_SEXTLOAD ... 510 // ... = ... %2(s32) 511 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 512 Observer.erasingInstr(*UseMO->getParent()); 513 UseMO->getParent()->eraseFromParent(); 514 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 515 // If the preferred size is smaller, then keep the extend but extend 516 // from the result of the extending load. For example: 517 // %1:_(s8) = G_LOAD ... 518 // %2:_(s32) = G_SEXT %1(s8) 519 // %3:_(s64) = G_ANYEXT %1(s8) 520 // ... = ... %3(s64) 521 /// rewrites to: 522 // %2:_(s32) = G_SEXTLOAD ... 523 // %3:_(s64) = G_ANYEXT %2:_(s32) 524 // ... = ... %3(s64) 525 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 526 } else { 527 // If the preferred size is large, then insert a truncate. For 528 // example: 529 // %1:_(s8) = G_LOAD ... 530 // %2:_(s64) = G_SEXT %1(s8) 531 // %3:_(s32) = G_ZEXT %1(s8) 532 // ... = ... %3(s32) 533 /// rewrites to: 534 // %2:_(s64) = G_SEXTLOAD ... 535 // %4:_(s8) = G_TRUNC %2:_(s32) 536 // %3:_(s64) = G_ZEXT %2:_(s8) 537 // ... = ... %3(s64) 538 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 539 InsertTruncAt); 540 } 541 continue; 542 } 543 // The use is (one of) the uses of the preferred use we chose earlier. 544 // We're going to update the load to def this value later so just erase 545 // the old extend. 546 Observer.erasingInstr(*UseMO->getParent()); 547 UseMO->getParent()->eraseFromParent(); 548 continue; 549 } 550 551 // The use isn't an extend. Truncate back to the type we originally loaded. 552 // This is free on many targets. 553 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 554 } 555 556 MI.getOperand(0).setReg(ChosenDstReg); 557 Observer.changedInstr(MI); 558 } 559 560 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 561 const MachineInstr &UseMI) { 562 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 563 "shouldn't consider debug uses"); 564 assert(DefMI.getParent() == UseMI.getParent()); 565 if (&DefMI == &UseMI) 566 return false; 567 568 // Loop through the basic block until we find one of the instructions. 569 MachineBasicBlock::const_iterator I = DefMI.getParent()->begin(); 570 for (; &*I != &DefMI && &*I != &UseMI; ++I) 571 return &*I == &DefMI; 572 573 llvm_unreachable("Block must contain instructions"); 574 } 575 576 bool CombinerHelper::dominates(const MachineInstr &DefMI, 577 const MachineInstr &UseMI) { 578 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 579 "shouldn't consider debug uses"); 580 if (MDT) 581 return MDT->dominates(&DefMI, &UseMI); 582 else if (DefMI.getParent() != UseMI.getParent()) 583 return false; 584 585 return isPredecessor(DefMI, UseMI); 586 } 587 588 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 589 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 590 Register SrcReg = MI.getOperand(1).getReg(); 591 Register LoadUser = SrcReg; 592 593 if (MRI.getType(SrcReg).isVector()) 594 return false; 595 596 Register TruncSrc; 597 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 598 LoadUser = TruncSrc; 599 600 uint64_t SizeInBits = MI.getOperand(2).getImm(); 601 // If the source is a G_SEXTLOAD from the same bit width, then we don't 602 // need any extend at all, just a truncate. 603 if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) { 604 const auto &MMO = **LoadMI->memoperands_begin(); 605 // If truncating more than the original extended value, abort. 606 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits()) 607 return false; 608 if (MMO.getSizeInBits() == SizeInBits) 609 return true; 610 } 611 return false; 612 } 613 614 bool CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 615 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 616 Builder.setInstrAndDebugLoc(MI); 617 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 618 MI.eraseFromParent(); 619 return true; 620 } 621 622 bool CombinerHelper::matchSextInRegOfLoad( 623 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 624 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 625 626 // Only supports scalars for now. 627 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 628 return false; 629 630 Register SrcReg = MI.getOperand(1).getReg(); 631 MachineInstr *LoadDef = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI); 632 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg())) 633 return false; 634 635 // If the sign extend extends from a narrower width than the load's width, 636 // then we can narrow the load width when we combine to a G_SEXTLOAD. 637 auto &MMO = **LoadDef->memoperands_begin(); 638 // Don't do this for non-simple loads. 639 if (MMO.isAtomic() || MMO.isVolatile()) 640 return false; 641 642 // Avoid widening the load at all. 643 unsigned NewSizeBits = 644 std::min((uint64_t)MI.getOperand(2).getImm(), MMO.getSizeInBits()); 645 646 // Don't generate G_SEXTLOADs with a < 1 byte width. 647 if (NewSizeBits < 8) 648 return false; 649 // Don't bother creating a non-power-2 sextload, it will likely be broken up 650 // anyway for most targets. 651 if (!isPowerOf2_32(NewSizeBits)) 652 return false; 653 MatchInfo = std::make_tuple(LoadDef->getOperand(0).getReg(), NewSizeBits); 654 return true; 655 } 656 657 bool CombinerHelper::applySextInRegOfLoad( 658 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 659 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 660 Register LoadReg; 661 unsigned ScalarSizeBits; 662 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 663 auto *LoadDef = MRI.getVRegDef(LoadReg); 664 assert(LoadDef && "Expected a load reg"); 665 666 // If we have the following: 667 // %ld = G_LOAD %ptr, (load 2) 668 // %ext = G_SEXT_INREG %ld, 8 669 // ==> 670 // %ld = G_SEXTLOAD %ptr (load 1) 671 672 auto &MMO = **LoadDef->memoperands_begin(); 673 Builder.setInstrAndDebugLoc(MI); 674 auto &MF = Builder.getMF(); 675 auto PtrInfo = MMO.getPointerInfo(); 676 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 677 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 678 LoadDef->getOperand(1).getReg(), *NewMMO); 679 MI.eraseFromParent(); 680 return true; 681 } 682 683 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 684 Register &Base, Register &Offset) { 685 auto &MF = *MI.getParent()->getParent(); 686 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 687 688 #ifndef NDEBUG 689 unsigned Opcode = MI.getOpcode(); 690 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 691 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 692 #endif 693 694 Base = MI.getOperand(1).getReg(); 695 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 696 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 697 return false; 698 699 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 700 // FIXME: The following use traversal needs a bail out for patholigical cases. 701 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 702 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 703 continue; 704 705 Offset = Use.getOperand(2).getReg(); 706 if (!ForceLegalIndexing && 707 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 708 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 709 << Use); 710 continue; 711 } 712 713 // Make sure the offset calculation is before the potentially indexed op. 714 // FIXME: we really care about dependency here. The offset calculation might 715 // be movable. 716 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 717 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 718 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 719 << Use); 720 continue; 721 } 722 723 // FIXME: check whether all uses of Base are load/store with foldable 724 // addressing modes. If so, using the normal addr-modes is better than 725 // forming an indexed one. 726 727 bool MemOpDominatesAddrUses = true; 728 for (auto &PtrAddUse : 729 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 730 if (!dominates(MI, PtrAddUse)) { 731 MemOpDominatesAddrUses = false; 732 break; 733 } 734 } 735 736 if (!MemOpDominatesAddrUses) { 737 LLVM_DEBUG( 738 dbgs() << " Ignoring candidate as memop does not dominate uses: " 739 << Use); 740 continue; 741 } 742 743 LLVM_DEBUG(dbgs() << " Found match: " << Use); 744 Addr = Use.getOperand(0).getReg(); 745 return true; 746 } 747 748 return false; 749 } 750 751 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 752 Register &Base, Register &Offset) { 753 auto &MF = *MI.getParent()->getParent(); 754 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 755 756 #ifndef NDEBUG 757 unsigned Opcode = MI.getOpcode(); 758 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 759 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 760 #endif 761 762 Addr = MI.getOperand(1).getReg(); 763 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 764 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 765 return false; 766 767 Base = AddrDef->getOperand(1).getReg(); 768 Offset = AddrDef->getOperand(2).getReg(); 769 770 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 771 772 if (!ForceLegalIndexing && 773 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 774 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 775 return false; 776 } 777 778 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 779 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 780 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 781 return false; 782 } 783 784 if (MI.getOpcode() == TargetOpcode::G_STORE) { 785 // Would require a copy. 786 if (Base == MI.getOperand(0).getReg()) { 787 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 788 return false; 789 } 790 791 // We're expecting one use of Addr in MI, but it could also be the 792 // value stored, which isn't actually dominated by the instruction. 793 if (MI.getOperand(0).getReg() == Addr) { 794 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 795 return false; 796 } 797 } 798 799 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 800 // That might allow us to end base's liveness here by adjusting the constant. 801 802 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 803 if (!dominates(MI, UseMI)) { 804 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 805 return false; 806 } 807 } 808 809 return true; 810 } 811 812 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 813 IndexedLoadStoreMatchInfo MatchInfo; 814 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 815 applyCombineIndexedLoadStore(MI, MatchInfo); 816 return true; 817 } 818 return false; 819 } 820 821 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 822 unsigned Opcode = MI.getOpcode(); 823 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 824 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 825 return false; 826 827 // For now, no targets actually support these opcodes so don't waste time 828 // running these unless we're forced to for testing. 829 if (!ForceLegalIndexing) 830 return false; 831 832 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 833 MatchInfo.Offset); 834 if (!MatchInfo.IsPre && 835 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 836 MatchInfo.Offset)) 837 return false; 838 839 return true; 840 } 841 842 void CombinerHelper::applyCombineIndexedLoadStore( 843 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 844 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 845 MachineIRBuilder MIRBuilder(MI); 846 unsigned Opcode = MI.getOpcode(); 847 bool IsStore = Opcode == TargetOpcode::G_STORE; 848 unsigned NewOpcode; 849 switch (Opcode) { 850 case TargetOpcode::G_LOAD: 851 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 852 break; 853 case TargetOpcode::G_SEXTLOAD: 854 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 855 break; 856 case TargetOpcode::G_ZEXTLOAD: 857 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 858 break; 859 case TargetOpcode::G_STORE: 860 NewOpcode = TargetOpcode::G_INDEXED_STORE; 861 break; 862 default: 863 llvm_unreachable("Unknown load/store opcode"); 864 } 865 866 auto MIB = MIRBuilder.buildInstr(NewOpcode); 867 if (IsStore) { 868 MIB.addDef(MatchInfo.Addr); 869 MIB.addUse(MI.getOperand(0).getReg()); 870 } else { 871 MIB.addDef(MI.getOperand(0).getReg()); 872 MIB.addDef(MatchInfo.Addr); 873 } 874 875 MIB.addUse(MatchInfo.Base); 876 MIB.addUse(MatchInfo.Offset); 877 MIB.addImm(MatchInfo.IsPre); 878 MI.eraseFromParent(); 879 AddrDef.eraseFromParent(); 880 881 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 882 } 883 884 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI) { 885 if (MI.getOpcode() != TargetOpcode::G_BR) 886 return false; 887 888 // Try to match the following: 889 // bb1: 890 // G_BRCOND %c1, %bb2 891 // G_BR %bb3 892 // bb2: 893 // ... 894 // bb3: 895 896 // The above pattern does not have a fall through to the successor bb2, always 897 // resulting in a branch no matter which path is taken. Here we try to find 898 // and replace that pattern with conditional branch to bb3 and otherwise 899 // fallthrough to bb2. This is generally better for branch predictors. 900 901 MachineBasicBlock *MBB = MI.getParent(); 902 MachineBasicBlock::iterator BrIt(MI); 903 if (BrIt == MBB->begin()) 904 return false; 905 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 906 907 MachineInstr *BrCond = &*std::prev(BrIt); 908 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 909 return false; 910 911 // Check that the next block is the conditional branch target. 912 if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB())) 913 return false; 914 return true; 915 } 916 917 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI) { 918 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 919 MachineBasicBlock::iterator BrIt(MI); 920 MachineInstr *BrCond = &*std::prev(BrIt); 921 922 Builder.setInstrAndDebugLoc(*BrCond); 923 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 924 // FIXME: Does int/fp matter for this? If so, we might need to restrict 925 // this to i1 only since we might not know for sure what kind of 926 // compare generated the condition value. 927 auto True = Builder.buildConstant( 928 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 929 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 930 931 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 932 Observer.changingInstr(MI); 933 MI.getOperand(0).setMBB(FallthroughBB); 934 Observer.changedInstr(MI); 935 936 // Change the conditional branch to use the inverted condition and 937 // new target block. 938 Observer.changingInstr(*BrCond); 939 BrCond->getOperand(0).setReg(Xor.getReg(0)); 940 BrCond->getOperand(1).setMBB(BrTarget); 941 Observer.changedInstr(*BrCond); 942 } 943 944 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 945 // On Darwin, -Os means optimize for size without hurting performance, so 946 // only really optimize for size when -Oz (MinSize) is used. 947 if (MF.getTarget().getTargetTriple().isOSDarwin()) 948 return MF.getFunction().hasMinSize(); 949 return MF.getFunction().hasOptSize(); 950 } 951 952 // Returns a list of types to use for memory op lowering in MemOps. A partial 953 // port of findOptimalMemOpLowering in TargetLowering. 954 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 955 unsigned Limit, const MemOp &Op, 956 unsigned DstAS, unsigned SrcAS, 957 const AttributeList &FuncAttributes, 958 const TargetLowering &TLI) { 959 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 960 return false; 961 962 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 963 964 if (Ty == LLT()) { 965 // Use the largest scalar type whose alignment constraints are satisfied. 966 // We only need to check DstAlign here as SrcAlign is always greater or 967 // equal to DstAlign (or zero). 968 Ty = LLT::scalar(64); 969 if (Op.isFixedDstAlign()) 970 while (Op.getDstAlign() < Ty.getSizeInBytes() && 971 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 972 Ty = LLT::scalar(Ty.getSizeInBytes()); 973 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 974 // FIXME: check for the largest legal type we can load/store to. 975 } 976 977 unsigned NumMemOps = 0; 978 uint64_t Size = Op.size(); 979 while (Size) { 980 unsigned TySize = Ty.getSizeInBytes(); 981 while (TySize > Size) { 982 // For now, only use non-vector load / store's for the left-over pieces. 983 LLT NewTy = Ty; 984 // FIXME: check for mem op safety and legality of the types. Not all of 985 // SDAGisms map cleanly to GISel concepts. 986 if (NewTy.isVector()) 987 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 988 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 989 unsigned NewTySize = NewTy.getSizeInBytes(); 990 assert(NewTySize > 0 && "Could not find appropriate type"); 991 992 // If the new LLT cannot cover all of the remaining bits, then consider 993 // issuing a (or a pair of) unaligned and overlapping load / store. 994 bool Fast; 995 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 996 MVT VT = getMVTForLLT(Ty); 997 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 998 TLI.allowsMisalignedMemoryAccesses( 999 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 1000 MachineMemOperand::MONone, &Fast) && 1001 Fast) 1002 TySize = Size; 1003 else { 1004 Ty = NewTy; 1005 TySize = NewTySize; 1006 } 1007 } 1008 1009 if (++NumMemOps > Limit) 1010 return false; 1011 1012 MemOps.push_back(Ty); 1013 Size -= TySize; 1014 } 1015 1016 return true; 1017 } 1018 1019 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1020 if (Ty.isVector()) 1021 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1022 Ty.getNumElements()); 1023 return IntegerType::get(C, Ty.getSizeInBits()); 1024 } 1025 1026 // Get a vectorized representation of the memset value operand, GISel edition. 1027 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 1028 MachineRegisterInfo &MRI = *MIB.getMRI(); 1029 unsigned NumBits = Ty.getScalarSizeInBits(); 1030 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1031 if (!Ty.isVector() && ValVRegAndVal) { 1032 unsigned KnownVal = ValVRegAndVal->Value; 1033 APInt Scalar = APInt(8, KnownVal); 1034 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 1035 return MIB.buildConstant(Ty, SplatVal).getReg(0); 1036 } 1037 1038 // Extend the byte value to the larger type, and then multiply by a magic 1039 // value 0x010101... in order to replicate it across every byte. 1040 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 1041 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 1042 return MIB.buildConstant(Ty, 0).getReg(0); 1043 } 1044 1045 LLT ExtType = Ty.getScalarType(); 1046 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 1047 if (NumBits > 8) { 1048 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 1049 auto MagicMI = MIB.buildConstant(ExtType, Magic); 1050 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 1051 } 1052 1053 // For vector types create a G_BUILD_VECTOR. 1054 if (Ty.isVector()) 1055 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 1056 1057 return Val; 1058 } 1059 1060 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 1061 Register Val, unsigned KnownLen, 1062 Align Alignment, bool IsVolatile) { 1063 auto &MF = *MI.getParent()->getParent(); 1064 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1065 auto &DL = MF.getDataLayout(); 1066 LLVMContext &C = MF.getFunction().getContext(); 1067 1068 assert(KnownLen != 0 && "Have a zero length memset length!"); 1069 1070 bool DstAlignCanChange = false; 1071 MachineFrameInfo &MFI = MF.getFrameInfo(); 1072 bool OptSize = shouldLowerMemFuncForSize(MF); 1073 1074 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1075 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1076 DstAlignCanChange = true; 1077 1078 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1079 std::vector<LLT> MemOps; 1080 1081 const auto &DstMMO = **MI.memoperands_begin(); 1082 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1083 1084 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1085 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1086 1087 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1088 MemOp::Set(KnownLen, DstAlignCanChange, 1089 Alignment, 1090 /*IsZeroMemset=*/IsZeroVal, 1091 /*IsVolatile=*/IsVolatile), 1092 DstPtrInfo.getAddrSpace(), ~0u, 1093 MF.getFunction().getAttributes(), TLI)) 1094 return false; 1095 1096 if (DstAlignCanChange) { 1097 // Get an estimate of the type from the LLT. 1098 Type *IRTy = getTypeForLLT(MemOps[0], C); 1099 Align NewAlign = DL.getABITypeAlign(IRTy); 1100 if (NewAlign > Alignment) { 1101 Alignment = NewAlign; 1102 unsigned FI = FIDef->getOperand(1).getIndex(); 1103 // Give the stack frame object a larger alignment if needed. 1104 if (MFI.getObjectAlign(FI) < Alignment) 1105 MFI.setObjectAlignment(FI, Alignment); 1106 } 1107 } 1108 1109 MachineIRBuilder MIB(MI); 1110 // Find the largest store and generate the bit pattern for it. 1111 LLT LargestTy = MemOps[0]; 1112 for (unsigned i = 1; i < MemOps.size(); i++) 1113 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1114 LargestTy = MemOps[i]; 1115 1116 // The memset stored value is always defined as an s8, so in order to make it 1117 // work with larger store types we need to repeat the bit pattern across the 1118 // wider type. 1119 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1120 1121 if (!MemSetValue) 1122 return false; 1123 1124 // Generate the stores. For each store type in the list, we generate the 1125 // matching store of that type to the destination address. 1126 LLT PtrTy = MRI.getType(Dst); 1127 unsigned DstOff = 0; 1128 unsigned Size = KnownLen; 1129 for (unsigned I = 0; I < MemOps.size(); I++) { 1130 LLT Ty = MemOps[I]; 1131 unsigned TySize = Ty.getSizeInBytes(); 1132 if (TySize > Size) { 1133 // Issuing an unaligned load / store pair that overlaps with the previous 1134 // pair. Adjust the offset accordingly. 1135 assert(I == MemOps.size() - 1 && I != 0); 1136 DstOff -= TySize - Size; 1137 } 1138 1139 // If this store is smaller than the largest store see whether we can get 1140 // the smaller value for free with a truncate. 1141 Register Value = MemSetValue; 1142 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1143 MVT VT = getMVTForLLT(Ty); 1144 MVT LargestVT = getMVTForLLT(LargestTy); 1145 if (!LargestTy.isVector() && !Ty.isVector() && 1146 TLI.isTruncateFree(LargestVT, VT)) 1147 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1148 else 1149 Value = getMemsetValue(Val, Ty, MIB); 1150 if (!Value) 1151 return false; 1152 } 1153 1154 auto *StoreMMO = 1155 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1156 1157 Register Ptr = Dst; 1158 if (DstOff != 0) { 1159 auto Offset = 1160 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1161 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1162 } 1163 1164 MIB.buildStore(Value, Ptr, *StoreMMO); 1165 DstOff += Ty.getSizeInBytes(); 1166 Size -= TySize; 1167 } 1168 1169 MI.eraseFromParent(); 1170 return true; 1171 } 1172 1173 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1174 Register Src, unsigned KnownLen, 1175 Align DstAlign, Align SrcAlign, 1176 bool IsVolatile) { 1177 auto &MF = *MI.getParent()->getParent(); 1178 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1179 auto &DL = MF.getDataLayout(); 1180 LLVMContext &C = MF.getFunction().getContext(); 1181 1182 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1183 1184 bool DstAlignCanChange = false; 1185 MachineFrameInfo &MFI = MF.getFrameInfo(); 1186 bool OptSize = shouldLowerMemFuncForSize(MF); 1187 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1188 1189 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1190 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1191 DstAlignCanChange = true; 1192 1193 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1194 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1195 // if the memcpy is in a tail call position. 1196 1197 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1198 std::vector<LLT> MemOps; 1199 1200 const auto &DstMMO = **MI.memoperands_begin(); 1201 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1202 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1203 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1204 1205 if (!findGISelOptimalMemOpLowering( 1206 MemOps, Limit, 1207 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1208 IsVolatile), 1209 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1210 MF.getFunction().getAttributes(), TLI)) 1211 return false; 1212 1213 if (DstAlignCanChange) { 1214 // Get an estimate of the type from the LLT. 1215 Type *IRTy = getTypeForLLT(MemOps[0], C); 1216 Align NewAlign = DL.getABITypeAlign(IRTy); 1217 1218 // Don't promote to an alignment that would require dynamic stack 1219 // realignment. 1220 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1221 if (!TRI->needsStackRealignment(MF)) 1222 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1223 NewAlign = NewAlign / 2; 1224 1225 if (NewAlign > Alignment) { 1226 Alignment = NewAlign; 1227 unsigned FI = FIDef->getOperand(1).getIndex(); 1228 // Give the stack frame object a larger alignment if needed. 1229 if (MFI.getObjectAlign(FI) < Alignment) 1230 MFI.setObjectAlignment(FI, Alignment); 1231 } 1232 } 1233 1234 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1235 1236 MachineIRBuilder MIB(MI); 1237 // Now we need to emit a pair of load and stores for each of the types we've 1238 // collected. I.e. for each type, generate a load from the source pointer of 1239 // that type width, and then generate a corresponding store to the dest buffer 1240 // of that value loaded. This can result in a sequence of loads and stores 1241 // mixed types, depending on what the target specifies as good types to use. 1242 unsigned CurrOffset = 0; 1243 LLT PtrTy = MRI.getType(Src); 1244 unsigned Size = KnownLen; 1245 for (auto CopyTy : MemOps) { 1246 // Issuing an unaligned load / store pair that overlaps with the previous 1247 // pair. Adjust the offset accordingly. 1248 if (CopyTy.getSizeInBytes() > Size) 1249 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1250 1251 // Construct MMOs for the accesses. 1252 auto *LoadMMO = 1253 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1254 auto *StoreMMO = 1255 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1256 1257 // Create the load. 1258 Register LoadPtr = Src; 1259 Register Offset; 1260 if (CurrOffset != 0) { 1261 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1262 .getReg(0); 1263 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1264 } 1265 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1266 1267 // Create the store. 1268 Register StorePtr = 1269 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1270 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1271 CurrOffset += CopyTy.getSizeInBytes(); 1272 Size -= CopyTy.getSizeInBytes(); 1273 } 1274 1275 MI.eraseFromParent(); 1276 return true; 1277 } 1278 1279 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1280 Register Src, unsigned KnownLen, 1281 Align DstAlign, Align SrcAlign, 1282 bool IsVolatile) { 1283 auto &MF = *MI.getParent()->getParent(); 1284 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1285 auto &DL = MF.getDataLayout(); 1286 LLVMContext &C = MF.getFunction().getContext(); 1287 1288 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1289 1290 bool DstAlignCanChange = false; 1291 MachineFrameInfo &MFI = MF.getFrameInfo(); 1292 bool OptSize = shouldLowerMemFuncForSize(MF); 1293 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1294 1295 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1296 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1297 DstAlignCanChange = true; 1298 1299 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1300 std::vector<LLT> MemOps; 1301 1302 const auto &DstMMO = **MI.memoperands_begin(); 1303 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1304 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1305 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1306 1307 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1308 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1309 // same thing here. 1310 if (!findGISelOptimalMemOpLowering( 1311 MemOps, Limit, 1312 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1313 /*IsVolatile*/ true), 1314 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1315 MF.getFunction().getAttributes(), TLI)) 1316 return false; 1317 1318 if (DstAlignCanChange) { 1319 // Get an estimate of the type from the LLT. 1320 Type *IRTy = getTypeForLLT(MemOps[0], C); 1321 Align NewAlign = DL.getABITypeAlign(IRTy); 1322 1323 // Don't promote to an alignment that would require dynamic stack 1324 // realignment. 1325 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1326 if (!TRI->needsStackRealignment(MF)) 1327 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1328 NewAlign = NewAlign / 2; 1329 1330 if (NewAlign > Alignment) { 1331 Alignment = NewAlign; 1332 unsigned FI = FIDef->getOperand(1).getIndex(); 1333 // Give the stack frame object a larger alignment if needed. 1334 if (MFI.getObjectAlign(FI) < Alignment) 1335 MFI.setObjectAlignment(FI, Alignment); 1336 } 1337 } 1338 1339 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1340 1341 MachineIRBuilder MIB(MI); 1342 // Memmove requires that we perform the loads first before issuing the stores. 1343 // Apart from that, this loop is pretty much doing the same thing as the 1344 // memcpy codegen function. 1345 unsigned CurrOffset = 0; 1346 LLT PtrTy = MRI.getType(Src); 1347 SmallVector<Register, 16> LoadVals; 1348 for (auto CopyTy : MemOps) { 1349 // Construct MMO for the load. 1350 auto *LoadMMO = 1351 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1352 1353 // Create the load. 1354 Register LoadPtr = Src; 1355 if (CurrOffset != 0) { 1356 auto Offset = 1357 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1358 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1359 } 1360 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1361 CurrOffset += CopyTy.getSizeInBytes(); 1362 } 1363 1364 CurrOffset = 0; 1365 for (unsigned I = 0; I < MemOps.size(); ++I) { 1366 LLT CopyTy = MemOps[I]; 1367 // Now store the values loaded. 1368 auto *StoreMMO = 1369 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1370 1371 Register StorePtr = Dst; 1372 if (CurrOffset != 0) { 1373 auto Offset = 1374 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1375 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1376 } 1377 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1378 CurrOffset += CopyTy.getSizeInBytes(); 1379 } 1380 MI.eraseFromParent(); 1381 return true; 1382 } 1383 1384 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1385 const unsigned Opc = MI.getOpcode(); 1386 // This combine is fairly complex so it's not written with a separate 1387 // matcher function. 1388 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 1389 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); 1390 1391 auto MMOIt = MI.memoperands_begin(); 1392 const MachineMemOperand *MemOp = *MMOIt; 1393 bool IsVolatile = MemOp->isVolatile(); 1394 // Don't try to optimize volatile. 1395 if (IsVolatile) 1396 return false; 1397 1398 Align DstAlign = MemOp->getBaseAlign(); 1399 Align SrcAlign; 1400 Register Dst = MI.getOperand(0).getReg(); 1401 Register Src = MI.getOperand(1).getReg(); 1402 Register Len = MI.getOperand(2).getReg(); 1403 1404 if (Opc != TargetOpcode::G_MEMSET) { 1405 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1406 MemOp = *(++MMOIt); 1407 SrcAlign = MemOp->getBaseAlign(); 1408 } 1409 1410 // See if this is a constant length copy 1411 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1412 if (!LenVRegAndVal) 1413 return false; // Leave it to the legalizer to lower it to a libcall. 1414 unsigned KnownLen = LenVRegAndVal->Value; 1415 1416 if (KnownLen == 0) { 1417 MI.eraseFromParent(); 1418 return true; 1419 } 1420 1421 if (MaxLen && KnownLen > MaxLen) 1422 return false; 1423 1424 if (Opc == TargetOpcode::G_MEMCPY) 1425 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1426 if (Opc == TargetOpcode::G_MEMMOVE) 1427 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1428 if (Opc == TargetOpcode::G_MEMSET) 1429 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1430 return false; 1431 } 1432 1433 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1434 PtrAddChain &MatchInfo) { 1435 // We're trying to match the following pattern: 1436 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1437 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1438 // --> 1439 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1440 1441 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1442 return false; 1443 1444 Register Add2 = MI.getOperand(1).getReg(); 1445 Register Imm1 = MI.getOperand(2).getReg(); 1446 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1447 if (!MaybeImmVal) 1448 return false; 1449 1450 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1451 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1452 return false; 1453 1454 Register Base = Add2Def->getOperand(1).getReg(); 1455 Register Imm2 = Add2Def->getOperand(2).getReg(); 1456 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1457 if (!MaybeImm2Val) 1458 return false; 1459 1460 // Pass the combined immediate to the apply function. 1461 MatchInfo.Imm = MaybeImmVal->Value + MaybeImm2Val->Value; 1462 MatchInfo.Base = Base; 1463 return true; 1464 } 1465 1466 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1467 PtrAddChain &MatchInfo) { 1468 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1469 MachineIRBuilder MIB(MI); 1470 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1471 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1472 Observer.changingInstr(MI); 1473 MI.getOperand(1).setReg(MatchInfo.Base); 1474 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1475 Observer.changedInstr(MI); 1476 return true; 1477 } 1478 1479 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1480 unsigned &ShiftVal) { 1481 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1482 auto MaybeImmVal = 1483 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1484 if (!MaybeImmVal || !isPowerOf2_64(MaybeImmVal->Value)) 1485 return false; 1486 ShiftVal = Log2_64(MaybeImmVal->Value); 1487 return true; 1488 } 1489 1490 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1491 unsigned &ShiftVal) { 1492 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1493 MachineIRBuilder MIB(MI); 1494 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1495 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1496 Observer.changingInstr(MI); 1497 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1498 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1499 Observer.changedInstr(MI); 1500 return true; 1501 } 1502 1503 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1504 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1505 RegisterImmPair &MatchData) { 1506 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1507 1508 Register LHS = MI.getOperand(1).getReg(); 1509 1510 Register ExtSrc; 1511 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1512 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1513 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1514 return false; 1515 1516 // TODO: Should handle vector splat. 1517 Register RHS = MI.getOperand(2).getReg(); 1518 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 1519 if (!MaybeShiftAmtVal) 1520 return false; 1521 1522 if (LI) { 1523 LLT SrcTy = MRI.getType(ExtSrc); 1524 1525 // We only really care about the legality with the shifted value. We can 1526 // pick any type the constant shift amount, so ask the target what to 1527 // use. Otherwise we would have to guess and hope it is reported as legal. 1528 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1529 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1530 return false; 1531 } 1532 1533 int64_t ShiftAmt = MaybeShiftAmtVal->Value; 1534 MatchData.Reg = ExtSrc; 1535 MatchData.Imm = ShiftAmt; 1536 1537 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1538 return MinLeadingZeros >= ShiftAmt; 1539 } 1540 1541 bool CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1542 const RegisterImmPair &MatchData) { 1543 Register ExtSrcReg = MatchData.Reg; 1544 int64_t ShiftAmtVal = MatchData.Imm; 1545 1546 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1547 Builder.setInstrAndDebugLoc(MI); 1548 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1549 auto NarrowShift = 1550 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1551 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1552 MI.eraseFromParent(); 1553 return true; 1554 } 1555 1556 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1557 unsigned TargetShiftSize, 1558 unsigned &ShiftVal) { 1559 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1560 MI.getOpcode() == TargetOpcode::G_LSHR || 1561 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1562 1563 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1564 if (Ty.isVector()) // TODO: 1565 return false; 1566 1567 // Don't narrow further than the requested size. 1568 unsigned Size = Ty.getSizeInBits(); 1569 if (Size <= TargetShiftSize) 1570 return false; 1571 1572 auto MaybeImmVal = 1573 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1574 if (!MaybeImmVal) 1575 return false; 1576 1577 ShiftVal = MaybeImmVal->Value; 1578 return ShiftVal >= Size / 2 && ShiftVal < Size; 1579 } 1580 1581 bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1582 const unsigned &ShiftVal) { 1583 Register DstReg = MI.getOperand(0).getReg(); 1584 Register SrcReg = MI.getOperand(1).getReg(); 1585 LLT Ty = MRI.getType(SrcReg); 1586 unsigned Size = Ty.getSizeInBits(); 1587 unsigned HalfSize = Size / 2; 1588 assert(ShiftVal >= HalfSize); 1589 1590 LLT HalfTy = LLT::scalar(HalfSize); 1591 1592 Builder.setInstr(MI); 1593 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1594 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1595 1596 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1597 Register Narrowed = Unmerge.getReg(1); 1598 1599 // dst = G_LSHR s64:x, C for C >= 32 1600 // => 1601 // lo, hi = G_UNMERGE_VALUES x 1602 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1603 1604 if (NarrowShiftAmt != 0) { 1605 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1606 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1607 } 1608 1609 auto Zero = Builder.buildConstant(HalfTy, 0); 1610 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1611 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1612 Register Narrowed = Unmerge.getReg(0); 1613 // dst = G_SHL s64:x, C for C >= 32 1614 // => 1615 // lo, hi = G_UNMERGE_VALUES x 1616 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1617 if (NarrowShiftAmt != 0) { 1618 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1619 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1620 } 1621 1622 auto Zero = Builder.buildConstant(HalfTy, 0); 1623 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1624 } else { 1625 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1626 auto Hi = Builder.buildAShr( 1627 HalfTy, Unmerge.getReg(1), 1628 Builder.buildConstant(HalfTy, HalfSize - 1)); 1629 1630 if (ShiftVal == HalfSize) { 1631 // (G_ASHR i64:x, 32) -> 1632 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1633 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1634 } else if (ShiftVal == Size - 1) { 1635 // Don't need a second shift. 1636 // (G_ASHR i64:x, 63) -> 1637 // %narrowed = (G_ASHR hi_32(x), 31) 1638 // G_MERGE_VALUES %narrowed, %narrowed 1639 Builder.buildMerge(DstReg, { Hi, Hi }); 1640 } else { 1641 auto Lo = Builder.buildAShr( 1642 HalfTy, Unmerge.getReg(1), 1643 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1644 1645 // (G_ASHR i64:x, C) ->, for C >= 32 1646 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1647 Builder.buildMerge(DstReg, { Lo, Hi }); 1648 } 1649 } 1650 1651 MI.eraseFromParent(); 1652 return true; 1653 } 1654 1655 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1656 unsigned TargetShiftAmount) { 1657 unsigned ShiftAmt; 1658 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1659 applyCombineShiftToUnmerge(MI, ShiftAmt); 1660 return true; 1661 } 1662 1663 return false; 1664 } 1665 1666 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1667 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1668 Register DstReg = MI.getOperand(0).getReg(); 1669 LLT DstTy = MRI.getType(DstReg); 1670 Register SrcReg = MI.getOperand(1).getReg(); 1671 return mi_match(SrcReg, MRI, 1672 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 1673 } 1674 1675 bool CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1676 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1677 Register DstReg = MI.getOperand(0).getReg(); 1678 Builder.setInstr(MI); 1679 Builder.buildCopy(DstReg, Reg); 1680 MI.eraseFromParent(); 1681 return true; 1682 } 1683 1684 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1685 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1686 Register SrcReg = MI.getOperand(1).getReg(); 1687 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 1688 } 1689 1690 bool CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1691 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1692 Register DstReg = MI.getOperand(0).getReg(); 1693 Builder.setInstr(MI); 1694 Builder.buildZExtOrTrunc(DstReg, Reg); 1695 MI.eraseFromParent(); 1696 return true; 1697 } 1698 1699 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 1700 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1701 assert(MI.getOpcode() == TargetOpcode::G_ADD); 1702 Register LHS = MI.getOperand(1).getReg(); 1703 Register RHS = MI.getOperand(2).getReg(); 1704 LLT IntTy = MRI.getType(LHS); 1705 1706 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 1707 // instruction. 1708 PtrReg.second = false; 1709 for (Register SrcReg : {LHS, RHS}) { 1710 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 1711 // Don't handle cases where the integer is implicitly converted to the 1712 // pointer width. 1713 LLT PtrTy = MRI.getType(PtrReg.first); 1714 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 1715 return true; 1716 } 1717 1718 PtrReg.second = true; 1719 } 1720 1721 return false; 1722 } 1723 1724 bool CombinerHelper::applyCombineAddP2IToPtrAdd( 1725 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1726 Register Dst = MI.getOperand(0).getReg(); 1727 Register LHS = MI.getOperand(1).getReg(); 1728 Register RHS = MI.getOperand(2).getReg(); 1729 1730 const bool DoCommute = PtrReg.second; 1731 if (DoCommute) 1732 std::swap(LHS, RHS); 1733 LHS = PtrReg.first; 1734 1735 LLT PtrTy = MRI.getType(LHS); 1736 1737 Builder.setInstrAndDebugLoc(MI); 1738 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 1739 Builder.buildPtrToInt(Dst, PtrAdd); 1740 MI.eraseFromParent(); 1741 return true; 1742 } 1743 1744 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 1745 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 1746 Register DstReg = MI.getOperand(0).getReg(); 1747 Register SrcReg = MI.getOperand(1).getReg(); 1748 LLT DstTy = MRI.getType(DstReg); 1749 return mi_match(SrcReg, MRI, 1750 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 1751 } 1752 1753 bool CombinerHelper::applyCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 1754 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 1755 Register DstReg = MI.getOperand(0).getReg(); 1756 MI.eraseFromParent(); 1757 replaceRegWith(MRI, DstReg, Reg); 1758 return true; 1759 } 1760 1761 bool CombinerHelper::matchCombineExtOfExt( 1762 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 1763 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 1764 MI.getOpcode() == TargetOpcode::G_SEXT || 1765 MI.getOpcode() == TargetOpcode::G_ZEXT) && 1766 "Expected a G_[ASZ]EXT"); 1767 Register SrcReg = MI.getOperand(1).getReg(); 1768 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 1769 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 1770 unsigned Opc = MI.getOpcode(); 1771 unsigned SrcOpc = SrcMI->getOpcode(); 1772 if (Opc == SrcOpc || 1773 (Opc == TargetOpcode::G_ANYEXT && 1774 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 1775 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 1776 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 1777 return true; 1778 } 1779 return false; 1780 } 1781 1782 bool CombinerHelper::applyCombineExtOfExt( 1783 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 1784 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 1785 MI.getOpcode() == TargetOpcode::G_SEXT || 1786 MI.getOpcode() == TargetOpcode::G_ZEXT) && 1787 "Expected a G_[ASZ]EXT"); 1788 1789 Register Reg = std::get<0>(MatchInfo); 1790 unsigned SrcExtOp = std::get<1>(MatchInfo); 1791 1792 // Combine exts with the same opcode. 1793 if (MI.getOpcode() == SrcExtOp) { 1794 Observer.changingInstr(MI); 1795 MI.getOperand(1).setReg(Reg); 1796 Observer.changedInstr(MI); 1797 return true; 1798 } 1799 1800 // Combine: 1801 // - anyext([sz]ext x) to [sz]ext x 1802 // - sext(zext x) to zext x 1803 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 1804 (MI.getOpcode() == TargetOpcode::G_SEXT && 1805 SrcExtOp == TargetOpcode::G_ZEXT)) { 1806 Register DstReg = MI.getOperand(0).getReg(); 1807 Builder.setInstrAndDebugLoc(MI); 1808 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 1809 MI.eraseFromParent(); 1810 return true; 1811 } 1812 1813 return false; 1814 } 1815 1816 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 1817 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 1818 Register SrcReg = MI.getOperand(1).getReg(); 1819 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 1820 } 1821 1822 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 1823 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 1824 return MO.isReg() && 1825 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 1826 }); 1827 } 1828 1829 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 1830 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 1831 return !MO.isReg() || 1832 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 1833 }); 1834 } 1835 1836 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 1837 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 1838 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 1839 return all_of(Mask, [](int Elt) { return Elt < 0; }); 1840 } 1841 1842 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 1843 assert(MI.getOpcode() == TargetOpcode::G_STORE); 1844 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 1845 MRI); 1846 } 1847 1848 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 1849 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 1850 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 1851 MRI); 1852 } 1853 1854 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 1855 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 1856 if (auto MaybeCstCmp = 1857 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 1858 OpIdx = MaybeCstCmp->Value ? 2 : 3; 1859 return true; 1860 } 1861 return false; 1862 } 1863 1864 bool CombinerHelper::eraseInst(MachineInstr &MI) { 1865 MI.eraseFromParent(); 1866 return true; 1867 } 1868 1869 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 1870 const MachineOperand &MOP2) { 1871 if (!MOP1.isReg() || !MOP2.isReg()) 1872 return false; 1873 MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); 1874 if (!I1) 1875 return false; 1876 MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); 1877 if (!I2) 1878 return false; 1879 1880 // Handle a case like this: 1881 // 1882 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 1883 // 1884 // Even though %0 and %1 are produced by the same instruction they are not 1885 // the same values. 1886 if (I1 == I2) 1887 return MOP1.getReg() == MOP2.getReg(); 1888 1889 // If we have an instruction which loads or stores, we can't guarantee that 1890 // it is identical. 1891 // 1892 // For example, we may have 1893 // 1894 // %x1 = G_LOAD %addr (load N from @somewhere) 1895 // ... 1896 // call @foo 1897 // ... 1898 // %x2 = G_LOAD %addr (load N from @somewhere) 1899 // ... 1900 // %or = G_OR %x1, %x2 1901 // 1902 // It's possible that @foo will modify whatever lives at the address we're 1903 // loading from. To be safe, let's just assume that all loads and stores 1904 // are different (unless we have something which is guaranteed to not 1905 // change.) 1906 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 1907 return false; 1908 1909 // Check for physical registers on the instructions first to avoid cases 1910 // like this: 1911 // 1912 // %a = COPY $physreg 1913 // ... 1914 // SOMETHING implicit-def $physreg 1915 // ... 1916 // %b = COPY $physreg 1917 // 1918 // These copies are not equivalent. 1919 if (any_of(I1->uses(), [](const MachineOperand &MO) { 1920 return MO.isReg() && MO.getReg().isPhysical(); 1921 })) { 1922 // Check if we have a case like this: 1923 // 1924 // %a = COPY $physreg 1925 // %b = COPY %a 1926 // 1927 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 1928 // From that, we know that they must have the same value, since they must 1929 // have come from the same COPY. 1930 return I1->isIdenticalTo(*I2); 1931 } 1932 1933 // We don't have any physical registers, so we don't necessarily need the 1934 // same vreg defs. 1935 // 1936 // On the off-chance that there's some target instruction feeding into the 1937 // instruction, let's use produceSameValue instead of isIdenticalTo. 1938 return Builder.getTII().produceSameValue(*I1, *I2, &MRI); 1939 } 1940 1941 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 1942 if (!MOP.isReg()) 1943 return false; 1944 // MIPatternMatch doesn't let us look through G_ZEXT etc. 1945 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 1946 return ValAndVReg && ValAndVReg->Value == C; 1947 } 1948 1949 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 1950 unsigned OpIdx) { 1951 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 1952 Register OldReg = MI.getOperand(0).getReg(); 1953 Register Replacement = MI.getOperand(OpIdx).getReg(); 1954 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 1955 MI.eraseFromParent(); 1956 replaceRegWith(MRI, OldReg, Replacement); 1957 return true; 1958 } 1959 1960 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 1961 Register Replacement) { 1962 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 1963 Register OldReg = MI.getOperand(0).getReg(); 1964 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 1965 MI.eraseFromParent(); 1966 replaceRegWith(MRI, OldReg, Replacement); 1967 return true; 1968 } 1969 1970 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 1971 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 1972 // Match (cond ? x : x) 1973 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 1974 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 1975 MRI); 1976 } 1977 1978 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 1979 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 1980 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1981 MRI); 1982 } 1983 1984 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 1985 return matchConstantOp(MI.getOperand(OpIdx), 0) && 1986 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 1987 MRI); 1988 } 1989 1990 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 1991 MachineOperand &MO = MI.getOperand(OpIdx); 1992 return MO.isReg() && 1993 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 1994 } 1995 1996 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 1997 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 1998 Builder.setInstr(MI); 1999 Builder.buildFConstant(MI.getOperand(0), C); 2000 MI.eraseFromParent(); 2001 return true; 2002 } 2003 2004 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2005 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2006 Builder.setInstr(MI); 2007 Builder.buildConstant(MI.getOperand(0), C); 2008 MI.eraseFromParent(); 2009 return true; 2010 } 2011 2012 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2013 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2014 Builder.setInstr(MI); 2015 Builder.buildUndef(MI.getOperand(0)); 2016 MI.eraseFromParent(); 2017 return true; 2018 } 2019 2020 bool CombinerHelper::matchSimplifyAddToSub( 2021 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2022 Register LHS = MI.getOperand(1).getReg(); 2023 Register RHS = MI.getOperand(2).getReg(); 2024 Register &NewLHS = std::get<0>(MatchInfo); 2025 Register &NewRHS = std::get<1>(MatchInfo); 2026 2027 // Helper lambda to check for opportunities for 2028 // ((0-A) + B) -> B - A 2029 // (A + (0-B)) -> A - B 2030 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2031 int64_t Cst; 2032 if (!mi_match(MaybeSub, MRI, m_GSub(m_ICst(Cst), m_Reg(NewRHS))) || 2033 Cst != 0) 2034 return false; 2035 NewLHS = MaybeNewLHS; 2036 return true; 2037 }; 2038 2039 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2040 } 2041 2042 bool CombinerHelper::applySimplifyAddToSub( 2043 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2044 Builder.setInstr(MI); 2045 Register SubLHS, SubRHS; 2046 std::tie(SubLHS, SubRHS) = MatchInfo; 2047 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2048 MI.eraseFromParent(); 2049 return true; 2050 } 2051 2052 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2053 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2054 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2055 // 2056 // Creates the new hand + logic instruction (but does not insert them.) 2057 // 2058 // On success, MatchInfo is populated with the new instructions. These are 2059 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2060 unsigned LogicOpcode = MI.getOpcode(); 2061 assert(LogicOpcode == TargetOpcode::G_AND || 2062 LogicOpcode == TargetOpcode::G_OR || 2063 LogicOpcode == TargetOpcode::G_XOR); 2064 MachineIRBuilder MIB(MI); 2065 Register Dst = MI.getOperand(0).getReg(); 2066 Register LHSReg = MI.getOperand(1).getReg(); 2067 Register RHSReg = MI.getOperand(2).getReg(); 2068 2069 // Don't recompute anything. 2070 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2071 return false; 2072 2073 // Make sure we have (hand x, ...), (hand y, ...) 2074 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2075 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2076 if (!LeftHandInst || !RightHandInst) 2077 return false; 2078 unsigned HandOpcode = LeftHandInst->getOpcode(); 2079 if (HandOpcode != RightHandInst->getOpcode()) 2080 return false; 2081 if (!LeftHandInst->getOperand(1).isReg() || 2082 !RightHandInst->getOperand(1).isReg()) 2083 return false; 2084 2085 // Make sure the types match up, and if we're doing this post-legalization, 2086 // we end up with legal types. 2087 Register X = LeftHandInst->getOperand(1).getReg(); 2088 Register Y = RightHandInst->getOperand(1).getReg(); 2089 LLT XTy = MRI.getType(X); 2090 LLT YTy = MRI.getType(Y); 2091 if (XTy != YTy) 2092 return false; 2093 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2094 return false; 2095 2096 // Optional extra source register. 2097 Register ExtraHandOpSrcReg; 2098 switch (HandOpcode) { 2099 default: 2100 return false; 2101 case TargetOpcode::G_ANYEXT: 2102 case TargetOpcode::G_SEXT: 2103 case TargetOpcode::G_ZEXT: { 2104 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2105 break; 2106 } 2107 case TargetOpcode::G_AND: 2108 case TargetOpcode::G_ASHR: 2109 case TargetOpcode::G_LSHR: 2110 case TargetOpcode::G_SHL: { 2111 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2112 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2113 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2114 return false; 2115 ExtraHandOpSrcReg = ZOp.getReg(); 2116 break; 2117 } 2118 } 2119 2120 // Record the steps to build the new instructions. 2121 // 2122 // Steps to build (logic x, y) 2123 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2124 OperandBuildSteps LogicBuildSteps = { 2125 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2126 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2127 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2128 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2129 2130 // Steps to build hand (logic x, y), ...z 2131 OperandBuildSteps HandBuildSteps = { 2132 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2133 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2134 if (ExtraHandOpSrcReg.isValid()) 2135 HandBuildSteps.push_back( 2136 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2137 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2138 2139 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2140 return true; 2141 } 2142 2143 bool CombinerHelper::applyBuildInstructionSteps( 2144 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2145 assert(MatchInfo.InstrsToBuild.size() && 2146 "Expected at least one instr to build?"); 2147 Builder.setInstr(MI); 2148 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2149 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2150 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2151 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2152 for (auto &OperandFn : InstrToBuild.OperandFns) 2153 OperandFn(Instr); 2154 } 2155 MI.eraseFromParent(); 2156 return true; 2157 } 2158 2159 bool CombinerHelper::matchAshrShlToSextInreg( 2160 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2161 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2162 int64_t ShlCst, AshrCst; 2163 Register Src; 2164 // FIXME: detect splat constant vectors. 2165 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2166 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2167 return false; 2168 if (ShlCst != AshrCst) 2169 return false; 2170 if (!isLegalOrBeforeLegalizer( 2171 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2172 return false; 2173 MatchInfo = std::make_tuple(Src, ShlCst); 2174 return true; 2175 } 2176 bool CombinerHelper::applyAshShlToSextInreg( 2177 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2178 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2179 Register Src; 2180 int64_t ShiftAmt; 2181 std::tie(Src, ShiftAmt) = MatchInfo; 2182 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2183 Builder.setInstrAndDebugLoc(MI); 2184 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2185 MI.eraseFromParent(); 2186 return true; 2187 } 2188 2189 bool CombinerHelper::matchAndWithTrivialMask(MachineInstr &MI, 2190 Register &Replacement) { 2191 // Given 2192 // 2193 // %mask:_(sN) = G_CONSTANT iN 000...0111...1 2194 // %x:_(sN) = G_SOMETHING 2195 // %y:_(sN) = G_AND %x, %mask 2196 // 2197 // Eliminate the G_AND when it is known that x & mask == x. 2198 // 2199 // Patterns like this can appear as a result of legalization. E.g. 2200 // 2201 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2202 // %one:_(s32) = G_CONSTANT i32 1 2203 // %and:_(s32) = G_AND %cmp, %one 2204 // 2205 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2206 assert(MI.getOpcode() == TargetOpcode::G_AND); 2207 if (!KB) 2208 return false; 2209 2210 // Replacement = %x, AndDst = %y. Check that we can replace AndDst with the 2211 // LHS of the G_AND. 2212 Replacement = MI.getOperand(1).getReg(); 2213 Register AndDst = MI.getOperand(0).getReg(); 2214 LLT DstTy = MRI.getType(AndDst); 2215 2216 // FIXME: This should be removed once GISelKnownBits supports vectors. 2217 if (DstTy.isVector()) 2218 return false; 2219 if (!canReplaceReg(AndDst, Replacement, MRI)) 2220 return false; 2221 2222 // Check that we have a constant on the RHS of the G_AND, which is of the form 2223 // 000...0111...1. 2224 int64_t Cst; 2225 if (!mi_match(MI.getOperand(2).getReg(), MRI, m_ICst(Cst))) 2226 return false; 2227 APInt Mask(DstTy.getSizeInBits(), Cst); 2228 if (!Mask.isMask()) 2229 return false; 2230 2231 // Now, let's check that x & Mask == x. If this is true, then x & ~Mask == 0. 2232 return KB->maskedValueIsZero(Replacement, ~Mask); 2233 } 2234 2235 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 2236 // If the input is already sign extended, just drop the extension. 2237 Register Src = MI.getOperand(1).getReg(); 2238 unsigned ExtBits = MI.getOperand(2).getImm(); 2239 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 2240 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 2241 } 2242 2243 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 2244 int64_t Cst, bool IsVector, bool IsFP) { 2245 // For i1, Cst will always be -1 regardless of boolean contents. 2246 return (ScalarSizeBits == 1 && Cst == -1) || 2247 isConstTrueVal(TLI, Cst, IsVector, IsFP); 2248 } 2249 2250 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 2251 SmallVectorImpl<Register> &RegsToNegate) { 2252 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2253 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2254 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 2255 Register XorSrc; 2256 Register CstReg; 2257 // We match xor(src, true) here. 2258 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2259 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 2260 return false; 2261 2262 if (!MRI.hasOneNonDBGUse(XorSrc)) 2263 return false; 2264 2265 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 2266 // and ORs. The suffix of RegsToNegate starting from index I is used a work 2267 // list of tree nodes to visit. 2268 RegsToNegate.push_back(XorSrc); 2269 // Remember whether the comparisons are all integer or all floating point. 2270 bool IsInt = false; 2271 bool IsFP = false; 2272 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 2273 Register Reg = RegsToNegate[I]; 2274 if (!MRI.hasOneNonDBGUse(Reg)) 2275 return false; 2276 MachineInstr *Def = MRI.getVRegDef(Reg); 2277 switch (Def->getOpcode()) { 2278 default: 2279 // Don't match if the tree contains anything other than ANDs, ORs and 2280 // comparisons. 2281 return false; 2282 case TargetOpcode::G_ICMP: 2283 if (IsFP) 2284 return false; 2285 IsInt = true; 2286 // When we apply the combine we will invert the predicate. 2287 break; 2288 case TargetOpcode::G_FCMP: 2289 if (IsInt) 2290 return false; 2291 IsFP = true; 2292 // When we apply the combine we will invert the predicate. 2293 break; 2294 case TargetOpcode::G_AND: 2295 case TargetOpcode::G_OR: 2296 // Implement De Morgan's laws: 2297 // ~(x & y) -> ~x | ~y 2298 // ~(x | y) -> ~x & ~y 2299 // When we apply the combine we will change the opcode and recursively 2300 // negate the operands. 2301 RegsToNegate.push_back(Def->getOperand(1).getReg()); 2302 RegsToNegate.push_back(Def->getOperand(2).getReg()); 2303 break; 2304 } 2305 } 2306 2307 // Now we know whether the comparisons are integer or floating point, check 2308 // the constant in the xor. 2309 int64_t Cst; 2310 if (Ty.isVector()) { 2311 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 2312 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 2313 if (!MaybeCst) 2314 return false; 2315 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 2316 return false; 2317 } else { 2318 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 2319 return false; 2320 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 2321 return false; 2322 } 2323 2324 return true; 2325 } 2326 2327 bool CombinerHelper::applyNotCmp(MachineInstr &MI, 2328 SmallVectorImpl<Register> &RegsToNegate) { 2329 for (Register Reg : RegsToNegate) { 2330 MachineInstr *Def = MRI.getVRegDef(Reg); 2331 Observer.changingInstr(*Def); 2332 // For each comparison, invert the opcode. For each AND and OR, change the 2333 // opcode. 2334 switch (Def->getOpcode()) { 2335 default: 2336 llvm_unreachable("Unexpected opcode"); 2337 case TargetOpcode::G_ICMP: 2338 case TargetOpcode::G_FCMP: { 2339 MachineOperand &PredOp = Def->getOperand(1); 2340 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 2341 (CmpInst::Predicate)PredOp.getPredicate()); 2342 PredOp.setPredicate(NewP); 2343 break; 2344 } 2345 case TargetOpcode::G_AND: 2346 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 2347 break; 2348 case TargetOpcode::G_OR: 2349 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2350 break; 2351 } 2352 Observer.changedInstr(*Def); 2353 } 2354 2355 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 2356 MI.eraseFromParent(); 2357 return true; 2358 } 2359 2360 bool CombinerHelper::tryCombine(MachineInstr &MI) { 2361 if (tryCombineCopy(MI)) 2362 return true; 2363 if (tryCombineExtendingLoads(MI)) 2364 return true; 2365 if (tryCombineIndexedLoadStore(MI)) 2366 return true; 2367 return false; 2368 } 2369