1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CriticalAntiDepBreaker class, which 11 // implements register anti-dependence breaking along a blocks 12 // critical path during post-RA scheduler. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CriticalAntiDepBreaker.h" 17 #include "llvm/CodeGen/MachineBasicBlock.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 #include "llvm/Target/TargetRegisterInfo.h" 24 #include "llvm/Target/TargetSubtargetInfo.h" 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "post-RA-sched" 29 30 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi, 31 const RegisterClassInfo &RCI) 32 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), 33 TII(MF.getSubtarget().getInstrInfo()), 34 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI), 35 Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0), 36 DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {} 37 38 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() { 39 } 40 41 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 42 const unsigned BBSize = BB->size(); 43 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { 44 // Clear out the register class data. 45 Classes[i] = nullptr; 46 47 // Initialize the indices to indicate that no registers are live. 48 KillIndices[i] = ~0u; 49 DefIndices[i] = BBSize; 50 } 51 52 // Clear "do not change" set. 53 KeepRegs.reset(); 54 55 bool IsReturnBlock = BB->isReturnBlock(); 56 57 // Examine the live-in regs of all successors. 58 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 59 SE = BB->succ_end(); SI != SE; ++SI) 60 for (const auto &LI : (*SI)->liveins()) { 61 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { 62 unsigned Reg = *AI; 63 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 64 KillIndices[Reg] = BBSize; 65 DefIndices[Reg] = ~0u; 66 } 67 } 68 69 // Mark live-out callee-saved registers. In a return block this is 70 // all callee-saved registers. In non-return this is any 71 // callee-saved register that is not saved in the prolog. 72 const MachineFrameInfo &MFI = MF.getFrameInfo(); 73 BitVector Pristine = MFI.getPristineRegs(MF); 74 for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I; 75 ++I) { 76 unsigned Reg = *I; 77 if (!IsReturnBlock && !Pristine.test(Reg)) 78 continue; 79 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { 80 unsigned Reg = *AI; 81 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 82 KillIndices[Reg] = BBSize; 83 DefIndices[Reg] = ~0u; 84 } 85 } 86 } 87 88 void CriticalAntiDepBreaker::FinishBlock() { 89 RegRefs.clear(); 90 KeepRegs.reset(); 91 } 92 93 void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, 94 unsigned InsertPosIndex) { 95 // Kill instructions can define registers but are really nops, and there might 96 // be a real definition earlier that needs to be paired with uses dominated by 97 // this kill. 98 99 // FIXME: It may be possible to remove the isKill() restriction once PR18663 100 // has been properly fixed. There can be value in processing kills as seen in 101 // the AggressiveAntiDepBreaker class. 102 if (MI.isDebugValue() || MI.isKill()) 103 return; 104 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 105 106 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 107 if (KillIndices[Reg] != ~0u) { 108 // If Reg is currently live, then mark that it can't be renamed as 109 // we don't know the extent of its live-range anymore (now that it 110 // has been scheduled). 111 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 112 KillIndices[Reg] = Count; 113 } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { 114 // Any register which was defined within the previous scheduling region 115 // may have been rescheduled and its lifetime may overlap with registers 116 // in ways not reflected in our current liveness state. For each such 117 // register, adjust the liveness state to be conservatively correct. 118 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 119 120 // Move the def index to the end of the previous region, to reflect 121 // that the def could theoretically have been scheduled at the end. 122 DefIndices[Reg] = InsertPosIndex; 123 } 124 } 125 126 PrescanInstruction(MI); 127 ScanInstruction(MI, Count); 128 } 129 130 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 131 /// critical path. 132 static const SDep *CriticalPathStep(const SUnit *SU) { 133 const SDep *Next = nullptr; 134 unsigned NextDepth = 0; 135 // Find the predecessor edge with the greatest depth. 136 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 137 P != PE; ++P) { 138 const SUnit *PredSU = P->getSUnit(); 139 unsigned PredLatency = P->getLatency(); 140 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 141 // In the case of a latency tie, prefer an anti-dependency edge over 142 // other types of edges. 143 if (NextDepth < PredTotalLatency || 144 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { 145 NextDepth = PredTotalLatency; 146 Next = &*P; 147 } 148 } 149 return Next; 150 } 151 152 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) { 153 // It's not safe to change register allocation for source operands of 154 // instructions that have special allocation requirements. Also assume all 155 // registers used in a call must not be changed (ABI). 156 // FIXME: The issue with predicated instruction is more complex. We are being 157 // conservative here because the kill markers cannot be trusted after 158 // if-conversion: 159 // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14] 160 // ... 161 // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395] 162 // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12] 163 // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8) 164 // 165 // The first R6 kill is not really a kill since it's killed by a predicated 166 // instruction which may not be executed. The second R6 def may or may not 167 // re-define R6 so it's not safe to change it since the last R6 use cannot be 168 // changed. 169 bool Special = 170 MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI); 171 172 // Scan the register operands for this instruction and update 173 // Classes and RegRefs. 174 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 175 MachineOperand &MO = MI.getOperand(i); 176 if (!MO.isReg()) continue; 177 unsigned Reg = MO.getReg(); 178 if (Reg == 0) continue; 179 const TargetRegisterClass *NewRC = nullptr; 180 181 if (i < MI.getDesc().getNumOperands()) 182 NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 183 184 // For now, only allow the register to be changed if its register 185 // class is consistent across all uses. 186 if (!Classes[Reg] && NewRC) 187 Classes[Reg] = NewRC; 188 else if (!NewRC || Classes[Reg] != NewRC) 189 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 190 191 // Now check for aliases. 192 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 193 // If an alias of the reg is used during the live range, give up. 194 // Note that this allows us to skip checking if AntiDepReg 195 // overlaps with any of the aliases, among other things. 196 unsigned AliasReg = *AI; 197 if (Classes[AliasReg]) { 198 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 199 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 200 } 201 } 202 203 // If we're still willing to consider this register, note the reference. 204 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) 205 RegRefs.insert(std::make_pair(Reg, &MO)); 206 207 // If this reg is tied and live (Classes[Reg] is set to -1), we can't change 208 // it or any of its sub or super regs. We need to use KeepRegs to mark the 209 // reg because not all uses of the same reg within an instruction are 210 // necessarily tagged as tied. 211 // Example: an x86 "xor %eax, %eax" will have one source operand tied to the 212 // def register but not the second (see PR20020 for details). 213 // FIXME: can this check be relaxed to account for undef uses 214 // of a register? In the above 'xor' example, the uses of %eax are undef, so 215 // earlier instructions could still replace %eax even though the 'xor' 216 // itself can't be changed. 217 if (MI.isRegTiedToUseOperand(i) && 218 Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) { 219 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 220 SubRegs.isValid(); ++SubRegs) { 221 KeepRegs.set(*SubRegs); 222 } 223 for (MCSuperRegIterator SuperRegs(Reg, TRI); 224 SuperRegs.isValid(); ++SuperRegs) { 225 KeepRegs.set(*SuperRegs); 226 } 227 } 228 229 if (MO.isUse() && Special) { 230 if (!KeepRegs.test(Reg)) { 231 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 232 SubRegs.isValid(); ++SubRegs) 233 KeepRegs.set(*SubRegs); 234 } 235 } 236 } 237 } 238 239 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) { 240 // Update liveness. 241 // Proceeding upwards, registers that are defed but not used in this 242 // instruction are now dead. 243 assert(!MI.isKill() && "Attempting to scan a kill instruction"); 244 245 if (!TII->isPredicated(MI)) { 246 // Predicated defs are modeled as read + write, i.e. similar to two 247 // address updates. 248 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 249 MachineOperand &MO = MI.getOperand(i); 250 251 if (MO.isRegMask()) 252 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) 253 if (MO.clobbersPhysReg(i)) { 254 DefIndices[i] = Count; 255 KillIndices[i] = ~0u; 256 KeepRegs.reset(i); 257 Classes[i] = nullptr; 258 RegRefs.erase(i); 259 } 260 261 if (!MO.isReg()) continue; 262 unsigned Reg = MO.getReg(); 263 if (Reg == 0) continue; 264 if (!MO.isDef()) continue; 265 266 // Ignore two-addr defs. 267 if (MI.isRegTiedToUseOperand(i)) 268 continue; 269 270 // If we've already marked this reg as unchangeable, don't remove 271 // it or any of its subregs from KeepRegs. 272 bool Keep = KeepRegs.test(Reg); 273 274 // For the reg itself and all subregs: update the def to current; 275 // reset the kill state, any restrictions, and references. 276 for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) { 277 unsigned SubregReg = *SRI; 278 DefIndices[SubregReg] = Count; 279 KillIndices[SubregReg] = ~0u; 280 Classes[SubregReg] = nullptr; 281 RegRefs.erase(SubregReg); 282 if (!Keep) 283 KeepRegs.reset(SubregReg); 284 } 285 // Conservatively mark super-registers as unusable. 286 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) 287 Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1); 288 } 289 } 290 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 291 MachineOperand &MO = MI.getOperand(i); 292 if (!MO.isReg()) continue; 293 unsigned Reg = MO.getReg(); 294 if (Reg == 0) continue; 295 if (!MO.isUse()) continue; 296 297 const TargetRegisterClass *NewRC = nullptr; 298 if (i < MI.getDesc().getNumOperands()) 299 NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 300 301 // For now, only allow the register to be changed if its register 302 // class is consistent across all uses. 303 if (!Classes[Reg] && NewRC) 304 Classes[Reg] = NewRC; 305 else if (!NewRC || Classes[Reg] != NewRC) 306 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 307 308 RegRefs.insert(std::make_pair(Reg, &MO)); 309 310 // It wasn't previously live but now it is, this is a kill. 311 // Repeat for all aliases. 312 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 313 unsigned AliasReg = *AI; 314 if (KillIndices[AliasReg] == ~0u) { 315 KillIndices[AliasReg] = Count; 316 DefIndices[AliasReg] = ~0u; 317 } 318 } 319 } 320 } 321 322 // Check all machine operands that reference the antidependent register and must 323 // be replaced by NewReg. Return true if any of their parent instructions may 324 // clobber the new register. 325 // 326 // Note: AntiDepReg may be referenced by a two-address instruction such that 327 // it's use operand is tied to a def operand. We guard against the case in which 328 // the two-address instruction also defines NewReg, as may happen with 329 // pre/postincrement loads. In this case, both the use and def operands are in 330 // RegRefs because the def is inserted by PrescanInstruction and not erased 331 // during ScanInstruction. So checking for an instruction with definitions of 332 // both NewReg and AntiDepReg covers it. 333 bool 334 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, 335 RegRefIter RegRefEnd, 336 unsigned NewReg) 337 { 338 for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { 339 MachineOperand *RefOper = I->second; 340 341 // Don't allow the instruction defining AntiDepReg to earlyclobber its 342 // operands, in case they may be assigned to NewReg. In this case antidep 343 // breaking must fail, but it's too rare to bother optimizing. 344 if (RefOper->isDef() && RefOper->isEarlyClobber()) 345 return true; 346 347 // Handle cases in which this instruction defines NewReg. 348 MachineInstr *MI = RefOper->getParent(); 349 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 350 const MachineOperand &CheckOper = MI->getOperand(i); 351 352 if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg)) 353 return true; 354 355 if (!CheckOper.isReg() || !CheckOper.isDef() || 356 CheckOper.getReg() != NewReg) 357 continue; 358 359 // Don't allow the instruction to define NewReg and AntiDepReg. 360 // When AntiDepReg is renamed it will be an illegal op. 361 if (RefOper->isDef()) 362 return true; 363 364 // Don't allow an instruction using AntiDepReg to be earlyclobbered by 365 // NewReg. 366 if (CheckOper.isEarlyClobber()) 367 return true; 368 369 // Don't allow inline asm to define NewReg at all. Who knows what it's 370 // doing with it. 371 if (MI->isInlineAsm()) 372 return true; 373 } 374 } 375 return false; 376 } 377 378 unsigned CriticalAntiDepBreaker:: 379 findSuitableFreeRegister(RegRefIter RegRefBegin, 380 RegRefIter RegRefEnd, 381 unsigned AntiDepReg, 382 unsigned LastNewReg, 383 const TargetRegisterClass *RC, 384 SmallVectorImpl<unsigned> &Forbid) 385 { 386 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC); 387 for (unsigned i = 0; i != Order.size(); ++i) { 388 unsigned NewReg = Order[i]; 389 // Don't replace a register with itself. 390 if (NewReg == AntiDepReg) continue; 391 // Don't replace a register with one that was recently used to repair 392 // an anti-dependence with this AntiDepReg, because that would 393 // re-introduce that anti-dependence. 394 if (NewReg == LastNewReg) continue; 395 // If any instructions that define AntiDepReg also define the NewReg, it's 396 // not suitable. For example, Instruction with multiple definitions can 397 // result in this condition. 398 if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; 399 // If NewReg is dead and NewReg's most recent def is not before 400 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. 401 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) 402 && "Kill and Def maps aren't consistent for AntiDepReg!"); 403 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) 404 && "Kill and Def maps aren't consistent for NewReg!"); 405 if (KillIndices[NewReg] != ~0u || 406 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || 407 KillIndices[AntiDepReg] > DefIndices[NewReg]) 408 continue; 409 // If NewReg overlaps any of the forbidden registers, we can't use it. 410 bool Forbidden = false; 411 for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(), 412 ite = Forbid.end(); it != ite; ++it) 413 if (TRI->regsOverlap(NewReg, *it)) { 414 Forbidden = true; 415 break; 416 } 417 if (Forbidden) continue; 418 return NewReg; 419 } 420 421 // No registers are free and available! 422 return 0; 423 } 424 425 unsigned CriticalAntiDepBreaker:: 426 BreakAntiDependencies(const std::vector<SUnit>& SUnits, 427 MachineBasicBlock::iterator Begin, 428 MachineBasicBlock::iterator End, 429 unsigned InsertPosIndex, 430 DbgValueVector &DbgValues) { 431 // The code below assumes that there is at least one instruction, 432 // so just duck out immediately if the block is empty. 433 if (SUnits.empty()) return 0; 434 435 // Keep a map of the MachineInstr*'s back to the SUnit representing them. 436 // This is used for updating debug information. 437 // 438 // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap 439 DenseMap<MachineInstr*,const SUnit*> MISUnitMap; 440 441 // Find the node at the bottom of the critical path. 442 const SUnit *Max = nullptr; 443 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 444 const SUnit *SU = &SUnits[i]; 445 MISUnitMap[SU->getInstr()] = SU; 446 if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) 447 Max = SU; 448 } 449 450 #ifndef NDEBUG 451 { 452 DEBUG(dbgs() << "Critical path has total latency " 453 << (Max->getDepth() + Max->Latency) << "\n"); 454 DEBUG(dbgs() << "Available regs:"); 455 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 456 if (KillIndices[Reg] == ~0u) 457 DEBUG(dbgs() << " " << TRI->getName(Reg)); 458 } 459 DEBUG(dbgs() << '\n'); 460 } 461 #endif 462 463 // Track progress along the critical path through the SUnit graph as we walk 464 // the instructions. 465 const SUnit *CriticalPathSU = Max; 466 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); 467 468 // Consider this pattern: 469 // A = ... 470 // ... = A 471 // A = ... 472 // ... = A 473 // A = ... 474 // ... = A 475 // A = ... 476 // ... = A 477 // There are three anti-dependencies here, and without special care, 478 // we'd break all of them using the same register: 479 // A = ... 480 // ... = A 481 // B = ... 482 // ... = B 483 // B = ... 484 // ... = B 485 // B = ... 486 // ... = B 487 // because at each anti-dependence, B is the first register that 488 // isn't A which is free. This re-introduces anti-dependencies 489 // at all but one of the original anti-dependencies that we were 490 // trying to break. To avoid this, keep track of the most recent 491 // register that each register was replaced with, avoid 492 // using it to repair an anti-dependence on the same register. 493 // This lets us produce this: 494 // A = ... 495 // ... = A 496 // B = ... 497 // ... = B 498 // C = ... 499 // ... = C 500 // B = ... 501 // ... = B 502 // This still has an anti-dependence on B, but at least it isn't on the 503 // original critical path. 504 // 505 // TODO: If we tracked more than one register here, we could potentially 506 // fix that remaining critical edge too. This is a little more involved, 507 // because unlike the most recent register, less recent registers should 508 // still be considered, though only if no other registers are available. 509 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0); 510 511 // Attempt to break anti-dependence edges on the critical path. Walk the 512 // instructions from the bottom up, tracking information about liveness 513 // as we go to help determine which registers are available. 514 unsigned Broken = 0; 515 unsigned Count = InsertPosIndex - 1; 516 for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { 517 MachineInstr &MI = *--I; 518 // Kill instructions can define registers but are really nops, and there 519 // might be a real definition earlier that needs to be paired with uses 520 // dominated by this kill. 521 522 // FIXME: It may be possible to remove the isKill() restriction once PR18663 523 // has been properly fixed. There can be value in processing kills as seen 524 // in the AggressiveAntiDepBreaker class. 525 if (MI.isDebugValue() || MI.isKill()) 526 continue; 527 528 // Check if this instruction has a dependence on the critical path that 529 // is an anti-dependence that we may be able to break. If it is, set 530 // AntiDepReg to the non-zero register associated with the anti-dependence. 531 // 532 // We limit our attention to the critical path as a heuristic to avoid 533 // breaking anti-dependence edges that aren't going to significantly 534 // impact the overall schedule. There are a limited number of registers 535 // and we want to save them for the important edges. 536 // 537 // TODO: Instructions with multiple defs could have multiple 538 // anti-dependencies. The current code here only knows how to break one 539 // edge per instruction. Note that we'd have to be able to break all of 540 // the anti-dependencies in an instruction in order to be effective. 541 unsigned AntiDepReg = 0; 542 if (&MI == CriticalPathMI) { 543 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) { 544 const SUnit *NextSU = Edge->getSUnit(); 545 546 // Only consider anti-dependence edges. 547 if (Edge->getKind() == SDep::Anti) { 548 AntiDepReg = Edge->getReg(); 549 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 550 if (!MRI.isAllocatable(AntiDepReg)) 551 // Don't break anti-dependencies on non-allocatable registers. 552 AntiDepReg = 0; 553 else if (KeepRegs.test(AntiDepReg)) 554 // Don't break anti-dependencies if a use down below requires 555 // this exact register. 556 AntiDepReg = 0; 557 else { 558 // If the SUnit has other dependencies on the SUnit that it 559 // anti-depends on, don't bother breaking the anti-dependency 560 // since those edges would prevent such units from being 561 // scheduled past each other regardless. 562 // 563 // Also, if there are dependencies on other SUnits with the 564 // same register as the anti-dependency, don't attempt to 565 // break it. 566 for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(), 567 PE = CriticalPathSU->Preds.end(); P != PE; ++P) 568 if (P->getSUnit() == NextSU ? 569 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : 570 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { 571 AntiDepReg = 0; 572 break; 573 } 574 } 575 } 576 CriticalPathSU = NextSU; 577 CriticalPathMI = CriticalPathSU->getInstr(); 578 } else { 579 // We've reached the end of the critical path. 580 CriticalPathSU = nullptr; 581 CriticalPathMI = nullptr; 582 } 583 } 584 585 PrescanInstruction(MI); 586 587 SmallVector<unsigned, 2> ForbidRegs; 588 589 // If MI's defs have a special allocation requirement, don't allow 590 // any def registers to be changed. Also assume all registers 591 // defined in a call must not be changed (ABI). 592 if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI)) 593 // If this instruction's defs have special allocation requirement, don't 594 // break this anti-dependency. 595 AntiDepReg = 0; 596 else if (AntiDepReg) { 597 // If this instruction has a use of AntiDepReg, breaking it 598 // is invalid. If the instruction defines other registers, 599 // save a list of them so that we don't pick a new register 600 // that overlaps any of them. 601 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 602 MachineOperand &MO = MI.getOperand(i); 603 if (!MO.isReg()) continue; 604 unsigned Reg = MO.getReg(); 605 if (Reg == 0) continue; 606 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) { 607 AntiDepReg = 0; 608 break; 609 } 610 if (MO.isDef() && Reg != AntiDepReg) 611 ForbidRegs.push_back(Reg); 612 } 613 } 614 615 // Determine AntiDepReg's register class, if it is live and is 616 // consistently used within a single class. 617 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] 618 : nullptr; 619 assert((AntiDepReg == 0 || RC != nullptr) && 620 "Register should be live if it's causing an anti-dependence!"); 621 if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) 622 AntiDepReg = 0; 623 624 // Look for a suitable register to use to break the anti-dependence. 625 // 626 // TODO: Instead of picking the first free register, consider which might 627 // be the best. 628 if (AntiDepReg != 0) { 629 std::pair<std::multimap<unsigned, MachineOperand *>::iterator, 630 std::multimap<unsigned, MachineOperand *>::iterator> 631 Range = RegRefs.equal_range(AntiDepReg); 632 if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second, 633 AntiDepReg, 634 LastNewReg[AntiDepReg], 635 RC, ForbidRegs)) { 636 DEBUG(dbgs() << "Breaking anti-dependence edge on " 637 << TRI->getName(AntiDepReg) 638 << " with " << RegRefs.count(AntiDepReg) << " references" 639 << " using " << TRI->getName(NewReg) << "!\n"); 640 641 // Update the references to the old register to refer to the new 642 // register. 643 for (std::multimap<unsigned, MachineOperand *>::iterator 644 Q = Range.first, QE = Range.second; Q != QE; ++Q) { 645 Q->second->setReg(NewReg); 646 // If the SU for the instruction being updated has debug information 647 // related to the anti-dependency register, make sure to update that 648 // as well. 649 const SUnit *SU = MISUnitMap[Q->second->getParent()]; 650 if (!SU) continue; 651 UpdateDbgValues(DbgValues, Q->second->getParent(), 652 AntiDepReg, NewReg); 653 } 654 655 // We just went back in time and modified history; the 656 // liveness information for the anti-dependence reg is now 657 // inconsistent. Set the state as if it were dead. 658 Classes[NewReg] = Classes[AntiDepReg]; 659 DefIndices[NewReg] = DefIndices[AntiDepReg]; 660 KillIndices[NewReg] = KillIndices[AntiDepReg]; 661 assert(((KillIndices[NewReg] == ~0u) != 662 (DefIndices[NewReg] == ~0u)) && 663 "Kill and Def maps aren't consistent for NewReg!"); 664 665 Classes[AntiDepReg] = nullptr; 666 DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; 667 KillIndices[AntiDepReg] = ~0u; 668 assert(((KillIndices[AntiDepReg] == ~0u) != 669 (DefIndices[AntiDepReg] == ~0u)) && 670 "Kill and Def maps aren't consistent for AntiDepReg!"); 671 672 RegRefs.erase(AntiDepReg); 673 LastNewReg[AntiDepReg] = NewReg; 674 ++Broken; 675 } 676 } 677 678 ScanInstruction(MI, Count); 679 } 680 681 return Broken; 682 } 683