1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CriticalAntiDepBreaker class, which
11 // implements register anti-dependence breaking along a blocks
12 // critical path during post-RA scheduler.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "CriticalAntiDepBreaker.h"
17 #include "llvm/CodeGen/MachineBasicBlock.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24 #include "llvm/Target/TargetSubtargetInfo.h"
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "post-RA-sched"
29 
30 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
31                                                const RegisterClassInfo &RCI)
32     : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
33       TII(MF.getSubtarget().getInstrInfo()),
34       TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
35       Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
36       DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
37 
38 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
39 }
40 
41 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
42   const unsigned BBSize = BB->size();
43   for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
44     // Clear out the register class data.
45     Classes[i] = nullptr;
46 
47     // Initialize the indices to indicate that no registers are live.
48     KillIndices[i] = ~0u;
49     DefIndices[i] = BBSize;
50   }
51 
52   // Clear "do not change" set.
53   KeepRegs.reset();
54 
55   bool IsReturnBlock = BB->isReturnBlock();
56 
57   // Examine the live-in regs of all successors.
58   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
59          SE = BB->succ_end(); SI != SE; ++SI)
60     for (const auto &LI : (*SI)->liveins()) {
61       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
62         unsigned Reg = *AI;
63         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
64         KillIndices[Reg] = BBSize;
65         DefIndices[Reg] = ~0u;
66       }
67     }
68 
69   // Mark live-out callee-saved registers. In a return block this is
70   // all callee-saved registers. In non-return this is any
71   // callee-saved register that is not saved in the prolog.
72   const MachineFrameInfo *MFI = MF.getFrameInfo();
73   BitVector Pristine = MFI->getPristineRegs(MF);
74   for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
75     if (!IsReturnBlock && !Pristine.test(*I)) continue;
76     for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
77       unsigned Reg = *AI;
78       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
79       KillIndices[Reg] = BBSize;
80       DefIndices[Reg] = ~0u;
81     }
82   }
83 }
84 
85 void CriticalAntiDepBreaker::FinishBlock() {
86   RegRefs.clear();
87   KeepRegs.reset();
88 }
89 
90 void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
91                                      unsigned InsertPosIndex) {
92   // Kill instructions can define registers but are really nops, and there might
93   // be a real definition earlier that needs to be paired with uses dominated by
94   // this kill.
95 
96   // FIXME: It may be possible to remove the isKill() restriction once PR18663
97   // has been properly fixed. There can be value in processing kills as seen in
98   // the AggressiveAntiDepBreaker class.
99   if (MI.isDebugValue() || MI.isKill())
100     return;
101   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
102 
103   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
104     if (KillIndices[Reg] != ~0u) {
105       // If Reg is currently live, then mark that it can't be renamed as
106       // we don't know the extent of its live-range anymore (now that it
107       // has been scheduled).
108       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
109       KillIndices[Reg] = Count;
110     } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
111       // Any register which was defined within the previous scheduling region
112       // may have been rescheduled and its lifetime may overlap with registers
113       // in ways not reflected in our current liveness state. For each such
114       // register, adjust the liveness state to be conservatively correct.
115       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
116 
117       // Move the def index to the end of the previous region, to reflect
118       // that the def could theoretically have been scheduled at the end.
119       DefIndices[Reg] = InsertPosIndex;
120     }
121   }
122 
123   PrescanInstruction(MI);
124   ScanInstruction(MI, Count);
125 }
126 
127 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
128 /// critical path.
129 static const SDep *CriticalPathStep(const SUnit *SU) {
130   const SDep *Next = nullptr;
131   unsigned NextDepth = 0;
132   // Find the predecessor edge with the greatest depth.
133   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
134        P != PE; ++P) {
135     const SUnit *PredSU = P->getSUnit();
136     unsigned PredLatency = P->getLatency();
137     unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
138     // In the case of a latency tie, prefer an anti-dependency edge over
139     // other types of edges.
140     if (NextDepth < PredTotalLatency ||
141         (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
142       NextDepth = PredTotalLatency;
143       Next = &*P;
144     }
145   }
146   return Next;
147 }
148 
149 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) {
150   // It's not safe to change register allocation for source operands of
151   // instructions that have special allocation requirements. Also assume all
152   // registers used in a call must not be changed (ABI).
153   // FIXME: The issue with predicated instruction is more complex. We are being
154   // conservative here because the kill markers cannot be trusted after
155   // if-conversion:
156   // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
157   // ...
158   // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
159   // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
160   // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
161   //
162   // The first R6 kill is not really a kill since it's killed by a predicated
163   // instruction which may not be executed. The second R6 def may or may not
164   // re-define R6 so it's not safe to change it since the last R6 use cannot be
165   // changed.
166   bool Special =
167       MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI);
168 
169   // Scan the register operands for this instruction and update
170   // Classes and RegRefs.
171   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
172     MachineOperand &MO = MI.getOperand(i);
173     if (!MO.isReg()) continue;
174     unsigned Reg = MO.getReg();
175     if (Reg == 0) continue;
176     const TargetRegisterClass *NewRC = nullptr;
177 
178     if (i < MI.getDesc().getNumOperands())
179       NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
180 
181     // For now, only allow the register to be changed if its register
182     // class is consistent across all uses.
183     if (!Classes[Reg] && NewRC)
184       Classes[Reg] = NewRC;
185     else if (!NewRC || Classes[Reg] != NewRC)
186       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
187 
188     // Now check for aliases.
189     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
190       // If an alias of the reg is used during the live range, give up.
191       // Note that this allows us to skip checking if AntiDepReg
192       // overlaps with any of the aliases, among other things.
193       unsigned AliasReg = *AI;
194       if (Classes[AliasReg]) {
195         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
196         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
197       }
198     }
199 
200     // If we're still willing to consider this register, note the reference.
201     if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
202       RegRefs.insert(std::make_pair(Reg, &MO));
203 
204     // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
205     // it or any of its sub or super regs. We need to use KeepRegs to mark the
206     // reg because not all uses of the same reg within an instruction are
207     // necessarily tagged as tied.
208     // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
209     // def register but not the second (see PR20020 for details).
210     // FIXME: can this check be relaxed to account for undef uses
211     // of a register? In the above 'xor' example, the uses of %eax are undef, so
212     // earlier instructions could still replace %eax even though the 'xor'
213     // itself can't be changed.
214     if (MI.isRegTiedToUseOperand(i) &&
215         Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
216       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
217            SubRegs.isValid(); ++SubRegs) {
218         KeepRegs.set(*SubRegs);
219       }
220       for (MCSuperRegIterator SuperRegs(Reg, TRI);
221            SuperRegs.isValid(); ++SuperRegs) {
222         KeepRegs.set(*SuperRegs);
223       }
224     }
225 
226     if (MO.isUse() && Special) {
227       if (!KeepRegs.test(Reg)) {
228         for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
229              SubRegs.isValid(); ++SubRegs)
230           KeepRegs.set(*SubRegs);
231       }
232     }
233   }
234 }
235 
236 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) {
237   // Update liveness.
238   // Proceeding upwards, registers that are defed but not used in this
239   // instruction are now dead.
240   assert(!MI.isKill() && "Attempting to scan a kill instruction");
241 
242   if (!TII->isPredicated(MI)) {
243     // Predicated defs are modeled as read + write, i.e. similar to two
244     // address updates.
245     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
246       MachineOperand &MO = MI.getOperand(i);
247 
248       if (MO.isRegMask())
249         for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
250           if (MO.clobbersPhysReg(i)) {
251             DefIndices[i] = Count;
252             KillIndices[i] = ~0u;
253             KeepRegs.reset(i);
254             Classes[i] = nullptr;
255             RegRefs.erase(i);
256           }
257 
258       if (!MO.isReg()) continue;
259       unsigned Reg = MO.getReg();
260       if (Reg == 0) continue;
261       if (!MO.isDef()) continue;
262 
263       // If we've already marked this reg as unchangeable, carry on.
264       if (KeepRegs.test(Reg)) continue;
265 
266       // Ignore two-addr defs.
267       if (MI.isRegTiedToUseOperand(i))
268         continue;
269 
270       // For the reg itself and all subregs: update the def to current;
271       // reset the kill state, any restrictions, and references.
272       for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
273         unsigned SubregReg = *SRI;
274         DefIndices[SubregReg] = Count;
275         KillIndices[SubregReg] = ~0u;
276         KeepRegs.reset(SubregReg);
277         Classes[SubregReg] = nullptr;
278         RegRefs.erase(SubregReg);
279       }
280       // Conservatively mark super-registers as unusable.
281       for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
282         Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
283     }
284   }
285   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
286     MachineOperand &MO = MI.getOperand(i);
287     if (!MO.isReg()) continue;
288     unsigned Reg = MO.getReg();
289     if (Reg == 0) continue;
290     if (!MO.isUse()) continue;
291 
292     const TargetRegisterClass *NewRC = nullptr;
293     if (i < MI.getDesc().getNumOperands())
294       NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
295 
296     // For now, only allow the register to be changed if its register
297     // class is consistent across all uses.
298     if (!Classes[Reg] && NewRC)
299       Classes[Reg] = NewRC;
300     else if (!NewRC || Classes[Reg] != NewRC)
301       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
302 
303     RegRefs.insert(std::make_pair(Reg, &MO));
304 
305     // It wasn't previously live but now it is, this is a kill.
306     // Repeat for all aliases.
307     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
308       unsigned AliasReg = *AI;
309       if (KillIndices[AliasReg] == ~0u) {
310         KillIndices[AliasReg] = Count;
311         DefIndices[AliasReg] = ~0u;
312       }
313     }
314   }
315 }
316 
317 // Check all machine operands that reference the antidependent register and must
318 // be replaced by NewReg. Return true if any of their parent instructions may
319 // clobber the new register.
320 //
321 // Note: AntiDepReg may be referenced by a two-address instruction such that
322 // it's use operand is tied to a def operand. We guard against the case in which
323 // the two-address instruction also defines NewReg, as may happen with
324 // pre/postincrement loads. In this case, both the use and def operands are in
325 // RegRefs because the def is inserted by PrescanInstruction and not erased
326 // during ScanInstruction. So checking for an instruction with definitions of
327 // both NewReg and AntiDepReg covers it.
328 bool
329 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
330                                                 RegRefIter RegRefEnd,
331                                                 unsigned NewReg)
332 {
333   for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
334     MachineOperand *RefOper = I->second;
335 
336     // Don't allow the instruction defining AntiDepReg to earlyclobber its
337     // operands, in case they may be assigned to NewReg. In this case antidep
338     // breaking must fail, but it's too rare to bother optimizing.
339     if (RefOper->isDef() && RefOper->isEarlyClobber())
340       return true;
341 
342     // Handle cases in which this instruction defines NewReg.
343     MachineInstr *MI = RefOper->getParent();
344     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
345       const MachineOperand &CheckOper = MI->getOperand(i);
346 
347       if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
348         return true;
349 
350       if (!CheckOper.isReg() || !CheckOper.isDef() ||
351           CheckOper.getReg() != NewReg)
352         continue;
353 
354       // Don't allow the instruction to define NewReg and AntiDepReg.
355       // When AntiDepReg is renamed it will be an illegal op.
356       if (RefOper->isDef())
357         return true;
358 
359       // Don't allow an instruction using AntiDepReg to be earlyclobbered by
360       // NewReg.
361       if (CheckOper.isEarlyClobber())
362         return true;
363 
364       // Don't allow inline asm to define NewReg at all. Who knows what it's
365       // doing with it.
366       if (MI->isInlineAsm())
367         return true;
368     }
369   }
370   return false;
371 }
372 
373 unsigned CriticalAntiDepBreaker::
374 findSuitableFreeRegister(RegRefIter RegRefBegin,
375                          RegRefIter RegRefEnd,
376                          unsigned AntiDepReg,
377                          unsigned LastNewReg,
378                          const TargetRegisterClass *RC,
379                          SmallVectorImpl<unsigned> &Forbid)
380 {
381   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
382   for (unsigned i = 0; i != Order.size(); ++i) {
383     unsigned NewReg = Order[i];
384     // Don't replace a register with itself.
385     if (NewReg == AntiDepReg) continue;
386     // Don't replace a register with one that was recently used to repair
387     // an anti-dependence with this AntiDepReg, because that would
388     // re-introduce that anti-dependence.
389     if (NewReg == LastNewReg) continue;
390     // If any instructions that define AntiDepReg also define the NewReg, it's
391     // not suitable.  For example, Instruction with multiple definitions can
392     // result in this condition.
393     if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
394     // If NewReg is dead and NewReg's most recent def is not before
395     // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
396     assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
397            && "Kill and Def maps aren't consistent for AntiDepReg!");
398     assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
399            && "Kill and Def maps aren't consistent for NewReg!");
400     if (KillIndices[NewReg] != ~0u ||
401         Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
402         KillIndices[AntiDepReg] > DefIndices[NewReg])
403       continue;
404     // If NewReg overlaps any of the forbidden registers, we can't use it.
405     bool Forbidden = false;
406     for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
407            ite = Forbid.end(); it != ite; ++it)
408       if (TRI->regsOverlap(NewReg, *it)) {
409         Forbidden = true;
410         break;
411       }
412     if (Forbidden) continue;
413     return NewReg;
414   }
415 
416   // No registers are free and available!
417   return 0;
418 }
419 
420 unsigned CriticalAntiDepBreaker::
421 BreakAntiDependencies(const std::vector<SUnit>& SUnits,
422                       MachineBasicBlock::iterator Begin,
423                       MachineBasicBlock::iterator End,
424                       unsigned InsertPosIndex,
425                       DbgValueVector &DbgValues) {
426   // The code below assumes that there is at least one instruction,
427   // so just duck out immediately if the block is empty.
428   if (SUnits.empty()) return 0;
429 
430   // Keep a map of the MachineInstr*'s back to the SUnit representing them.
431   // This is used for updating debug information.
432   //
433   // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
434   DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
435 
436   // Find the node at the bottom of the critical path.
437   const SUnit *Max = nullptr;
438   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
439     const SUnit *SU = &SUnits[i];
440     MISUnitMap[SU->getInstr()] = SU;
441     if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
442       Max = SU;
443   }
444 
445 #ifndef NDEBUG
446   {
447     DEBUG(dbgs() << "Critical path has total latency "
448           << (Max->getDepth() + Max->Latency) << "\n");
449     DEBUG(dbgs() << "Available regs:");
450     for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
451       if (KillIndices[Reg] == ~0u)
452         DEBUG(dbgs() << " " << TRI->getName(Reg));
453     }
454     DEBUG(dbgs() << '\n');
455   }
456 #endif
457 
458   // Track progress along the critical path through the SUnit graph as we walk
459   // the instructions.
460   const SUnit *CriticalPathSU = Max;
461   MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
462 
463   // Consider this pattern:
464   //   A = ...
465   //   ... = A
466   //   A = ...
467   //   ... = A
468   //   A = ...
469   //   ... = A
470   //   A = ...
471   //   ... = A
472   // There are three anti-dependencies here, and without special care,
473   // we'd break all of them using the same register:
474   //   A = ...
475   //   ... = A
476   //   B = ...
477   //   ... = B
478   //   B = ...
479   //   ... = B
480   //   B = ...
481   //   ... = B
482   // because at each anti-dependence, B is the first register that
483   // isn't A which is free.  This re-introduces anti-dependencies
484   // at all but one of the original anti-dependencies that we were
485   // trying to break.  To avoid this, keep track of the most recent
486   // register that each register was replaced with, avoid
487   // using it to repair an anti-dependence on the same register.
488   // This lets us produce this:
489   //   A = ...
490   //   ... = A
491   //   B = ...
492   //   ... = B
493   //   C = ...
494   //   ... = C
495   //   B = ...
496   //   ... = B
497   // This still has an anti-dependence on B, but at least it isn't on the
498   // original critical path.
499   //
500   // TODO: If we tracked more than one register here, we could potentially
501   // fix that remaining critical edge too. This is a little more involved,
502   // because unlike the most recent register, less recent registers should
503   // still be considered, though only if no other registers are available.
504   std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
505 
506   // Attempt to break anti-dependence edges on the critical path. Walk the
507   // instructions from the bottom up, tracking information about liveness
508   // as we go to help determine which registers are available.
509   unsigned Broken = 0;
510   unsigned Count = InsertPosIndex - 1;
511   for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
512     MachineInstr &MI = *--I;
513     // Kill instructions can define registers but are really nops, and there
514     // might be a real definition earlier that needs to be paired with uses
515     // dominated by this kill.
516 
517     // FIXME: It may be possible to remove the isKill() restriction once PR18663
518     // has been properly fixed. There can be value in processing kills as seen
519     // in the AggressiveAntiDepBreaker class.
520     if (MI.isDebugValue() || MI.isKill())
521       continue;
522 
523     // Check if this instruction has a dependence on the critical path that
524     // is an anti-dependence that we may be able to break. If it is, set
525     // AntiDepReg to the non-zero register associated with the anti-dependence.
526     //
527     // We limit our attention to the critical path as a heuristic to avoid
528     // breaking anti-dependence edges that aren't going to significantly
529     // impact the overall schedule. There are a limited number of registers
530     // and we want to save them for the important edges.
531     //
532     // TODO: Instructions with multiple defs could have multiple
533     // anti-dependencies. The current code here only knows how to break one
534     // edge per instruction. Note that we'd have to be able to break all of
535     // the anti-dependencies in an instruction in order to be effective.
536     unsigned AntiDepReg = 0;
537     if (&MI == CriticalPathMI) {
538       if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
539         const SUnit *NextSU = Edge->getSUnit();
540 
541         // Only consider anti-dependence edges.
542         if (Edge->getKind() == SDep::Anti) {
543           AntiDepReg = Edge->getReg();
544           assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
545           if (!MRI.isAllocatable(AntiDepReg))
546             // Don't break anti-dependencies on non-allocatable registers.
547             AntiDepReg = 0;
548           else if (KeepRegs.test(AntiDepReg))
549             // Don't break anti-dependencies if a use down below requires
550             // this exact register.
551             AntiDepReg = 0;
552           else {
553             // If the SUnit has other dependencies on the SUnit that it
554             // anti-depends on, don't bother breaking the anti-dependency
555             // since those edges would prevent such units from being
556             // scheduled past each other regardless.
557             //
558             // Also, if there are dependencies on other SUnits with the
559             // same register as the anti-dependency, don't attempt to
560             // break it.
561             for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
562                  PE = CriticalPathSU->Preds.end(); P != PE; ++P)
563               if (P->getSUnit() == NextSU ?
564                     (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
565                     (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
566                 AntiDepReg = 0;
567                 break;
568               }
569           }
570         }
571         CriticalPathSU = NextSU;
572         CriticalPathMI = CriticalPathSU->getInstr();
573       } else {
574         // We've reached the end of the critical path.
575         CriticalPathSU = nullptr;
576         CriticalPathMI = nullptr;
577       }
578     }
579 
580     PrescanInstruction(MI);
581 
582     SmallVector<unsigned, 2> ForbidRegs;
583 
584     // If MI's defs have a special allocation requirement, don't allow
585     // any def registers to be changed. Also assume all registers
586     // defined in a call must not be changed (ABI).
587     if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI))
588       // If this instruction's defs have special allocation requirement, don't
589       // break this anti-dependency.
590       AntiDepReg = 0;
591     else if (AntiDepReg) {
592       // If this instruction has a use of AntiDepReg, breaking it
593       // is invalid.  If the instruction defines other registers,
594       // save a list of them so that we don't pick a new register
595       // that overlaps any of them.
596       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
597         MachineOperand &MO = MI.getOperand(i);
598         if (!MO.isReg()) continue;
599         unsigned Reg = MO.getReg();
600         if (Reg == 0) continue;
601         if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
602           AntiDepReg = 0;
603           break;
604         }
605         if (MO.isDef() && Reg != AntiDepReg)
606           ForbidRegs.push_back(Reg);
607       }
608     }
609 
610     // Determine AntiDepReg's register class, if it is live and is
611     // consistently used within a single class.
612     const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
613                                                     : nullptr;
614     assert((AntiDepReg == 0 || RC != nullptr) &&
615            "Register should be live if it's causing an anti-dependence!");
616     if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
617       AntiDepReg = 0;
618 
619     // Look for a suitable register to use to break the anti-dependence.
620     //
621     // TODO: Instead of picking the first free register, consider which might
622     // be the best.
623     if (AntiDepReg != 0) {
624       std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
625                 std::multimap<unsigned, MachineOperand *>::iterator>
626         Range = RegRefs.equal_range(AntiDepReg);
627       if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
628                                                      AntiDepReg,
629                                                      LastNewReg[AntiDepReg],
630                                                      RC, ForbidRegs)) {
631         DEBUG(dbgs() << "Breaking anti-dependence edge on "
632               << TRI->getName(AntiDepReg)
633               << " with " << RegRefs.count(AntiDepReg) << " references"
634               << " using " << TRI->getName(NewReg) << "!\n");
635 
636         // Update the references to the old register to refer to the new
637         // register.
638         for (std::multimap<unsigned, MachineOperand *>::iterator
639              Q = Range.first, QE = Range.second; Q != QE; ++Q) {
640           Q->second->setReg(NewReg);
641           // If the SU for the instruction being updated has debug information
642           // related to the anti-dependency register, make sure to update that
643           // as well.
644           const SUnit *SU = MISUnitMap[Q->second->getParent()];
645           if (!SU) continue;
646           for (DbgValueVector::iterator DVI = DbgValues.begin(),
647                  DVE = DbgValues.end(); DVI != DVE; ++DVI)
648             if (DVI->second == Q->second->getParent())
649               UpdateDbgValue(*DVI->first, AntiDepReg, NewReg);
650         }
651 
652         // We just went back in time and modified history; the
653         // liveness information for the anti-dependence reg is now
654         // inconsistent. Set the state as if it were dead.
655         Classes[NewReg] = Classes[AntiDepReg];
656         DefIndices[NewReg] = DefIndices[AntiDepReg];
657         KillIndices[NewReg] = KillIndices[AntiDepReg];
658         assert(((KillIndices[NewReg] == ~0u) !=
659                 (DefIndices[NewReg] == ~0u)) &&
660              "Kill and Def maps aren't consistent for NewReg!");
661 
662         Classes[AntiDepReg] = nullptr;
663         DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
664         KillIndices[AntiDepReg] = ~0u;
665         assert(((KillIndices[AntiDepReg] == ~0u) !=
666                 (DefIndices[AntiDepReg] == ~0u)) &&
667              "Kill and Def maps aren't consistent for AntiDepReg!");
668 
669         RegRefs.erase(AntiDepReg);
670         LastNewReg[AntiDepReg] = NewReg;
671         ++Broken;
672       }
673     }
674 
675     ScanInstruction(MI, Count);
676   }
677 
678   return Broken;
679 }
680