1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 17 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 20 #include "llvm/CodeGen/GlobalISel/Utils.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetOpcodes.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/MathExtras.h" 34 #include <tuple> 35 36 #define DEBUG_TYPE "gi-combiner" 37 38 using namespace llvm; 39 using namespace MIPatternMatch; 40 41 // Option to allow testing of the combiner while no targets know about indexed 42 // addressing. 43 static cl::opt<bool> 44 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 45 cl::desc("Force all indexed operations to be " 46 "legal for the GlobalISel combiner")); 47 48 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 49 MachineIRBuilder &B, GISelKnownBits *KB, 50 MachineDominatorTree *MDT, 51 const LegalizerInfo *LI) 52 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 53 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 54 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 55 (void)this->KB; 56 } 57 58 const TargetLowering &CombinerHelper::getTargetLowering() const { 59 return *Builder.getMF().getSubtarget().getTargetLowering(); 60 } 61 62 /// \returns The little endian in-memory byte position of byte \p I in a 63 /// \p ByteWidth bytes wide type. 64 /// 65 /// E.g. Given a 4-byte type x, x[0] -> byte 0 66 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 67 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 68 return I; 69 } 70 71 /// \returns The big endian in-memory byte position of byte \p I in a 72 /// \p ByteWidth bytes wide type. 73 /// 74 /// E.g. Given a 4-byte type x, x[0] -> byte 3 75 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 76 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 77 return ByteWidth - I - 1; 78 } 79 80 /// Given a map from byte offsets in memory to indices in a load/store, 81 /// determine if that map corresponds to a little or big endian byte pattern. 82 /// 83 /// \param MemOffset2Idx maps memory offsets to address offsets. 84 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 85 /// 86 /// \returns true if the map corresponds to a big endian byte pattern, false 87 /// if it corresponds to a little endian byte pattern, and None otherwise. 88 /// 89 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 90 /// are as follows: 91 /// 92 /// AddrOffset Little endian Big endian 93 /// 0 0 3 94 /// 1 1 2 95 /// 2 2 1 96 /// 3 3 0 97 static Optional<bool> 98 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 99 int64_t LowestIdx) { 100 // Need at least two byte positions to decide on endianness. 101 unsigned Width = MemOffset2Idx.size(); 102 if (Width < 2) 103 return None; 104 bool BigEndian = true, LittleEndian = true; 105 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 106 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 107 if (MemOffsetAndIdx == MemOffset2Idx.end()) 108 return None; 109 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 110 assert(Idx >= 0 && "Expected non-negative byte offset?"); 111 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 112 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 113 if (!BigEndian && !LittleEndian) 114 return None; 115 } 116 117 assert((BigEndian != LittleEndian) && 118 "Pattern cannot be both big and little endian!"); 119 return BigEndian; 120 } 121 122 bool CombinerHelper::isLegalOrBeforeLegalizer( 123 const LegalityQuery &Query) const { 124 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 125 } 126 127 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 128 Register ToReg) const { 129 Observer.changingAllUsesOfReg(MRI, FromReg); 130 131 if (MRI.constrainRegAttrs(ToReg, FromReg)) 132 MRI.replaceRegWith(FromReg, ToReg); 133 else 134 Builder.buildCopy(ToReg, FromReg); 135 136 Observer.finishedChangingAllUsesOfReg(); 137 } 138 139 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 140 MachineOperand &FromRegOp, 141 Register ToReg) const { 142 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 143 Observer.changingInstr(*FromRegOp.getParent()); 144 145 FromRegOp.setReg(ToReg); 146 147 Observer.changedInstr(*FromRegOp.getParent()); 148 } 149 150 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 151 return RBI->getRegBank(Reg, MRI, *TRI); 152 } 153 154 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 155 if (RegBank) 156 MRI.setRegBank(Reg, *RegBank); 157 } 158 159 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 160 if (matchCombineCopy(MI)) { 161 applyCombineCopy(MI); 162 return true; 163 } 164 return false; 165 } 166 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 167 if (MI.getOpcode() != TargetOpcode::COPY) 168 return false; 169 Register DstReg = MI.getOperand(0).getReg(); 170 Register SrcReg = MI.getOperand(1).getReg(); 171 return canReplaceReg(DstReg, SrcReg, MRI); 172 } 173 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 174 Register DstReg = MI.getOperand(0).getReg(); 175 Register SrcReg = MI.getOperand(1).getReg(); 176 MI.eraseFromParent(); 177 replaceRegWith(MRI, DstReg, SrcReg); 178 } 179 180 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 181 bool IsUndef = false; 182 SmallVector<Register, 4> Ops; 183 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 184 applyCombineConcatVectors(MI, IsUndef, Ops); 185 return true; 186 } 187 return false; 188 } 189 190 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 191 SmallVectorImpl<Register> &Ops) { 192 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 193 "Invalid instruction"); 194 IsUndef = true; 195 MachineInstr *Undef = nullptr; 196 197 // Walk over all the operands of concat vectors and check if they are 198 // build_vector themselves or undef. 199 // Then collect their operands in Ops. 200 for (const MachineOperand &MO : MI.uses()) { 201 Register Reg = MO.getReg(); 202 MachineInstr *Def = MRI.getVRegDef(Reg); 203 assert(Def && "Operand not defined"); 204 switch (Def->getOpcode()) { 205 case TargetOpcode::G_BUILD_VECTOR: 206 IsUndef = false; 207 // Remember the operands of the build_vector to fold 208 // them into the yet-to-build flattened concat vectors. 209 for (const MachineOperand &BuildVecMO : Def->uses()) 210 Ops.push_back(BuildVecMO.getReg()); 211 break; 212 case TargetOpcode::G_IMPLICIT_DEF: { 213 LLT OpType = MRI.getType(Reg); 214 // Keep one undef value for all the undef operands. 215 if (!Undef) { 216 Builder.setInsertPt(*MI.getParent(), MI); 217 Undef = Builder.buildUndef(OpType.getScalarType()); 218 } 219 assert(MRI.getType(Undef->getOperand(0).getReg()) == 220 OpType.getScalarType() && 221 "All undefs should have the same type"); 222 // Break the undef vector in as many scalar elements as needed 223 // for the flattening. 224 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 225 EltIdx != EltEnd; ++EltIdx) 226 Ops.push_back(Undef->getOperand(0).getReg()); 227 break; 228 } 229 default: 230 return false; 231 } 232 } 233 return true; 234 } 235 void CombinerHelper::applyCombineConcatVectors( 236 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 237 // We determined that the concat_vectors can be flatten. 238 // Generate the flattened build_vector. 239 Register DstReg = MI.getOperand(0).getReg(); 240 Builder.setInsertPt(*MI.getParent(), MI); 241 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 242 243 // Note: IsUndef is sort of redundant. We could have determine it by 244 // checking that at all Ops are undef. Alternatively, we could have 245 // generate a build_vector of undefs and rely on another combine to 246 // clean that up. For now, given we already gather this information 247 // in tryCombineConcatVectors, just save compile time and issue the 248 // right thing. 249 if (IsUndef) 250 Builder.buildUndef(NewDstReg); 251 else 252 Builder.buildBuildVector(NewDstReg, Ops); 253 MI.eraseFromParent(); 254 replaceRegWith(MRI, DstReg, NewDstReg); 255 } 256 257 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 258 SmallVector<Register, 4> Ops; 259 if (matchCombineShuffleVector(MI, Ops)) { 260 applyCombineShuffleVector(MI, Ops); 261 return true; 262 } 263 return false; 264 } 265 266 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 267 SmallVectorImpl<Register> &Ops) { 268 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 269 "Invalid instruction kind"); 270 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 271 Register Src1 = MI.getOperand(1).getReg(); 272 LLT SrcType = MRI.getType(Src1); 273 // As bizarre as it may look, shuffle vector can actually produce 274 // scalar! This is because at the IR level a <1 x ty> shuffle 275 // vector is perfectly valid. 276 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 277 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 278 279 // If the resulting vector is smaller than the size of the source 280 // vectors being concatenated, we won't be able to replace the 281 // shuffle vector into a concat_vectors. 282 // 283 // Note: We may still be able to produce a concat_vectors fed by 284 // extract_vector_elt and so on. It is less clear that would 285 // be better though, so don't bother for now. 286 // 287 // If the destination is a scalar, the size of the sources doesn't 288 // matter. we will lower the shuffle to a plain copy. This will 289 // work only if the source and destination have the same size. But 290 // that's covered by the next condition. 291 // 292 // TODO: If the size between the source and destination don't match 293 // we could still emit an extract vector element in that case. 294 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 295 return false; 296 297 // Check that the shuffle mask can be broken evenly between the 298 // different sources. 299 if (DstNumElts % SrcNumElts != 0) 300 return false; 301 302 // Mask length is a multiple of the source vector length. 303 // Check if the shuffle is some kind of concatenation of the input 304 // vectors. 305 unsigned NumConcat = DstNumElts / SrcNumElts; 306 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 307 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 308 for (unsigned i = 0; i != DstNumElts; ++i) { 309 int Idx = Mask[i]; 310 // Undef value. 311 if (Idx < 0) 312 continue; 313 // Ensure the indices in each SrcType sized piece are sequential and that 314 // the same source is used for the whole piece. 315 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 316 (ConcatSrcs[i / SrcNumElts] >= 0 && 317 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 318 return false; 319 // Remember which source this index came from. 320 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 321 } 322 323 // The shuffle is concatenating multiple vectors together. 324 // Collect the different operands for that. 325 Register UndefReg; 326 Register Src2 = MI.getOperand(2).getReg(); 327 for (auto Src : ConcatSrcs) { 328 if (Src < 0) { 329 if (!UndefReg) { 330 Builder.setInsertPt(*MI.getParent(), MI); 331 UndefReg = Builder.buildUndef(SrcType).getReg(0); 332 } 333 Ops.push_back(UndefReg); 334 } else if (Src == 0) 335 Ops.push_back(Src1); 336 else 337 Ops.push_back(Src2); 338 } 339 return true; 340 } 341 342 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 343 const ArrayRef<Register> Ops) { 344 Register DstReg = MI.getOperand(0).getReg(); 345 Builder.setInsertPt(*MI.getParent(), MI); 346 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 347 348 if (Ops.size() == 1) 349 Builder.buildCopy(NewDstReg, Ops[0]); 350 else 351 Builder.buildMerge(NewDstReg, Ops); 352 353 MI.eraseFromParent(); 354 replaceRegWith(MRI, DstReg, NewDstReg); 355 } 356 357 namespace { 358 359 /// Select a preference between two uses. CurrentUse is the current preference 360 /// while *ForCandidate is attributes of the candidate under consideration. 361 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 362 const LLT TyForCandidate, 363 unsigned OpcodeForCandidate, 364 MachineInstr *MIForCandidate) { 365 if (!CurrentUse.Ty.isValid()) { 366 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 367 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 368 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 369 return CurrentUse; 370 } 371 372 // We permit the extend to hoist through basic blocks but this is only 373 // sensible if the target has extending loads. If you end up lowering back 374 // into a load and extend during the legalizer then the end result is 375 // hoisting the extend up to the load. 376 377 // Prefer defined extensions to undefined extensions as these are more 378 // likely to reduce the number of instructions. 379 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 380 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 381 return CurrentUse; 382 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 383 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 384 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 385 386 // Prefer sign extensions to zero extensions as sign-extensions tend to be 387 // more expensive. 388 if (CurrentUse.Ty == TyForCandidate) { 389 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 390 OpcodeForCandidate == TargetOpcode::G_ZEXT) 391 return CurrentUse; 392 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 393 OpcodeForCandidate == TargetOpcode::G_SEXT) 394 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 395 } 396 397 // This is potentially target specific. We've chosen the largest type 398 // because G_TRUNC is usually free. One potential catch with this is that 399 // some targets have a reduced number of larger registers than smaller 400 // registers and this choice potentially increases the live-range for the 401 // larger value. 402 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 403 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 404 } 405 return CurrentUse; 406 } 407 408 /// Find a suitable place to insert some instructions and insert them. This 409 /// function accounts for special cases like inserting before a PHI node. 410 /// The current strategy for inserting before PHI's is to duplicate the 411 /// instructions for each predecessor. However, while that's ok for G_TRUNC 412 /// on most targets since it generally requires no code, other targets/cases may 413 /// want to try harder to find a dominating block. 414 static void InsertInsnsWithoutSideEffectsBeforeUse( 415 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 416 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 417 MachineOperand &UseMO)> 418 Inserter) { 419 MachineInstr &UseMI = *UseMO.getParent(); 420 421 MachineBasicBlock *InsertBB = UseMI.getParent(); 422 423 // If the use is a PHI then we want the predecessor block instead. 424 if (UseMI.isPHI()) { 425 MachineOperand *PredBB = std::next(&UseMO); 426 InsertBB = PredBB->getMBB(); 427 } 428 429 // If the block is the same block as the def then we want to insert just after 430 // the def instead of at the start of the block. 431 if (InsertBB == DefMI.getParent()) { 432 MachineBasicBlock::iterator InsertPt = &DefMI; 433 Inserter(InsertBB, std::next(InsertPt), UseMO); 434 return; 435 } 436 437 // Otherwise we want the start of the BB 438 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 439 } 440 } // end anonymous namespace 441 442 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 443 PreferredTuple Preferred; 444 if (matchCombineExtendingLoads(MI, Preferred)) { 445 applyCombineExtendingLoads(MI, Preferred); 446 return true; 447 } 448 return false; 449 } 450 451 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 452 PreferredTuple &Preferred) { 453 // We match the loads and follow the uses to the extend instead of matching 454 // the extends and following the def to the load. This is because the load 455 // must remain in the same position for correctness (unless we also add code 456 // to find a safe place to sink it) whereas the extend is freely movable. 457 // It also prevents us from duplicating the load for the volatile case or just 458 // for performance. 459 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 460 if (!LoadMI) 461 return false; 462 463 Register LoadReg = LoadMI->getDstReg(); 464 465 LLT LoadValueTy = MRI.getType(LoadReg); 466 if (!LoadValueTy.isScalar()) 467 return false; 468 469 // Most architectures are going to legalize <s8 loads into at least a 1 byte 470 // load, and the MMOs can only describe memory accesses in multiples of bytes. 471 // If we try to perform extload combining on those, we can end up with 472 // %a(s8) = extload %ptr (load 1 byte from %ptr) 473 // ... which is an illegal extload instruction. 474 if (LoadValueTy.getSizeInBits() < 8) 475 return false; 476 477 // For non power-of-2 types, they will very likely be legalized into multiple 478 // loads. Don't bother trying to match them into extending loads. 479 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 480 return false; 481 482 // Find the preferred type aside from the any-extends (unless it's the only 483 // one) and non-extending ops. We'll emit an extending load to that type and 484 // and emit a variant of (extend (trunc X)) for the others according to the 485 // relative type sizes. At the same time, pick an extend to use based on the 486 // extend involved in the chosen type. 487 unsigned PreferredOpcode = 488 isa<GLoad>(&MI) 489 ? TargetOpcode::G_ANYEXT 490 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 491 Preferred = {LLT(), PreferredOpcode, nullptr}; 492 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 493 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 494 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 495 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 496 const auto &MMO = LoadMI->getMMO(); 497 // For atomics, only form anyextending loads. 498 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 499 continue; 500 // Check for legality. 501 if (LI) { 502 LegalityQuery::MemDesc MMDesc(MMO); 503 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 504 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 505 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 506 .Action != LegalizeActions::Legal) 507 continue; 508 } 509 Preferred = ChoosePreferredUse(Preferred, 510 MRI.getType(UseMI.getOperand(0).getReg()), 511 UseMI.getOpcode(), &UseMI); 512 } 513 } 514 515 // There were no extends 516 if (!Preferred.MI) 517 return false; 518 // It should be impossible to chose an extend without selecting a different 519 // type since by definition the result of an extend is larger. 520 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 521 522 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 523 return true; 524 } 525 526 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 527 PreferredTuple &Preferred) { 528 // Rewrite the load to the chosen extending load. 529 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 530 531 // Inserter to insert a truncate back to the original type at a given point 532 // with some basic CSE to limit truncate duplication to one per BB. 533 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 534 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 535 MachineBasicBlock::iterator InsertBefore, 536 MachineOperand &UseMO) { 537 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 538 if (PreviouslyEmitted) { 539 Observer.changingInstr(*UseMO.getParent()); 540 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 541 Observer.changedInstr(*UseMO.getParent()); 542 return; 543 } 544 545 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 546 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 547 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 548 EmittedInsns[InsertIntoBB] = NewMI; 549 replaceRegOpWith(MRI, UseMO, NewDstReg); 550 }; 551 552 Observer.changingInstr(MI); 553 MI.setDesc( 554 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 555 ? TargetOpcode::G_SEXTLOAD 556 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 557 ? TargetOpcode::G_ZEXTLOAD 558 : TargetOpcode::G_LOAD)); 559 560 // Rewrite all the uses to fix up the types. 561 auto &LoadValue = MI.getOperand(0); 562 SmallVector<MachineOperand *, 4> Uses; 563 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 564 Uses.push_back(&UseMO); 565 566 for (auto *UseMO : Uses) { 567 MachineInstr *UseMI = UseMO->getParent(); 568 569 // If the extend is compatible with the preferred extend then we should fix 570 // up the type and extend so that it uses the preferred use. 571 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 572 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 573 Register UseDstReg = UseMI->getOperand(0).getReg(); 574 MachineOperand &UseSrcMO = UseMI->getOperand(1); 575 const LLT UseDstTy = MRI.getType(UseDstReg); 576 if (UseDstReg != ChosenDstReg) { 577 if (Preferred.Ty == UseDstTy) { 578 // If the use has the same type as the preferred use, then merge 579 // the vregs and erase the extend. For example: 580 // %1:_(s8) = G_LOAD ... 581 // %2:_(s32) = G_SEXT %1(s8) 582 // %3:_(s32) = G_ANYEXT %1(s8) 583 // ... = ... %3(s32) 584 // rewrites to: 585 // %2:_(s32) = G_SEXTLOAD ... 586 // ... = ... %2(s32) 587 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 588 Observer.erasingInstr(*UseMO->getParent()); 589 UseMO->getParent()->eraseFromParent(); 590 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 591 // If the preferred size is smaller, then keep the extend but extend 592 // from the result of the extending load. For example: 593 // %1:_(s8) = G_LOAD ... 594 // %2:_(s32) = G_SEXT %1(s8) 595 // %3:_(s64) = G_ANYEXT %1(s8) 596 // ... = ... %3(s64) 597 /// rewrites to: 598 // %2:_(s32) = G_SEXTLOAD ... 599 // %3:_(s64) = G_ANYEXT %2:_(s32) 600 // ... = ... %3(s64) 601 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 602 } else { 603 // If the preferred size is large, then insert a truncate. For 604 // example: 605 // %1:_(s8) = G_LOAD ... 606 // %2:_(s64) = G_SEXT %1(s8) 607 // %3:_(s32) = G_ZEXT %1(s8) 608 // ... = ... %3(s32) 609 /// rewrites to: 610 // %2:_(s64) = G_SEXTLOAD ... 611 // %4:_(s8) = G_TRUNC %2:_(s32) 612 // %3:_(s64) = G_ZEXT %2:_(s8) 613 // ... = ... %3(s64) 614 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 615 InsertTruncAt); 616 } 617 continue; 618 } 619 // The use is (one of) the uses of the preferred use we chose earlier. 620 // We're going to update the load to def this value later so just erase 621 // the old extend. 622 Observer.erasingInstr(*UseMO->getParent()); 623 UseMO->getParent()->eraseFromParent(); 624 continue; 625 } 626 627 // The use isn't an extend. Truncate back to the type we originally loaded. 628 // This is free on many targets. 629 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 630 } 631 632 MI.getOperand(0).setReg(ChosenDstReg); 633 Observer.changedInstr(MI); 634 } 635 636 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 637 const MachineInstr &UseMI) { 638 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 639 "shouldn't consider debug uses"); 640 assert(DefMI.getParent() == UseMI.getParent()); 641 if (&DefMI == &UseMI) 642 return false; 643 const MachineBasicBlock &MBB = *DefMI.getParent(); 644 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 645 return &MI == &DefMI || &MI == &UseMI; 646 }); 647 if (DefOrUse == MBB.end()) 648 llvm_unreachable("Block must contain both DefMI and UseMI!"); 649 return &*DefOrUse == &DefMI; 650 } 651 652 bool CombinerHelper::dominates(const MachineInstr &DefMI, 653 const MachineInstr &UseMI) { 654 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 655 "shouldn't consider debug uses"); 656 if (MDT) 657 return MDT->dominates(&DefMI, &UseMI); 658 else if (DefMI.getParent() != UseMI.getParent()) 659 return false; 660 661 return isPredecessor(DefMI, UseMI); 662 } 663 664 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 665 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 666 Register SrcReg = MI.getOperand(1).getReg(); 667 Register LoadUser = SrcReg; 668 669 if (MRI.getType(SrcReg).isVector()) 670 return false; 671 672 Register TruncSrc; 673 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 674 LoadUser = TruncSrc; 675 676 uint64_t SizeInBits = MI.getOperand(2).getImm(); 677 // If the source is a G_SEXTLOAD from the same bit width, then we don't 678 // need any extend at all, just a truncate. 679 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 680 // If truncating more than the original extended value, abort. 681 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 682 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 683 return false; 684 if (LoadSizeBits == SizeInBits) 685 return true; 686 } 687 return false; 688 } 689 690 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 691 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 692 Builder.setInstrAndDebugLoc(MI); 693 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 694 MI.eraseFromParent(); 695 } 696 697 bool CombinerHelper::matchSextInRegOfLoad( 698 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 699 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 700 701 // Only supports scalars for now. 702 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 703 return false; 704 705 Register SrcReg = MI.getOperand(1).getReg(); 706 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 707 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || 708 !LoadDef->isSimple()) 709 return false; 710 711 // If the sign extend extends from a narrower width than the load's width, 712 // then we can narrow the load width when we combine to a G_SEXTLOAD. 713 // Avoid widening the load at all. 714 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), 715 LoadDef->getMemSizeInBits()); 716 717 // Don't generate G_SEXTLOADs with a < 1 byte width. 718 if (NewSizeBits < 8) 719 return false; 720 // Don't bother creating a non-power-2 sextload, it will likely be broken up 721 // anyway for most targets. 722 if (!isPowerOf2_32(NewSizeBits)) 723 return false; 724 725 const MachineMemOperand &MMO = LoadDef->getMMO(); 726 LegalityQuery::MemDesc MMDesc(MMO); 727 MMDesc.MemoryTy = LLT::scalar(NewSizeBits); 728 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, 729 {MRI.getType(LoadDef->getDstReg()), 730 MRI.getType(LoadDef->getPointerReg())}, 731 {MMDesc}})) 732 return false; 733 734 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 735 return true; 736 } 737 738 void CombinerHelper::applySextInRegOfLoad( 739 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 740 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 741 Register LoadReg; 742 unsigned ScalarSizeBits; 743 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 744 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 745 746 // If we have the following: 747 // %ld = G_LOAD %ptr, (load 2) 748 // %ext = G_SEXT_INREG %ld, 8 749 // ==> 750 // %ld = G_SEXTLOAD %ptr (load 1) 751 752 auto &MMO = LoadDef->getMMO(); 753 Builder.setInstrAndDebugLoc(*LoadDef); 754 auto &MF = Builder.getMF(); 755 auto PtrInfo = MMO.getPointerInfo(); 756 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 757 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 758 LoadDef->getPointerReg(), *NewMMO); 759 MI.eraseFromParent(); 760 } 761 762 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 763 Register &Base, Register &Offset) { 764 auto &MF = *MI.getParent()->getParent(); 765 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 766 767 #ifndef NDEBUG 768 unsigned Opcode = MI.getOpcode(); 769 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 770 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 771 #endif 772 773 Base = MI.getOperand(1).getReg(); 774 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 775 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 776 return false; 777 778 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 779 // FIXME: The following use traversal needs a bail out for patholigical cases. 780 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 781 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 782 continue; 783 784 Offset = Use.getOperand(2).getReg(); 785 if (!ForceLegalIndexing && 786 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 787 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 788 << Use); 789 continue; 790 } 791 792 // Make sure the offset calculation is before the potentially indexed op. 793 // FIXME: we really care about dependency here. The offset calculation might 794 // be movable. 795 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 796 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 797 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 798 << Use); 799 continue; 800 } 801 802 // FIXME: check whether all uses of Base are load/store with foldable 803 // addressing modes. If so, using the normal addr-modes is better than 804 // forming an indexed one. 805 806 bool MemOpDominatesAddrUses = true; 807 for (auto &PtrAddUse : 808 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 809 if (!dominates(MI, PtrAddUse)) { 810 MemOpDominatesAddrUses = false; 811 break; 812 } 813 } 814 815 if (!MemOpDominatesAddrUses) { 816 LLVM_DEBUG( 817 dbgs() << " Ignoring candidate as memop does not dominate uses: " 818 << Use); 819 continue; 820 } 821 822 LLVM_DEBUG(dbgs() << " Found match: " << Use); 823 Addr = Use.getOperand(0).getReg(); 824 return true; 825 } 826 827 return false; 828 } 829 830 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 831 Register &Base, Register &Offset) { 832 auto &MF = *MI.getParent()->getParent(); 833 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 834 835 #ifndef NDEBUG 836 unsigned Opcode = MI.getOpcode(); 837 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 838 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 839 #endif 840 841 Addr = MI.getOperand(1).getReg(); 842 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 843 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 844 return false; 845 846 Base = AddrDef->getOperand(1).getReg(); 847 Offset = AddrDef->getOperand(2).getReg(); 848 849 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 850 851 if (!ForceLegalIndexing && 852 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 853 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 854 return false; 855 } 856 857 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 858 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 859 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 860 return false; 861 } 862 863 if (MI.getOpcode() == TargetOpcode::G_STORE) { 864 // Would require a copy. 865 if (Base == MI.getOperand(0).getReg()) { 866 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 867 return false; 868 } 869 870 // We're expecting one use of Addr in MI, but it could also be the 871 // value stored, which isn't actually dominated by the instruction. 872 if (MI.getOperand(0).getReg() == Addr) { 873 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 874 return false; 875 } 876 } 877 878 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 879 // That might allow us to end base's liveness here by adjusting the constant. 880 881 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 882 if (!dominates(MI, UseMI)) { 883 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 884 return false; 885 } 886 } 887 888 return true; 889 } 890 891 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 892 IndexedLoadStoreMatchInfo MatchInfo; 893 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 894 applyCombineIndexedLoadStore(MI, MatchInfo); 895 return true; 896 } 897 return false; 898 } 899 900 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 901 unsigned Opcode = MI.getOpcode(); 902 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 903 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 904 return false; 905 906 // For now, no targets actually support these opcodes so don't waste time 907 // running these unless we're forced to for testing. 908 if (!ForceLegalIndexing) 909 return false; 910 911 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 912 MatchInfo.Offset); 913 if (!MatchInfo.IsPre && 914 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 915 MatchInfo.Offset)) 916 return false; 917 918 return true; 919 } 920 921 void CombinerHelper::applyCombineIndexedLoadStore( 922 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 923 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 924 MachineIRBuilder MIRBuilder(MI); 925 unsigned Opcode = MI.getOpcode(); 926 bool IsStore = Opcode == TargetOpcode::G_STORE; 927 unsigned NewOpcode; 928 switch (Opcode) { 929 case TargetOpcode::G_LOAD: 930 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 931 break; 932 case TargetOpcode::G_SEXTLOAD: 933 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 934 break; 935 case TargetOpcode::G_ZEXTLOAD: 936 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 937 break; 938 case TargetOpcode::G_STORE: 939 NewOpcode = TargetOpcode::G_INDEXED_STORE; 940 break; 941 default: 942 llvm_unreachable("Unknown load/store opcode"); 943 } 944 945 auto MIB = MIRBuilder.buildInstr(NewOpcode); 946 if (IsStore) { 947 MIB.addDef(MatchInfo.Addr); 948 MIB.addUse(MI.getOperand(0).getReg()); 949 } else { 950 MIB.addDef(MI.getOperand(0).getReg()); 951 MIB.addDef(MatchInfo.Addr); 952 } 953 954 MIB.addUse(MatchInfo.Base); 955 MIB.addUse(MatchInfo.Offset); 956 MIB.addImm(MatchInfo.IsPre); 957 MI.eraseFromParent(); 958 AddrDef.eraseFromParent(); 959 960 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 961 } 962 963 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 964 MachineInstr *&OtherMI) { 965 unsigned Opcode = MI.getOpcode(); 966 bool IsDiv, IsSigned; 967 968 switch (Opcode) { 969 default: 970 llvm_unreachable("Unexpected opcode!"); 971 case TargetOpcode::G_SDIV: 972 case TargetOpcode::G_UDIV: { 973 IsDiv = true; 974 IsSigned = Opcode == TargetOpcode::G_SDIV; 975 break; 976 } 977 case TargetOpcode::G_SREM: 978 case TargetOpcode::G_UREM: { 979 IsDiv = false; 980 IsSigned = Opcode == TargetOpcode::G_SREM; 981 break; 982 } 983 } 984 985 Register Src1 = MI.getOperand(1).getReg(); 986 unsigned DivOpcode, RemOpcode, DivremOpcode; 987 if (IsSigned) { 988 DivOpcode = TargetOpcode::G_SDIV; 989 RemOpcode = TargetOpcode::G_SREM; 990 DivremOpcode = TargetOpcode::G_SDIVREM; 991 } else { 992 DivOpcode = TargetOpcode::G_UDIV; 993 RemOpcode = TargetOpcode::G_UREM; 994 DivremOpcode = TargetOpcode::G_UDIVREM; 995 } 996 997 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 998 return false; 999 1000 // Combine: 1001 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1002 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1003 // into: 1004 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1005 1006 // Combine: 1007 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1008 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1009 // into: 1010 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1011 1012 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1013 if (MI.getParent() == UseMI.getParent() && 1014 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1015 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1016 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1017 OtherMI = &UseMI; 1018 return true; 1019 } 1020 } 1021 1022 return false; 1023 } 1024 1025 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1026 MachineInstr *&OtherMI) { 1027 unsigned Opcode = MI.getOpcode(); 1028 assert(OtherMI && "OtherMI shouldn't be empty."); 1029 1030 Register DestDivReg, DestRemReg; 1031 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1032 DestDivReg = MI.getOperand(0).getReg(); 1033 DestRemReg = OtherMI->getOperand(0).getReg(); 1034 } else { 1035 DestDivReg = OtherMI->getOperand(0).getReg(); 1036 DestRemReg = MI.getOperand(0).getReg(); 1037 } 1038 1039 bool IsSigned = 1040 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1041 1042 // Check which instruction is first in the block so we don't break def-use 1043 // deps by "moving" the instruction incorrectly. 1044 if (dominates(MI, *OtherMI)) 1045 Builder.setInstrAndDebugLoc(MI); 1046 else 1047 Builder.setInstrAndDebugLoc(*OtherMI); 1048 1049 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1050 : TargetOpcode::G_UDIVREM, 1051 {DestDivReg, DestRemReg}, 1052 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1053 MI.eraseFromParent(); 1054 OtherMI->eraseFromParent(); 1055 } 1056 1057 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1058 MachineInstr *&BrCond) { 1059 assert(MI.getOpcode() == TargetOpcode::G_BR); 1060 1061 // Try to match the following: 1062 // bb1: 1063 // G_BRCOND %c1, %bb2 1064 // G_BR %bb3 1065 // bb2: 1066 // ... 1067 // bb3: 1068 1069 // The above pattern does not have a fall through to the successor bb2, always 1070 // resulting in a branch no matter which path is taken. Here we try to find 1071 // and replace that pattern with conditional branch to bb3 and otherwise 1072 // fallthrough to bb2. This is generally better for branch predictors. 1073 1074 MachineBasicBlock *MBB = MI.getParent(); 1075 MachineBasicBlock::iterator BrIt(MI); 1076 if (BrIt == MBB->begin()) 1077 return false; 1078 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1079 1080 BrCond = &*std::prev(BrIt); 1081 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1082 return false; 1083 1084 // Check that the next block is the conditional branch target. Also make sure 1085 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1086 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1087 return BrCondTarget != MI.getOperand(0).getMBB() && 1088 MBB->isLayoutSuccessor(BrCondTarget); 1089 } 1090 1091 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1092 MachineInstr *&BrCond) { 1093 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1094 Builder.setInstrAndDebugLoc(*BrCond); 1095 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1096 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1097 // this to i1 only since we might not know for sure what kind of 1098 // compare generated the condition value. 1099 auto True = Builder.buildConstant( 1100 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1101 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1102 1103 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1104 Observer.changingInstr(MI); 1105 MI.getOperand(0).setMBB(FallthroughBB); 1106 Observer.changedInstr(MI); 1107 1108 // Change the conditional branch to use the inverted condition and 1109 // new target block. 1110 Observer.changingInstr(*BrCond); 1111 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1112 BrCond->getOperand(1).setMBB(BrTarget); 1113 Observer.changedInstr(*BrCond); 1114 } 1115 1116 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1117 if (Ty.isVector()) 1118 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1119 Ty.getNumElements()); 1120 return IntegerType::get(C, Ty.getSizeInBits()); 1121 } 1122 1123 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1124 MachineIRBuilder HelperBuilder(MI); 1125 GISelObserverWrapper DummyObserver; 1126 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1127 return Helper.lowerMemcpyInline(MI) == 1128 LegalizerHelper::LegalizeResult::Legalized; 1129 } 1130 1131 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1132 MachineIRBuilder HelperBuilder(MI); 1133 GISelObserverWrapper DummyObserver; 1134 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1135 return Helper.lowerMemCpyFamily(MI, MaxLen) == 1136 LegalizerHelper::LegalizeResult::Legalized; 1137 } 1138 1139 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1140 const Register Op, 1141 const MachineRegisterInfo &MRI) { 1142 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1143 if (!MaybeCst) 1144 return None; 1145 1146 APFloat V = MaybeCst->getValueAPF(); 1147 switch (Opcode) { 1148 default: 1149 llvm_unreachable("Unexpected opcode!"); 1150 case TargetOpcode::G_FNEG: { 1151 V.changeSign(); 1152 return V; 1153 } 1154 case TargetOpcode::G_FABS: { 1155 V.clearSign(); 1156 return V; 1157 } 1158 case TargetOpcode::G_FPTRUNC: 1159 break; 1160 case TargetOpcode::G_FSQRT: { 1161 bool Unused; 1162 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1163 V = APFloat(sqrt(V.convertToDouble())); 1164 break; 1165 } 1166 case TargetOpcode::G_FLOG2: { 1167 bool Unused; 1168 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1169 V = APFloat(log2(V.convertToDouble())); 1170 break; 1171 } 1172 } 1173 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1174 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1175 // and `G_FLOG2` reach here. 1176 bool Unused; 1177 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1178 return V; 1179 } 1180 1181 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1182 Optional<APFloat> &Cst) { 1183 Register DstReg = MI.getOperand(0).getReg(); 1184 Register SrcReg = MI.getOperand(1).getReg(); 1185 LLT DstTy = MRI.getType(DstReg); 1186 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1187 return Cst.hasValue(); 1188 } 1189 1190 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1191 Optional<APFloat> &Cst) { 1192 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1193 Builder.setInstrAndDebugLoc(MI); 1194 MachineFunction &MF = Builder.getMF(); 1195 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1196 Register DstReg = MI.getOperand(0).getReg(); 1197 Builder.buildFConstant(DstReg, *FPVal); 1198 MI.eraseFromParent(); 1199 } 1200 1201 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1202 PtrAddChain &MatchInfo) { 1203 // We're trying to match the following pattern: 1204 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1205 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1206 // --> 1207 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1208 1209 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1210 return false; 1211 1212 Register Add2 = MI.getOperand(1).getReg(); 1213 Register Imm1 = MI.getOperand(2).getReg(); 1214 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1215 if (!MaybeImmVal) 1216 return false; 1217 1218 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1219 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1220 return false; 1221 1222 Register Base = Add2Def->getOperand(1).getReg(); 1223 Register Imm2 = Add2Def->getOperand(2).getReg(); 1224 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1225 if (!MaybeImm2Val) 1226 return false; 1227 1228 // Check if the new combined immediate forms an illegal addressing mode. 1229 // Do not combine if it was legal before but would get illegal. 1230 // To do so, we need to find a load/store user of the pointer to get 1231 // the access type. 1232 Type *AccessTy = nullptr; 1233 auto &MF = *MI.getMF(); 1234 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1235 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1236 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1237 MF.getFunction().getContext()); 1238 break; 1239 } 1240 } 1241 TargetLoweringBase::AddrMode AMNew; 1242 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1243 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1244 if (AccessTy) { 1245 AMNew.HasBaseReg = true; 1246 TargetLoweringBase::AddrMode AMOld; 1247 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); 1248 AMOld.HasBaseReg = true; 1249 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1250 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1251 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1252 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1253 return false; 1254 } 1255 1256 // Pass the combined immediate to the apply function. 1257 MatchInfo.Imm = AMNew.BaseOffs; 1258 MatchInfo.Base = Base; 1259 MatchInfo.Bank = getRegBank(Imm2); 1260 return true; 1261 } 1262 1263 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1264 PtrAddChain &MatchInfo) { 1265 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1266 MachineIRBuilder MIB(MI); 1267 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1268 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1269 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1270 Observer.changingInstr(MI); 1271 MI.getOperand(1).setReg(MatchInfo.Base); 1272 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1273 Observer.changedInstr(MI); 1274 } 1275 1276 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1277 RegisterImmPair &MatchInfo) { 1278 // We're trying to match the following pattern with any of 1279 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1280 // %t1 = SHIFT %base, G_CONSTANT imm1 1281 // %root = SHIFT %t1, G_CONSTANT imm2 1282 // --> 1283 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1284 1285 unsigned Opcode = MI.getOpcode(); 1286 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1287 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1288 Opcode == TargetOpcode::G_USHLSAT) && 1289 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1290 1291 Register Shl2 = MI.getOperand(1).getReg(); 1292 Register Imm1 = MI.getOperand(2).getReg(); 1293 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1294 if (!MaybeImmVal) 1295 return false; 1296 1297 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1298 if (Shl2Def->getOpcode() != Opcode) 1299 return false; 1300 1301 Register Base = Shl2Def->getOperand(1).getReg(); 1302 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1303 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1304 if (!MaybeImm2Val) 1305 return false; 1306 1307 // Pass the combined immediate to the apply function. 1308 MatchInfo.Imm = 1309 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1310 MatchInfo.Reg = Base; 1311 1312 // There is no simple replacement for a saturating unsigned left shift that 1313 // exceeds the scalar size. 1314 if (Opcode == TargetOpcode::G_USHLSAT && 1315 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1316 return false; 1317 1318 return true; 1319 } 1320 1321 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1322 RegisterImmPair &MatchInfo) { 1323 unsigned Opcode = MI.getOpcode(); 1324 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1325 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1326 Opcode == TargetOpcode::G_USHLSAT) && 1327 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1328 1329 Builder.setInstrAndDebugLoc(MI); 1330 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1331 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1332 auto Imm = MatchInfo.Imm; 1333 1334 if (Imm >= ScalarSizeInBits) { 1335 // Any logical shift that exceeds scalar size will produce zero. 1336 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1337 Builder.buildConstant(MI.getOperand(0), 0); 1338 MI.eraseFromParent(); 1339 return; 1340 } 1341 // Arithmetic shift and saturating signed left shift have no effect beyond 1342 // scalar size. 1343 Imm = ScalarSizeInBits - 1; 1344 } 1345 1346 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1347 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1348 Observer.changingInstr(MI); 1349 MI.getOperand(1).setReg(MatchInfo.Reg); 1350 MI.getOperand(2).setReg(NewImm); 1351 Observer.changedInstr(MI); 1352 } 1353 1354 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1355 ShiftOfShiftedLogic &MatchInfo) { 1356 // We're trying to match the following pattern with any of 1357 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1358 // with any of G_AND/G_OR/G_XOR logic instructions. 1359 // %t1 = SHIFT %X, G_CONSTANT C0 1360 // %t2 = LOGIC %t1, %Y 1361 // %root = SHIFT %t2, G_CONSTANT C1 1362 // --> 1363 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1364 // %t4 = SHIFT %Y, G_CONSTANT C1 1365 // %root = LOGIC %t3, %t4 1366 unsigned ShiftOpcode = MI.getOpcode(); 1367 assert((ShiftOpcode == TargetOpcode::G_SHL || 1368 ShiftOpcode == TargetOpcode::G_ASHR || 1369 ShiftOpcode == TargetOpcode::G_LSHR || 1370 ShiftOpcode == TargetOpcode::G_USHLSAT || 1371 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1372 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1373 1374 // Match a one-use bitwise logic op. 1375 Register LogicDest = MI.getOperand(1).getReg(); 1376 if (!MRI.hasOneNonDBGUse(LogicDest)) 1377 return false; 1378 1379 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1380 unsigned LogicOpcode = LogicMI->getOpcode(); 1381 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1382 LogicOpcode != TargetOpcode::G_XOR) 1383 return false; 1384 1385 // Find a matching one-use shift by constant. 1386 const Register C1 = MI.getOperand(2).getReg(); 1387 auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); 1388 if (!MaybeImmVal) 1389 return false; 1390 1391 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1392 1393 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1394 // Shift should match previous one and should be a one-use. 1395 if (MI->getOpcode() != ShiftOpcode || 1396 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1397 return false; 1398 1399 // Must be a constant. 1400 auto MaybeImmVal = 1401 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1402 if (!MaybeImmVal) 1403 return false; 1404 1405 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1406 return true; 1407 }; 1408 1409 // Logic ops are commutative, so check each operand for a match. 1410 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1411 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1412 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1413 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1414 uint64_t C0Val; 1415 1416 if (matchFirstShift(LogicMIOp1, C0Val)) { 1417 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1418 MatchInfo.Shift2 = LogicMIOp1; 1419 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1420 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1421 MatchInfo.Shift2 = LogicMIOp2; 1422 } else 1423 return false; 1424 1425 MatchInfo.ValSum = C0Val + C1Val; 1426 1427 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1428 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1429 return false; 1430 1431 MatchInfo.Logic = LogicMI; 1432 return true; 1433 } 1434 1435 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1436 ShiftOfShiftedLogic &MatchInfo) { 1437 unsigned Opcode = MI.getOpcode(); 1438 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1439 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1440 Opcode == TargetOpcode::G_SSHLSAT) && 1441 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1442 1443 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1444 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1445 Builder.setInstrAndDebugLoc(MI); 1446 1447 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1448 1449 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1450 Register Shift1 = 1451 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1452 1453 Register Shift2Const = MI.getOperand(2).getReg(); 1454 Register Shift2 = Builder 1455 .buildInstr(Opcode, {DestType}, 1456 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1457 .getReg(0); 1458 1459 Register Dest = MI.getOperand(0).getReg(); 1460 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1461 1462 // These were one use so it's safe to remove them. 1463 MatchInfo.Shift2->eraseFromParentAndMarkDBGValuesForRemoval(); 1464 MatchInfo.Logic->eraseFromParentAndMarkDBGValuesForRemoval(); 1465 1466 MI.eraseFromParent(); 1467 } 1468 1469 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1470 unsigned &ShiftVal) { 1471 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1472 auto MaybeImmVal = 1473 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1474 if (!MaybeImmVal) 1475 return false; 1476 1477 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1478 return (static_cast<int32_t>(ShiftVal) != -1); 1479 } 1480 1481 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1482 unsigned &ShiftVal) { 1483 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1484 MachineIRBuilder MIB(MI); 1485 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1486 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1487 Observer.changingInstr(MI); 1488 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1489 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1490 Observer.changedInstr(MI); 1491 } 1492 1493 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1494 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1495 RegisterImmPair &MatchData) { 1496 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1497 1498 Register LHS = MI.getOperand(1).getReg(); 1499 1500 Register ExtSrc; 1501 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1502 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1503 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1504 return false; 1505 1506 // TODO: Should handle vector splat. 1507 Register RHS = MI.getOperand(2).getReg(); 1508 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 1509 if (!MaybeShiftAmtVal) 1510 return false; 1511 1512 if (LI) { 1513 LLT SrcTy = MRI.getType(ExtSrc); 1514 1515 // We only really care about the legality with the shifted value. We can 1516 // pick any type the constant shift amount, so ask the target what to 1517 // use. Otherwise we would have to guess and hope it is reported as legal. 1518 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1519 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1520 return false; 1521 } 1522 1523 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1524 MatchData.Reg = ExtSrc; 1525 MatchData.Imm = ShiftAmt; 1526 1527 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1528 return MinLeadingZeros >= ShiftAmt; 1529 } 1530 1531 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1532 const RegisterImmPair &MatchData) { 1533 Register ExtSrcReg = MatchData.Reg; 1534 int64_t ShiftAmtVal = MatchData.Imm; 1535 1536 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1537 Builder.setInstrAndDebugLoc(MI); 1538 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1539 auto NarrowShift = 1540 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1541 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1542 MI.eraseFromParent(); 1543 } 1544 1545 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 1546 Register &MatchInfo) { 1547 GMerge &Merge = cast<GMerge>(MI); 1548 SmallVector<Register, 16> MergedValues; 1549 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 1550 MergedValues.emplace_back(Merge.getSourceReg(I)); 1551 1552 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 1553 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 1554 return false; 1555 1556 for (unsigned I = 0; I < MergedValues.size(); ++I) 1557 if (MergedValues[I] != Unmerge->getReg(I)) 1558 return false; 1559 1560 MatchInfo = Unmerge->getSourceReg(); 1561 return true; 1562 } 1563 1564 static Register peekThroughBitcast(Register Reg, 1565 const MachineRegisterInfo &MRI) { 1566 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1567 ; 1568 1569 return Reg; 1570 } 1571 1572 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1573 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1574 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1575 "Expected an unmerge"); 1576 auto &Unmerge = cast<GUnmerge>(MI); 1577 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 1578 1579 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI); 1580 if (!SrcInstr) 1581 return false; 1582 1583 // Check the source type of the merge. 1584 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 1585 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 1586 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1587 if (SrcMergeTy != Dst0Ty && !SameSize) 1588 return false; 1589 // They are the same now (modulo a bitcast). 1590 // We can collect all the src registers. 1591 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 1592 Operands.push_back(SrcInstr->getSourceReg(Idx)); 1593 return true; 1594 } 1595 1596 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1597 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1598 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1599 "Expected an unmerge"); 1600 assert((MI.getNumOperands() - 1 == Operands.size()) && 1601 "Not enough operands to replace all defs"); 1602 unsigned NumElems = MI.getNumOperands() - 1; 1603 1604 LLT SrcTy = MRI.getType(Operands[0]); 1605 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1606 bool CanReuseInputDirectly = DstTy == SrcTy; 1607 Builder.setInstrAndDebugLoc(MI); 1608 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1609 Register DstReg = MI.getOperand(Idx).getReg(); 1610 Register SrcReg = Operands[Idx]; 1611 if (CanReuseInputDirectly) 1612 replaceRegWith(MRI, DstReg, SrcReg); 1613 else 1614 Builder.buildCast(DstReg, SrcReg); 1615 } 1616 MI.eraseFromParent(); 1617 } 1618 1619 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1620 SmallVectorImpl<APInt> &Csts) { 1621 unsigned SrcIdx = MI.getNumOperands() - 1; 1622 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1623 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1624 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1625 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1626 return false; 1627 // Break down the big constant in smaller ones. 1628 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1629 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1630 ? CstVal.getCImm()->getValue() 1631 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1632 1633 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1634 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1635 // Unmerge a constant. 1636 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1637 Csts.emplace_back(Val.trunc(ShiftAmt)); 1638 Val = Val.lshr(ShiftAmt); 1639 } 1640 1641 return true; 1642 } 1643 1644 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1645 SmallVectorImpl<APInt> &Csts) { 1646 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1647 "Expected an unmerge"); 1648 assert((MI.getNumOperands() - 1 == Csts.size()) && 1649 "Not enough operands to replace all defs"); 1650 unsigned NumElems = MI.getNumOperands() - 1; 1651 Builder.setInstrAndDebugLoc(MI); 1652 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1653 Register DstReg = MI.getOperand(Idx).getReg(); 1654 Builder.buildConstant(DstReg, Csts[Idx]); 1655 } 1656 1657 MI.eraseFromParent(); 1658 } 1659 1660 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1661 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1662 "Expected an unmerge"); 1663 // Check that all the lanes are dead except the first one. 1664 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1665 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1666 return false; 1667 } 1668 return true; 1669 } 1670 1671 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1672 Builder.setInstrAndDebugLoc(MI); 1673 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1674 // Truncating a vector is going to truncate every single lane, 1675 // whereas we want the full lowbits. 1676 // Do the operation on a scalar instead. 1677 LLT SrcTy = MRI.getType(SrcReg); 1678 if (SrcTy.isVector()) 1679 SrcReg = 1680 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1681 1682 Register Dst0Reg = MI.getOperand(0).getReg(); 1683 LLT Dst0Ty = MRI.getType(Dst0Reg); 1684 if (Dst0Ty.isVector()) { 1685 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 1686 Builder.buildCast(Dst0Reg, MIB); 1687 } else 1688 Builder.buildTrunc(Dst0Reg, SrcReg); 1689 MI.eraseFromParent(); 1690 } 1691 1692 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 1693 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1694 "Expected an unmerge"); 1695 Register Dst0Reg = MI.getOperand(0).getReg(); 1696 LLT Dst0Ty = MRI.getType(Dst0Reg); 1697 // G_ZEXT on vector applies to each lane, so it will 1698 // affect all destinations. Therefore we won't be able 1699 // to simplify the unmerge to just the first definition. 1700 if (Dst0Ty.isVector()) 1701 return false; 1702 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1703 LLT SrcTy = MRI.getType(SrcReg); 1704 if (SrcTy.isVector()) 1705 return false; 1706 1707 Register ZExtSrcReg; 1708 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 1709 return false; 1710 1711 // Finally we can replace the first definition with 1712 // a zext of the source if the definition is big enough to hold 1713 // all of ZExtSrc bits. 1714 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1715 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 1716 } 1717 1718 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 1719 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1720 "Expected an unmerge"); 1721 1722 Register Dst0Reg = MI.getOperand(0).getReg(); 1723 1724 MachineInstr *ZExtInstr = 1725 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 1726 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 1727 "Expecting a G_ZEXT"); 1728 1729 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 1730 LLT Dst0Ty = MRI.getType(Dst0Reg); 1731 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1732 1733 Builder.setInstrAndDebugLoc(MI); 1734 1735 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 1736 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 1737 } else { 1738 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 1739 "ZExt src doesn't fit in destination"); 1740 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 1741 } 1742 1743 Register ZeroReg; 1744 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1745 if (!ZeroReg) 1746 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 1747 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 1748 } 1749 MI.eraseFromParent(); 1750 } 1751 1752 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1753 unsigned TargetShiftSize, 1754 unsigned &ShiftVal) { 1755 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1756 MI.getOpcode() == TargetOpcode::G_LSHR || 1757 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1758 1759 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1760 if (Ty.isVector()) // TODO: 1761 return false; 1762 1763 // Don't narrow further than the requested size. 1764 unsigned Size = Ty.getSizeInBits(); 1765 if (Size <= TargetShiftSize) 1766 return false; 1767 1768 auto MaybeImmVal = 1769 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1770 if (!MaybeImmVal) 1771 return false; 1772 1773 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1774 return ShiftVal >= Size / 2 && ShiftVal < Size; 1775 } 1776 1777 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1778 const unsigned &ShiftVal) { 1779 Register DstReg = MI.getOperand(0).getReg(); 1780 Register SrcReg = MI.getOperand(1).getReg(); 1781 LLT Ty = MRI.getType(SrcReg); 1782 unsigned Size = Ty.getSizeInBits(); 1783 unsigned HalfSize = Size / 2; 1784 assert(ShiftVal >= HalfSize); 1785 1786 LLT HalfTy = LLT::scalar(HalfSize); 1787 1788 Builder.setInstr(MI); 1789 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1790 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1791 1792 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1793 Register Narrowed = Unmerge.getReg(1); 1794 1795 // dst = G_LSHR s64:x, C for C >= 32 1796 // => 1797 // lo, hi = G_UNMERGE_VALUES x 1798 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1799 1800 if (NarrowShiftAmt != 0) { 1801 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1802 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1803 } 1804 1805 auto Zero = Builder.buildConstant(HalfTy, 0); 1806 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1807 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1808 Register Narrowed = Unmerge.getReg(0); 1809 // dst = G_SHL s64:x, C for C >= 32 1810 // => 1811 // lo, hi = G_UNMERGE_VALUES x 1812 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1813 if (NarrowShiftAmt != 0) { 1814 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1815 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1816 } 1817 1818 auto Zero = Builder.buildConstant(HalfTy, 0); 1819 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1820 } else { 1821 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1822 auto Hi = Builder.buildAShr( 1823 HalfTy, Unmerge.getReg(1), 1824 Builder.buildConstant(HalfTy, HalfSize - 1)); 1825 1826 if (ShiftVal == HalfSize) { 1827 // (G_ASHR i64:x, 32) -> 1828 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1829 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1830 } else if (ShiftVal == Size - 1) { 1831 // Don't need a second shift. 1832 // (G_ASHR i64:x, 63) -> 1833 // %narrowed = (G_ASHR hi_32(x), 31) 1834 // G_MERGE_VALUES %narrowed, %narrowed 1835 Builder.buildMerge(DstReg, { Hi, Hi }); 1836 } else { 1837 auto Lo = Builder.buildAShr( 1838 HalfTy, Unmerge.getReg(1), 1839 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1840 1841 // (G_ASHR i64:x, C) ->, for C >= 32 1842 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1843 Builder.buildMerge(DstReg, { Lo, Hi }); 1844 } 1845 } 1846 1847 MI.eraseFromParent(); 1848 } 1849 1850 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1851 unsigned TargetShiftAmount) { 1852 unsigned ShiftAmt; 1853 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1854 applyCombineShiftToUnmerge(MI, ShiftAmt); 1855 return true; 1856 } 1857 1858 return false; 1859 } 1860 1861 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1862 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1863 Register DstReg = MI.getOperand(0).getReg(); 1864 LLT DstTy = MRI.getType(DstReg); 1865 Register SrcReg = MI.getOperand(1).getReg(); 1866 return mi_match(SrcReg, MRI, 1867 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 1868 } 1869 1870 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1871 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1872 Register DstReg = MI.getOperand(0).getReg(); 1873 Builder.setInstr(MI); 1874 Builder.buildCopy(DstReg, Reg); 1875 MI.eraseFromParent(); 1876 } 1877 1878 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1879 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1880 Register SrcReg = MI.getOperand(1).getReg(); 1881 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 1882 } 1883 1884 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1885 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1886 Register DstReg = MI.getOperand(0).getReg(); 1887 Builder.setInstr(MI); 1888 Builder.buildZExtOrTrunc(DstReg, Reg); 1889 MI.eraseFromParent(); 1890 } 1891 1892 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 1893 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1894 assert(MI.getOpcode() == TargetOpcode::G_ADD); 1895 Register LHS = MI.getOperand(1).getReg(); 1896 Register RHS = MI.getOperand(2).getReg(); 1897 LLT IntTy = MRI.getType(LHS); 1898 1899 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 1900 // instruction. 1901 PtrReg.second = false; 1902 for (Register SrcReg : {LHS, RHS}) { 1903 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 1904 // Don't handle cases where the integer is implicitly converted to the 1905 // pointer width. 1906 LLT PtrTy = MRI.getType(PtrReg.first); 1907 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 1908 return true; 1909 } 1910 1911 PtrReg.second = true; 1912 } 1913 1914 return false; 1915 } 1916 1917 void CombinerHelper::applyCombineAddP2IToPtrAdd( 1918 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1919 Register Dst = MI.getOperand(0).getReg(); 1920 Register LHS = MI.getOperand(1).getReg(); 1921 Register RHS = MI.getOperand(2).getReg(); 1922 1923 const bool DoCommute = PtrReg.second; 1924 if (DoCommute) 1925 std::swap(LHS, RHS); 1926 LHS = PtrReg.first; 1927 1928 LLT PtrTy = MRI.getType(LHS); 1929 1930 Builder.setInstrAndDebugLoc(MI); 1931 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 1932 Builder.buildPtrToInt(Dst, PtrAdd); 1933 MI.eraseFromParent(); 1934 } 1935 1936 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 1937 int64_t &NewCst) { 1938 auto &PtrAdd = cast<GPtrAdd>(MI); 1939 Register LHS = PtrAdd.getBaseReg(); 1940 Register RHS = PtrAdd.getOffsetReg(); 1941 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 1942 1943 if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { 1944 int64_t Cst; 1945 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 1946 NewCst = Cst + *RHSCst; 1947 return true; 1948 } 1949 } 1950 1951 return false; 1952 } 1953 1954 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 1955 int64_t &NewCst) { 1956 auto &PtrAdd = cast<GPtrAdd>(MI); 1957 Register Dst = PtrAdd.getReg(0); 1958 1959 Builder.setInstrAndDebugLoc(MI); 1960 Builder.buildConstant(Dst, NewCst); 1961 PtrAdd.eraseFromParent(); 1962 } 1963 1964 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 1965 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 1966 Register DstReg = MI.getOperand(0).getReg(); 1967 Register SrcReg = MI.getOperand(1).getReg(); 1968 LLT DstTy = MRI.getType(DstReg); 1969 return mi_match(SrcReg, MRI, 1970 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 1971 } 1972 1973 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 1974 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 1975 Register DstReg = MI.getOperand(0).getReg(); 1976 Register SrcReg = MI.getOperand(1).getReg(); 1977 LLT DstTy = MRI.getType(DstReg); 1978 if (mi_match(SrcReg, MRI, 1979 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 1980 unsigned DstSize = DstTy.getScalarSizeInBits(); 1981 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 1982 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 1983 } 1984 return false; 1985 } 1986 1987 bool CombinerHelper::matchCombineExtOfExt( 1988 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 1989 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 1990 MI.getOpcode() == TargetOpcode::G_SEXT || 1991 MI.getOpcode() == TargetOpcode::G_ZEXT) && 1992 "Expected a G_[ASZ]EXT"); 1993 Register SrcReg = MI.getOperand(1).getReg(); 1994 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 1995 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 1996 unsigned Opc = MI.getOpcode(); 1997 unsigned SrcOpc = SrcMI->getOpcode(); 1998 if (Opc == SrcOpc || 1999 (Opc == TargetOpcode::G_ANYEXT && 2000 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2001 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2002 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2003 return true; 2004 } 2005 return false; 2006 } 2007 2008 void CombinerHelper::applyCombineExtOfExt( 2009 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2010 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2011 MI.getOpcode() == TargetOpcode::G_SEXT || 2012 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2013 "Expected a G_[ASZ]EXT"); 2014 2015 Register Reg = std::get<0>(MatchInfo); 2016 unsigned SrcExtOp = std::get<1>(MatchInfo); 2017 2018 // Combine exts with the same opcode. 2019 if (MI.getOpcode() == SrcExtOp) { 2020 Observer.changingInstr(MI); 2021 MI.getOperand(1).setReg(Reg); 2022 Observer.changedInstr(MI); 2023 return; 2024 } 2025 2026 // Combine: 2027 // - anyext([sz]ext x) to [sz]ext x 2028 // - sext(zext x) to zext x 2029 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2030 (MI.getOpcode() == TargetOpcode::G_SEXT && 2031 SrcExtOp == TargetOpcode::G_ZEXT)) { 2032 Register DstReg = MI.getOperand(0).getReg(); 2033 Builder.setInstrAndDebugLoc(MI); 2034 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2035 MI.eraseFromParent(); 2036 } 2037 } 2038 2039 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2040 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2041 Register DstReg = MI.getOperand(0).getReg(); 2042 Register SrcReg = MI.getOperand(1).getReg(); 2043 LLT DstTy = MRI.getType(DstReg); 2044 2045 Builder.setInstrAndDebugLoc(MI); 2046 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2047 MI.getFlags()); 2048 MI.eraseFromParent(); 2049 } 2050 2051 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2052 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2053 Register SrcReg = MI.getOperand(1).getReg(); 2054 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2055 } 2056 2057 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2058 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2059 Src = MI.getOperand(1).getReg(); 2060 Register AbsSrc; 2061 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2062 } 2063 2064 bool CombinerHelper::matchCombineTruncOfExt( 2065 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2066 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2067 Register SrcReg = MI.getOperand(1).getReg(); 2068 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2069 unsigned SrcOpc = SrcMI->getOpcode(); 2070 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2071 SrcOpc == TargetOpcode::G_ZEXT) { 2072 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2073 return true; 2074 } 2075 return false; 2076 } 2077 2078 void CombinerHelper::applyCombineTruncOfExt( 2079 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2080 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2081 Register SrcReg = MatchInfo.first; 2082 unsigned SrcExtOp = MatchInfo.second; 2083 Register DstReg = MI.getOperand(0).getReg(); 2084 LLT SrcTy = MRI.getType(SrcReg); 2085 LLT DstTy = MRI.getType(DstReg); 2086 if (SrcTy == DstTy) { 2087 MI.eraseFromParent(); 2088 replaceRegWith(MRI, DstReg, SrcReg); 2089 return; 2090 } 2091 Builder.setInstrAndDebugLoc(MI); 2092 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2093 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2094 else 2095 Builder.buildTrunc(DstReg, SrcReg); 2096 MI.eraseFromParent(); 2097 } 2098 2099 bool CombinerHelper::matchCombineTruncOfShl( 2100 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2101 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2102 Register DstReg = MI.getOperand(0).getReg(); 2103 Register SrcReg = MI.getOperand(1).getReg(); 2104 LLT DstTy = MRI.getType(DstReg); 2105 Register ShiftSrc; 2106 Register ShiftAmt; 2107 2108 if (MRI.hasOneNonDBGUse(SrcReg) && 2109 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2110 isLegalOrBeforeLegalizer( 2111 {TargetOpcode::G_SHL, 2112 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2113 KnownBits Known = KB->getKnownBits(ShiftAmt); 2114 unsigned Size = DstTy.getSizeInBits(); 2115 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2116 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2117 return true; 2118 } 2119 } 2120 return false; 2121 } 2122 2123 void CombinerHelper::applyCombineTruncOfShl( 2124 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2125 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2126 Register DstReg = MI.getOperand(0).getReg(); 2127 Register SrcReg = MI.getOperand(1).getReg(); 2128 LLT DstTy = MRI.getType(DstReg); 2129 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2130 2131 Register ShiftSrc = MatchInfo.first; 2132 Register ShiftAmt = MatchInfo.second; 2133 Builder.setInstrAndDebugLoc(MI); 2134 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2135 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2136 MI.eraseFromParent(); 2137 } 2138 2139 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2140 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2141 return MO.isReg() && 2142 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2143 }); 2144 } 2145 2146 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2147 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2148 return !MO.isReg() || 2149 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2150 }); 2151 } 2152 2153 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2154 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2155 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2156 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2157 } 2158 2159 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2160 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2161 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2162 MRI); 2163 } 2164 2165 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2166 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2167 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2168 MRI); 2169 } 2170 2171 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2172 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2173 if (auto MaybeCstCmp = 2174 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2175 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; 2176 return true; 2177 } 2178 return false; 2179 } 2180 2181 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2182 MI.eraseFromParent(); 2183 return true; 2184 } 2185 2186 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2187 const MachineOperand &MOP2) { 2188 if (!MOP1.isReg() || !MOP2.isReg()) 2189 return false; 2190 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2191 if (!InstAndDef1) 2192 return false; 2193 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2194 if (!InstAndDef2) 2195 return false; 2196 MachineInstr *I1 = InstAndDef1->MI; 2197 MachineInstr *I2 = InstAndDef2->MI; 2198 2199 // Handle a case like this: 2200 // 2201 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2202 // 2203 // Even though %0 and %1 are produced by the same instruction they are not 2204 // the same values. 2205 if (I1 == I2) 2206 return MOP1.getReg() == MOP2.getReg(); 2207 2208 // If we have an instruction which loads or stores, we can't guarantee that 2209 // it is identical. 2210 // 2211 // For example, we may have 2212 // 2213 // %x1 = G_LOAD %addr (load N from @somewhere) 2214 // ... 2215 // call @foo 2216 // ... 2217 // %x2 = G_LOAD %addr (load N from @somewhere) 2218 // ... 2219 // %or = G_OR %x1, %x2 2220 // 2221 // It's possible that @foo will modify whatever lives at the address we're 2222 // loading from. To be safe, let's just assume that all loads and stores 2223 // are different (unless we have something which is guaranteed to not 2224 // change.) 2225 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2226 return false; 2227 2228 // Check for physical registers on the instructions first to avoid cases 2229 // like this: 2230 // 2231 // %a = COPY $physreg 2232 // ... 2233 // SOMETHING implicit-def $physreg 2234 // ... 2235 // %b = COPY $physreg 2236 // 2237 // These copies are not equivalent. 2238 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2239 return MO.isReg() && MO.getReg().isPhysical(); 2240 })) { 2241 // Check if we have a case like this: 2242 // 2243 // %a = COPY $physreg 2244 // %b = COPY %a 2245 // 2246 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2247 // From that, we know that they must have the same value, since they must 2248 // have come from the same COPY. 2249 return I1->isIdenticalTo(*I2); 2250 } 2251 2252 // We don't have any physical registers, so we don't necessarily need the 2253 // same vreg defs. 2254 // 2255 // On the off-chance that there's some target instruction feeding into the 2256 // instruction, let's use produceSameValue instead of isIdenticalTo. 2257 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2258 // Handle instructions with multiple defs that produce same values. Values 2259 // are same for operands with same index. 2260 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2261 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2262 // I1 and I2 are different instructions but produce same values, 2263 // %1 and %6 are same, %1 and %7 are not the same value. 2264 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2265 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2266 } 2267 return false; 2268 } 2269 2270 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2271 if (!MOP.isReg()) 2272 return false; 2273 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2274 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2275 return ValAndVReg && ValAndVReg->Value == C; 2276 } 2277 2278 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2279 unsigned OpIdx) { 2280 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2281 Register OldReg = MI.getOperand(0).getReg(); 2282 Register Replacement = MI.getOperand(OpIdx).getReg(); 2283 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2284 MI.eraseFromParent(); 2285 replaceRegWith(MRI, OldReg, Replacement); 2286 return true; 2287 } 2288 2289 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2290 Register Replacement) { 2291 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2292 Register OldReg = MI.getOperand(0).getReg(); 2293 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2294 MI.eraseFromParent(); 2295 replaceRegWith(MRI, OldReg, Replacement); 2296 return true; 2297 } 2298 2299 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2300 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2301 // Match (cond ? x : x) 2302 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2303 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2304 MRI); 2305 } 2306 2307 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2308 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2309 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2310 MRI); 2311 } 2312 2313 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2314 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2315 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2316 MRI); 2317 } 2318 2319 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2320 MachineOperand &MO = MI.getOperand(OpIdx); 2321 return MO.isReg() && 2322 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2323 } 2324 2325 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2326 unsigned OpIdx) { 2327 MachineOperand &MO = MI.getOperand(OpIdx); 2328 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2329 } 2330 2331 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2332 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2333 Builder.setInstr(MI); 2334 Builder.buildFConstant(MI.getOperand(0), C); 2335 MI.eraseFromParent(); 2336 return true; 2337 } 2338 2339 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2340 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2341 Builder.setInstr(MI); 2342 Builder.buildConstant(MI.getOperand(0), C); 2343 MI.eraseFromParent(); 2344 return true; 2345 } 2346 2347 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2348 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2349 Builder.setInstr(MI); 2350 Builder.buildConstant(MI.getOperand(0), C); 2351 MI.eraseFromParent(); 2352 return true; 2353 } 2354 2355 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2356 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2357 Builder.setInstr(MI); 2358 Builder.buildUndef(MI.getOperand(0)); 2359 MI.eraseFromParent(); 2360 return true; 2361 } 2362 2363 bool CombinerHelper::matchSimplifyAddToSub( 2364 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2365 Register LHS = MI.getOperand(1).getReg(); 2366 Register RHS = MI.getOperand(2).getReg(); 2367 Register &NewLHS = std::get<0>(MatchInfo); 2368 Register &NewRHS = std::get<1>(MatchInfo); 2369 2370 // Helper lambda to check for opportunities for 2371 // ((0-A) + B) -> B - A 2372 // (A + (0-B)) -> A - B 2373 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2374 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2375 return false; 2376 NewLHS = MaybeNewLHS; 2377 return true; 2378 }; 2379 2380 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2381 } 2382 2383 bool CombinerHelper::matchCombineInsertVecElts( 2384 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2385 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2386 "Invalid opcode"); 2387 Register DstReg = MI.getOperand(0).getReg(); 2388 LLT DstTy = MRI.getType(DstReg); 2389 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2390 unsigned NumElts = DstTy.getNumElements(); 2391 // If this MI is part of a sequence of insert_vec_elts, then 2392 // don't do the combine in the middle of the sequence. 2393 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2394 TargetOpcode::G_INSERT_VECTOR_ELT) 2395 return false; 2396 MachineInstr *CurrInst = &MI; 2397 MachineInstr *TmpInst; 2398 int64_t IntImm; 2399 Register TmpReg; 2400 MatchInfo.resize(NumElts); 2401 while (mi_match( 2402 CurrInst->getOperand(0).getReg(), MRI, 2403 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2404 if (IntImm >= NumElts) 2405 return false; 2406 if (!MatchInfo[IntImm]) 2407 MatchInfo[IntImm] = TmpReg; 2408 CurrInst = TmpInst; 2409 } 2410 // Variable index. 2411 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2412 return false; 2413 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2414 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2415 if (!MatchInfo[I - 1].isValid()) 2416 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2417 } 2418 return true; 2419 } 2420 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2421 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2422 } 2423 2424 void CombinerHelper::applyCombineInsertVecElts( 2425 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2426 Builder.setInstr(MI); 2427 Register UndefReg; 2428 auto GetUndef = [&]() { 2429 if (UndefReg) 2430 return UndefReg; 2431 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2432 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2433 return UndefReg; 2434 }; 2435 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2436 if (!MatchInfo[I]) 2437 MatchInfo[I] = GetUndef(); 2438 } 2439 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2440 MI.eraseFromParent(); 2441 } 2442 2443 void CombinerHelper::applySimplifyAddToSub( 2444 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2445 Builder.setInstr(MI); 2446 Register SubLHS, SubRHS; 2447 std::tie(SubLHS, SubRHS) = MatchInfo; 2448 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2449 MI.eraseFromParent(); 2450 } 2451 2452 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2453 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2454 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2455 // 2456 // Creates the new hand + logic instruction (but does not insert them.) 2457 // 2458 // On success, MatchInfo is populated with the new instructions. These are 2459 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2460 unsigned LogicOpcode = MI.getOpcode(); 2461 assert(LogicOpcode == TargetOpcode::G_AND || 2462 LogicOpcode == TargetOpcode::G_OR || 2463 LogicOpcode == TargetOpcode::G_XOR); 2464 MachineIRBuilder MIB(MI); 2465 Register Dst = MI.getOperand(0).getReg(); 2466 Register LHSReg = MI.getOperand(1).getReg(); 2467 Register RHSReg = MI.getOperand(2).getReg(); 2468 2469 // Don't recompute anything. 2470 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2471 return false; 2472 2473 // Make sure we have (hand x, ...), (hand y, ...) 2474 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2475 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2476 if (!LeftHandInst || !RightHandInst) 2477 return false; 2478 unsigned HandOpcode = LeftHandInst->getOpcode(); 2479 if (HandOpcode != RightHandInst->getOpcode()) 2480 return false; 2481 if (!LeftHandInst->getOperand(1).isReg() || 2482 !RightHandInst->getOperand(1).isReg()) 2483 return false; 2484 2485 // Make sure the types match up, and if we're doing this post-legalization, 2486 // we end up with legal types. 2487 Register X = LeftHandInst->getOperand(1).getReg(); 2488 Register Y = RightHandInst->getOperand(1).getReg(); 2489 LLT XTy = MRI.getType(X); 2490 LLT YTy = MRI.getType(Y); 2491 if (XTy != YTy) 2492 return false; 2493 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2494 return false; 2495 2496 // Optional extra source register. 2497 Register ExtraHandOpSrcReg; 2498 switch (HandOpcode) { 2499 default: 2500 return false; 2501 case TargetOpcode::G_ANYEXT: 2502 case TargetOpcode::G_SEXT: 2503 case TargetOpcode::G_ZEXT: { 2504 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2505 break; 2506 } 2507 case TargetOpcode::G_AND: 2508 case TargetOpcode::G_ASHR: 2509 case TargetOpcode::G_LSHR: 2510 case TargetOpcode::G_SHL: { 2511 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2512 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2513 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2514 return false; 2515 ExtraHandOpSrcReg = ZOp.getReg(); 2516 break; 2517 } 2518 } 2519 2520 // Record the steps to build the new instructions. 2521 // 2522 // Steps to build (logic x, y) 2523 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2524 OperandBuildSteps LogicBuildSteps = { 2525 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2526 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2527 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2528 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2529 2530 // Steps to build hand (logic x, y), ...z 2531 OperandBuildSteps HandBuildSteps = { 2532 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2533 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2534 if (ExtraHandOpSrcReg.isValid()) 2535 HandBuildSteps.push_back( 2536 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2537 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2538 2539 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2540 return true; 2541 } 2542 2543 void CombinerHelper::applyBuildInstructionSteps( 2544 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2545 assert(MatchInfo.InstrsToBuild.size() && 2546 "Expected at least one instr to build?"); 2547 Builder.setInstr(MI); 2548 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2549 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2550 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2551 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2552 for (auto &OperandFn : InstrToBuild.OperandFns) 2553 OperandFn(Instr); 2554 } 2555 MI.eraseFromParent(); 2556 } 2557 2558 bool CombinerHelper::matchAshrShlToSextInreg( 2559 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2560 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2561 int64_t ShlCst, AshrCst; 2562 Register Src; 2563 // FIXME: detect splat constant vectors. 2564 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2565 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2566 return false; 2567 if (ShlCst != AshrCst) 2568 return false; 2569 if (!isLegalOrBeforeLegalizer( 2570 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2571 return false; 2572 MatchInfo = std::make_tuple(Src, ShlCst); 2573 return true; 2574 } 2575 2576 void CombinerHelper::applyAshShlToSextInreg( 2577 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2578 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2579 Register Src; 2580 int64_t ShiftAmt; 2581 std::tie(Src, ShiftAmt) = MatchInfo; 2582 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2583 Builder.setInstrAndDebugLoc(MI); 2584 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2585 MI.eraseFromParent(); 2586 } 2587 2588 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 2589 bool CombinerHelper::matchOverlappingAnd( 2590 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 2591 assert(MI.getOpcode() == TargetOpcode::G_AND); 2592 2593 Register Dst = MI.getOperand(0).getReg(); 2594 LLT Ty = MRI.getType(Dst); 2595 2596 Register R; 2597 int64_t C1; 2598 int64_t C2; 2599 if (!mi_match( 2600 Dst, MRI, 2601 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 2602 return false; 2603 2604 MatchInfo = [=](MachineIRBuilder &B) { 2605 if (C1 & C2) { 2606 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 2607 return; 2608 } 2609 auto Zero = B.buildConstant(Ty, 0); 2610 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 2611 }; 2612 return true; 2613 } 2614 2615 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2616 Register &Replacement) { 2617 // Given 2618 // 2619 // %y:_(sN) = G_SOMETHING 2620 // %x:_(sN) = G_SOMETHING 2621 // %res:_(sN) = G_AND %x, %y 2622 // 2623 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 2624 // 2625 // Patterns like this can appear as a result of legalization. E.g. 2626 // 2627 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2628 // %one:_(s32) = G_CONSTANT i32 1 2629 // %and:_(s32) = G_AND %cmp, %one 2630 // 2631 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2632 assert(MI.getOpcode() == TargetOpcode::G_AND); 2633 if (!KB) 2634 return false; 2635 2636 Register AndDst = MI.getOperand(0).getReg(); 2637 LLT DstTy = MRI.getType(AndDst); 2638 2639 // FIXME: This should be removed once GISelKnownBits supports vectors. 2640 if (DstTy.isVector()) 2641 return false; 2642 2643 Register LHS = MI.getOperand(1).getReg(); 2644 Register RHS = MI.getOperand(2).getReg(); 2645 KnownBits LHSBits = KB->getKnownBits(LHS); 2646 KnownBits RHSBits = KB->getKnownBits(RHS); 2647 2648 // Check that x & Mask == x. 2649 // x & 1 == x, always 2650 // x & 0 == x, only if x is also 0 2651 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 2652 // 2653 // Check if we can replace AndDst with the LHS of the G_AND 2654 if (canReplaceReg(AndDst, LHS, MRI) && 2655 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2656 Replacement = LHS; 2657 return true; 2658 } 2659 2660 // Check if we can replace AndDst with the RHS of the G_AND 2661 if (canReplaceReg(AndDst, RHS, MRI) && 2662 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2663 Replacement = RHS; 2664 return true; 2665 } 2666 2667 return false; 2668 } 2669 2670 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 2671 // Given 2672 // 2673 // %y:_(sN) = G_SOMETHING 2674 // %x:_(sN) = G_SOMETHING 2675 // %res:_(sN) = G_OR %x, %y 2676 // 2677 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 2678 assert(MI.getOpcode() == TargetOpcode::G_OR); 2679 if (!KB) 2680 return false; 2681 2682 Register OrDst = MI.getOperand(0).getReg(); 2683 LLT DstTy = MRI.getType(OrDst); 2684 2685 // FIXME: This should be removed once GISelKnownBits supports vectors. 2686 if (DstTy.isVector()) 2687 return false; 2688 2689 Register LHS = MI.getOperand(1).getReg(); 2690 Register RHS = MI.getOperand(2).getReg(); 2691 KnownBits LHSBits = KB->getKnownBits(LHS); 2692 KnownBits RHSBits = KB->getKnownBits(RHS); 2693 2694 // Check that x | Mask == x. 2695 // x | 0 == x, always 2696 // x | 1 == x, only if x is also 1 2697 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 2698 // 2699 // Check if we can replace OrDst with the LHS of the G_OR 2700 if (canReplaceReg(OrDst, LHS, MRI) && 2701 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 2702 Replacement = LHS; 2703 return true; 2704 } 2705 2706 // Check if we can replace OrDst with the RHS of the G_OR 2707 if (canReplaceReg(OrDst, RHS, MRI) && 2708 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 2709 Replacement = RHS; 2710 return true; 2711 } 2712 2713 return false; 2714 } 2715 2716 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 2717 // If the input is already sign extended, just drop the extension. 2718 Register Src = MI.getOperand(1).getReg(); 2719 unsigned ExtBits = MI.getOperand(2).getImm(); 2720 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 2721 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 2722 } 2723 2724 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 2725 int64_t Cst, bool IsVector, bool IsFP) { 2726 // For i1, Cst will always be -1 regardless of boolean contents. 2727 return (ScalarSizeBits == 1 && Cst == -1) || 2728 isConstTrueVal(TLI, Cst, IsVector, IsFP); 2729 } 2730 2731 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 2732 SmallVectorImpl<Register> &RegsToNegate) { 2733 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2734 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2735 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 2736 Register XorSrc; 2737 Register CstReg; 2738 // We match xor(src, true) here. 2739 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2740 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 2741 return false; 2742 2743 if (!MRI.hasOneNonDBGUse(XorSrc)) 2744 return false; 2745 2746 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 2747 // and ORs. The suffix of RegsToNegate starting from index I is used a work 2748 // list of tree nodes to visit. 2749 RegsToNegate.push_back(XorSrc); 2750 // Remember whether the comparisons are all integer or all floating point. 2751 bool IsInt = false; 2752 bool IsFP = false; 2753 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 2754 Register Reg = RegsToNegate[I]; 2755 if (!MRI.hasOneNonDBGUse(Reg)) 2756 return false; 2757 MachineInstr *Def = MRI.getVRegDef(Reg); 2758 switch (Def->getOpcode()) { 2759 default: 2760 // Don't match if the tree contains anything other than ANDs, ORs and 2761 // comparisons. 2762 return false; 2763 case TargetOpcode::G_ICMP: 2764 if (IsFP) 2765 return false; 2766 IsInt = true; 2767 // When we apply the combine we will invert the predicate. 2768 break; 2769 case TargetOpcode::G_FCMP: 2770 if (IsInt) 2771 return false; 2772 IsFP = true; 2773 // When we apply the combine we will invert the predicate. 2774 break; 2775 case TargetOpcode::G_AND: 2776 case TargetOpcode::G_OR: 2777 // Implement De Morgan's laws: 2778 // ~(x & y) -> ~x | ~y 2779 // ~(x | y) -> ~x & ~y 2780 // When we apply the combine we will change the opcode and recursively 2781 // negate the operands. 2782 RegsToNegate.push_back(Def->getOperand(1).getReg()); 2783 RegsToNegate.push_back(Def->getOperand(2).getReg()); 2784 break; 2785 } 2786 } 2787 2788 // Now we know whether the comparisons are integer or floating point, check 2789 // the constant in the xor. 2790 int64_t Cst; 2791 if (Ty.isVector()) { 2792 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 2793 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 2794 if (!MaybeCst) 2795 return false; 2796 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 2797 return false; 2798 } else { 2799 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 2800 return false; 2801 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 2802 return false; 2803 } 2804 2805 return true; 2806 } 2807 2808 void CombinerHelper::applyNotCmp(MachineInstr &MI, 2809 SmallVectorImpl<Register> &RegsToNegate) { 2810 for (Register Reg : RegsToNegate) { 2811 MachineInstr *Def = MRI.getVRegDef(Reg); 2812 Observer.changingInstr(*Def); 2813 // For each comparison, invert the opcode. For each AND and OR, change the 2814 // opcode. 2815 switch (Def->getOpcode()) { 2816 default: 2817 llvm_unreachable("Unexpected opcode"); 2818 case TargetOpcode::G_ICMP: 2819 case TargetOpcode::G_FCMP: { 2820 MachineOperand &PredOp = Def->getOperand(1); 2821 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 2822 (CmpInst::Predicate)PredOp.getPredicate()); 2823 PredOp.setPredicate(NewP); 2824 break; 2825 } 2826 case TargetOpcode::G_AND: 2827 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 2828 break; 2829 case TargetOpcode::G_OR: 2830 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2831 break; 2832 } 2833 Observer.changedInstr(*Def); 2834 } 2835 2836 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 2837 MI.eraseFromParent(); 2838 } 2839 2840 bool CombinerHelper::matchXorOfAndWithSameReg( 2841 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2842 // Match (xor (and x, y), y) (or any of its commuted cases) 2843 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2844 Register &X = MatchInfo.first; 2845 Register &Y = MatchInfo.second; 2846 Register AndReg = MI.getOperand(1).getReg(); 2847 Register SharedReg = MI.getOperand(2).getReg(); 2848 2849 // Find a G_AND on either side of the G_XOR. 2850 // Look for one of 2851 // 2852 // (xor (and x, y), SharedReg) 2853 // (xor SharedReg, (and x, y)) 2854 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 2855 std::swap(AndReg, SharedReg); 2856 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 2857 return false; 2858 } 2859 2860 // Only do this if we'll eliminate the G_AND. 2861 if (!MRI.hasOneNonDBGUse(AndReg)) 2862 return false; 2863 2864 // We can combine if SharedReg is the same as either the LHS or RHS of the 2865 // G_AND. 2866 if (Y != SharedReg) 2867 std::swap(X, Y); 2868 return Y == SharedReg; 2869 } 2870 2871 void CombinerHelper::applyXorOfAndWithSameReg( 2872 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2873 // Fold (xor (and x, y), y) -> (and (not x), y) 2874 Builder.setInstrAndDebugLoc(MI); 2875 Register X, Y; 2876 std::tie(X, Y) = MatchInfo; 2877 auto Not = Builder.buildNot(MRI.getType(X), X); 2878 Observer.changingInstr(MI); 2879 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2880 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 2881 MI.getOperand(2).setReg(Y); 2882 Observer.changedInstr(MI); 2883 } 2884 2885 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 2886 auto &PtrAdd = cast<GPtrAdd>(MI); 2887 Register DstReg = PtrAdd.getReg(0); 2888 LLT Ty = MRI.getType(DstReg); 2889 const DataLayout &DL = Builder.getMF().getDataLayout(); 2890 2891 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 2892 return false; 2893 2894 if (Ty.isPointer()) { 2895 auto ConstVal = getConstantVRegVal(PtrAdd.getBaseReg(), MRI); 2896 return ConstVal && *ConstVal == 0; 2897 } 2898 2899 assert(Ty.isVector() && "Expecting a vector type"); 2900 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 2901 return isBuildVectorAllZeros(*VecMI, MRI); 2902 } 2903 2904 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 2905 auto &PtrAdd = cast<GPtrAdd>(MI); 2906 Builder.setInstrAndDebugLoc(PtrAdd); 2907 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 2908 PtrAdd.eraseFromParent(); 2909 } 2910 2911 /// The second source operand is known to be a power of 2. 2912 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 2913 Register DstReg = MI.getOperand(0).getReg(); 2914 Register Src0 = MI.getOperand(1).getReg(); 2915 Register Pow2Src1 = MI.getOperand(2).getReg(); 2916 LLT Ty = MRI.getType(DstReg); 2917 Builder.setInstrAndDebugLoc(MI); 2918 2919 // Fold (urem x, pow2) -> (and x, pow2-1) 2920 auto NegOne = Builder.buildConstant(Ty, -1); 2921 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 2922 Builder.buildAnd(DstReg, Src0, Add); 2923 MI.eraseFromParent(); 2924 } 2925 2926 Optional<SmallVector<Register, 8>> 2927 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 2928 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 2929 // We want to detect if Root is part of a tree which represents a bunch 2930 // of loads being merged into a larger load. We'll try to recognize patterns 2931 // like, for example: 2932 // 2933 // Reg Reg 2934 // \ / 2935 // OR_1 Reg 2936 // \ / 2937 // OR_2 2938 // \ Reg 2939 // .. / 2940 // Root 2941 // 2942 // Reg Reg Reg Reg 2943 // \ / \ / 2944 // OR_1 OR_2 2945 // \ / 2946 // \ / 2947 // ... 2948 // Root 2949 // 2950 // Each "Reg" may have been produced by a load + some arithmetic. This 2951 // function will save each of them. 2952 SmallVector<Register, 8> RegsToVisit; 2953 SmallVector<const MachineInstr *, 7> Ors = {Root}; 2954 2955 // In the "worst" case, we're dealing with a load for each byte. So, there 2956 // are at most #bytes - 1 ORs. 2957 const unsigned MaxIter = 2958 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 2959 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 2960 if (Ors.empty()) 2961 break; 2962 const MachineInstr *Curr = Ors.pop_back_val(); 2963 Register OrLHS = Curr->getOperand(1).getReg(); 2964 Register OrRHS = Curr->getOperand(2).getReg(); 2965 2966 // In the combine, we want to elimate the entire tree. 2967 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 2968 return None; 2969 2970 // If it's a G_OR, save it and continue to walk. If it's not, then it's 2971 // something that may be a load + arithmetic. 2972 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 2973 Ors.push_back(Or); 2974 else 2975 RegsToVisit.push_back(OrLHS); 2976 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 2977 Ors.push_back(Or); 2978 else 2979 RegsToVisit.push_back(OrRHS); 2980 } 2981 2982 // We're going to try and merge each register into a wider power-of-2 type, 2983 // so we ought to have an even number of registers. 2984 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 2985 return None; 2986 return RegsToVisit; 2987 } 2988 2989 /// Helper function for findLoadOffsetsForLoadOrCombine. 2990 /// 2991 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 2992 /// and then moving that value into a specific byte offset. 2993 /// 2994 /// e.g. x[i] << 24 2995 /// 2996 /// \returns The load instruction and the byte offset it is moved into. 2997 static Optional<std::pair<GZExtLoad *, int64_t>> 2998 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 2999 const MachineRegisterInfo &MRI) { 3000 assert(MRI.hasOneNonDBGUse(Reg) && 3001 "Expected Reg to only have one non-debug use?"); 3002 Register MaybeLoad; 3003 int64_t Shift; 3004 if (!mi_match(Reg, MRI, 3005 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3006 Shift = 0; 3007 MaybeLoad = Reg; 3008 } 3009 3010 if (Shift % MemSizeInBits != 0) 3011 return None; 3012 3013 // TODO: Handle other types of loads. 3014 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3015 if (!Load) 3016 return None; 3017 3018 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3019 return None; 3020 3021 return std::make_pair(Load, Shift / MemSizeInBits); 3022 } 3023 3024 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3025 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3026 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3027 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3028 3029 // Each load found for the pattern. There should be one for each RegsToVisit. 3030 SmallSetVector<const MachineInstr *, 8> Loads; 3031 3032 // The lowest index used in any load. (The lowest "i" for each x[i].) 3033 int64_t LowestIdx = INT64_MAX; 3034 3035 // The load which uses the lowest index. 3036 GZExtLoad *LowestIdxLoad = nullptr; 3037 3038 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3039 SmallSet<int64_t, 8> SeenIdx; 3040 3041 // Ensure each load is in the same MBB. 3042 // TODO: Support multiple MachineBasicBlocks. 3043 MachineBasicBlock *MBB = nullptr; 3044 const MachineMemOperand *MMO = nullptr; 3045 3046 // Earliest instruction-order load in the pattern. 3047 GZExtLoad *EarliestLoad = nullptr; 3048 3049 // Latest instruction-order load in the pattern. 3050 GZExtLoad *LatestLoad = nullptr; 3051 3052 // Base pointer which every load should share. 3053 Register BasePtr; 3054 3055 // We want to find a load for each register. Each load should have some 3056 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3057 // track of the load which uses the lowest index. Later, we will check if we 3058 // can use its pointer in the final, combined load. 3059 for (auto Reg : RegsToVisit) { 3060 // Find the load, and find the position that it will end up in (e.g. a 3061 // shifted) value. 3062 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3063 if (!LoadAndPos) 3064 return None; 3065 GZExtLoad *Load; 3066 int64_t DstPos; 3067 std::tie(Load, DstPos) = *LoadAndPos; 3068 3069 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3070 // it is difficult to check for stores/calls/etc between loads. 3071 MachineBasicBlock *LoadMBB = Load->getParent(); 3072 if (!MBB) 3073 MBB = LoadMBB; 3074 if (LoadMBB != MBB) 3075 return None; 3076 3077 // Make sure that the MachineMemOperands of every seen load are compatible. 3078 auto &LoadMMO = Load->getMMO(); 3079 if (!MMO) 3080 MMO = &LoadMMO; 3081 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3082 return None; 3083 3084 // Find out what the base pointer and index for the load is. 3085 Register LoadPtr; 3086 int64_t Idx; 3087 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3088 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3089 LoadPtr = Load->getOperand(1).getReg(); 3090 Idx = 0; 3091 } 3092 3093 // Don't combine things like a[i], a[i] -> a bigger load. 3094 if (!SeenIdx.insert(Idx).second) 3095 return None; 3096 3097 // Every load must share the same base pointer; don't combine things like: 3098 // 3099 // a[i], b[i + 1] -> a bigger load. 3100 if (!BasePtr.isValid()) 3101 BasePtr = LoadPtr; 3102 if (BasePtr != LoadPtr) 3103 return None; 3104 3105 if (Idx < LowestIdx) { 3106 LowestIdx = Idx; 3107 LowestIdxLoad = Load; 3108 } 3109 3110 // Keep track of the byte offset that this load ends up at. If we have seen 3111 // the byte offset, then stop here. We do not want to combine: 3112 // 3113 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3114 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3115 return None; 3116 Loads.insert(Load); 3117 3118 // Keep track of the position of the earliest/latest loads in the pattern. 3119 // We will check that there are no load fold barriers between them later 3120 // on. 3121 // 3122 // FIXME: Is there a better way to check for load fold barriers? 3123 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3124 EarliestLoad = Load; 3125 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3126 LatestLoad = Load; 3127 } 3128 3129 // We found a load for each register. Let's check if each load satisfies the 3130 // pattern. 3131 assert(Loads.size() == RegsToVisit.size() && 3132 "Expected to find a load for each register?"); 3133 assert(EarliestLoad != LatestLoad && EarliestLoad && 3134 LatestLoad && "Expected at least two loads?"); 3135 3136 // Check if there are any stores, calls, etc. between any of the loads. If 3137 // there are, then we can't safely perform the combine. 3138 // 3139 // MaxIter is chosen based off the (worst case) number of iterations it 3140 // typically takes to succeed in the LLVM test suite plus some padding. 3141 // 3142 // FIXME: Is there a better way to check for load fold barriers? 3143 const unsigned MaxIter = 20; 3144 unsigned Iter = 0; 3145 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3146 LatestLoad->getIterator())) { 3147 if (Loads.count(&MI)) 3148 continue; 3149 if (MI.isLoadFoldBarrier()) 3150 return None; 3151 if (Iter++ == MaxIter) 3152 return None; 3153 } 3154 3155 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3156 } 3157 3158 bool CombinerHelper::matchLoadOrCombine( 3159 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3160 assert(MI.getOpcode() == TargetOpcode::G_OR); 3161 MachineFunction &MF = *MI.getMF(); 3162 // Assuming a little-endian target, transform: 3163 // s8 *a = ... 3164 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3165 // => 3166 // s32 val = *((i32)a) 3167 // 3168 // s8 *a = ... 3169 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3170 // => 3171 // s32 val = BSWAP(*((s32)a)) 3172 Register Dst = MI.getOperand(0).getReg(); 3173 LLT Ty = MRI.getType(Dst); 3174 if (Ty.isVector()) 3175 return false; 3176 3177 // We need to combine at least two loads into this type. Since the smallest 3178 // possible load is into a byte, we need at least a 16-bit wide type. 3179 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3180 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3181 return false; 3182 3183 // Match a collection of non-OR instructions in the pattern. 3184 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3185 if (!RegsToVisit) 3186 return false; 3187 3188 // We have a collection of non-OR instructions. Figure out how wide each of 3189 // the small loads should be based off of the number of potential loads we 3190 // found. 3191 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3192 if (NarrowMemSizeInBits % 8 != 0) 3193 return false; 3194 3195 // Check if each register feeding into each OR is a load from the same 3196 // base pointer + some arithmetic. 3197 // 3198 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3199 // 3200 // Also verify that each of these ends up putting a[i] into the same memory 3201 // offset as a load into a wide type would. 3202 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3203 GZExtLoad *LowestIdxLoad, *LatestLoad; 3204 int64_t LowestIdx; 3205 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3206 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3207 if (!MaybeLoadInfo) 3208 return false; 3209 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3210 3211 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3212 // we found before, check if this corresponds to a big or little endian byte 3213 // pattern. If it does, then we can represent it using a load + possibly a 3214 // BSWAP. 3215 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3216 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3217 if (!IsBigEndian.hasValue()) 3218 return false; 3219 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3220 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3221 return false; 3222 3223 // Make sure that the load from the lowest index produces offset 0 in the 3224 // final value. 3225 // 3226 // This ensures that we won't combine something like this: 3227 // 3228 // load x[i] -> byte 2 3229 // load x[i+1] -> byte 0 ---> wide_load x[i] 3230 // load x[i+2] -> byte 1 3231 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3232 const unsigned ZeroByteOffset = 3233 *IsBigEndian 3234 ? bigEndianByteAt(NumLoadsInTy, 0) 3235 : littleEndianByteAt(NumLoadsInTy, 0); 3236 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3237 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3238 ZeroOffsetIdx->second != LowestIdx) 3239 return false; 3240 3241 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3242 // may not use index 0. 3243 Register Ptr = LowestIdxLoad->getPointerReg(); 3244 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3245 LegalityQuery::MemDesc MMDesc(MMO); 3246 MMDesc.MemoryTy = Ty; 3247 if (!isLegalOrBeforeLegalizer( 3248 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3249 return false; 3250 auto PtrInfo = MMO.getPointerInfo(); 3251 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3252 3253 // Load must be allowed and fast on the target. 3254 LLVMContext &C = MF.getFunction().getContext(); 3255 auto &DL = MF.getDataLayout(); 3256 bool Fast = false; 3257 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3258 !Fast) 3259 return false; 3260 3261 MatchInfo = [=](MachineIRBuilder &MIB) { 3262 MIB.setInstrAndDebugLoc(*LatestLoad); 3263 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3264 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3265 if (NeedsBSwap) 3266 MIB.buildBSwap(Dst, LoadDst); 3267 }; 3268 return true; 3269 } 3270 3271 /// Check if the store \p Store is a truncstore that can be merged. That is, 3272 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty 3273 /// Register then it does not need to match and SrcVal is set to the source 3274 /// value found. 3275 /// On match, returns the start byte offset of the \p SrcVal that is being 3276 /// stored. 3277 static Optional<int64_t> getTruncStoreByteOffset(GStore &Store, Register &SrcVal, 3278 MachineRegisterInfo &MRI) { 3279 Register TruncVal; 3280 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) 3281 return None; 3282 3283 // The shift amount must be a constant multiple of the narrow type. 3284 // It is translated to the offset address in the wide source value "y". 3285 // 3286 // x = G_LSHR y, ShiftAmtC 3287 // s8 z = G_TRUNC x 3288 // store z, ... 3289 Register FoundSrcVal; 3290 int64_t ShiftAmt; 3291 if (!mi_match(TruncVal, MRI, 3292 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), 3293 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { 3294 if (!SrcVal.isValid() || TruncVal == SrcVal) { 3295 if (!SrcVal.isValid()) 3296 SrcVal = TruncVal; 3297 return 0; // If it's the lowest index store. 3298 } 3299 return None; 3300 } 3301 3302 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); 3303 if (ShiftAmt % NarrowBits!= 0) 3304 return None; 3305 const unsigned Offset = ShiftAmt / NarrowBits; 3306 3307 if (SrcVal.isValid() && FoundSrcVal != SrcVal) 3308 return None; 3309 3310 if (!SrcVal.isValid()) 3311 SrcVal = FoundSrcVal; 3312 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) 3313 return None; 3314 return Offset; 3315 } 3316 3317 /// Match a pattern where a wide type scalar value is stored by several narrow 3318 /// stores. Fold it into a single store or a BSWAP and a store if the targets 3319 /// supports it. 3320 /// 3321 /// Assuming little endian target: 3322 /// i8 *p = ... 3323 /// i32 val = ... 3324 /// p[0] = (val >> 0) & 0xFF; 3325 /// p[1] = (val >> 8) & 0xFF; 3326 /// p[2] = (val >> 16) & 0xFF; 3327 /// p[3] = (val >> 24) & 0xFF; 3328 /// => 3329 /// *((i32)p) = val; 3330 /// 3331 /// i8 *p = ... 3332 /// i32 val = ... 3333 /// p[0] = (val >> 24) & 0xFF; 3334 /// p[1] = (val >> 16) & 0xFF; 3335 /// p[2] = (val >> 8) & 0xFF; 3336 /// p[3] = (val >> 0) & 0xFF; 3337 /// => 3338 /// *((i32)p) = BSWAP(val); 3339 bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI, 3340 MergeTruncStoresInfo &MatchInfo) { 3341 auto &StoreMI = cast<GStore>(MI); 3342 LLT MemTy = StoreMI.getMMO().getMemoryType(); 3343 3344 // We only handle merging simple stores of 1-4 bytes. 3345 if (!MemTy.isScalar()) 3346 return false; 3347 switch (MemTy.getSizeInBits()) { 3348 case 8: 3349 case 16: 3350 case 32: 3351 break; 3352 default: 3353 return false; 3354 } 3355 if (!StoreMI.isSimple()) 3356 return false; 3357 3358 // We do a simple search for mergeable stores prior to this one. 3359 // Any potential alias hazard along the way terminates the search. 3360 SmallVector<GStore *> FoundStores; 3361 3362 // We're looking for: 3363 // 1) a (store(trunc(...))) 3364 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get 3365 // the partial value stored. 3366 // 3) where the offsets form either a little or big-endian sequence. 3367 3368 auto &LastStore = StoreMI; 3369 3370 // The single base pointer that all stores must use. 3371 Register BaseReg; 3372 int64_t LastOffset; 3373 if (!mi_match(LastStore.getPointerReg(), MRI, 3374 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { 3375 BaseReg = LastStore.getPointerReg(); 3376 LastOffset = 0; 3377 } 3378 3379 GStore *LowestIdxStore = &LastStore; 3380 int64_t LowestIdxOffset = LastOffset; 3381 3382 Register WideSrcVal; 3383 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI); 3384 if (!LowestShiftAmt) 3385 return false; // Didn't match a trunc. 3386 assert(WideSrcVal.isValid()); 3387 3388 LLT WideStoreTy = MRI.getType(WideSrcVal); 3389 const unsigned NumStoresRequired = 3390 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); 3391 3392 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); 3393 OffsetMap[*LowestShiftAmt] = LastOffset; 3394 FoundStores.emplace_back(&LastStore); 3395 3396 // Search the block up for more stores. 3397 // We use a search threshold of 10 instructions here because the combiner 3398 // works top-down within a block, and we don't want to search an unbounded 3399 // number of predecessor instructions trying to find matching stores. 3400 // If we moved this optimization into a separate pass then we could probably 3401 // use a more efficient search without having a hard-coded threshold. 3402 const int MaxInstsToCheck = 10; 3403 int NumInstsChecked = 0; 3404 for (auto II = ++LastStore.getReverseIterator(); 3405 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; 3406 ++II) { 3407 NumInstsChecked++; 3408 GStore *NewStore; 3409 if ((NewStore = dyn_cast<GStore>(&*II))) { 3410 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) 3411 break; 3412 } else if (II->isLoadFoldBarrier() || II->mayLoad()) { 3413 break; 3414 } else { 3415 continue; // This is a safe instruction we can look past. 3416 } 3417 3418 Register NewBaseReg; 3419 int64_t MemOffset; 3420 // Check we're storing to the same base + some offset. 3421 if (!mi_match(NewStore->getPointerReg(), MRI, 3422 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { 3423 NewBaseReg = NewStore->getPointerReg(); 3424 MemOffset = 0; 3425 } 3426 if (BaseReg != NewBaseReg) 3427 break; 3428 3429 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI); 3430 if (!ShiftByteOffset) 3431 break; 3432 if (MemOffset < LowestIdxOffset) { 3433 LowestIdxOffset = MemOffset; 3434 LowestIdxStore = NewStore; 3435 } 3436 3437 // Map the offset in the store and the offset in the combined value, and 3438 // early return if it has been set before. 3439 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || 3440 OffsetMap[*ShiftByteOffset] != INT64_MAX) 3441 break; 3442 OffsetMap[*ShiftByteOffset] = MemOffset; 3443 3444 FoundStores.emplace_back(NewStore); 3445 // Reset counter since we've found a matching inst. 3446 NumInstsChecked = 0; 3447 if (FoundStores.size() == NumStoresRequired) 3448 break; 3449 } 3450 3451 if (FoundStores.size() != NumStoresRequired) { 3452 return false; 3453 } 3454 3455 const auto &DL = LastStore.getMF()->getDataLayout(); 3456 auto &C = LastStore.getMF()->getFunction().getContext(); 3457 // Check that a store of the wide type is both allowed and fast on the target 3458 bool Fast = false; 3459 bool Allowed = getTargetLowering().allowsMemoryAccess( 3460 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); 3461 if (!Allowed || !Fast) 3462 return false; 3463 3464 // Check if the pieces of the value are going to the expected places in memory 3465 // to merge the stores. 3466 unsigned NarrowBits = MemTy.getScalarSizeInBits(); 3467 auto checkOffsets = [&](bool MatchLittleEndian) { 3468 if (MatchLittleEndian) { 3469 for (unsigned i = 0; i != NumStoresRequired; ++i) 3470 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) 3471 return false; 3472 } else { // MatchBigEndian by reversing loop counter. 3473 for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired; 3474 ++i, --j) 3475 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) 3476 return false; 3477 } 3478 return true; 3479 }; 3480 3481 // Check if the offsets line up for the native data layout of this target. 3482 bool NeedBswap = false; 3483 bool NeedRotate = false; 3484 if (!checkOffsets(DL.isLittleEndian())) { 3485 // Special-case: check if byte offsets line up for the opposite endian. 3486 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) 3487 NeedBswap = true; 3488 else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian())) 3489 NeedRotate = true; 3490 else 3491 return false; 3492 } 3493 3494 if (NeedBswap && 3495 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}})) 3496 return false; 3497 if (NeedRotate && 3498 !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}})) 3499 return false; 3500 3501 MatchInfo.NeedBSwap = NeedBswap; 3502 MatchInfo.NeedRotate = NeedRotate; 3503 MatchInfo.LowestIdxStore = LowestIdxStore; 3504 MatchInfo.WideSrcVal = WideSrcVal; 3505 MatchInfo.FoundStores = std::move(FoundStores); 3506 return true; 3507 } 3508 3509 void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI, 3510 MergeTruncStoresInfo &MatchInfo) { 3511 3512 Builder.setInstrAndDebugLoc(MI); 3513 Register WideSrcVal = MatchInfo.WideSrcVal; 3514 LLT WideStoreTy = MRI.getType(WideSrcVal); 3515 3516 if (MatchInfo.NeedBSwap) { 3517 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); 3518 } else if (MatchInfo.NeedRotate) { 3519 assert(WideStoreTy.getSizeInBits() % 2 == 0 && 3520 "Unexpected type for rotate"); 3521 auto RotAmt = 3522 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); 3523 WideSrcVal = 3524 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); 3525 } 3526 3527 Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(), 3528 MatchInfo.LowestIdxStore->getMMO().getPointerInfo(), 3529 MatchInfo.LowestIdxStore->getMMO().getAlign()); 3530 3531 // Erase the old stores. 3532 for (auto *ST : MatchInfo.FoundStores) 3533 ST->eraseFromParent(); 3534 } 3535 3536 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3537 MachineInstr *&ExtMI) { 3538 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3539 3540 Register DstReg = MI.getOperand(0).getReg(); 3541 3542 // TODO: Extending a vector may be expensive, don't do this until heuristics 3543 // are better. 3544 if (MRI.getType(DstReg).isVector()) 3545 return false; 3546 3547 // Try to match a phi, whose only use is an extend. 3548 if (!MRI.hasOneNonDBGUse(DstReg)) 3549 return false; 3550 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3551 switch (ExtMI->getOpcode()) { 3552 case TargetOpcode::G_ANYEXT: 3553 return true; // G_ANYEXT is usually free. 3554 case TargetOpcode::G_ZEXT: 3555 case TargetOpcode::G_SEXT: 3556 break; 3557 default: 3558 return false; 3559 } 3560 3561 // If the target is likely to fold this extend away, don't propagate. 3562 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3563 return false; 3564 3565 // We don't want to propagate the extends unless there's a good chance that 3566 // they'll be optimized in some way. 3567 // Collect the unique incoming values. 3568 SmallPtrSet<MachineInstr *, 4> InSrcs; 3569 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3570 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3571 switch (DefMI->getOpcode()) { 3572 case TargetOpcode::G_LOAD: 3573 case TargetOpcode::G_TRUNC: 3574 case TargetOpcode::G_SEXT: 3575 case TargetOpcode::G_ZEXT: 3576 case TargetOpcode::G_ANYEXT: 3577 case TargetOpcode::G_CONSTANT: 3578 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3579 // Don't try to propagate if there are too many places to create new 3580 // extends, chances are it'll increase code size. 3581 if (InSrcs.size() > 2) 3582 return false; 3583 break; 3584 default: 3585 return false; 3586 } 3587 } 3588 return true; 3589 } 3590 3591 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3592 MachineInstr *&ExtMI) { 3593 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3594 Register DstReg = ExtMI->getOperand(0).getReg(); 3595 LLT ExtTy = MRI.getType(DstReg); 3596 3597 // Propagate the extension into the block of each incoming reg's block. 3598 // Use a SetVector here because PHIs can have duplicate edges, and we want 3599 // deterministic iteration order. 3600 SmallSetVector<MachineInstr *, 8> SrcMIs; 3601 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3602 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3603 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3604 if (!SrcMIs.insert(SrcMI)) 3605 continue; 3606 3607 // Build an extend after each src inst. 3608 auto *MBB = SrcMI->getParent(); 3609 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3610 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3611 InsertPt = MBB->getFirstNonPHI(); 3612 3613 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3614 Builder.setDebugLoc(MI.getDebugLoc()); 3615 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3616 SrcMI->getOperand(0).getReg()); 3617 OldToNewSrcMap[SrcMI] = NewExt; 3618 } 3619 3620 // Create a new phi with the extended inputs. 3621 Builder.setInstrAndDebugLoc(MI); 3622 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3623 NewPhi.addDef(DstReg); 3624 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3625 auto &MO = MI.getOperand(SrcIdx); 3626 if (!MO.isReg()) { 3627 NewPhi.addMBB(MO.getMBB()); 3628 continue; 3629 } 3630 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3631 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3632 } 3633 Builder.insertInstr(NewPhi); 3634 ExtMI->eraseFromParent(); 3635 } 3636 3637 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3638 Register &Reg) { 3639 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3640 // If we have a constant index, look for a G_BUILD_VECTOR source 3641 // and find the source register that the index maps to. 3642 Register SrcVec = MI.getOperand(1).getReg(); 3643 LLT SrcTy = MRI.getType(SrcVec); 3644 if (!isLegalOrBeforeLegalizer( 3645 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3646 return false; 3647 3648 auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3649 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3650 return false; 3651 3652 unsigned VecIdx = Cst->Value.getZExtValue(); 3653 MachineInstr *BuildVecMI = 3654 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3655 if (!BuildVecMI) { 3656 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3657 if (!BuildVecMI) 3658 return false; 3659 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3660 if (!isLegalOrBeforeLegalizer( 3661 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3662 return false; 3663 } 3664 3665 EVT Ty(getMVTForLLT(SrcTy)); 3666 if (!MRI.hasOneNonDBGUse(SrcVec) && 3667 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3668 return false; 3669 3670 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3671 return true; 3672 } 3673 3674 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3675 Register &Reg) { 3676 // Check the type of the register, since it may have come from a 3677 // G_BUILD_VECTOR_TRUNC. 3678 LLT ScalarTy = MRI.getType(Reg); 3679 Register DstReg = MI.getOperand(0).getReg(); 3680 LLT DstTy = MRI.getType(DstReg); 3681 3682 Builder.setInstrAndDebugLoc(MI); 3683 if (ScalarTy != DstTy) { 3684 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3685 Builder.buildTrunc(DstReg, Reg); 3686 MI.eraseFromParent(); 3687 return; 3688 } 3689 replaceSingleDefInstWithReg(MI, Reg); 3690 } 3691 3692 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3693 MachineInstr &MI, 3694 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3695 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3696 // This combine tries to find build_vector's which have every source element 3697 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3698 // the masked load scalarization is run late in the pipeline. There's already 3699 // a combine for a similar pattern starting from the extract, but that 3700 // doesn't attempt to do it if there are multiple uses of the build_vector, 3701 // which in this case is true. Starting the combine from the build_vector 3702 // feels more natural than trying to find sibling nodes of extracts. 3703 // E.g. 3704 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3705 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3706 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3707 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3708 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3709 // ==> 3710 // replace ext{1,2,3,4} with %s{1,2,3,4} 3711 3712 Register DstReg = MI.getOperand(0).getReg(); 3713 LLT DstTy = MRI.getType(DstReg); 3714 unsigned NumElts = DstTy.getNumElements(); 3715 3716 SmallBitVector ExtractedElts(NumElts); 3717 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), 3718 MRI.use_instr_nodbg_end())) { 3719 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3720 return false; 3721 auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI); 3722 if (!Cst) 3723 return false; 3724 unsigned Idx = Cst.getValue().getZExtValue(); 3725 if (Idx >= NumElts) 3726 return false; // Out of range. 3727 ExtractedElts.set(Idx); 3728 SrcDstPairs.emplace_back( 3729 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3730 } 3731 // Match if every element was extracted. 3732 return ExtractedElts.all(); 3733 } 3734 3735 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3736 MachineInstr &MI, 3737 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3738 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3739 for (auto &Pair : SrcDstPairs) { 3740 auto *ExtMI = Pair.second; 3741 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3742 ExtMI->eraseFromParent(); 3743 } 3744 MI.eraseFromParent(); 3745 } 3746 3747 void CombinerHelper::applyBuildFn( 3748 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3749 Builder.setInstrAndDebugLoc(MI); 3750 MatchInfo(Builder); 3751 MI.eraseFromParent(); 3752 } 3753 3754 void CombinerHelper::applyBuildFnNoErase( 3755 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3756 Builder.setInstrAndDebugLoc(MI); 3757 MatchInfo(Builder); 3758 } 3759 3760 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3761 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3762 unsigned Opc = MI.getOpcode(); 3763 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3764 Register X = MI.getOperand(1).getReg(); 3765 Register Y = MI.getOperand(2).getReg(); 3766 if (X != Y) 3767 return false; 3768 unsigned RotateOpc = 3769 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3770 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3771 } 3772 3773 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3774 unsigned Opc = MI.getOpcode(); 3775 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3776 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3777 Observer.changingInstr(MI); 3778 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3779 : TargetOpcode::G_ROTR)); 3780 MI.RemoveOperand(2); 3781 Observer.changedInstr(MI); 3782 } 3783 3784 // Fold (rot x, c) -> (rot x, c % BitSize) 3785 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3786 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3787 MI.getOpcode() == TargetOpcode::G_ROTR); 3788 unsigned Bitsize = 3789 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3790 Register AmtReg = MI.getOperand(2).getReg(); 3791 bool OutOfRange = false; 3792 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 3793 if (auto *CI = dyn_cast<ConstantInt>(C)) 3794 OutOfRange |= CI->getValue().uge(Bitsize); 3795 return true; 3796 }; 3797 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 3798 } 3799 3800 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 3801 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3802 MI.getOpcode() == TargetOpcode::G_ROTR); 3803 unsigned Bitsize = 3804 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3805 Builder.setInstrAndDebugLoc(MI); 3806 Register Amt = MI.getOperand(2).getReg(); 3807 LLT AmtTy = MRI.getType(Amt); 3808 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 3809 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 3810 Observer.changingInstr(MI); 3811 MI.getOperand(2).setReg(Amt); 3812 Observer.changedInstr(MI); 3813 } 3814 3815 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 3816 int64_t &MatchInfo) { 3817 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3818 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3819 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 3820 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 3821 Optional<bool> KnownVal; 3822 switch (Pred) { 3823 default: 3824 llvm_unreachable("Unexpected G_ICMP predicate?"); 3825 case CmpInst::ICMP_EQ: 3826 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 3827 break; 3828 case CmpInst::ICMP_NE: 3829 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 3830 break; 3831 case CmpInst::ICMP_SGE: 3832 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 3833 break; 3834 case CmpInst::ICMP_SGT: 3835 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 3836 break; 3837 case CmpInst::ICMP_SLE: 3838 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 3839 break; 3840 case CmpInst::ICMP_SLT: 3841 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 3842 break; 3843 case CmpInst::ICMP_UGE: 3844 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 3845 break; 3846 case CmpInst::ICMP_UGT: 3847 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 3848 break; 3849 case CmpInst::ICMP_ULE: 3850 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 3851 break; 3852 case CmpInst::ICMP_ULT: 3853 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 3854 break; 3855 } 3856 if (!KnownVal) 3857 return false; 3858 MatchInfo = 3859 *KnownVal 3860 ? getICmpTrueVal(getTargetLowering(), 3861 /*IsVector = */ 3862 MRI.getType(MI.getOperand(0).getReg()).isVector(), 3863 /* IsFP = */ false) 3864 : 0; 3865 return true; 3866 } 3867 3868 bool CombinerHelper::matchICmpToLHSKnownBits( 3869 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3870 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3871 // Given: 3872 // 3873 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 3874 // %cmp = G_ICMP ne %x, 0 3875 // 3876 // Or: 3877 // 3878 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 3879 // %cmp = G_ICMP eq %x, 1 3880 // 3881 // We can replace %cmp with %x assuming true is 1 on the target. 3882 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3883 if (!CmpInst::isEquality(Pred)) 3884 return false; 3885 Register Dst = MI.getOperand(0).getReg(); 3886 LLT DstTy = MRI.getType(Dst); 3887 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), 3888 /* IsFP = */ false) != 1) 3889 return false; 3890 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; 3891 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) 3892 return false; 3893 Register LHS = MI.getOperand(2).getReg(); 3894 auto KnownLHS = KB->getKnownBits(LHS); 3895 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) 3896 return false; 3897 // Make sure replacing Dst with the LHS is a legal operation. 3898 LLT LHSTy = MRI.getType(LHS); 3899 unsigned LHSSize = LHSTy.getSizeInBits(); 3900 unsigned DstSize = DstTy.getSizeInBits(); 3901 unsigned Op = TargetOpcode::COPY; 3902 if (DstSize != LHSSize) 3903 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; 3904 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) 3905 return false; 3906 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; 3907 return true; 3908 } 3909 3910 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 3911 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 3912 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3913 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 3914 Register Dst = MI.getOperand(0).getReg(); 3915 Register Src = MI.getOperand(1).getReg(); 3916 LLT Ty = MRI.getType(Src); 3917 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 3918 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 3919 return false; 3920 int64_t Width = MI.getOperand(2).getImm(); 3921 Register ShiftSrc; 3922 int64_t ShiftImm; 3923 if (!mi_match( 3924 Src, MRI, 3925 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 3926 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 3927 return false; 3928 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 3929 return false; 3930 3931 MatchInfo = [=](MachineIRBuilder &B) { 3932 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 3933 auto Cst2 = B.buildConstant(ExtractTy, Width); 3934 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 3935 }; 3936 return true; 3937 } 3938 3939 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 3940 bool CombinerHelper::matchBitfieldExtractFromAnd( 3941 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3942 assert(MI.getOpcode() == TargetOpcode::G_AND); 3943 Register Dst = MI.getOperand(0).getReg(); 3944 LLT Ty = MRI.getType(Dst); 3945 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 3946 TargetOpcode::G_UBFX, Ty, Ty)) 3947 return false; 3948 3949 int64_t AndImm, LSBImm; 3950 Register ShiftSrc; 3951 const unsigned Size = Ty.getScalarSizeInBits(); 3952 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3953 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 3954 m_ICst(AndImm)))) 3955 return false; 3956 3957 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 3958 auto MaybeMask = static_cast<uint64_t>(AndImm); 3959 if (MaybeMask & (MaybeMask + 1)) 3960 return false; 3961 3962 // LSB must fit within the register. 3963 if (static_cast<uint64_t>(LSBImm) >= Size) 3964 return false; 3965 3966 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 3967 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 3968 MatchInfo = [=](MachineIRBuilder &B) { 3969 auto WidthCst = B.buildConstant(ExtractTy, Width); 3970 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 3971 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 3972 }; 3973 return true; 3974 } 3975 3976 bool CombinerHelper::matchBitfieldExtractFromShr( 3977 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3978 const unsigned Opcode = MI.getOpcode(); 3979 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 3980 3981 const Register Dst = MI.getOperand(0).getReg(); 3982 3983 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 3984 ? TargetOpcode::G_SBFX 3985 : TargetOpcode::G_UBFX; 3986 3987 // Check if the type we would use for the extract is legal 3988 LLT Ty = MRI.getType(Dst); 3989 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 3990 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 3991 return false; 3992 3993 Register ShlSrc; 3994 int64_t ShrAmt; 3995 int64_t ShlAmt; 3996 const unsigned Size = Ty.getScalarSizeInBits(); 3997 3998 // Try to match shr (shl x, c1), c2 3999 if (!mi_match(Dst, MRI, 4000 m_BinOp(Opcode, 4001 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4002 m_ICst(ShrAmt)))) 4003 return false; 4004 4005 // Make sure that the shift sizes can fit a bitfield extract 4006 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4007 return false; 4008 4009 // Skip this combine if the G_SEXT_INREG combine could handle it 4010 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4011 return false; 4012 4013 // Calculate start position and width of the extract 4014 const int64_t Pos = ShrAmt - ShlAmt; 4015 const int64_t Width = Size - ShrAmt; 4016 4017 MatchInfo = [=](MachineIRBuilder &B) { 4018 auto WidthCst = B.buildConstant(ExtractTy, Width); 4019 auto PosCst = B.buildConstant(ExtractTy, Pos); 4020 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4021 }; 4022 return true; 4023 } 4024 4025 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4026 MachineInstr &PtrAdd) { 4027 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4028 4029 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4030 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4031 if (!Src1Def) 4032 return false; 4033 4034 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4035 4036 if (MRI.hasOneNonDBGUse(Src1Reg)) 4037 return false; 4038 4039 auto C1 = getConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4040 if (!C1) 4041 return false; 4042 auto C2 = getConstantVRegVal(Src2Reg, MRI); 4043 if (!C2) 4044 return false; 4045 4046 const APInt &C1APIntVal = *C1; 4047 const APInt &C2APIntVal = *C2; 4048 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4049 4050 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4051 // This combine may end up running before ptrtoint/inttoptr combines 4052 // manage to eliminate redundant conversions, so try to look through them. 4053 MachineInstr *ConvUseMI = &UseMI; 4054 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4055 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4056 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4057 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4058 if (!MRI.hasOneNonDBGUse(DefReg)) 4059 break; 4060 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4061 ConvUseOpc = ConvUseMI->getOpcode(); 4062 } 4063 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4064 ConvUseOpc == TargetOpcode::G_STORE; 4065 if (!LoadStore) 4066 continue; 4067 // Is x[offset2] already not a legal addressing mode? If so then 4068 // reassociating the constants breaks nothing (we test offset2 because 4069 // that's the one we hope to fold into the load or store). 4070 TargetLoweringBase::AddrMode AM; 4071 AM.HasBaseReg = true; 4072 AM.BaseOffs = C2APIntVal.getSExtValue(); 4073 unsigned AS = 4074 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4075 Type *AccessTy = 4076 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4077 PtrAdd.getMF()->getFunction().getContext()); 4078 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4079 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4080 AccessTy, AS)) 4081 continue; 4082 4083 // Would x[offset1+offset2] still be a legal addressing mode? 4084 AM.BaseOffs = CombinedValue; 4085 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4086 AccessTy, AS)) 4087 return true; 4088 } 4089 4090 return false; 4091 } 4092 4093 bool CombinerHelper::matchReassocPtrAdd( 4094 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4095 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 4096 // We're trying to match a few pointer computation patterns here for 4097 // re-association opportunities. 4098 // 1) Isolating a constant operand to be on the RHS, e.g.: 4099 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4100 // 4101 // 2) Folding two constants in each sub-tree as long as such folding 4102 // doesn't break a legal addressing mode. 4103 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4104 Register Src1Reg = MI.getOperand(1).getReg(); 4105 Register Src2Reg = MI.getOperand(2).getReg(); 4106 MachineInstr *LHS = MRI.getVRegDef(Src1Reg); 4107 MachineInstr *RHS = MRI.getVRegDef(Src2Reg); 4108 4109 if (LHS->getOpcode() != TargetOpcode::G_PTR_ADD) { 4110 // Try to match example 1). 4111 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4112 return false; 4113 auto C2 = getConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4114 if (!C2) 4115 return false; 4116 4117 MatchInfo = [=,&MI](MachineIRBuilder &B) { 4118 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4119 4120 auto NewBase = 4121 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4122 Observer.changingInstr(MI); 4123 MI.getOperand(1).setReg(NewBase.getReg(0)); 4124 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4125 Observer.changedInstr(MI); 4126 }; 4127 } else { 4128 // Try to match example 2. 4129 Register LHSSrc1 = LHS->getOperand(1).getReg(); 4130 Register LHSSrc2 = LHS->getOperand(2).getReg(); 4131 auto C1 = getConstantVRegVal(LHSSrc2, MRI); 4132 if (!C1) 4133 return false; 4134 auto C2 = getConstantVRegVal(Src2Reg, MRI); 4135 if (!C2) 4136 return false; 4137 4138 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4139 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4140 Observer.changingInstr(MI); 4141 MI.getOperand(1).setReg(LHSSrc1); 4142 MI.getOperand(2).setReg(NewCst.getReg(0)); 4143 Observer.changedInstr(MI); 4144 }; 4145 } 4146 return !reassociationCanBreakAddressingModePattern(MI); 4147 } 4148 4149 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4150 Register Op1 = MI.getOperand(1).getReg(); 4151 Register Op2 = MI.getOperand(2).getReg(); 4152 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4153 if (!MaybeCst) 4154 return false; 4155 MatchInfo = *MaybeCst; 4156 return true; 4157 } 4158 4159 bool CombinerHelper::matchNarrowBinopFeedingAnd( 4160 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4161 // Look for a binop feeding into an AND with a mask: 4162 // 4163 // %add = G_ADD %lhs, %rhs 4164 // %and = G_AND %add, 000...11111111 4165 // 4166 // Check if it's possible to perform the binop at a narrower width and zext 4167 // back to the original width like so: 4168 // 4169 // %narrow_lhs = G_TRUNC %lhs 4170 // %narrow_rhs = G_TRUNC %rhs 4171 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 4172 // %new_add = G_ZEXT %narrow_add 4173 // %and = G_AND %new_add, 000...11111111 4174 // 4175 // This can allow later combines to eliminate the G_AND if it turns out 4176 // that the mask is irrelevant. 4177 assert(MI.getOpcode() == TargetOpcode::G_AND); 4178 Register Dst = MI.getOperand(0).getReg(); 4179 Register AndLHS = MI.getOperand(1).getReg(); 4180 Register AndRHS = MI.getOperand(2).getReg(); 4181 LLT WideTy = MRI.getType(Dst); 4182 4183 // If the potential binop has more than one use, then it's possible that one 4184 // of those uses will need its full width. 4185 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 4186 return false; 4187 4188 // Check if the LHS feeding the AND is impacted by the high bits that we're 4189 // masking out. 4190 // 4191 // e.g. for 64-bit x, y: 4192 // 4193 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 4194 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 4195 if (!LHSInst) 4196 return false; 4197 unsigned LHSOpc = LHSInst->getOpcode(); 4198 switch (LHSOpc) { 4199 default: 4200 return false; 4201 case TargetOpcode::G_ADD: 4202 case TargetOpcode::G_SUB: 4203 case TargetOpcode::G_MUL: 4204 case TargetOpcode::G_AND: 4205 case TargetOpcode::G_OR: 4206 case TargetOpcode::G_XOR: 4207 break; 4208 } 4209 4210 // Find the mask on the RHS. 4211 auto Cst = getConstantVRegValWithLookThrough(AndRHS, MRI); 4212 if (!Cst) 4213 return false; 4214 auto Mask = Cst->Value; 4215 if (!Mask.isMask()) 4216 return false; 4217 4218 // No point in combining if there's nothing to truncate. 4219 unsigned NarrowWidth = Mask.countTrailingOnes(); 4220 if (NarrowWidth == WideTy.getSizeInBits()) 4221 return false; 4222 LLT NarrowTy = LLT::scalar(NarrowWidth); 4223 4224 // Check if adding the zext + truncates could be harmful. 4225 auto &MF = *MI.getMF(); 4226 const auto &TLI = getTargetLowering(); 4227 LLVMContext &Ctx = MF.getFunction().getContext(); 4228 auto &DL = MF.getDataLayout(); 4229 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 4230 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 4231 return false; 4232 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 4233 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 4234 return false; 4235 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 4236 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 4237 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4238 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 4239 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 4240 auto NarrowBinOp = 4241 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 4242 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 4243 Observer.changingInstr(MI); 4244 MI.getOperand(1).setReg(Ext.getReg(0)); 4245 Observer.changedInstr(MI); 4246 }; 4247 return true; 4248 } 4249 4250 bool CombinerHelper::tryCombine(MachineInstr &MI) { 4251 if (tryCombineCopy(MI)) 4252 return true; 4253 if (tryCombineExtendingLoads(MI)) 4254 return true; 4255 if (tryCombineIndexedLoadStore(MI)) 4256 return true; 4257 return false; 4258 } 4259