1 //===-- CallingConvLower.cpp - Calling Conventions ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CCState class, used for lowering and implementing 11 // calling conventions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/TargetLowering.h" 19 #include "llvm/CodeGen/TargetRegisterInfo.h" 20 #include "llvm/CodeGen/TargetSubtargetInfo.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include "llvm/Support/SaveAndRestore.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 28 using namespace llvm; 29 30 CCState::CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &mf, 31 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C) 32 : CallingConv(CC), IsVarArg(isVarArg), MF(mf), 33 TRI(*MF.getSubtarget().getRegisterInfo()), Locs(locs), Context(C) { 34 // No stack is used. 35 StackOffset = 0; 36 MaxStackArgAlign = 1; 37 38 clearByValRegsInfo(); 39 UsedRegs.resize((TRI.getNumRegs()+31)/32); 40 } 41 42 /// Allocate space on the stack large enough to pass an argument by value. 43 /// The size and alignment information of the argument is encoded in 44 /// its parameter attribute. 45 void CCState::HandleByVal(unsigned ValNo, MVT ValVT, 46 MVT LocVT, CCValAssign::LocInfo LocInfo, 47 int MinSize, int MinAlign, 48 ISD::ArgFlagsTy ArgFlags) { 49 unsigned Align = ArgFlags.getByValAlign(); 50 unsigned Size = ArgFlags.getByValSize(); 51 if (MinSize > (int)Size) 52 Size = MinSize; 53 if (MinAlign > (int)Align) 54 Align = MinAlign; 55 ensureMaxAlignment(Align); 56 MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Align); 57 Size = unsigned(alignTo(Size, MinAlign)); 58 unsigned Offset = AllocateStack(Size, Align); 59 addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 60 } 61 62 /// Mark a register and all of its aliases as allocated. 63 void CCState::MarkAllocated(unsigned Reg) { 64 for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) 65 UsedRegs[*AI/32] |= 1 << (*AI&31); 66 } 67 68 bool CCState::IsShadowAllocatedReg(unsigned Reg) const { 69 if (!isAllocated(Reg)) 70 return false; 71 72 for (auto const &ValAssign : Locs) { 73 if (ValAssign.isRegLoc()) { 74 for (MCRegAliasIterator AI(ValAssign.getLocReg(), &TRI, true); 75 AI.isValid(); ++AI) { 76 if (*AI == Reg) 77 return false; 78 } 79 } 80 } 81 return true; 82 } 83 84 /// Analyze an array of argument values, 85 /// incorporating info about the formals into this state. 86 void 87 CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins, 88 CCAssignFn Fn) { 89 unsigned NumArgs = Ins.size(); 90 91 for (unsigned i = 0; i != NumArgs; ++i) { 92 MVT ArgVT = Ins[i].VT; 93 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 94 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { 95 #ifndef NDEBUG 96 dbgs() << "Formal argument #" << i << " has unhandled type " 97 << EVT(ArgVT).getEVTString() << '\n'; 98 #endif 99 llvm_unreachable(nullptr); 100 } 101 } 102 } 103 104 /// Analyze the return values of a function, returning true if the return can 105 /// be performed without sret-demotion and false otherwise. 106 bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, 107 CCAssignFn Fn) { 108 // Determine which register each value should be copied into. 109 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 110 MVT VT = Outs[i].VT; 111 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 112 if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) 113 return false; 114 } 115 return true; 116 } 117 118 /// Analyze the returned values of a return, 119 /// incorporating info about the result values into this state. 120 void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, 121 CCAssignFn Fn) { 122 // Determine which register each value should be copied into. 123 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 124 MVT VT = Outs[i].VT; 125 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 126 if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) { 127 #ifndef NDEBUG 128 dbgs() << "Return operand #" << i << " has unhandled type " 129 << EVT(VT).getEVTString() << '\n'; 130 #endif 131 llvm_unreachable(nullptr); 132 } 133 } 134 } 135 136 /// Analyze the outgoing arguments to a call, 137 /// incorporating info about the passed values into this state. 138 void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs, 139 CCAssignFn Fn) { 140 unsigned NumOps = Outs.size(); 141 for (unsigned i = 0; i != NumOps; ++i) { 142 MVT ArgVT = Outs[i].VT; 143 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 144 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { 145 #ifndef NDEBUG 146 dbgs() << "Call operand #" << i << " has unhandled type " 147 << EVT(ArgVT).getEVTString() << '\n'; 148 #endif 149 llvm_unreachable(nullptr); 150 } 151 } 152 } 153 154 /// Same as above except it takes vectors of types and argument flags. 155 void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs, 156 SmallVectorImpl<ISD::ArgFlagsTy> &Flags, 157 CCAssignFn Fn) { 158 unsigned NumOps = ArgVTs.size(); 159 for (unsigned i = 0; i != NumOps; ++i) { 160 MVT ArgVT = ArgVTs[i]; 161 ISD::ArgFlagsTy ArgFlags = Flags[i]; 162 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { 163 #ifndef NDEBUG 164 dbgs() << "Call operand #" << i << " has unhandled type " 165 << EVT(ArgVT).getEVTString() << '\n'; 166 #endif 167 llvm_unreachable(nullptr); 168 } 169 } 170 } 171 172 /// Analyze the return values of a call, incorporating info about the passed 173 /// values into this state. 174 void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, 175 CCAssignFn Fn) { 176 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 177 MVT VT = Ins[i].VT; 178 ISD::ArgFlagsTy Flags = Ins[i].Flags; 179 if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) { 180 #ifndef NDEBUG 181 dbgs() << "Call result #" << i << " has unhandled type " 182 << EVT(VT).getEVTString() << '\n'; 183 #endif 184 llvm_unreachable(nullptr); 185 } 186 } 187 } 188 189 /// Same as above except it's specialized for calls that produce a single value. 190 void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) { 191 if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) { 192 #ifndef NDEBUG 193 dbgs() << "Call result has unhandled type " 194 << EVT(VT).getEVTString() << '\n'; 195 #endif 196 llvm_unreachable(nullptr); 197 } 198 } 199 200 static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) { 201 if (VT.isVector()) 202 return true; // Assume -msse-regparm might be in effect. 203 if (!VT.isInteger()) 204 return false; 205 if (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall) 206 return true; 207 return false; 208 } 209 210 void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, 211 MVT VT, CCAssignFn Fn) { 212 unsigned SavedStackOffset = StackOffset; 213 unsigned SavedMaxStackArgAlign = MaxStackArgAlign; 214 unsigned NumLocs = Locs.size(); 215 216 // Set the 'inreg' flag if it is used for this calling convention. 217 ISD::ArgFlagsTy Flags; 218 if (isValueTypeInRegForCC(CallingConv, VT)) 219 Flags.setInReg(); 220 221 // Allocate something of this value type repeatedly until we get assigned a 222 // location in memory. 223 bool HaveRegParm = true; 224 while (HaveRegParm) { 225 if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) { 226 #ifndef NDEBUG 227 dbgs() << "Call has unhandled type " << EVT(VT).getEVTString() 228 << " while computing remaining regparms\n"; 229 #endif 230 llvm_unreachable(nullptr); 231 } 232 HaveRegParm = Locs.back().isRegLoc(); 233 } 234 235 // Copy all the registers from the value locations we added. 236 assert(NumLocs < Locs.size() && "CC assignment failed to add location"); 237 for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I) 238 if (Locs[I].isRegLoc()) 239 Regs.push_back(MCPhysReg(Locs[I].getLocReg())); 240 241 // Clear the assigned values and stack memory. We leave the registers marked 242 // as allocated so that future queries don't return the same registers, i.e. 243 // when i64 and f64 are both passed in GPRs. 244 StackOffset = SavedStackOffset; 245 MaxStackArgAlign = SavedMaxStackArgAlign; 246 Locs.resize(NumLocs); 247 } 248 249 void CCState::analyzeMustTailForwardedRegisters( 250 SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes, 251 CCAssignFn Fn) { 252 // Oftentimes calling conventions will not user register parameters for 253 // variadic functions, so we need to assume we're not variadic so that we get 254 // all the registers that might be used in a non-variadic call. 255 SaveAndRestore<bool> SavedVarArg(IsVarArg, false); 256 SaveAndRestore<bool> SavedMustTail(AnalyzingMustTailForwardedRegs, true); 257 258 for (MVT RegVT : RegParmTypes) { 259 SmallVector<MCPhysReg, 8> RemainingRegs; 260 getRemainingRegParmsForType(RemainingRegs, RegVT, Fn); 261 const TargetLowering *TL = MF.getSubtarget().getTargetLowering(); 262 const TargetRegisterClass *RC = TL->getRegClassFor(RegVT); 263 for (MCPhysReg PReg : RemainingRegs) { 264 unsigned VReg = MF.addLiveIn(PReg, RC); 265 Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT)); 266 } 267 } 268 } 269 270 bool CCState::resultsCompatible(CallingConv::ID CalleeCC, 271 CallingConv::ID CallerCC, MachineFunction &MF, 272 LLVMContext &C, 273 const SmallVectorImpl<ISD::InputArg> &Ins, 274 CCAssignFn CalleeFn, CCAssignFn CallerFn) { 275 if (CalleeCC == CallerCC) 276 return true; 277 SmallVector<CCValAssign, 4> RVLocs1; 278 CCState CCInfo1(CalleeCC, false, MF, RVLocs1, C); 279 CCInfo1.AnalyzeCallResult(Ins, CalleeFn); 280 281 SmallVector<CCValAssign, 4> RVLocs2; 282 CCState CCInfo2(CallerCC, false, MF, RVLocs2, C); 283 CCInfo2.AnalyzeCallResult(Ins, CallerFn); 284 285 if (RVLocs1.size() != RVLocs2.size()) 286 return false; 287 for (unsigned I = 0, E = RVLocs1.size(); I != E; ++I) { 288 const CCValAssign &Loc1 = RVLocs1[I]; 289 const CCValAssign &Loc2 = RVLocs2[I]; 290 if (Loc1.getLocInfo() != Loc2.getLocInfo()) 291 return false; 292 bool RegLoc1 = Loc1.isRegLoc(); 293 if (RegLoc1 != Loc2.isRegLoc()) 294 return false; 295 if (RegLoc1) { 296 if (Loc1.getLocReg() != Loc2.getLocReg()) 297 return false; 298 } else { 299 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 300 return false; 301 } 302 } 303 return true; 304 } 305