1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CriticalAntiDepBreaker class, which 11 // implements register anti-dependence breaking along a blocks 12 // critical path during post-RA scheduler. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CriticalAntiDepBreaker.h" 17 #include "llvm/CodeGen/MachineBasicBlock.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 #include "llvm/Target/TargetRegisterInfo.h" 24 #include "llvm/Target/TargetSubtargetInfo.h" 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "post-RA-sched" 29 30 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi, 31 const RegisterClassInfo &RCI) 32 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), 33 TII(MF.getSubtarget().getInstrInfo()), 34 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI), 35 Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0), 36 DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {} 37 38 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() { 39 } 40 41 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 42 const unsigned BBSize = BB->size(); 43 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { 44 // Clear out the register class data. 45 Classes[i] = nullptr; 46 47 // Initialize the indices to indicate that no registers are live. 48 KillIndices[i] = ~0u; 49 DefIndices[i] = BBSize; 50 } 51 52 // Clear "do not change" set. 53 KeepRegs.reset(); 54 55 bool IsReturnBlock = BB->isReturnBlock(); 56 57 // Examine the live-in regs of all successors. 58 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 59 SE = BB->succ_end(); SI != SE; ++SI) 60 for (const auto &LI : (*SI)->liveins()) { 61 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { 62 unsigned Reg = *AI; 63 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 64 KillIndices[Reg] = BBSize; 65 DefIndices[Reg] = ~0u; 66 } 67 } 68 69 // Mark live-out callee-saved registers. In a return block this is 70 // all callee-saved registers. In non-return this is any 71 // callee-saved register that is not saved in the prolog. 72 const MachineFrameInfo *MFI = MF.getFrameInfo(); 73 BitVector Pristine = MFI->getPristineRegs(MF); 74 for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) { 75 if (!IsReturnBlock && !Pristine.test(*I)) continue; 76 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { 77 unsigned Reg = *AI; 78 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 79 KillIndices[Reg] = BBSize; 80 DefIndices[Reg] = ~0u; 81 } 82 } 83 } 84 85 void CriticalAntiDepBreaker::FinishBlock() { 86 RegRefs.clear(); 87 KeepRegs.reset(); 88 } 89 90 void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, 91 unsigned InsertPosIndex) { 92 // Kill instructions can define registers but are really nops, and there might 93 // be a real definition earlier that needs to be paired with uses dominated by 94 // this kill. 95 96 // FIXME: It may be possible to remove the isKill() restriction once PR18663 97 // has been properly fixed. There can be value in processing kills as seen in 98 // the AggressiveAntiDepBreaker class. 99 if (MI.isDebugValue() || MI.isKill()) 100 return; 101 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 102 103 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 104 if (KillIndices[Reg] != ~0u) { 105 // If Reg is currently live, then mark that it can't be renamed as 106 // we don't know the extent of its live-range anymore (now that it 107 // has been scheduled). 108 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 109 KillIndices[Reg] = Count; 110 } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { 111 // Any register which was defined within the previous scheduling region 112 // may have been rescheduled and its lifetime may overlap with registers 113 // in ways not reflected in our current liveness state. For each such 114 // register, adjust the liveness state to be conservatively correct. 115 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 116 117 // Move the def index to the end of the previous region, to reflect 118 // that the def could theoretically have been scheduled at the end. 119 DefIndices[Reg] = InsertPosIndex; 120 } 121 } 122 123 PrescanInstruction(MI); 124 ScanInstruction(MI, Count); 125 } 126 127 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 128 /// critical path. 129 static const SDep *CriticalPathStep(const SUnit *SU) { 130 const SDep *Next = nullptr; 131 unsigned NextDepth = 0; 132 // Find the predecessor edge with the greatest depth. 133 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 134 P != PE; ++P) { 135 const SUnit *PredSU = P->getSUnit(); 136 unsigned PredLatency = P->getLatency(); 137 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 138 // In the case of a latency tie, prefer an anti-dependency edge over 139 // other types of edges. 140 if (NextDepth < PredTotalLatency || 141 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { 142 NextDepth = PredTotalLatency; 143 Next = &*P; 144 } 145 } 146 return Next; 147 } 148 149 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) { 150 // It's not safe to change register allocation for source operands of 151 // instructions that have special allocation requirements. Also assume all 152 // registers used in a call must not be changed (ABI). 153 // FIXME: The issue with predicated instruction is more complex. We are being 154 // conservative here because the kill markers cannot be trusted after 155 // if-conversion: 156 // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14] 157 // ... 158 // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395] 159 // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12] 160 // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8) 161 // 162 // The first R6 kill is not really a kill since it's killed by a predicated 163 // instruction which may not be executed. The second R6 def may or may not 164 // re-define R6 so it's not safe to change it since the last R6 use cannot be 165 // changed. 166 bool Special = 167 MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI); 168 169 // Scan the register operands for this instruction and update 170 // Classes and RegRefs. 171 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 172 MachineOperand &MO = MI.getOperand(i); 173 if (!MO.isReg()) continue; 174 unsigned Reg = MO.getReg(); 175 if (Reg == 0) continue; 176 const TargetRegisterClass *NewRC = nullptr; 177 178 if (i < MI.getDesc().getNumOperands()) 179 NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 180 181 // For now, only allow the register to be changed if its register 182 // class is consistent across all uses. 183 if (!Classes[Reg] && NewRC) 184 Classes[Reg] = NewRC; 185 else if (!NewRC || Classes[Reg] != NewRC) 186 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 187 188 // Now check for aliases. 189 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 190 // If an alias of the reg is used during the live range, give up. 191 // Note that this allows us to skip checking if AntiDepReg 192 // overlaps with any of the aliases, among other things. 193 unsigned AliasReg = *AI; 194 if (Classes[AliasReg]) { 195 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 196 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 197 } 198 } 199 200 // If we're still willing to consider this register, note the reference. 201 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) 202 RegRefs.insert(std::make_pair(Reg, &MO)); 203 204 // If this reg is tied and live (Classes[Reg] is set to -1), we can't change 205 // it or any of its sub or super regs. We need to use KeepRegs to mark the 206 // reg because not all uses of the same reg within an instruction are 207 // necessarily tagged as tied. 208 // Example: an x86 "xor %eax, %eax" will have one source operand tied to the 209 // def register but not the second (see PR20020 for details). 210 // FIXME: can this check be relaxed to account for undef uses 211 // of a register? In the above 'xor' example, the uses of %eax are undef, so 212 // earlier instructions could still replace %eax even though the 'xor' 213 // itself can't be changed. 214 if (MI.isRegTiedToUseOperand(i) && 215 Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) { 216 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 217 SubRegs.isValid(); ++SubRegs) { 218 KeepRegs.set(*SubRegs); 219 } 220 for (MCSuperRegIterator SuperRegs(Reg, TRI); 221 SuperRegs.isValid(); ++SuperRegs) { 222 KeepRegs.set(*SuperRegs); 223 } 224 } 225 226 if (MO.isUse() && Special) { 227 if (!KeepRegs.test(Reg)) { 228 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 229 SubRegs.isValid(); ++SubRegs) 230 KeepRegs.set(*SubRegs); 231 } 232 } 233 } 234 } 235 236 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) { 237 // Update liveness. 238 // Proceeding upwards, registers that are defed but not used in this 239 // instruction are now dead. 240 assert(!MI.isKill() && "Attempting to scan a kill instruction"); 241 242 if (!TII->isPredicated(MI)) { 243 // Predicated defs are modeled as read + write, i.e. similar to two 244 // address updates. 245 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 246 MachineOperand &MO = MI.getOperand(i); 247 248 if (MO.isRegMask()) 249 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) 250 if (MO.clobbersPhysReg(i)) { 251 DefIndices[i] = Count; 252 KillIndices[i] = ~0u; 253 KeepRegs.reset(i); 254 Classes[i] = nullptr; 255 RegRefs.erase(i); 256 } 257 258 if (!MO.isReg()) continue; 259 unsigned Reg = MO.getReg(); 260 if (Reg == 0) continue; 261 if (!MO.isDef()) continue; 262 263 // If we've already marked this reg as unchangeable, carry on. 264 if (KeepRegs.test(Reg)) continue; 265 266 // Ignore two-addr defs. 267 if (MI.isRegTiedToUseOperand(i)) 268 continue; 269 270 // For the reg itself and all subregs: update the def to current; 271 // reset the kill state, any restrictions, and references. 272 for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) { 273 unsigned SubregReg = *SRI; 274 DefIndices[SubregReg] = Count; 275 KillIndices[SubregReg] = ~0u; 276 KeepRegs.reset(SubregReg); 277 Classes[SubregReg] = nullptr; 278 RegRefs.erase(SubregReg); 279 } 280 // Conservatively mark super-registers as unusable. 281 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) 282 Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1); 283 } 284 } 285 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 286 MachineOperand &MO = MI.getOperand(i); 287 if (!MO.isReg()) continue; 288 unsigned Reg = MO.getReg(); 289 if (Reg == 0) continue; 290 if (!MO.isUse()) continue; 291 292 const TargetRegisterClass *NewRC = nullptr; 293 if (i < MI.getDesc().getNumOperands()) 294 NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 295 296 // For now, only allow the register to be changed if its register 297 // class is consistent across all uses. 298 if (!Classes[Reg] && NewRC) 299 Classes[Reg] = NewRC; 300 else if (!NewRC || Classes[Reg] != NewRC) 301 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 302 303 RegRefs.insert(std::make_pair(Reg, &MO)); 304 305 // It wasn't previously live but now it is, this is a kill. 306 // Repeat for all aliases. 307 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 308 unsigned AliasReg = *AI; 309 if (KillIndices[AliasReg] == ~0u) { 310 KillIndices[AliasReg] = Count; 311 DefIndices[AliasReg] = ~0u; 312 } 313 } 314 } 315 } 316 317 // Check all machine operands that reference the antidependent register and must 318 // be replaced by NewReg. Return true if any of their parent instructions may 319 // clobber the new register. 320 // 321 // Note: AntiDepReg may be referenced by a two-address instruction such that 322 // it's use operand is tied to a def operand. We guard against the case in which 323 // the two-address instruction also defines NewReg, as may happen with 324 // pre/postincrement loads. In this case, both the use and def operands are in 325 // RegRefs because the def is inserted by PrescanInstruction and not erased 326 // during ScanInstruction. So checking for an instruction with definitions of 327 // both NewReg and AntiDepReg covers it. 328 bool 329 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, 330 RegRefIter RegRefEnd, 331 unsigned NewReg) 332 { 333 for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { 334 MachineOperand *RefOper = I->second; 335 336 // Don't allow the instruction defining AntiDepReg to earlyclobber its 337 // operands, in case they may be assigned to NewReg. In this case antidep 338 // breaking must fail, but it's too rare to bother optimizing. 339 if (RefOper->isDef() && RefOper->isEarlyClobber()) 340 return true; 341 342 // Handle cases in which this instruction defines NewReg. 343 MachineInstr *MI = RefOper->getParent(); 344 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 345 const MachineOperand &CheckOper = MI->getOperand(i); 346 347 if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg)) 348 return true; 349 350 if (!CheckOper.isReg() || !CheckOper.isDef() || 351 CheckOper.getReg() != NewReg) 352 continue; 353 354 // Don't allow the instruction to define NewReg and AntiDepReg. 355 // When AntiDepReg is renamed it will be an illegal op. 356 if (RefOper->isDef()) 357 return true; 358 359 // Don't allow an instruction using AntiDepReg to be earlyclobbered by 360 // NewReg. 361 if (CheckOper.isEarlyClobber()) 362 return true; 363 364 // Don't allow inline asm to define NewReg at all. Who knows what it's 365 // doing with it. 366 if (MI->isInlineAsm()) 367 return true; 368 } 369 } 370 return false; 371 } 372 373 unsigned CriticalAntiDepBreaker:: 374 findSuitableFreeRegister(RegRefIter RegRefBegin, 375 RegRefIter RegRefEnd, 376 unsigned AntiDepReg, 377 unsigned LastNewReg, 378 const TargetRegisterClass *RC, 379 SmallVectorImpl<unsigned> &Forbid) 380 { 381 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC); 382 for (unsigned i = 0; i != Order.size(); ++i) { 383 unsigned NewReg = Order[i]; 384 // Don't replace a register with itself. 385 if (NewReg == AntiDepReg) continue; 386 // Don't replace a register with one that was recently used to repair 387 // an anti-dependence with this AntiDepReg, because that would 388 // re-introduce that anti-dependence. 389 if (NewReg == LastNewReg) continue; 390 // If any instructions that define AntiDepReg also define the NewReg, it's 391 // not suitable. For example, Instruction with multiple definitions can 392 // result in this condition. 393 if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; 394 // If NewReg is dead and NewReg's most recent def is not before 395 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. 396 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) 397 && "Kill and Def maps aren't consistent for AntiDepReg!"); 398 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) 399 && "Kill and Def maps aren't consistent for NewReg!"); 400 if (KillIndices[NewReg] != ~0u || 401 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || 402 KillIndices[AntiDepReg] > DefIndices[NewReg]) 403 continue; 404 // If NewReg overlaps any of the forbidden registers, we can't use it. 405 bool Forbidden = false; 406 for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(), 407 ite = Forbid.end(); it != ite; ++it) 408 if (TRI->regsOverlap(NewReg, *it)) { 409 Forbidden = true; 410 break; 411 } 412 if (Forbidden) continue; 413 return NewReg; 414 } 415 416 // No registers are free and available! 417 return 0; 418 } 419 420 unsigned CriticalAntiDepBreaker:: 421 BreakAntiDependencies(const std::vector<SUnit>& SUnits, 422 MachineBasicBlock::iterator Begin, 423 MachineBasicBlock::iterator End, 424 unsigned InsertPosIndex, 425 DbgValueVector &DbgValues) { 426 // The code below assumes that there is at least one instruction, 427 // so just duck out immediately if the block is empty. 428 if (SUnits.empty()) return 0; 429 430 // Keep a map of the MachineInstr*'s back to the SUnit representing them. 431 // This is used for updating debug information. 432 // 433 // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap 434 DenseMap<MachineInstr*,const SUnit*> MISUnitMap; 435 436 // Find the node at the bottom of the critical path. 437 const SUnit *Max = nullptr; 438 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 439 const SUnit *SU = &SUnits[i]; 440 MISUnitMap[SU->getInstr()] = SU; 441 if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) 442 Max = SU; 443 } 444 445 #ifndef NDEBUG 446 { 447 DEBUG(dbgs() << "Critical path has total latency " 448 << (Max->getDepth() + Max->Latency) << "\n"); 449 DEBUG(dbgs() << "Available regs:"); 450 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 451 if (KillIndices[Reg] == ~0u) 452 DEBUG(dbgs() << " " << TRI->getName(Reg)); 453 } 454 DEBUG(dbgs() << '\n'); 455 } 456 #endif 457 458 // Track progress along the critical path through the SUnit graph as we walk 459 // the instructions. 460 const SUnit *CriticalPathSU = Max; 461 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); 462 463 // Consider this pattern: 464 // A = ... 465 // ... = A 466 // A = ... 467 // ... = A 468 // A = ... 469 // ... = A 470 // A = ... 471 // ... = A 472 // There are three anti-dependencies here, and without special care, 473 // we'd break all of them using the same register: 474 // A = ... 475 // ... = A 476 // B = ... 477 // ... = B 478 // B = ... 479 // ... = B 480 // B = ... 481 // ... = B 482 // because at each anti-dependence, B is the first register that 483 // isn't A which is free. This re-introduces anti-dependencies 484 // at all but one of the original anti-dependencies that we were 485 // trying to break. To avoid this, keep track of the most recent 486 // register that each register was replaced with, avoid 487 // using it to repair an anti-dependence on the same register. 488 // This lets us produce this: 489 // A = ... 490 // ... = A 491 // B = ... 492 // ... = B 493 // C = ... 494 // ... = C 495 // B = ... 496 // ... = B 497 // This still has an anti-dependence on B, but at least it isn't on the 498 // original critical path. 499 // 500 // TODO: If we tracked more than one register here, we could potentially 501 // fix that remaining critical edge too. This is a little more involved, 502 // because unlike the most recent register, less recent registers should 503 // still be considered, though only if no other registers are available. 504 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0); 505 506 // Attempt to break anti-dependence edges on the critical path. Walk the 507 // instructions from the bottom up, tracking information about liveness 508 // as we go to help determine which registers are available. 509 unsigned Broken = 0; 510 unsigned Count = InsertPosIndex - 1; 511 for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { 512 MachineInstr &MI = *--I; 513 // Kill instructions can define registers but are really nops, and there 514 // might be a real definition earlier that needs to be paired with uses 515 // dominated by this kill. 516 517 // FIXME: It may be possible to remove the isKill() restriction once PR18663 518 // has been properly fixed. There can be value in processing kills as seen 519 // in the AggressiveAntiDepBreaker class. 520 if (MI.isDebugValue() || MI.isKill()) 521 continue; 522 523 // Check if this instruction has a dependence on the critical path that 524 // is an anti-dependence that we may be able to break. If it is, set 525 // AntiDepReg to the non-zero register associated with the anti-dependence. 526 // 527 // We limit our attention to the critical path as a heuristic to avoid 528 // breaking anti-dependence edges that aren't going to significantly 529 // impact the overall schedule. There are a limited number of registers 530 // and we want to save them for the important edges. 531 // 532 // TODO: Instructions with multiple defs could have multiple 533 // anti-dependencies. The current code here only knows how to break one 534 // edge per instruction. Note that we'd have to be able to break all of 535 // the anti-dependencies in an instruction in order to be effective. 536 unsigned AntiDepReg = 0; 537 if (&MI == CriticalPathMI) { 538 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) { 539 const SUnit *NextSU = Edge->getSUnit(); 540 541 // Only consider anti-dependence edges. 542 if (Edge->getKind() == SDep::Anti) { 543 AntiDepReg = Edge->getReg(); 544 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 545 if (!MRI.isAllocatable(AntiDepReg)) 546 // Don't break anti-dependencies on non-allocatable registers. 547 AntiDepReg = 0; 548 else if (KeepRegs.test(AntiDepReg)) 549 // Don't break anti-dependencies if a use down below requires 550 // this exact register. 551 AntiDepReg = 0; 552 else { 553 // If the SUnit has other dependencies on the SUnit that it 554 // anti-depends on, don't bother breaking the anti-dependency 555 // since those edges would prevent such units from being 556 // scheduled past each other regardless. 557 // 558 // Also, if there are dependencies on other SUnits with the 559 // same register as the anti-dependency, don't attempt to 560 // break it. 561 for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(), 562 PE = CriticalPathSU->Preds.end(); P != PE; ++P) 563 if (P->getSUnit() == NextSU ? 564 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : 565 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { 566 AntiDepReg = 0; 567 break; 568 } 569 } 570 } 571 CriticalPathSU = NextSU; 572 CriticalPathMI = CriticalPathSU->getInstr(); 573 } else { 574 // We've reached the end of the critical path. 575 CriticalPathSU = nullptr; 576 CriticalPathMI = nullptr; 577 } 578 } 579 580 PrescanInstruction(MI); 581 582 SmallVector<unsigned, 2> ForbidRegs; 583 584 // If MI's defs have a special allocation requirement, don't allow 585 // any def registers to be changed. Also assume all registers 586 // defined in a call must not be changed (ABI). 587 if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI)) 588 // If this instruction's defs have special allocation requirement, don't 589 // break this anti-dependency. 590 AntiDepReg = 0; 591 else if (AntiDepReg) { 592 // If this instruction has a use of AntiDepReg, breaking it 593 // is invalid. If the instruction defines other registers, 594 // save a list of them so that we don't pick a new register 595 // that overlaps any of them. 596 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 597 MachineOperand &MO = MI.getOperand(i); 598 if (!MO.isReg()) continue; 599 unsigned Reg = MO.getReg(); 600 if (Reg == 0) continue; 601 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) { 602 AntiDepReg = 0; 603 break; 604 } 605 if (MO.isDef() && Reg != AntiDepReg) 606 ForbidRegs.push_back(Reg); 607 } 608 } 609 610 // Determine AntiDepReg's register class, if it is live and is 611 // consistently used within a single class. 612 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] 613 : nullptr; 614 assert((AntiDepReg == 0 || RC != nullptr) && 615 "Register should be live if it's causing an anti-dependence!"); 616 if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) 617 AntiDepReg = 0; 618 619 // Look for a suitable register to use to break the anti-dependence. 620 // 621 // TODO: Instead of picking the first free register, consider which might 622 // be the best. 623 if (AntiDepReg != 0) { 624 std::pair<std::multimap<unsigned, MachineOperand *>::iterator, 625 std::multimap<unsigned, MachineOperand *>::iterator> 626 Range = RegRefs.equal_range(AntiDepReg); 627 if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second, 628 AntiDepReg, 629 LastNewReg[AntiDepReg], 630 RC, ForbidRegs)) { 631 DEBUG(dbgs() << "Breaking anti-dependence edge on " 632 << TRI->getName(AntiDepReg) 633 << " with " << RegRefs.count(AntiDepReg) << " references" 634 << " using " << TRI->getName(NewReg) << "!\n"); 635 636 // Update the references to the old register to refer to the new 637 // register. 638 for (std::multimap<unsigned, MachineOperand *>::iterator 639 Q = Range.first, QE = Range.second; Q != QE; ++Q) { 640 Q->second->setReg(NewReg); 641 // If the SU for the instruction being updated has debug information 642 // related to the anti-dependency register, make sure to update that 643 // as well. 644 const SUnit *SU = MISUnitMap[Q->second->getParent()]; 645 if (!SU) continue; 646 for (DbgValueVector::iterator DVI = DbgValues.begin(), 647 DVE = DbgValues.end(); DVI != DVE; ++DVI) 648 if (DVI->second == Q->second->getParent()) 649 UpdateDbgValue(*DVI->first, AntiDepReg, NewReg); 650 } 651 652 // We just went back in time and modified history; the 653 // liveness information for the anti-dependence reg is now 654 // inconsistent. Set the state as if it were dead. 655 Classes[NewReg] = Classes[AntiDepReg]; 656 DefIndices[NewReg] = DefIndices[AntiDepReg]; 657 KillIndices[NewReg] = KillIndices[AntiDepReg]; 658 assert(((KillIndices[NewReg] == ~0u) != 659 (DefIndices[NewReg] == ~0u)) && 660 "Kill and Def maps aren't consistent for NewReg!"); 661 662 Classes[AntiDepReg] = nullptr; 663 DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; 664 KillIndices[AntiDepReg] = ~0u; 665 assert(((KillIndices[AntiDepReg] == ~0u) != 666 (DefIndices[AntiDepReg] == ~0u)) && 667 "Kill and Def maps aren't consistent for AntiDepReg!"); 668 669 RegRefs.erase(AntiDepReg); 670 LastNewReg[AntiDepReg] = NewReg; 671 ++Broken; 672 } 673 } 674 675 ScanInstruction(MI, Count); 676 } 677 678 return Broken; 679 } 680