1 //===-- CallingConvLower.cpp - Calling Conventions ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CCState class, used for lowering and implementing 11 // calling conventions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/SaveAndRestore.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Target/TargetLowering.h" 24 #include "llvm/Target/TargetRegisterInfo.h" 25 #include "llvm/Target/TargetSubtargetInfo.h" 26 using namespace llvm; 27 28 CCState::CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &mf, 29 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C) 30 : CallingConv(CC), IsVarArg(isVarArg), MF(mf), 31 TRI(*MF.getSubtarget().getRegisterInfo()), Locs(locs), Context(C), 32 CallOrPrologue(Unknown) { 33 // No stack is used. 34 StackOffset = 0; 35 36 clearByValRegsInfo(); 37 UsedRegs.resize((TRI.getNumRegs()+31)/32); 38 } 39 40 /// Allocate space on the stack large enough to pass an argument by value. 41 /// The size and alignment information of the argument is encoded in 42 /// its parameter attribute. 43 void CCState::HandleByVal(unsigned ValNo, MVT ValVT, 44 MVT LocVT, CCValAssign::LocInfo LocInfo, 45 int MinSize, int MinAlign, 46 ISD::ArgFlagsTy ArgFlags) { 47 unsigned Align = ArgFlags.getByValAlign(); 48 unsigned Size = ArgFlags.getByValSize(); 49 if (MinSize > (int)Size) 50 Size = MinSize; 51 if (MinAlign > (int)Align) 52 Align = MinAlign; 53 MF.getFrameInfo()->ensureMaxAlignment(Align); 54 MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Align); 55 Size = unsigned(RoundUpToAlignment(Size, MinAlign)); 56 unsigned Offset = AllocateStack(Size, Align); 57 addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 58 } 59 60 /// Mark a register and all of its aliases as allocated. 61 void CCState::MarkAllocated(unsigned Reg) { 62 for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) 63 UsedRegs[*AI/32] |= 1 << (*AI&31); 64 } 65 66 /// Analyze an array of argument values, 67 /// incorporating info about the formals into this state. 68 void 69 CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins, 70 CCAssignFn Fn) { 71 unsigned NumArgs = Ins.size(); 72 73 for (unsigned i = 0; i != NumArgs; ++i) { 74 MVT ArgVT = Ins[i].VT; 75 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 76 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { 77 #ifndef NDEBUG 78 dbgs() << "Formal argument #" << i << " has unhandled type " 79 << EVT(ArgVT).getEVTString() << '\n'; 80 #endif 81 llvm_unreachable(nullptr); 82 } 83 } 84 } 85 86 /// Analyze the return values of a function, returning true if the return can 87 /// be performed without sret-demotion and false otherwise. 88 bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, 89 CCAssignFn Fn) { 90 // Determine which register each value should be copied into. 91 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 92 MVT VT = Outs[i].VT; 93 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 94 if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) 95 return false; 96 } 97 return true; 98 } 99 100 /// Analyze the returned values of a return, 101 /// incorporating info about the result values into this state. 102 void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, 103 CCAssignFn Fn) { 104 // Determine which register each value should be copied into. 105 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 106 MVT VT = Outs[i].VT; 107 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 108 if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) { 109 #ifndef NDEBUG 110 dbgs() << "Return operand #" << i << " has unhandled type " 111 << EVT(VT).getEVTString() << '\n'; 112 #endif 113 llvm_unreachable(nullptr); 114 } 115 } 116 } 117 118 /// Analyze the outgoing arguments to a call, 119 /// incorporating info about the passed values into this state. 120 void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs, 121 CCAssignFn Fn) { 122 unsigned NumOps = Outs.size(); 123 for (unsigned i = 0; i != NumOps; ++i) { 124 MVT ArgVT = Outs[i].VT; 125 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 126 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { 127 #ifndef NDEBUG 128 dbgs() << "Call operand #" << i << " has unhandled type " 129 << EVT(ArgVT).getEVTString() << '\n'; 130 #endif 131 llvm_unreachable(nullptr); 132 } 133 } 134 } 135 136 /// Same as above except it takes vectors of types and argument flags. 137 void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs, 138 SmallVectorImpl<ISD::ArgFlagsTy> &Flags, 139 CCAssignFn Fn) { 140 unsigned NumOps = ArgVTs.size(); 141 for (unsigned i = 0; i != NumOps; ++i) { 142 MVT ArgVT = ArgVTs[i]; 143 ISD::ArgFlagsTy ArgFlags = Flags[i]; 144 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { 145 #ifndef NDEBUG 146 dbgs() << "Call operand #" << i << " has unhandled type " 147 << EVT(ArgVT).getEVTString() << '\n'; 148 #endif 149 llvm_unreachable(nullptr); 150 } 151 } 152 } 153 154 /// Analyze the return values of a call, incorporating info about the passed 155 /// values into this state. 156 void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, 157 CCAssignFn Fn) { 158 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 159 MVT VT = Ins[i].VT; 160 ISD::ArgFlagsTy Flags = Ins[i].Flags; 161 if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) { 162 #ifndef NDEBUG 163 dbgs() << "Call result #" << i << " has unhandled type " 164 << EVT(VT).getEVTString() << '\n'; 165 #endif 166 llvm_unreachable(nullptr); 167 } 168 } 169 } 170 171 /// Same as above except it's specialized for calls that produce a single value. 172 void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) { 173 if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) { 174 #ifndef NDEBUG 175 dbgs() << "Call result has unhandled type " 176 << EVT(VT).getEVTString() << '\n'; 177 #endif 178 llvm_unreachable(nullptr); 179 } 180 } 181 182 static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) { 183 if (VT.isVector()) 184 return true; // Assume -msse-regparm might be in effect. 185 if (!VT.isInteger()) 186 return false; 187 if (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall) 188 return true; 189 return false; 190 } 191 192 void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, 193 MVT VT, CCAssignFn Fn) { 194 unsigned SavedStackOffset = StackOffset; 195 unsigned NumLocs = Locs.size(); 196 197 // Set the 'inreg' flag if it is used for this calling convention. 198 ISD::ArgFlagsTy Flags; 199 if (isValueTypeInRegForCC(CallingConv, VT)) 200 Flags.setInReg(); 201 202 // Allocate something of this value type repeatedly until we get assigned a 203 // location in memory. 204 bool HaveRegParm = true; 205 while (HaveRegParm) { 206 if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) { 207 #ifndef NDEBUG 208 dbgs() << "Call has unhandled type " << EVT(VT).getEVTString() 209 << " while computing remaining regparms\n"; 210 #endif 211 llvm_unreachable(nullptr); 212 } 213 HaveRegParm = Locs.back().isRegLoc(); 214 } 215 216 // Copy all the registers from the value locations we added. 217 assert(NumLocs < Locs.size() && "CC assignment failed to add location"); 218 for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I) 219 if (Locs[I].isRegLoc()) 220 Regs.push_back(MCPhysReg(Locs[I].getLocReg())); 221 222 // Clear the assigned values and stack memory. We leave the registers marked 223 // as allocated so that future queries don't return the same registers, i.e. 224 // when i64 and f64 are both passed in GPRs. 225 StackOffset = SavedStackOffset; 226 Locs.resize(NumLocs); 227 } 228 229 void CCState::analyzeMustTailForwardedRegisters( 230 SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes, 231 CCAssignFn Fn) { 232 // Oftentimes calling conventions will not user register parameters for 233 // variadic functions, so we need to assume we're not variadic so that we get 234 // all the registers that might be used in a non-variadic call. 235 SaveAndRestore<bool> SavedVarArg(IsVarArg, false); 236 237 for (MVT RegVT : RegParmTypes) { 238 SmallVector<MCPhysReg, 8> RemainingRegs; 239 getRemainingRegParmsForType(RemainingRegs, RegVT, Fn); 240 const TargetLowering *TL = MF.getSubtarget().getTargetLowering(); 241 const TargetRegisterClass *RC = TL->getRegClassFor(RegVT); 242 for (MCPhysReg PReg : RemainingRegs) { 243 unsigned VReg = MF.addLiveIn(PReg, RC); 244 Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT)); 245 } 246 } 247 } 248