1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CriticalAntiDepBreaker class, which 11 // implements register anti-dependence breaking along a blocks 12 // critical path during post-RA scheduler. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CriticalAntiDepBreaker.h" 17 #include "llvm/CodeGen/MachineBasicBlock.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 #include "llvm/Target/TargetMachine.h" 24 #include "llvm/Target/TargetRegisterInfo.h" 25 #include "llvm/Target/TargetSubtargetInfo.h" 26 27 using namespace llvm; 28 29 #define DEBUG_TYPE "post-RA-sched" 30 31 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi, 32 const RegisterClassInfo &RCI) 33 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), 34 TII(MF.getSubtarget().getInstrInfo()), 35 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI), 36 Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0), 37 DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {} 38 39 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() { 40 } 41 42 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 43 const unsigned BBSize = BB->size(); 44 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { 45 // Clear out the register class data. 46 Classes[i] = nullptr; 47 48 // Initialize the indices to indicate that no registers are live. 49 KillIndices[i] = ~0u; 50 DefIndices[i] = BBSize; 51 } 52 53 // Clear "do not change" set. 54 KeepRegs.reset(); 55 56 bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn()); 57 58 // Examine the live-in regs of all successors. 59 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 60 SE = BB->succ_end(); SI != SE; ++SI) 61 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 62 E = (*SI)->livein_end(); I != E; ++I) { 63 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { 64 unsigned Reg = *AI; 65 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 66 KillIndices[Reg] = BBSize; 67 DefIndices[Reg] = ~0u; 68 } 69 } 70 71 // Mark live-out callee-saved registers. In a return block this is 72 // all callee-saved registers. In non-return this is any 73 // callee-saved register that is not saved in the prolog. 74 const MachineFrameInfo *MFI = MF.getFrameInfo(); 75 BitVector Pristine = MFI->getPristineRegs(BB); 76 for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) { 77 if (!IsReturnBlock && !Pristine.test(*I)) continue; 78 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { 79 unsigned Reg = *AI; 80 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 81 KillIndices[Reg] = BBSize; 82 DefIndices[Reg] = ~0u; 83 } 84 } 85 } 86 87 void CriticalAntiDepBreaker::FinishBlock() { 88 RegRefs.clear(); 89 KeepRegs.reset(); 90 } 91 92 void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count, 93 unsigned InsertPosIndex) { 94 // Kill instructions can define registers but are really nops, and there might 95 // be a real definition earlier that needs to be paired with uses dominated by 96 // this kill. 97 98 // FIXME: It may be possible to remove the isKill() restriction once PR18663 99 // has been properly fixed. There can be value in processing kills as seen in 100 // the AggressiveAntiDepBreaker class. 101 if (MI->isDebugValue() || MI->isKill()) 102 return; 103 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 104 105 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 106 if (KillIndices[Reg] != ~0u) { 107 // If Reg is currently live, then mark that it can't be renamed as 108 // we don't know the extent of its live-range anymore (now that it 109 // has been scheduled). 110 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 111 KillIndices[Reg] = Count; 112 } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { 113 // Any register which was defined within the previous scheduling region 114 // may have been rescheduled and its lifetime may overlap with registers 115 // in ways not reflected in our current liveness state. For each such 116 // register, adjust the liveness state to be conservatively correct. 117 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 118 119 // Move the def index to the end of the previous region, to reflect 120 // that the def could theoretically have been scheduled at the end. 121 DefIndices[Reg] = InsertPosIndex; 122 } 123 } 124 125 PrescanInstruction(MI); 126 ScanInstruction(MI, Count); 127 } 128 129 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 130 /// critical path. 131 static const SDep *CriticalPathStep(const SUnit *SU) { 132 const SDep *Next = nullptr; 133 unsigned NextDepth = 0; 134 // Find the predecessor edge with the greatest depth. 135 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 136 P != PE; ++P) { 137 const SUnit *PredSU = P->getSUnit(); 138 unsigned PredLatency = P->getLatency(); 139 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 140 // In the case of a latency tie, prefer an anti-dependency edge over 141 // other types of edges. 142 if (NextDepth < PredTotalLatency || 143 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { 144 NextDepth = PredTotalLatency; 145 Next = &*P; 146 } 147 } 148 return Next; 149 } 150 151 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) { 152 // It's not safe to change register allocation for source operands of 153 // instructions that have special allocation requirements. Also assume all 154 // registers used in a call must not be changed (ABI). 155 // FIXME: The issue with predicated instruction is more complex. We are being 156 // conservative here because the kill markers cannot be trusted after 157 // if-conversion: 158 // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14] 159 // ... 160 // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395] 161 // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12] 162 // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8) 163 // 164 // The first R6 kill is not really a kill since it's killed by a predicated 165 // instruction which may not be executed. The second R6 def may or may not 166 // re-define R6 so it's not safe to change it since the last R6 use cannot be 167 // changed. 168 bool Special = MI->isCall() || 169 MI->hasExtraSrcRegAllocReq() || 170 TII->isPredicated(MI); 171 172 // Scan the register operands for this instruction and update 173 // Classes and RegRefs. 174 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 175 MachineOperand &MO = MI->getOperand(i); 176 if (!MO.isReg()) continue; 177 unsigned Reg = MO.getReg(); 178 if (Reg == 0) continue; 179 const TargetRegisterClass *NewRC = nullptr; 180 181 if (i < MI->getDesc().getNumOperands()) 182 NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF); 183 184 // For now, only allow the register to be changed if its register 185 // class is consistent across all uses. 186 if (!Classes[Reg] && NewRC) 187 Classes[Reg] = NewRC; 188 else if (!NewRC || Classes[Reg] != NewRC) 189 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 190 191 // Now check for aliases. 192 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 193 // If an alias of the reg is used during the live range, give up. 194 // Note that this allows us to skip checking if AntiDepReg 195 // overlaps with any of the aliases, among other things. 196 unsigned AliasReg = *AI; 197 if (Classes[AliasReg]) { 198 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 199 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 200 } 201 } 202 203 // If we're still willing to consider this register, note the reference. 204 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) 205 RegRefs.insert(std::make_pair(Reg, &MO)); 206 207 // If this reg is tied and live (Classes[Reg] is set to -1), we can't change 208 // it or any of its sub or super regs. We need to use KeepRegs to mark the 209 // reg because not all uses of the same reg within an instruction are 210 // necessarily tagged as tied. 211 // Example: an x86 "xor %eax, %eax" will have one source operand tied to the 212 // def register but not the second (see PR20020 for details). 213 // FIXME: can this check be relaxed to account for undef uses 214 // of a register? In the above 'xor' example, the uses of %eax are undef, so 215 // earlier instructions could still replace %eax even though the 'xor' 216 // itself can't be changed. 217 if (MI->isRegTiedToUseOperand(i) && 218 Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) { 219 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 220 SubRegs.isValid(); ++SubRegs) { 221 KeepRegs.set(*SubRegs); 222 } 223 for (MCSuperRegIterator SuperRegs(Reg, TRI); 224 SuperRegs.isValid(); ++SuperRegs) { 225 KeepRegs.set(*SuperRegs); 226 } 227 } 228 229 if (MO.isUse() && Special) { 230 if (!KeepRegs.test(Reg)) { 231 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 232 SubRegs.isValid(); ++SubRegs) 233 KeepRegs.set(*SubRegs); 234 } 235 } 236 } 237 } 238 239 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI, 240 unsigned Count) { 241 // Update liveness. 242 // Proceeding upwards, registers that are defed but not used in this 243 // instruction are now dead. 244 assert(!MI->isKill() && "Attempting to scan a kill instruction"); 245 246 if (!TII->isPredicated(MI)) { 247 // Predicated defs are modeled as read + write, i.e. similar to two 248 // address updates. 249 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 250 MachineOperand &MO = MI->getOperand(i); 251 252 if (MO.isRegMask()) 253 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) 254 if (MO.clobbersPhysReg(i)) { 255 DefIndices[i] = Count; 256 KillIndices[i] = ~0u; 257 KeepRegs.reset(i); 258 Classes[i] = nullptr; 259 RegRefs.erase(i); 260 } 261 262 if (!MO.isReg()) continue; 263 unsigned Reg = MO.getReg(); 264 if (Reg == 0) continue; 265 if (!MO.isDef()) continue; 266 267 // If we've already marked this reg as unchangeable, carry on. 268 if (KeepRegs.test(Reg)) continue; 269 270 // Ignore two-addr defs. 271 if (MI->isRegTiedToUseOperand(i)) continue; 272 273 // For the reg itself and all subregs: update the def to current; 274 // reset the kill state, any restrictions, and references. 275 for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) { 276 unsigned SubregReg = *SRI; 277 DefIndices[SubregReg] = Count; 278 KillIndices[SubregReg] = ~0u; 279 KeepRegs.reset(SubregReg); 280 Classes[SubregReg] = nullptr; 281 RegRefs.erase(SubregReg); 282 } 283 // Conservatively mark super-registers as unusable. 284 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) 285 Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1); 286 } 287 } 288 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 289 MachineOperand &MO = MI->getOperand(i); 290 if (!MO.isReg()) continue; 291 unsigned Reg = MO.getReg(); 292 if (Reg == 0) continue; 293 if (!MO.isUse()) continue; 294 295 const TargetRegisterClass *NewRC = nullptr; 296 if (i < MI->getDesc().getNumOperands()) 297 NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF); 298 299 // For now, only allow the register to be changed if its register 300 // class is consistent across all uses. 301 if (!Classes[Reg] && NewRC) 302 Classes[Reg] = NewRC; 303 else if (!NewRC || Classes[Reg] != NewRC) 304 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 305 306 RegRefs.insert(std::make_pair(Reg, &MO)); 307 308 // It wasn't previously live but now it is, this is a kill. 309 // Repeat for all aliases. 310 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 311 unsigned AliasReg = *AI; 312 if (KillIndices[AliasReg] == ~0u) { 313 KillIndices[AliasReg] = Count; 314 DefIndices[AliasReg] = ~0u; 315 } 316 } 317 } 318 } 319 320 // Check all machine operands that reference the antidependent register and must 321 // be replaced by NewReg. Return true if any of their parent instructions may 322 // clobber the new register. 323 // 324 // Note: AntiDepReg may be referenced by a two-address instruction such that 325 // it's use operand is tied to a def operand. We guard against the case in which 326 // the two-address instruction also defines NewReg, as may happen with 327 // pre/postincrement loads. In this case, both the use and def operands are in 328 // RegRefs because the def is inserted by PrescanInstruction and not erased 329 // during ScanInstruction. So checking for an instruction with definitions of 330 // both NewReg and AntiDepReg covers it. 331 bool 332 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, 333 RegRefIter RegRefEnd, 334 unsigned NewReg) 335 { 336 for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { 337 MachineOperand *RefOper = I->second; 338 339 // Don't allow the instruction defining AntiDepReg to earlyclobber its 340 // operands, in case they may be assigned to NewReg. In this case antidep 341 // breaking must fail, but it's too rare to bother optimizing. 342 if (RefOper->isDef() && RefOper->isEarlyClobber()) 343 return true; 344 345 // Handle cases in which this instruction defines NewReg. 346 MachineInstr *MI = RefOper->getParent(); 347 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 348 const MachineOperand &CheckOper = MI->getOperand(i); 349 350 if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg)) 351 return true; 352 353 if (!CheckOper.isReg() || !CheckOper.isDef() || 354 CheckOper.getReg() != NewReg) 355 continue; 356 357 // Don't allow the instruction to define NewReg and AntiDepReg. 358 // When AntiDepReg is renamed it will be an illegal op. 359 if (RefOper->isDef()) 360 return true; 361 362 // Don't allow an instruction using AntiDepReg to be earlyclobbered by 363 // NewReg. 364 if (CheckOper.isEarlyClobber()) 365 return true; 366 367 // Don't allow inline asm to define NewReg at all. Who knows what it's 368 // doing with it. 369 if (MI->isInlineAsm()) 370 return true; 371 } 372 } 373 return false; 374 } 375 376 unsigned CriticalAntiDepBreaker:: 377 findSuitableFreeRegister(RegRefIter RegRefBegin, 378 RegRefIter RegRefEnd, 379 unsigned AntiDepReg, 380 unsigned LastNewReg, 381 const TargetRegisterClass *RC, 382 SmallVectorImpl<unsigned> &Forbid) 383 { 384 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC); 385 for (unsigned i = 0; i != Order.size(); ++i) { 386 unsigned NewReg = Order[i]; 387 // Don't replace a register with itself. 388 if (NewReg == AntiDepReg) continue; 389 // Don't replace a register with one that was recently used to repair 390 // an anti-dependence with this AntiDepReg, because that would 391 // re-introduce that anti-dependence. 392 if (NewReg == LastNewReg) continue; 393 // If any instructions that define AntiDepReg also define the NewReg, it's 394 // not suitable. For example, Instruction with multiple definitions can 395 // result in this condition. 396 if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; 397 // If NewReg is dead and NewReg's most recent def is not before 398 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. 399 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) 400 && "Kill and Def maps aren't consistent for AntiDepReg!"); 401 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) 402 && "Kill and Def maps aren't consistent for NewReg!"); 403 if (KillIndices[NewReg] != ~0u || 404 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || 405 KillIndices[AntiDepReg] > DefIndices[NewReg]) 406 continue; 407 // If NewReg overlaps any of the forbidden registers, we can't use it. 408 bool Forbidden = false; 409 for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(), 410 ite = Forbid.end(); it != ite; ++it) 411 if (TRI->regsOverlap(NewReg, *it)) { 412 Forbidden = true; 413 break; 414 } 415 if (Forbidden) continue; 416 return NewReg; 417 } 418 419 // No registers are free and available! 420 return 0; 421 } 422 423 unsigned CriticalAntiDepBreaker:: 424 BreakAntiDependencies(const std::vector<SUnit>& SUnits, 425 MachineBasicBlock::iterator Begin, 426 MachineBasicBlock::iterator End, 427 unsigned InsertPosIndex, 428 DbgValueVector &DbgValues) { 429 // The code below assumes that there is at least one instruction, 430 // so just duck out immediately if the block is empty. 431 if (SUnits.empty()) return 0; 432 433 // Keep a map of the MachineInstr*'s back to the SUnit representing them. 434 // This is used for updating debug information. 435 // 436 // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap 437 DenseMap<MachineInstr*,const SUnit*> MISUnitMap; 438 439 // Find the node at the bottom of the critical path. 440 const SUnit *Max = nullptr; 441 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 442 const SUnit *SU = &SUnits[i]; 443 MISUnitMap[SU->getInstr()] = SU; 444 if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) 445 Max = SU; 446 } 447 448 #ifndef NDEBUG 449 { 450 DEBUG(dbgs() << "Critical path has total latency " 451 << (Max->getDepth() + Max->Latency) << "\n"); 452 DEBUG(dbgs() << "Available regs:"); 453 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 454 if (KillIndices[Reg] == ~0u) 455 DEBUG(dbgs() << " " << TRI->getName(Reg)); 456 } 457 DEBUG(dbgs() << '\n'); 458 } 459 #endif 460 461 // Track progress along the critical path through the SUnit graph as we walk 462 // the instructions. 463 const SUnit *CriticalPathSU = Max; 464 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); 465 466 // Consider this pattern: 467 // A = ... 468 // ... = A 469 // A = ... 470 // ... = A 471 // A = ... 472 // ... = A 473 // A = ... 474 // ... = A 475 // There are three anti-dependencies here, and without special care, 476 // we'd break all of them using the same register: 477 // A = ... 478 // ... = A 479 // B = ... 480 // ... = B 481 // B = ... 482 // ... = B 483 // B = ... 484 // ... = B 485 // because at each anti-dependence, B is the first register that 486 // isn't A which is free. This re-introduces anti-dependencies 487 // at all but one of the original anti-dependencies that we were 488 // trying to break. To avoid this, keep track of the most recent 489 // register that each register was replaced with, avoid 490 // using it to repair an anti-dependence on the same register. 491 // This lets us produce this: 492 // A = ... 493 // ... = A 494 // B = ... 495 // ... = B 496 // C = ... 497 // ... = C 498 // B = ... 499 // ... = B 500 // This still has an anti-dependence on B, but at least it isn't on the 501 // original critical path. 502 // 503 // TODO: If we tracked more than one register here, we could potentially 504 // fix that remaining critical edge too. This is a little more involved, 505 // because unlike the most recent register, less recent registers should 506 // still be considered, though only if no other registers are available. 507 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0); 508 509 // Attempt to break anti-dependence edges on the critical path. Walk the 510 // instructions from the bottom up, tracking information about liveness 511 // as we go to help determine which registers are available. 512 unsigned Broken = 0; 513 unsigned Count = InsertPosIndex - 1; 514 for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { 515 MachineInstr *MI = --I; 516 // Kill instructions can define registers but are really nops, and there 517 // might be a real definition earlier that needs to be paired with uses 518 // dominated by this kill. 519 520 // FIXME: It may be possible to remove the isKill() restriction once PR18663 521 // has been properly fixed. There can be value in processing kills as seen 522 // in the AggressiveAntiDepBreaker class. 523 if (MI->isDebugValue() || MI->isKill()) 524 continue; 525 526 // Check if this instruction has a dependence on the critical path that 527 // is an anti-dependence that we may be able to break. If it is, set 528 // AntiDepReg to the non-zero register associated with the anti-dependence. 529 // 530 // We limit our attention to the critical path as a heuristic to avoid 531 // breaking anti-dependence edges that aren't going to significantly 532 // impact the overall schedule. There are a limited number of registers 533 // and we want to save them for the important edges. 534 // 535 // TODO: Instructions with multiple defs could have multiple 536 // anti-dependencies. The current code here only knows how to break one 537 // edge per instruction. Note that we'd have to be able to break all of 538 // the anti-dependencies in an instruction in order to be effective. 539 unsigned AntiDepReg = 0; 540 if (MI == CriticalPathMI) { 541 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) { 542 const SUnit *NextSU = Edge->getSUnit(); 543 544 // Only consider anti-dependence edges. 545 if (Edge->getKind() == SDep::Anti) { 546 AntiDepReg = Edge->getReg(); 547 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 548 if (!MRI.isAllocatable(AntiDepReg)) 549 // Don't break anti-dependencies on non-allocatable registers. 550 AntiDepReg = 0; 551 else if (KeepRegs.test(AntiDepReg)) 552 // Don't break anti-dependencies if a use down below requires 553 // this exact register. 554 AntiDepReg = 0; 555 else { 556 // If the SUnit has other dependencies on the SUnit that it 557 // anti-depends on, don't bother breaking the anti-dependency 558 // since those edges would prevent such units from being 559 // scheduled past each other regardless. 560 // 561 // Also, if there are dependencies on other SUnits with the 562 // same register as the anti-dependency, don't attempt to 563 // break it. 564 for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(), 565 PE = CriticalPathSU->Preds.end(); P != PE; ++P) 566 if (P->getSUnit() == NextSU ? 567 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : 568 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { 569 AntiDepReg = 0; 570 break; 571 } 572 } 573 } 574 CriticalPathSU = NextSU; 575 CriticalPathMI = CriticalPathSU->getInstr(); 576 } else { 577 // We've reached the end of the critical path. 578 CriticalPathSU = nullptr; 579 CriticalPathMI = nullptr; 580 } 581 } 582 583 PrescanInstruction(MI); 584 585 SmallVector<unsigned, 2> ForbidRegs; 586 587 // If MI's defs have a special allocation requirement, don't allow 588 // any def registers to be changed. Also assume all registers 589 // defined in a call must not be changed (ABI). 590 if (MI->isCall() || MI->hasExtraDefRegAllocReq() || TII->isPredicated(MI)) 591 // If this instruction's defs have special allocation requirement, don't 592 // break this anti-dependency. 593 AntiDepReg = 0; 594 else if (AntiDepReg) { 595 // If this instruction has a use of AntiDepReg, breaking it 596 // is invalid. If the instruction defines other registers, 597 // save a list of them so that we don't pick a new register 598 // that overlaps any of them. 599 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 600 MachineOperand &MO = MI->getOperand(i); 601 if (!MO.isReg()) continue; 602 unsigned Reg = MO.getReg(); 603 if (Reg == 0) continue; 604 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) { 605 AntiDepReg = 0; 606 break; 607 } 608 if (MO.isDef() && Reg != AntiDepReg) 609 ForbidRegs.push_back(Reg); 610 } 611 } 612 613 // Determine AntiDepReg's register class, if it is live and is 614 // consistently used within a single class. 615 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] 616 : nullptr; 617 assert((AntiDepReg == 0 || RC != nullptr) && 618 "Register should be live if it's causing an anti-dependence!"); 619 if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) 620 AntiDepReg = 0; 621 622 // Look for a suitable register to use to break the anti-dependence. 623 // 624 // TODO: Instead of picking the first free register, consider which might 625 // be the best. 626 if (AntiDepReg != 0) { 627 std::pair<std::multimap<unsigned, MachineOperand *>::iterator, 628 std::multimap<unsigned, MachineOperand *>::iterator> 629 Range = RegRefs.equal_range(AntiDepReg); 630 if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second, 631 AntiDepReg, 632 LastNewReg[AntiDepReg], 633 RC, ForbidRegs)) { 634 DEBUG(dbgs() << "Breaking anti-dependence edge on " 635 << TRI->getName(AntiDepReg) 636 << " with " << RegRefs.count(AntiDepReg) << " references" 637 << " using " << TRI->getName(NewReg) << "!\n"); 638 639 // Update the references to the old register to refer to the new 640 // register. 641 for (std::multimap<unsigned, MachineOperand *>::iterator 642 Q = Range.first, QE = Range.second; Q != QE; ++Q) { 643 Q->second->setReg(NewReg); 644 // If the SU for the instruction being updated has debug information 645 // related to the anti-dependency register, make sure to update that 646 // as well. 647 const SUnit *SU = MISUnitMap[Q->second->getParent()]; 648 if (!SU) continue; 649 for (DbgValueVector::iterator DVI = DbgValues.begin(), 650 DVE = DbgValues.end(); DVI != DVE; ++DVI) 651 if (DVI->second == Q->second->getParent()) 652 UpdateDbgValue(DVI->first, AntiDepReg, NewReg); 653 } 654 655 // We just went back in time and modified history; the 656 // liveness information for the anti-dependence reg is now 657 // inconsistent. Set the state as if it were dead. 658 Classes[NewReg] = Classes[AntiDepReg]; 659 DefIndices[NewReg] = DefIndices[AntiDepReg]; 660 KillIndices[NewReg] = KillIndices[AntiDepReg]; 661 assert(((KillIndices[NewReg] == ~0u) != 662 (DefIndices[NewReg] == ~0u)) && 663 "Kill and Def maps aren't consistent for NewReg!"); 664 665 Classes[AntiDepReg] = nullptr; 666 DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; 667 KillIndices[AntiDepReg] = ~0u; 668 assert(((KillIndices[AntiDepReg] == ~0u) != 669 (DefIndices[AntiDepReg] == ~0u)) && 670 "Kill and Def maps aren't consistent for AntiDepReg!"); 671 672 RegRefs.erase(AntiDepReg); 673 LastNewReg[AntiDepReg] = NewReg; 674 ++Broken; 675 } 676 } 677 678 ScanInstruction(MI, Count); 679 } 680 681 return Broken; 682 } 683