1 //===- BranchRelaxation.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/SmallVector.h"
11 #include "llvm/ADT/Statistic.h"
12 #include "llvm/CodeGen/LivePhysRegs.h"
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/CodeGen/MachineFunction.h"
15 #include "llvm/CodeGen/MachineFunctionPass.h"
16 #include "llvm/CodeGen/MachineInstr.h"
17 #include "llvm/CodeGen/RegisterScavenging.h"
18 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #include "llvm/CodeGen/TargetRegisterInfo.h"
20 #include "llvm/CodeGen/TargetSubtargetInfo.h"
21 #include "llvm/Config/llvm-config.h"
22 #include "llvm/IR/DebugLoc.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/Format.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <cassert>
30 #include <cstdint>
31 #include <iterator>
32 #include <memory>
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "branch-relaxation"
37 
38 STATISTIC(NumSplit, "Number of basic blocks split");
39 STATISTIC(NumConditionalRelaxed, "Number of conditional branches relaxed");
40 STATISTIC(NumUnconditionalRelaxed, "Number of unconditional branches relaxed");
41 
42 #define BRANCH_RELAX_NAME "Branch relaxation pass"
43 
44 namespace {
45 
46 class BranchRelaxation : public MachineFunctionPass {
47   /// BasicBlockInfo - Information about the offset and size of a single
48   /// basic block.
49   struct BasicBlockInfo {
50     /// Offset - Distance from the beginning of the function to the beginning
51     /// of this basic block.
52     ///
53     /// The offset is always aligned as required by the basic block.
54     unsigned Offset = 0;
55 
56     /// Size - Size of the basic block in bytes.  If the block contains
57     /// inline assembly, this is a worst case estimate.
58     ///
59     /// The size does not include any alignment padding whether from the
60     /// beginning of the block, or from an aligned jump table at the end.
61     unsigned Size = 0;
62 
63     BasicBlockInfo() = default;
64 
65     /// Compute the offset immediately following this block. \p MBB is the next
66     /// block.
67     unsigned postOffset(const MachineBasicBlock &MBB) const {
68       unsigned PO = Offset + Size;
69       unsigned Align = MBB.getAlignment();
70       if (Align == 0)
71         return PO;
72 
73       unsigned AlignAmt = 1 << Align;
74       unsigned ParentAlign = MBB.getParent()->getAlignment();
75       if (Align <= ParentAlign)
76         return PO + OffsetToAlignment(PO, AlignAmt);
77 
78       // The alignment of this MBB is larger than the function's alignment, so we
79       // can't tell whether or not it will insert nops. Assume that it will.
80       return PO + AlignAmt + OffsetToAlignment(PO, AlignAmt);
81     }
82   };
83 
84   SmallVector<BasicBlockInfo, 16> BlockInfo;
85   std::unique_ptr<RegScavenger> RS;
86   LivePhysRegs LiveRegs;
87 
88   MachineFunction *MF;
89   const TargetRegisterInfo *TRI;
90   const TargetInstrInfo *TII;
91 
92   bool relaxBranchInstructions();
93   void scanFunction();
94 
95   MachineBasicBlock *createNewBlockAfter(MachineBasicBlock &BB);
96 
97   MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI,
98                                            MachineBasicBlock *DestBB);
99   void adjustBlockOffsets(MachineBasicBlock &MBB);
100   bool isBlockInRange(const MachineInstr &MI, const MachineBasicBlock &BB) const;
101 
102   bool fixupConditionalBranch(MachineInstr &MI);
103   bool fixupUnconditionalBranch(MachineInstr &MI);
104   uint64_t computeBlockSize(const MachineBasicBlock &MBB) const;
105   unsigned getInstrOffset(const MachineInstr &MI) const;
106   void dumpBBs();
107   void verify();
108 
109 public:
110   static char ID;
111 
112   BranchRelaxation() : MachineFunctionPass(ID) {}
113 
114   bool runOnMachineFunction(MachineFunction &MF) override;
115 
116   StringRef getPassName() const override { return BRANCH_RELAX_NAME; }
117 };
118 
119 } // end anonymous namespace
120 
121 char BranchRelaxation::ID = 0;
122 
123 char &llvm::BranchRelaxationPassID = BranchRelaxation::ID;
124 
125 INITIALIZE_PASS(BranchRelaxation, DEBUG_TYPE, BRANCH_RELAX_NAME, false, false)
126 
127 /// verify - check BBOffsets, BBSizes, alignment of islands
128 void BranchRelaxation::verify() {
129 #ifndef NDEBUG
130   unsigned PrevNum = MF->begin()->getNumber();
131   for (MachineBasicBlock &MBB : *MF) {
132     unsigned Align = MBB.getAlignment();
133     unsigned Num = MBB.getNumber();
134     assert(BlockInfo[Num].Offset % (1u << Align) == 0);
135     assert(!Num || BlockInfo[PrevNum].postOffset(MBB) <= BlockInfo[Num].Offset);
136     assert(BlockInfo[Num].Size == computeBlockSize(MBB));
137     PrevNum = Num;
138   }
139 #endif
140 }
141 
142 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
143 /// print block size and offset information - debugging
144 LLVM_DUMP_METHOD void BranchRelaxation::dumpBBs() {
145   for (auto &MBB : *MF) {
146     const BasicBlockInfo &BBI = BlockInfo[MBB.getNumber()];
147     dbgs() << format("%bb.%u\toffset=%08x\t", MBB.getNumber(), BBI.Offset)
148            << format("size=%#x\n", BBI.Size);
149   }
150 }
151 #endif
152 
153 /// scanFunction - Do the initial scan of the function, building up
154 /// information about each block.
155 void BranchRelaxation::scanFunction() {
156   BlockInfo.clear();
157   BlockInfo.resize(MF->getNumBlockIDs());
158 
159   // First thing, compute the size of all basic blocks, and see if the function
160   // has any inline assembly in it. If so, we have to be conservative about
161   // alignment assumptions, as we don't know for sure the size of any
162   // instructions in the inline assembly.
163   for (MachineBasicBlock &MBB : *MF)
164     BlockInfo[MBB.getNumber()].Size = computeBlockSize(MBB);
165 
166   // Compute block offsets and known bits.
167   adjustBlockOffsets(*MF->begin());
168 }
169 
170 /// computeBlockSize - Compute the size for MBB.
171 uint64_t BranchRelaxation::computeBlockSize(const MachineBasicBlock &MBB) const {
172   uint64_t Size = 0;
173   for (const MachineInstr &MI : MBB)
174     Size += TII->getInstSizeInBytes(MI);
175   return Size;
176 }
177 
178 /// getInstrOffset - Return the current offset of the specified machine
179 /// instruction from the start of the function.  This offset changes as stuff is
180 /// moved around inside the function.
181 unsigned BranchRelaxation::getInstrOffset(const MachineInstr &MI) const {
182   const MachineBasicBlock *MBB = MI.getParent();
183 
184   // The offset is composed of two things: the sum of the sizes of all MBB's
185   // before this instruction's block, and the offset from the start of the block
186   // it is in.
187   unsigned Offset = BlockInfo[MBB->getNumber()].Offset;
188 
189   // Sum instructions before MI in MBB.
190   for (MachineBasicBlock::const_iterator I = MBB->begin(); &*I != &MI; ++I) {
191     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
192     Offset += TII->getInstSizeInBytes(*I);
193   }
194 
195   return Offset;
196 }
197 
198 void BranchRelaxation::adjustBlockOffsets(MachineBasicBlock &Start) {
199   unsigned PrevNum = Start.getNumber();
200   for (auto &MBB : make_range(MachineFunction::iterator(Start), MF->end())) {
201     unsigned Num = MBB.getNumber();
202     if (!Num) // block zero is never changed from offset zero.
203       continue;
204     // Get the offset and known bits at the end of the layout predecessor.
205     // Include the alignment of the current block.
206     BlockInfo[Num].Offset = BlockInfo[PrevNum].postOffset(MBB);
207 
208     PrevNum = Num;
209   }
210 }
211 
212 /// Insert a new empty basic block and insert it after \BB
213 MachineBasicBlock *BranchRelaxation::createNewBlockAfter(MachineBasicBlock &BB) {
214   // Create a new MBB for the code after the OrigBB.
215   MachineBasicBlock *NewBB =
216       MF->CreateMachineBasicBlock(BB.getBasicBlock());
217   MF->insert(++BB.getIterator(), NewBB);
218 
219   // Insert an entry into BlockInfo to align it properly with the block numbers.
220   BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
221 
222   return NewBB;
223 }
224 
225 /// Split the basic block containing MI into two blocks, which are joined by
226 /// an unconditional branch.  Update data structures and renumber blocks to
227 /// account for this change and returns the newly created block.
228 MachineBasicBlock *BranchRelaxation::splitBlockBeforeInstr(MachineInstr &MI,
229                                                            MachineBasicBlock *DestBB) {
230   MachineBasicBlock *OrigBB = MI.getParent();
231 
232   // Create a new MBB for the code after the OrigBB.
233   MachineBasicBlock *NewBB =
234       MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
235   MF->insert(++OrigBB->getIterator(), NewBB);
236 
237   // Splice the instructions starting with MI over to NewBB.
238   NewBB->splice(NewBB->end(), OrigBB, MI.getIterator(), OrigBB->end());
239 
240   // Add an unconditional branch from OrigBB to NewBB.
241   // Note the new unconditional branch is not being recorded.
242   // There doesn't seem to be meaningful DebugInfo available; this doesn't
243   // correspond to anything in the source.
244   TII->insertUnconditionalBranch(*OrigBB, NewBB, DebugLoc());
245 
246   // Insert an entry into BlockInfo to align it properly with the block numbers.
247   BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
248 
249   NewBB->transferSuccessors(OrigBB);
250   OrigBB->addSuccessor(NewBB);
251   OrigBB->addSuccessor(DestBB);
252 
253   // Cleanup potential unconditional branch to successor block.
254   // Note that updateTerminator may change the size of the blocks.
255   NewBB->updateTerminator();
256   OrigBB->updateTerminator();
257 
258   // Figure out how large the OrigBB is.  As the first half of the original
259   // block, it cannot contain a tablejump.  The size includes
260   // the new jump we added.  (It should be possible to do this without
261   // recounting everything, but it's very confusing, and this is rarely
262   // executed.)
263   BlockInfo[OrigBB->getNumber()].Size = computeBlockSize(*OrigBB);
264 
265   // Figure out how large the NewMBB is. As the second half of the original
266   // block, it may contain a tablejump.
267   BlockInfo[NewBB->getNumber()].Size = computeBlockSize(*NewBB);
268 
269   // All BBOffsets following these blocks must be modified.
270   adjustBlockOffsets(*OrigBB);
271 
272   // Need to fix live-in lists if we track liveness.
273   if (TRI->trackLivenessAfterRegAlloc(*MF))
274     computeAndAddLiveIns(LiveRegs, *NewBB);
275 
276   ++NumSplit;
277 
278   return NewBB;
279 }
280 
281 /// isBlockInRange - Returns true if the distance between specific MI and
282 /// specific BB can fit in MI's displacement field.
283 bool BranchRelaxation::isBlockInRange(
284   const MachineInstr &MI, const MachineBasicBlock &DestBB) const {
285   int64_t BrOffset = getInstrOffset(MI);
286   int64_t DestOffset = BlockInfo[DestBB.getNumber()].Offset;
287 
288   if (TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - BrOffset))
289     return true;
290 
291   DEBUG(dbgs() << "Out of range branch to destination "
292                << printMBBReference(DestBB) << " from "
293                << printMBBReference(*MI.getParent()) << " to " << DestOffset
294                << " offset " << DestOffset - BrOffset << '\t' << MI);
295 
296   return false;
297 }
298 
299 /// fixupConditionalBranch - Fix up a conditional branch whose destination is
300 /// too far away to fit in its displacement field. It is converted to an inverse
301 /// conditional branch + an unconditional branch to the destination.
302 bool BranchRelaxation::fixupConditionalBranch(MachineInstr &MI) {
303   DebugLoc DL = MI.getDebugLoc();
304   MachineBasicBlock *MBB = MI.getParent();
305   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
306   MachineBasicBlock *NewBB = nullptr;
307   SmallVector<MachineOperand, 4> Cond;
308 
309   auto insertUncondBranch = [&](MachineBasicBlock *MBB,
310                                 MachineBasicBlock *DestBB) {
311     unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
312     int NewBrSize = 0;
313     TII->insertUnconditionalBranch(*MBB, DestBB, DL, &NewBrSize);
314     BBSize += NewBrSize;
315   };
316   auto insertBranch = [&](MachineBasicBlock *MBB, MachineBasicBlock *TBB,
317                           MachineBasicBlock *FBB,
318                           SmallVectorImpl<MachineOperand>& Cond) {
319     unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
320     int NewBrSize = 0;
321     TII->insertBranch(*MBB, TBB, FBB, Cond, DL, &NewBrSize);
322     BBSize += NewBrSize;
323   };
324   auto removeBranch = [&](MachineBasicBlock *MBB) {
325     unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
326     int RemovedSize = 0;
327     TII->removeBranch(*MBB, &RemovedSize);
328     BBSize -= RemovedSize;
329   };
330 
331   auto finalizeBlockChanges = [&](MachineBasicBlock *MBB,
332                                   MachineBasicBlock *NewBB) {
333     // Keep the block offsets up to date.
334     adjustBlockOffsets(*MBB);
335 
336     // Need to fix live-in lists if we track liveness.
337     if (NewBB && TRI->trackLivenessAfterRegAlloc(*MF))
338       computeAndAddLiveIns(LiveRegs, *NewBB);
339   };
340 
341   bool Fail = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
342   assert(!Fail && "branches to be relaxed must be analyzable");
343   (void)Fail;
344 
345   // Add an unconditional branch to the destination and invert the branch
346   // condition to jump over it:
347   // tbz L1
348   // =>
349   // tbnz L2
350   // b   L1
351   // L2:
352 
353   bool ReversedCond = !TII->reverseBranchCondition(Cond);
354   if (ReversedCond) {
355     if (FBB && isBlockInRange(MI, *FBB)) {
356       // Last MI in the BB is an unconditional branch. We can simply invert the
357       // condition and swap destinations:
358       // beq L1
359       // b   L2
360       // =>
361       // bne L2
362       // b   L1
363       DEBUG(dbgs() << "  Invert condition and swap "
364             "its destination with " << MBB->back());
365 
366       removeBranch(MBB);
367       insertBranch(MBB, FBB, TBB, Cond);
368       finalizeBlockChanges(MBB, nullptr);
369       return true;
370     }
371     if (FBB) {
372       // We need to split the basic block here to obtain two long-range
373       // unconditional branches.
374       NewBB = createNewBlockAfter(*MBB);
375 
376       insertUncondBranch(NewBB, FBB);
377       // Update the succesor lists according to the transformation to follow.
378       // Do it here since if there's no split, no update is needed.
379       MBB->replaceSuccessor(FBB, NewBB);
380       NewBB->addSuccessor(FBB);
381     }
382 
383     // We now have an appropriate fall-through block in place (either naturally or
384     // just created), so we can use the inverted the condition.
385     MachineBasicBlock &NextBB = *std::next(MachineFunction::iterator(MBB));
386 
387     DEBUG(dbgs() << "  Insert B to " << printMBBReference(*TBB)
388                  << ", invert condition and change dest. to "
389                  << printMBBReference(NextBB) << '\n');
390 
391     removeBranch(MBB);
392     // Insert a new conditional branch and a new unconditional branch.
393     insertBranch(MBB, &NextBB, TBB, Cond);
394 
395     finalizeBlockChanges(MBB, NewBB);
396     return true;
397   }
398   // Branch cond can't be inverted.
399   // In this case we always add a block after the MBB.
400   DEBUG(dbgs() << "  The branch condition can't be inverted. "
401                << "  Insert a new BB after " << MBB->back());
402 
403   if (!FBB)
404     FBB = &(*std::next(MachineFunction::iterator(MBB)));
405 
406   // This is the block with cond. branch and the distance to TBB is too long.
407   //    beq L1
408   // L2:
409 
410   // We do the following transformation:
411   //    beq NewBB
412   //    b L2
413   // NewBB:
414   //    b L1
415   // L2:
416 
417   NewBB = createNewBlockAfter(*MBB);
418   insertUncondBranch(NewBB, TBB);
419 
420   DEBUG(dbgs() << "  Insert cond B to the new BB " << printMBBReference(*NewBB)
421                << "  Keep the exiting condition.\n"
422                << "  Insert B to " << printMBBReference(*FBB) << ".\n"
423                << "  In the new BB: Insert B to "
424                << printMBBReference(*TBB) << ".\n");
425 
426   // Update the successor lists according to the transformation to follow.
427   MBB->replaceSuccessor(TBB, NewBB);
428   NewBB->addSuccessor(TBB);
429 
430   // Replace branch in the current (MBB) block.
431   removeBranch(MBB);
432   insertBranch(MBB, NewBB, FBB, Cond);
433 
434   finalizeBlockChanges(MBB, NewBB);
435   return true;
436 }
437 
438 bool BranchRelaxation::fixupUnconditionalBranch(MachineInstr &MI) {
439   MachineBasicBlock *MBB = MI.getParent();
440 
441   unsigned OldBrSize = TII->getInstSizeInBytes(MI);
442   MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
443 
444   int64_t DestOffset = BlockInfo[DestBB->getNumber()].Offset;
445   int64_t SrcOffset = getInstrOffset(MI);
446 
447   assert(!TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - SrcOffset));
448 
449   BlockInfo[MBB->getNumber()].Size -= OldBrSize;
450 
451   MachineBasicBlock *BranchBB = MBB;
452 
453   // If this was an expanded conditional branch, there is already a single
454   // unconditional branch in a block.
455   if (!MBB->empty()) {
456     BranchBB = createNewBlockAfter(*MBB);
457 
458     // Add live outs.
459     for (const MachineBasicBlock *Succ : MBB->successors()) {
460       for (const MachineBasicBlock::RegisterMaskPair &LiveIn : Succ->liveins())
461         BranchBB->addLiveIn(LiveIn);
462     }
463 
464     BranchBB->sortUniqueLiveIns();
465     BranchBB->addSuccessor(DestBB);
466     MBB->replaceSuccessor(DestBB, BranchBB);
467   }
468 
469   DebugLoc DL = MI.getDebugLoc();
470   MI.eraseFromParent();
471   BlockInfo[BranchBB->getNumber()].Size += TII->insertIndirectBranch(
472     *BranchBB, *DestBB, DL, DestOffset - SrcOffset, RS.get());
473 
474   adjustBlockOffsets(*MBB);
475   return true;
476 }
477 
478 bool BranchRelaxation::relaxBranchInstructions() {
479   bool Changed = false;
480 
481   // Relaxing branches involves creating new basic blocks, so re-eval
482   // end() for termination.
483   for (MachineFunction::iterator I = MF->begin(); I != MF->end(); ++I) {
484     MachineBasicBlock &MBB = *I;
485 
486     // Empty block?
487     MachineBasicBlock::iterator Last = MBB.getLastNonDebugInstr();
488     if (Last == MBB.end())
489       continue;
490 
491     // Expand the unconditional branch first if necessary. If there is a
492     // conditional branch, this will end up changing the branch destination of
493     // it to be over the newly inserted indirect branch block, which may avoid
494     // the need to try expanding the conditional branch first, saving an extra
495     // jump.
496     if (Last->isUnconditionalBranch()) {
497       // Unconditional branch destination might be unanalyzable, assume these
498       // are OK.
499       if (MachineBasicBlock *DestBB = TII->getBranchDestBlock(*Last)) {
500         if (!isBlockInRange(*Last, *DestBB)) {
501           fixupUnconditionalBranch(*Last);
502           ++NumUnconditionalRelaxed;
503           Changed = true;
504         }
505       }
506     }
507 
508     // Loop over the conditional branches.
509     MachineBasicBlock::iterator Next;
510     for (MachineBasicBlock::iterator J = MBB.getFirstTerminator();
511          J != MBB.end(); J = Next) {
512       Next = std::next(J);
513       MachineInstr &MI = *J;
514 
515       if (MI.isConditionalBranch()) {
516         MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
517         if (!isBlockInRange(MI, *DestBB)) {
518           if (Next != MBB.end() && Next->isConditionalBranch()) {
519             // If there are multiple conditional branches, this isn't an
520             // analyzable block. Split later terminators into a new block so
521             // each one will be analyzable.
522 
523             splitBlockBeforeInstr(*Next, DestBB);
524           } else {
525             fixupConditionalBranch(MI);
526             ++NumConditionalRelaxed;
527           }
528 
529           Changed = true;
530 
531           // This may have modified all of the terminators, so start over.
532           Next = MBB.getFirstTerminator();
533         }
534       }
535     }
536   }
537 
538   return Changed;
539 }
540 
541 bool BranchRelaxation::runOnMachineFunction(MachineFunction &mf) {
542   MF = &mf;
543 
544   DEBUG(dbgs() << "***** BranchRelaxation *****\n");
545 
546   const TargetSubtargetInfo &ST = MF->getSubtarget();
547   TII = ST.getInstrInfo();
548 
549   TRI = ST.getRegisterInfo();
550   if (TRI->trackLivenessAfterRegAlloc(*MF))
551     RS.reset(new RegScavenger());
552 
553   // Renumber all of the machine basic blocks in the function, guaranteeing that
554   // the numbers agree with the position of the block in the function.
555   MF->RenumberBlocks();
556 
557   // Do the initial scan of the function, building up information about the
558   // sizes of each block.
559   scanFunction();
560 
561   DEBUG(dbgs() << "  Basic blocks before relaxation\n"; dumpBBs(););
562 
563   bool MadeChange = false;
564   while (relaxBranchInstructions())
565     MadeChange = true;
566 
567   // After a while, this might be made debug-only, but it is not expensive.
568   verify();
569 
570   DEBUG(dbgs() << "  Basic blocks after relaxation\n\n"; dumpBBs());
571 
572   BlockInfo.clear();
573 
574   return MadeChange;
575 }
576