1 //===-- CallingConvLower.cpp - Calling Conventions ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CCState class, used for lowering and implementing 10 // calling conventions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/CallingConvLower.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineRegisterInfo.h" 17 #include "llvm/CodeGen/TargetLowering.h" 18 #include "llvm/CodeGen/TargetRegisterInfo.h" 19 #include "llvm/CodeGen/TargetSubtargetInfo.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include "llvm/Support/SaveAndRestore.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include <algorithm> 26 27 using namespace llvm; 28 29 CCState::CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &mf, 30 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C) 31 : CallingConv(CC), IsVarArg(isVarArg), MF(mf), 32 TRI(*MF.getSubtarget().getRegisterInfo()), Locs(locs), Context(C) { 33 // No stack is used. 34 StackOffset = 0; 35 36 clearByValRegsInfo(); 37 UsedRegs.resize((TRI.getNumRegs()+31)/32); 38 } 39 40 /// Allocate space on the stack large enough to pass an argument by value. 41 /// The size and alignment information of the argument is encoded in 42 /// its parameter attribute. 43 void CCState::HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT, 44 CCValAssign::LocInfo LocInfo, int MinSize, 45 int MinAlignment, ISD::ArgFlagsTy ArgFlags) { 46 llvm::Align MinAlign(MinAlignment); 47 llvm::Align Align(ArgFlags.getByValAlign()); 48 unsigned Size = ArgFlags.getByValSize(); 49 if (MinSize > (int)Size) 50 Size = MinSize; 51 if (MinAlign > Align) 52 Align = MinAlign; 53 ensureMaxAlignment(Align); 54 MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Align.value()); 55 Size = unsigned(alignTo(Size, MinAlign)); 56 unsigned Offset = AllocateStack(Size, Align.value()); 57 addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 58 } 59 60 /// Mark a register and all of its aliases as allocated. 61 void CCState::MarkAllocated(unsigned Reg) { 62 for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) 63 UsedRegs[*AI/32] |= 1 << (*AI&31); 64 } 65 66 bool CCState::IsShadowAllocatedReg(unsigned Reg) const { 67 if (!isAllocated(Reg)) 68 return false; 69 70 for (auto const &ValAssign : Locs) { 71 if (ValAssign.isRegLoc()) { 72 for (MCRegAliasIterator AI(ValAssign.getLocReg(), &TRI, true); 73 AI.isValid(); ++AI) { 74 if (*AI == Reg) 75 return false; 76 } 77 } 78 } 79 return true; 80 } 81 82 /// Analyze an array of argument values, 83 /// incorporating info about the formals into this state. 84 void 85 CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins, 86 CCAssignFn Fn) { 87 unsigned NumArgs = Ins.size(); 88 89 for (unsigned i = 0; i != NumArgs; ++i) { 90 MVT ArgVT = Ins[i].VT; 91 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 92 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) 93 report_fatal_error("unable to allocate function argument #" + Twine(i)); 94 } 95 } 96 97 /// Analyze the return values of a function, returning true if the return can 98 /// be performed without sret-demotion and false otherwise. 99 bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, 100 CCAssignFn Fn) { 101 // Determine which register each value should be copied into. 102 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 103 MVT VT = Outs[i].VT; 104 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 105 if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) 106 return false; 107 } 108 return true; 109 } 110 111 /// Analyze the returned values of a return, 112 /// incorporating info about the result values into this state. 113 void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, 114 CCAssignFn Fn) { 115 // Determine which register each value should be copied into. 116 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 117 MVT VT = Outs[i].VT; 118 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 119 if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) 120 report_fatal_error("unable to allocate function return #" + Twine(i)); 121 } 122 } 123 124 /// Analyze the outgoing arguments to a call, 125 /// incorporating info about the passed values into this state. 126 void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs, 127 CCAssignFn Fn) { 128 unsigned NumOps = Outs.size(); 129 for (unsigned i = 0; i != NumOps; ++i) { 130 MVT ArgVT = Outs[i].VT; 131 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 132 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { 133 #ifndef NDEBUG 134 dbgs() << "Call operand #" << i << " has unhandled type " 135 << EVT(ArgVT).getEVTString() << '\n'; 136 #endif 137 llvm_unreachable(nullptr); 138 } 139 } 140 } 141 142 /// Same as above except it takes vectors of types and argument flags. 143 void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs, 144 SmallVectorImpl<ISD::ArgFlagsTy> &Flags, 145 CCAssignFn Fn) { 146 unsigned NumOps = ArgVTs.size(); 147 for (unsigned i = 0; i != NumOps; ++i) { 148 MVT ArgVT = ArgVTs[i]; 149 ISD::ArgFlagsTy ArgFlags = Flags[i]; 150 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { 151 #ifndef NDEBUG 152 dbgs() << "Call operand #" << i << " has unhandled type " 153 << EVT(ArgVT).getEVTString() << '\n'; 154 #endif 155 llvm_unreachable(nullptr); 156 } 157 } 158 } 159 160 /// Analyze the return values of a call, incorporating info about the passed 161 /// values into this state. 162 void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, 163 CCAssignFn Fn) { 164 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 165 MVT VT = Ins[i].VT; 166 ISD::ArgFlagsTy Flags = Ins[i].Flags; 167 if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) { 168 #ifndef NDEBUG 169 dbgs() << "Call result #" << i << " has unhandled type " 170 << EVT(VT).getEVTString() << '\n'; 171 #endif 172 llvm_unreachable(nullptr); 173 } 174 } 175 } 176 177 /// Same as above except it's specialized for calls that produce a single value. 178 void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) { 179 if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) { 180 #ifndef NDEBUG 181 dbgs() << "Call result has unhandled type " 182 << EVT(VT).getEVTString() << '\n'; 183 #endif 184 llvm_unreachable(nullptr); 185 } 186 } 187 188 static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) { 189 if (VT.isVector()) 190 return true; // Assume -msse-regparm might be in effect. 191 if (!VT.isInteger()) 192 return false; 193 if (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall) 194 return true; 195 return false; 196 } 197 198 void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, 199 MVT VT, CCAssignFn Fn) { 200 unsigned SavedStackOffset = StackOffset; 201 llvm::Align SavedMaxStackArgAlign = MaxStackArgAlign; 202 unsigned NumLocs = Locs.size(); 203 204 // Set the 'inreg' flag if it is used for this calling convention. 205 ISD::ArgFlagsTy Flags; 206 if (isValueTypeInRegForCC(CallingConv, VT)) 207 Flags.setInReg(); 208 209 // Allocate something of this value type repeatedly until we get assigned a 210 // location in memory. 211 bool HaveRegParm = true; 212 while (HaveRegParm) { 213 if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) { 214 #ifndef NDEBUG 215 dbgs() << "Call has unhandled type " << EVT(VT).getEVTString() 216 << " while computing remaining regparms\n"; 217 #endif 218 llvm_unreachable(nullptr); 219 } 220 HaveRegParm = Locs.back().isRegLoc(); 221 } 222 223 // Copy all the registers from the value locations we added. 224 assert(NumLocs < Locs.size() && "CC assignment failed to add location"); 225 for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I) 226 if (Locs[I].isRegLoc()) 227 Regs.push_back(MCPhysReg(Locs[I].getLocReg())); 228 229 // Clear the assigned values and stack memory. We leave the registers marked 230 // as allocated so that future queries don't return the same registers, i.e. 231 // when i64 and f64 are both passed in GPRs. 232 StackOffset = SavedStackOffset; 233 MaxStackArgAlign = SavedMaxStackArgAlign; 234 Locs.resize(NumLocs); 235 } 236 237 void CCState::analyzeMustTailForwardedRegisters( 238 SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes, 239 CCAssignFn Fn) { 240 // Oftentimes calling conventions will not user register parameters for 241 // variadic functions, so we need to assume we're not variadic so that we get 242 // all the registers that might be used in a non-variadic call. 243 SaveAndRestore<bool> SavedVarArg(IsVarArg, false); 244 SaveAndRestore<bool> SavedMustTail(AnalyzingMustTailForwardedRegs, true); 245 246 for (MVT RegVT : RegParmTypes) { 247 SmallVector<MCPhysReg, 8> RemainingRegs; 248 getRemainingRegParmsForType(RemainingRegs, RegVT, Fn); 249 const TargetLowering *TL = MF.getSubtarget().getTargetLowering(); 250 const TargetRegisterClass *RC = TL->getRegClassFor(RegVT); 251 for (MCPhysReg PReg : RemainingRegs) { 252 unsigned VReg = MF.addLiveIn(PReg, RC); 253 Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT)); 254 } 255 } 256 } 257 258 bool CCState::resultsCompatible(CallingConv::ID CalleeCC, 259 CallingConv::ID CallerCC, MachineFunction &MF, 260 LLVMContext &C, 261 const SmallVectorImpl<ISD::InputArg> &Ins, 262 CCAssignFn CalleeFn, CCAssignFn CallerFn) { 263 if (CalleeCC == CallerCC) 264 return true; 265 SmallVector<CCValAssign, 4> RVLocs1; 266 CCState CCInfo1(CalleeCC, false, MF, RVLocs1, C); 267 CCInfo1.AnalyzeCallResult(Ins, CalleeFn); 268 269 SmallVector<CCValAssign, 4> RVLocs2; 270 CCState CCInfo2(CallerCC, false, MF, RVLocs2, C); 271 CCInfo2.AnalyzeCallResult(Ins, CallerFn); 272 273 if (RVLocs1.size() != RVLocs2.size()) 274 return false; 275 for (unsigned I = 0, E = RVLocs1.size(); I != E; ++I) { 276 const CCValAssign &Loc1 = RVLocs1[I]; 277 const CCValAssign &Loc2 = RVLocs2[I]; 278 if (Loc1.getLocInfo() != Loc2.getLocInfo()) 279 return false; 280 bool RegLoc1 = Loc1.isRegLoc(); 281 if (RegLoc1 != Loc2.isRegLoc()) 282 return false; 283 if (RegLoc1) { 284 if (Loc1.getLocReg() != Loc2.getLocReg()) 285 return false; 286 } else { 287 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 288 return false; 289 } 290 } 291 return true; 292 } 293