1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CriticalAntiDepBreaker class, which 11 // implements register anti-dependence breaking along a blocks 12 // critical path during post-RA scheduler. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CriticalAntiDepBreaker.h" 17 #include "llvm/CodeGen/MachineBasicBlock.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 #include "llvm/Target/TargetMachine.h" 24 #include "llvm/Target/TargetRegisterInfo.h" 25 #include "llvm/Target/TargetSubtargetInfo.h" 26 27 using namespace llvm; 28 29 #define DEBUG_TYPE "post-RA-sched" 30 31 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi, 32 const RegisterClassInfo &RCI) 33 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), 34 TII(MF.getSubtarget().getInstrInfo()), 35 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI), 36 Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0), 37 DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {} 38 39 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() { 40 } 41 42 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 43 const unsigned BBSize = BB->size(); 44 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { 45 // Clear out the register class data. 46 Classes[i] = nullptr; 47 48 // Initialize the indices to indicate that no registers are live. 49 KillIndices[i] = ~0u; 50 DefIndices[i] = BBSize; 51 } 52 53 // Clear "do not change" set. 54 KeepRegs.reset(); 55 56 bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn()); 57 58 // Examine the live-in regs of all successors. 59 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 60 SE = BB->succ_end(); SI != SE; ++SI) 61 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 62 E = (*SI)->livein_end(); I != E; ++I) { 63 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { 64 unsigned Reg = *AI; 65 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 66 KillIndices[Reg] = BBSize; 67 DefIndices[Reg] = ~0u; 68 } 69 } 70 71 // Mark live-out callee-saved registers. In a return block this is 72 // all callee-saved registers. In non-return this is any 73 // callee-saved register that is not saved in the prolog. 74 const MachineFrameInfo *MFI = MF.getFrameInfo(); 75 BitVector Pristine = MFI->getPristineRegs(BB); 76 for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) { 77 if (!IsReturnBlock && !Pristine.test(*I)) continue; 78 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { 79 unsigned Reg = *AI; 80 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 81 KillIndices[Reg] = BBSize; 82 DefIndices[Reg] = ~0u; 83 } 84 } 85 } 86 87 void CriticalAntiDepBreaker::FinishBlock() { 88 RegRefs.clear(); 89 KeepRegs.reset(); 90 } 91 92 void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count, 93 unsigned InsertPosIndex) { 94 if (MI->isDebugValue()) 95 return; 96 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 97 98 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 99 if (KillIndices[Reg] != ~0u) { 100 // If Reg is currently live, then mark that it can't be renamed as 101 // we don't know the extent of its live-range anymore (now that it 102 // has been scheduled). 103 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 104 KillIndices[Reg] = Count; 105 } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { 106 // Any register which was defined within the previous scheduling region 107 // may have been rescheduled and its lifetime may overlap with registers 108 // in ways not reflected in our current liveness state. For each such 109 // register, adjust the liveness state to be conservatively correct. 110 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 111 112 // Move the def index to the end of the previous region, to reflect 113 // that the def could theoretically have been scheduled at the end. 114 DefIndices[Reg] = InsertPosIndex; 115 } 116 } 117 118 PrescanInstruction(MI); 119 ScanInstruction(MI, Count); 120 } 121 122 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 123 /// critical path. 124 static const SDep *CriticalPathStep(const SUnit *SU) { 125 const SDep *Next = nullptr; 126 unsigned NextDepth = 0; 127 // Find the predecessor edge with the greatest depth. 128 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 129 P != PE; ++P) { 130 const SUnit *PredSU = P->getSUnit(); 131 unsigned PredLatency = P->getLatency(); 132 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 133 // In the case of a latency tie, prefer an anti-dependency edge over 134 // other types of edges. 135 if (NextDepth < PredTotalLatency || 136 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { 137 NextDepth = PredTotalLatency; 138 Next = &*P; 139 } 140 } 141 return Next; 142 } 143 144 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) { 145 // It's not safe to change register allocation for source operands of 146 // instructions that have special allocation requirements. Also assume all 147 // registers used in a call must not be changed (ABI). 148 // FIXME: The issue with predicated instruction is more complex. We are being 149 // conservative here because the kill markers cannot be trusted after 150 // if-conversion: 151 // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14] 152 // ... 153 // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395] 154 // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12] 155 // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8) 156 // 157 // The first R6 kill is not really a kill since it's killed by a predicated 158 // instruction which may not be executed. The second R6 def may or may not 159 // re-define R6 so it's not safe to change it since the last R6 use cannot be 160 // changed. 161 bool Special = MI->isCall() || 162 MI->hasExtraSrcRegAllocReq() || 163 TII->isPredicated(MI); 164 165 // Scan the register operands for this instruction and update 166 // Classes and RegRefs. 167 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 168 MachineOperand &MO = MI->getOperand(i); 169 if (!MO.isReg()) continue; 170 unsigned Reg = MO.getReg(); 171 if (Reg == 0) continue; 172 const TargetRegisterClass *NewRC = nullptr; 173 174 if (i < MI->getDesc().getNumOperands()) 175 NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF); 176 177 // For now, only allow the register to be changed if its register 178 // class is consistent across all uses. 179 if (!Classes[Reg] && NewRC) 180 Classes[Reg] = NewRC; 181 else if (!NewRC || Classes[Reg] != NewRC) 182 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 183 184 // Now check for aliases. 185 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 186 // If an alias of the reg is used during the live range, give up. 187 // Note that this allows us to skip checking if AntiDepReg 188 // overlaps with any of the aliases, among other things. 189 unsigned AliasReg = *AI; 190 if (Classes[AliasReg]) { 191 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 192 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 193 } 194 } 195 196 // If we're still willing to consider this register, note the reference. 197 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) 198 RegRefs.insert(std::make_pair(Reg, &MO)); 199 200 // If this reg is tied and live (Classes[Reg] is set to -1), we can't change 201 // it or any of its sub or super regs. We need to use KeepRegs to mark the 202 // reg because not all uses of the same reg within an instruction are 203 // necessarily tagged as tied. 204 // Example: an x86 "xor %eax, %eax" will have one source operand tied to the 205 // def register but not the second (see PR20020 for details). 206 // FIXME: can this check be relaxed to account for undef uses 207 // of a register? In the above 'xor' example, the uses of %eax are undef, so 208 // earlier instructions could still replace %eax even though the 'xor' 209 // itself can't be changed. 210 if (MI->isRegTiedToUseOperand(i) && 211 Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) { 212 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 213 SubRegs.isValid(); ++SubRegs) { 214 KeepRegs.set(*SubRegs); 215 } 216 for (MCSuperRegIterator SuperRegs(Reg, TRI); 217 SuperRegs.isValid(); ++SuperRegs) { 218 KeepRegs.set(*SuperRegs); 219 } 220 } 221 222 if (MO.isUse() && Special) { 223 if (!KeepRegs.test(Reg)) { 224 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 225 SubRegs.isValid(); ++SubRegs) 226 KeepRegs.set(*SubRegs); 227 } 228 } 229 } 230 } 231 232 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI, 233 unsigned Count) { 234 // Update liveness. 235 // Proceeding upwards, registers that are defed but not used in this 236 // instruction are now dead. 237 238 if (!TII->isPredicated(MI)) { 239 // Predicated defs are modeled as read + write, i.e. similar to two 240 // address updates. 241 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 242 MachineOperand &MO = MI->getOperand(i); 243 244 if (MO.isRegMask()) 245 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) 246 if (MO.clobbersPhysReg(i)) { 247 DefIndices[i] = Count; 248 KillIndices[i] = ~0u; 249 KeepRegs.reset(i); 250 Classes[i] = nullptr; 251 RegRefs.erase(i); 252 } 253 254 if (!MO.isReg()) continue; 255 unsigned Reg = MO.getReg(); 256 if (Reg == 0) continue; 257 if (!MO.isDef()) continue; 258 259 // If we've already marked this reg as unchangeable, carry on. 260 if (KeepRegs.test(Reg)) continue; 261 262 // Ignore two-addr defs. 263 if (MI->isRegTiedToUseOperand(i)) continue; 264 265 // For the reg itself and all subregs: update the def to current; 266 // reset the kill state, any restrictions, and references. 267 for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) { 268 unsigned SubregReg = *SRI; 269 DefIndices[SubregReg] = Count; 270 KillIndices[SubregReg] = ~0u; 271 KeepRegs.reset(SubregReg); 272 Classes[SubregReg] = nullptr; 273 RegRefs.erase(SubregReg); 274 } 275 // Conservatively mark super-registers as unusable. 276 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) 277 Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1); 278 } 279 } 280 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 281 MachineOperand &MO = MI->getOperand(i); 282 if (!MO.isReg()) continue; 283 unsigned Reg = MO.getReg(); 284 if (Reg == 0) continue; 285 if (!MO.isUse()) continue; 286 287 const TargetRegisterClass *NewRC = nullptr; 288 if (i < MI->getDesc().getNumOperands()) 289 NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF); 290 291 // For now, only allow the register to be changed if its register 292 // class is consistent across all uses. 293 if (!Classes[Reg] && NewRC) 294 Classes[Reg] = NewRC; 295 else if (!NewRC || Classes[Reg] != NewRC) 296 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 297 298 RegRefs.insert(std::make_pair(Reg, &MO)); 299 300 // It wasn't previously live but now it is, this is a kill. 301 // Repeat for all aliases. 302 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 303 unsigned AliasReg = *AI; 304 if (KillIndices[AliasReg] == ~0u) { 305 KillIndices[AliasReg] = Count; 306 DefIndices[AliasReg] = ~0u; 307 } 308 } 309 } 310 } 311 312 // Check all machine operands that reference the antidependent register and must 313 // be replaced by NewReg. Return true if any of their parent instructions may 314 // clobber the new register. 315 // 316 // Note: AntiDepReg may be referenced by a two-address instruction such that 317 // it's use operand is tied to a def operand. We guard against the case in which 318 // the two-address instruction also defines NewReg, as may happen with 319 // pre/postincrement loads. In this case, both the use and def operands are in 320 // RegRefs because the def is inserted by PrescanInstruction and not erased 321 // during ScanInstruction. So checking for an instruction with definitions of 322 // both NewReg and AntiDepReg covers it. 323 bool 324 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, 325 RegRefIter RegRefEnd, 326 unsigned NewReg) 327 { 328 for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { 329 MachineOperand *RefOper = I->second; 330 331 // Don't allow the instruction defining AntiDepReg to earlyclobber its 332 // operands, in case they may be assigned to NewReg. In this case antidep 333 // breaking must fail, but it's too rare to bother optimizing. 334 if (RefOper->isDef() && RefOper->isEarlyClobber()) 335 return true; 336 337 // Handle cases in which this instruction defines NewReg. 338 MachineInstr *MI = RefOper->getParent(); 339 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 340 const MachineOperand &CheckOper = MI->getOperand(i); 341 342 if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg)) 343 return true; 344 345 if (!CheckOper.isReg() || !CheckOper.isDef() || 346 CheckOper.getReg() != NewReg) 347 continue; 348 349 // Don't allow the instruction to define NewReg and AntiDepReg. 350 // When AntiDepReg is renamed it will be an illegal op. 351 if (RefOper->isDef()) 352 return true; 353 354 // Don't allow an instruction using AntiDepReg to be earlyclobbered by 355 // NewReg. 356 if (CheckOper.isEarlyClobber()) 357 return true; 358 359 // Don't allow inline asm to define NewReg at all. Who knows what it's 360 // doing with it. 361 if (MI->isInlineAsm()) 362 return true; 363 } 364 } 365 return false; 366 } 367 368 unsigned CriticalAntiDepBreaker:: 369 findSuitableFreeRegister(RegRefIter RegRefBegin, 370 RegRefIter RegRefEnd, 371 unsigned AntiDepReg, 372 unsigned LastNewReg, 373 const TargetRegisterClass *RC, 374 SmallVectorImpl<unsigned> &Forbid) 375 { 376 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC); 377 for (unsigned i = 0; i != Order.size(); ++i) { 378 unsigned NewReg = Order[i]; 379 // Don't replace a register with itself. 380 if (NewReg == AntiDepReg) continue; 381 // Don't replace a register with one that was recently used to repair 382 // an anti-dependence with this AntiDepReg, because that would 383 // re-introduce that anti-dependence. 384 if (NewReg == LastNewReg) continue; 385 // If any instructions that define AntiDepReg also define the NewReg, it's 386 // not suitable. For example, Instruction with multiple definitions can 387 // result in this condition. 388 if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; 389 // If NewReg is dead and NewReg's most recent def is not before 390 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. 391 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) 392 && "Kill and Def maps aren't consistent for AntiDepReg!"); 393 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) 394 && "Kill and Def maps aren't consistent for NewReg!"); 395 if (KillIndices[NewReg] != ~0u || 396 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || 397 KillIndices[AntiDepReg] > DefIndices[NewReg]) 398 continue; 399 // If NewReg overlaps any of the forbidden registers, we can't use it. 400 bool Forbidden = false; 401 for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(), 402 ite = Forbid.end(); it != ite; ++it) 403 if (TRI->regsOverlap(NewReg, *it)) { 404 Forbidden = true; 405 break; 406 } 407 if (Forbidden) continue; 408 return NewReg; 409 } 410 411 // No registers are free and available! 412 return 0; 413 } 414 415 unsigned CriticalAntiDepBreaker:: 416 BreakAntiDependencies(const std::vector<SUnit>& SUnits, 417 MachineBasicBlock::iterator Begin, 418 MachineBasicBlock::iterator End, 419 unsigned InsertPosIndex, 420 DbgValueVector &DbgValues) { 421 // The code below assumes that there is at least one instruction, 422 // so just duck out immediately if the block is empty. 423 if (SUnits.empty()) return 0; 424 425 // Keep a map of the MachineInstr*'s back to the SUnit representing them. 426 // This is used for updating debug information. 427 // 428 // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap 429 DenseMap<MachineInstr*,const SUnit*> MISUnitMap; 430 431 // Find the node at the bottom of the critical path. 432 const SUnit *Max = nullptr; 433 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 434 const SUnit *SU = &SUnits[i]; 435 MISUnitMap[SU->getInstr()] = SU; 436 if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) 437 Max = SU; 438 } 439 440 #ifndef NDEBUG 441 { 442 DEBUG(dbgs() << "Critical path has total latency " 443 << (Max->getDepth() + Max->Latency) << "\n"); 444 DEBUG(dbgs() << "Available regs:"); 445 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 446 if (KillIndices[Reg] == ~0u) 447 DEBUG(dbgs() << " " << TRI->getName(Reg)); 448 } 449 DEBUG(dbgs() << '\n'); 450 } 451 #endif 452 453 // Track progress along the critical path through the SUnit graph as we walk 454 // the instructions. 455 const SUnit *CriticalPathSU = Max; 456 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); 457 458 // Consider this pattern: 459 // A = ... 460 // ... = A 461 // A = ... 462 // ... = A 463 // A = ... 464 // ... = A 465 // A = ... 466 // ... = A 467 // There are three anti-dependencies here, and without special care, 468 // we'd break all of them using the same register: 469 // A = ... 470 // ... = A 471 // B = ... 472 // ... = B 473 // B = ... 474 // ... = B 475 // B = ... 476 // ... = B 477 // because at each anti-dependence, B is the first register that 478 // isn't A which is free. This re-introduces anti-dependencies 479 // at all but one of the original anti-dependencies that we were 480 // trying to break. To avoid this, keep track of the most recent 481 // register that each register was replaced with, avoid 482 // using it to repair an anti-dependence on the same register. 483 // This lets us produce this: 484 // A = ... 485 // ... = A 486 // B = ... 487 // ... = B 488 // C = ... 489 // ... = C 490 // B = ... 491 // ... = B 492 // This still has an anti-dependence on B, but at least it isn't on the 493 // original critical path. 494 // 495 // TODO: If we tracked more than one register here, we could potentially 496 // fix that remaining critical edge too. This is a little more involved, 497 // because unlike the most recent register, less recent registers should 498 // still be considered, though only if no other registers are available. 499 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0); 500 501 // Attempt to break anti-dependence edges on the critical path. Walk the 502 // instructions from the bottom up, tracking information about liveness 503 // as we go to help determine which registers are available. 504 unsigned Broken = 0; 505 unsigned Count = InsertPosIndex - 1; 506 for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { 507 MachineInstr *MI = --I; 508 if (MI->isDebugValue()) 509 continue; 510 511 // Check if this instruction has a dependence on the critical path that 512 // is an anti-dependence that we may be able to break. If it is, set 513 // AntiDepReg to the non-zero register associated with the anti-dependence. 514 // 515 // We limit our attention to the critical path as a heuristic to avoid 516 // breaking anti-dependence edges that aren't going to significantly 517 // impact the overall schedule. There are a limited number of registers 518 // and we want to save them for the important edges. 519 // 520 // TODO: Instructions with multiple defs could have multiple 521 // anti-dependencies. The current code here only knows how to break one 522 // edge per instruction. Note that we'd have to be able to break all of 523 // the anti-dependencies in an instruction in order to be effective. 524 unsigned AntiDepReg = 0; 525 if (MI == CriticalPathMI) { 526 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) { 527 const SUnit *NextSU = Edge->getSUnit(); 528 529 // Only consider anti-dependence edges. 530 if (Edge->getKind() == SDep::Anti) { 531 AntiDepReg = Edge->getReg(); 532 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 533 if (!MRI.isAllocatable(AntiDepReg)) 534 // Don't break anti-dependencies on non-allocatable registers. 535 AntiDepReg = 0; 536 else if (KeepRegs.test(AntiDepReg)) 537 // Don't break anti-dependencies if a use down below requires 538 // this exact register. 539 AntiDepReg = 0; 540 else { 541 // If the SUnit has other dependencies on the SUnit that it 542 // anti-depends on, don't bother breaking the anti-dependency 543 // since those edges would prevent such units from being 544 // scheduled past each other regardless. 545 // 546 // Also, if there are dependencies on other SUnits with the 547 // same register as the anti-dependency, don't attempt to 548 // break it. 549 for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(), 550 PE = CriticalPathSU->Preds.end(); P != PE; ++P) 551 if (P->getSUnit() == NextSU ? 552 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : 553 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { 554 AntiDepReg = 0; 555 break; 556 } 557 } 558 } 559 CriticalPathSU = NextSU; 560 CriticalPathMI = CriticalPathSU->getInstr(); 561 } else { 562 // We've reached the end of the critical path. 563 CriticalPathSU = nullptr; 564 CriticalPathMI = nullptr; 565 } 566 } 567 568 PrescanInstruction(MI); 569 570 SmallVector<unsigned, 2> ForbidRegs; 571 572 // If MI's defs have a special allocation requirement, don't allow 573 // any def registers to be changed. Also assume all registers 574 // defined in a call must not be changed (ABI). 575 if (MI->isCall() || MI->hasExtraDefRegAllocReq() || TII->isPredicated(MI)) 576 // If this instruction's defs have special allocation requirement, don't 577 // break this anti-dependency. 578 AntiDepReg = 0; 579 else if (AntiDepReg) { 580 // If this instruction has a use of AntiDepReg, breaking it 581 // is invalid. If the instruction defines other registers, 582 // save a list of them so that we don't pick a new register 583 // that overlaps any of them. 584 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 585 MachineOperand &MO = MI->getOperand(i); 586 if (!MO.isReg()) continue; 587 unsigned Reg = MO.getReg(); 588 if (Reg == 0) continue; 589 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) { 590 AntiDepReg = 0; 591 break; 592 } 593 if (MO.isDef() && Reg != AntiDepReg) 594 ForbidRegs.push_back(Reg); 595 } 596 } 597 598 // Determine AntiDepReg's register class, if it is live and is 599 // consistently used within a single class. 600 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] 601 : nullptr; 602 assert((AntiDepReg == 0 || RC != nullptr) && 603 "Register should be live if it's causing an anti-dependence!"); 604 if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) 605 AntiDepReg = 0; 606 607 // Look for a suitable register to use to break the anti-dependence. 608 // 609 // TODO: Instead of picking the first free register, consider which might 610 // be the best. 611 if (AntiDepReg != 0) { 612 std::pair<std::multimap<unsigned, MachineOperand *>::iterator, 613 std::multimap<unsigned, MachineOperand *>::iterator> 614 Range = RegRefs.equal_range(AntiDepReg); 615 if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second, 616 AntiDepReg, 617 LastNewReg[AntiDepReg], 618 RC, ForbidRegs)) { 619 DEBUG(dbgs() << "Breaking anti-dependence edge on " 620 << TRI->getName(AntiDepReg) 621 << " with " << RegRefs.count(AntiDepReg) << " references" 622 << " using " << TRI->getName(NewReg) << "!\n"); 623 624 // Update the references to the old register to refer to the new 625 // register. 626 for (std::multimap<unsigned, MachineOperand *>::iterator 627 Q = Range.first, QE = Range.second; Q != QE; ++Q) { 628 Q->second->setReg(NewReg); 629 // If the SU for the instruction being updated has debug information 630 // related to the anti-dependency register, make sure to update that 631 // as well. 632 const SUnit *SU = MISUnitMap[Q->second->getParent()]; 633 if (!SU) continue; 634 for (DbgValueVector::iterator DVI = DbgValues.begin(), 635 DVE = DbgValues.end(); DVI != DVE; ++DVI) 636 if (DVI->second == Q->second->getParent()) 637 UpdateDbgValue(DVI->first, AntiDepReg, NewReg); 638 } 639 640 // We just went back in time and modified history; the 641 // liveness information for the anti-dependence reg is now 642 // inconsistent. Set the state as if it were dead. 643 Classes[NewReg] = Classes[AntiDepReg]; 644 DefIndices[NewReg] = DefIndices[AntiDepReg]; 645 KillIndices[NewReg] = KillIndices[AntiDepReg]; 646 assert(((KillIndices[NewReg] == ~0u) != 647 (DefIndices[NewReg] == ~0u)) && 648 "Kill and Def maps aren't consistent for NewReg!"); 649 650 Classes[AntiDepReg] = nullptr; 651 DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; 652 KillIndices[AntiDepReg] = ~0u; 653 assert(((KillIndices[AntiDepReg] == ~0u) != 654 (DefIndices[AntiDepReg] == ~0u)) && 655 "Kill and Def maps aren't consistent for AntiDepReg!"); 656 657 RegRefs.erase(AntiDepReg); 658 LastNewReg[AntiDepReg] = NewReg; 659 ++Broken; 660 } 661 } 662 663 ScanInstruction(MI, Count); 664 } 665 666 return Broken; 667 } 668